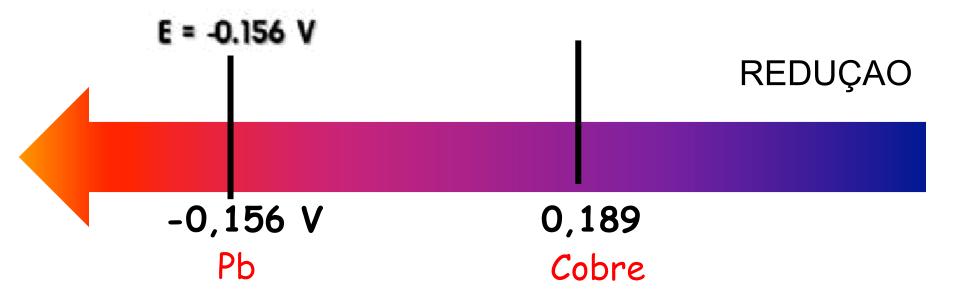

Eletrólise

Corrente constante

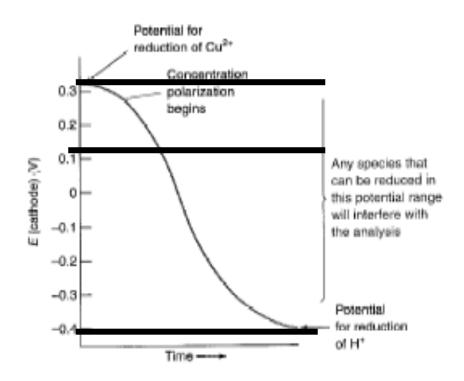
ECC eletrólise corrente constante

Como determinar a concentração da espécie



Eletrogravimetria

Chumbo começa a depositar em:


$$E = -0.126 - \frac{0.0592}{2} \log \frac{1}{0.1}$$

A separação é possível → obs: Não foi feito nenhum cálculo do sobrepotencial

Seletividade

I = cte o potencial do ET muda com o tempo de análise

Início da eletrólise de Cobre

Fim da eletrólise de cobre

Reações Catódicas

$$K^{+} + e^{-} \implies K_{(s)} \qquad E^{0} = -2,925V$$
 $Na^{+} + e^{-} \implies Na_{(s)} \qquad E^{0} = -2,714V$
 $2H^{+} + 2e^{-} \implies H_{2(g)} \qquad E^{0} = 0,000V$
 $Cu^{2+} + 2e^{-} \implies Cu_{(s)} \qquad E^{0} = 0,337V$
 $Ag^{+} + e^{-} \implies Ag_{(s)} \qquad E^{0} = 0,799V$

Quando há vários íons (cátions) metálicos ou não, as reações catódicas ocorrem em <u>ordem decrescente</u> dos seus potenciais catódicos, ou seja, dos mais positivos aos mais negativos

Reações Anódicas

$$Pb^{2+} + 2H_2O \longrightarrow PbO_{2(s)} + 4H^+ + 2e^- E^0 = -1,455V$$

$$2Cl^- \longrightarrow Cl_2(g) + 2e^- E^0 = -1,359V$$

$$2H_2O \rightarrow O_2(g) + 4e^- + 4H^+ E^0 = -1,229V$$

$$H_{2(g)} \rightarrow 2H^+ + 2e^- E^0 = 0,000V$$

As reações anódicas ocorrem em <u>ordem crescente</u> dos seus potenciais anódicos, ou seja, dos mais negativos aos mais positivos

Como proceder para ter depósitos puros -com I cte?

Separação de metais

- 1. Pode-se separar dois metais com E próximos alterando a composição do eletrólito.
- Ex: Bi($E_{ap} = -0.09 \text{ V}$) e Cu ($E_{ap} = -0.05 \text{ V}$)
- → complexar cobre com CN → Cu(CN)₃ E ap
 = -1,05 V

Despolarizante (NO₃-)/ tampão de potencial

• Exemplo – Depósito de Cobre a partir de uma solução de iões Cu²⁺

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
 $E^{0}_{Cu}^{2+}/_{Cu} = +0.337 \text{ V}$
 $2 \text{ H}^{+} + 2e^{-} \longrightarrow H_{2}^{7}$
 $E^{0}_{2\text{H}^{+}/_{H2}} = 0.000 \text{ V}$
 $NO_{3}^{-} + 10 \text{ H}^{+} + 8 e^{-} \longrightarrow NH_{4}^{+} + 3 \text{ H}_{2}\text{O}$
 $E^{0}_{NO_{3}^{-}/_{NH4}^{+}} = +0.2... \text{ V}$

O <u>despolarizante</u> tem que ser escolhido com base nos potenciais normais das espécies envolvidas.

