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A B S T R A C T

In the present work, a novel cloud-based remote and real time monitoring and control scheme has been
developed for a manufacturing process named friction stir welding (FSW) to avoid occurrence of weld
defects. This model acquires data from multiple sensors associated with the FSW machine and transmits
them to the cloud. The signals are analyzed and processed in the cloud in real time through various signal
processing and machine learning techniques. The model provides a feedback to the machine regarding
the desired controlled parameters to achieve an improved weld quality. This is an example of Industry 4.0
where a manufacturing process can be controlled in real time from any location.
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Introduction

The importance of real time process monitoring lies in
observing few characteristics of a process identified by the domain
expert. In order to appreciate the outcome of real time monitoring
of any process, it must be accompanied by a control scheme. It is
worth noting that significant investment on infrastructure is
required to cater manufacturing and embedding of sensors for
monitoring the process. In addition, the product quality has to be
ensured with a closed-loop control scheme available for that
process. The sensor-based monitoring and subsequent control can
reduce manual contribution, make the manufacturing process
more maintainable, flexible, error-free and cost-effective. It also
results in enhanced efficiency and product quality. This article
mentions about one such novel monitoring and control scheme
developed for an advanced welding technique named, friction stir
welding (FSW). The article attempts at addressing two features, (a)
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developing a closed-loop system for FSW, and (b) making FSW
process compliant with Industry 4.0. Both these features have been
developed and implemented simultaneously. The Industry 4.0, i.e.
the fourth industrial revolution, revolves around the concepts of
Internet of Things, data analytics, cloud computing etc. In short,
Industry 4.0 aims at digitization for extraction of meaningful
information from the sensory data. While Industry 4.0 can be
considered as a big umbrella of several concepts, automation is one
major concept. The following paragraph gives a highlight of the
previous works on FSW.

For monitoring of FSW process, several physical parameters
such as force, torque, acoustic emission (AE), and current
signatures have been utilized. The welding defects were identified
by analyzing axial force and torque signals in time-frequency
domain [1,2]. Mean of square of errors and variance were the
features extracted from the signals. “Gap defects” referred as voids
in joint line were identified by analyzing axial force and AE signals
[3,4]. While inferences were drawn from force signal in time
domain, AE signal was studied in time-frequency domain. Other
than axial force, thrust and feed forces were utilized for
classification of weld quality, where the frequency spectrum of
force signal of the defective weld was found to have higher
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amplitude in the lowest frequency bin as compared to the
spectrum of defect-free weld [5]. AE signal was also acquired
for analyzing the effect of varying tool pin profiles [6]. Features
such as energy and amplitude were extracted from the signal. In
another work, the ultimate tensile strength (UTS) of the joint was
predicted using voltage and current signatures of spindle and feed
motors and tool rotational speed signature [7]. The current
signature of spindle motor was found to have the highest
correlation with the UTS. It is worth appreciating these works as
they represent state-of-the-art techniques for distinguishing
defective and defect-free welds, predicting weld quality etc.
However, as the strategies are carried out in an offline manner, they
cannot control the process in real time i.e. they cannot avoid the
occurrence of defects or improper welding with improper set of
parameters, or in case of any sudden damage to the machine.

To bridge this lacuna, several strategies to control FSW process
were studied which includes controlling force, torque, and position
via tool rotational speed (v), welding speed (v), and, plunge depth
(p). The axial force is significantly affected by small variations in p.
This led to usage of p as the variable to control axial force. A
proportional integral derivative (PID) controller was used where
the servo force controlled loop resided outside the position control
loop [8]. The actual force signal was acquired and the error signal
was given as feedback to the position controller. Similarly, a PID
controller was utilized for torque where its control loop resided
outside a position control loop [9]. A rotating type dynamometer
was utilized to acquire actual torque and generate the error signal.
Although, the variation in p for both torque and axial force control
cases was found to be the same, torque has been suggested to be a
more sensitive parameter to the changes in p than axial force. A
comparative study reports v to be the suitable parameter for
controlling axial force amongst v, v, and p because of the
unidirectional dynamics of feed motor which remained unaffected
from the load which was being controlled [10]. A comprehensive
review of these works can be found in Ref. [11]. The following
paragraph outlines the summary of these previous works, and
thereby, presents novelty of the present work.

