Gabarito do 4º Práticas de demonstrações

Ferramentas disponíveis

Propriedade 1: Se $a \in \mathbb{R}$ e $a \neq 0$, então $a^2 > 0$.

Propriedade 2: Distância de um ponto P de coordenadas (x_0, y_0) a uma reta r: ax + by = c é dada pela expressão $d(P, r) = |ax_0 + by_0 - c|/\sqrt{a^2 + b^2}$

Definição 1: Distância entre as retas r e r' é a menor distância entre um ponto de r e um ponto de r', e isso é denotado como $d(r, r') = min\{d(P, P') \text{ tal que } P \in r \in P' \in r'\}$

Propriedade 3: Teorema de Pitágoras.

Enunciados a demonstrar

1) Prove que de todos os pontos da reta r, o mais próximo de um ponto P externo à r, é o pé da perpendicular de P à r, que chamaremos de P*.

Demonstração:

Suponha que existe um $P' \neq P^*$ tal que $d(P, P') < d(P, P^*)$.

Assim, sendo P* o pé da perpendicular, temos pela propriedade 3 que:

$$d(P, P^*)^2 + d(P^*, P')^2 = d(P, P')^2$$

Mas como $P^* \neq P'$, então $d(P^*, P') > 0$, assim pela propriedade 1 temos que:

$$d(P, P^*)^2 < d(P, P^*)^2 + d(P^*, P')^2 = d(P, P')^2$$
$$d(P, P^*)^2 < d(P, P')^2 \rightarrow d(P, P^*) < d(P, P')$$

2) Prove que para r: ax + by = c, e r': ax + by = c' retas paralelas ($c \neq c'$) ou coincidentes ($c \neq c'$). Então

$$d(r, r') = |c - c'|/\sqrt{a^2 + b^2}$$

Demonstração:

Seja P = (x_0, y_0) um ponto da reta r,

então pela propriedade 2 e pela definição 1 temos que,

$$d(r, r') = d(P, r') = |ax_0 + by_0 - c'|/\sqrt{a^2 + b^2}$$

Como $ax_0 + by_0 = c$, obtemos $d(r, r') = |c - c'|/\sqrt{a^2 + b^2}$