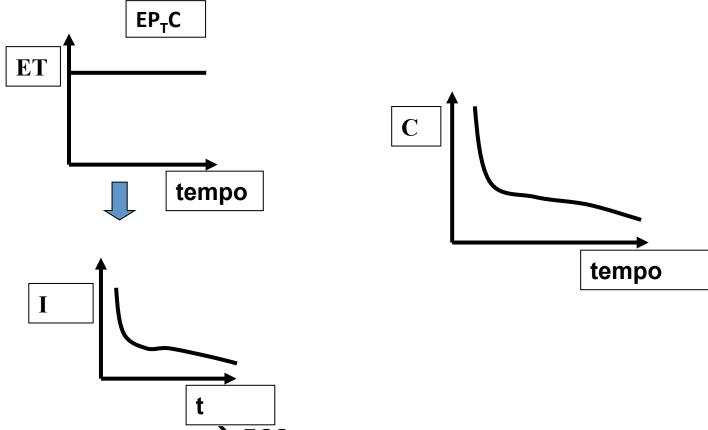
- Eletrólise em uma solução aquosa: é necessário investigar se a oxidação ou a redução ocorre com a água ou com o soluto. A água pode ser oxidada (produzindo O_2) ou reduzida (produzindo H_2).
 - Não se pode preparar sódio metálico pela eletrólise do NaCl em água. A água se reduz com mais facilidade do que os íons Na⁺:

-
$$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^ E_{red} = -0.83V$$

- $Na^+ + e^- \rightarrow Na(s)$ $E_{red} = -2.71V$

• E a oxidação? A oxidação da água para produzir oxigênio requer um potencial maior que a oxidação dos íons cloreto a cloro (lembre-se que tem que olhar com o sinal trocado).

-
$$O_2(g) + 4e^- + 4H^+ \rightarrow 2H_2O$$
 $E_{red} = 1,23V$ - $Cl_2(g) + 2e^- \rightarrow 2Cl^ E_{red} = 1,36V$


Assim, a eletrólise de uma solução de NaCl produz H₂ no cátodo e Cl₂ no ânodo.

$$E_{cel} = E_{red(c\acute{a}todo)} - E_{red(\hat{a}nodo)} = (-0.83) - (1.36) = -2.19 \text{ V}$$

Controle de potencial

eletrólise/eletrogravimetria a potencial do eletrodo de trabalho constante

Tipos de Eletrólise:

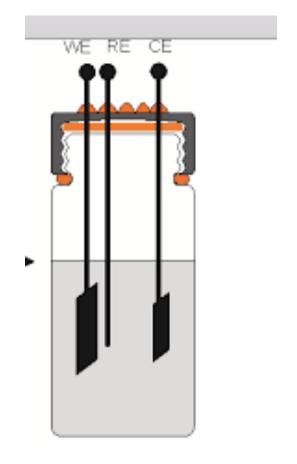
- corrente constante → ECC
 →potencial célula constante → EP_{Cel}C
- → eletrólise a potencial trabalho cte→ EP_TC

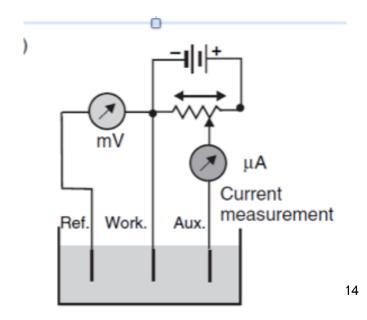
Controle de potencial do ET

- Aplica-se potencial externo constante (controlado) igual ou maior ao potencial de decomposição da amostra.
- •O melhor método é registrar a curva de corrente vs potencial nas condições experimentais da eletrólise e localizar o potencial a ser aplicado.

Técnica seletiva. Separa substâncias desde que $\Delta E > (118/n)$ mV.

