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The inclusion of managed tropical forests in climate change mitigation has made it important to find
the sustainable sweet-spot for timber production, carbon retention, and the quick recovery of both.
Here we focus on recovery of aboveground carbon and timber stocks over the first 32 years after selec-
tive logging with the CELOS Harvest System in Suriname. Our data are from twelve 1-ha permanent
sample plots in which growth, survival, and recruitment of trees �15 cm diameter were monitored
between 1978 and 2012. We evaluate plot-level changes in basal area, stem density, aboveground car-
bon, and timber stock in response to average timber harvests of 15, 23, and 46 m3 ha�1. We use a linear
mixed-effects model in a Bayesian framework to quantify recovery time for aboveground carbon and
timber stock, as well as annualized increments for both. Our statistical models accounted for the uncer-
tainty associated with the height and biomass allometries used to estimate aboveground carbon and
increased precision of annualized aboveground carbon increments by including data from forty-one
plots located elsewhere on the Guiana Shield. The probabilities of aboveground carbon recovery to
pre-logging levels 32 years after harvests of 15, 23 and 46 m3 ha�1 were 45%, 40%, and 24%, respec-
tively. Net aboveground carbon increment for logged forests across all harvest intensities was
0.64 Mg C ha�1 yr�1, more than twice the rate observed in unlogged forests (0.26 Mg C ha�1 yr�1). The
probabilities of timber stock recovery at the end of the 32-year period were highest after harvest inten-
sities of 15 and 23 m3 ha�1 (with 80% probability) and lowest after the harvest of 46 m3 ha�1 (with 70%
probability). Timber stock recovery across all harvest intensities was driven primarily by residual tree
growth. Application of the legal cutting limit of 25 m3 ha�1 will require more than 70 and 40 years to
recover aboveground carbon and timber stocks, respectively, with 90% probability. Based on the low
recruitment rates of the twelve species harvested, the 25 year cutting cycle currently implemented
in Suriname is too short for long-term timber stock sustainability. We highlight the value of propagat-
ing uncertainty from individual tree measurements to statistical predictions of carbon stock recovery.
Ultimately, our study reveals the trade-offs that must be made between timber and carbon services as
well as the opportunity to use carbon payments to enable longer cutting rotations to capture carbon
from forest regrowth.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Technological advancements (e.g., development of chainsaws
and bulldozers) coupled with growth of global shipping industries
and increased demand for tropical timbers during the mid-20th
Century led to the degradation of large expanses of tropical forests
by unnecessarily destructive logging (Dawkins and Philip, 1998).
Concerns about sustained timber production and the environmen-
tal degradation caused by bad logging practices motivated research
to identify management prescriptions for improved tropical forest
management. These logging studies aimed to reconcile tropical
timber production with the provision of other ecosystem services,
and to ensure continued timber production with economically
viable cutting cycles (FAO, 2004; Jonkers, 1987; Nicholson, 1958,
1979; van der Hout, 1999).

The CELOS Harvest System experiments in Suriname, the results
of which were recently reviewed by Werger (2011), are among the
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oldest on-going studies of improved forest management in the
tropics. The CELOS approach involves the selective removal of a
few trees per hectare in a manner that minimizes collateral dam-
age to the residual forest and improves recovery of utilizable tim-
ber. The specific logging practices employed include: (1) mapping
all trees of commercial timber species �35 cm measured at 1.3 m
above the ground (DBH); (2) selecting trees to be felled to avoid
aggregations that would result in large felling gaps; (3) planning
and construction of roads and skid trails prior to felling; (4) direc-
tional felling to facilitate log extraction; and, (5) winching of logs
during extraction and the use of wheeled skidders for long-
distance log yarding (de Graaf, 1986; Jonkers, 1987). These prac-
tices are common components of what are now referred to as
reduced-impact logging (RIL) systems (e.g., Putz et al., 2008). The
full CELOS Management System also includes the release of future
crop trees from competition through poison girdling of non-
marketable stems, but no post-harvest silvicultural treatments
were applied in the plots we studied.

Although the primary goal of the CELOS Management System
was to sustain timber stocks, reduction in residual stand damage
relative to unplanned or conventional logging also has positive
effects on standing stocks of forest carbon and rates of post-
logging recovery (Pinard and Putz, 1996; Putz et al., 2012; Vidal
et al., 2016). By reporting on the post-logging dynamics of above-
ground carbon stocks (ACS) and timber stocks, we hope that this
study helps inform the management of Suriname’s forest for both,
the former associated with the country’s commitment to climate
change mitigation (e.g., REDD+, Intended Nationally Determined
Contribution (INDCs) associated with COP12; UFCCC, 2016). In par-
ticular, with permanent sample plot data for the first 32-years after
logging, we evaluate changes in tree density, basal area, ACS, and
timber stocks.

