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Abstract

While virtualization has supported many engineering sectors, it remains underex-

plored in agroindustrial engineering. Accordingly, hands-on activities in numerical

methods have been proposed to food and biosystems engineering students at a

didactic computational laboratory. As those learning-by-doing tasks refer to

agroindustrial problems, integration with forthcoming disciplines has been achieved

and pedagogical ethos has indeed been promoted.
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1 | INTRODUCTION

Innovative design, scale-up and optimization can be rapidly
achieved via modeling and simulation inasmuch as different
design parameters and exploratory scenarios can be numeri-
cally tested towards viability [4]. Virtualization is helpful not
only to save material, energy and human resources in
research, development, and innovation (RD&I) but also when
obtaining experimental or real-operation data becomes
awkward or even unfeasible [3].

Agroindustrial engineering applications may integrate
fluid flow and transport phenomena, whose model equations
are relatively complex [21]. As analytical solutions are solely
achievable in idealized scenarios, comprehensive knowledge
of agri-food-bioprocesses invokes numerical methods [20].
Initially used for academic purposes, computational modeling
of fluid flow, and transport phenomena (i.e., computational
fluid dynamics) has experienced notable evolution and has
become strategic to RD&I in food processing [18].

Yet, “the food industry (that represents more than 5% of
the global GDP) is still lagging to utilize the wide spectrum
potential offered by virtualization as an engineering design
tool,” as quoted from [10]. Modeling and virtualization have

been identified as new challenges and opportunities for food
engineers in the 21st century [16] and such a rationale can be
expanded to the agroindustrial sector as a whole.

Due to unique inherent phenomena [2], all-inclusive
computational modeling of food and bioprocesses may
require tailor-made routines possibly absent in general-
purpose software. For that reason, specific code lines must be
externally programmed by (perhaps non-trained) end-users.
Also, license and technical support costs of commercial-off-
the-shelf software can be prohibitive for non-academic users.
Aforesaid hurdles are prone to jeopardize virtualization-
supported RD&I in agroindustrial engineering, particularly in
developing countries.

Engineers must be suitably qualified and versatile to
tacklemultidisciplinary problems [15]. Hence, the point is not
whether agroindustrial engineers should or should not come
to terms with virtualization, but rather to what extent they
should grasp virtualization concepts. In competitive scenar-
ios, engineers (regardless of their specialization) must be not
only aware of computational modeling but also minimally
skilled with respect to its use to support RD&I.

This paper addresses hands-on practices in face-to-face
lectures of numerical methods to undergraduate students in
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food and biosystems engineering programs. By aiming at
excellence in teaching and learning, those learning-by-doing
activities have been proposed and accomplished at a didactic
computational laboratory. Furthermore, they refer to prob-
lems found in agroindustrial engineering curricula, thus
linking computational methods to real-world problems.

2 | NUMERICAL METHODS TO
AGROINDUSTRIAL ENGINEERING
STUDENTS: A CASE STUDY IN
BRAZIL

Settled at an experimental farm 210 km from the main
campus, Pirassununga campus of the University of São Paulo
(USP, Brazil) hosts two undergraduate STEM programs,
namely Food Engineering (evening shift since 2001 and day
shift since 2004) and Biosystems Engineering (day shift since
2009). In those programs, authors teach Numerical Methods
and Applied Computational Methods with the help of MS
Power Point (besides the chalkboard) in face-to-face lectures.
In both disciplines MS Excel is chosen as the computational
environment as Matlab, Maple, and Mathematica are not
widespread outside the academic environment in Brazil.

While Numerical Methods is a core compulsory course,
Applied Computational Methods is an elective course in the
Biosystems Engineering program (but Food Engineering
students may enroll if there are vacancies). A further
distinction between them refers to their goals. Numerical
Methods introduces numerical analysis to solve rather
simplified engineering problems whereas Applied Computa-
tional Methods advances students’ expertise towards the
numerical solution of more complex problems using more
advanced MS Excel tools (e.g., macros and VBA codes).

In order to foster didactic ethos linking computational
methods and engineering problems, learning-by-doing activ-
ities have been proposed to students in face-to-face lectures of
aforesaid disciplines. The next section describes hands-on
practices concerning Numerical Methods while those related
to Applied Computational Methods are left for future
publication.

At USP—Pirassununga campus, Numerical Methods is
taught at a computational didactic laboratorywith capacity for
60 students. A video projector is connected to lecturer's
computer so that students can follow the implementation of
the numerical method (besides lecture slides and chalkboard
notes). At their computers, students can implement the
numerical method themselves and check their results. Figure
1 shows a picture of the didactic computational laboratory.

Each face-to-face lecture begins with a problem to be
numerically solved (hereafter referred to as opening
problem), which recalls the agroindustrial vocation of the
campus. Either previous or upcoming disciplines dealing with

the opening problem are then identified in the engineering
curriculum. The idea is to motivate students to learn the
numerical method being addressed by implementing it
themselves as associated to a real-world problem in the
agroindustrial scope.

After proposing the opening problem, the numerical
solution method is first taught on general basis, for example,
by numerically solving a mathematical problem in terms of
functions f of variables x and y. This is when the theory of
calculations and proof of methods are presented. Preference is
given to problems with analytical solutions, which are
initially omitted. Only after students have successfully
implemented the numerical method, the analytical solution
(if any) is provided for comparison purposes. Accordingly,
students can check their numerical outcomes while acquiring
confidence and/or clarifying eventual doubts. Students are
then recalled that real-world problems may not be simple
enough to allow analytical solutions being deduced.

At this stage of the lecture, students have learned the
numerical solution method, being able to apply it to real-
world problems. Attention then returns to the opening
problem and students are challenged to numerically solve it
at their computers, that is, the lecturer does not solve (i.e.,
display) it at his computer. However, students are encouraged
to help each other, for example, by comparing their numerical
answers, particularly when analytical solutions are unfeasible
or not provided.