The previous studies involve offline monitoring techniques, and
therefore, do not improve the weld quality in real time. In addition,
FSW is governed by v and v, because, change in these values affects
frictional heat generation [12]. To develop a reliable architecture,
both parameters must be considered, which is lacking in the
literature. Moreover, the available control schemes rely on a single
sensor which upon malfunctioning can make the process unstable.
In this present work, a novel real time monitoring and control
Fig. 1. FSW m
scheme is developed for FSW. This scheme acquires data from
multiple sensors remotely in a cloud server, processes them via
various digital signal processing (DSP) and machine learning (ML)
techniques to infer the weld quality and provide feedback to FSW
machine. This work is in-line with the goals of Industry 4.0, and
aims at the creation of a smart FSW factory. As the process is
controlled in real time, the occurrence of welding defects can be
avoided, and material rejection can be drastically reduced. The
entire system has been automated which reduces the usage of
human labour. The following section discusses the details about
the experiment being performed in the present study.

FSW experimental details

In order to incorporate analytics in the scheme, it was
necessary to build a “knowledge base” for FSW comprising of
several parametric combinations, corresponding sensory data and
weld quality. In this study, an aluminium alloy, AA6061 has been
chosen as the base material. For the sheets having a thickness of 3
mm with 100 mm � 80 mm dimension, a tool comprising of the
following features was used to fabricate the welds: (a) flat
shoulder with 18 mm diameter, (b) a conical pin with upper and
lower diameters of 6 mm and 4 mm, respectively, and its length
being 2.7 mm. The employed tool was fabricated from H13 steel
material. The sheets were welded in a butt joint configuration on
an instrumented, numerically controlled FSW machine (WS004,
ETA Technology) depicted in Fig. 1. The machine has a maximum
rated v of 3000 rpm and v of 1000 mm/min. The control panel
attached with machine has a graphical user interface (GUI) where
the process parameters for joining such as v, v, p, start and end
positions of the weld are provided as inputs. The depth to which
the tool will penetrate is identified prior to the experiment by
manually moving the spindle mounted with tool downwards. The
tilting (α) of the spindle head is also performed manually. Thus, p
and α cannot be controlled online during welding with the present
machine configuration. During welding, force, torque, and power
signals were acquired as they are typical in the literature of
monitoring and control of FSW. Force and torque were acquired
from a load cell inbuilt in FSW machine, and power sensor
(Montronix, PS100) was connected externally and integrated with
the developed interface.

Various defective and defect-free welds were first fabricated,
and the acquired information from the three aforementioned
sensors was processed offline to predict the weld quality. The
prediction idea here was to know from the signal’s information, if a
achine.



Table 1
Process parameters.

v (rpm) 600, 800, 1000, 1400, 1800, 2200, and 2600
v (mm/min) 40, 50, 60, 80, 100, 150, and 200
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weld is free from defect or has defects. The UTS of the samples was
also determined, the details of which has been reported in a later
sub-section. This study helped in identifying the range of v and v
for achieving defect-free welds. Thereafter, a real-time environ-
ment was developed where the information from the three sensors
was acquired online, which was used to predict the weld quality,
and if found defective, modified parameters were sent to the
machine to achieve a weld free from defect. The prediction of weld
quality here includes, knowing if a weld is with or without defects,
and the UTS of the weld. The modified parameters include new v
and v.

Process parameters

Several trial experiments were performed to identify the range
of parameters to be selected for creating the knowledge base. As
stated previously, p and α cannot be controlled online during
welding with the present machine configuration; thus, these two
parameters were first fixed. For welding AA6061 sheets in butt
joint configuration, α of 2� has been suggested for achieving defect-
free welds [13]. These result has been stated both experimentally
and numerically. As such, in the present case, a 2� tilt, and p of 0.2
mm were selected. Other parametric combinations included 6
different values of v and 7 different values of v; constituting a total
of 42 welds following a full factorial approach as tabulated in
Table 1. The selection of these parameters was based on several
trial experiments.