We use permanent sample plot data collected between 1978
and 2012 to build statistical models in a Bayesian framework to
predict recovery time and forest stand increments as a function
of harvest intensity (m3 ha�1 of commercial timber). Our Bayesian
analytical approach also provided a means to address the long and
irregular census intervals that would otherwise result in underes-
timated aboveground carbon increments (Clark et al., 2001; Sheil
and May ,1996; Talbot et al., 2014). Specifically, we include results
from previous research on aboveground carbon increments for the
Guiana Shield as informed priors to reduce uncertainty in our
model predictions (Crome et al., 1996; McCarthy and Masters,
2005; Morris et al., 2013). In addition to leveraging knowledge
gained from other studies, our Bayesian approach enabled us to
propagate uncertainty associated with our height and biomass
allometries into our ACS recovery predictions.
2. Methods

2.1. Study site

The experimentally logged plots are in a 1150 ha research area
(hereafter Kabo; 5�150N, 55�430W) in north-central Suriname
(Fig. S1). Common canopy tree species in this lowland moist trop-
ical forest are Dicorynia guianensis Amshoff (Fabaceae), Qualea
rosea Aubl. (Vochysiaceae), and Dendrobangia boliviana Rusby (Car-
diopteridaceae). The understory is composed mainly of palms, with
Astrocaryum sciophyllum Pulle and Astrocaryum paramaca Mart. the
most abundant (Jonkers, 1987). The soil is an ultic haplorthox, a
low pH sandy loam that is characteristic of the highly weathered
Precambrian Guiana Shield (Hammond, 2005; Poels, 1987;
Quesada et al., 2010). Annual precipitation is 2385 mm with a
mean of 98 mm in each of the driest months of September and
October (Dekker and de Graaf, 2003).
2.2. Experimental design and logging treatments

Trees of commercial timber species (DBH � 15 cm; Table S1)
were marked, mapped, and measured across a 140-ha forest com-
partment in 1978. Experimental logging treatments designed to
remove 1, 2, and 4 m2 ha�1 of basal area were applied between
1979 and 1980 based on a randomized block design. Each logging
treatment was applied to 4 ha with 3 replicates per logging treat-
ment (Table 1; Fig. S1). The basal areas removed corresponded to
average harvests of 15, 23, and 46 m3 ha�1 of commercial log vol-
umes (hereafter low, medium, and high-intensity timber harvests;
Jonkers, 1987, 2011). Trees of commercial timber species � 15 cm
DBH were re-censused immediately after logging in 1980 in 1 ha
permanent sample plots established within each of the 4 ha treat-
ment blocks.

Growth, recruitment, and mortality of trees �15 cm DBH of all
species, commercial and non-commercial, were subsequently
monitored in these 1-ha plots (100 � 100 m) for each replicated
treatment four times (1981, 1983, 2000 and 2012). Unlogged con-
trol plots of 1-ha were established within the study site in 1983
and remeasured in 2000 and 2012 (Fig. S1). Censuses adhered to
protocols established by Jonkers (1983) based on standards set
out in Synnott (1979). Tree species were identified by para-
botanists (tree-spotters) based on common names and converted
to their scientific names by a trained botanist. In instances where
species were unknown, botanical collections were made for com-
parison with herbarium specimens. In cases of irregular stem form
associated with buttresses and bole deformities, the point of mea-
surement was moved to 1 m above the end of the deformity to con-
tinue growth monitoring.

When the forest was selectively logged by trained and closely
supervised crews, the main skid trails were opened with a D6 bull-
dozer within 25-m wide strips between the 1-ha permanent sam-
ple plots. Trees were directionally felled to aid extraction with
wheeled skidders. Tree location maps developed from a 100%
pre-harvest inventory of harvestable trees, together with topo-
graphic maps, were used to inform the selection of trees to be har-
vested and to plan the most appropriate routes for extraction.
There were a total of six skid trail entry points into the 1-ha perma-
nent sample plots, three on the western side and three located on
the east.

2.3. Stem densities and basal areas (m2 ha�1)

We report changes over time in basal area, stem density, and
diameter class distributions for the twelve 1-ha permanent sample
plots. As pre-logging data were only available for commercial
stems prior to logging, we track the changes in forest structure
for the logged plots between the first census completed post-
logging (1981) when all stems, commercial and non-commercial
species, were recorded to the last census in 2012, except for timber
stocks where we use the plot census data from 1980. We also
report on the observed changes for the control plots between
1983 and 2012 as well as the basal area-weighted average wood
density across censuses and diameter classes for all plots. We
acknowledge that forest structure can vary greatly across small
spatial scales, and the use of only three 1-ha control plots as base-
line reference values is not ideal. We address this limitation in our
statistical models for ACS recovery through the estimation of plot-
level ACS prior to logging based on an emissions factor associated
with logging intensity (Appendix 2).

