
A fundamental goal of molecular life science research is 
to understand the complex relationship between geno­
type and phenotype. The pioneering work of Beadle and 
Tatum on the genetic root of biochemical reactions in 
Neurospora spp.1 established the paradigm of ‘one gene, 
one protein, one function’. This paradigm makes two 
fundamental assumptions: that there is a single link 
between a gene and the function of its corresponding 
protein product (thus implying that the functional 
diversity of a biological system is directly encoded in its 
protein-​coding genes), and that the expression of a gene 
has no impact on the expression or function of any other 
gene product.

With the technological advances of the genomic age 
and the ability to decipher the molecular make-​up of 
cells at increasing precision and resolution, it has become 
clear that the ‘one gene, one protein, one function’ para­
digm does not fully explain the complex functional 
phenotypes of organisms. Upon sequencing the human 
genome, the International Human Genome Sequencing 
Consortium reported ~20,000 protein-​coding genes2, a 
number markedly lower than pre-​genomic estimates. 
This finding suggested that the degree of functional 
diversity of an organism is not directly related to the 
number of protein-​coding genes. This suggestion was 
further evident in the limited progress of large-​scale 

screening methods, such as genome-​wide associa­
tion studies and RNA interference screens, to provide 
insight into direct links between genotype and pheno­
type3,4. Although single-​gene defects with high pene­
trance have been discovered using these techniques, 
the genetic basis of many studied phenotypes is more 
complex than expected, and is often underpinned by a 
network of genomic changes or mechanisms that involve 
other molecular layers, such as the transcriptome, pro­
teome and interactome, as well as non-​linear crosstalk 
between them3–6.

The appreciation of the functional complexity of liv­
ing systems has led to a paradigm shift towards a systems 
biology view of genotype–phenotype relationships. The  
underlying assumptions of systems biology are that  
the functional diversity of a cell results from multiple 
layers beyond the genome and that, to gain a compre­
hensive understanding of complex biological processes, 
molecules and their relationships must be studied 
as part of integrated systems7. The systems-​based 
approach is dependent on the detection and precise 
quantification of the molecular diversity of the cell at 
the levels of the transcriptome, proteome and inter­
actome (Fig. 1). In this Review, we describe known 
mechanisms that determine molecular diversity 
beyond the genome, on the transcriptome, proteome  
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and interactome levels, with a focus on the proteome and  
interactome. Furthermore, we discuss non-​linear infor­
mation flow between the different molecular layers, 
including crosstalk and feedback loops that enable the 
fine-​tuned regulation of the different ‘omes’. Finally, we 
highlight recent techniques for protein identification 
and quantification, proteoform characterization and 
interactome analysis by mass spectrometry and fur­
ther point towards future directions in the context of  
studying molecular and functional diversity.

The transcriptome directs the proteome
The functional diversity intrinsically embedded in the 
genome of a species is largely reflected by the number  
of protein-​coding genes it contains. With the exception of  
epigenetic modifications and conformational changes 
to its three-​dimensional organization, the genome of 
an individual cell, and even within an entire organism, 
is mostly stable. The ability of a cell to have different 
phenotypes and to dynamically adjust to environmental 
perturbations therefore primarily originates from vari­
ation in the transcriptome and beyond. The transcrip­
tome of a biological system includes protein-​coding 
mRNA, as well as non-​coding tRNA, microRNA, 
ribosomal RNA and long non-​coding RNA. Unlike  
the genome, the transcriptomes of different cells in the  
same organism can be considerably different and they 
can dynamically change in response to internal or exter­
nal stimuli. Recent studies estimate that 56–84% of pro­
tein variance can be explained by mRNA variance in 
cells at steady state8–10. It was further shown that mRNA 
transcripts with particularly high expression levels are 
more efficiently translated11. These results support 
the notion that mRNA expression can serve as a use­
ful surrogate for protein expression at steady state in  
most cases.

Modulating mRNA expression levels. Cells carefully 
adjust mRNA expression levels via multiple regulatory 
mechanisms. The interaction of cis-​regulatory elements 
with a combination of trans-​acting factors creates a com­
plex network that regulates RNA polymerase-​mediated 
gene transcription in response to changing conditions 
and, ultimately, the composition and quantity of the 
transcriptome12,13. In addition to transcription itself, 
several post-​transcriptional mechanisms regulate the 
transcriptome composition of eukaryotic cells. First, 
aberrantly processed mRNA transcripts can be targeted 
for degradation by the RNA exosome14–16. This deg­
radation is a key component for quality control at the 
transcriptional level, and as the exosome is present in 
the nucleus as well as the cytosol, it can target nascent 
and mature mRNA transcripts. Second, aberrantly pro­
cessed mRNAs can also be degraded through nonsense-​
mediated decay (NMD)17. Although mainly associated 
with the degradation of aberrantly processed mRNA, 
cells are known to exploit both the exosome and NMD 
mechanisms to fine-​tune gene expression and, thereby, 
to directly influence functional diversity on the proteome 
level. This is exemplified by the selective targeting of spe­
cific splice isoforms for NMD during granulocyte differ­
entiation18,19. Third, RNA can be post-​transcriptionally 
modified. There are >100 distinct RNA chemical modi­
fications that do not change the nucleotide sequence but 
alter the epitranscriptome20. The most prominent of these 
modifications is the methylation of adenosine to pro­
duce N6-​methyladenosine (m6A). This modification can 
influence the recruitment of effector proteins and the 
formation of RNA secondary structures, which in turn 
modulates mRNA metabolism, including maturation, 
translation and decay21–23. According to current estima­
tions, ~0.1–0.4% of all adenosine nucleotides in mam­
malian mRNA are subjected to m6A epitranscriptomic 
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Fig. 1 | The generation of functional diversity at different molecular levels. In contrast to the ‘one gene, one protein, 
one function’ paradigm, cellular complexity arises from many mechanisms that expand molecular diversity beyond that 
encoded by the protein-​coding genome. These mechanisms include an increase in coding potential using alternative 
transcription start sites as well as 5′ capping, alternative splicing, alternative polyadenylation and RNA editing at the 
co-transcriptional or post-​transcriptional level. The diversity of proteins is further increased using alternative start and 
stop codons during translation. A high degree of diversification is introduced by post-​translational modifications, which 
include covalent cleavages and covalent modifications (such as phosphorylation (P)). Finally , proteins can interact with 
each other to form multiple distinct functional units that can potentially perform various downstream functions. Although 
recent technological advances provide headway towards fully characterizing the transcriptome, proteome and interactome 
and their relationships in any given state, the assessment of their functional impact and the phenotype is a challenge that 
still remains to be fully explored (dashed lines).
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modifications21,24, thereby affecting ~25% of human 
transcripts21. Although little is known about the regu­
lation of mRNA modifications and their overall impact 
on protein expression, several disease phenotypes are 
associated with m6A and its regulatory factors21–24.

Regulating the coding diversity of the transcriptome. 
In addition to quantitative variations, eukaryotic cells 
have also evolved mechanisms to expand transcript 
sequence diversity25. A first level of diversification is 
introduced by the selection of alternative transcription 
start sites. By selecting alternative cis-​regulatory pro­
moter regions during transcription initiation, different 
protein-​coding precursor mRNAs (pre-​mRNAs) of 
varying lengths can be transcribed, potentially includ­
ing different open reading frames and alternative first 
exons that can increase the number of translated pro­
teins26. For example, the pyruvate kinase isoforms PKL 
and PKR, encoded by PKLR, are a product of tissue-​
specific promoter usage that produces alternative mRNA 
transcripts from the same gene with different first exons 
(Fig. 2a). Human genes have, on average, more than four 
transcription start sites, indicating that this process can 
introduce considerable diversity to the proteome27,28.

Pre-​mRNA diversity is further increased by multiple 
processes that alter the nucleic acid sequence of the tran­
script. Before a pre-​mRNA transcript can be transported 
out of the nucleus and translated, it must undergo three 
(co-​transcriptional) processing events that can poten­
tially expand its coding potential. These processes are 
acquisition of a 7-​methylguanosine cap at the 5′ end, 
splicing to remove intragenic regions (introns) and ligate 
expressed regions (exons), and cleavage and addition of a 
poly(A) tail at the 3′ end. These processing steps ensure 

protection of the transcript from degradation, assist 
with translation initiation and can introduce consider­
able molecular diversification25,29. Whereas 5′ capping 
rarely generates variability, splicing is a major source 
of transcript diversity in eukaryotes. RNA sequencing 
studies indicate that 92% of human multi-​exon genes 
undergo alternative splicing30,31, which amounts to 86% 
of all human genes being estimated to produce two or 
more distinct mRNA isoforms30. Some genes can gen­
erate more than ten alternatively spliced transcripts32. 
These splice isoforms might contain different numbers 
of exons, mutually exclusive exons, retained introns or 
alternative 5′ or 3′ splice sites.