Célula para controle de potencial

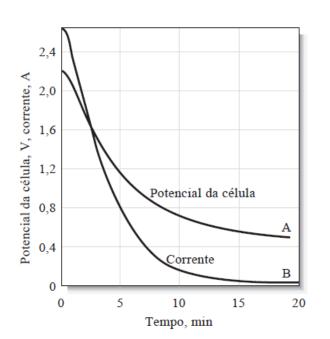

3 eletrodos:

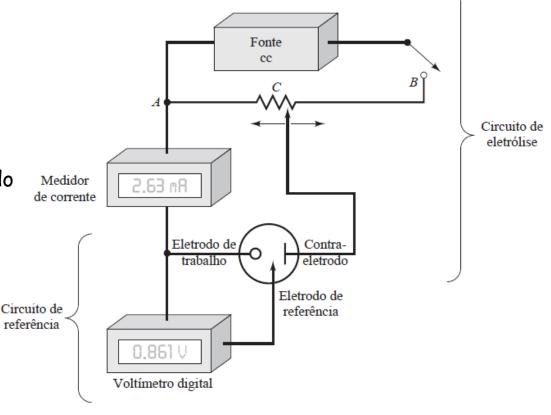

1-eletrodo de trabalho

2- eletrodo auxiliar

 $Cu^{2+} + 2e \rightarrow Cu^{\circ}$

3- eletrodo de referência

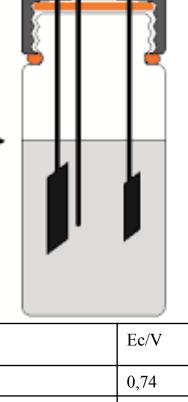




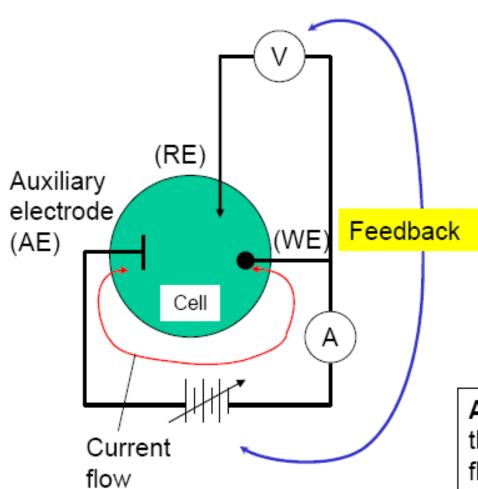
<u>Eletrogravimetria</u>

Com potencial controlado.

O ajuste manual do potencial é tedioso (particularmente no início) e, acima de tudo, demorado. As eletrólises de potencial controlado modernas são realizadas com instrumentos chamados potenciostatos, os quais mantêm automaticamente o potencial do eletrodo de trabalho em um valor controlado em relação ao eletrodo de referência.

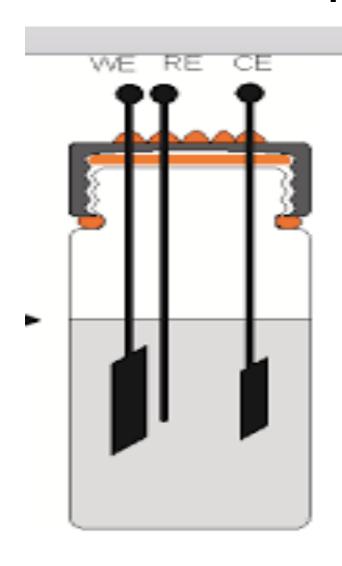

A corrente de eletrólise flui entre o eletrodo de trabalho e um contra-eletrodo. O contra-eletrodo não tem efeito na reação que ocorre no eletrodo de trabalho.

Função do potenciostat


Cada vez que o potencial do cátodo diminuir esta diferença será compensada pelo potenciostado:

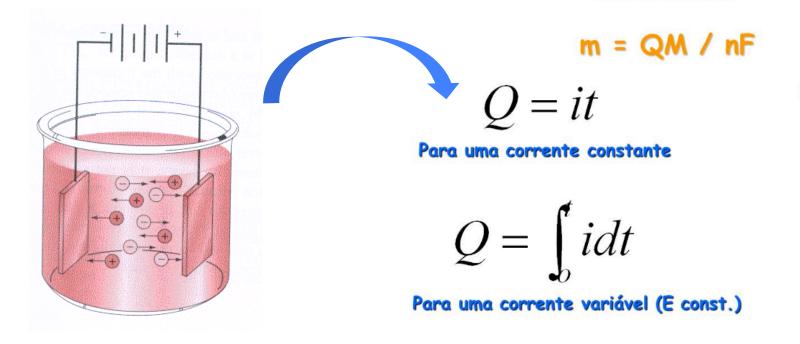
Qualquer diferença entre o potencial da fonte de referência e o potencial do eletrodo de trabalho/ER irá aparecer como queda de potencial (R1). Este potencial é amplificado e controla o autotransformador (controla a corrente de eletrólise)