2.4. Aboveground carbon stocks (ACS; Mg C ha�1)

To estimate aboveground biomass for each tree across censuses
we applied the pan-tropical allometric model of Chave et al. (2014;



Table 1
Stem density, basal area (m2 ha�1), and ACS (Mg C ha�1) by stem diameter class in 1981 (2-years post-logging) and 2012 (32-years post-logging). Commercial timber stocks (m3 ha�1) are reported for 1978 (pre-logging) and 2012. ACS
values reported are the mean from 1350 posterior predictions based on uncertainty associated with our allometric models. Control plot values are from 1983 to 2012.

Plot ID 41 42 43 19 28 34 14 26 38 12 22 32
Logging intensity

(basal area - m2 ha�1)
0.00 0.00 0.00 1.19 1.61 1.74 2.81 2.74 2.60 3.51 4.04 3.82

Logging intensity
(m3 ha�1)

0.00 0.00 0.00 14.30 15.30 14.60 22.50 30.30 22.50 49.10 56.40 42.20

Logging intensity
(stems ha�1)

0 0 0 4 3 3 7 6 6 13 11 12

Census year 1983 2012 1983 2012 1983 2012 1981 2012 1981 2012 1981 2012 1981 2012 1981 2012 1981 2012 1981 2012 1981 2012 1981 2012

(1) Stem density (ha�1)
15–30 170 150 180 153 147 137 142 139 158 145 182 184 172 186 140 178 165 187 131 134 132 157 135 154
30–45 54 71 60 73 54 44 48 53 58 45 64 65 50 65 34 56 62 50 52 57 51 48 61 47
45–60 22 24 24 25 18 22 22 31 19 29 18 26 21 16 23 20 22 32 15 40 17 25 18 32
>60 20 22 28 27 18 14 18 23 17 23 9 20 22 17 18 18 15 20 10 13 19 25 15 29
Total 266 267 292 278 237 217 230 246 252 242 273 295 265 284 215 272 264 289 208 244 219 255 229 262

(2) Basal area (m2 ha�1)
15–30 6.41 5.50 6.45 5.85 5.49 5.29 5.56 5.32 5.42 5.18 6.51 6.57 5.96 6.72 4.61 6.45 5.84 6.76 4.83 5.16 4.68 5.58 4.83 5.64
30–45 5.53 7.62 6.10 7.68 5.61 4.90 5.41 5.42 6.16 4.91 6.68 6.58 5.39 6.59 3.45 5.99 6.37 5.38 5.44 6.13 5.54 5.45 6.26 4.86
45–60 4.53 5.09 5.33 5.21 3.83 4.60 4.99 6.48 3.90 5.99 3.61 5.34 4.32 3.46 5.00 4.42 4.57 7.00 3.30 8.60 3.51 5.32 3.84 6.86
>60 8.53 10.12 13.43 15.16 10.43 9.76 7.73 11.09 9.53 12.06 4.66 8.79 10.25 7.51 9.26 9.81 6.04 8.98 3.28 5.38 8.77 11.75 9.07 13.56
Total 25.01 28.34 31.31 33.90 25.37 24.55 23.68 28.31 25.02 28.15 21.45 27.29 25.91 24.28 22.33 26.67 22.82 28.12 16.86 25.27 22.50 28.09 23.99 30.92

(4) Wood specific gravity (g cm�3)
15–30 0.64 0.64 0.66 0.65 0.62 0.63 0.66 0.63 0.64 0.65 0.62 0.62 0.64 0.59 0.61 0.62 0.66 0.64 0.63 0.60 0.63 0.62 0.63 0.60
30–45 0.65 0.64 0.68 0.68 0.63 0.61 0.66 0.65 0.64 0.65 0.60 0.62 0.60 0.59 0.68 0.61 0.68 0.65 0.69 0.64 0.64 0.60 0.62 0.65
45–60 0.63 0.63 0.66 0.66 0.63 0.65 0.66 0.66 0.66 0.60 0.67 0.63 0.63 0.61 0.63 0.66 0.68 0.66 0.65 0.68 0.69 0.65 0.62 0.60
>60 0.62 0.62 0.68 0.65 0.62 0.60 0.68 0.65 0.63 0.66 0.59 0.58 0.59 0.68 0.63 0.66 0.60 0.67 0.73 0.63 0.69 0.66 0.71 0.67
Mean plot level

wood density
0.63 0.63 0.67 0.66 0.62 0.62 0.66 0.65 0.64 0.64 0.62 0.61 0.61 0.62 0.64 0.64 0.66 0.65 0.68 0.64 0.66 0.63 0.65 0.63