With the exception of a few self-​splicing introns, 
pre-​mRNA splicing is commonly catalysed by a large 
ribonucleoprotein complex known as the spliceosome33. 
The choice between alternative 5′ and 3′ splice sites can, 
among other mechanisms, be regulated by interactions 
with non-​spliceosomal RNA-​binding proteins, such as 
heterogeneous nuclear ribonucleoproteins (hnRNPs) 
and serine/arginine-​rich (SR) proteins34. Alternative 
splicing is essential during development and mRNA 
isoforms can be specific to certain cell types, tissues and 
species35. Consequently, errors in splicing are associated 
with disease phenotypes, including cancer, neurodegen­
erative diseases and muscle dystrophies36,37. The pyru­
vate kinase gene PKM is an example of a gene with two 
alternatively spliced isoforms: PKM1 and PKM2 (Fig. 2b). 
These two isoforms contain mutually exclusive exons, 
which regulate the activity of the enzyme. Multiple 
studies have associated changes in the PKM alternative 
splicing pattern and the subsequent elevated expression 
of the PKM2 isoform with numerous different types of 
cancer (reviewed in ref.38). Overall, it is expected that 
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Fig. 2 | Tissue-specific promoter usage and alternative splicing lead to different pyruvate kinase isoforms. Pyruvate 
kinase (PK) is a glycolytic enzyme that catalyses the final step in glycolysis. There are four isoenzymes of PK in mammals 
(PKR , PKL , PKM1 and PKM2) that are encoded by PKLR and PKM38. a | PKLR can generate the isoforms PKR and PKL 
depending on tissue-​specific promoter usage. Whereas the PKR isoform, which is transcribed from the CAAT box in the 
canonical promoter, contains all of the exons (E), that is, E1–E12, the PKL isoform is expressed from a gene-​internal TATA 
promoter and therefore lacks E1 (purple) and starts at E2 (green). PKL is expressed in response to hormones and nutrient 
availability and is specific to liver and kidney tissue. b | The two isoforms of the PKM gene are generated by alternative 
splicing, resulting in the mutually exclusive inclusion of E9 (blue) in PKM1 or E10 (orange) in PKM2. Both E9 and E10 
correspond to a regulatory region of the protein: inclusion of E9 in PKM1 enables the enzyme to be constitutively 
tetrameric and active, and inclusion of E10 in PKM2 allows the regulation of its activity by nutrient availability.  
PKM1 is predominantly expressed in tissues with high energetic demands, such as the brain and muscle, whereas  
PKM2 is expressed in embryonic cells and cancer cells. Adapted with permssion from ref.38, Elsevier.
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functional differences between alternative isoforms 
frequently involve the inclusion or exclusion of bind­
ing motifs or specific post-​translational modification 
(PTM) sites39.

Although alternative splicing is considered the main 
contributor to transcript diversification, some additional 
variability is introduced by alternative polyadenylation of 
the transcript’s 3′ end. Alternative polyadenylation can 
affect either the length of the transcript’s coding region 
or the length of the transcript’s 3′ untranslated region, 
which can in turn impact transcript location, stability 
and the efficiency with which it is translated. In mam­
malian genomes, at least 70% of genes have multiple 
polyadenylation sites that appear to be tissue specific 
and tightly regulated during development and cell dif­
ferentiation, thereby implying their regulatory impact on 
proteome and functional diversity26,28.

In addition to these three main processing steps, 
some pre-​mRNAs are further edited by the selective 
deamination of adenosines and cytosines, which usu­
ally happens prior to splicing40,41. As most RNA-​editing 
sites in human pre-​mRNA occur in intronic regions and 
mutations are frequently synonymous substitutions, RNA 
editing is expected to have only a limited effect on the 
overall coding potential of a human cell40. Nevertheless, 
crosstalk between RNA editing and the splicing machin­
ery as well as several non-​synonymous RNA-​editing 
events with effects on protein function and associated 
disease phenotypes have been reported40,42–44. For exam­
ple, adenosine-​to-​inosine editing in RNA encoding 
glutamate receptor 2, which causes a Glu-​to-​Arg sub­
stitution, changes the calcium permeability and recov­
ery of the receptor44,45. However, a global picture of the 
functional impact of RNA- editing events still remains 
to be elucidated.

Overall, starting from ~20,000 annotated human 
genes, the human transcriptome is currently estimated 
to comprise >83,000 protein-​coding mRNA isoforms 
that are annotated in the GENCODE database, high­
lighting the relevance of the aforementioned mecha­
nisms in generating transcriptome diversity26. It is still 
heavily debated to what extent the richness of mRNA 
isoforms is a mere product of stochastic noise46,47 and 
which fraction of alternative transcript isoforms is actu­
ally translated into functional protein isoforms. These 
questions cannot be addressed by exclusively studying 
the transcriptome but require further insights into the 
proteome level.

The diversity of the proteome
The proteome of a biological system consists of all of its 
expressed protein molecules. Like transcriptomes, the 
proteomes of different cells in the same organism can 
vary greatly and are capable of dynamically adapting to 
internal and external stimuli.

Modulating protein expression levels. Although pro­
tein synthesis is directly dependent on the expression 
of a corresponding mRNA transcript, factors beyond 
transcript concentration contribute to protein expres­
sion levels and, thereby, to the functional landscape of 
the cell48.

First, the translation rate is influenced by the mRNA 
sequence itself through mechanisms such as codon bias, 
epitranscriptomic modifications, the interaction of the 
transcript with regulatory elements (such as microRNAs, 
which cause post-​transcriptional gene silencing) and the 
availability of tRNAs and uncharged ribosomes (a lack 
of which can reduce translation efficiency). Second, the 
proteome is modulated by protein degradation rates, 
which are influenced by protein localization, stability, 
the three-​dimensional conformation and their integra­
tion into stable protein complexes. Proteins can also be 
directly targeted for ubiquitin-​mediated degradation, 
or become targets of autophagy and, consequently, 
lysosomal-​mediated degradation49. The amino-​terminal 
and carboxy-​terminal composition of a protein can 
determine a protein’s half-​life through the recognition 
of degron sequences by proteolytic systems that cause 
degradation via N-​degron pathways or C-​degron pathways, 
respectively50. In eukaryotes, these pathways include 
degradation both by the proteasome and by autophagy.

In healthy cells and at steady state, protein synthesis 
and degradation are well balanced51 (Fig. 3a). In addition, 
variation in mRNA abundance is frequently buffered on 
the protein level, meaning that a substantial change in 
mRNA abundance is not propagated into a correspond­
ing change in protein abundance48. Whereas genomic 
copy number variations in cancer commonly affect 
mRNA expression levels, many of these changes do not 
affect expression of the corresponding protein, suggest­
ing that these aberrations do not notably contribute to the 
cancer phenotype52. Interestingly, protein-​level buffering 
is especially pronounced for proteins that form stable 
protein complexes, suggesting that stoichiometric ratios 
of complex subunits can direct protein-​level abundance 
variation48,53. The effect of protein complex-​mediated 
buffering illustrates a prime example of how cells can 
reduce an undesired functional impact of variation on 
genome and transcriptome levels, for example, induced 
by stochastic events or by potentially disease-​promoting 
genotypes.

Despite these effects, mRNA abundance generally 
provides a good estimate for protein-​level abundance 
at steady state (also see ‘The transcriptome directs the 
proteome’ above). However, in cells during transition 
phases (for example, throughout the cell cycle or differ­
entiation processes) or rapidly adapting to stimuli, the 
agreement between mRNA and protein levels can tem­
porarily decrease. This decrease can be due to delays in 
signal transmission from the gene, to transcript to protein 
level, or due to mechanisms that allow rapid adaptation of 
the quantitative proteome without affecting mRNA levels; 
one such mechanism is the elevated translation of existing 
mRNA transcripts, known as ‘translation on demand’54. 
Another mechanism is the rapid degradation of expressed 
proteins, for example, by the ubiquitin–proteasome 
pathway, foregoing the necessity to repress transcription 
of the respective genes. Interestingly, studies indicate 
that the overall protein concentration of the cell remains 
fairly constant across conditions, meaning that if a few 
transcripts are massively upregulated, then the increase 
in the respective protein concentration is compensated 
by a decrease in the concentration of other proteins55,56.
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Modulating diversity at the protein level. In addition to 
quantitative protein levels that can directly influence the 
functional landscape of a cell, other processes further 
increase proteome diversity. The first level of proteome 
diversification can be attributed to the use of alternative 
start or stop codons during translation. These diversifi­
cation mechanisms are rare, as initiation at 5′ AUG start 
codons occurs in ~90–95% of cases and termination 
efficiency at the first in-​frame stop codon is ~90–99%57. 
However, the use of an alternative downstream CUG 
start codon in MRPL18, a gene that encodes a mito­
chondrial large ribosomal subunit protein, provides an 
example where an alternative start codon has a distinct 
functional impact, in this case causing mislocalization 

of the protein and formation of ‘hybrid’ ribosomes 
that promote increased heat shock resistance58. Errors 
in translation, estimated to occur at ~0.01–0.1% per 
amino acid59, also contribute to protein sequence var­
iation that might expand proteome diversity in stress 
and ageing. However, most of the stochastically occur­
ring errors are expected to result in non-​functional, 
often misfolded, proteins that are then degraded by the  
ubiquitin–proteasome system15.