Post-weld study

After fabrication, UTS was determined. Tensile specimen in the
direction perpendicular to the welding was cut from the welded
samples by using a CNC wire-cut electro discharge machine
Fig. 2. UTS values of the welds fabricated 
(Elecktra, Maxicut 523). The standard followed for the specimen is
ASTM E8 (sub-size specimen) which has an overall length of 100
mm. A universal tensile testing machine (Instron, 8862) having a
capacity of 100 kN was utilized for the test. The crosshead speed
during the test was 1 mm/min. Fig. 2 represents the UTS values
obtained with the opted parametric combinations. With the range
of parameters selected in the present study, maximum UTS of
249.4 MPa is achieved at v = 1000 rpm and v = 200 mm/min, and
the least obtained is 149.2 MPa at v = 600 rpm and v = 200 mm/
min. The UTS of the base AA6061 was 270 MPa. There is no
particular trend in the obtained UTS values with respect to
increasing values of v and v. However, few observations can be
noted at the lower and higher ends of the range of v values. At
lower value of v (600 rpm), with increasing values of v from 40 to
100 mm/min, there is an increase in the UTS, however, with further
increase to 150 and 200 mm/min, the UTS decreases drastically.
This is because of deficiency of frictional heat with such high values
of v, which resulted in defective welds. On the other hand, at 2600
rpm, with increasing v, the UTS can be seen to be increasing. The
frictional heat increases with increase in v, and the weld fabricated
with v = 2600 rpm and v = 40 mm/min, had experienced maximum
amount of heat content. This heat gradually decreases with
increasing values of v, and the optimum UTS has been obtained at a
v = 200 mm/min. The motive behind finding the UTS values of the
welds was to identify the range of parameters that will yield the
maximum and the minimum UTS with respect to base material.
The corresponding information acquired from the three sensors
with respect to each parametric combination was utilized to build
a predictive model for the UTS. Few experiments were repeated for
ensuring the results.

Multi-sensor approach

Fig. 3 schematically shows the proposed scheme. A GUI has
been created in LABVIEW software which receives data from three
sensors and thereby transmits them to cloud by using transmission
control protocol/internet protocol (TCP/IP). TCP/IP utilizes a “client/
server” model where the “client” refers to a machine which is
provided with service by another computer referred as “server”.
with opted parametric combinations.



Fig. 3. Diagram of the multi-sensor model.
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The reception of weld parameters from cloud to FSW machine is
also being performed via TCP/IP. The receiving unit in LABVIEW
receives the modified parameters. It then changes v and v in real
time. TCP/IP block for reading and writing are used to receive and
send data during the welding process. In order to change the value
of v, 0 is sent first, followed by the desired value. Similarly, for
changing v, 1 is sent first, followed by the desired value.

Sensors and data acquisition

As discussed, force and torque are acquired by using a load cell
preinstalled in FSW machine, and the power sensor was connected
externally, and integrated with the developed interface. The data
acquisition rate of force and torque sensors is 10 Hz which is fixed
in the machine. In order to have synchronization between the
information acquired by using force, torque, and power sensors,
the data from power sensor was also acquired at a rate of 10 Hz by
using a data acquisition card (NI 6211). A time controlled 4:1
multiplexer is created in the GUI with inputs as: marker value,
force, torque, and power data, and the output of this multiplexer is
connected as the input to the TCP write block. The marker here is
sent as an indication before arrival of every batch of data. The
entire welding process has been monitored remotely as the entire
server side GUI can be accessed using the remote desktop software
X2GO.

Data transmission to cloud

The synchronized data along with a marker is transmitted to
cloud in real time at a rate of 8 samples per second. Thus, the
streaming data is received in batches, where one batch of data
consists of 64 samples of each sensor. These 64 samples were
processed through various DSP techniques and meaningful
features were extracted from them, which were then sent to an
artificial neural network (ANN) for predicting the UTS of the weld
in real time. The model is fed with a desired value of the UTS, which
is continuously used by the model to compare with the predicted
UTS value. In the case, the predicted UTS value is found lesser than
the desired value of the UTS; a second ANN predicts the new weld
parameters, which forms feedback to the FSW machine to achieve
the desired weld quality. If the predicted UTS value is greater than
the desired UTS value, the parameters being used for fabrication
remains unchanged. In this work, “Meghamala”, the cloud server of
Indian Institute of Technology Kharagpur is used. FSW machine is the
client utilizing the services being provided by Meghamala.
Extraction of meaningful features from signal

Discrete Wavelet Transform (DWT) has been applied on the
information acquired from the sensors to extract information
about the weld quality. DWT represents a signal in time-frequency
domain where the original signal is broken down into various
frequency bands, and the effect of each of the frequency band can
be analyzed individually. It is advantageous than Fourier Transform
in a way that the latter technique yields only the frequency
information of the signal and does not provide any information
about the time of occurrence of those frequencies. DWT is also
advantageous than the Short Time Fourier Transform technique
which although provides a mapping of time and frequencies
present in a signal, but utilizes window of fixed width for analyzing
the signal. Hence, it fails to accurately analyze the transient signals.
Thus, wavelets can provide useful information about transient
signals.