3 | NUMERICAL METHODS IN FOOD
AND BIOSYSTEMS ENGINEERING
PROGRAMS: HANDS-ON PRACTICES
AND CROSS-DISCIPLINARY
INTEGRATION

This section describes the opening problems proposed in face-
to-face lectures of Numerical Methods, together with the
related numerical solution method and its basic implementa-
tion in MS Excel cells. Detailed explanation of how each
numerical method can be implemented is beyond the goals of

FIGURE 1 Didactic computational laboratory for face-to-face
lectures of Numerical Methods
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this paper and a compromise has been attempted between
comprehensiveness and conciseness. As subsections are
independent, they can be skipped in line with reader's interest.

Opening problems are listed in Table 1 according to their
order as presented throughout the course. Table 1 equally lists
the disciplines in the engineering program dealing with the
opening problem (or a similar one). Most of them are
forthcoming disciplines and they are identified in the lectures
of Numerical Methods for cross-disciplinary integration
purposes.

3.1 | Flow friction factor from Colebrook's
equation

Darcy friction factor f is a dimensionless parameter to assess
linear head losses in turbulent flows in pipes and it can be
obtained from Colebrook's equation [5]:

1ffiffiffi
f

p ¼ �2log
εrel
3:7

þ 2:51
Re

ffiffiffi
f

p
� �

ð1Þ

where εrel is pipe relative roughness and Re is Reynolds
number (both are dimensionless as well). Students are asked
to numerically solve Equaton (1) for εrel = 0.0017 and
Re = 105,000, which is a scenario with no printed lines in
the graphical representation of Equation (1) (i.e., Moody's
diagram).

Students are free to implement either fixed-point or secant
methods [9]. Newton-Raphson (i.e., tangent) method is a less
suitable choice as it involves a cumbersome derivative

(students do agree!). The change of variables x ¼ 1=
ffiffiffi
f

p
is

suggested as a hint so that Equation (1) becomes:

x ¼ �2log
εrel
3:7

þ 2:51
Re

x
� �

ð2Þ

Bearing in mind Equation (2), fixed-point method is quite
straightforward:

xiþ1 ¼ gðxiÞ, gðxÞ ¼ �2log
εrel
3:7

þ 2:51
Re

x
� �

ð3Þ

whereas the secant method becomes:

xiþ1 ¼ xi � ϕðxiÞ xi � xi�1

ϕðxiÞ � ϕðxi�1Þ , ϕðxÞ ¼ xþ 2log
εrel
3:7

þ 2:51
Re

x
� �

ð4Þ

In previous equations, subscripts i+ 1, i, and i− 1 refer to
the iterative level.

With the help of renamed cells “erel37” and “Re_251,”
respectively containing εrel/3.7 and 2.51/Re values, Table 2
exemplifies key cells to implement those two numerical
methods in MS Excel. Those formulas must be replicated in
subsequent cells in rows below and initial guesses (i.e., x0
and additionally x1 in secant method) are not shown for
brevity.

For the proposed pair εrel = 0.0017 and Re = 105,000, the
friction factor results as f= 0.0242 regardless of the numerical
solution method. The number of iterations depends on initial

TABLE 1 Opening problems proposed in face-to-face lectures of Numerical Methods, corresponding numerical solution methods, and disciplines
dealing with them

Opening problem
Numerical solution
method(s)

Discipline in food engineering
program

Discipline in biosystems
engineering program

Flow friction factor from
Colebrook's equation

Fixed-point, Newton-Raphson
or secant methods

Transport Phenomena 1 Hydraulics

Direct currents in an electric
network

Jacobi or Gauss-Seidel
methods for linear systems

Electro-technical Engineering Electrical Circuits

Rheological parameters of a
non-Newtonian fluid

Least squares method
(weighted by uncertainties)

Unit Operations 1 Transport Phenomena

Non-tabulated entries in a
saturated steam table

Lagrange or Newton
interpolating polynomials

Thermodynamics, Refrigeration &
Cold Chain Operations

Thermodynamics, Technology of
Grain Storage & Drying

Extraction yield in a
continuous-flow process

Numerical integration Unit Operations 3 Biofuels

Temperature-time profile of
food under cooling

Runge-Kutta method (1st
order O.D.E.)

Transport Phenomena 2 Transport Phenomena

Damped harmonic oscillator Runge-Kutta-Nyström method
(2nd order O.D.E.)

General Experimental Physics 2 General Experimental Physics 2

Steady-state 1-D heat
conduction

Finite differences method Transport Phenomena 2 Transport Phenomena
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guesses and desired accuracy. For instance, by starting from
x0 = 10 (f= 0.0100) in fixed-point method and from x0 = 10
and x1 = 11 (f= 0.0083) in secant method, converged solution
(x= 6.4250) is achieved after four and two iterations,
respectively.

3.2 | Direct currents in an electric network

In this problem, students must numerically assess the
electric currents i1, i2, and i3 in a DC network as shown in
Figure 2. By applying Kirchhoff's current and voltage laws
[7], one obtains the following system of linear algebraic
equations:

i1 � i2 þ i3 ¼ 0

R1i1 � R3i3 ¼ ε1
� R2i2 � R3i3 ¼ ε2

ð5Þ

Students are then asked to solve Equation (5) for
R1 = 1 kΩ, R2 = 2 kΩ, R3 = 3 kΩ, ε1 = 10 V and ε2 = 13 V,
being free to choose between Jacobi or Gauss-Seidel
methods [9].

The coefficient matrix must be diagonally dominant so as
to assure numerical convergence of either aforesaid method.
In view of values assigned to R1, R2, R3, ε1, and ε2, Equation
(5) must be rearranged so that Jacobi or Gauss-Seidel should
be implemented respectively as:

i jþ1ð Þ
1 ¼ i jð Þ2 � i jð Þ3

i jþ1ð Þ
2 ¼ ε2 þ R3i

jð Þ
3

� �
= �R2ð Þ

i jþ1ð Þ
3 ¼ ε1 � R1i

jð Þ
1

� �
= �R3ð Þ

or

i jþ1ð Þ
1 ¼ i jð Þ2 � i jð Þ3

i jþ1ð Þ
2 ¼ ε2 þ R3i

jð Þ
3

� �
= �R2ð Þ

i jþ1ð Þ
3 ¼ ε1 � R1i

jþ1ð Þ
1

� �
= �R3ð Þ

ð6Þ

where superscripts (j+ 1);1;and (j) refer to iterative levels,
that is, they are not powers.