Protein PTMs, which can be covalent cleavages or 
covalent modifications60, introduce the most diversity 
at the proteome level. Covalent cleavage of the protein’s 
primary amino acid sequence is commonly catalysed by 
specific proteases or, less frequently, mediated by auto­
catalytic cleavage61. Cleavage can modify protein func­
tion, for example, by changing protein localization and 
activity, as exemplified by the cleavage of pro-​caspase 
proteins during caspase-​mediated apoptosis62. Many 
proteases are stored as inactive proenzymes that are 
only activated upon their own proteolytic cleavage61. 
To date, human cells are known to express 460 different 
catalytically active proteases63.

Covalent modifications are catalysed by enzymes that 
add a specific chemical group to the amino acid side 
chains or to the carboxy terminus or amino terminus of 
a protein. Although some PTMs are permanent, others 
are reversible and can be dynamically altered. Fifteen of 
the 20 common proteinogenic amino acids can be mod­
ified and there are ~400 different PTMs64,65. The three 
most prevalent covalent PTMs are currently estimated 
to be N-​linked glycosylation of Asn residues, phosphory­
lation of Ser, Thr and Tyr residues, and acetylation of 
Lys residues64,65.

The largest class of known PTM enzymes regulates 
protein phosphorylation. Whereas >500 kinases cata­
lyse protein phosphorylation, only another ~140 pro­
tein phosphatases catalyse dephosphorylation66. Rough 
estimates indicate that at least 10,000 distinct molecular 
forms of phosphorylated proteins can be produced and 
selectively regulated in humans60. However, this number 
is probably an underestimation because phosphorylation 
events often occur in combination on the same protein. 
Among other functions, covalent modifications are a 
crucial component of cell signalling pathways such as 
receptor tyrosine kinase signalling, and perturbation 
of the covalent modification machinery, and of kinases 
and phosphatases specifically, can cause severe disease 
phenotypes67. Different PTM sites on one protein or 
across multiple proteins can be connected via a complex 
network of molecular crosstalk. The acetylation status 
of the key transcriptional regulator p53, for example, is 
regulated by acetyltransferases and deacetylases that are 
themselves regulated by SUMOylation68 (Fig. 3b).

Taken together, the mechanisms that introduce var­
iation on the transcriptome and proteome levels are 
currently estimated to generate >1 million different 
proteoforms65 based on unique combinations of dif­
ferent amino acid sequences and PTMs. The analytical 
challenge in proteomics is therefore not only to detect 
and quantify all protein-​coding genes that are expressed 
but also to correctly identify and quantify each proteo­
form. Although recent technical and methodological 
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developments have enabled the almost complete enu­
meration and quantification of the human proteome69,70, 
the global identification of proteoforms still remains a 
challenge65,71. However, recent developments in the 
field of top-​down proteomics have enabled the parallel 
identification of >3,000 unique proteoforms in human 
samples72,73. Although the molecular function of some 
proteoforms, as well as the phenotypic traits that they are 
associated with, have successfully been annotated65,74, the 
systematic assessment of proteoform-​specific functions 
remains challenging.

The functional capacity of the proteome is further 
enhanced by the fact that the same proteoform might 
exist in multiple three-​dimensional conformations and 
thus associate with different macromolecular assem­
blies. The organization of a protein’s secondary and 
tertiary structure can affect its stability (for example, by 
the exposure of N-​degrons or C-​degrons), localization 
and molecular function. Currently, most system-​wide 
proteomic studies do not consider these structural dif­
ferences and treat proteins as unstructured molecules. 
By contrast, structurally focused studies are usually per­
formed from a targeted prospective, focusing on a single 
protein or on a small subset of proteins and their struc­
tures. Methods for probing protein conformations in 
larger proteome fractions have been developed recently 
based on cross-​linking mass spectrometry75,76, thermal 
proteome profiling77 or coupling limited proteolysis to 
targeted proteomics78. Owing to the limited availability 
of system-​wide approaches, to what extent structural dif­
ferences impact proteome and functional diversity on a 
global scale remains largely unknown.

The dynamic interactome
Many proteins perform biochemical functions as part 
of multimolecular assemblies. These assemblies form a 
large network of molecular interactions, including inter­
actions among molecules of the same type, for example, 
protein–protein interactions (PPIs), or among molecules 
of different types, for example, protein–DNA, protein–
RNA, protein–lipid or protein–metabolite interactions. 
The vast array of molecular interactions in the cell is 
referred to as its interactome. Due to their central role in 
many biological processes and the focus of this Review 
on functional complexity beyond the protein-​coding 
genomic sequence, we specifically focus on PPIs and 
their arrangement in a complex interaction network.

Overview of the cellular interactome. The interactome of 
a cell is more diverse and can adapt more rapidly to envi­
ronmental cues than the transcriptome and proteome. 
The main reason for the versatility of the interactome 
is that it does not necessitate the synthesis of new mole­
cules. This is evident from the transient nature of some 
PPIs, for example, the interaction between kinases and 
their target proteins. By contrast, other interactions are 
more stable, with participating proteins forming distinct 
functional units known as macromolecular protein com­
plexes. Prominent examples of these macromolecular 
‘machines’ are the ribosome and proteasome. Many pro­
teins can be functionally distinct in their monomeric or 
complex bound forms, exemplified by 14-3-3 proteins79. 

Whereas 14-3-3 monomers are associated with a chap­
erone‐like activity79, 14-3-3 dimers primarily operate as 
a phosphorylation-​dependent protein scaffold that is 
an important component of many molecular signalling 
pathways80.

Over the past decades, several experimental and 
bioinformatics strategies have been developed to map 
the interactome of different cellular systems. The most 
comprehensive single-​assay interaction map contains 
>56,000 associations among >10,000 human proteins 
and was generated through the systematic analysis of 
human open reading frames by affinity purification 
coupled to tandem mass spectrometry (AP-​MS)81,82. 
In addition to binary PPI networks, curated databases 
containing information about well-​defined protein com­
plexes and their associated biochemical functions have 
been generated; for example, the human protein com­
plex map (hu.MAP) reports 4,659 protein complexes83. 
Other protein complex databases include CORUM84,85 
and the Complex Portal86,87. Although current databases 
provide a broad overview of the molecular interactome 
of a human cell, the observable interaction space is 
expected to markedly increase with technological 
advances. It is important to note that PPI and protein 
complex databases only provide a static, generic descrip­
tion of proteome connectivity and do not resolve the 
cell-​type-​specific and state-​specific PPIs that indicate 
the acute biochemical state of the cell.

Factors influencing diversity at the interactome level. 
The main prerequisite for PPIs or the assembly of a 
protein complex is that the proteins involved are co-​
expressed at the required stoichiometry and colocalized 
within the same cellular compartment. Each protein may 
need to be in a specific three-​dimensional conforma­
tion that allows the interaction to form and to be ener­
getically favourable88,89. Interactions can depend on the 
presence of assembly chaperones, which can be proteins 
or other molecules that assist the formation of an inter­
action, for example, by acting as scaffolds or by causing 
a conformational change in either of the interacting 
subunits90. PPIs and complex assemblies often dynam­
ically change in response to stimuli, for example, upon 
growth factor exposition, or generally over the course 
of molecular processes. One exemplary process is the 
dynamically changing composition of the spliceosome at 
different steps of the splicing reaction33. Considering its 
many rearrangements and different catalytic activities, 
the spliceosome machinery alone provides an impressive 
illustration of functional diversity orchestrated on the 
interactome level.

One central consideration when investigating func­
tional diversification on the interactome level is that 
interactions might be proteoform-​dependent, and vice 
versa. An interaction might only form when a protein 
subunit has a specific amino acid sequence or PTMs. 
In addition, certain PTMs may only occur upon com­
plex formation. Proteoform-​dependent rearrangement 
of the interactome is a common mechanism for the cell 
to rapidly adapt its functional landscape in response to 
changing environmental conditions (Fig. 4a). This is 
illustrated by the phosphorylation-​dependent binding 

www.nature.com/nrm

R e v i e w s

332 | June 2020 | volume 21	

https://mips.helmholtz-muenchen.de/corum/
https://www.ebi.ac.uk/complexportal/home


of 14-3-3 protein dimers to their target proteins, which 
must usually harbour one or two phosphorylated Ser or 
Thr residues to interact with the 14-3-3 protein scaf­
fold80,91,92. One exemplary cause for extensive 14-3-3 
interactome rewiring is the hypoxia-​induced activation 
of AMP-​activated protein kinase (AMPK), resulting in 
the phosphorylation of several AMPK targets that can 
subsequently interact with 14-3-3, thereby causing an 
adaptive shift from anabolic to catabolic metabolism and 
promoting autophagy80 (Fig. 4b).

To date, no system-​wide information about the 
cross-​dependence between protein complex formation 
and specific proteoforms is available. From a functional 
perspective, it would be interesting to study the extent 
to which alternative protein function can be attrib­
uted to actual changes in the interactome, proteome 

and transcriptome or combinations thereof. From a 
gene-​centric perspective, it would be equally interesting 
to investigate to what degree alternative proteoforms 
derived from the same gene locus perform differ­
ent functions, and what fraction of splice isoforms or 
PTMs are a product of stochastic noise without func­
tional impact. Experimental strategies to systematically 
approach such questions have recently started to emerge; 
we discuss these methods later in the Review.

