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a b s t r a c t

Modern smartphones are equipped with various sensors along with on-board storage, computing and
communication capabilities. Owing to these features, they can become an intelligent, scalable, au-
tonomous and potentially cost-free component of the next generation civil infrastructuremonitoring sys-
tems in future smart cities. Over the past few years, there has been a growing interest in the deployment of
smartphone-based monitoring technologies within the civil engineering arena. Overall, the smartphone
sensing paradigm is still in its infancy, with great promise for researchers to rapidly expand its many
potential applications. This paper presents a comprehensive literature review of smartphone-centric
research for the monitoring of civil infrastructure systems. The historical deployment of smartphones
in major areas of civil engineering has been explored. An emphasis is placed on sensing capabilities of
smartphones and their crowdsourcing power for monitoring several distinct civil infrastructure systems.
Furthermore, a case study is presented to provide our most recent efforts in deployment of smartphones
for evaluation of highway pavements and challenges ahead. Finally, limitations, challenges and future
directions for widespread application of smartphone-driven monitoring systems are discussed. The
survey implies that much research is still required to explore the power of crowdsourced smartphone-
based measurements, and to branch out into new application domains.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In theUS, civil infrastructure systems are being seriously threat-
ened by age-related degradation, deferred maintenance, natural
disasters, and manmade hazards such as earthquakes, floods, hur-
ricanes, fires, explosions, and toxic releases. Degradation is known
as the main cause of failures of civil infrastructure systems. In a
recent report by the American Society of Civil Engineers [1], the
America’s aging infrastructure has received a D+ grade. An esti-
mated $206 billion must be invested each year to raise the overall
infrastructure grade and tomaintain theUS global competitiveness
by 2025 [1]. The losses associated with aging and deterioration in
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the US infrastructure are significant. An example is the $67 billion
cost imposed annually on drivers due to the poor condition of
32% of America’s major roads. Also, a recent study on the effect of
pavement roughness on user costs revealed that a vehicle owner
will incur an additional $349/year for a vehicle driven on a rough
road compared to a road with an adequate smoothness level [2].
However, the challenges of aging infrastructure networks imply
the need for developing innovative civil infrastructure monitoring
solutions. In the last three decades, notable research has been
conducted in the area of deployment of newmonitoring technolo-
gies for continuous damage assessment and safety evaluation of
civil infrastructure. In this context, numerous methods have been
developed as a result of advances in sensor technology, signal anal-
ysis and informationprocessing [3]. Currently, technical difficulties
and economic issues associated with installing and maintaining
instrumentation in civil infrastructure systems have hampered
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Fig. 1. Key parameters defining Smart Cities [4].

the large-scale implementation of new monitoring methods on
major urban infrastructure systems (e.g. large-span bridges, tun-
nels, rails, roads, underground pipe networks, large-span spatial
structures, high-rise building). Moreover, day-to-day collection of
information on such public assets is extremely costly and requires
significant manpower. These issues have been exacerbated by in-
creased urbanization and have created a market for ‘Smart City’
technologies and software platforms.

It is estimated that the development of Smart Cities will create
a global technologymarket of over $1.5 trillion by as early as 2020,
andwill remain on the center stage as one themost important chal-
lenges and opportunities for city planners and managers and for
researchers and technology providers over the next few decades
[4]. Key parameters that will define a Smart City in 2020 are shown
in Fig. 1. It is expected that over 26 Global Cities will become Smart
Cities in 2025, with more than half of them located in Europe and
North America. The next generation Smart Cities will be heavily
dependent on the integration of smart infrastructure with infor-
mation and communication technologies (ICT) and the Internet of
Things (IoT). As shown in Fig. 1, seamless connectivity through
a smart communication system is an important component of
such platform, and smartphones are clearly a critical, enabling
technology towards this end [5–14]. In the last decade, the global
smartphone market has grown tremendously (Fig. 2). The total
number of smartphone users worldwide is expected to exceed 2.8
billion by 2020 [15]. According to a recent study [16], the global
smartphone market is forecast to reach $355 billion in revenues
in the next 4 years. Moreover, there has been a massive increase
in the total revenue generated by smartphone apps (applications),
rising from $45.37 billion in 2015 to $76.52 billion in 2017. This
market continues to grow significantly due to increasing access of
smartphones to the internet, their universal penetration, and their
potential to support machine-to-machine (M to M) communica-
tions.

Modern smartphones are instrumented with various sensors
such as a barometer, gyroscope, accelerometer, proximity sensor,
camera, touch screen, microphone, ambient light sensor, magne-
tometer, and have significant on-board computing capabilities.
They are equipped with batteries that are charged by their users
and have storage in the order of gigabytes. Moreover, smartphones
are supported by mobile operating systems and wireless commu-
nication hardware that can be used for field data collection and up-
loading real-time data to a server via Bluetooth, Wi-Fi, 3G, 4G and
5G networks. Most importantly, the smartphone-based monitor-
ingmethodology essentially creates a cyber–physical system (CPS)
through mobile crowdsourcing [17]. The crowdsourcing sensing
platform empowered by citizens enables frequent collection of
data without investing in specialized sensing infrastructure [18].

All these features imply that smartphones can become central to
future civil infrastructure monitoring systems.

In the last few years, there has been a surge of research on
mobile sensing for data collection, signal processing and data visu-
alization in real-world applications. However, most of the current
smartphone deployments fall in the areas of healthcare and fitness,
environmental monitoring, education, and management. Within
this framework, limited research has been done on exploring the
potential of smartphones in transforming civil infrastructuremon-
itoring capabilities. This paper aims to review the most recent
smartphone-driven research on smart civil infrastructuremonitor-
ing. Various capabilities of smartphones for monitoring different
civil infrastructure systems are analyzed. The reviewed articles are
categorized bymajor areas of civil engineering applications, which
include pavement engineering, structural engineering, traffic en-
gineering, construction engineering and management, and earth-
quake engineering. In addition, our recent work on the application
of smartphones for infrastructure health monitoring is presented,
highlighting current capabilities and challenges.

2. Smartphone-driven civil infrastructure monitoring

Multisensory smartphone information collected using a crowd-
sourcing sensing approach can be an asset for intelligent decision
making in smart cities [19]. Mobile crowdsensing is based on
active participation of citizens in collecting appropriate sensor
data using their smart devices and smartphones. Over the last few
years, this low-cost or no-cost data collection approach has grown
considerably due to the widespread use of internet, smartphones,
and mobile networks [20–23]. Fig. 3 illustrates a conceptual CPS
enabled by smartphone-based infrastructuremonitoring approach
through mobile crowdsourcing. This is a common CPS platform
developed to link the physical, cyber, and sensor system objects
through amultilayered information processing framework [17,24].
The outer layer of this CPS is the physical object, which can be
road, tunnel, bridge, or other infrastructure systems. The second
layer includes a sensing process by which physical parameters
such as vibrations, images and temperature are collected by citizen
smartphones. Finally, the parameters sensed by smartphone sen-
sors are uploaded to a network layer, which includes cloud servers.
This interior layer stores and processes the data and visualizes
the results through a web application [17]. The network layer
can provide three cloud computing services for different groups
of people: IaaS (Infrastructure as a Service), PaaS (Platform as a
Service), and SaaS (Software as a Service).

Evidently, development of a smartphone-enabled CPS for civil
infrastructure systems is different from conventional systems.
Some of the critical components of this process are:

- Collection and storage of multiscale smartphone data
- Processing of smartphone data into actionable information
- Visualizing and communicating the outcome with system

participants and administrators
- Parsing smartphone and citizen-induced uncertainties (built-

in sensing modules, spatiotemporal, human biomechanical, etc.)
- Developing the crowdsourcing platform and engaging partic-

ipants
The following sections review the most relevant works ad-

dressing these concerns towards an efficient smartphone-based
civil infrastructuremonitoring system. The articles are categorized
by their application to major civil engineering disciplines. A con-
tent analysis approach recommended by Krippendorff [25] is used
to perform the literature review. On this basis, valid inferences
are objectively made according to the collected data in order to
disclose central aspects of the previous studies. This approach
allows for qualitative and quantitative operations and therefore,
providing an inclusive disclosure of smartphone applications in
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Fig. 2. Number of smartphone users worldwide [15].

