MAP 2321 - Técnicas em Teoria de Controle Equações diferenciais lineares Existência e unicidade¹

Depto. Matemática Aplicada Instituto de Matemática e Estatística Universidade de São Paulo São Paulo - SP

Equações diferenciais lineares

Aqui consideramos sistemas lineares de primeira ordem tais como

$$\dot{x}(t) = A(t)x(t) \tag{1}$$

em que

 $\bullet \ \dot{x}(t) = \frac{dx}{dt}(t).$

Q $A: [t_0, t_1] \mapsto \mathbb{R}^{n \times n}$ é uma matriz cujos coeficientes $A_{ij}(t)$ são funções contínuas.

3 $x(t) \in \mathbb{R}^n$ é chamado vetor de **estado** ou simplesmente estado do sistema (1).

• Ao longo da disciplina adotaremos a **notação** do livro de R. Brockett.

 $x \in \mathbb{R}^n$ denotará um **vetor coluna**,

ie., uma matriz $n \times 1$.

Já $x' \in \mathbb{R}^n$ representará um vetor **linha**, uma matriz $1 \times n$.

Introdução

Note que (1) também engloba equações lineares de ordem maior tais como

$$y^{(n)}(t) = \alpha_{n-1}(t)y^{(n-1)}(t) + \dots + \alpha_1(t)y^{(1)}(t) + \alpha_0(t)y^{(0)}(t)$$

onde $y^{(k)}=rac{d^ky}{dy^k}$ para $k\geq 0$. Com efeito, se tomamos $x_i=y^{(i-1)}$ obtemos que

e assim

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_0(t) & \alpha_1(t) & \alpha_2(t) & \dots & \alpha_{n-1}(t) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Veja que esta ideia pode ser **estendida** para equações simultâneas.

Exemplo

Oscilador harmônico

Recordamos que a equação do **sistema mecânico** ao lado é

$$m\ddot{y} + b\dot{y} + ky = u$$

onde m é a massa do corpo, b o amortecimento e k a constante elástica. y é a saída e u o controle.

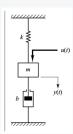


Figura: Massa mola amortecido.

Definindo as variáveis de **estado** $x_1(t) = y(t)$ e $x_2(t) = \dot{y}(t)$ obtemos

$$\dot{x}_1(t) = \dot{y}(t) = x_2(t)$$
 e $\dot{x}_2(t) = \ddot{y}(t) = \frac{1}{m}(u - b\dot{y} - ky)$

que nos dá

$$\begin{cases} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{m} \end{pmatrix} u \\ y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Unicidade

Inicialmente vamos **mostrar** que (1) possui solução única.

Teorema

Seja $A(t) \in \mathbb{R}^{n \times n}$ uma matriz cujos coeficientes $A_{ij}(t)$ são **contínuos** em $[t_0, t_1]$. Então existe no máximo **uma** solução para $\dot{x}(t) = A(t)x(t)$ definida para todo $t \in [t_0, t_1]$ satisfazendo $x(t_0) = x_0 \in \mathbb{R}^n$.

Proof. Sejam x_1 e x_2 soluções da equação. Por **linearidade**

$$z(t) = x_1(t) - x_2(t)$$

também satisfaz a equação mas com **condição** inicial $z(t_0) = 0$. Assim

$$\frac{d}{dt} (\|z(t)\|^{2}) = 2\dot{z}(t) \cdot z(t)
= 2(A(t)z(t)) \cdot z(t)
= \sum_{i} \sum_{j} 2A_{ij}(t)z_{j}(t)z_{i}(t)
\leq 2n^{2} \|z(t)\|^{2} \max_{ij} |A_{ij}(t)|.$$

Unicidade

Daí, se $\eta(t) = 2n^2 \max_{ij} |A_{ij}(t)|$ temos que

$$\frac{d}{dt}\left(\left\|z(t)\right\|^{2}\right) - \eta(t)\left\|z(t)\right\|^{2} \leq 0 \quad \forall t \in [t_{0}, t_{1}].$$

Logo, se tomamos o fator **integrante** $\rho(t) = e^{-\int_{t_0}^t \eta(s) ds}$ obtemos que

$$\frac{d}{dt}\left(\rho(t)\|z(t)\|^2\right) \le 0 \quad \forall t \in [t_0, t_1]$$

que implica, pela **integração** da desigualdade em $[t_0, t]$ que

$$\rho(t)||z(t)||^2 - \rho(t_0)||z(t_0)||^2 \le 0 \quad \forall t \in [t_0, t_1].$$

