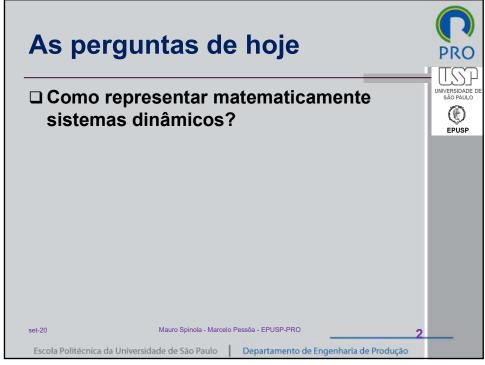
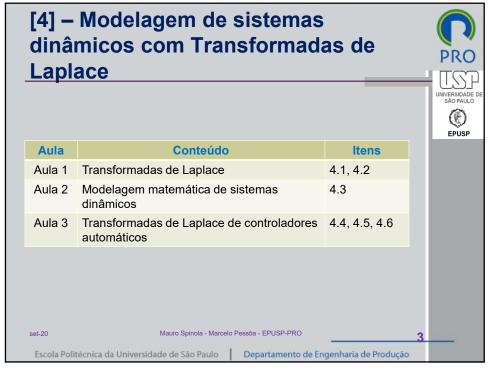
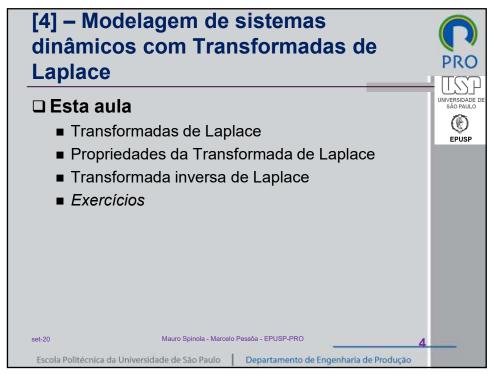