Ag^+	% restante	Ec/V
0,1	100	0,74
0,01	10	0,68
0,001	1	0,62
0,0001	0,1	0,56
0,00001	0,01	0,50



Three-electrode cell

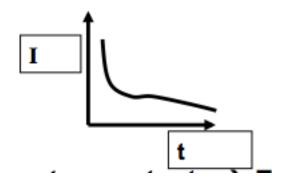
- Apply E_{WE} relative to E_{RE}, BUT no current flows through RE!
- Current flows equal and opposite between WE and AE
- E_{AE} is "forced to whatever potential is required" to achieve the desired E_{WE}.


Advantage: Current does not flow through the RE!! All substantial current flow is between WE and AU.

Técnica para trabalho EPC

- Procedimento
- Introduzir o eletrólito de suporte
- Colocar eletrodosfechar
- Desaerar
- Eap (pré-eletrólise)
- Sem desligar equipamento adicionar analito
- Registrar I, Q e tempo

Coulometria


Na <u>coulometria</u> mede-se a quantidade de eletricidade requerida para reduzir ou oxidar, em uma célula eletrolítica, a substância de interesse.

$$m = QM / nF$$

Q = i x t; F = 96487 coulombs; M = massa molar da substância; $n = n^{\circ}$ de elétrons

Final da eletrólise

 Considera-se uma eletrólise terminada quando:

- Eletrólise em uma solução aquosa: é necessário investigar se a oxidação ou a redução ocorre com a água ou com o soluto. A água pode ser oxidada (produzindo O_2) ou reduzida (produzindo H_2).
 - Não se pode preparar sódio metálico pela eletrólise do NaCl em água. A água se reduz com mais facilidade do que os íons Na⁺:

-
$$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^ E_{red} = -0.83V$$

- $Na^+ + e^- \rightarrow Na(s)$ $E_{red} = -2.71V$

• E a oxidação? A oxidação da água para produzir oxigênio requer um potencial maior que a oxidação dos íons cloreto a cloro (lembre-se que tem que olhar com o sinal trocado).

-
$$O_2(g) + 4e^- + 4H^+ \rightarrow 2H_2O$$
 $E_{red} = 1,23V$ $E_{red} = 1,36V$

Assim, a eletrólise de uma solução de NaCl produz H_2 no cátodo e Cl_2 no ânodo.

$$E_{cel} = E_{red(c\acute{a}todo)} - E_{red(\hat{a}nodo)} = (-0.83) - (1.36) = -2.19 \text{ V}$$

Produção de cloro

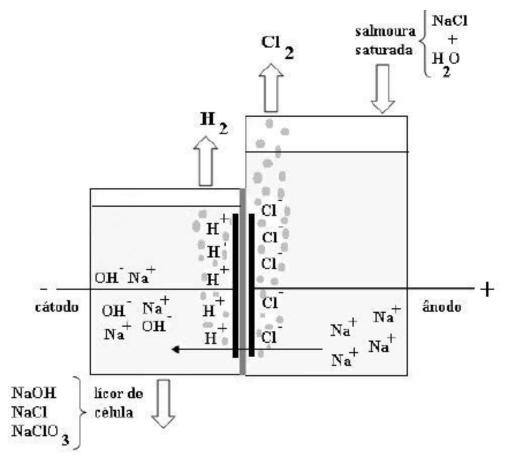
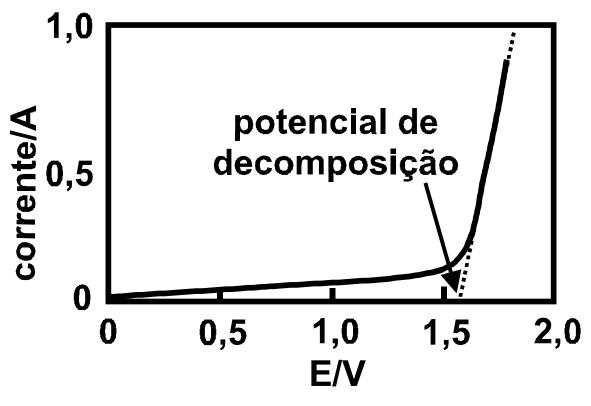


Figura 1: Produção eletrolítica de soda e cloro, processo à diafragma.