Fig. 3. A conceptual smartphone-based CPS for civil infrastructure monitoring
(inspired from [17]).

civil engineering. In order to collect samples, extensive search
and selection of peer-reviewed articles are conducted within well-
accepted academic databases such as Web of Science, Scopus,
Science Direct, ASCE Library, Engineering Village, Wiley Online
Library, Sage, Google Scholar, IEEE Explore, ACM, and Emerald.

Many keywords are used to assure that all the related stud-
ies have been included. Some keyword examples are ‘‘smart-
phone’’, ‘‘mobile’’, ‘‘edge computing’’, ‘‘civil engineering’’, ‘‘en-
gineering’’, ‘‘smart cities’’, ‘‘infrastructure monitoring’’, ‘‘crowd-
sourcing’’, ‘‘cyber–physical system’’, ‘‘mobile sensing’’, ‘‘monitor-
ing’’, etc. The time period under review is from 2008 to 2018,
which led to the identification of approximately 347 candidate
articles. Subsequently, a two-round article selection technique is
used in this study. Accordingly, titles, abstract, and keywords of the
noted articles are checked in the first round to assure that they fall
within the scope of the current literature review. This is followed
by a second round consisted of reading and analyzing the entire
article, and therefore ensuring that all of the selected papers are
closely related to the review objective [26]. Finally, 61 articles are
selected and used for the present review study. Table 1 shows the
number of smartphone-related peer-reviewed articles in different
civil engineering areas by December 20, 2017. As seen in this table,
there has been a huge interest in using smartphones for pavement
condition assessment.

3. Applications of smartphone technology in pavement engi-
neering

Pavement condition assessment is one of the major challenges
for many governments. According to the American Society of Civil

Table 1
Number of smartphone-related publications in different civil engineering areas (by
December 20, 2017).
Year Application Area Number

Published
Papers

2008 Pavement & Traffic Monitoring 2

2009 – –

2010 Pavement Monitoring 2

2011 Pavement Monitoring 4

2012 Pavement Monitoring 4

2013 Pavement, Structural & Traffic
Monitoring

9

2014 Pavement & Traffic Monitoring,
Construction Engineering and
Management

8

2015 Pavement Monitoring 11

2016 Pavement & Structural
Monitoring, Construction
Engineering and Management &
Earthquake Engineering

10

2017 Pavement & Structural
Monitoring & Construction
Engineering and Management

10

Engineering’s 2017 Report Card [1], about 20% of American high-
way pavements are in poor condition and need significant rehabili-
tation. In order to ensure safety and comfort for all road users, mu-
nicipalities and road authorities should spend millions of dollars
for pavementmonitoring andmaintenance. Continuous evaluation
of road conditions allows proper maintenance and management
operations, along with a consistent allocation of budget. Many
traditional road evaluation methods are based on in situ mea-
surements along with visual examinations and interpretations. On
the other hand, the costs associated with sophisticated pavement
evaluation equipment such asmobilemeasurement system (MMS)
or laser-scanning method is significant [27]. For instance, annual
costs for roughness data collection in Virginia typically exceed $1.8
million andmay only be conducted once every five years for a given
section of roadway [28]. Today’s smartphones are potentially use-
ful tools for pavement condition assessment in a cost-efficient way
with large spatial coverage. In addition, they provide an opportu-
nity for frequent, comprehensive, and quantitative monitoring of
pavement infrastructure.

Over the last several years, many studies have been conducted
to explore the feasibility of using smartphone to assess pavement
condition. In general, pavement condition can be classified by the
defects in the pavement surface that adversely affects the ride
quality of vehicles. These anomalies may be in the form of surface
roughness, unevenness, potholes, cracks, deterioration or dam-
ages. Pavement roughness is an internationally accepted pavement
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Fig. 4. Microsoft’s PRISM architecture proposed by Das et al. [29].

condition indicator because of its effects on ride quality, as well
as vehicle delay costs, maintenance costs and fuel consumption
[2,30]. Most of the existing studies in this area are focused on de-
tecting road bumps and anomalies instead of estimating pavement
roughness.

‘‘TrafficSense’’ was perhaps the first major smartphone-based
app for the monitoring of road and traffic conditions [31]. Spon-
sored by Microsoft Research in 2008, this project was focused on
using the accelerometer, microphone, GSM radio, and GPS sensors
in smartphones to detect potholes, bumps, braking, and honking.
The effectiveness of the sensing functions in TrafficSense was eval-
uated on the roads of Bangalore, India. In 2010,Microsoft extended
this program to further analyze the potential of participatory sens-
ing using smartphones [29]. On this basis, a Platform for Remote
Sensing using Smartphones (PRISM) was developed for Windows
smartphones. Implementation of PRISM resulted in building three
applications: citizen journalist, party thermometer, and road bump
monitor. PRISM used smartphone accelerometer and GPS for real-
time detection of bump localizations, which were later uploaded
to a central server. The PRISM architecture consisted of application
server, PRISM server and client and sandbox on mobile (Fig. 4).

Mednis et al. [32] proposed a real-time mobile sensing system
for road irregularity detection using Android smartphones with
accelerometers. They have developed different data processing
algorithms to detect potholes in major streets in the city of Riga,
Latvia. Different smartphones were used as data acquisition de-
vices. They noticed that there is a measurement tuple that can be
used for detecting potholes. All three acceleration traces in this
tuple approached 0g when a pothole was struck with a vehicle.
Based on this observation, the so-called G-ZERO pothole detection
algorithmwas developed (Fig. 5). Mednis et al. [32] reported a 90%
accuracy for detecting different road irregularity classes using this
approach.

Research in Poland [33] revealed the feasibility of using ac-
celerometer and GPS data from smartphones of large number of
individuals and anonymous car drivers for detection of potholes
or other road surface irregularities. Aksamit and Szmechta [33]
evaluated their approach on typical pavements in Opole, Poland.
The acceleration data was recorded using smartphones kept in the
pocket or mounted on the dashboard. It was found that the signal
corresponding to a goodquality roadhas significantly lower energy
than that for a poor quality road. Also, a smartphone installed on

Fig. 5. Pothole detection using the G-ZERO algorithm [32].

the dashboard recorded a signal with lower magnitude than the
one kept in the pocket. The authors verified their results through
several new test runs using different cars and smartphones.

Through years of 2011 to 2017, similar smartphone accelerom-
eter and GPS-based sensing approaches were implemented by re-
searchers in Finland [34], Romania [35], Australia andNewZealand
[36], Italy [37,38]; Vittorio et al., 2014, Japan [39], Turkey [40],
Egypt [41], India [42–47], Taiwan [48], China [49], UK [50], and
USA [28,51] to identify road surface anomalies such as potholes,
road humps, service manholes, repair strips, joints, patch repair,
etc. Nearly all of these smartphone-based monitoring studies are
the extension of one of the first initiatives to explore data collection
of road anomalies at the Massachusetts Institute of Technology
called ‘‘The Pothole Patrol (P2)’’ [52]. The P2 monitoring systemwas
based on instrumenting taxis with commercial 3-axis accelerom-
eter and GPS sensors to detect and locate potholes and other road
anomalies in Boston city. The architecture of P2 road monitoring
system is shown in Fig. 6. The cars could automatically upload their
detections to a central server to maintain a database of detections.
A simple machine learning algorithm was developed to detect
potholes of varying confidence and severity [52].

Other researchers have subsequently introduced new indexes
and modalities for road monitoring with smartphones. Mertz [53]
developed an affordable system for continuous monitoring of the
road surface damages such as potholes and cracks. This system
consisted of a smartphone camera and a structured light sensor
mounted on vehicles. The images collected by the smartphone
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Fig. 6. The architecture of P2 road monitoring system [52].