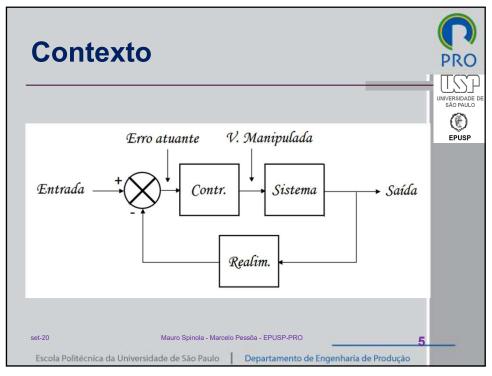
1



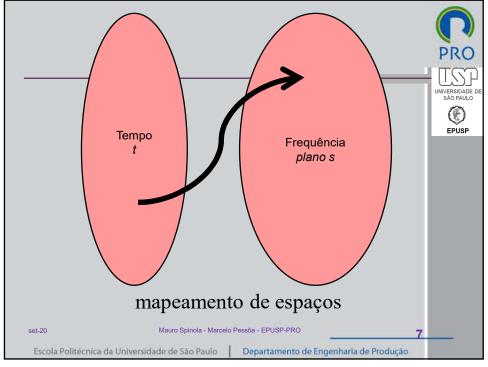


3

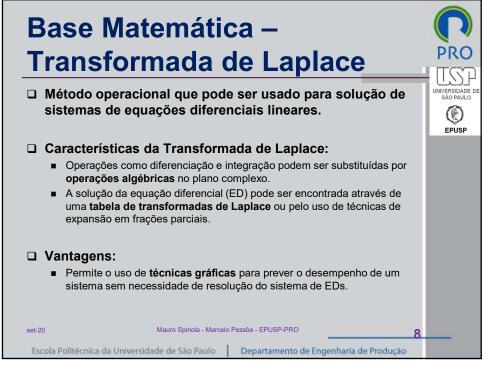


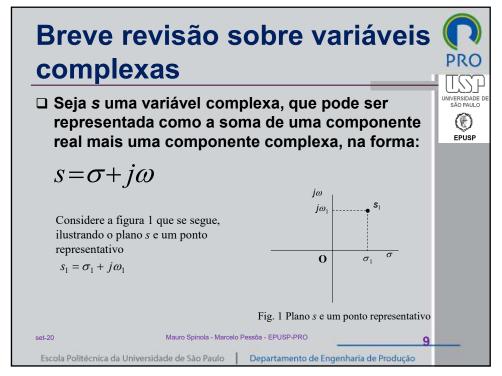


5

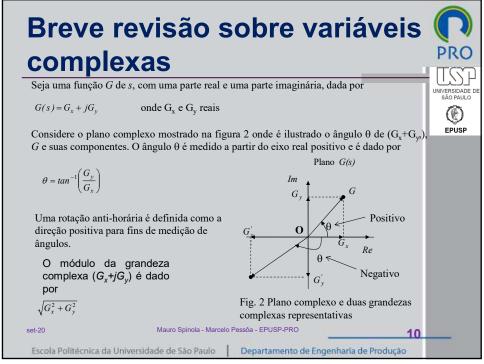


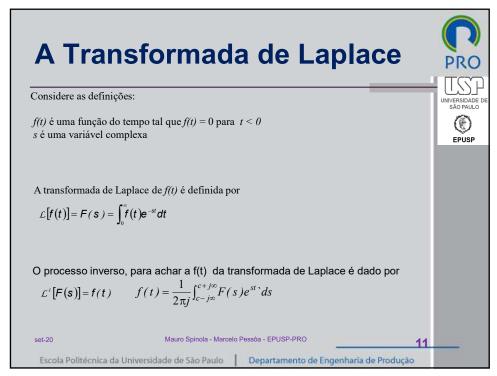
7



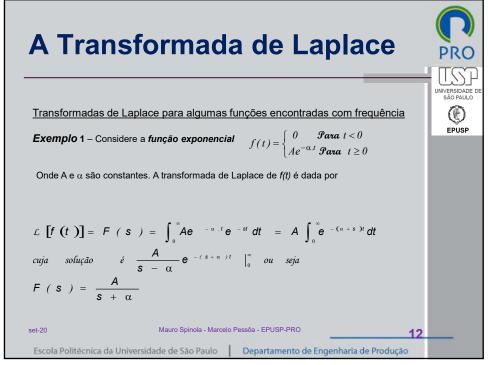


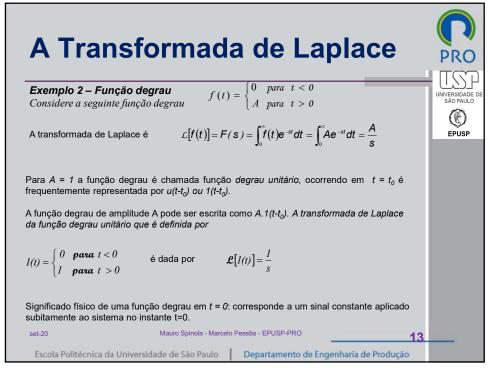
9



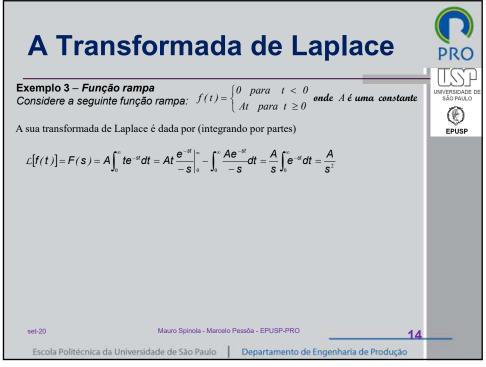


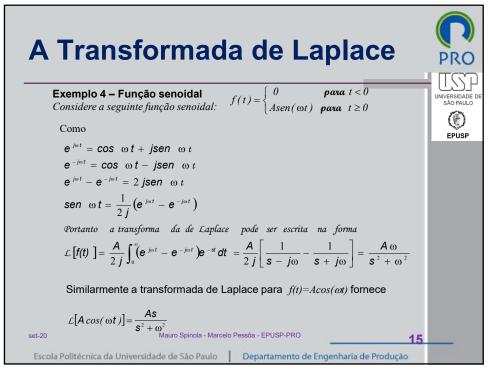
11





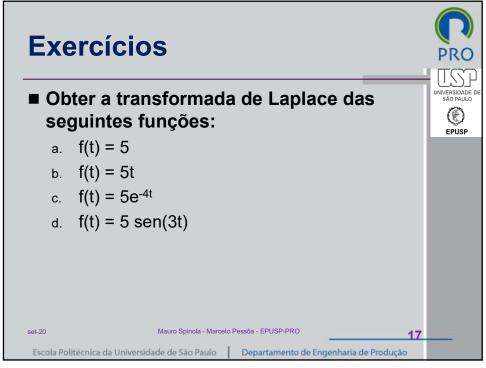
13



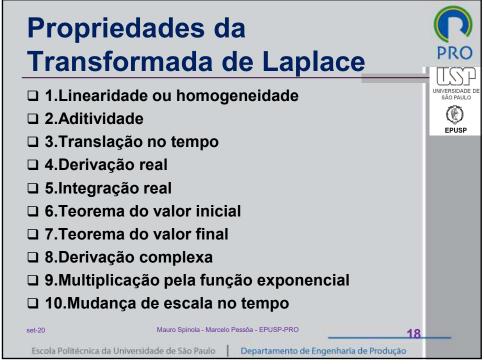


15

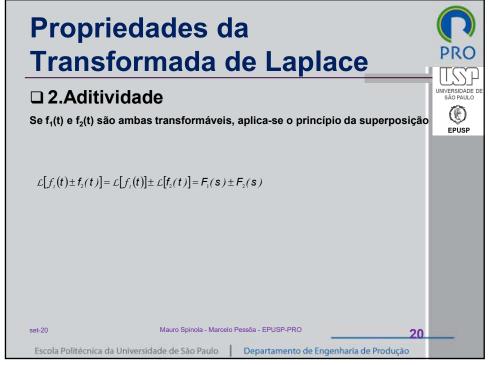
		Função f(t)	Transformada de Laplace $F(s) = \mathcal{L}[f(t)]$
	1.	δ(t)	1
Quadro de		Impulso unitário (Delta de Dirac)	
transformadas de	2.	1(t) ou u(t)	$\frac{1}{s}$
		Degrau unitário	s
Laplace	3.	t	$\frac{1}{s^2}$
		Rampa unitária	s^2
	4.	t ⁿ	$\frac{n!}{s^{n+1}}$
		(n inteiro positivo)	S ⁿ⁺¹
	5.	e ^{-at}	_1_
		Exponencial	s+a
	6.	te ^{-at}	1
			$\overline{(s+a)^2}$
	7.	t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}}$
	8.	sen ωt	$\frac{\omega}{s^2 + \omega^2}$
	9.	cos ωt	$\frac{s}{s^2 + \omega^2}$
	10.	e ^{-at} sen ωt	$\frac{s}{(s+a)^2+\omega^2}$
	11.	e ^{-at} cos ωt	$\frac{s+a}{(s+a)^2+\omega^2}$
	12.	t sen ωt	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$
	13.	t cos ωt	$s^2 - \omega^2$
set-20 Mauro			$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
Escola Politécnica da Universidade de			