Como $z(t_0)=0$ e $\rho(t)>0$ em $[t_0,t_1]$ concluímos que

$$||z(t)||^2 \le 0 \quad \forall t \in [t_0, t_1] \quad \Rightarrow \quad ||z(t)|| = 0 \quad \forall t \in [t_0, t_1].$$

Portanto $x_1(t) = x_2(t) \text{ em } [t_0, t_1].$

Seja $\{e_1, e_2, ..., e_n\}$ a **base** canônica² de \mathbb{R}^n e **suponha** a existência de soluções

$$\Phi_1(t,t_0),...,\Phi_n(t,t_0)$$

para a equação $\dot{x}(t) = A(t)x(t)$ sujeita ao valor **inicial** $x(t_0) = e_i$ com $1 \le i \le n$.

Logo, se $x_0 = \alpha_1 e_1 + ... + \alpha_n e_n$, então

$$x(t) = \alpha_1 \Phi_1(t, t_0) + \dots + \alpha_n \Phi_n(t, t_0)$$

satisfaz

$$\dot{x}(t) = A(t)x(t)$$
 com $x(t_0) = x_0$

garantindo a existência de solução para qualquer $x_0 \in \mathbb{R}^n$.

Desta forma, é suficiente provamos a existência das soluções $\Phi_i(t, t_0)$ para $1 \le i \le n$.

 $e_i = (0, ..., 1, ..., 0)$ com 1 na *i*-ésima posição $1 \le i \le n$.

Note ainda que se tais funções existem e definimos a matriz

$$\Phi(t,t_0) = [\Phi_1(t,t_0) \Phi_2(t,t_0) \dots \Phi_n(t,t_0)]$$

então

$$\dot{\Phi}(t,t_0) = [A(t)\Phi_1(t,t_0) A(t)\Phi_2(t,t_0) \dots A(t)\Phi_n(t,t_0)] = A(t)\Phi(t,t_0)$$

com $\Phi(t_0, t_0) = [e_1 \dots e_n] = I$. **Desta** forma temos que a função vetorial

$$t \in [t_0, t_1] \mapsto \Phi(t, t_0) x_0 \in \mathbb{R}^n$$

resolve o problema de valor inicial $\dot{x}(t) = A(t)x(t) \cos x(t_0) = x_0$.

Assim **garantimos** a existência de solução para o problema (1) provando a **existência** da função matricial $\Phi(t, t_0)$ para $t \in [t_0, t_1]$ com condição **inicial** $\Phi(t_0, t_0) = I$.

Permita-nos recordar:

i) Dizemos que uma **sequencia** de funções escalares $\{x_k(t)\}_{k\in\mathbb{N}}$ definidas em $[t_0, t_1]$ **converge**, se existe x(t) também definida em $[t_0, t_1]$ tal que

$$\lim_{k\to\infty}x_k(t)=x(t)\quad\forall t.$$

ii) Dizemos que $\{x_k(t)\}_{k\in\mathbb{N}}$ converge **uniformemente** se existe uma função x(t) tal que, dado $\epsilon>0$, existe $N(\epsilon)\in\mathbb{N}$ tal que para todo $k\geq N(\epsilon)$

$$\sup_{t\in[t_0,t_1]}|x_k(t)-x(t)|<\epsilon.$$

- iii) Uma série de funções $x_1(t) + x_2(t) + ... + x_k(t) + ...$ converge se sua sequencia de somas **parciais** $s_k(t) = \sum_{i=1}^k x_i(t)$ converge para cada t. Se s_k converge uniformemente, dizemos que a serie **converge** uniformemente. Quando $\sum_{k \ge 1} |x_k(t)|$ converge, dizemos que $\sum_{k \ge 1} x_k(t)$ converge **absolutamente**.
- iv) Uma sequencia de **matrizes** $\{M_k\}_{k\in\mathbb{N}}$ converge se as sequencias de **funções** formadas por seus elementos $\{(M_k)_{ij}\}_{k\in\mathbb{N}}$ convergem. **Analogamente** se define convergência uniforme de **funções** matriciais, bem como convergência de série de matrizes, convergência uniforme e absoluta.

Teorema

Seja $A(t) \in \mathbb{R}^{n \times n}$ com coeficientes **contínuos** em $[t_0, t_1]$ e considere a seguinte sequencia de **funções matriciais** $\{M_k\}_{k \geq 0}$ definidas recursivamente por

$$M_k(t) = I + \int_{t_0}^t A(s)M_{k-1}(s)ds$$
 com $M_0 = I$.