Crosstalk between molecular layers
Many examples of crosstalk and feedback loops have 
been discovered over the past few decades, where events 
traditionally considered ‘downstream’ affect ‘upstream’ 
targets. These examples include both positive and neg­
ative autoregulation, in which a gene product either 
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directly or indirectly regulates its own production. 
A prime example of a gene regulatory network that 
includes multiple transcriptional feedback loops is the 
circadian gene network in mammals93. Protein products 
of the core regulatory genes PER1, PER2, CRY1 and CRY2 
interact with each other, forming a protein complex that 
represses their own transcription. Another mechanism 
for negative autoregulation is based on alternative splicing-​
coupled nonsense-​mediated mRNA decay, a phenomenon 
expected to affect ~10–30% of mammalian genes94. 
SR proteins and hnRNPs, which have various roles in 
RNA processing and splicing, can bind to their own 
transcripts, for example, causing the production of a 
splice variant that is subjected to NMD, thereby down­
regulating protein levels and maintaining homeostatic 
protein expression (cis-​regulatory feedback; Fig. 5). Even 
more prominent than cis-​regulatory feedback loops 
are trans-​regulatory mechanisms, exemplified by the 
activation or repression of splicing by SR proteins and 
hnRNPs that target pre-​mRNAs of other genes (Fig. 5). 
Transcription factors that can regulate the expression 
of different target genes exemplify the most prominent 
form of trans-​regulatory feedback. To date, only a small 
fraction of the regulatory networks inside the cell have 
been studied on a detailed mechanistic level and the 
relationships between different molecular layers are just 
beginning to be explored. Recent studies investigating 
quantitative trait loci on different molecular levels have 
revealed interesting insights into how multilayered 
molecular networks mediate the effects of genomic 
variants95–98. In the future, similar strategies compara­
ble with quantitative trait locus analyses are likely to 
be used to investigate the expansion of molecular and 
functional diversity within a cell or organism. To ena­
ble the comprehensive mapping of such regulatory net­
works and to better understand the interdependence and 
crosstalk between different molecular layers and how 
these contribute to phenotypic diversity, high-​quality 
measurements of all ‘omics’ layers are necessary.

Methods for generating ‘omics’ data
On the basis of the mechanisms explained above, 
eukaryotic cells can generate a large variety of mRNA 
isoforms. The comprehensive and quantitative profiling 
of these transcripts at single-​base resolution has been 
made possible by technological advancements gener­
ally referred to as ‘next-​generation sequencing’. Recent 
developments in next-​generation sequencing-​based 
transcriptome profiling technologies have been exten­
sively reviewed elsewhere99–102. Instead, we focus on 
the protein level, comparing established and recent 
proteomics-​based and interactomics-​based techniques.

Mass spectrometry-​based proteomics. Most proteomic 
studies are based on mass spectrometry103,104, with two 
main approaches: top-​down and bottom-​up proteomics. 
In top-​down proteomics, intact proteins are chromato­
graphically separated, ionized and injected into a mass 
spectrometer. The mass spectra of both the intact pro­
teins and their fragmentation products are subsequently 
analysed, enabling the direct deduction of individual 
proteoforms with unique primary protein sequences 
and PTMs. However, top-​down proteomic analysis 
of complex protein mixtures is challenging both ana­
lytically and in terms of required expertise because of 
limitations in proteoform separation techniques, issues 
with mass spectrometry analysis of high-​molecular-​
mass ions, highly complex fragment ion patterns and 
difficulty with spectral interpretation using available 
analysis software71,105. Thus, for proteome-​wide analyses, 
bottom-​up proteomic workflows are more frequently 
applied. In bottom-​up proteomics, proteins are first 
enzymatically digested into smaller peptide sequences, 
which are subsequently separated by liquid chromatog­
raphy, ionized and analysed by tandem mass spectrom­
etry, with both the peptide and the fragment ion spectra 
recorded. As the original connectivity between peptides 
and proteins is lost during enzymatic digestion, a main 
limitation in bottom-​up proteomics is the required in 

Stop
SR pre-mRNA

Stop

NMD

Cis-regulatory feedbackTrans-regulatory feedback

SRSR

–

+

hnRNP
pre-mRNA

NMD

hnRNPhnRNP

+

–

Any target
pre-mRNA + –

Fig. 5 | Cis-regulatory and trans-regulatory feedback loops modulate alternative splicing. Splicing is regulated by 
spliceosomal RNA-​binding proteins such as serine/arginine-​rich (SR) proteins and heterogeneous nuclear ribonucleoproteins 
(hnRNPs)137. Whereas SR proteins generally act as splicing activators, hnRNPs function as splicing repressors. Both types of 
proteins can regulate splicing of different target genes via trans-​regulatory feedback. In addition, they can also regulate 
splicing of their own pre-​mRNAs via negative cis-​regulatory feedback. SR proteins can activate the splicing of an exon in 
their own pre-​mRNA that carries a premature stop codon, thereby causing nonsense-​mediated mRNA decay (NMD). 
hnRNPs repress splicing of an internal exon in their own pre-​mRNA , which causes a frameshift that triggers NMD.

Alternative splicing-​coupled 
nonsense-​mediated mRNA 
decay
A regulatory mechanism in 
which alternative splicing 
events introduce premature 
termination codons that lead 
to the downregulation of the 
transcript through the process 
of nonsense-​mediated 
mRNA decay.

Quantitative trait loci
DNA loci that correlate with 
the variation of a quantitative 
trait in the phenotype.

www.nature.com/nrm

R e v i e w s

334 | June 2020 | volume 21	



silico inference step, which maps measured peptide 
signals back to individual proteins. The requirement of 
protein inference further limits the ability of bottom-​up 
proteomic workflows to differentiate proteoforms with 
the same primary protein structure but different com­
binations of PTMs. Although it is possible to gain useful 
information about the presence and localization of indi­
vidual PTMs or sequence variants, as well as ‘averaged’ 
proteoforms (that is, a group of peptides mapping to the 
same canonical protein sequence, including alternative 
sequence variants or PTMs, the unique combination of 
which is not resolved), a robust strategy capable of confi­
dently assigning and distinguishing unique proteoforms 
has, to our knowledge, not yet been reported for bottom-​
up proteomic approaches. Furthermore, different pro­
tein inference methods can vary in their assumptions106 
and can therefore only provide precise answers within 
the selected model and do not necessarily reflect real­
ity. Nevertheless, the high sensitivity, reproducibility 
and scalability of bottom-​up proteomic approaches still 
make them the methods of choice for proteome-​wide 
studies. Different strategies for bottom-​up proteomics 
have been reviewed previously107–109 and further details 
on bottom-​up proteomics and related opportunities for 
the derivation of proteoform-​resolved information are 
given in Supplementary Box 1.

Complementation assays and mass spectrometry-​based 
interactomics. Over the past few decades, several differ­
ent methods have been developed to analyse transient 
and stable PPIs and protein complexes. Although many 
of these methods, for example, fluorescence resonance 
energy transfer110 and bimolecular fluorescence comple­
mentation111, are based on targeting a small proteome 
subset with a relatively low throughput, we specifically 
focus on recent system-​wide strategies developed for 
the high-​throughput detection of stable interactions 
and protein assemblies. To date, five main technolo­
gies are used: yeast two-​hybrid screens (Y2H screens) 
and related complementation assays, AP-​MS, proxim­
ity labelling approaches exemplified by BioID112 and 
APEX113, cross-​linking mass spectrometry and protein  
co-​fractionation coupled to mass spectrometry (CoFrac-​MS).  
Recently, thermal proteome profiling and limited 
proteolysis-​coupled mass spectrometry have emerged 
as strategies for the parallelized detection of multiple 
protein complexes in one experiment77,114,115. Here, we 
focus on the more established strategies listed above, 
summarized in Fig. 6a.

Until recently, Y2H screens were the main technique 
for systematically mapping PPI networks116. Despite 
many successful applications and methodological 
extensions to the classical Y2H screen assay, the sys­
tem has several limitations. First, it requires that pro­
teins are expressed in the yeast cell. Expression in the 
yeast intracellular environment may affect the protein 
structure, localization and PTM patterns, which could 
affect PPIs. Second, the fractions of false-​positive and 
false-​negative interactions in Y2H screens are hard to 
determine, and screens require validation assays in 
which a positive reference set and randomly selected 
protein pairs are used as controls116,117. Third, gaining 

a comprehensive network of PPIs requires a substantial 
number of experiments as each possible protein pair 
requires an independent experiment. Last, Y2H screens 
can only generate generic protein interaction maps and 
cannot be used to determine PPIs in a particular cellular 
state. To achieve condition-​specific protein interaction 
maps, other techniques are necessary.