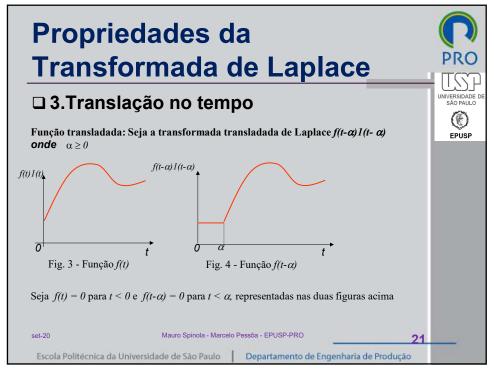


17

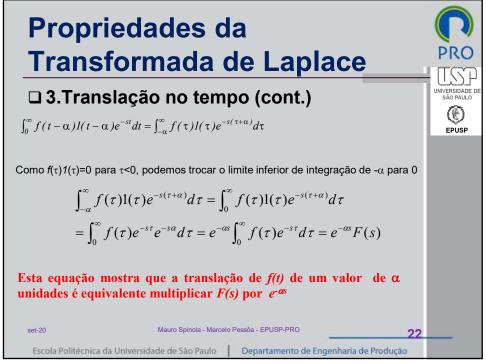


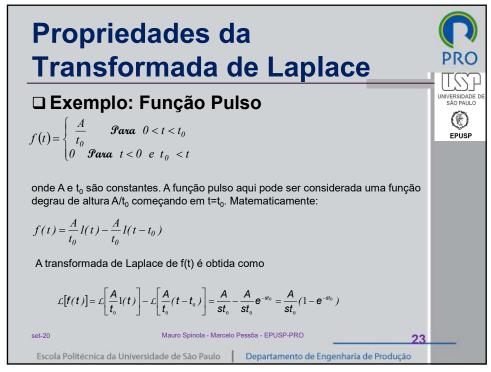
19



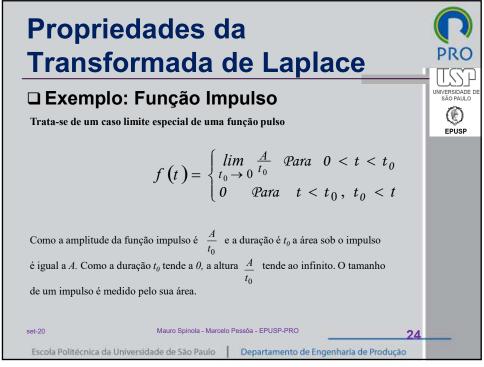


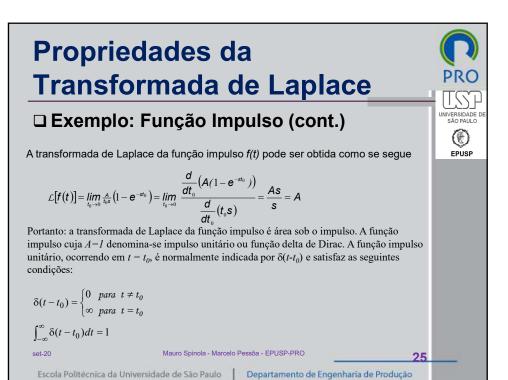
21



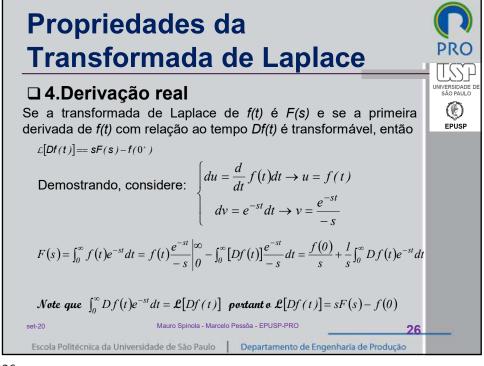


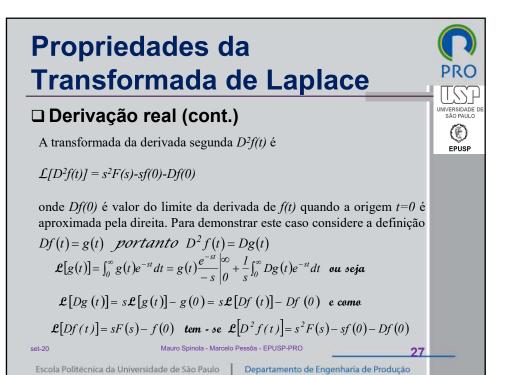
23



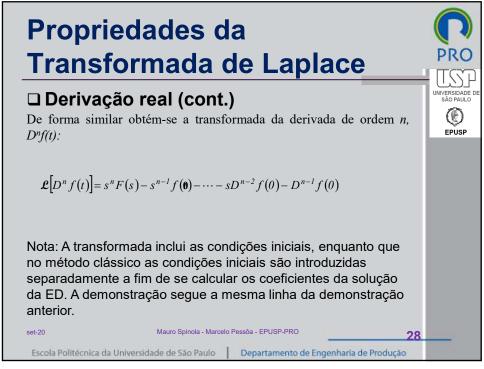


25





27



set-20 PRO3252

(1)

□ 5.Integração real

Se a transformada de Laplace de f(t) é F(s), sua integral é transformável:

$$\mathcal{L}\left[D^{-l}f(t)\right] = \frac{F(s)}{s} + \frac{D^{-l}f(0^+)}{s}$$
 O termo $D^{-l}f(0^+)$ é igual ao valor da integral na origem, aproximada pela direita

Demonstração:

$$du = \int \frac{d}{dt} f(t)dt \to \mathbf{u} = f(t); dv = e^{-st} dt \to v = \frac{e^{-st}}{-s}$$

$$\mathcal{L}[D^{-1} f(t)] = \int_0^\infty \left[D^{-1} f(t) \right] e^{-st} dt = \left[D^{-1} f(t) \right] \frac{e^{-st}}{-s} \Big|_0^\infty - \int_0^\infty f(t) \frac{e^{-st}}{-s} dt = \frac{1}{s} D^{-1} f(t) \Big|_{t=0}^t + \frac{1}{s} \int_0^\infty f(t) e^{-st} dt = \frac{F(s)}{s} + \frac{D^{-1} f(0)}{s}$$

Escola Politécnica da Universidade de São Paulo | Departamento de Engenharia de Produção

29

Propriedades da Transformada de Laplace

(1) EPUSP

□ Integração real (cont.)