By using renamed cells “R1.,” “R2.,” “R3.,” “emf1.,”
and “emf2.,” respectively for R1, R2, R3, ε1, and ε2, Table 3
exemplifies key cells to implement Jacobi and Gauss-Seidel
methods in MS Excel. Those are formulas to be replicated in
subsequent cells and initial guesses (i.e., i1

(0), i2
(0), i3

(0)) are
omitted for brevity. For proposed R1, R2, R3, ε1, and ε2
values, converged values are i1 = 1.000 mA,
i2 =−2.000 mA and i3 =−3.000 mA, regardless of the
numerical solution method.

Implementation of those methods differs only with
respect to equation for current i3

(j+1) as one can use
recently-assessed value i1

(j+1) in Gauss-Seidel method. This
tiny difference drastically reduces the number of iterations for
convergence from 70 in Jacobi method down to 30 iterations
in Gauss-Seidel method, both starting from
i1
(0) = i2

(0) = i3
(0) = 1.000 mA. Conversely, those two meth-

ods numerically diverge if Equation (5) is not rearranged as
Equation (6). Divergence is indeed observed (by careless
students!) when Equation (5) is rearranged and numerically
implemented as:

iðjþ1Þ
1 ¼ ðε1 þ R3i

ðjÞ
3 Þ=R1

iðjþ1Þ
2 ¼ ðε2 þ R3i

ðjÞ
3 Þ=ð�R2Þ

iðjþ1Þ
3 ¼ iðjÞ2 � iðjÞ1

or

iðjþ1Þ
1 ¼ ðε1 þ R3i

ðjÞ
3 Þ=ðR1Þ

iðjþ1Þ
2 ¼ ðε2 þ R3i

ðjÞ
3 Þ=ð�R2Þ

iðjþ1Þ
3 ¼ iðjþ1Þ

2 � iðjþ1Þ
1

ð7Þ

TABLE 2 Example of MS Excel cells to implement fixed-point and secant methods to obtain flow friction factor from Colebrook's equation

Numerical method Value Cell Expression in MS Excel (as seen in formula bar)

Fixed-point g(xi) B5 =−2*LOG10(erel37 + Re_251*A5)

xi+1 A6 = B5

Secant ϕ(xi) K6 = J6 + 2*LOG10(erel37 + Re_251*J6)

xi+1 J7 = J6−K6*(J6− J5)/(K6−K5)

FIGURE 2 DC network with electric currents i1, i2, and i3 to be
numerically assessed
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3.3 | Rheological parameters of a
non-Newtonian fluid

Many food fluids are non-Newtonian [17]. For instance,
tomato paste is a Bingham plastic fluid so that the following
rheological relation holds between shear stress τ and shear
rate _γ:

τ ¼ τ0 þ μP _γ ð8Þ

where τ0 and μp are respectively referred to as yield stress and
plastic viscosity [17]. By applying least squares method [9],
students are asked to assess τ0 and μp from data comprising n
triplets ð_γi,τi,σiÞ, where σi is the experimental uncertainty
transferred to the dependent variable τi [8].

Parameters τ0 and μp respectively refer to y-intercept and
slope in Equation (8). In order to apply least squares method
(weighted by the uncertainties), the following summations are
needed:

S1 ¼ ∑
n

i¼1

1
σ2i

, Sx ¼ ∑
n

i¼1

_γi
σ2i

, Sy ¼ ∑
n

i¼1

τi
σ2i

,

Sxx ¼ ∑
n

i¼1

_γ2i
σ2i

, Sxy ¼ ∑
n

i¼1

_γiτi
σ2i

ð9Þ

which are the elements of the following matrices:

A ¼ S1 Sx
Sx Sxx

" #
, A0 ¼

Sy Sx
Sxy Sxx

" #
, A1 ¼

S1 Sy
Sx Sxy

" #

ð10Þ

Together with summations S1 and Sxx, determinants of
previous matrices are used to numerically assess rheological
parameters τ0 and μp as well as their uncertainties στ0 and σμp
according to:

τ0 ¼ detðA0Þ
detðAÞ , στ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

detðAÞ

s
, μp ¼

detðA1Þ
detðAÞ ,

σμp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S1

detðAÞ

s
ð11Þ

Table 4 shows the data provided to students and Table 5
exemplifies key cells to implement least squares method in

MSExcel based on Equation (9–11). In this example, raw data
ð_γi,τi,σiÞ occupy columns A, B, and C whereas summands for
Equation (9) are assessed in columns D to H. Rheological
parameters are assessed as τ0 = 41.1 ± 0.3 Pa and
μp = 10.04 ± 0.04 Pa · s (MS Excel trend line parameters
are τ0 = 41.815 Pa and μp = 9.932 Pa · s).

Before tackling this problem, a general linear equation
y= a0 + a1x is numerically fitted against triplets ðxi,yi,σiÞ
with different uncertainties σi. At this moment of the lecture,
built-in functions SUM and MDETERM are explained so as
to implement summations and determinants. It is also shown
that y-intercept a0 and slope a1 are the very same equation
parameters obtained via MS Excel trend line if (and only if)
all uncertainties σi are rigorously the same in the data set.

3.4 | Non-tabulated entries in a saturated
steam table

In this problem students must evaluate thermodynamic
properties of saturated steam [19] for a non-tabulated
saturation pressure entry. A steam table extract is provided
(Table 6) and students may use Lagrange interpolation or, as

TABLE 3 Example of MS Excel cells to implement Jacobi and Gauss-Seidel methods to assess electric currents in a given DC network

Current Cell Expression for Jacobi method Expression for Gauss-Seidel method

i1
(j+1) A6 = B5−C5 = B5−C5

i2
(j+1) B6 = (fem2. + R3.*C5)/(−R2.) = (fem2. + R3.*C5)/(−R2.)

i3
(j+1) C6 = (fem1.−R1.*A5)/(−R3.) = (fem1.−R1.*A6)/(−R3.)

