## Lista de exercícios 5 - Teoria de Frobenius (do livro de Boyce e Di Prima)

## Problems

In each of Problems 1 through 8:
a. Find all the regular singular points of the given differential equation.
b. Determine the indicial equation and the exponents at the singularity for each regular singular point.

1. $x y^{\prime \prime}+2 x y^{\prime}+6 e^{x} y=0$
2. $x^{2} y^{\prime \prime}-x(2+x) y^{\prime}+\left(2+x^{2}\right) y=0$
3. $y^{\prime \prime}+4 x y^{\prime}+6 y=0$
4. $2 x(x+2) y^{\prime \prime}+y^{\prime}-x y=0$
5. $x^{2} y^{\prime \prime}+\frac{1}{2}(x+\sin x) y^{\prime}+y=0$
6. $x y^{\prime \prime}+y=0$
7. $x^{2} y^{\prime \prime}+(\sin x) y^{\prime}-(\cos x) y=0$
8. a. Show that

$$
(\ln x) y^{\prime \prime}+\frac{1}{2} y^{\prime}+y=0
$$

has a regular singular point at $x=1$.
b. Determine the roots of the indicial equation at $x=1$.
c. Determine the first three nonzero terms in the series $\sum_{n=0}^{\infty} a_{n}(x-1)^{r+n}$ corresponding to the larger root.
You can assume $x-1>0$.
d. What would you expect the radius of convergence of the series to be?
14. In several problems in mathematical physics, it is necessary to study the differential equation

$$
\begin{equation*}
x(1-x) y^{\prime \prime}+(\gamma-(1+\alpha+\beta) x) y^{\prime}-\alpha \beta y=0 \tag{25}
\end{equation*}
$$

where $\alpha, \beta$, and $\gamma$ are constants. This equation is known as the hypergeometric equation.
a. Show that $x=0$ is a regular singular point and that the roots of the indicial equation are 0 and $1-\gamma$.
b. Show that $x=1$ is a regular singular point and that the roots of the indicial equation are 0 and $\gamma-\alpha-\beta$.
c. Assuming that $1-\gamma$ is not a positive integer, show that, in the neighborhood of $x=0$, one solution of equation (25) is

$$
y_{1}(x)=1+\frac{\alpha \beta}{\gamma \cdot 1!} x+\frac{\alpha(\alpha+1) \beta(\beta+1)}{\gamma(\gamma+1) 2!} x^{2}+\cdots
$$

What would you expect the radius of convergence of this series to be?
d. Assuming that $1-\gamma$ is not an integer or zero, show that a second solution for $0<x<1$ is

$$
\begin{aligned}
& y_{2}(x)=x^{1-\gamma}\left(1+\frac{(\alpha-\gamma+1)(\beta-\gamma+1)}{(2-\gamma) 1!} x+\right. \\
& \left.\frac{(\alpha-\gamma+1)(\alpha-\gamma+2)(\beta-\gamma+1)(\beta-\gamma+2)}{(2-\gamma)(3-\gamma) 2!} x^{2}+\cdots\right)
\end{aligned}
$$

e. Show that the point at infinity is a regular singular point and that the roots of the indicial equation are $\alpha$ and $\beta$. See Problem 32 of Section 5.4.
6. $x^{2}(1-x) y^{\prime \prime}-(1+x) y^{\prime}+2 x y=0$
7. $(x-2)^{2}(x+2) y^{\prime \prime}+2 x y^{\prime}+3(x-2) y=0$
8. $\left(4-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}+3 y=0$

In each of Problems 9 through 12:
a. Show that $x=0$ is a regular singular point of the given differential equation.
b. Find the exponents at the singular point $x=0$.
c. Find the first three nonzero terms in each of two solutions (not multiples of each other) about $x=0$.
9. $x y^{\prime \prime}+y^{\prime}-y=0$
10. $x y^{\prime \prime}+2 x y^{\prime}+6 e^{x} y=0 \quad$ (see Problem 1)
15. Consider the differential equation

$$
x^{3} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0
$$

where $\alpha$ and $\beta$ are real constants and $\alpha \neq 0$.
a. Show that $x=0$ is an irregular singular point.
b. By attempting to determine a solution of the form $\sum_{n=0}^{\infty} a_{n} x^{r+n}$, show that the indicial equation for $r$ is linear and that, consequently, there is only one formal solution of the assumed form.
c. Show that if $\beta / \alpha=-1,0,1,2, \ldots$, then the formal series solution terminates and therefore is an actual solution. For other values of $\beta / \alpha$, show that the formal series solution has a zero radius of convergence and so does not represent an actual solution in any interval.
16. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}+\frac{\alpha}{x^{s}} y^{\prime}+\frac{\beta}{x^{t}} y=0 \tag{26}
\end{equation*}
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are real numbers, and $s$ and $t$ are positive integers that for the moment are arbitrary.
a. Show that if $s>1$ or $t>2$, then the point $x=0$ is an irregular singular point.
b. Try to find a solution of equation (26) of the form

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{r+n}, \quad x>0 \tag{27}
\end{equation*}
$$

Show that if $s=2$ and $t=2$, then there is only one possible value of $r$ for which there is a formal solution of equation (26) of the form (27).
c. Show that if $s=1$ and $t=3$, then there are no solutions of equation (26) of the form (27).
d. Show that the maximum values of $s$ and $t$ for which the indicial equation is quadratic in $r$ [and hence we can hope to find two solutions of the form (27)] are $s=1$ and $t=2$. These are precisely the conditions that distinguish a "weak singularity," or a regular singular point, from an irregular singular point, as we defined them in Section 5.4.
As a note of caution, we point out that although it is sometimes possible to obtain a formal series solution of the form (27) at an irregular singular point, the series may not have a positive radius of convergence. See Problem 15 for an example.