Fig. 7. Road texture classification [53].

were tagged with GPS and transmitted to a central computer
via WiFi to be analyzed using computer vision algorithms. Fig. 7
presents the performance of the road texture classification algo-
rithm proposed by Mertz [53]. In this figure, top images show the
raw images, while the bottom portions display the classifications,
where red, green and blue represent profile irregularities detected
on various pavement structures.

Chen et al. [54] proposed a computing framework, termed col-
laborative mobile-cloud computing (CMCC), for conducting civil
infrastructure condition inspection. They designed a novel soft-
ware for collecting, processing and real-time analysis of images.
In this platform, images taken by smartphones and smart tablet
frommultiple users were preprocessed and transmitted to a cloud
infrastructure in real time to detect the road surface or other
infrastructure anomalies. Rajamohan et al. [55] proposed a proto-
type system for the detection of road surface anomalies based on
fusion of the smartphone multi-sensory data like camera image,
accelerometer data and GPS trajectory. They have tested their
system on different roads in India. An important observation by
Rajamohan et al. [55] was that the road surface type classification
is notably dependent on the local environmental conditions at
the time of imaging. A new method was proposed by Seraj et al.
[56] to detect road curves using smartphones through the analysis
of driver behavior. The method could also detect angle of the
turns and distinguish between parking in parking lots and parallel
parking. In a recent study in Brazil, [57] proposed ‘‘RoadScan’’, an
Android application capable of inferring pavement quality in real
time. The algorithm running this app uses standard deviation of
smartphone accelerometer data as a comparison metric (Fig. 8).
The app can classify roads quality in four different levels based
on the standard deviation thresholds. Collected information is
publicly available using a web interface based on GoogleMaps API.

Maeda et al. [27] proposed a smartphone application based on
a deep neural network to determine road damage status using im-
ages of roads in Chiba City, Japan. They developed a convolutional
neural network (CNN) which can be trained by images taken by
the citizens. Fig. 9 shows the developed Lightweight RoadManager
(LRM) smartphone application system. This system first collects

Fig. 8. Pavement quality categorization in RoadScan Android app [57].

road surface images and classifies them into the three damage-
level categories. The categorized images are then used as training
data for the CNN model. Finally, the trained model is incorporated
into an Android application. Examples of the data used for the
training of the CNN model are shown in Fig. 10. According to
[27], the accuracy of LRM in assessing road damage status ranges
between 81.4% to 91%.

Pavement roughness is an expression of the unevenness or
disturbance in a pavement surface that adversely affects the ride
quality of a vehicle. Roughness also affects user delay costs, fuel
consumption, tire, andmaintenance costs [58]. Themain issuewith
the existing road roughness assessment studies is that theymerely
classify the road condition to good or bad rather than providing
a standard performance measure. To cope with this issue, some
researchers performed studies on associating the smartphone ac-
celeration datawith standardmetrics, such as international rough-
ness index (IRI). When pavement IRI level is higher than adequate
smoothness level, it is considered as rough pavement.
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Fig. 9. The LRM smartphone-based monitoring system [27].

Fig. 10. Dataset labeled by expert road managers to train the CNN model [27].

One of the first tools to translate collected raw smartphone
acceleration data to an estimated IRI (eIRI) was an Android ap-
plication called ‘‘Roadroid’’ [59,60]. The Roadroid smartphone app
developed by Swedish researchers offers eIRI and calculated IRI
(cIRI). eIRI is based on a peak and rootmean square (RMS) vibration
analysis. cIRI is based on the quarter-car simulation (QCS) [61]
for sampling during a narrow speed range such as 60–80 km/h.
Forslöf [59] correlated the eIRI index to average IRI values over
road segments. RoadDroid was deployed over 180,000 km of roads
by September 2014 in Sweden [59]. It has also been utilized by
different institutions around the world such as the World Bank,
UN, universities (e.g. University of Pretoria, University of Auckland,
etc.) and companies. According to the reports [59,60], eIRI has an
accuracy of about 80% when compared to laser measurements.
Recently, a function is developed for the app to take GPS-tagged
photos and position them on the map (Fig. 11).

Douangphachanh and Oneyama [30] conducted experimental
studies to predict the IRI values from the smartphone acceleration
data in Vientiane, Laos. They used different smartphones placed
inside the driver’s shirt front pocket and in a box near the gearshift
(Fig. 12). Fast Fourier Transform (FFT) was performed to calculate
magnitudes from the sum of all 3-axis acceleration data for every
selected 100-meter section. Douangphachanh and Oneyama [30]
implied that the vehicle speed notably affects the predicted IRI. It
was reported that higher data collection speed (frequency range
of 40–50 Hz) resulted in a better IRI prediction accuracy. In 2014,
Jiménez and Matout [62] proposed a low-cost solution to estimate
a proxy for IRI of roads in the province of El Oro, Ecuador using ac-
celeration data. It was found that different vehicles provide differ-
ent results for the same segment. Jiménez andMatout [62] noticed

Fig. 11. Example of the Roadroid app support in the web tool.
Source:www.roadroid.com.

that higher vehicle speed decreases the IRI prediction accuracy.
This is a reasonable finding because when a vehicle runs at higher
speeds, it travels more distance per second, resulting in spatial
distance between acceleration data pointsmeasured by the phone.
Therefore, the smartphone application may very likely be missing
peak accelerations due to the relatively slow data collection rate.
However, with the expected advancement of smartphone tech-
nology, higher data collection rates will be possible, potentially
rendering IRI estimates on high speeds even more accurate. This
is particularly important for pavements with rough surface, and it
is not usually the case for smooth pavements.

http://www.roadroid.com
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Fig. 12. Equipment setting during experiments proposed by Douangphachanh and
Oneyama [30].

There are very limited studies on the feasibility of using smart-
phones for predicting IRI in North America. In Canada, Hanson and
Cameron [64] conducted a pilot study on 2 km of four-lane high-
way (1 km in each direction) to convert smartphone accelerometer
data into a displacement time-series representing a road profile.
The profile was then converted to IRI using the widely-used Profile
Viewing and Analysis Software (ProVAL). According to [64], the
correlation coefficient (R) between the estimated IRI values and the
inertial profiler was acceptable for the eastbound (R = 0.767) and
westbound lanes (R = 0.681).

A more comprehensive study was carried out by Hanson et al.
[63] to evaluate the potential of smartphones in predicting IRI val-
ues in comparison with Class 1 high-speed inertial laser profilers
in New Brunswick, Canada. Their test design involved identifying
the major factors that may influence the results. To deal with this
issue, Hanson et al. [63] considered different vehicle types (three
vehicles of increasing size), vehicle speeds (two levels: 50 km/h, 80
km/h), smartphone device types (three major brands), and smart-
phone device in-vehicle mounting type (three arrangements). The
considered devicemounting arrangements are shown in Fig. 13. 11
test scenarios were performed on a 1000 m stretch of secondary
highway. They obtained the best IRI predictions using:

– Compact car: Galaxy SIII, windshield mount, speed of 80
km/h

– SUV: iPhone 5, windshield mount, speed of 50 km/h

In the US, the University of Michigan Transportation Research
Institute (UMTRI) assessed the feasibility ofmeasuring IRI from the

Fig. 14. DataProbe screen example [65].

accelerometer data collected from smartphones [65]. This project
was Michigan Department of Transportation (MDOT)’s first large
implementation of a customized Android smartphone called Dat-
aProbe to collect road roughness data. The smartphone results
were later compared with Pavement Surface and Evaluation Rat-
ing System (PASER) measurement values collected from the same
roadway segments. During this project, smartphones were in-
stalled in MDOT and UMTRI vehicles. DataProbe samples the ac-
celerometer data at approximately 100 samples per second andup-
loads the readings to a MDOT/UMTRI server via the smartphone’s
wireless cell phone connection [65]. Fig. 14 shows the DataProbe
interface on a smartphone display. The first phase of this study in
2012 and 2013 investigated the effect of different smartphones on
IRI predictions. In 2014, more reliable IRI prediction models were
developed by including variance among accelerometer measure-
ments and speed [65].