Então

- $\{M_k\}_{k\geq 0}$ **converge** uniformemente.
- Se $\Phi = \lim_{k \to \infty} M_k$, então $\frac{d}{dt}\Phi(t,t_0) = A(t)\Phi(t,t_0)$ com $\Phi(t_0,t_0) = I$.
- Em **particular**, $x(t) = \Phi(t, t_0)x_0$ é solução de

$$\dot{x}(t) = A(t)x(t)$$
 em $[t_0, t_1]$

com valor inicial $x(t_0) = x_0 \in \mathbb{R}^n$.

- * Na prova do teorema usamos o **M-teste** de Weierstrass.
- * A função matricial $\Phi(t, t_0)$ é chamada **matriz de transição** do sistema (1).
- ★ $\{M_k\}_{k\in\mathbb{N}}$ é uma **aproximação** sucessiva para $\Phi(t, t_0)$.

Prova. Inicialmente observe que

$$M_{k}(t) = I + \int_{t_{0}}^{t} A(s_{1})M_{k-1}(s_{1})ds_{1}$$

$$= I + \int_{t_{0}}^{t} A(s_{1}) \left(I + \int_{t_{0}}^{s_{1}} A(s_{2})M_{k-2}(s_{2})ds_{2}\right) ds_{1}$$

$$= I + \int_{t_{0}}^{t} A(s_{1})ds_{1} + \int_{t_{0}}^{t} A(s_{1}) \int_{t_{0}}^{s_{1}} A(s_{2}) \left(I + \int_{t_{0}}^{s_{2}} A(s_{3})M_{k-3}(s_{3})ds_{3}\right) ds_{2}ds_{1}$$

$$\vdots$$

$$= I + \int_{t_{0}}^{t} A(s_{1})ds_{1} + \int_{t_{0}}^{t} A(s_{1}) \int_{t_{0}}^{s_{1}} A(s_{2})ds_{2}ds_{1} + \dots$$

$$+ \int_{t_{0}}^{t} A(s_{1}) \int_{t_{0}}^{s_{1}} A(s_{2}) \dots \int_{t_{0}}^{s_{k-1}} A(s_{k})ds_{k} \dots ds_{2}ds_{1}$$

que nos dá

$$M_k(t) - M_{k-1}(t) = \int_{t_0}^t A(s_1) \int_{t_0}^{s_1} A(s_2) ... \int_{t_0}^{s_{k-1}} A(s_k) ds_k ... ds_2 ds_1.$$

Seja $\eta(t)=\max_{ij}|A_{ij}(t)|.$ Como | $(AB)_{ij}$ | $\leq n\max_{ij}|A_{ij}|\max_{ij}|B_{ij}|$ temos que

$$\begin{aligned} &|(M_k - M_{k-1})_{ij}(t)| = \left| \left(\int_{t_0}^t A(s_1) \int_{t_0}^{s_1} A(s_2) ... \int_{t_0}^{s_{k-1}} A(s_k) ds_k ... ds_2 ds_1 \right)_{ij} \right| \\ &\leq n^{k-1} \int_{t_0}^t \int_{t_0}^{s_1} ... \int_{t_0}^{s_{k-1}} \max_{ij} |A_{ij}(s_1)| \max_{ij} |A_{ij}(s_2)| ... \max_{ij} |A_{ij}(s_k)| ds_k ... ds_2 ds_1 \\ &\leq n^{k-1} \int_{t_0}^t \int_{t_0}^{s_1} ... \int_{t_0}^{s_{k-1}} \eta(s_1) \eta(s_2) ... \eta(s_k) ds_k ... ds_2 ds_1. \end{aligned}$$

Seja agora $\gamma(t) = \int_{t_0}^t \eta(s) ds$ e observe que integrando por **partes** temos

$$\int_{t_0}^{s_{k-2}} \int_{t_0}^{s_{k-1}} \eta(s_{k-1}) \eta(s_k) ds_k ds_{k-1} = \int_{t_0}^{s_{k-2}} \eta(s_{k-1}) \gamma(s_{k-1}) ds_{k-1}$$
$$= \gamma^2 (s_{k-1}) \Big|_{t_0}^{s_{k-2}} - \int_{t_0}^{s_{k-2}} \eta(s_{k-1}) \gamma(s_{k-1}) ds_{k-1}$$

que implica

$$\int_{t_0}^{s_{k-2}} \int_{t_0}^{s_{k-1}} \eta(s_{k-1}) \eta(s_k) ds_k ds_{k-1} = \frac{\gamma^2(s_{k-2})}{2}.$$