The detail coefficients up to three levels, i.e. D1, D2, and D3 of
the information acquired from three sensors have been extracted
which formed the basis of decision making in cloud. This fact of
deriving detail coefficients for predicting weld quality has been
taken from the literature [1,14]. Sum of the mean squared error of
the coefficients up to the third level has been extracted as the
feature to predict the weld quality. The selection of the mother
wavelet, levels of decomposition, and feature have been performed
as per the literature [1]. The following paragraphs depict
graphically the derived features from the three signals, and relate
the same with the weld quality.

Fig. 4 shows the image of a sample welded with two sets of
process parameters (first set: v = 600 rpm, and v = 250 mm/min, and
second set: v = 2000 rpm, and v = 50 mm/min), where the first set
resembles a defective weld and the second set resembles a defect-
free weld with a smooth surface. The idea behind this sort of weld
fabrication was to identify defective and defect-free welds with
respect to the features from the signals on a same plot. The
information acquired from three sensors were processed offline and
have been depicted attaching to the weld image shown in Fig. 4.
While sudden fluctuations can be observed because of the defects in
the first set, almost no fluctuation is seen for the second set.

Fig. 5 represents another defective sample welded with v
= 600 rpm and v = 150 mm/min. Associated with same figure is the
plot of the detail coefficients extracted from the three signals. The
range of the coefficient’s values in case of force sensor can be seen
to be approximately higher than 500. At few locations, large
fluctuations can also be seen where the value goes above 1000.



Fig. 4. Plot of detail coefficients extracted from the signals mapped with weld image having defective and defect-free regions.

Fig. 5. Plot of detail coefficients extracted from the signals mapped with a defective weld.
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Similarly, the value is around 4 for torque and 0.3�0.5 for power,
which is much higher than that of the values obtained in Fig. 4 for
defect-free region.

Fig. 6 shows the picture of a sample welded with v = 1800 rpm,
and v = 40 mm/min resembling a defect-free weld. The corre-
sponding plot of detail coefficients extracted from the three
sensors have also been shown in the same figure mapped with the
weld image. It can be seen from the figure how the features’ values
are significantly lower than that of the ones obtained in case of the
defective weld (Fig. 5).

The above investigation led to the prediction of weld quality i.e.
to know if a weld is with or without defects. For the prediction of
UTS, only the D1 coefficients have been considered as they capture
most of the information from the signal, and the coefficients at the
subsequent levels lose that information due to the down-sampling
process. These D1 coefficients have been extracted from data
batches containing 64 samples of each sensor which resulted in 35
detail coefficients per batch. Other batch sizes like 32, 64, 128, 256,
and 500 were also examined to determine the optimal batch size.
The batch size of 32 did not fetch any useful result, 64 and 128 had
similar performance, 256 and 500 had good prediction perfor-
mance but high latency. Therefore, as the present work aims at
real-time control, a 64 batch size was found to be the optimal.

ANN modelling

Two ANNs have been modelled, one for predicting the UTS, and
other for predicting the modified weld parameters. The ANNs have



Fig. 6. Plot of detail coefficients extracted from the signals mapped with defect-free weld.
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been trained using the backpropagation algorithm which operates
on a technique named gradient descent. This technique searches for
the minimum value of error function in the weight space, and the
corresponding weights that minimize the error are finally
considered as the solution to a given problem. The weights of
the edges in the two ANNs were randomly set. The gradient for
each training instance within the dataset is determined which
results in frequent updates of the network. The momentum
coefficient has been selected to be 0.9. The number of hidden layers
and the number of hidden neurons in each hidden layer were
modelled using genetic algorithm (GA) which is a search-based
optimization technique. MATLAB toolbox has been used for
applying GA. A subset of the welding data consisting of D1
coefficients of force, torque, and power was selected as inputs
along with the UTS, and v and v, as the outputs, for the ANN
predicting the UTS and modified parameters, respectively. The
Fig. 7. ANN for predi
chromosomes resemble to the number of neurons in each hidden
layer. The initial generation consisted of random numbers of
neurons in each hidden layer with some upper bound, and the
algorithm predicted the optimum architecture of the ANN. The
numbers of hidden layers have been increased from 1, and GA has
been applied on each one of the hidden layers. The fitness function
selected is mean square error (MSE) between the predicted output
and the actual output.