(4) ACS (Mg ha�1)
15–30 25.98 22.08 26.60 24.18 21.60 21.38 23.45 21.51 21.36 21.15 25.11 25.67 23.52 24.76 17.34 25.13 24.04 27.14 18.79 19.46 18.74 21.57 19.37 21.34
30–45 28.29 38.39 32.24 40.91 27.99 23.90 28.22 27.71 30.69 25.36 31.76 31.92 25.88 30.70 18.54 29.23 33.71 27.63 28.75 31.30 28.22 26.27 30.77 24.98
45–60 25.79 29.18 32.27 31.21 21.65 27.25 30.31 39.32 23.47 32.33 21.20 30.34 24.70 19.58 28.96 26.89 27.76 40.84 19.04 52.82 21.89 31.47 21.76 37.10
>60 55.26 67.93 99.28 110.68 73.28 70.21 56.28 76.04 67.87 88.13 29.91 54.34 65.60 54.51 64.77 72.78 37.07 61.79 24.16 36.36 65.68 85.04 74.46 100.92
Total 135.32 157.57 190.39 206.97 144.52 142.75 138.26 164.58 143.39 166.97 107.98 142.28 139.70 129.56 129.61 154.03 122.57 157.40 92.38 140.11 134.53 164.35 146.36 184.34

(5) Timber stocks
(m3 ha�1)

1983 2012 1983 2012 1983 2012 1978 2012 1978 2012 1978 2012 1978 2012 1978 2012 1978 2012 1978 2012 1978 2012 1978 2012

15–30 9.33 4.30 8.72 5.35 2.25 0.34 8.14 0.82 11.55 6.64 15.83 6.98 8.99 5.13 5.62 1.15 5.68 7.61 5.32 1.77 11.19 5.57 15.12 11.94
30–45 21.10 27.96 12.56 18.71 9.49 7.14 13.15 12.59 32.88 22.84 21.62 29.07 17.10 14.15 9.64 11.03 15.58 18.72 18.99 15.64 23.92 25.27 32.52 27.43
45–60 30.05 27.53 22.62 23.91 7.37 10.25 25.14 25.92 20.46 31.21 11.30 26.30 29.09 13.42 30.04 13.00 27.37 31.15 32.21 42.60 26.03 31.95 44.02 56.20
>60 60.88 89.74 80.52 109.88 32.61 23.00 15.83 64.33 80.38 106.00 40.08 64.47 51.13 36.70 67.64 47.90 60.09 68.58 53.22 48.52 77.57 88.00 76.15 126.48

Total 121.36 149.53 124.43 157.84 51.71 40.73 62.26 103.66 145.27 166.69 88.83 126.83 106.31 69.40 112.94 73.09 108.72 126.06 109.73 108.53 138.70 150.78 167.81 222.05
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Eq. 4): aboveground biomass ¼ b0 � ðpD2HÞb1 , where p is species-
specific wood density (g cm�3), D is stem diameter (cm), and H is
total tree height (m). Tree heights were not measured so we esti-
mated them with the diameter-height allometry model also pro-
posed by Chave et al. (2014; Eq. 6a), lnðHÞ ¼ h0 � Eþ h1 � lnðDÞ�
h2 � ðlnðDÞÞ2. The E parameter is a site-specific bioclimatic stress
variable that includes temperature seasonality, precipitation sea-
sonality, and climatic water deficit. We estimate the bi and hi
parameters in the allometric equations using the Chave et al.
(2014) destructive harvest dataset (Appendix 3). We propagate
the uncertainty around the bi and hi parameters into 1350 poste-
rior predictions of biomass for each individual tree in our census
data. Aboveground carbon stocks (ACS) were estimated by multi-
plying aboveground tree biomass by 0.47 (IPCC, 2003).

Stem wood densities ½p� used in our biomass allometry were
extracted from a global pan-tropical database (Chave et al.,
2009); in the absence of species-level p values (9% of trees), the
mean wood density was used for congeneric trees in tropical South
America; if genus-level wood density data were unavailable (2% of
trees), we used mean family values; and, for a single stem for
which we had no taxonomic information, we used the basal
area-weighted average wood density for the plot (Baker et al.,
2004).
2.5. Timber stocks (m3 ha�1)

We applied in-country derived species-specific allometric equa-
tions to estimate timber stocks when available, but otherwise used
a generic equation (Table S1). Our estimates of rates of post-
logging timber stock recovery are restricted to the 12 species har-
vested in 1979 (Table S1) and to trees �35 cm DBH, the legal min-
imum cutting diameter in Suriname. Only stems of commercial
value, as indicated by log quality assessments made at each census
were included in our timber stock estimation. We retained class
code 1 stems (trees with straight and long boles without defects),
and class code 2 stems (trees slightly leaning, somewhat crooked,
or with minor defects) for reporting timber stocks (Alder and
Synnott, 1992). To account for the lower timber stock recovery
associated with minor defects for trees with stem class code 2,
we reduced our timber stock estimates by 20% for those trees.
We were not able to propagate uncertainty associated with our
allometric equations used to estimate timber stock, as we did for
ACS, because the original destructive harvest data used to build
the timber stock allometric equations were not available.
2.6. Statistical models: ACS and timber stock recovery