TABLE 4 Data concerning a Bingham plastic fluid whose
rheological parameters must be determined

_γi (s−1) τi (Pa) σi (Pa)
0.20 42.8 0.4

1.45 52.4 0.4

2.10 61.9 0.4

3.00 71.4 0.4

3.90 80.9 0.4

5.10 100.0 0.4

6.60 102.5 0.4

7.80 123.8 0.2

9.10 128.6 0.2

10.70 151.9 0.2

12.20 164.2 0.2

14.00 178.5 0.2

15.90 201.1 0.1

17.90 221.3 0.1

19.90 235.6 0.1
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Table 6 is uniform (i.e., regularly spaced) with respect to
pressure entries, Gregory-Newton interpolation [9]. Interpo-
lation through Newton's divided differences is here omitted
for brevity. Interpolating polynomials are limited to degree 3
because there are 4 entries in Table 6. Students are advised to
use renamed cell “P” for the non-tabulated pressure entry P as
well as renamed cells “P0.,” “P1.,” “P2.,” and “P3.” for
pressure entries Pi in Table 6 (but only “P0.” and “P1.”will be
required in Gregory-Newton interpolation).

In order to implement the 3rd degree Lagrange
interpolating polynomial, a column (e.g., adjacent to the
saturation pressure entries) should receive the following
auxiliary polynomials:

L0ðPÞ ¼ ðP� P1ÞðP� P2ÞðP� P3Þ
ðP0 � P1ÞðP0 � P2ÞðP0 � P3Þ ,

L1ðPÞ ¼ ðP� P0ÞðP� P2ÞðP� P3Þ
ðP1 � P0ÞðP1 � P2ÞðP1 � P3Þ

L2ðPÞ ¼ ðP� P0ÞðP� P1ÞðP� P3Þ
ðP2 � P0ÞðP2 � P1ÞðP2 � P3Þ ,

L3ðPÞ ¼ ðP� P0ÞðP� P1ÞðP� P2Þ
ðP3 � P0ÞðP3 � P1ÞðP3 � P2Þ ð12Þ

A further column receives the tabulated entries of the
thermodynamic property to be interpolated, here indicated as
ϕi. Accordingly, 3rd degree Lagrange interpolating polyno-
mial results as:

p3ðPÞ ¼ ∑
3

i¼0
LiðPÞ⋅ϕi ⇒ p3ðPÞ ¼ L0ðPÞ⋅ϕ0 þ L1ðPÞ⋅ϕ1

+ L2ðPÞ⋅ϕ2 þ L3ðPÞ⋅ϕ3 ð13Þ

During the lecture, built-in function SUMPRODUCT is
explained so as to implement Equation (13).

Gregory-Newton interpolation can be implemented via a
table of forward differences. First, second, and third forward
differences of thermodynamic property ϕ are defined
respectively as:

Δϕi ¼ ϕiþ1 � ϕi, Δ
2ϕi ¼ Δϕiþ1 � Δϕi,

Δ3ϕi ¼ Δ2ϕiþ1 � Δ2ϕi ð14Þ

TABLE 5 Example of MS Excel cells to implement least squares method to best-fit rheological parameters of a given Bingham plastic fluid

Value Cell(s) Expression(s) in MS Excel (as seen in formula bar)

S1 S (D17 renamed) = SUM(D2:D16)

Sx Sx (E17 renamed) = SUM(E2:E16)

Sy Sy (F17 renamed) = SUM(F2:F16)

Sxx Sxx (G17 renamed) = SUM(G2:G16)

Sxy Sxy (H17 renamed) = SUM(H2:H16)

A A21; B21; A22; B22 =S; =Sx; =Sx; =Sxx (respectively)

A0 D21; E21; D22; E22 =Sy; =Sx; =Sxy;=Sxx (respectively)

A1 G21; H21; G22; H22 =S; =Sy; =Sx; =Sxy (respectively)

det(A) J1 =MDETERM(A21:B22)

det(A0) J2 =MDETERM(D21:E22)

det(A1) J3 =MDETERM(G21:H22)

τ0 J5 = J2/J1

στ0 J6 = SQRT(Sxx/J1)

μp J8 = J3/J1

σμp J9 = SQRT(S/J1)

TABLE 6 Some thermodynamic properties of saturated steam for interpolation purposes

Saturation pressure,
bar

Saturation
temperature, °C

Specific volume − vapor,
m3/kg

Latent heat of vaporization,
kJ/kg

Specific heat, kJ/
(kg · K)

7.0 165.0 0.273 2065 2.44

8.0 170.4 0.240 2046 2.50

9.0 175.4 0.215 2030 2.55

10.0 179.9 0.194 2013 2.59
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Only the first forward difference Δϕ0 = ϕ1− ϕ0 must be
typed in a given cell while all remaining differences in
Equation (14) can be straightforwardly calculated via
replication from Δϕ0 to cells below and sideways (e.g., to
the right). Students are advised to use a renamed cell “r.” for
the parameter:

rðPÞ ¼ P� P0

ΔP
⇒ r ¼ P� P0

P1 � P0
ð15Þ

Auxiliary columns must be used to evaluate (via
replication with proper adjustments) the required factorials
as well as the following sequence of Gregory-Newton
interpolating polynomials:

p1ðPÞ ¼ ϕ0 þ
r
1!
Δϕ0, p2ðPÞ ¼ p1ðPÞ þ

rðr � 1Þ
2!

Δ2ϕ0,

p3ðPÞ ¼ p2ðPÞ þ
rðr � 1Þðr � 2Þ

3!
Δ3ϕ0 ð16Þ

By sharing the same cells with saturated steam data (e.g.,
saturation pressures Pi in renamed cells “P0.” to “P3.” in
columnB and thermodynamic propertiesϕi in cells C2 to C5),
Table 7 exemplifies key cells to implement Lagrange and
Gregory-Newton interpolations. Indices i and their factorials
in Equation (16) occupy cells G2 to G5 and H2 to H5,
respectively.