With the above, the optimized architecture of ANN for the UTS
prediction has been depicted in Fig. 7. The inputs to this ANN is 105,
where 35 numbers of D1 coefficients were of force (f1 to f35), torque
(t1 to t35), and power (p1 to p35), respectively. The network
comprised of 8 hidden layers, and numbers of hidden neurons in
those layers is mentioned in the figure. Fig. 8 depicts the variation
of MSE with the increasing number of hidden layers for this ANN
which justifies the selection of 8 numbers of hidden layers.
ction of the UTS.



Fig. 8. Variation of MSE with the number of hidden layers for ANN predicting the UTS.
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Fig. 9 shows the optimized architecture of ANN for predicting
the modified parameters. This network comprised of 10 hidden
layers which was selected as per the variation of MSE, shown in
Fig. 10.

Results and discussion

This section presents a holistic view of the results obtained by
applying the various techniques elaborated in the preceding
sections. A number of samples have been welded with different
conditions to analyze the efficiency of the developed model.

Welding with improper combination of process parameters

To test the algorithm, a sample was welded (Fig.11) with
parameters such that a defective weld will be produced. Those
parameters were v = 600 rpm, and v = 150 mm/min. The base
Fig. 9. ANN for prediction o
materials, tool, machine, and sensors used in these experiments
were kept same as described in the section presenting experimen-
tal details. The desired value of the UTS fed to the model was 210
MPa. After establishing the connection between the client and
server, the weld fabrication started with the desired UTS value. It
can be seen that how the selected weld parameters produced a
defective weld with the presence of flash, voids, and rough
appearance of the weld surface (Segment 1). The subsequent
prediction of the UTS and new weld parameters has been shown in
the figure (Segment 2, 3 and 4). A clear improvement in the weld
surface appearance can be observed as compared to Segment 1. In
order to evaluate the efficiency of the prediction, a tensile
specimen was cut from the weld sample to determine the
deviation from the actual UTS value, and the corresponding
prediction error has been mentioned in the figure. The absolute
average error of prediction for this case tends to be 4.44%. Hence, it
provides clarity as to how this strategy is trying to achieve the
f modified parameters.



Fig. 10. Variation of MSE with the number of hidden layers for ANN predicting modified parameters.

Fig. 11. Real time control of defects during welding with improper parametric combination.

8 D. Mishra et al. / CIRP Journal of Manufacturing Science and Technology 30 (2020) 1–11
desired UTS value by predicting the weld parameters to the
machine based on the features extracted from multiple sensors in
real time.

Similarly, another sample was also welded as shown in Fig. 12.
The initial parameters for this experiment were so chosen that it
was bound to produce a defective weld, and the same is also
evident from the weld image which consist of large number of
voids and has rough surface appearance (Segment 1). The desired
value of UTS fed to the model was 210 MPa. The subsequent
predictions of modified weld parameters have been shown in
Segment 2 and 3, respectively. It can be seen that how the
appearance of weld surface improved with subsequent predictions
of modified weld parameters. In this case, the absolute average
error of prediction is 4.47%.

Welding with optimum conditions

Another sample was welded (Fig.13) with parameters for which
the UTS obtained was 90% of that of the base material. The desired
value of UTS was fed as 240 MPa. The fabricated weld had a smooth
surface appearance without any surface defects, as expected. The
intuition here was that there would not be any prediction as the
UTS of the selected parameters is higher than the desired.
However, towards the end of the weld, there was a prediction of
new process parameters. Thus, just before this prediction, the
predicted value of the UTS was less than the desired value (i.e. 208
MPa is the predicted UTS, and 240 MPa is the desired UTS). It is
quite evident that the ANN model is always accompanied with
some prediction error, which states that even with the predicted
value being 239.5 MPa, the model will predict new process
parameters. In order to compensate this error, a band for the
desired UTS was considered instead of a fixed value.

In order to validate the above mentioned concept, one more
sample was welded with the similar set of process parameters as
chosen for the weld image shown in Fig. 13 (i.e. v = 1000 rpm, and
v = 150 mm/min). However, the desired value of the UTS in this case
was a band of value, i.e. 230�240 MPa. The corresponding welded
sample has been shown in Fig. 14. With the selected band for the



Fig. 12. Real time control of defects during welding with improper parametric combination (another sample).