We weighted our response variables, ACS and timber stock, by
their respective plot-level initial values (i.e., prior to logging). This
proportional approach facilitates interpretation of model predic-
tions; values �1 indicate full plot recovery to the initial forest
state. As we did not have initial ACS values for the logged plots,
we estimate these values by applying a carbon emissions factor
based on logging intensity from a study conducted in Guyana on
the same weathered Precambrian Guiana Shield substrate as our
study site in Suriname (Pearson et al., 2014). The emissions factor
of 1.52 Mg C m�3 ha�1 accounted for carbon emissions associated
with the extracted log, damage to the residual stand, and logging
infrastructure associated with skid trails (Appendix 2). The
weighted ACS values we consider to be conservative estimates of
recovery as the emissions factors reported in the Pearson et al.,
(2014) included stems with DBH � 10 cm, whilst our census data
are restricted to stems with DBH � 15 cm. We estimate ACS stored
in stems 10–15 cm DBH to be approximately 1.97 Mg C ha�1
(SD ± 0.37), based on permanent sample plot data from Guyana
(unpublished data).

We used a linear mixed-model approach to predict the time
needed for ACS and timber stocks to recover to pre-logging values.
Our mixed-model approach allows us to account for correlations
among repeated measures at the plot level that would otherwise
violate the assumption of independence. We incorporated plot-
level random effects in our models to account for these correla-
tions under the assumption of heterogeneous variance (Barnett
et al., 2010).

We partitioned the additional variation in our models into fixed
effects for harvest intensity (timber volume extracted) and time-
since-logging (years), which are continuous covariates:

lij ¼ ao þ b1 � harv :intensityþ b2 � time:since:logged

þ ðb3 � harv :intensity � time:since:loggedÞ þ plot½i�

where lij represents the mean from a normal distribution for the ith

plot and jth census. ao is the intercept term that represents the
unlogged forest state; and, b1, b2 and b3 capture the effect of harvest
intensity, time-since-logging, and the interaction between harvest
intensity and time, respectively. Plot level variance is captured by
plot½i�. We explored several models that included different combina-
tions of covariates and also treated censuses as a fixed categorical
random effect. We use the Deviance Information Criterion (DIC) to
select the best model and present results from those models
(Spiegelhalter et al., 2002). We also assessed the goodness-of-fit
of our models based on the variance explained (R2), and partitioned
the explained variance into fixed and random factors (Nakagawa
and Schielzeth, 2013; Appendix 1).

Our final model predictions accounts for uncertainty associated
with our model parameters as well as sampling uncertainty based
on a Gaussian distribution. The flexibility of our Bayesian modeling
framework also enabled us to propagate the uncertainty associated
with our height and biomass allometries into our statistical model
for estimation of ACS. We ran all our models for 300,000 iterations,
discarded the first 20,000 draws, and thinned our remaining
posterior samples by 2000 using JAGS in R (Plummer, 2011;
R Development Core Team, 2015).
2.7. Annualized increments for aboveground carbon and timber

We calculated annualized increments for aboveground carbon
and timber based on the methodology recommended by Clark
et al. (2001) for forest stands that are re-measured after long inter-
vals. We estimated the difference in carbon stock from all surviving
trees at the plot-level between censuses, subtracted carbon gained
from newly recruited trees and added the biomass of trees that
died between censuses (Clark et al., 2001). To account for uncer-
tainty in aboveground carbon increments due to the long census
intervals, we used aboveground carbon increments (Mg C ha�1

yr�1) reported from forty-one plots across the Guiana Shield in
our statistical model. Failure to correct for the long census intervals
would otherwise result in underestimates of annualized above-
ground carbon increments due to (1) unobserved growth of resid-
ual trees that died between censuses and (2) trees that grew to
exceed 15 cm DBH but died before they were recorded (Clark
et al., 2001).We incorporate the results from the Johnson et al.,
(2016) as informative priors for the unlogged forest state in our
statistical model because we were unable to implement the para-
metric technique recommended by Malhi et al. (2004). That
approach partitions sequential censuses into increasing time inter-
vals, but we are limited by two census intervals, 1983–2000 and
2000–2012, that averages 15 years between censuses. We also
did not use the method recommended by Talbot et al. (2014) to
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deal with the same problem, which estimates the number of unob-
served recruits based on mean annual mortality and recruitment
rates, because it seems more suited for shorter time spans between
censuses.