Researchers at the University of Illinois at Urbana–Champaign
(UIUC) have recently developed a system for determining IRI from
raw acceleration data obtained from several types of Android
smartphones [58]. An Android-based application called ‘‘Rough-
ness Capture’’ was used to capture the acceleration data. Fig. 15
shows the smartphone mounting arrangements and screenshots
of the Roughness Capture app. This applicationwas first developed
by Applied Research Associates in Champaign, Illinois, in collabo-
ration with the authors at UIUC. Acceleration and GPS data can be
collected and stored in a text file using this app (Fig. 15(c)). The
data collection rate can also be specified by the user. In general,
the higher the data collection rate, the better the accuracy of the
estimated pavement profile (Islam et al., 2014). Two data analysis
schemes were developed to determine pavement profile from
vehicle vertical acceleration data: a double integration and an

Fig. 13. The device mounting arrangements considered by Hanson et al. [63].
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Fig. 15. The smartphone mounting arrangement and Roughness Capture app [58].

Fig. 16. SmartMonitor system (a) sequence diagram (b) deployment across 3 floors [66].

inverse state spacemodel. Three test siteswere selected from three
county highways within a 10-mi radius of Rantoul, Illinois, which
had awide range of pavement roughness. Test siteswere 2mi long,
and the test vehicle was driven at a steady speed of 50 mph in the
rightmost driving lane. It was observed that IRI values measured
with the smartphone application were similar to those collected
by the inertial profiler. The inverse state space model was shown
to provide significantly better estimates of IRI for rough pavement
sections.

Expanding upon prior research at the University of Illinois,
Stribling et al. [67] analyzed the effect of different sized vehicles,
speeds, and ambient air temperature on smartphone-based IRI
assessment. The results demonstrated notable sensitivity of the
IRI predictions to the vehicle suspension parameters and travel-
ing speed. It was observed that the predicted IRI decreases with
increasing speed. A smaller car led to higher IRI values on smooth
roads but a lower average IRI values on rougher test sections
as compared to those obtained with a small truck. The effect of
ambient air temperature was found to be inconclusive. Stribling
et al. [67] proposed a vehicle calibration factor by adjusting a
few parameters in the inverse state-space model. Moreover, they
provided a practical speed calibrationmethod to increase IRI pred-
ication accuracy.

In a recent study at the University of Wyoming, Aleadelat and
Ksaibati [68] found that the variance of the signals (time series
acceleration data) acquired by smartphone accelerometers can be
used to estimate present serviceability index (PSI). This approach
was verified on 20 roadway segments extracted from theWyoming
county roads’ PMS database. Also, it was reported that unlike the
model of the smartphone, the vehicle speed does not affect the PSI
predictions. Another important observation was that the variance

values are highly correlatedwith the PCI ratings of the county roads
that were studied [68].

4. Applications of smartphone technology in structural engi-
neering

Recently, utilization of smartphone technology in structural en-
gineering has attracted notable attention.More specifically, smart-
phones with built-in batteries, processor units, and a variety of
sensors present opportunities for developing portable structural
health monitoring (SHM) systems. SHM is an emerging field in
civil engineering for continuous structural damage assessment
and safety evaluation. Major issues associated with deployment
of current SHM systems on a massive scale are prohibitive costs
of sensors, installation, maintenance, cabling issues, wireless com-
munication, power consumption, etc. To tackle these issues, sev-
eral researchers have studied the potential of using smartphones
in SHM.

One of pioneering studies on using smart devices (smartphones
or tablets) for SHM was carried out by Kotsakos et al. [66]. The
sequence diagram of the so-called SmartMonitor proposed by Kot-
sakos et al. [66] is shown in Fig. 16. The SmartMonitor is based
on a scalable, fault-tolerant communication protocol to imple-
ment a decentralized version of thewell-knownpeak-picking SHM
method. As one of simplest operational modal analysis techniques,
the peak-picking method computes the natural frequencies of a
structure by finding the peaks of its frequency response function
(FRF) and is applied on the time series formed by the recorded
accelerations in the three axes. An example deployment of Smart-
Monitor system across 3 floors of a civil structure is also shown in
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Fig. 17. Framework of the Cloud-SHM based on smartphone.

Fig. 16, where Nodei,j is the jth node on the ith floor, and Nodei,m
is the master node on the ith floor.

Zhao et al. [69,70] proposed a Cloud-SHM method based on
smartphone. The framework of the Cloud-SHM is shown in Fig. 17.
This framework has six levels: apperceive control level, network
transmission level, information integration level, data processing
level, decision level and information output level.

This platform is based on an application called Orion-CC that
integrates data acquisition, analysis and cloud uploading (Fig. 18).
The Orion-CC application is built for an iOS 7.0 or higher platform
and collects data using accelerometer and gyroscope. A cloud-SHM
data sharing website was built to make the data synchronization
between smartphone and website. Zhao et al. [69] verified their
method by applying it to the cable force test and estimation of
natural frequencies of Xinghai Bay bridge in China. It was shown
that Orion-CC has a very low error as well as good repeatability.

A comprehensive study was done by Yu et al. [71] to verify the
feasibility of using smartphones for SHM. The authors verified the
mobile-SHM using swing test, shaking table, cable force test in
laboratory, and cable force test on an actual bridge (Fig. 19). The
authors demonstrated that smartphones can provide comparable
results to industry standard, external sensors.

Han et al. [72] proposed a similar smartphone-basedmethod to
monitor a steel frame shaking-table test. In addition to the Orion-
CC application, the authors used D-Viewer which is an application
for monitoring dynamic displacement by recognizing a moving

laser or black circle. D-Viewer is built for iOS and Android plat-
forms. The ratio between actual distance and pixel distance is used
to obtain the dynamic distance [72].

Researchers at Columbia University introduced an innovate
concept called ‘‘Citizens for SHM (CS4SHM)’’ based on use of ac-
celerometer data from smartphones to collect structural integrity
data at low cost [17,19,73–76]. The authors tested the ability of
smartphone accelerometers formeasuring structural vibration un-
der normal and extreme loads through small-scale shaking table
tests, large-scale seismic shaking table tests, and full-scale testing
of a bridge (Fig. 20). Another important contribution of this group
was development of a crowdsourcing platform for SHM. Based
on the results, the smartphone sensors are capable of accurately
measuring sinusoidal vibration of 0.5 Hz through 20 Hz. Also, it
was found that the new generation smartphones are significantly
more accurate than the old generation smartphones for measuring
vibration in the frequency range relevant to most of the civil
engineering structures [73].

Furthermore, Ozer and Feng [77] aimed to better understand
structural vibration behavior and pedestrian forces imposed on
bridges via mobile pedestrian data obtained from smartphones.
The authors used the accelerometer time history of a walking
pedestrian to estimate forces imposed on the bridge. A smartphone
user standing on a rigid platformwas employed to develop transfer
functions representing a pedestrian biomechanical system. These
transfer functions were then used to extract the bridge structural
vibration from the mobile accelerometer data. Ozer and Feng [77]
validated their methodology on an actual bridge example with
real pedestrian data. Different potential pedestrian postures were
tested such as smartphone directly attached to the bridge deck
surface, resting in a bag on the deck, in a pedestrian’s pocket, and
in a backpack carried by a pedestrian.

As discussed before, nearly all of the existing studies on appli-
cation of smartphones in structural engineering are based on using
accelerometer data. Kalasapudi et al. [78] proposed a newmethod
to automatically correlate the vibrations of bridge components
captured in videos recorded by smartphone camera with poten-
tial scouring problems. Fig. 20 shows the framework developed
by Kalasapudi et al. [78]. This framework uses an algorithm for
automatically updating of a bridgenumericalmodel based onvideo
analyses. In order to determine the scouring condition, another
algorithm performs a finite element (FE) analysis to simulate dif-
ferent scouring scenarios. The authors could accurately detect the
length of the scour of a real bridge column using this method.