<u>Eletrólise – Processo não espontâneo</u>

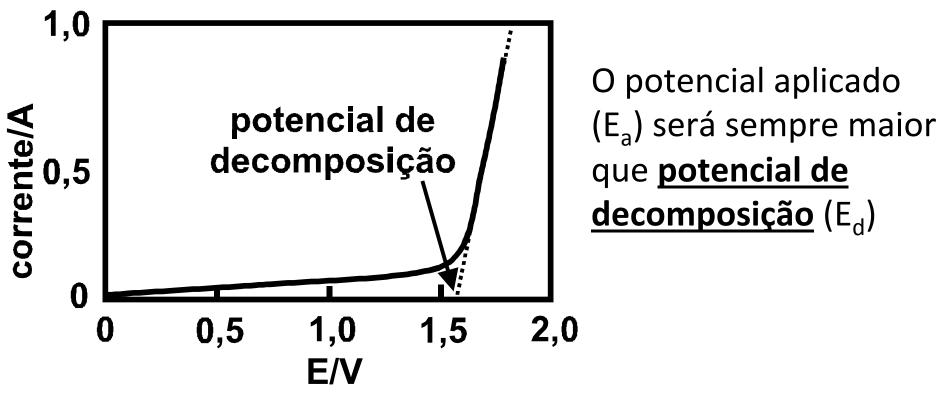

SIGNIFICA QUE, <u>NO MÍNIMO</u>, É NECESSÁRIO APLICAR UM POTENCIAL DE **2,19 V** PARA QUE ESTA REAÇÃO OCORRA

Na realidade, veremos que é necessário um valor maior que este, mas antes precisamos discutir outras coisas...

Assim, a eletrólise de uma solução de NaCl produz H₂ no cátodo e Cl₂ no ânodo.

$$E_{cel} = E_{red(c\acute{a}todo)} - E_{red(\hat{a}nodo)} = (-0.83) - (1.36) = -2.19 \text{ V}$$

Potencial de decomposição


O potencial a partir do qual o processo de eletrólise segue de forma contínua chama-se **potencial de decomposição** (E_d) e depende da natureza da solução eletrolítica. É obtido através do prolongamento da parte da curva de correntes ascendentes.

O potencial de decomposição se forma devido aos reagentes e eletrodos.

Assim, $E_{ap} > E_{d}$ e haverá uma corrente que flui: $E = iR \rightarrow i = E/R$ sendo R a resistência interna da célula. $i = \frac{E_{a} - E_{d}}{R}$

Eap= E aplicado

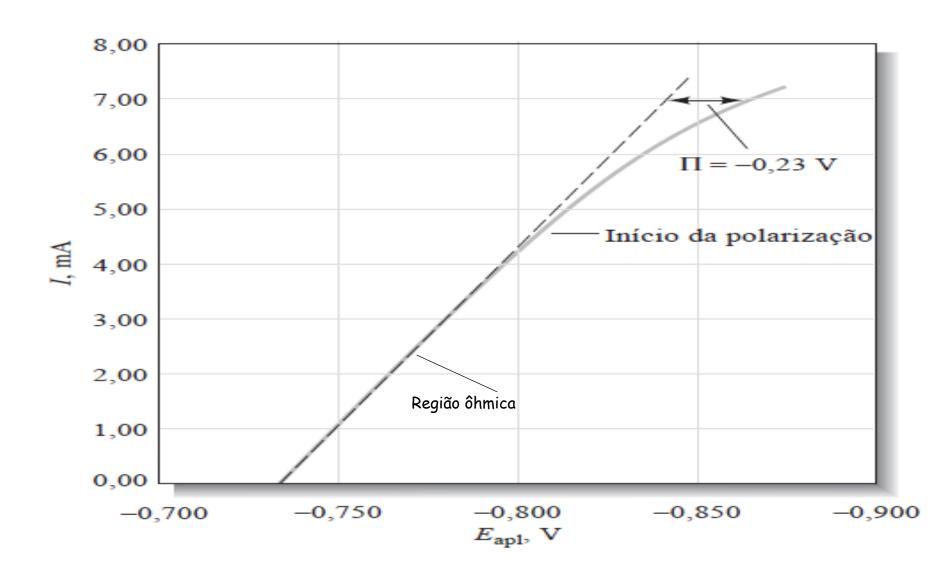
Potencial de decomposição

No entanto, na prática <u>observa-se um potencial de decomposição maior que o</u> <u>determinado pelas equações</u>, sendo a diferença chamada de sobretensão ou sobrevoltagem. Assim, o potencial de decomposição compreende a f.e.m. de retorno e uma sobretensão originária da <u>polarização</u> dos eletrodos (mesmo que inertes):