With advances in mass spectrometry-​based pro­
teomics, AP-​MS has become the main technique 
for condition-​resolved, large-​scale PPI studies81,118.  
In AP-​MS, a protein of interest (bait) is purified from a cell  
lysate using an antibody specific for the bait (which allows 
the use of non-​engineered cells) or specific for an affinity 
tag fused to the bait. Pull-​down is performed under mild, 
non-​denaturing conditions, aiming to preserve stable 
PPIs between the bait protein and its interaction partners 
(prey proteins). The bait and its co-​purified prey proteins 
are subsequently analysed by bottom-​up mass spectrom­
etry to identify and quantify the bait’s stable interaction 
partners. AP-​MS approaches often utilize background 
proteins commonly detected in AP-​MS datasets to fil­
ter out false-​positive hits and achieve high selectivity 
and specificity in determining confident interaction 
partners119. One AP-​MS experiment can map multiple 
interactions in parallel, an advantage over Y2H screens.  
By combining high sensitivity in detecting PPIs at con­
trolled false discovery rates with reasonable throughput, 
AP-​MS is the method of choice for studying global inter­
action networks. Nevertheless, AP-​MS studies are limited 
by the fact that they commonly require genetic engineer­
ing, thus potentially altering protein structure and inter­
action sites, or are dependent on the availability of specific 
antibodies. Additionally, AP-​MS experiments can only 
capture stable interactions that remain intact throughout 
the experimental protocol. Despite its limitations, the 
AP-​MS technique was applied to create the most compre­
hensive single-​assay interaction map to date, containing 
>56,000 associations among >10,000 human proteins81,82.

To capture transient interactions or general spatial 
proximity inside the cell, proximity labelling approaches 
exemplified by BioID112 and APEX113 strategies can be 
used. Here, the bait protein is fused to an enzyme, for 
example, a biotin ligase in BioID or a peroxidase in 
APEX, that labels all proteins in close proximity at both 
high spatial and high temporal resolution (reviewed in 
refs120,121). In contrast to the other presented approaches, 
reported proteins do not have to physically interact 
with the bait but can simply be in close proximity to it. 
Similar to AP-​MS, proximity labelling techniques can 
generate a global interaction network at steady state; 
however, if the whole interactome of a cellular system is 
of interest, studies focusing on dynamic changes in the 
proteome-​wide PPI network are still limited by the pro­
teome coverage of individual assays and the throughput 
of the technique. Nevertheless, BioID (combined with 
a complementary AP-​MS analysis) has recently been 
applied to study the dynamic interaction landscape of 
the human centrosome–cilium interface during cilio­
genesis, mapping >1,700 unique components and >7,000 
interactions122. Recent method developments further 
improved the ease of combing AP-​MS and BioID by 
using a single construct, termed MAC-​tag, to investigate 
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interactions, cellular localization and spatial distances 
within a protein complex in parallel123.

Cross-​linking mass spectrometry has been employed 
mostly to gain low-​resolution structural information  
from purified proteins or protein complexes via the 
generation of distance constraints, which provide upper 
limits to the distance between amino acids in a molecule. 
Recently, the technique was expanded to more complex 
applications, including cross-​linking the full proteome 
of Escherichia coli, the human HeLa cell line75 and 
Drosophila melanogaster embryos76, to identify PPIs 
and to gain structural information on a system-​wide level.

An alternative approach to gaining proteome-​wide 
connectivity information is based on CoFrac-​MS124–130 
(Fig. 6b). In typical CoFrac-​MS workflows, cells are lysed 
at near-​native conditions to keep most PPIs and protein 
complexes intact. The resulting cell lysate is subsequently 
separated and fractionated according to the physico­
chemical properties of the protein assemblies, while 
aiming to keep protein complexes intact throughout the 
fractionation process. Examples of separation techniques 
include ion-​exchange chromatography, for separation by 
charge, and size-​exclusion chromatography, for separa­
tion by hydrodynamic radius. For bottom-​up proteomic 
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analysis, each of the sampled fractions is enzymatically 
digested into peptides and subsequently analysed by 
liquid chromatography with tandem mass spectrom­
etry. The underlying hypothesis in CoFrac-​MS is that 
interacting proteins at least partially comigrate during 
chromatographic separation, and that they will have sim­
ilar quantitative protein profiles based on liquid chroma­
tography with tandem mass spectrometry detection and 
quantification. Interacting proteins can therefore be iden­
tified based on their highly correlated elution signal. The 
main advantage of CoFrac-​MS workflows over AP-​MS 
studies is that, in principle, they allow the analysis of 
thousands of proteins and their interactions without the 
need for genetic engineering or specific antibodies. With 
accurate relative quantification, the approach allows dif­
ferential analysis between samples and the identification 
of changes in the detected PPIs across cellular states. 
CoFrac-​MS datasets are most commonly employed for 
de novo PPI and protein complex detection, inferred 
from the pairwise correlation of protein elution profiles 
and the use of graph partitioning algorithms that predict 
protein complex assembly131,132. However, the sensitivity 

and selectivity of such correlation-​based de novo protein 
complex assignments are limited by the peak capacity 
of the chosen chromatographic separation technique, 
as non-​interacting proteins also chromatographically 
co-​elute if the number of detected proteins markedly 
exceeds the peak capacity of the column. To overcome 
the challenge of limited selectivity and to enable a more 
quantitative assessment of protein complex assembly 
states in CoFrac-​MS datasets, we have recently presented 
a novel, targeted, complex-​centric analysis concept133. 
Here, the CoFrac-​MS data are directly queried for evi­
dence of a priori-​defined protein complexes using data 
from public protein complex databases, thereby mark­
edly increasing selectivity. This analysis strategy provides 
a promising new approach for probing and quantify­
ing the rewiring of protein assemblies across different 
conditions134.

Proteoform-​specific analysis of protein interactions and 
assemblies. One of the major questions in protein biology 
is to what extent specific proteoforms and the proteins’ 
interactome are connected or interdependent. As most 
large-​scale interactome studies have focused on bottom-​
up proteomic strategies, the inference of completely 
characterized proteoforms (that is, the characterization 
of the precise amino acid sequence and the location of 
all PTMs) and their individual interaction landscape 
are still elusive. However, individual modifications, 
such as PTMs at a specific peptide or even a specific 
amino acid site, have already been associated with the 
protein’s interaction network in large-​scale studies. For 
example, an AP-​MS study of human kinases integrated 
information on the interaction landscape of 57 human 
kinases with the phosphorylation state of these kinases 
and their interaction partners135. Furthermore, the effect 
of caspase-​mediated proteolysis on the interactome of 
Jurkat cells was analysed using a CoFrac-​MS approach136. 
CoFrac-​MS strategies are a promising tool for systemati­
cally assessing the relationship between proteoforms and 
specific protein complex assembly states of a protein. By 
performing a peptide-​level analysis of the co-​elution pat­
terns along the dimension of protein complex separation, 
groups of similarly behaving peptides that potentially 
originate from alternative proteoforms can be distin­
guished (Fig. 7). However, a systematic study of expressed 
proteoforms and their global effect on functional diversi­
fication, as can be indicated by the assembly into different 
protein complexes, has not yet been performed.

Conclusions and perspectives
Research over the past few decades has revealed that 
the ability of living systems to adjust their functional 
landscape originates from multiple molecular layers 
beyond the protein-​coding genome. In addition to 
regulating the quantitative composition of both the 
transcriptome and the proteome, which have been 
the intense focus of large-​scale research efforts, cells can 
also adjust the diversity of transcripts and proteoforms 
and the integration of proteoforms into different protein 
complexes. Technological developments, especially in 
the area of mass spectrometry, recently paved the way for 
enabling a systematic analysis of the molecular diversity 
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of a cellular system on all different analyte levels, both in 
the form of generic maps and in the form of differential 
analyses to detect state-​specific differences.

Although each gene is estimated to have ~100 pro­
teoforms65 on average, the link between diversity at the 
proteome level and the functional diversity of the cell 
has not yet been systematically assessed. A promising 
direction towards evaluating the effect of different pro­
teoforms is to investigate their interdependence with 
other properties, such as protein localization or protein 
complex formation. This approach could, for example, 
be achieved by peptide-​level analysis of CoFrac-​MS 
datasets, resulting in data that should contain valuable 
information about the crosstalk between the protein 
assembly state and specific proteoforms.

Although protein complex-​level information is 
expected to provide the best estimation for the causes 

of functional diversity, there is still a lack of methods 
to systematically probe functional diversity directly. 
With further improvements in ‘omics’ technologies 
and the convergence and integration of methods, such 
as top-​down and bottom-​up proteomic approaches, we 
can speculate that the majority of proteoforms and pro­
tein complexes will be mapped within the next decade. 
This mapping will enable a more systematic evaluation 
of the interdependence and crosstalk between the differ­
ent molecular layers and the reconstruction of complex, 
non-​linear regulatory networks. The overarching goal will 
remain to resolve the question of how molecular diversity 
translates to functional diversity in order to better under­
stand the relationship between genotype and phenotype 
under different experimental and clinical conditions.

Published online 31 March 2020

1.	 Beadle, G. W. & Tatum, E. L. Genetic control of 
biochemical reactions in neurospora. Proc. Natl Acad. 
Sci. USA 27, 499–506 (1941).

2.	 Collins, F. S., Lander, E. S., Rogers, J. & Waterson, R. H. 
Finishing the euchromatic sequence of the human 
genome. Nature 431, 931–945 (2004).

3.	 Carter, H., Hofree, M. & Ideker, T. Genotype to 
phenotype via network analysis. Curr. Opin. Genet. Dev. 
23, 611–621 (2013).

4.	 Rauscher, B., Valentini, E., Hardeland, U. & Boutros, M. 
Phenotype databases for genetic screens in human 
cells. J. Biotechnol. 261, 63–69 (2017).