A transformada da integral envolvendo derivada de segunda ordem é

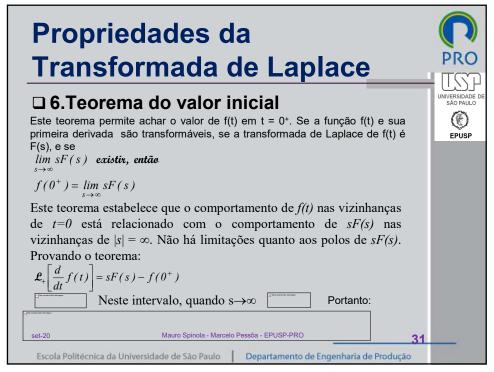
$$\mathcal{L}[D^{-2}f(t)] = \frac{F(s)}{s^2} + \frac{D^{-1}f(0)}{s^2} + \frac{D^{-2}f(0)}{s}$$

Para a integral envolvendo derivadas de ordem n

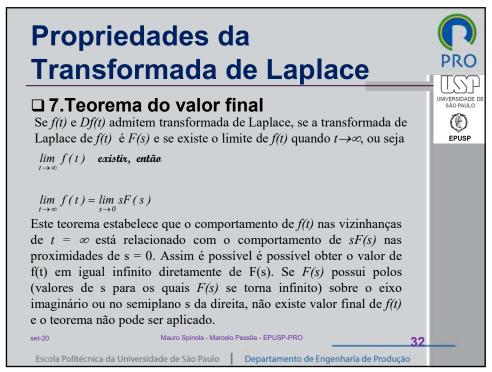
$$\mathcal{L}\left[D^{-n}f(t)\right] = \frac{F(s)}{s^n} + \frac{D^{-1}f(0)}{s^n} + \dots + \frac{D^{-n}f(0)}{s}$$

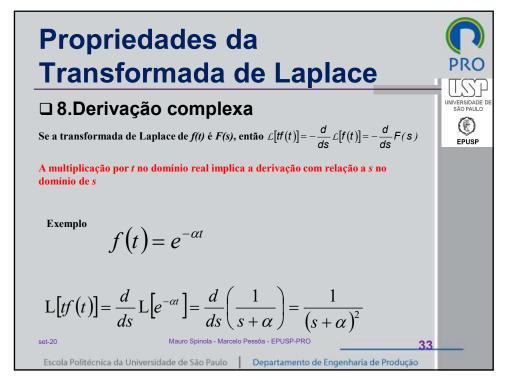
Mauro Spinola - Marcelo Pessôa - FPLISP-PRO

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Produção

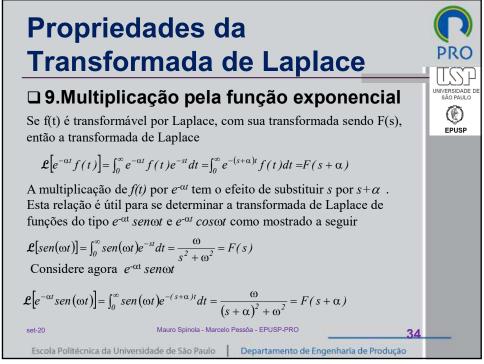


31





33



(1)

Considere o exemplo

 $f(t) = e^{-t}$ com a mudança de escala $f(\frac{t}{5}) = e^{-0.2t}$

 $\mathcal{L}[f(t)] = \mathcal{L}[e^{-t}] = F(s) = \frac{1}{s+1}$ Portanto

 $\mathcal{L}\left[f\left(\frac{t}{5}\right)\right] = \mathcal{L}\left[e^{-0.2t}\right] = 5F(5s) = \frac{5}{5s+1}$ Note: $\mathcal{L}\left[f\left(\frac{t}{\alpha}\right)\right] = \alpha F(\alpha s)$