$$E_{aplic} = E_d + IR = (E_d + E_{sobretensão}) + IR$$

Cálculo do potencial a ser aplicado

$$\mathbf{E}_{ap} = \mathbf{E}_{c} - \mathbf{E}_{a} + (\eta_{ca} + \eta_{cc}) + (\eta_{a} + \eta_{c}) + \mathbf{IR}$$


- Queda ôhmica: IR
- Sobrevoltagem polarização de concentração:
- $(\eta_{ca} + \eta_{cc})$
- Sobrevoltagem cinética: (η_a + η_c)
- potenciais termodinâmicos: E_c E_a

Queda Ohmica = IR

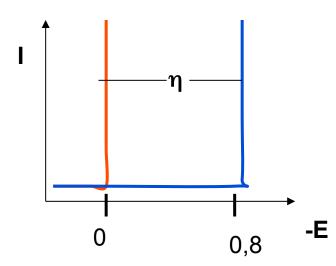
Devido ao fluxo de corrente, o potencial medido entre os dois eletrodos não corresponde simplesmente à diferença entre os dois potenciais de eletrodo, da maneira como calculado pela equação de Nernst.

- · A queda ôhmica IR e a polarização devem ser considerados. Por causa desses fenômenos, potenciais superiores aos potenciais termodinâmicos são necessários para operar uma célula eletrolítica.
- Queda ôhmica (ou potencial ôhmico):
 - · Se deve à resistência da solução.
 - E minimizada com uma força iônica elevada

sobrepotencial

sobrepotencial

- O sobrepotencial (Π) é o grau de polarização. É a diferença de potencial entre o potencial teórico da célula ($E_{aplicado} = E_{célula} IR$) e o potencial verdadeiro da célula a um determinado nível de corrente.
- · Polarização: é o desvio do potencial do eletrodo de seu valor teórico sob a passagem de corrente.


$$\mathbf{E}_{ap} = \mathbf{E}_{c} - \mathbf{E}_{a} + (\eta_{ca} + \eta_{cc}) + (\eta_{a} + \eta_{c}) + \mathbf{IR}$$

Sobrepotencial Cinético

Cinética: a grandeza da corrente é limitada pela velocidade de uma ou das duas reações do eletrodo - isto é, a velocidade de transferência de elétrons entre os reagentes e o eletrodo. Para contrabalançar a polarização cinética, um potencial adicional, ou sobrevoltagem, é requerido para superar a energia de ativação da semireação.
H+/H₂ → E⁰ = 0,0 V vs ENH

Material eletródico	PH	${ m E_{ap}}/{ m V}$
Hg	Ácido	-1,0
Нд	Básico	-1,6
Pt	Ácido	-0,2
Pt	básico	-0,8

• η = sobrepotencial = E - Eeq

Fatores que afetam o sobrepotencial

	Sobretensão em V						
Eléctrodo	i = 0,001 Acm ⁻²		i = 0,01 Acm ⁻²		i = 1 Acm ⁻²		
	H ₂	O ₂	H ₂	O ₂	H ₂	O ₂	
Pt polida	0,024	0,721	0,068	0,85	0,676	1,49	
Pt porosa	0,015	0,398	0,030	0,521	0,048	0,766	
Cu	0,479	0,422	0,584	0,580	1,254	0,793	
Ag	0,475	0,580	0,761	0,729	1,089	1,131	
Hg	0,9	-	1,0	-	1,1	-	
Grafite	0,6	-	0,779	-	1,220	-	
Pb	0,52	-	1,090	-	1,262	-	