5.	 Amberger, J., Bocchini, C. & Hamosh, A. A new  
face and new challenges for Online Mendelian 
Inheritance in Man (OMIM®). Hum. Mutat. 32, 
564–567 (2011).

6.	 Arkin, A. P. & Schaffer, D. V. Network news: innovations 
in 21st century systems biology. Cell 144, 844–849 
(2011).

7.	 Hartwell, L. H., Hopfield, J. J., Leibler, S.  
& Murray, A. W. From molecular to modular cell 
biology. Nature 402, C47–C52 (1999).

8.	 Schwanhäusser, B. et al. Global quantification of 
mammalian gene expression control. Nature 473, 
337–342 (2011).

9.	 Li, J. J., Bickel, P. J. & Biggin, M. D. System wide 
analyses have underestimated protein abundances 
and the importance of transcription in mammals. 
PeerJ 2, e270 (2014).

10.	 Jovanovic, M. et al. Dynamic profiling of the protein 
life cycle in response to pathogens. Science 347, 
1259038 (2015).

11.	 Marguerat, S. et al. Quantitative analysis of fission 
yeast transcriptomes and proteomes in proliferating 
and quiescent cells. Cell 151, 671–683 (2012).

12.	 Thompson, D., Regev, A. & Roy, S. Comparative 
analysis of gene regulatory networks: from network 
reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 
31, 399–428 (2015).

13.	 Bernadskaya, Y. & Christiaen, L. Transcriptional 
control of developmental cell behaviors. Annu. Rev. 
Cell Dev. Biol. 32, 77–101 (2016).

14.	 Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation 
and functions of the nuclear RNA exosome complex. 
Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

15.	 Magnuson, B., Bedi, K. & Ljungman, M. Genome 
stability versus transcript diversity. DNA Repair 44, 
81–86 (2016).  
This review discusses sources of error from the 
genome to the proteome and how errors can 
contribute to molecular diversity and evolution.

16.	 Schneider, C., Kudla, G., Wlotzka, W., Tuck, A.  
& Tollervey, D. Transcriptome-wide analysis of 
exosome targets. Mol. Cell 48, 422–433 (2012).

17.	 Popp, M. W. & Maquat, L. E. Nonsense-mediated 
mRNA decay and cancer. Curr. Opin. Genet. Dev. 48, 
44–50 (2018).

18.	 Wong, J. J. L. et al. Orchestrated intron retention 
regulates normal granulocyte differentiation. Cell 
154, 583–595 (2013).

19.	 Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and 
quantity control of gene expression by nonsense- 
mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 
406–420 (2019).

20.	 Machnicka, M. A. et al. MODOMICS: a database  
of RNA modification pathways — 2013 update.  
Nucleic Acids Res. 41, D262–D267 (2012).

21.	 Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional 
gene regulation by mRNA modifications. Nat. Rev. Mol. 
Cell Biol. 18, 31–42 (2017).

22.	 Ranjan, N. & Leidel, S. A. The epitranscriptome in 
translation regulation: mRNA and tRNA modifications 
as the two sides of the same coin? FEBS Lett. 593, 
1483–1493 (2019).

23.	 Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing 
and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 
20, 608–624 (2019).

24.	 Roundtree, I. A., Evans, M. E., Pan, T. & He, C. 
Dynamic RNA modifications in gene expression 
regulation. Cell 169, 1187–1200 (2017).

25.	 Bentley, D. L. Coupling mRNA processing with 
transcription in time and space. Nat. Rev. Genet. 15, 
163–175 (2014).  
This comprehensive review discusses the 
mechanisms and interdependencies of mRNA 
transcription and processing.

26.	 de Klerk, E. & ‘t Hoen, P. A. C. Alternative mRNA 
transcription, processing, and translation: insights from 
RNA sequencing. Trends Genet. 31, 128–139 (2015).

27.	 Garieri, M. et al. The effect of genetic variation on 
promoter usage and enhancer activity. Nat. Commun. 
8, 1358 (2017).

28.	 Reyes, A. & Huber, W. Alternative start and termination 
sites of transcription drive most transcript isoform 
differences across human tissues. Nucleic Acids Res. 
46, 582–592 (2018).

29.	 Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating 
mRNA processing with transcription. Cell 108, 
501–512 (2002).

30.	 Wang, E. T. et al. Alternative isoform regulation in 
human tissue transcriptomes. Nature 456, 470–476 
(2008).

31.	 Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. 
Deep surveying of alternative splicing complexity in the 
human transcriptome by high-throughput sequencing. 
Nat. Genet. 40, 1413–1415 (2008).

32.	 Tress, M. L. et al. The implications of alternative 
splicing in the ENCODE protein complement.  
Proc. Natl Acad. Sci. USA 104, 5495–5500 (2007).

33.	 Shi, Y. Mechanistic insights into precursor messenger 
RNA splicing by the spliceosome. Nat. Rev. Mol. Cell 
Biol. 18, 655–670 (2017).

34.	 Lee, Y. & Rio, D. C. Mechanisms and regulation of 
alternative pre-​mRNA splicing. Annu. Rev. Biochem. 
84, 291–323 (2015).

35.	 Baralle, F. E. & Giudice, J. Alternative splicing as a 
regulator of development and tissue identity. Nat. Rev. 
Mol. Cell Biol. 18, 437–451 (2017).

36.	 Costa, V., Aprile, M., Esposito, R. & Ciccodicola, A. 
RNA-seq and human complex diseases: recent 
accomplishments and future perspectives. Eur. J. 
Hum. Genet. 21, 134–142 (2013).

37.	 Pistoni, M., Ghigna, C. & Gabellini, D. Alternative 
splicing and muscular dystrophy. RNA Biol. 7, 
441–452 (2010).

38.	 Chaneton, B. & Gottlieb, E. Rocking cell metabolism: 
revised functions of the key glycolytic regulator PKM2 
in cancer. Trends Biochem. Sci. 37, 309–316 (2012).

39.	 Buljan, M. et al. Tissue-specific splicing of disordered 
segments that embed binding motifs rewires  
protein interaction networks. Mol. Cell 46, 871–883 
(2012).

40.	 Yablonovitch, A. L., Deng, P., Jacobson, D. & Li, J. B. 
The evolution and adaptation of A-to-I RNA editing. 
PLoS Genet. 13, e1007064 (2017).

41.	 Picardi, E., D’Erchia, A. M., Lo Giudice, C. & Pesole, G. 
REDIportal: a comprehensive database of A-to-I RNA 
editing events in humans. Nucleic Acids Res. 45, 
D750–D757 (2017).

42.	 Maas, S., Kawahara, Y., Tamburro, K. M. & Nishikura, K. 
A-to-I RNA editing and human disease. RNA Biol. 3, 
1–9 (2006).

43.	 Tang, S. J. et al. Cis- and trans-​regulations of pre-​
mRNA splicing by RNA editing enzymes influence 
cancer development. Nat. Commun. 11, 799 (2020).

44.	 Zipeto, M. A., Jiang, Q., Melese, E. & Jamieson, C. H. M. 
RNA rewriting, recoding, and rewiring in human disease. 
Trends Mol. Med. 21, 549–559 (2015).

45.	 Benne, R. The long and the short of it. Nature 380, 
391–392 (1996).

46.	 Tress, M. L., Abascal, F. & Valencia, A. Alternative 
splicing may not be the key to proteome complexity. 
Trends Biochem. Sci. 42, 98–110 (2017).

47.	 Wan, Y. & Larson, D. R. Splicing heterogeneity: 
separating signal from noise. Genome Biol. 19, 86 
(2018).

48.	 Liu, Y., Beyer, A. & Aebersold, R. On the dependency 
of cellular protein levels on mRNA abundance. Cell 
165, 535–550 (2016).  
This study discusses the relationship between 
mRNA abundance and protein levels.

49.	 Dikic, I. Proteasomal and autophagic degradation 
systems. Annu. Rev. Biochem. 86, 193–224 (2017).

50.	 Varshavsky, A. N-degron and C-degron pathways of 
protein degradation. Proc. Natl Acad. Sci. USA 116, 
358–366 (2019).

51.	 Harper, J. W. & Bennett, E. J. Proteome complexity 
and the forces that drive proteome imbalance. Nature 
537, 328–338 (2016).  
This review discusses the regulation and balancing 
of protein synthesis and degradation.

52.	 Zhang, B. et al. Proteogenomic characterization of 
human colon and rectal cancer. Nature 513, 382–387 
(2014).

53.	 Liu, Y. et al. Multi-omic measurements of heterogeneity 
in HeLa cells across laboratories. Nat. Biotechnol. 37, 
314–322 (2019).

54.	 Beyer, A., Hollunder, J., Nasheuer, H.-P. & Wilhelm, T. 
Post-transcriptional expression regulation in the yeast 
Saccharomyces cerevisiae on a genomic scale.  
Mol. Cell. Proteomics 3, 1083–1092 (2004).

55.	 Malmström, J. et al. Proteome-wide cellular protein 
concentrations of the human pathogen Leptospira 
interrogans. Nature 460, 762–765 (2009).

56.	 Milo, R. What is the total number of protein molecules 
per cell volume? A call to rethink some published 
values. BioEssays 35, 1050–1055 (2013).