Logo

$$\int_{t_0}^{s_{k-3}} \int_{t_0}^{s_{k-2}} \int_{t_0}^{s_{k-1}} \eta(s_{k-2}) \eta(s_{k-1}) \eta(s_k) ds_k ds_{k-1} ds_{k-2} = \int_{t_0}^{s_{k-3}} \eta(s_{k-2}) \frac{\gamma^2(s_{k-2})}{2} ds_{k-2}$$

$$= \frac{\gamma^3(s_{k-2})}{2} \Big|_{t_0}^{s_{k-3}} - 2 \int_{t_0}^{s_{k-3}} \frac{\gamma^2(s_{k-2})}{2} \eta(s_{k-2}) ds_{k-2}$$

que nos dá

$$\int_{t_0}^{s_{k-3}} \eta(s_{k-2}) \frac{\gamma^2(s_{k-2})}{2} ds_{k-2} = \frac{\gamma^3(s_{k-3})}{3.2}.$$

Então

$$\int_{t_0}^{s_{k-3}} \int_{t_0}^{s_{k-2}} \int_{t_0}^{s_{k-1}} \eta(s_{k-2}) \eta(s_{k-1}) \eta(s_k) ds_k ds_{k-1} ds_{k-2} = \frac{\gamma^3(s_{k-3})}{3.2}.$$

Desta forma obtêm-se que

$$|(M_k - M_{k-1})_{ij}(t)| \le n^{k-1} \int_{t_0}^t \int_{t_0}^{s_1} ... \int_{t_0}^{s_{k-1}} \eta(s_1) \eta(s_2) ... \eta(s_k) ds_k ... ds_2 ds_1 = n^{k-1} \frac{\gamma^k(t)}{k!}.$$

Assim temos que cada termo na série

$$(M_k)_{ij} = (M_0)_{ij} + \sum_{l=1}^k (M_l - M_{l-1})_{ij}$$

é menor que seu termo correspondente da série

$$\begin{split} 1 + \gamma(t) + n \frac{\gamma^2(t)}{2} + n^2 \frac{\gamma^3(t)}{3!} + \dots &= 1 + \gamma(t) + \frac{1}{n} \left(\frac{(n\gamma(t))^2}{2} + \frac{(n\gamma(t))^3}{3!} + \dots \right) \\ &= 1 + \gamma(t) + \frac{1}{n} \left(e^{n\gamma(t)} - 1 - n\gamma(t) \right) = 1 - \frac{1}{n} + \frac{e^{n\gamma(t)}}{n}. \end{split}$$

Como $\gamma(t)$ é uma função **limitada** em $[t_0, t_1]$, obtemos do M-teste de Weierstrass que a sequencia $\{M_k\}_k$ converge uniformemente para um **limite** Φ dado por³

$$\Phi(t,t_0) = I + \int_{t_0}^t A(s_1)ds_1 + \int_{t_0}^t A(s_1) \int_{t_0}^{s_1} A(s_2)ds_2ds_1 + \dots + \int_{t_0}^t A(s_1) \int_{t_0}^{s_1} A(s_2)\dots \int_{t_0}^{s_{k-1}} A(s_k)ds_k\dots ds_2ds_1 + \dots$$

³Esta série é chamada de *Peano-Baker*.

Pela convergência uniforme podemos **derivar** a série Φ termos a termos obtendo

$$\frac{d}{dt}\Phi(t,t_0) = \frac{d}{dt}\left(I + \int_{t_0}^t A(s_1)ds_1 + \int_{t_0}^t A(s_1)\int_{t_0}^{s_1} A(s_2)ds_2ds_1 + \dots \right)
+ \int_{t_0}^t A(s_1)\int_{t_0}^{s_1} A(s_2)\dots\int_{t_0}^{s_{k-1}} A(s_k)ds_k\dots ds_2ds_1 + \dots \right)
= A(t) + A(t)\int_{t_0}^t A(s_2)ds_2 + \dots
+ A(t)\int_{t_0}^t A(s_2)\dots\int_{t_0}^{s_{k-1}} A(s_k)ds_k\dots ds_2 + \dots
= A(t)\left(I + \int_{t_0}^t A(s_2)ds_2ds_1 + \dots + \int_{t_0}^t A(s_2)\dots\int_{t_0}^{s_{k-1}} A(s_k)ds_k\dots ds_2 + \dots \right)
= A(t)\Phi(t,t_0).$$

Finalmente, temos

$$\frac{d}{dt}[\Phi(t,t_0)x_0] = \frac{d}{dt}[\Phi(t,t_0)]x_0 = A(t)\Phi(t,t_0)x_0$$

com $\Phi(t_0, t_0)x_0 = x_0$ que garante a existência de soluções para

$$\dot{x}(t) = A(t)x(t)$$
 com condição inicial $x(t_0) = x_0$.