Tab. 1 - Sobretensões do Hidrogénio e do Oxigénio em vários eléctrodos a 25 ℃

Sobrepotencial de concentração

$$E_{ap} = E_c - E_a + (\eta_{ca} + \eta_{cc}) + (\eta_a + \eta_c) + IR$$

- A transferência do elétron entre o eletrodo e a espécie reativa só ocorre em uma região muito próxima à superfície do eletrodo, esta região é chamada de camada de difusão. Sua dimensão é da ordem de nanômetros de espessura. Como conseqüência, contém um número limitado de íons e moléculas (no nosso exemplo íons Ag+). Ao aplicar um potencial suficiente para que os íons Ag+ reajam, estes serão consumidos próximo ao eletrodo pela reação eletroquímica (Ag+ → Ago), mais espécies (Ag+) deve ser transportada para o eletrodo para que a reação o
- <u>De concentração</u>: A polarização de concentração ocorre por causa da velocidade finita de transferência de massa da solução para a superfície do eletrodo.
- corra. Transporte de íons não é infinito e imediato ->

•polarização de concentração ocorre quando a espécie reagente não chega à superfície do eletrodo suficientemente rápida para manter a corrente desejada.

- Para diminuir o grau da polarização de concentração (ou seja da sobretensão de concentração):
 - ⇒ Utilizar eléctrodos de grande superfície
 - ⇒ *Elevar a temperatura* (aumenta a velocidade de difusão)
 - ⇒ Agitar mecanicamente a solução
 - ⇒ Aumentar a força iónica da solução (porque diminuem as forças electroestáticas entre os iões e o eléctrodo)

coulometria

Na <u>coulometria mede-se a quantidade de eletricidade</u> requerida para reduzir ou oxidar, em uma célula eletrolítica, a substância de interesse.

$$m = QM / nF$$

F = 96487 coulombs; M = massa molar da substância; n = nº de elétrons

Quim. Nova, Vol. 27, No. 4, 668-669, 2004

O COULÔMETRO DE SÓDIO - UM EXPERIMENTO INTERESSANTE DE ELETROQUÍMICA#

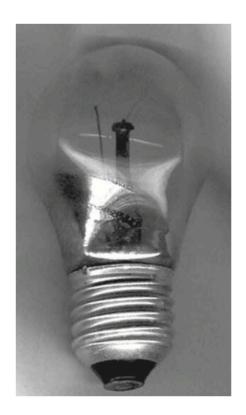
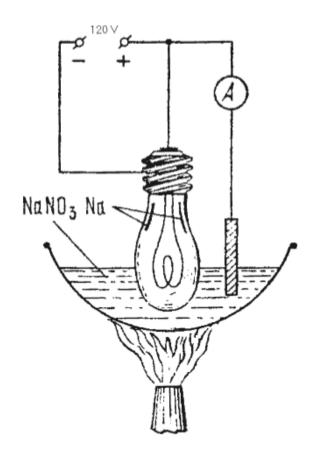



Figura 3. Lâmpada incandescente após o experimento (desliga mostrando o depósito de sódio metálico em seu interior

Figura 1. Esquema do experimento original, modificada da ref. 2. Um miliamperímetro, representado pela letra A, está intercalado entre o pólo positivo da alimentação da lâmpada e um eletrodo de grafita imerso no $NaNO_3$ fundido. Observe a localização onde se forma o depósito de Na dentro da lâmpada

Metodos coulometricos = Q

Melhor do que determinar o massa do eletrodo → determinar a quantidade de eletricidade utilizada (Q)

1942→ **Lingane**

Não é necessário preciptado → maior número de materiais podem ser empregados Menores quantidades podem ser medidas

Análise quntitativa- medida de Q

$$m = QM / nF$$

$$Q = it$$

Para uma corrente constante

$$Q = \int_{0}^{t} idt$$

Para uma corrente variável (E const.)

Eletrólise a potencial controlado –cálculo concentração

1ª Lei de Faraday → A quantidade de substância que é transformada na eletrólise é diretamente proporcional à quantidade de eletricidade que passa na célula.