57.	 Brar, G. A. Beyond the triplet code: context cues 
transform translation. Cell 167, 1681–1692 (2016).

58.	 Kearse, M. G. & Wilusz, J. E. Non-AUG translation:  
a new start for protein synthesis in eukaryotes.  
Genes Dev. 31, 1717–1731 (2017).

www.nature.com/nrm

R e v i e w s

338 | June 2020 | volume 21	



59.	 Loftfield, R. B. & Vanderjagt, D. The frequency of 
errors in protein biosynthesis. Biochem. J. 128, 
1353–1356 (1972).

60.	 Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Jr. 
Protein posttranslational modifications: the chemistry 
of proteome diversifications. Angew. Chem. Int. Ed. 44, 
7342–7372 (2005).

61.	 Wolan, D. W., Zorn, J. A., Gray, D. C. & Wells, J. A. 
Small-molecule activators of a proenzyme. Science 
326, 853–858 (2009).

62.	 Shalini, S., Dorstyn, L., Dawar, S. & Kumar, S. Old, 
new and emerging functions of caspases. Cell Death 
Differ. 22, 526–539 (2015).

63.	 Puente, X. S., Sánchez, L. M., Overall, C. M. & 
López-Otín, C. Human and mouse proteases: a 
comparative genomic approach. Nat. Rev. Genet. 4, 
544–558 (2003).

64.	 Khoury, G. A., Baliban, R. C. & Floudas, C. A. 
Proteome-wide post-translational modification 
statistics: frequency analysis and curation of the 
Swiss-Prot database. Sci. Rep. 1, 90 (2011).

65.	 Aebersold, R. et al. How many human proteoforms are 
there? Nat. Chem. Biol. 14, 206–214 (2018).  
This study presents the current estimation of how 
many proteoforms are expressed in humans.

66.	 Manning, G., Whyte, D. B., Martinez, R., Hunter, T.  
& Sudarsanam, S. The protein kinase complement of 
the human genome. Science 298, 1912–1934 
(2002).

67.	 Blume-Jensen, P. & Hunter, T. Oncogenic kinase 
signalling. Nature 411, 355–365 (2001).

68.	 Wu, Z., Huang, R. & Yuan, L. Crosstalk of intracellular 
post-translational modifications in cancer. Arch. 
Biochem. Biophys. 676, 108138 (2019).

69.	 Kim, M.-S. et al. A draft map of the human proteome. 
Nature 509, 575–581 (2014).

70.	 Wilhelm, M. et al. Mass-spectrometry-based draft  
of the human proteome. Nature 509, 582–587 
(2014).

71.	 Toby, T. K., Fornelli, L. & Kelleher, N. L. Progress in 
top-down proteomics and the analysis of proteoforms. 
Annu. Rev. Anal. Chem. 9, 499–519 (2016).

72.	 Tran, J. C. et al. Mapping intact protein isoforms in 
discovery mode using top-down proteomics. Nature 
480, 254–258 (2011).

73.	 Anderson, L. C. et al. Identification and characterization 
of human proteoforms by top-down LC-21 Tesla FT-ICR 
mass spectrometry. J. Proteome Res. 16, 1087–1096 
(2017).

74.	 Kelemen, O. et al. Function of alternative splicing. 
Gene 514, 1–30 (2013).

75.	 Liu, F., Lössl, P., Scheltema, R., Viner, R.  
& Heck, A. J. R. Optimized fragmentation schemes 
and data analysis strategies for proteome-wide 
cross-link identification. Nat. Commun. 8, 15473 
(2017).

76.	 Götze, M., Iacobucci, C., Ihling, C. H. & Sinz, A.  
A simple cross-linking/mass spectrometry workflow  
for studying system-wide protein interactions.  
Anal. Chem. 91, 10236–10244 (2019).

77.	 Savitski, M. M. et al. Tracking cancer drugs in living 
cells by thermal profiling of the proteome. Science 
346, 1255784 (2014).

78.	 Feng, Y. et al. Global analysis of protein structural 
changes in complex proteomes. Nat. Biotechnol. 32, 
1036–1044 (2014).

79.	 Sluchanko, N. N. & Gusev, N. B. Moonlighting 
chaperone-like activity of the universal regulatory 
14-3-3 proteins. FEBS J. 284, 1279–1295 (2017).

80.	 Pennington, K., Chan, T., Torres, M. & Andersen, J. 
The dynamic and stress-adaptive signaling hub of 
14-3-3: emerging mechanisms of regulation and 
context-dependent protein–protein interactions. 
Oncogene 37, 5587–5604 (2018).

81.	 Huttlin, E. L. et al. The BioPlex network: a systematic 
exploration of the human interactome. Cell 162, 
425–440 (2015).

82.	 Huttlin, E. L. et al. Architecture of the human 
interactome defines protein communities and disease 
networks. Nature 545, 505–509 (2017).  
This study describes the largest human PPI 
network generated by AP-​MS to date.

83.	 Drew, K. et al. Integration of over 9,000 mass 
spectrometry experiments builds a global map of 
human protein complexes. Mol. Syst. Biol. 13, 932 
(2017).

84.	 Ruepp, A. et al. CORUM: the comprehensive resource 
of mammalian protein complexes — 2009. Nucleic 
Acids Res. 38, D497–D501 (2009).

85.	 Giurgiu, M. et al. CORUM: the comprehensive 
resource of mammalian protein complexes — 2019. 
Nucleic Acids Res. 47, D559–D563 (2019).

86.	 Gaulton, A. et al. The Complex Portal — an 
encyclopaedia of macromolecular complexes.  
Nucleic Acids Res. 43, D479–D484 (2014).

87.	 Casanova, E. B. et al. Complex Portal 2018: extended 
content and enhanced visualization tools for 
macromolecular complexes. Nucleic Acids Res. 47, 
D550–D558 (2018).

88.	 Marsh, J. A. & Teichmann, S. A. Structure, dynamics, 
assembly, and evolution of protein complexes.  
Annu. Rev. Biochem. 84, 551–575 (2015).

89.	 Levy, E. D. & Pereira-Leal, J. B. Evolution and 
dynamics of protein interactions and networks.  
Curr. Opin. Struct. Biol. 18, 349–357 (2008).

90.	 Ellis, R. J. Molecular chaperones: assisting assembly in 
addition to folding. Trends Biochem. Sci. 31, 395–401 
(2006).

91.	 Chen, S., Synowsky, S., Tinti, M. & MacKintosh, C.  
The capture of phosphoproteins by 14-3-3 proteins 
mediates actions of insulin. Trends Endocrinol. Metab. 
22, 429–436 (2011).

92.	 Collins, B. C. et al. Quantifying protein interaction 
dynamics by SWATH mass spectrometry: application 
to the 14-3-3 system. Nat. Methods 10, 1246–1253 
(2013).

93.	 Takahashi, J. S. Transcriptional architecture of the 
mammalian circadian clock. Nat. Rev. Genet. 18, 
164–179 (2017).

94.	 Jangi, M. & Sharp, P. A. Building robust 
transcriptomes with master splicing factors. Cell 159, 
487–498 (2014).

95.	 Großbach, J. et al. Integration of transcriptome, 
proteome and phosphoproteome data elucidates the 
genetic control of molecular networks. Preprint at 
https://doi.org/10.1101/703140 (2019).  
This recent study investigates quantitative trait loci 
on different molecular levels and how they mediate 
the effects of genomic variants in multilayered 
molecular networks.

96.	 Williams, E. G. et al. Systems proteomics of liver 
mitochondria function. Science 352, aad0189 
(2016).

97.	 Wu, Y. et al. Multilayered genetic and omics dissection 
of mitochondrial activity in a mouse reference 
population. Cell 158, 1415–1430 (2014).

98.	 Picotti, P. et al. A complete mass-​spectrometric map of 
the yeast proteome applied to quantitative trait 
analysis. Nature 494, 266–270 (2013).

99.	 Hrdlickova, R., Toloue, M. & Tian, B. RNA-seq methods 
for transcriptome analysis. Wiley Interdiscip. Rev. RNA 
8, e1364 (2017).

100.	Levy, S. E. & Myers, R. M. Advancements in 
next-generation sequencing. Annu. Rev. Genomics 
Hum. Genet. 17, 95–115 (2016).

101.	Reuter, J. A., Spacek, D. V. & Snyder, M. P. 
High-throughput sequencing technologies. Mol. Cell 
58, 586–597 (2015).

102.	Goodwin, S., McPherson, J. D. & McCombie, W. R. 
Coming of age: ten years of next-generation 
sequencing technologies. Nat. Rev. Genet. 17, 
333–351 (2016).

103.	Aebersold, R. & Mann, M. Mass spectrometry-based 
proteomics. Nature 422, 198–207 (2003).

104.	Aebersold, R. & Mann, M. Mass-spectrometric 
exploration of proteome structure and function. 
Nature 537, 347–355 (2016).

105.	Schaffer, L. V. et al. Identification and quantification of 
proteoforms by mass spectrometry. Proteomics 19, 
1800361 (2019).  
This recent review discusses the current state of 
proteoform identification and quantification by 
top-​down proteomics.