Fig. 18. The cloud-SHM features: (a) Orion-CC interface (b) data collection project (c) Frequency spectrum (d) cable force calculation (e) field implementation.
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Fig. 19. Experiment studies designed by Yu et al. [71]: (a) Swing test (b) Shaking table (c) cable force test in laboratory (d) cable force test on an actual bridge.

Fig. 20. Experiment setup for smartphone-based Citizen Sensors [73]: (a) sinusoidal wave shaking table test (b) Masonry column model and shaking table (c) pedestrian
bridge in Princeton (NJ, USA).

Fig. 21. Bridge scouring condition assessment using smartphone video data [78].

5. Applications of smartphone technology in traffic engineer-
ing

Intelligent traffic systems are heavily dependent on informa-
tion derived from traffic monitoring. Acquiring accurate vehicular
traffic information needs deployment of a large-scale traffic mon-
itoring infrastructure such as loop detectors, microwave sensors,
and video cameras. In the last decade, smartphones have been
progressively becoming an alternative platform for traffic sensing.

This emerging technology can provide inexpensive solutions for
real-time traffic data collection [79].

Mobile Millennium was one of the first projects that used GPS
data for traffic monitoring. This monitoring system had the capa-
bility to send the data back to the phones in real-time [80]. Mobile
Millennium was developed by the California Center for Innovative
Transportation (CCIT), the Nokia Research Center (NRC), and the
University of California (UC) at Berkeley. This project was launched
in late 2008 and remained operational until the summer of 2010,
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Fig. 22. Schematic architecture of the Mobile Millennium system [80].

Fig. 23. Framework of the smartphone-based measurement system [81]: (a) measurement system platform, and (b) a sustainable large-scale measurement system.

with more than 2000 registered users. A schematic architecture
of the Mobile Millennium system is shown in Fig. 21. The project
demonstrated that the feasibility of having a infrastructure-free
road traffic data collection using smartphone [80,82,83].

In 2013, Carvajal et al. [84] proposed TrafficTurk, a smartphone
based turning movement counter developed on Android for mon-
itoring extreme congestion events. Users of the application man-
ually count vehicles by enacting swiping gestures on the phone
screen, and data is then streamed to a back-end processing engine
in real-time. TrafficTurk enabled a rapid, low-cost deployment of
temporary traffic sensing. TrafficTurk was successfully deployed
on several extreme congestion events, such as a 100-sensor experi-
ment for the 2012 Illinois–Indiana homecoming football game, and
an emergency deployment in NewYork City after Hurricane Sandy.

Handel et al. [81] presented used smartphones for road vehicle
traffic monitoring and usage-based insurance (UBI). The proposed
measurement system provided a primary stream to support road
vehicle traffic monitoring and a secondary stream to support the
UBI program. Fig. 22 shows the framework of the smartphone-
based measurement system developed by Handel et al. [81]. The
measurementmodel consists of several layers comprising physical
smartphones, servers and business model at the top layer.

A major innovation in the study done by Handel et al. [81]
was developing an approach that was based on taking the di-
rect costs for the measurement probes by the individual end
users (Fig. 22(b)). To motivate the end users, sufficient incen-
tives (e.g., discounts on the insurance premium) were provided
by a commercial party. The main goal of this approach was to
construct a sustainable large-scale measurement system includes
the involvement of a campaign sponsor. Primary data were data
for road traffic monitoring of societal value. The secondary data
included the driving behavior parameters, or the risk profile, of the
individual end users, of commercial value for the insurer running

Fig. 24. Setup of the CPC mobile application prototype [86].

a UBI program. However, over the ten-month run of the project,
4500 h of traffic data covering a total distance of 250,000 km
were collected. According to Handel et al. [81], the individual end
users were able to cut their vehicle insurance premium up to 30%
through the provided incentives.

In 2016, Al-Sobkya and Mousa [85] proposed an approach
for utilization of smartphone in measuring temporal and spatial
macroscopic traffic density on road network. This approach was
tested on a simple road section and then applied to a longer road
corridor. Traffic density was measured using available features of
handy smartphones including GPS sensor andmobile applications.
Traffic data were collected using two smartphones each in a mov-
ing test car. Measured density was in good agreement with the
calculated one (average error of 8.2%). In addition, Al-Sobkya and
Mousa [85] successfully validated their proposed system in a real-
world application on 15 road sections in Egypt.

Continuous monitoring of transport infrastructures using
crowdsensing is a new concept. Seraj et al. [87] explored the
power of crowdsourced smartphone-based measurements to de-
crease the impact of GPS inaccuracies for continuousmonitoring of
transport infrastructures. They proposed a map-matching process
based on combining huge amount of streaming data from the
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Fig. 25. The CPC application interface [86].

smartphones in space and time and translating the uncertain GPS
measurements into an exact geographical location of transport
infrastructure segments. The algorithm uses a computational ge-
ometry method, namely the Delaunay Triangulation (DT) to effi-
ciently resolve the problem of point location and nearest neighbor
for a huge amount of streaming geo-spatial data. Also, it reduces
the amount of data (i.e., number of GPS fixes) and increases the
accuracy of the transport infrastructure asset location up to 1.5 m
regardless of vehicle, smartphone or infrastructure type. Seraj et al.
[87] evaluated this technique using data collected by smartphones
and the ground truth collected using special measurement vehi-
cles, i.e., the UMF120 track geometry train and Automatic Road
Analyzer (ARAN) van across various roadway and smartphone
combinations.

6. Applications of smartphone technology in construction en-
gineering and management

The number of studies on application of smartphones in con-
struction engineering and management is very limited. However,
smartphones are currently used to increase the efficiency of infor-
mation exchange between inspectors on the construction site and
schedulers in the central office [86].

In this context, Garcia et al. [86] developed a prototype smart-
phone application called ‘‘Construction Progress Control (CPC)’’.
On-site inspectors can use the app to record on-site construction
field activity and progress logs, attach photos/videos and com-
ments relative to progress, and instantaneously send it back to a
project management software for further analysis and updating
the construction schedule (Fig. 23). The application reads only the
information related to activity names and durations and ignores
any other information about the project. Garcia et al. [86] showed
that the efficiency of construction projects can be improved using
this mobile app because it enables the construction managers to
take appropriate actions immediately regardless of one’s location.
The CPC application interface is shown in Fig. 24.

Han et al. [88] proposed a smartphone-enabled CPS to moni-
tor bridge girder hoisting. This monitoring system included both
collector and controller programs to collect the data and send it
to a web server. The controller interface is shown in Fig. 25. The
controller phone was equipped with an alarming system for the
cases where the data retuned from the server exceeds a threshold.
The system was successfully tested on a suspension cross-sea
bridge (Fig. 26). The 2G, 3G or 4G networks were used for the
communication between the controller and collector.

Fig. 26. Controller and the real-time system interface for girder hoisting monitor-
ing [88].

Fig. 27. The hoisting realization process [88].

Moreover, smartphones were used by Zhao et al. [89] for crane
hoisting monitoring. The Orion CC app was utilized by the authors
to collect the acceleration and inclination information using smart-
phone sensors. Zhao et al. [89] verified their method by applying
it to the operation monitoring of a crawler crane in real-time.
On the construction safety area, Genders et al. [90] developed a
smartphone-based construction site safety awareness system (SC-
SAS). SCSAS is a warning application designed to alert construction
workers and equipment operators of potentially unsafe situations.
It functions on a client–server model between smartphone ap-
plication clients and a central server. Clients are workers-on-foot
or equipment operators that have a mobile device running the
SCSAS client application. The server can run on any device with
the capability to accept client data for use in a collision detection
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Fig. 28. Flow chart of the emergency communication developed by Han et al. [94].

safety algorithm. The server will issue warnings to all involved
client entities if an imminent collision between two ormore clients
is identified by the developed safety algorithm. SCSAS uses the
GPS embedded in the smartphone to collect clients’ positions.
The authors successfully tested the application under three dif-
ferent scenarios. Genders et al. [90] reported that the SCSAS was
sometimes able to warn clients of impending collisions within the
desired threshold.