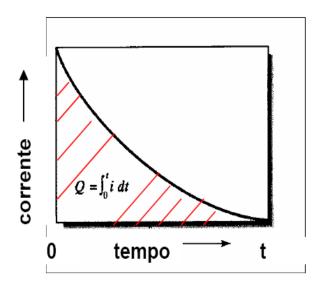
$$Q = n F.N$$
 $W = Q M/ n F$

w= massa da substância

Q= Coulomb (quantidade de eletricidade que flui 1 A/s) unidade = C

M = peso molecular da substância analisada

n = número de elétrons

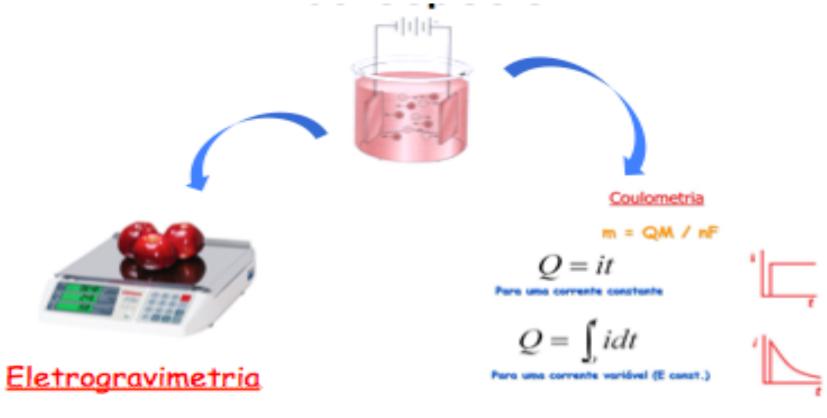

F = Faraday = 96500 C

Faraday = quantidade de eletricidade que libera um equivalente de qualquer elemento – unidade = $6,023 \cdot 10^{23} \times 1,602 \cdot 10^{-19} = 96497 \text{ C}$

Nº Avogrado x carga elétron

Coulometria direta → potencial constante

A corrente diminui com o tempo. No final da reação a corrente é despressível



$$\textbf{Q} = \textstyle \int_0^t \textbf{I} \, dt$$

$$I_f = 10^{-3} \; I_0$$

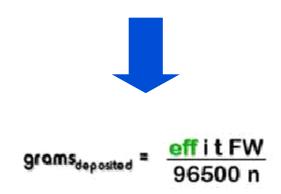
A área sob a curva é igual Q consumido

Na figura 2 é mostrada a curva de corrente versus tempo obtido para uma determinação de uma amostra desconhecida de cobre. Nesta curva a integração apresentou um valor de 400 C. A massa de cobre depositada no cátodo foi de 0,100 g de cobre. Determine a concentração da solução desconhecida sabendo-se que foram eletrolisados 10,00 mL de amostra. Qual o erro apresentado entre os dois procedimentos adotados.

Calculo da massa pela corrente:

$$Q = n F.N$$

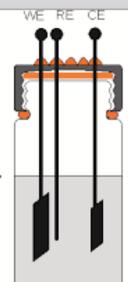
$$Cu^{2+} + 2e = Cu^{\circ}$$

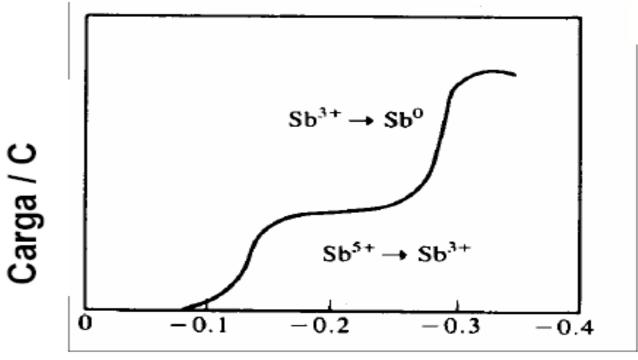

2

Massa= QM/nF massa= (400 x 63,5)/2 x 96500 Massa= 0,1316 g (eletricidade)

Massa eletrogravimetria = 0,1000 g

Eficiência de corrente


Nem todos os elétrons transferidos são utilizados para a reação de interesse



Quanto tempo levará para depositar 1 litro de solução de cobre 1 Mol L⁻¹ aplicando –se uma corrente de 0,1 A? eff= 50 %

As leis de Faraday são válidas quando ocorre 100 % de eficiência de corrente.

Como trabalhar para analisar mai de um espécie (especiação)??.

Potencial / V vs ESC

<u>Eletrogravimetria e Coulometria</u>

A eletrogravimetria e a coulometria <u>estão entre as</u> <u>técnicas mais exatas e precisas</u> disponíveis aos químicos.

não requer calibrações preliminares contra padrões químicos porque a relação funcional entre a grandeza medida e a concentração do analito pode ser estipulada a partir da teoria e dados de massa atômica ou carga.

Desvantagenscoulometria deve ter certeza de 100 % eficiência Erro de pesagem – erro massa ???