Instead of the Malhi et al. (2004) and Talbot et al. (2014) correc-
tions for underestimated aboveground productivity, we rely on
Bayes’ principle that allows us to include published rates of above-
ground carbon increments for the Guiana Shield in the form of a
prior distribution to increase the precision of our model predic-
tions for aboveground carbon productivity. The combination of this
prior information, with the likelihood function that relates our
observed data to the statistical model, enables us to obtain a pos-
terior distribution that characterizes the parameter of interest
under Bayes’ theorem. If the prior information specified does not
reduce the model fit, the model DIC value (which is analogous to
the AIC in a likelihood framework) will improve (Spiegelhalter
et al., 2002). Improvements indicate that the prior information
specified is consistent with the data and that the data had an over-
whelmingly large influence on the posterior distribution (Morris
Fig. 1. Changes (D) in stem density (a), basal area (b), and ACS (c) from 2 years (1981) to
(1980) to 32 (2012) years after selective logging. Numbers on graph identify the plots and
of change over the period reported. Changes across the unlogged forest plots are located
propagate the uncertainty of our allometric models used to estimate ACS (c) and plotte
et al., 2013). Bayes’ principle is especially suited to our needs given
that we aim to quantify and communicate uncertainty around
post-logging recovery in a probabilistic manner, and overcome
data limitations with a quantitatively rigorous approach to better
inform forest managers (Hobbs and Hooten, 2015; McCarthy and
Masters, 2005).

3. Results

3.1. Stem density and basal area (m2 ha�1) recovery

Average density of trees �15 cm DBH in the control plots
declined by 4% over the 29-year observation period, from 265
stems ha�1 in 1983 to 254 stems ha�1 in 2012. After logging at
medium and high intensities, stem densities increased by 14%
and 16% between 1981 and 2012, from 248 to 282 stems ha�1

and from 218 to 254 stems ha�1, respectively; average density
after low intensity logging increased by 4%, from 251 to
261 stems ha�1 (Table 1; Fig. 1).
32 years (2012) after selective logging. Changes in timber stock (d) are from 1 year
corresponds to the meta-data presented in Table 1 with arrows indicating direction
at the zero point of the x-axis (plots 41, 42, and 43) and are from 1983 to 2012. We
d the mean values.
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Basal area in the control plots increased by 6% between 1983
(27.23 m2 ha�1) and 2012 (28.93 m2 ha�1). On average high inten-
sity logged plots had the lowest basal area in 1981 (21.12 m2 ha�1)
after logging with the largest increase of 33% by 2012
(28.09 m2 ha�1). Basal area in the low intensity logged plots
increased by 19% (from 23.38 to 27.92 m2 ha�1) and medium
intensity logged plots by 11% (from 23.69 to 26.36 m2 ha�1;
Table 1; Fig. 1). Between 1981 and 2012, basal area-weighted aver-
age wood density for control, low, and medium intensity logged
plots remained relatively constant at 0.64 g cm�3 whereas it
declined by 4% after the highest intensity of logging, from
0.66 g cm�3 in 1981 to 0.63 g cm�3 in 2012 (Table 1).

3.2. ACS (Mg C ha�1) and timber stock (m3 ha�1) recovery

Average control plot ACS increased by 8% over the 29-year
observation period, from 156.75 Mg C ha�1 in 1983 to
169.10 Mg C ha�1 in 2012. On average, ACS in low, medium, and
high intensity logged plots 32 years after the harvest were below
the 2012 control plot mean values by 7% (157.94 Mg C ha�1), 13%
(146.99 Mg C ha�1), and 4% (162.94 Mg C ha�1), respectively, with
highly variable plot-level ACS gains (Fig. 1).

Commercial timber in stems �35 cm DBH that were judged to
have merchantable boles (Grade 1 plus 80% of Grade 2) was esti-
mated at 100 m3 ha�1 (SE ± 9.2) prior to logging in 1978 across
the entire harvest block. Control forest stands recorded an increase
in standing stocks of timber of 25% from 1983 (87.4 m3 ha�1) to
2012 (109.30 m3 ha�1). Plots logged at low and high intensity
had recovered their initial (1978) commercial timber of
81.56 m3 ha�1 and 120.21 m3 ha�1, respectively; in 2012 their
commercial timber stocks were 49% (121.62 m3 ha�1) and 24%
(148.57 m3 ha�1) higher than their initial commercial timber
stocks. Over the same 32-year period, plots logged at medium
intensity recovered to 84% of commercial timber stocks measured
Fig. 2. Model predictions of recovery of ACS (a, b, and c) and timber stock (d, e, and f) at l
initial ACS (Mg C ha�1) and timber stock (m3 ha�1). Solid lines are the mean predic
represented by the lighter colored ribbons. Predictions above the dashed horizontal line
in 1978, from 98.22 m3 ha�1 before the harvest to 82.58 m3 ha�1 in
2012.
3.3. Model predictions of ACS and timber stock recovery

The probability of ACS recovery 32 years post-logging was 45%,
40% and 24% after low, medium, and high logging intensity (Fig. 2).
At the currently instituted legal harvest intensity of 25 m3 ha�1,
more than 70 years will be required to recover ACS with 90% prob-
ability. The mean predicted time to recover initial ACS, estimated
at 184.95 Mg C ha�1 across all plots, after 25 m3 ha�1 harvest
intensity is 37 years (95%; CI, 140.56 to 229.34 Mg C ha�1). Logging
intensity ðb1Þ had a negative effect on ACS recovery with time-
since-logging ðb2Þ and the interaction term ðb3Þ with positive but
non-significant effects (Fig. 3).