7. Applications of smartphone technology in earthquake engi-
neering

Smartphones offer a mobile information technology (IT) plat-
form that can benefit quick seismic damage investigation and
emergency communication in post-disaster relief experience. Per-
haps, the earliest studies in the area of deployment of the smart-
phones as seismographs was conducted by Dashti et al. [91,92]
and Reilly et al. [93]. They proposed a framework called ‘‘iShake’’
and investigated the reliability of ground motion data obtained
from the smartphone sensors. ‘‘Community Seismic Network’’ and
‘‘The Quake Catcher Network’’ were used to simulate structural
response based on the Timoshenko beam theory [17].

Recently, two groups of researchers at Dalian University of
Technology and Harbin Institute of Technology in China [89,94]
have focused on exploring application of smartphones within
earthquake engineering area. Han et al. [94] and Zhao et al. [89]
proposed a new emergency response system based on smart-
phones. They developed a software called E-Explorer on iOS plat-
form. The authors introduced an emergency communication sys-
tem without a need to an external network using Multipeer Con-
nectivity Framework technology. Fig. 27 shows the flow chart of
this emergency communication system. Han et al. [94] conducted
a series of experiments including connection experiment, con-
nection distance experiment, and information transmission ex-
periment to validate the feasibility of emergency communication
under real conditions. A quick seismic damage investigation was
proposed to obtain damage information right after the earthquake
rapidly, following an intensity evaluationmethod based on seismic
damage index according to Chinese Seismic Intensity Scale (2008).
The authors also launched a website (http://www.e-explorer.cn/)
to gather disaster big data.

Fig. 29. Test location in Columbia, MO (IS 70 W (Log 126–131)) (Google).

8. Case study

A case study is presented to highlight our recent efforts in
deploying smartphones for pavement condition assessment and
the lessons learned. This study builds upon previous work at the
University of Illinois at Urbana–Champaign (Islam et al., 2014)
[58,67] and presents the results of an ongoing research at the Uni-
versity of Missouri-Columbia (MU) on application of smartphones
for measurement of pavement roughness. The study focuses on
the validation of the smartphone-basedmonitoring technology for
the estimation of IRI of the nominated pavements in Missouri.
Pavement profile is back-estimated from vehicle cab acceleration
data recorded by an Android-based smartphone application using
an inverse state space model. The model considers the physics
of mass–spring–damper system of the vehicle sprung mass. More
details about thismodel can be found in Islam et al. (2014), [58,67].
The main vehicle parameter in the inverse state space model are
curb weight, sprung mass (m1), unsprung mass (m2), suspension
spring (k1), tire spring (k2), dashpot (c1), anddampening coefficient
(ζ ). Curbweight,m1,m2, k1, and k2 are usually published by vehicle
manufacturers. ζ of typical passenger vehicles ranges from 0.200–
0.400 and can be calculated as c1/2

√
m1 × k1 [67]. The analyses

are performed using a MATLAB script to calculate the IRI values.
In order to improve assessment repeatability for the purposes
of the current research, only one smartphone model (Samsung
Galaxy S8), one type of smartphone car mount, and one vehicle
type (SUV) are used for data collection through the entire project.
The smartphone measured IRI values are obtained for test roads
near Columbia,MOand comparedwith known IRI valuesmeasured
by MoDOT’s ARAN van. The android application is called ‘‘Rough-
ness Capture’’, which is developed by Applied Research Associates
(ARA). The Roughness Capture application collects acceleration in
three orthogonal directions, a timestamp, and GPS coordinates and
stores them in an ASCII text file. Data collection rate is specified
by the user, generally in the range of 10–140 samples per second.
Higher sampling rates are possible depending upon smartphone
hardware. In general, the higher the data collection rate, the better
the accuracy of the estimated pavement profile [58]. In this study,
the data collection from the app is set to 7 ms per data point or
approximately 142 data points per second.

Measurements showed that a maximum of about 135
points/second can be reliably obtained from the cellphone (Sam-
sung Galaxy S8) used in this study. For the standard speed of 50
mph, the vehicle travels 880 inches/second. Thus, the spacing of

http://www.e-explorer.cn/
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Table 2
Vehicle suspension and smartphone parameter setting.

Parameter Value

Vehicle

Make/Model/Year Chevy Traverse
LT 2015

Curb Weight 2108 kg

Sprung Mass,m1 664 kg

Unsprung Mass,m2 80 kg

Suspension Spring, k1 65135 N/m

Dampening Coefficient, ζ 0.2, 0.3, 0.4

Dashpot, c1 2631, 3946,
5261 N s/m

Tire Spring, k2 80000 N/m

Smartphone

Model Samsung
Galaxy S8

Localization (GPS, Cellular
network)

GPS

Measurement type
(acceleration, gravity, gravity
and acceleration)

Acceleration

Collection Rate 7 ms per data
point (≈142
data points per
second)

acceleration data points is 6.52 inches. The application can collect
localization information either from the internal GPS or from a
cellular network. While the GPS sampling rate is usually limited to
1 Hz, the acceleration data sampling rate is limited to roughly 140
points per second. The measurement type may also be specified
as acceleration only, gravity only, or gravity and acceleration.
Roughness is mostly influenced by the wavelength ranging from
4 to 100 ft (1.23 to 30.48m), whereasmaximum sensitivity resides
in the range of 8 to 51 ft (2.46 to 15.54 m) because of the high gain
for profile slope (Islam et al., 2014). Therefore, both low-pass and
high-pass filters have been utilized to removewavelengths greater
than 100 ft (30.48 m) and less than 4 ft (1.22 m), respectively from
the acceleration data. Roughness is estimated in terms of IRI of each
0.1-mile section.

The selected test roads are as follows:

• IS 70 W (Log 126–131), Travelway Id 3506
• IS 70 W (Log 113–118), Travelway Id 3506

Test locations are shown in Figs. 28 and 29. The smartphone
mounting arrangement is also shown in Fig. 30. For each test run,
the smartphone is placed in a commercial grade cell phone holder
on the dashboard whereby the phones would remain stationary
relative to the vehicle with the screens facing upward. This posi-
tion ensured an accurate measurement of acceleration in the ‘‘z’’
direction to capture the vehicle response to roadway roughness.
To assure that the phone surface is horizontal, we used an android
app called ‘‘Bubble Level’’.

The corresponding IRI values measured by the ARAN van are
obtained from Missouri Department of Transportation (MoDOT)’s
Transportation Management System (TMS). The ARAN-based IRI
measurements are done on December 7, 2016. The vehicle suspen-
sion and smartphone parameter settings for this phase of study are
shown in Table 2. The test runs are conducted at 4 different speeds
(+/−2 mph): 30 mph (48 km/hr), 40 mph (64 km/hr), 50 mph (80
km/hr), and 60mph (97 km/hr). Each test run for each speed across
each test section is conducted 6 times to test the repeatability and
to achieve a reasonable average. The android-based smartphone is
positioned horizontally on vehicle dashboard.

First, themodel is calibratedusing the data collected for a part of
these sections (Log 126–129 and Log 113–115) for different damp-
ing ratios. Then, the calibrated model with optimal damping ratio

Fig. 30. Test location in Columbia, MO (IS 70 W (Log 113–118)) (Google).

Fig. 31. The smartphone mounting arrangement.

is evaluated with new test runs over the entire length of sections
(i.e. Log 126–131 and Log 113–118). In addition, the IRI valueswere
calculated for a test section (Log 40.449–43.74) located onMO-10E
Highway near Excelsior Springs, Missouri. The calibration results
for Logs 126 to 129 and Logs 113 to 115 are shown in Figs. 31 and
32, respectively. As seen in these figures, the averaged IRI values
measured by smartphone are in good agreement with the ARAN
measured IRI for different speeds. Also, the smartphone results for
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Fig. 32. Estimated average IRI values for different damping ratios for IS 70 W (Log 126–129) (1 inch/mile = 0.016 m/km).