Equations (13) and (16) yield the same results, thus
corroborating existence and uniqueness concepts [9] previ-
ously explained to students during the lecture. Based on
values in Table 6, 3rd degree interpolation for P= 9.2 bar
provides 175.4°C for saturation temperature, 0.211 m3/kg for
specific volume, 2,027 kJ/kg for latent heat of vaporization,
and 2.56 kJ/(kg · K) for specific heat.

3.5 | Extraction yield in a continuous-flow
process

Continuous-flow extraction performance can be expressed
as the extraction yield on mass basis, Y= Y(t), defined as the
compound mass extracted up to instant t divided by the total
mass mtotal of raw material within the extractor. If cexit(t) is
the instantaneous compound concentration in the solvent
(i.e., fluid phase) at the extractor exit, the following relation
holds [14]:

YðtÞ ¼ 1
mtotal

Z t

0

_Vsolventcexitðt0Þdt0 ¼
_Vsolvent

mtotal

Z t

0

cexitðt0Þdt0 ð17Þ

where the volumetric flow rate of solvent _Vsolvent is
allegedly constant over the extraction process. In this
problem students must numerically assess the integral in

Equation (17) so as to evaluate a given extraction yield Y.
Table 8 shows the data provided to students concerning the
exit concentration cexit for increasing extraction time t. The
total mass of raw material and the volumetric flow rate of
solvent are given as mtotal = 20 g and _Vsolvent = 0.03 L/min,
respectively.

Students are instructed to use either trapezoidal or
Simpson's rules of integration, which are similar to each
other. Those numerical integration methods lead to the
following expression [9]:

Z t

0

cexitðt0Þdt0 ffi Δt
m

∑
n

i¼0
wicexit;i ¼ Δt

m
w0cexit;0 þ w1cexit;1
�

þw2cexit;2 þ . . .þ wn�1cexit;n�1 þ wncexit;nÞ
ð18Þ

where cexit,i are the values of fluid-phase extract concen-
trations at extractor exit. Table 9 shows parameterm aswell as
weighting factors wi in Equation (18) for each numerical
integration method.

The numerical integrations can be implemented in MS
Excel by sharing the same cells for cexit,i, for example, cells
B2 to B22 (besides cells in column A for time ti), with
expressions exemplified in Table 10. Different columns are
used for related weighting factors wi, for example, cells C2 to
C22 for trapezoidal rule and cells D2 to D22 for Simpson's
rule, which can be evaluated via replication while adjusting
wn to 1. Renamed cells “dt,” “mtotal,” and “Vsolv” are used
respectively for Δt (= 3 min),mtotal and _Vsolvent. The built-in
function SUMPRODUCT is recalled during the lecture so as
to assess Equation (18). Extraction yield results as
Y= 0.00126 g-extract/g-solids via trapezoidal rule and
Y= 0.00127 g-extract/g-solids through Simpson's rule, which
are close to each other.

3.6 | Temperature-time profile of food under
cooling

In thermal problems with low Biot numbers (Bi <0.1), heat
conduction is much faster than heat convection so that
uniform temperature can be assumed within the given body
and lumped-parameter analysis can be applied [1]. Inspired
by the blast-cooling of catering meals examined in [12],
students are asked to obtain temperature-time profiles T(t)
of food under cooling as ruled by the following 1st-order
ordinary differential equation (i.e., Newton's law of
cooling):

dTðtÞ
dt

¼ β0 Tair � TðtÞ½ � ð19Þ
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In this initial value problem, lumped-parameter β′ is
constant and defined as [12]:

β0 ¼ 1=ðρcl1=2Þ
1=hþ l1=2=k

ð20Þ

Besides convective heat transfer coefficient h, meal
parameters include density ρ, specific heat c, half-length l1/2
(between core and horizontal edge) and thermal conductivity k.
Initial condition is imposed as T(0) = T0 and the cooling air
temperature Tair is allegedly constant for didactic and
comparison purposes against the following analytical solution:

TexactðtÞ ¼ Tair þ T0 � Tairð Þexp �β0tð Þ ð21Þ

In order to numerically solve Equation (19), students
apply 4th-order Runge-Kutta method [9]. Renamed cells “h,”
“rho”, “c.,” “lhalf,”, “k,” “T0,” and “Tair” store the necessary
model parameters, whose values are provided as in Table 11.
Lumped-parameter is assessed as β′= 0.000365 s−1 in a
renamed cell ‘beta’ while a renamed cell “dt” stores the
advancing time step set as Δt= 60 s.

Students are warned that implementing 4th-order Runge-
Kutta method is relatively simpler in this case as the right-
hand side (RHS) of Equation (19) lacks explicit dependence
on the independent variable, that is, time t. The following
numerical marching expressions should be implemented:

tiþ1 ¼ ti þ Δt and Tiþ1 ¼ Ti þ k1 þ 2k2 þ 2k3 þ k4
6

ð22Þ

Auxiliary parameters ki in Equation (22) are evaluated in a
similar way by using the time step Δt and function f(T) = β′
(Tair− T), that is, RHS of Equation (19), with the following
arguments:

k1 ¼ Δt f ðTiÞ, k2 ¼ Δt f ðTi þ 1
2
k1Þ,

TABLE 7 Example of MS Excel cells to implement 3rd degree Lagrange and Gregory-Newton interpolations to obtain non-tabulated entries
concerning a saturated steam table

Interpolation Values Cells Expressions in MS Excel (as seen in formula bar)

Lagrange L0(P) A2 = (P− P1.)*(P− P2.)*(P− P3.)/((P0.−P1.)*(P0.−P2.)*(P0.−P3.))

L1(P) A3 = (P− P0.)*(P− P2.)*(P− P3.)/((P1.−P0.)*(P1.−P2.)*(P1.−P3.))

L2(P) A4 = (P− P0.)*(P− P1.)*(P− P3.)/((P2.−P0.)*(P2.−P1.)*(P2.−P3.))