Corolário

Se $A \in \mathbb{R}^{n \times n}$ é constante temos que

$$\Phi(t,t_0) = I + A(t-t_0) + \frac{A^2(t-t_0)^2}{2!} + \dots + \frac{A^k(t-t_0)^k}{k!} + \dots$$
$$= e^{A(t-t_0)}.$$

Prova. Basta calcular a série de Peano-Baker com a hipótese A constante.

$$\Phi(t,t_0) = I + \int_{t_0}^t A(s_1)ds_1 + \int_{t_0}^t A(s_1) \int_{t_0}^{s_1} A(s_2)ds_2ds_1 + \dots$$

$$+ \int_{t_0}^t A(s_1) \int_{t_0}^{s_1} A(s_2) \dots \int_{t_0}^{s_{k-1}} A(s_k)ds_k \dots ds_2ds_1 + \dots$$

$$= I + A \int_{t_0}^t ds_1 + A^2 \int_{t_0}^t \int_{t_0}^{s_1} ds_2ds_1 + \dots$$

$$+ A^k \int_{t_0}^t \int_{t_0}^{s_1} \dots \int_{t_0}^{s_{k-1}} ds_k \dots ds_2ds_1 + \dots$$

$$= I + A(t - t_0) + A^2 \int_{t_0}^t (s_1 - t_0)ds_1 + \dots$$

$$+ \frac{A^k}{(k-1)!} \int_{t_0}^t (s_1 - t_0)^{k-1} ds_1 + \dots$$

o que nos dá o resultado desejado.

Exercícios

1. Integração por partes

Prove que se f e g são funções com **derivada** contínua em [a,b], então vale a fórmula

$$\int_{a}^{b} f(x) \, \dot{g}(x) \, dx = f(x) \, g(x) \Big|_{a}^{b} - \int_{a}^{b} g(x) \dot{f}(x) \, dx$$

onde
$$h(x)\Big|_{a}^{b} = h(b) - h(a)^{a}$$
.

2. Uma partícula em movimento

Uma partícula se move em linha **reta** com velocidade $v(t) = t^2 e^{-t}$ metros por segundo após t segundos. Quão longe ela **viajará** durante os t segundos iniciais?

^aIntegre a fórmula de derivação do produto.

Exercícios

3. Não unicidade

Encontre duas soluções diferentes para a equação não linear

$$\dot{x}(t) = \sqrt{x(t)}$$
 com condição **inicial** $x(0) = 0$.

4. Produto de matrizes

i) Sejam A e $B \in \mathbb{R}^{n \times n}$. Verifique que^a

$$|(AB)_{ij}| \le n \max_{ij} |A_{ij}| \max_{ij} |B_{ij}| \quad \text{ para todo } \quad 1 \le i, j \le n.$$

ii) O **traço** de uma matriz $A \in \mathbb{R}^{n \times n}$ é definido como a **soma** dos elementos de sua diagonal $\operatorname{tr}(A) = \sum_i A_{ii}$. Mostre que:

$$tr(AB) = tr(BA) \quad \forall A, B \in \mathbb{R}^{n \times n}.$$

^aUse a definição de produto de matrizes.

Exercícios

5. Convergência uniforme

Use o M-Teste de Weierstrass enunciado abaixo e em Link para mostrar que as séries de funções a seguir convergem uniformemente.

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}$$
, $x \in (-\infty, +\infty)$ b) $\sum_{n=1}^{\infty} \frac{x^{3/2}}{1 + n^2 x^2}$, $x \in [0, +\infty)$.

6. M-Teste de Weierstrass

Seja $\{f_k\}_{k\in\mathbb{N}}$ uma **sequencia** de funções reais definidas em $I\subset\mathbb{R}$.

i) Mostre que a série de funções $\sum_k f_k(x)$ converge **uniformemente**, se só se, dado $\epsilon>0$, **existe** $N(\epsilon)\in\mathbb{N}$ tal que

$$\left|\sum_{k=n}^{m} f_k(x)\right| < \epsilon \quad \forall x \in I \quad e \quad n, m \ge N(\epsilon).$$

ii) Suponha que $|f_k(x)| \le M_k \ \forall x \in I$ e que $\sum_k M_k < \infty$. Prove que $\sum_k f_k(x)$ **converge** uniformemente e absolutamente.