106.	He, Z., Huang, T., Zhao, C. & Teng, B. in Modern 
Proteomics — Sample Preparation, Analysis and 
Practical Applications (eds Mirzaei, H. & Carrasco, M.) 
237–242 (Springer, 2016).

107.	Han, X., Aslanian, A. & Yates, J. R. Mass spectrometry 
for proteomics. Curr. Opin. Chem. Biol. 12, 483–490 
(2008).

108.	Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. 
Quantitative mass spectrometry in proteomics: critical 
review update from 2007 to the present. Anal. Bioanal. 
Chem. 404, 939–965 (2012).

109.	Gillet, L. C., Leitner, A. & Aebersold, R. Mass 
spectrometry applied to bottom-up proteomics: 
entering the high-throughput era for hypothesis 
testing. Annu. Rev. Anal. Chem. 9, 449–472 (2016).  
This in-​depth review discusses current mass 
spectrometry techniques for bottom-​up 
proteomics.

110.	 Bunt, G. & Wouters, F. S. FRET from single to 
multiplexed signaling events. Biophys. Rev. 9, 
119–129 (2017).

111.	Hu, C. D., Chinenov, Y. & Kerppola, T. K. 
Visualization of interactions among bZIP and Rel 
family proteins in living cells using bimolecular 
fluorescence complementation. Mol. Cell 9, 
789–798 (2002).

112.	Roux, K. J., Kim, D. I., Raida, M. & Burke, B.  
A promiscuous biotin ligase fusion protein identifies 
proximal and interacting proteins in mammalian cells. 
J. Cell Biol. 196, 801–810 (2012).

113.	Martell, J. D. et al. Engineered ascorbate peroxidase 
as a genetically encoded reporter for electron 
microscopy. Nat. Biotechnol. 30, 1143–1148 
(2012).

114.	Becher, I. et al. Pervasive protein thermal stability 
variation during the cell cycle. Cell 173, 1495–1507.
e18 (2018).

115.	 Piazza, I. et al. A map of protein–metabolite interactions 
reveals principles of chemical communication. Cell 172, 
358–372.e23 (2018).

116.	Rolland, T. et al. A proteome-scale map of the  
human interactome network. Cell 159, 1212–1226 
(2014).

117.	Braun, P. et al. An experimentally derived confidence 
score for binary protein–protein interactions.  
Nat. Methods 6, 91–97 (2009).

118.	Hein, M. Y. et al. A human interactome in three 
quantitative dimensions organized by stoichiometries 
and abundances. Cell 163, 712–723 (2015).

119.	Mellacheruvu, D. et al. The CRAPome: a contaminant 
repository for affinity purification–mass spectrometry 
data. Nat. Methods 10, 730–736 (2013).

120.	Trinkle-Mulcahy, L. Recent advances in proximity-based 
labeling methods for interactome mapping. F1000Res. 
8, 135 (2019).

121.	Gingras, A. C., Abe, K. T. & Raught, B. Getting to know 
the neighborhood: using proximity-dependent 
biotinylation to characterize protein complexes and 
map organelles. Curr. Opin. Chem. Biol. 48, 44–54 
(2019).  
This excellent review discusses the current state of 
proximity labelling techniques to analyse protein 
complexes.

122.	Gupta, G. D. et al. A dynamic protein interaction 
landscape of the human centrosome–cilium interface. 
Cell 163, 1484–1499 (2015).

123.	Liu, X. et al. An AP-MS- and BioID-compatible MAC-tag 
enables comprehensive mapping of protein interactions 
and subcellular localizations. Nat. Commun. 9, 1188 
(2018).

124.	Liu, X., Yang, W., Gao, Q. & Regnier, F. Toward 
chromatographic analysis of interacting protein 
networks. J. Chromatogr. A 1178, 24–32 (2008).

125.	Dong, M. et al. A “tagless” strategy for identification  
of stable protein complexes genome-wide by 
multidimensional orthogonal chromatographic 
separation and iTRAQ reagent tracking. J. Proteome 
Res. 7, 1836–1849 (2008).

126.	Kristensen, A. R., Gsponer, J. & Foster, L. J.  
A high-throughput approach for measuring temporal 
changes in the interactome. Nat. Methods 9, 
907–909 (2012).

127.	Kristensen, A. R. & Foster, L. J. in Stable Isotope 
Labeling by Amino Acids in Cell Culture (SILAC)  
(ed. Warscheid, B.) 263–270 (Humana Press,  
2014).

128.	Havugimana, P. C. et al. A census of human soluble 
protein complexes. Cell 150, 1068–1081 (2012).

129.	Wan, C. et al. Panorama of ancient metazoan 
macromolecular complexes. Nature 525, 339–344 
(2015).

130.	Salas, D., Stacey, R. G., Akinlaja, M. & Foster, L. J. 
Next-​generation interactomics: considerations  
for the use of co-​elution to measure protein interaction 
networks. Mol. Cell. Proteomics 19, 1–10 (2020).  
This recent review discusses the techniques, 
limitations and possibilities of co-​fractionation 
mass spectrometry approaches for PPI and protein 
complex mapping.

131.	Scott, N. E., Brown, L. M., Kristensen, A. R.  
& Foster, L. J. Development of a computational 
framework for the analysis of protein correlation 
profiling and spatial proteomics experiments.  
J. Proteomics 118, 112–129 (2015).

132.	Hu, L. Z. et al. EPIC: software toolkit for elution 
profile-based inference of protein complexes.  
Nat. Methods 16, 737–742 (2019).

133.	Heusel, M. et al. Complex-centric proteome profiling 
by SEC-SWATH-MS. Mol. Syst. Biol. 15, e8438 
(2019).

134.	Heusel, M. et al. A global screen for assembly state 
changes of the mitotic proteome by SEC-SWATH-MS. 
Cell Syst. 10, 133–155.e6 (2020).

nature Reviews | Molecular Cell Biology

R e v i e w s

	  volume 21 | June 2020 | 339

https://doi.org/10.1101/703140


135.	Varjosalo, M. et al. The protein interaction landscape 
of the human CMGC kinase group. Cell Rep. 3, 
1306–1320 (2013).

136.	Scott, N. E. et al. Interactome disassembly during 
apoptosis occurs independent of caspase cleavage. 
Mol. Syst. Biol. 13, 906 (2017).

137.	Ni, J. Z. et al. Ultraconserved elements are associated 
with homeostatic control of splicing regulators by 
alternative splicing and nonsense-mediated decay. 
Genes Dev. 21, 708–718 (2007).

Acknowledgements
The authors thank all members of the Aebersold laboratory 
who provided input to the content and presentation of the 
Review. The authors further thank B. Collins, L. Sieverling,  
J. Čuklina, C. Dörig, U. Kutay and M. Claassen for reading 

and providing feedback on different parts of the Review. R.A. 
acknowledges funding support from the SystemsX.ch projects 
PhosphoNetX PPM and TbX, as well as from the European 
Research Council (ERC-20140AdG 670821). I.B. acknowl-
edges funding support from the Swiss National Science 
Foundation (31003A_166435).

Author contributions
I.B. researched data for the review. I.B. and R.A. wrote and 
edited the manuscript before submission.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Molecular Cell Biology thanks Ivan Marazzi 
and the other, anonymous, reviewers for their contribution to 
the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

Supplementary information
Supplementary information is available for this paper at 
https://doi.org/10.1038/s41580-020-0231-2.

Related links
Complex Portal: https://www.ebi.ac.uk/complexportal/home
CORUM: https://mips.helmholtz-​muenchen.de/corum/
GeNCODe database: https://www.gencodegenes.org/
human/stats.html

 
© Springer Nature Limited 2020

www.nature.com/nrm

R e v i e w s

340 | June 2020 | volume 21	

https://doi.org/10.1038/s41580-020-0231-2
https://www.ebi.ac.uk/complexportal/home
https://mips.helmholtz-muenchen.de/corum/
https://www.gencodegenes.org/human/stats.html
https://www.gencodegenes.org/human/stats.html

	Proteomic and interactomic insights into the molecular basis of cell functional diversity

	The transcriptome directs the proteome

	Modulating mRNA expression levels. 
	Regulating the coding diversity of the transcriptome. 

	The diversity of the proteome

	Modulating protein expression levels. 
	Modulating diversity at the protein level. 

	The dynamic interactome

	Overview of the cellular interactome. 
	Factors influencing diversity at the interactome level. 

	Crosstalk between molecular layers

	Methods for generating ‘omics’ data

	Mass spectrometry-​based proteomics. 
	Complementation assays and mass spectrometry-​based interactomics. 
	Proteoform-​specific analysis of protein interactions and assemblies. 

	Conclusions and perspectives

	Acknowledgements

	Fig. 1 The generation of functional diversity at different molecular levels.
	Fig. 2 Tissue-specific promoter usage and alternative splicing lead to different pyruvate kinase isoforms.
	Fig. 3 Proteome balance and post-translational modification crosstalk.
	Fig. 4 Protein assembly dynamics and proteoform-specific complex formation.
	Fig. 5 Cis-regulatory and trans-regulatory feedback loops modulate alternative splicing.
	Fig. 6 Strategies for generating proteome-wide interactome maps.
	Fig. 7 Proteoform-specific assembly characteristics of PKM.