50 mph speed seem to have a better match with ARAN data for
the starting logs compared to those for other speeds.Moreover, the
best results are obtained for ζ = 0.4 (c1 = 5261 N s/m) (Figs. 31
and 32(a)). Therefore, the validation phase is performed using
c1 = 5261 N s/m and 50 mph speed. The increased suspension
dampening aided in providing more consistency across the test
runs. According to Sayers et al. [61], the suspension characteristics
of a vehicle is the single most important factor in measuring IRI. A
vehiclewhich has a softer suspensionwill oscillate longer than one
with a stiffer suspension. This increase in oscillation can magnify
the perceived roughness in a road, thereby increasing estimated IRI
measurements [67]. Fig. 33 presents the results for Logs 126 to 131,
Logs 113 to 118, andMO-10EHighway. The performancemeasures
of correlation coefficient (R), root mean squared error (RMSE) and
mean absolute error (MAE) are also calculated for the validation
data. It can be observed from these figures that accuracy of the
smartphone-based IRI predictions are good, specifically for IS 70W
(Log 126–131). Note that the ARAN-based IRI values were taken 10
months prior to the smartphone assessments, during which time
the pavement sections experienced additional deterioration.

The smartphone-based roughness system was also assessed
in terms of its ability to classify pavement condition according
to Moving Ahead for Progress in the 21st Century Act (MAP-21)
criteria. MAP-21 requires the states to provide pavement IRI data
for every 0.1-mile pavement section for the Interstate and Non-
Interstate highway systems annually and biannually, respectively.
Pavement ride quality can be categorized into five groups (U.S.
Department of Transportation 2000), as shown in Table 3. Fig. 33
provides a summary of the corresponding results. The vertical
axis has been labeled according to MAP-21 smoothness criteria
threshold values. As seen, the smartphone based-IRI assessment
system can categorize pavement condition based on roughness
accurately for the majority of the tested pavement sections (see
Fig. 34).

Table 3
Pavement ride quality based on roughness (U.S. Department of Transportation
2000).
Category IRI Rating (inch/mile)a Interstate and

NHS Ride QualityInterstate Non-Interstate

Very Good <60 <60 Acceptable
0–170Good 60–94 60–94

Fair 95–119 95–170

Poor 120–170 171–220 Less than
acceptable >170Very Poor >170 >220

a1 inch/mile = 0.016 m/km.

8.1. Lessons learned

While the smartphone-based IRI roughness results sound rea-
sonable, there are several issues that need to be addressed in future
research:

– During the measurement, it was observed that the data had
outliers. These outliers were excluded from the analyses.
The outliers show the significant effect of vehicle wander on
collecting pavement roughness given all other conditions re-
main constant (with weather/temperature being relatively
the same). However, the effect of vehicle wander can be
overcome by collecting and averaging larger volumes of
data. It is recommended that at least 6 replications are done
for each section. In general, further validation should be
done for very rough pavement sections. More, the current
Android application does not automatically eliminate out-
liers in the data nor does it conduct any analysis. These
features can be added to the app along with real-time es-
timation of IRI.

– The smartphone application used in this study collected
about 135 acceleration points per second. The vehicle run-
ning at 50 mph travels 880 inches per second, resulting in
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Fig. 33. Estimated average IRI values for different damping ratios for IS 70 W (Log 113–115) (1 inch/mile = 0.016 m/km).

Fig. 34. Smartphone-based IRI predictions for: (a) IS 70 W (Log 126–131), (b) IS 70 W (Log 113–118), and (c) MO-10E (Log 40.449–43.74).

spatial distance between acceleration data points of 6.52
inches. Therefore, the smartphone application may very
likely be missing peak accelerations due to the relatively
slow data collection rate. Unlike the smartphones, the in-
ertial profilers have a very high sampling rates (1 kHz).
However, with the expected advancement of smartphone
technology, higher data collection rates will be possible,

potentially rendering IRI estimates on rough pavements
even more accurate. Another idea is to attach commercially
available accelerometers with higher data collection fre-
quency to the smartphone.

– The calibration phase in the present study is based on check-
ing a few values for the vehicle suspension parameters.
In this context, a robust optimization algorithm should be
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developed to extensively search for the optimal vehicle sus-
pension parameters and minimize the differences between
IRI values estimated with the smartphone-based system
with those obtained using the inertial profilers, ARAN, etc.
The proposed monitoring system is a pilot study based on
off-line post-processing of the data collected by the smart-
phone app using MATLAB. The next phase of the research
will focus on onboard processing of the collected data to
estimate the IRI values and integrating it with a real-time
monitoring dashboard via cloud computing.

9. Discussion

Extensive deployment of smartphones poses several challenges.
The quality of the built-in smartphone sensors still needs improve-
ment. In addition, different smartphones have different operating
systems, chips, hardware and software architectures, and different
physical characteristics. These factors affect the phone movement,
vibrations and measurements, and consequently the obtained re-
sults [58]; (Wahlstrom et al., 2017). A survey of the literature
reveals that researchers are using varying smartphone types with
different built-in sensors for infrastructuremonitoring (Table 4). As
seen in Table 4, nearly all of the existing studies have utilized the
GPS and accelerometer sensors. This is while there are other types
of smartphone sensors that can be viable tools for infrastructure
monitoring (e.g. light sensor, humidity sensor, barometer, etc.). The
new generation smartphone can also be excellent platforms for
sensing the environment by adding external sensors or a combi-
nation of built-in and external sensors. Most of the current stud-
ies deal with road condition assessment, traffic monitoring and
SHM. Arguably, research on application of smartphones for civil
infrastructure monitoring is still in its infancy. More studies need
to be conducted to bring this promising technology to awidespread
application. Specifically, the following civil engineering domains
have very little documented smartphone-based research:

– Hydraulic and water resources engineering
– Geotechnical engineering
– Materials science and engineering
– Environmental engineering
– Municipal or urban engineering

Given their ubiquity and sensing capabilities, current smartphones
have been used to explore different real-life tracking andmonitor-
ing scenarios. However, obtaining consistent and reliable results
from smartphone sensors is still a major concern for increased,
reliable usage. Factors such as mounting configuration, orienta-
tion, sampling rate, vehicle type, vehicle speed, spatiotemporal
factors, and human biomechanical factors will normally influence
the smartphone measurements. To deal with these issues, cali-
bration algorithms can be developed for each smartphone-based
monitoring system. Another efficient solution is to develop a CPS
through mobile crowdsourcing, which enables the averaging of
larger volumes of data to enhance the accuracy of infrastructure
assessments. Another advantage of deployment of crowdsourcing
sensing networks is that a single user can participate in multiple
smartphone-based measurements. Among the existing studies in
the civil engineering field, only a few of them have been focused
on various aspects of crowdsourcing with smartphones [17,19,80,
87,95]. The current crowdsourcing sensing deployments are small-
scale research prototypes. Future research studies are needed on
large-scale deployments with numerous users. The large-scale ap-
plications require a scalable and elastic infrastructure with sub-
stantial computational, storage, and networking capabilities. To
this aim, cloud computing integrated with IT/IoT technologies can
provide a scalable and robust platform [96].

Other than the abovementioned challenges, a serious technical
concern about smartphones pertains to their fast battery drain
due to continuous collection, storage, processing, or transmission
of data. While innovations of smartphone devices are acceler-
ating, the advance of battery technologies is fairly slow. Energy
harvesting can be considered as an efficient solution to tackle
this concern. The energy harvesting process involves converting
environmental energy produced by sources such as light, vibration,
radio frequency (RF), and heat into electrical energy for charging
smartphone batteries.

Data privacy and security are some of the fundamental issues
in citizen science. The processing of personal data through mobile
and online applications poses significant risks to users’ security
and privacy. To cope with this issue in crowdsourcing platform
development, detailed studies must be performed on privacy and
data protection in mobile and online applications by analyzing the
features of the app development environment, as well as defin-
ing relevant best-practices, open issues and gaps in the field. An
example in this area is the strategy proposed by Ozer [17]. This
strategy is based on dividing the users into citizen and admin-
istrator categories, managing their access, automatic generation
of identification numbers, offering opt-out to avoid violation of
privacy, etc. More details about these topics can be found in [17].