Este resultado pode ser verificado fazendo-se a transformada de $e^{-0.2t}$

 $\mathcal{L}\left[e^{-0.2t}\right] = \frac{1}{s+0.2} = \frac{5}{5s+1}$

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Produção

Transformada inversa de Laplace

O processo de passar de uma expressão com variáveis complexas para o domínio do tempo é chamada transformação inversa e é denotada por \mathcal{L}^{-1} . Matematicamente

$$\mathcal{L}^{-1}[F(s)] = f(t)$$
 , $t > 0$

Matematicamente f(t) é determinada a partir de F(s) pela expressão

$$f(t) = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$$

Onde c é a abscissa de convergência, real, escolhida com valor real maior do que as partes reais de todos os pontos singulares de F(s). A integração da equação acima é complicada. Se a F(s) estiver disponível numa tabela de transformadas é fácil determinar f(t). Caso contrário temse que usar métodos de expansão para achar f(t)

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Produção

37

Transformada inversa de Laplace

Método de expansão em frações parciais para determinar transformada inversa de Laplace. Separando a F(s) em componentes

$$F(s) = F_1(s) + F_2(s) + \dots + F_n(s)$$

Se as F_i(s) são conhecidas então

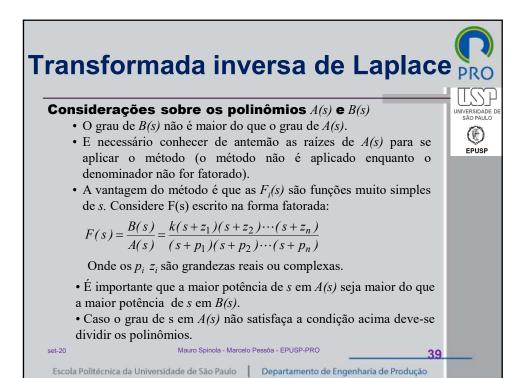
$$\mathcal{L}[F(s)] = \mathcal{L}^{1}[F_{1}(s)] + \mathcal{L}^{1}[F_{2}(s)] + \dots + \mathcal{L}^{n}[F_{n}(s)] = f_{1}(t) + f_{2}(t) + \dots + f_{n}(t)$$

onde as f_i são transformadas inversas das $F_i(s)$. Para problemas em controle F(s) é frequentemente representada na forma:

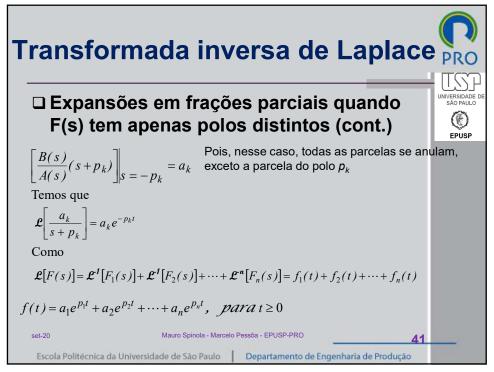
$$F(s) = \frac{B(s)}{A(s)}$$

Mauro Spinola - Marcelo Pessôa - EPUSP-PRO

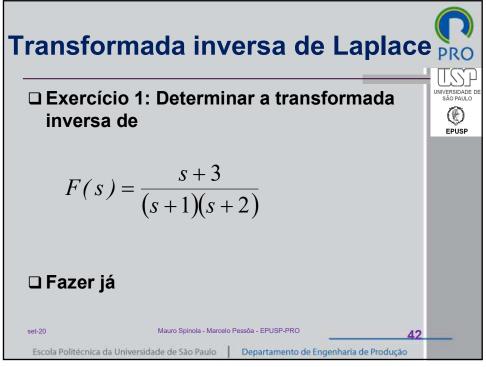
Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Produção