L3(P) A5 = (P− P0.)*(P− P1.)*(P− P2.)/((P3.−P0.)*(P3.−P1.)*(P3.−P2.))

p3(P) C7 = SUMPRODUCT(A2:A5;C2:C5)

Gregory-Newton Δϕi D2; D3; D4 = C3−C2; = C4−C3; = C5−C4

Δ2ϕi E2; E3 =D3−D2; = D4−DC3

Δ3ϕi F2 = E3− E2

p0(P) I2 = C2

p1(P) I3 = I2 + D2*r./H3

p2(P) I4 = I3 + E2*r.*(r.− 1)/H4

p3(P) I5 = I4 + F2*r.*(r.− 1)*(r.− 2)/H5

TABLE 8 Data concerning an extraction process whose yield should
be evaluated

t (min) cexit (g/L)

0 0.00

3 0.42

6 0.56

9 0.45

12 0.34

15 0.26

18 0.18

21 0.13

24 0.10

27 0.08

30 0.06

33 0.05

36 0.04

39 0.03

42 0.03

45 0.02

48 0.02

51 0.01

54 0.01

57 0.00

60 0.00
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k3 ¼ Δt f ðTi þ 1
2
k2Þ, k4 ¼ Δt f ðTi þ k3Þ ð23Þ

One may profit from this similarity to implement the
numerical method inMSExcel via copy-and-paste of triplets (T,
f,k)withproper amendments, asTable12exemplifies for agiven
iterative level (e.g., row7).Thenumericalmethod starts from the
initial condition, that is, ti=0 = 0 and Ti=0 = T0. Up to three
decimal digits, numerically simulated temperatures Ti (e.g., in
column C) are exactly the same as analytical counterparts Texact
(e.g., in column A) assessed via Equation (21).

3.7 | Damped harmonic oscillator

Harmonic oscillators occur in different natural phenomena
such as pendulums, acoustical systems, waves, and RLC
circuits [6]. In this problem, students must numerically
simulate a damped harmonic oscillator modeled by the
following 2nd-order ordinary differential equation:

m
d2x
dt2

þ B
dx
dt

þ kx ¼ 0⇔
d2x
dt2

¼ � 1
m

kxþ B
dx
dt

� �
ð24Þ

In this initial value problem, x= x(t) is the position at time
t, m is the mass, B is the damping coefficient, and k is the
restoring force constant. Initial conditions are imposed as:

xð0Þ ¼ x0 and vð0Þ ¼ dx
dt t¼0 ¼ v0j ð25Þ

where x0 is the initial displacement and v0 is the initial
velocity.

Students must apply Runge-Kutta-Nyströmmethod [9] so
as to numerically solve Equation (24) subjected to Equation
(25). Renamed cells “m,” “B”, “k,” “x0,” and “v0” store

model parameters, whose values are given in Table 13.
Different values are suggested to coefficient B consistent with
the damping type (i.e., under, critical or over-damping) to be
numerically simulated. A renamed cell “dt” stores the
advancing time step suitably set as Δt= 0.05 s to simulate
some under-damping oscillations. Lower Δt can be used to
slowly depict either over or critical damping.

Bearing in mind functions f in Equation (27) ahead,
students are again advised that implementing Runge-Kutta-
Nyström method to solve this problem is slightly simpler
because Equation (24) does not explicitly depend on variable
t. Numerical marching expressions should be implemented
as:

tiþ1 ¼ ti þ Δt, xiþ1 ¼ xi þ Δt vi þ k1 þ k2 þ k3
3

� �
,

viþ1 ¼ vi þ k1 þ 2k2 þ 2k3 þ k4
3

ð26Þ

where parameters ki are calculated using time step Δt and
function f(x,v) =− (kx+ Bv)/m as:

k1 ¼ Δt
2
f ðxi,viÞ, k2 ¼ Δt

2
f ðxi þ K,vi þ k1Þ,

k3 ¼ Δt
2
f ðxi þ K,vi þ k2Þ, k4 ¼ Δt

2
f ðxi þ L,vi þ 2k3Þ

ð27Þ

Additional auxiliary parameters K and L are defined as
follows:

K ¼ Δt
2

vi þ k1
2

� �
and L ¼ Δt vi þ k3ð Þ ð28Þ

Profiting again from their resemblance, calculations can
be implemented in MS Excel via copy-and-paste of quintets

TABLE 9 Parameters to implement trapezoidal or Simpson's rules of numerical integration

Parameter m w0 w1 w2 w3 w4 w5 . . . wn−5 wn−4 wn−3 wn−2 wn−1 wn

Trapezoidal rule 2 1 2 2 2 2 2 . . . 2 2 2 2 2 1

Simpson's rule 3 1 4 2 4 2 4 . . . 4 2 4 2 4 1

TABLE 10 Example of MS Excel cells to implement trapezoidal and Simpson's integration rules to assess extraction yield in continuous-flow
process

Valuea Expression for trapezoidal rule Expression for Simpson's rule

Z t

0

cexitðt0Þdt0
= SUMPRODUCT(B2:B22;C2:C22)*dt/2 = SUMPRODUCT(B2:B22;D2:D22)*dt/3

Y(t) = G6*Vsolv/mtotal = G9*Vsolv/mtotal

aNumerical integrals are stored in cells G6 and G9 respectively in trapezoidal and Simpson's rules.

RABI AND CANEPPELE | 9



(x, v, f, k, P) followed by proper adjustments, where P
stands for either parameter K or L. Rigorously, one should
only replicate and adjust the quartet (x, v, f, k) so as to
evaluate k4. The numerical method starts from initial
conditions ti=0 = 0, xi=0 = x0, and vi=0 = v0, and Table 14
exemplifies key cells implemented for a given iterative level
(e.g., row 7).

For comparison purposes, the analytical solution for
under-damping is deduced as [6]:

xunderðtÞ ¼ A exp �γtð Þ cos ω1t � αð Þ ð29Þ

where (by recalling that null initial velocity was assumed,
v0 = 0):

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 � γ2

q
, ω0 ¼

ffiffiffiffi
k
m

r
, γ ¼ B

2m
,

α ¼ arctan
1
ω1

� �
; A ¼ x0

cosðαÞ ð30Þ

As Table 14 shows, the analytical solution was
implemented (e.g., in column A) with the help of renamed
cells for parameters in Equations (29) and (30). Numerical
positions xi (e.g., in column C) are exactly the same as
analytical counterparts xunder,i up to three decimal digits.