Model predictions of timber stock recovery at the end of
32 years after logging was 82%, 80% and 70% after low, medium,
and high logging intensity. The mean recovery time needed at har-
vest intensity of 25 m3 ha�1 was estimated at 20 years (95% CI:
60.00 to 137.00 m3 ha�2). For more than 90% probability that tim-
ber stock would have recovered to pre-logged values, 40 years will
be required. Logging intensity had a negative effect on timber stock
recovery with small positive effects for time-since-logging and the
interaction term (Fig. 3).

Our ACS and timber stock models explained 0.74 (95% CI, 0.60
to 0.86) and 0.84 (95% CI, 0.75 to 0.91) of the variance captured
by our fixed and random effects (conditional R2; Figs. S2 and S3).
Fixed factors (i.e. logging intensity, time-since-logging, and an
interaction term) accounted for 85% and 65% of the explained vari-
ance (marginal R2) in our ACS and timber stock recovery models,
respectively. Our random-effects (plot identity) accounted for
15% and 33% of the variance explained by our ACS and timber stock
recovery models, respectively.
ow, medium and high logging intensities. Observed ACS post-logging is weighted by
tions based on parameter and sampling uncertainly, with 95% credible intervals
(y-intercept = 1.0) indicate recovery to pre-logging values.



Fig. 3. Regression coefficients from recovery models for ACS (a) and timber (b) based on logging intensity (m3 ha�1), time-since-logging (years), and an interaction-term for
logging intensity and time-since-logging. Thin vertical lines indicate the 95% credible intervals (CIs), thicker lines capture the 50% CIs based on posterior draws, and points
indicate the mean effect size. Coefficients with 95% CIs that do not cross the zero value (dashed line) can be considered statistically significant.
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3.4. Annualized increments for aboveground carbon (Mg C ha�1 yr�1)
and timber (m3 ha�1 yr�1)

Predicted increments of aboveground carbon were highest for
plots logged at 46 m3 ha�1 (2.91 Mg C ha�1 yr�1; CI, 1.99 to 3.82)
and slowest in the unlogged forests (2.39 Mg C ha�1 yr�1; CI, 1.51
to 3.26; Table 2). Observed carbon losses were highest in medium
intensity logged plots, with annual mortality rates of
2.26 Mg C ha�1 yr�1, resulting in the slowest net increase of ACS.
The model that used results from previous research as informed
Table 2
Components of aboveground woody carbon production and model predictions with unin
intensities of 15, 23, and 46 m3 ha�1. We estimated aboveground carbon in
P

ACS mortality between ti and ti þ1ð Þ � ðACS of tree at 15 cm DBH � number of new recruits b
unobserved increments. We used these values to estimate ACS increments across logging i
priors [ N � ðl ¼ 3:51; sd ¼ 4:04; Johnson et al., 2016].

Logging intensity Mg C ha�1 yr�1

RACS ti +1 - RACS ti (±SE) Recruits - 15 cm DBH (±

15 m3 ha�1 2.39 (±0.09) 0.14 (±0.03)
23 m3 ha�1 2.25 (±0.20) 0.27 (±0.03)
46 m3 ha�1 2.65 (±0.22) 0.31 (±0.10)

Control 2.23 (±0.19) 0.11 (±0.02)

Table 3
Timber stock increments (m3 ha�1 yr�1) for stems �15 cm DBH and classified as having co
(2001):

P
ACS at ti þ1 �

P
ACS at ti ¼ residual growthð Þ þ P

ACS mortality between ti and ti þð
timber stock recovery rates.

Logging intensity m3 ha�1 yr�1

RACS ti +1 - RACS ti ( ± SE) Recruits - 15 cm DBH ( ± S

15 m3 ha�1 2.35 (±0.19) 0.000 (±0.00)
23 m3 ha�1 1.86 (±0.31) 0.006 (±0.00)
46 m3 ha�1 3.22 (±0.48) 0.023 (±0.02)

Control 1.58 (±0.36) 0.003 (±0.00)
priors was indistinguishable from the model that had vague priors
based on their DIC metric. Predictions for aboveground carbon
increments for unlogged forests were 4% higher in the model with
informative priors compared to the model with noninformative
priors.

