

AULA Nº 08
ORGANIZAÇÃO DE
COMPUTADORES

Tradução, compilação e desempenho

Tradução

FIGURE 2.21 A translation hierarchy for C. A high-
level language program is first compiled into an
assembly language program and then assembled
into an object module in machine language. The
linker combines multiple modules with library routines
to resolve all references. The loader then places the
machine code into the proper memory locations for
execution by the processor. To speed up the
translation process, some steps are skipped or
combined. Some compilers produce object modules
directly, and some systems use linking loaders that
perform the last two steps. To identify the type of fi le,
UNIX follows a suffix convention for fi les: C source
files are named x.c, assembly fi les are x.s, object fi
les are named x.o, stati cally linked library routines
are x.a, dynamically linked library routes are x.so,
and executable fi les by default are called a.out. MS-
DOS uses the suffixes .C, .ASM, .OBJ, .LIB, .DLL,
and .EXE to the same effect.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Produzindo um objeto
Assembler traduz e provê informações.
Header: conteúdo do módulo objeto
Segmento de texto: instruções traduzidas
Segmento de dados estático: toda duração
Info de relocação: para conteúdo que depende de
referências absolutas do programa carregado
Tabela de símbolos: definições globais e
referências externas
Info de debug: para associar a código fonte

Ligando objetos

Produz imagem executável
1. Junta segmentos
2. Resolve rótulos (determina endereços)
Ex.: instruções de desvio ou salto
3. Corrige referências dependentes de local e
externas

Carregando um programa
Carrega imagem do disco para memória
1. Lê header para obter tamanho de segmentos
2. Cria espaço de endereçamento virtual
3. Copia segmento de texto e inicializa dados
4. Coloca argumentos na pilha
5. Inicializa registradores (inclusive $sp, $fp, $gp)
6. Salta para rotina inicial
 copia argumentos para $a0, … e inicia
 quando sair, chama syscall

Memória

FIGURE 2.13 The MIPS memory allocation for
program and data. These addresses are only a
software convention, and not part of the MIPS
architecture. The stack pointer is initialized to 7fff fffc hex
and grows down toward the data segment. At the other
end, the program code (“text”) starts at 0040 0000 hex.
The static data starts at 1000 0000hex. Dynamic data,
allocated by malloc in C and by new in Java, is next. It
grows up toward the stack in an area called the heap.
The global pointer, $gp, is set to an address to make it
easy to access data. It is initialized to 1000 8000 hex so
that it can access from 1000 0000 hex to 1000 ffffhex using
the positive and negative 16-bit offsets from $gp. This
information is also found in Column 4 of the MIPS
Reference Data Card at the front of this book.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Iniciando aplicações em Java

FIGURE 2.23 A translation hierarchy for Java. A Java program is first compiled into a binary version of Java bytecodes, with all addresses
defined by the compiler. The Java program is now ready to run on the interpreter, called the Java Virtual Machine (JVM). The JVM links to
desired methods in the Java library while the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, which
selectively compiles methods into the native machine language of the machine on which it is running.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Exemplo – Ordenação

FIGURE 2.24 A C procedure that swaps two locations in memory. This subsection
uses this procedure in a sorting example.
Copyright © 2009 Elsevier, Inc. All rights reserved.

FIGURE 2.25 MIPS assembly code of
the procedure swap in Figure 2.24.
Copyright © 2009 Elsevier, Inc. All rights
reserved.

Exemplo – Ordenação

FIGURE 2.26 A C procedure that performs a sort on the array v.
Copyright © 2009 Elsevier, Inc. All rights reserved.

FIGURE 2.27 MIPS assembly version of
procedure sort in Figure 2.26.
Copyright © 2009 Elsevier, Inc. All rights
reserved.

Compilador e desempenho

FIGURE 2.28 Comparing performance, instruction count, and CPI using compiler optimization for Bubble Sort. The programs sorted 100,000 words with the
array initialized to random values. These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus with 2 GB of PC2100 DDR
SDRAM. It used Linux version 2.4.20.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Explicações sobre otimizações: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Linguagens e algoritmos

FIGURE 2.29 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative to unoptimized C version.
The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and execution option. These programs were run on
the same system as Figure 2.28. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot version 1.3.1.
Copyright © 2009 Elsevier, Inc. All rights reserved.

IC e CPI não são bons indicadores de desempenho
isoladamente!
Otimizações do compilador são sensíveis ao algoritmo.
Código compilado é mais rápido do que o interpretado.

Distribuição de instruções

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs, and percent age of MIPS
instructions executed by category for the average SPEC2006 benchmarks.
Copyright © 2009 Elsevier, Inc. All rights reserved.

ARM e MIPS

FIGURE 2.31 Similarities in ARM and MIPS instruction sets.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Instruções x86

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the
encoding of the postbyte. Many instructions contain the 1-bit field w,
which says whether the operation is a byte or a double word. The d field
in MOV is used in instructions that may move to or from memory and
shows the direction of the move. The ADD instruction requires 32 bits for
the immediate field, because in 32-bit mode, the immediates are either 8
bits or 32 bits. The immediate field in the TEST is 32 bits long because
there is no 8-bit immediate for test in 32-bit mode. Overall, instructions
may vary from 1 to 17 bytes in length. The long length comes from extra
1-byte prefixes, having both a 4-byte immediate and a 4-byte
displacement address, using an opcode of 2 bytes, and using the scaled
index mode specifier, which adds another byte.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Número de instruções x86

FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to some of these
extensions, this rapid change also increases the diffi culty for other companies to try to build compatible processors.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Referências

Seções 2.12 a 2.19 - “Organização e Projeto de
Computadores – A Interface Hardware/Software”,
David A. Patterson & John L. Hennessy, Campus, 4
edição, 2013.