Analytical solutions for over and critical damping are omitted
for brevity and they can be found in [6].

3.8 | Steady-state one-dimensional heat
conduction

The blast-cooling of catering meals [12] is again referred in
this lecture but it is discussed that temperature may vary
inside foodstuff. This thermal food processing was studied in
[13] via finite differences method (FDM), whose fundamen-
tals [1] are taught to students together with different types of
boundary conditions (e.g., Dirichlet, Neumann, Robin,
radiative heat transfer). A steady-state 1-D thermal problem
is put forward so that students must numerically simulate via
FDM the temperature variation T(x) inside a homogenous
solid slab of thickness L. The problem is extended to include
an internal energy source _e (i.e., energy released per unit
volume) so that the governing ordinary differential equation
becomes:

d2T
dx2

þ _e ¼ 0 ð31Þ

Boundary conditions comprise Dirichlet condition at
x= 0 and Robin condition at x= L, namely:

TABLE 12 Example of MS Excel cells to implement 4th-order Runge-Kutta method to numerically simulate temperature-time profiles of food
under cooling

Value Cell Expression in MS Excel (as seen in formula bar for row 7)

ti B7 = B6 + dt

Ti C7 = C6 + (E6 + 2*H6 + 2*K6 + N6)/6

f(Ti) D7 = beta*(Tair−C7)

k1 E7 = dt*D7

Ti+ k1/2 F7 = $C7 + E7/2

f(Ti+ k1/2) G7 = beta*(Tair− F7)

k2 H7 = dt*G7

Ti+ k2/2 I7 = $C7 + H7/2

f(Ti+ k2/2) J7 = beta*(Tair− I7)

k3 K7 = dt*J7

Ti+ k3 L7 = $C7 + K7

f(Ti+ k3) M7 = beta*(Tair− L7)

k4 N7 = dt*M7

Texact A7 = Tair + (T0− Tair)*EXP(−beta*B7)

TABLE 11 Model parameters to numerically simulate temperature-time profiles of food under cooling

hc, W/(m2 · K) ρ, kg/m3 c, J/(kg · K) k, W/(m · K) l1/2, m T0, K Tair, K

50.0 1014.4 3545.5 0.488 0.015 300 260
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Tð0Þ ¼ T0 and � k
dT
dx x¼L ¼ h T∞ � TðLÞ½ �j ð32Þ

where temperature T0 is kept constant at x= 0, k is thermal
conductivity, h is convective heat transfer, and T∞= constant
is surrounding air temperature (sufficiently away from x= L).

As Figure 3 shows, the solution domain is discretized into
five nodal points, numbered from i= 0 to i=m= 4, so that
Δx= L/m is the distance between them. Bearing in mind that
Ti=0 = T0 in all iterations, FDM applied to Equations (31) and
(32) renders the following algebraic equations:

1≤ i≤ 3 :
Ti�1 � 2Ti þ Tiþ1

ðΔxÞ2 þ _e
k
¼ 0

⇒ Ti ¼ Ti�1 þ Tiþ1

2
þ _eðΔxÞ2

2k

i ¼ 4 : h T∞ � T4ð Þ þ k
T3 � T4

Δx
þ _eΔx

2
¼ 0

⇒ T4 ¼ hΔxT∞ þ kT3 þ 1
2 _eðΔxÞ2

hΔxþ k
ð33Þ

Students may solve Equation (33) via either Jacobi or
Gauss-Seidel method [9]. Besides “m” and “dx,” renamed
cells “L.,” “e.,” “k,” “h,” “T0,” and “Tinf” store model
parameters, whose values are in Table 15. Table 16
exemplifies key cells implemented via Gauss-Seidel method
for a given iterative level. Expressions for T2 and T3 can be
replicated from the expression for T1 and numerical results
can be compared with the following analytical solution:

TexactðxÞ ¼ T0 þ _eLþ _eL2h=ð2kÞ þ hðT∞ � T0Þ
hLþ k

x� _e
2k

x2

ð34Þ

By starting from the initial guess T1
(0) = T2

(0) = T3
(0)

= T4
(0) = T0, convergence of the numerical solution (against

Texact) with 1 decimal digit is observed after 46 iterations.

TABLE 14 Example of MS Excel cells to implement Runge-Kutta-Nyström method to numerically simulate damped harmonic oscillators

Value Cell Expression in MS Excel (as seen in formula bar for row 7)

ti B7 = B6 + dt

xi C7 = C6 + dt*(D6 + (F6 +K6 + P6)/3)

vi D7 =D6 + (F6 + 2*K6 + 2*P6 +U6)/3

f(xi, vi) E7 =− (k*C7 + B*D7)/m

k1 F7 = 0.5*dt*E7

K G7 = 0.5*dt*($D7 + $F7/2)

xi+K H7 = $C7 +G7

vi+ k1 I7 = $D7 + F7

f(xi+ K, vi+ k1) J7 =− (k*H7 + B*I7)/m

k2 K7 = 0.5*dt*J7

K L7 = 0.5*dt*($D7 + $F7/2)

xi+K M7 = $C7 + L7

vi+ k2 N7 = $D7 +K7

f(xi+ K, vi+ k2) O7 =− (k*M7 + B*N7)/m

k3 P7 = 0.5*dt*O7

L Q7 = dt*($D7 + P7)

xi+ L R7 = $C7 + Q7

vi+ 2k3 S7 = $D7 + 2*P7

f(xi+ L, vi+ 2k3) T7 =− (k*R7 + B*S7)/m

k4 U7 = 0.5*dt*T7

xunder A7 = A*EXP(−gamma*B7)* COS(omega1*B7− alpha)

TABLE 13 Model parameters to numerically simulate damped harmonic oscillator

B (kg/s)

m (kg) Under‐damping Critical damping Over‐damping k (N/m) x0 (m) v0 (m/s)

5 10 90 150 405 0.15 0
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4 | DISCUSSION

Industrial activities have progressively relied on computa-
tional tools as both hardware and software resources have
become more affordable. Accordingly, educational oppor-
tunities to familiarize engineering students with numerical
methods should be supported and explored. Computer-
assisted didactic activities may complement and benefit not
only theoretical concepts developed in lecturers but also
didactic experiments accomplished at physical laboratories.