10. Conclusions

Since 2008, dozens of research teams worldwide have devel-
oped an array of powerful smartphone apps and CPSs for civil in-
frastructure monitoring. This emerging field is experiencing rapid
growth due to its ubiquity and low cost, alongwith continuous im-
provements in smartphone technology. In this paper, we surveyed
existing smartphone-based sensing deployments in the civil engi-
neering domains of pavement engineering, structural engineering,
traffic engineering, construction engineering and management,
and earthquake engineering. The goal of this systematic review
was to build a foundation for future research and applications in
the area of smartphone-enabled monitoring. The sensing, com-
munication and crowdsourcing capabilities of smartphones have
been reviewed. A recent case study at the University of Missouri-
Columbia is also presented to further demonstrate the challenges
and opportunities of deploying smartphones for infrastructure
assessment. Based on the current literature, a great deal of the
existing research has been focused on road condition assessment.
This implies opportunities to extend this technological system to
other civil engineering domains. While modern smartphones are
instrumentedwith different sensingmodules, many of the existing
studies merely use the data collected by smartphone GPS and
accelerometer sensors. Adding external sensors or a combination
of built-in and external sensorsmay serve to improve future infras-
tructure sensing systems. Smartphone measurements are affected
by many factors, which can be addressed by developing robust
calibration procedures and CPSs through mobile crowdsourcing
platforms. Much research is still necessary to explore the power
of crowdsourced smartphone-basedmeasurements, and to branch
out into new application domains. This will optimally involve
robust collaborations between public agencies, private companies
and academia.
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Table 4
Characteristics of the smartphones used for civil infrastructure monitoring.
Area Reference Device Built-in Sensors Operating

System
Application Country

Pavement
Engineering

[31] HP iPAQ, HTC Typhoon GPS,
Accelerometer,
Microphone

Windows
Mobile

Pothole, bump,
braking, and
honking
detection

India

[97] HTC Diamond GPS,
Accelerometer

Windows
Mobile

Road surface
anomaly
detection

Taiwan

[29] HP iPAQ, Samsung
SGH-i780, HTC
Advantage 7501, HTC
Advantage 7510

GPS,
Accelerometer

Windows
Mobile

Pothole
detection

India

[32] Samsung i5700,
Samsung Galaxy S,
HTC Desire, HTC HD2

Accelerometer Android Pothole
detection

Latvia

[33] HTC Desire, HTC
Desire HD, HTC Magic,
Samsung I-5800

GPS,
Accelerometer

Android Pothole
detection

Poland

[34] Nokia N95 GPS,
Accelerometer

Symbian Road surface
anomaly
detection

Finland

[53] NA GPS, Camera Android, iOS Road surface
anomaly
detection

USA

[37] NA GPS,
Accelerometer

Android Road surface
anomaly
detection

Italy

[42] NA GPS,
Accelerometer

Android Speed breaker
detection

India

[59] Samsung Galaxy Tab
GT P1000

GPS,
Accelerometer

Android IRI Sweden

[64] Blackberry Z10
Samsung Galaxy SIII
iPhone 5

GPS,
Accelerometer

Android, iOS IRI Canada

[51] NA GPS,
Accelerometer

Android, iOS Pothole
detection

USA

[54] Google’s Nexus 7 GPS, Camera Android Crack detection USA

[35] iPad GPS,
Accelerometer
Camera

iOS Pothole
detection

Romania

[36] HTC Desire HD GPS,
Accelerometer

Android Pothole
detection

Australia, New
Zealand

[30] Samsung Galaxy Note
3, LG 4X HD

GPS,
Accelerometer

Android IRI Japan, Laos

[40] NA GPS,
Accelerometer,
Camera

Android Road surface
anomaly
detection

Turkey

[98] NA GPS,
Accelerometer

Android IRI Canada

[41] Nokia Lumia 820 Gyroscope,
Accelerometer

Android Speed bump
detection

Egypt

[63] Blackberry Z10
Samsung Galaxy SIII
iPhone 5

GPS,
Accelerometer

Android, iOS IRI Canada

[38] [99] Motorola Moto G,
Samsung Next, a
Samsung X Cover and
a Samsung Galaxy Ace

GPS,
Accelerometer

Android Road surface
anomaly
detection

Italy

[39] NA GPS,
Accelerometer

Android Road bump Japan

[58,67] Samsung Galaxy SII,
Nexus 4, Motorola
Droid, Samsung
Galaxy S4

GPS,
Accelerometer

Android IRI USA

(continued on next page)
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Table 4 (continued).
Area Reference Device Built-in Sensors Operating

System
Application Country

[58] Samsung Galaxy SII,
Nexus 4, Motorola
Droid, Samsung
Galaxy S4

GPS,
Accelerometer

Android IRI USA

[65] Motorola Droid X2,
Motorola Droid Razr M

GPS,
Accelerometer

Android IRI USA

[60] Samsung Galaxy Tab
GT P1000

GPS,
Accelerometer

Android IRI Sweden

[48] NA GPS,
Accelerometer

NA Pothole
detection

Taiwan

[56] Samsung Galaxy S2,
Samsung Galaxy S4
Mini

GPS, Gyroscope,
Accelerometer

Android Swerve
detection

Netherlands

[55] NA GPS,
Accelerometer,
Camera

Android Road surface
anomaly
detection

India

[43] NA GPS,
Accelerometer

Android Pothole
detection

India

[67] Samsung Galaxy SII,
Nexus 4, Motorola
Droid, Samsung
Galaxy S4

GPS,
Accelerometer

Android IRI USA

[57] NA GPS,
Accelerometer

Android Road surface
anomaly
detection

Brazil

[44] NA GPS,
Accelerometer

Android Road bump
detection

India

[45] NA GPS,
Accelerometer

Android Road surface
anomaly
detection

India

[46], [47] NA GPS,
Accelerometer

Android Road surface
anomaly
detection

India

[50] LG Nexus 5 and a
Samsung Galaxy S4

GPS,
Accelerometer

Android Road surface
anomaly
detection

UK

[68] Samsung Galaxy S III,
Sony Xperia A

GPS,
Accelerometer

Android PSI USA

[49] Samsung Galaxy
Nexus 3, Google 4

GPS,
Accelerometer

Android Pothole
detection

China

Structural
Engineering

[66] Samsung Galaxy Tab 2 Accelerometer Android SHM (modal
analysis)

Greece

[69,70] iPhone Gyroscope,
Accelerometer,
Camera

iOS SHM (modal
analysis)

China

[71] iPhone Accelerometer iOS SHM (modal
analysis)

China

[73] Samsung Galaxy S4,
iPhone

Accelerometer Android, iOS SHM (modal
analysis)

USA

[78] NA Camera NA Bridge scour
analysis

USA

[88,94] iPhone Gyroscope,
Accelerometer

iOS SHM (modal
analysis)

China

[17] [19,73–77] Samsung Galaxy S4,
iPhone

Accelerometer Android, iOS SHM (modal
analysis)

USA

Traffic
Engineering

[80] Nokia Blackberry GPS Symbian Traffic
monitoring

USA

[51] NA GPS, Compass,
Touchscreen

Android Traffic
monitoring

USA

[81] NA GPS Android, iOS Traffic
monitoring

Sweden

[85] NA GPS NA Traffic
monitoring

Egypt

(continued on next page)
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Table 4 (continued).
Area Reference Device Built-in Sensors Operating

System
Application Country

[87] NA GPS NA Monitoring of
transport
infrastructure
asset locations

Netherlands

Construction
Management

[86] NA GPS, Camera Android Construction
progress control

USA

[90] GPS Android Construction
site safety

Canada

[89] iPhone Gyroscope,
Accelerometer

iOS Crane hoisting
monitoring

China

[72] iPhone Gyroscope,
Accelerometer

iOS Girder hoisting
monitoring

China

Earthquake
Engineering

[94] and [89] iPhone GPS, Camera iOS Earthquake
emergency
response
system

China
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