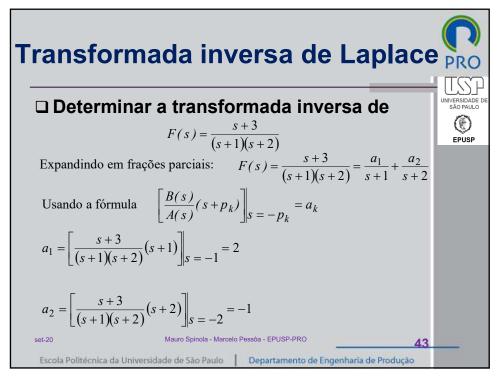




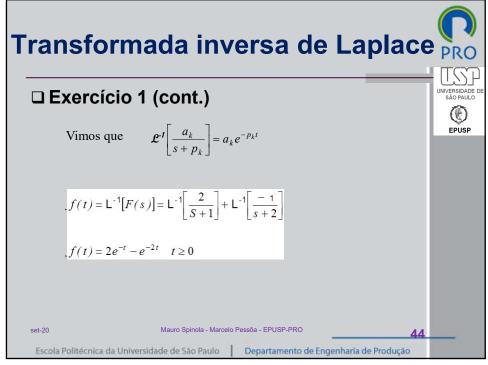


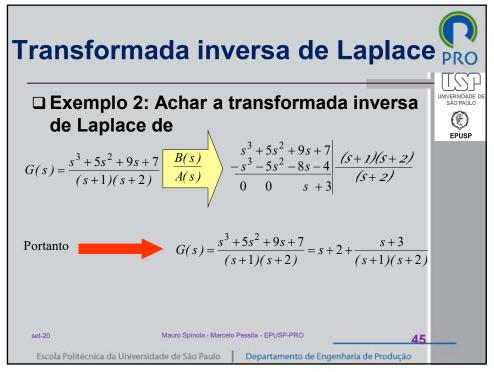
41





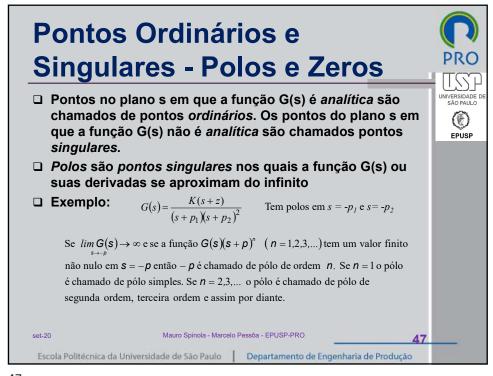
43



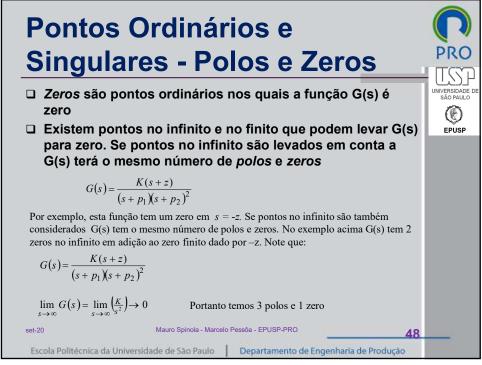


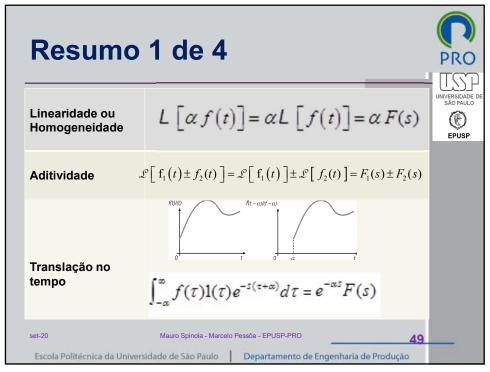
45



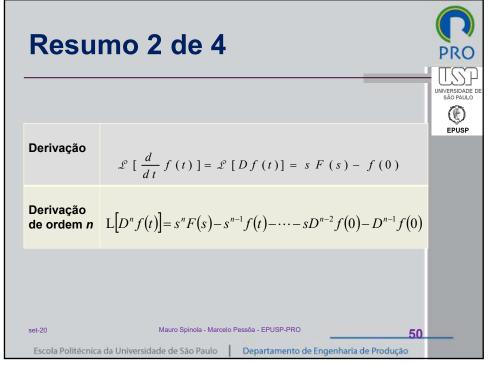


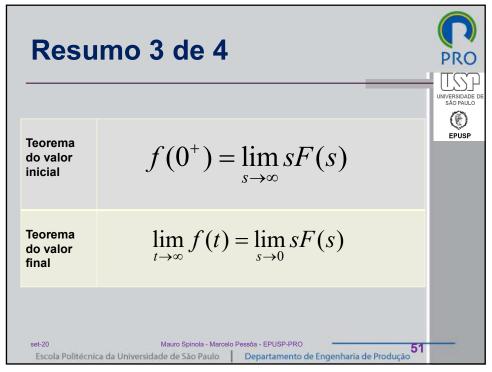
47





49





51