As far as teaching numerical methods to agroindustrial
engineering students is concerned, challenges are at least two-
fold in Brazil, namely: (i) the holdup of the agroindustrial
sector with respect to virtualization [10,16] allied to (ii) the
feeble aptitude of Brazilian students towards mathematics as
evidenced by international assessments [11]. In order to
overcome those hurdles, Numerical Methods is a core
discipline offered in the 2nd year (out of five) of biosystems
and food engineering programs at USP Pirassununga campus.
By introducing computational methods to students while
providing the related training at a didactic computational
laboratory, this discipline aims at fostering cross-link to
forthcoming disciplines in aforementioned engineering
programs.

Yet, Pirassununga campus is sui generis as it hosts no
academic unit dedicated to modeling and simulation to some
extent and where research is strongly biased to experimental
methods. Such unfavorable scenario ratifies the challenges
cited in the previous paragraph bearing in mind not only
students’ interest in computational methods but also faculty
staff's. For instance, despite Numerical Methods is a
compulsory discipline to food engineering students, it is
not requisite to any subsequent discipline (whether compul-
sory or elective) in their curriculum.

While one may claim that cross-disciplinary integration
herein described is (say) unilateral, ineffective cross-link

would be evident had Numerical Method been taught by
solely relying on, for example, functions f of variables x, y,
and z completely unrelated to other disciplines. This is not the
case of the discipline reported in the present paper as it
addresses the numerical solution of problems concerning
several engineering disciplines (Table 1), in line with authors’
effort to enhance students’ expertise in computational
methods.

Feedback from both food and biosystems engineering
students has been encouraging. In recent assessments of
Numerical Methods, students have confirmed that accom-
plishing hands-on activities at individual computers do
promote pedagogical ethos, which is definitely reinforced
by the consent to help each other (and students are indeed
observed to do so in lectures). They have equally endorsed
that learning-by-doing activities at a didactic computational
laboratory intensify their commitment towards the discipline
in the short term.

In the long term, an increasing number of students have
become interested in taking up Applied Computational
Methods (in the 4th year) after having attended Numerical
Methods (in the 2nd year). In fact, authors launched this
elective discipline in 2016 in response to students’ demand to
complement their expertise. As “advertised” to students,
Numerical Methods uses MS Excel to present the numerical
solution of agroindustrial problems while Applied Computa-
tional Methods uses agroindustrial problems to present
advanced MS Excel tools (e.g., VBA codes).

In terms of connecting case studies with other disciplines,
students have been able to compare the numerical solution of
harmonic oscillators (section 3.7) with analytical counterparts
in core physics disciplines. As far as calculus courses are
concerned, they have been able to identify links with definite
integrals (section 3.5) and ordinary differential equations
(sections 3.6 and 3.8).While further disciplines listed in Table
1 are upcoming ones, it is worth citing that in Biosystems
Engineering program Numerical Methods is requisite to
Applied Computational Methods (elective discipline), Artifi-
cial Intelligence (compulsory discipline), and Operations
Research & Optimization of Agricultural Systems (elective
discipline).

Numerical Methods has also helped students in the
Supervised Internship discipline, which is the closing one in
both food and biosystems engineering curricula. According to
testimonies of senior undergraduate students in this disci-
pline, internship recruitments have regularly pointed to MS
Excel (or similar environment) as most wanted skills. A

FIGURE 3 Discretization of solid slab for FDM simulation of
steady-state 1-D heat conduction

TABLE 15 Model parameters to numerically simulate steady-state 1-D heat conduction within a solid slab

L, m _e, W/m3 k, W/(m · K) h, W/(m2 · K) T0, K Tinf, K

0.04 5.0 × 106 28.0 45.0 273 303
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similar feedback is given from our graduate students with
respect to job recruitments in Brazilian agroindustrial sector.

The cross-disciplinary integration attempted in Numerical
Methods is mutually profitable. Given that RD&I has
increasingly combined analytical, experimental, and numeri-
cal methods, forthcoming disciplines in food and biosystems
engineering programs can restore a helpful tool. Once
implemented by relying on comprehensive models, agroin-
dustrial engineers can confidently apply numerical solvers
and simulators to solve real-world problems.

In their turn, food and biosystems engineering students
become familiar with virtualization by numerically solving
problems while testing different model parameters and
assumptions. Computational modeling entails forward and
backward movements where each assumption must be re-
examined in view of others. Care should be exercised to
prevent over-complicating or over-simplifying a certain
approach to the detriment of another. This task is non-
transferable to numerical simulators (as it is up to the
computational modeler!) and such a skill must be trained
among agroindustrial engineering students.

Last but not least, all course material (e.g., MS Power
Point slides from lectures, examples discussed in lectures, and
list of exercises) becomes available online after face-to-face
lectures (at so-called TIDIA-AE depository system). Pro-
vided that MS Excel is typically installed in home PCs and
notebooks, students have also profited from distance learning
environment.

5 | CONCLUSION

In view of prospective challenges and opportunities for
virtualization in agroindustrial engineering, knowledge, and
skills in computational modeling must be continuously
developed. At USP Pirassununga campus, Numerical
Methods is a core undergraduate discipline in food and
biosystems engineering curricula, which has initiated
computational modeling education and training at a didactic

computational laboratory. By putting forward hands-on
activities linking computational methods with engineering
problems, this discipline has indeed increased students’
commitment and interest toward numerical methods. Such
synergy between scientific computing and agroindustrial
engineering should be fostered and supported in subsequent
disciplines as exemplified in this paper, on pain of letting
modeling and virtualization remain underexplored in agri-
bio-food engineering.
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