Fig. 13. Picture of the sample welded under optimum conditions with the developed control scheme.

Fig. 14. Picture of the sample welded under optimum conditions and a band of UTS with the developed control scheme.
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desired UTS value, the controlled conditions were achieved more
profoundly. Thus, it can be stated that, instead of having a fixed
value for the desired UTS, a band for the same will make the model
avoid errors and ensure its performance.

Effect of usage of multiple sensors over single sensor

In this section, the usage of multiple sensors over a single sensor
has been presented. For this, three samples were welded, each one
of them being monitored by using the developed algorithm.
However, the algorithm here consisted of data being acquired by
using only one sensor, i.e. one weld with data acquired from force
sensor, one with torque sensor, and the last being with power
sensor. For all the three welds, the initial process parameters were
kept the same, i.e. v = 600 rpm, and v = 150 mm/min, as selected for
the sample welded with data being acquired from all the three
sensors (referring to Fig. 11). For all the three cases, the desired
value of UTS was fed as 210 MPa, as selected for the weld
employing multiple sensors. Table 2 lists the predicted process
parameters, corresponding value of UTS (predicted and actual) for
these three welds. It can be observed that for the same length of the
workpiece, i.e. for single sensor and multiple sensors case, the
numbers of prediction being made in case of single sensor are more
than the case of multiple sensors. Since there were quite a number
of predictions being made with the individual sensor case, and the
combinations of v and v that were predicted did not differ much
from each other, tensile specimen were cut accordingly.

The predicted values of v and v for single sensor being so close
to each other, suggests that the domain of process parameters
prediction is limited with the feature values obtained from the
signal. However, this was not found in case of multiple sensors.
Also, the actual values of the UTS for the sample welded with
multiple sensors are more than the sample welded with single
sensor. In addition, it can also be observed that while using



Table 2
Predicted process parameters, corresponding predicted and actual value of the UTS during welding with data acquired from a single sensor.

Force Torque Power

v v P A E v v P A E v v P A E

2263 56 195 187.5 4.53 1897 128 203 177.6 14.3 2269 58 205 181.2 10.1
2263 84 198 1897 119 203 2279 58 200
2263 81 195 1897 116 203 178.6 13.6 2281 61 200
2263 81 215 192.8 11.2 1896 113 203 2282 61 198
2263 81 214 1897 118 203 177.3 14.4 2279 60 195
2263 81 212 193.6 8.9 1897 118 203 2285 61 197 194.6 1.4
2246 80 210 – – – – 2282 60 197
– – – – – – – – 2275 59 198
– – – – – – – – 2280 62 199 195.2 1.94
– – – – – – – – 2280 61 199
– – – – – – – – 2283 59 199
– – – – – – – – 2285 59 197
– – – – – – – – 2249 60 201

(v (rpm), v (mm/min), A-actual UTS and P-predicted UTS (MPa), E- absolute error (%)).

Fig. 15. Effect of multiple sensors over single sensor.
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multiple sensors, the prediction error is lesser as compared to
single sensor (Fig. 15). Although, the goal of avoiding the
occurrence of defects in FSW process is also getting fulfilled by
using a single sensor (i.e. force or torque or power), the entire
process might be disturbed if that particular sensor starts
malfunctioning or produces erroneous data. With multiple sensors
installed, one sensor can continuously compensate the malfunc-
tioning of the other.

Welding is a process of value addition which creates structures,
components, machines etc. from various raw materials. This
algorithm will be useful for several industrial applications as it will
help the industry to attain higher levels in quality management.
There are certain applications where the strength of the weld is not
a huge concern. Instead, there is an emphasis on the aesthetic
property of the weld as well. For instance, “Apple Inc.”, the
manufacturer of “iMac” utilizes FSW to join its front and back
panels [15]. For these computer panels, aesthetic is of higher
concern than strength. Thus, the developed model will also be
useful for this sort of application. This model can also be applied to
other manufacturing process to monitor and control it in real time.
However, the objectives such as what are to be controlled in a
process and the corresponding signals that can be captured to
analyze that effect, required focused research.

Conclusion

A novel technique for remote and real time monitoring and
control of FSW process using multiple sensors has been presented
in this article. The technique involves computation in cloud which
makes the process of control more efficient, reliable, and cost-
effective. In future, other sensors such as temperature and
vibration can be considered to extract more useful information
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about the process, and explore the gathered information to further
control the welding process in great detail.
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