Increases in timber stocks were faster in plots logged at
46 m3 ha�1 (3.56 m3 ha�1 yr�1; 95% CI, 1.44 to 3.56). Net timber
stock increments were slowest in unlogged forests (0.86 m3 ha�1

yr�1) with residual tree growth driving timber stock recovery, with
little or no recruitment of stems of commercial value (Table 3).
formed and informed priors for stand-level increments (Mg C ha�1 yr�1) at logging
crement at the plot level as:

P
ACS at ti þ1 �

P
ACS at ti ¼ residual growthð Þþ

etween ti and tiþ1Þ for the 1983–2000 and 2000–2012 census intervals to account for
ntensities, with both vague Gaussian priors [N � ðl ¼ 0; sd ¼ 0:0001Þ�and informative

Aboveground carbon
increments Mg C ha�1 yr�1 (95% CI)

SE) Mortality (±SE) Uniformed priors Informed priors

1.91 (±0.32) 2.54 (1.68 to 3.44) 2.55 (1.71–3.46)
2.26 (±0.35) 2.65 (1.73 to 3.51) 2.65 (1.71–3.52)
2.10 (±0.39) 2.93 (2.04 to 3.83) 2.91 (1.99–3.82)

2.13 (±0.21) 2.35 (1.47 to 3.22) 2.39 (1.51–3.26)

mmercial log value. We applied the stand increment formula presented in Clark et al.
1Þ � ðACS of tree at 15 cm DBH � number of new recruits between ti and tiþ1Þ to estimate

Timber stock increment (95% credible interval)

E) Mortality ( ± SE)

1.35 (±0.20) 2.62 (1.16 to 4.06)
1.20 (±0.31) 2.25 (0.72 to 3.83)
0.91 (±0.30) 3.56 (1.44 to 3.56)

1.04 (±0.18) 1.90 (�0.13 to 3.57)
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4. Discussion

Model predictions for recovery time after careful selective log-
ging in Suriname revealed a 55% probability that forests logged
at the lowest harvest intensity (15 m3 ha�1) would not recover ini-
tial ACS within 32 years (Fig. 2). At an estimated loss of 14% of ini-
tial ACS associated with the lowest logging intensity, we expected
a higher probability of recovery after 32 years based on a recent
Amazon-wide study on ACS that found recovery time (years) is
close to the proportional losses in ACS due to logging

(Rutishauser et al., 2015; ½100 � ACSloss=ACSintial�1:106�). Similarly,
60% and 76% of model predictions at 32 years after logging indi-
cated that ACS would not have recovered after medium and high
logging intensity, with average losses of 22% and 37% of initial
ACS, respectively. As our study lacked pre-logging plot-level ACS
data, we applied an emissions factor based on harvested timber
volume to estimate initial ACS prior to logging in 1979 and
weighted our post-logging ACS data by their respective plot-level
initial ACS estimates (Appendix S2). Our recovery predictions
may thus be conservative as the carbon emissions factor
(1.52 Mg C m�3 ha�1) accounted for tree mortality for stems
�10 cm DBH, whilst our census data includes stems �15 cm
DBH. Additionally, the logging emissions factor reported by
Pearson et al. (2014) could be higher than those at our study site
as it spanned a wide range of logging practices, whilst the CELOS
System was designed to reduce collateral damage to the forest
based on RIL principles.

In contrast to the low confidence in ACS recovery, confidence
about timber stock recovery was higher. There is an 80% proba-
bility that plots logged at intensities of 15–23 m3 ha�1 would
have recovered initial timber stocks within 32 years after log-
ging. Recovery was slower for forests logged at 46 m3 ha�1, with
30% of model predictions at 32 years indicating failure to recover
initial timber stocks (Fig 2). However, recovery of timber stocks
was driven primarily by biomass accumulation from residual
tree growth (Table 1), as reported for a forest in Eastern Amazo-
nia after RIL (Mazzei et al., 2010). The low recruitment of com-
mercial species may not be sufficient to sustain timber stocks
beyond a third harvest. Perversely, if market preferences change
to favor additional timber species beyond those harvested during
the study, timber stocks could be sustained beyond a third har-
vest (Keller et al., 2007). Stand improvement interventions such
as liberation thinning that stimulates recruitment and growth of
commercial timber species (Gourlet-Fleury et al., 2004; Peña-
Claros et al., 2008) or enrichment planting (Ruslandi et al.,
2017) can also be used to promote long-term timber yield
sustainability.

The average net recovery rate of aboveground carbon across all
nine of our logged plots was 0.62 Mg C ha�1 yr�1 (95% CI, 0.24 to
1.01), half of the 1.3 Mg C ha�1 yr�1 for Amazonia reported by
Rutishauser et al. (2015) study. The net rate of change in above-
ground carbon (residual growth and recruitment minus mortality)
in our unlogged forest was similar to those reported for old-
growth Amazonian forests (0.28 Mg C ha�1 yr�1; Brienen et al.
2015) but slower than observed rates reported for Guiana Shield
old-growth forests (0.45 Mg C ha�1 yr�1; Johnson et al., 2016).
The slower carbon increments relative to other studies in the
Brazilian Amazon, which dominated the Rutishauser et al.,
(2015) was also found in a nearby logging study in Paracou, French
Guiana. In that study, at harvest intensity of 23 m3 ha�1, the aver-
age time to recover initial ACS was 45 years with conventional log-
ging (Blanc et al., 2009). In our study, average predicted time to
recover initial ACS based on logging intensity of 25 m3 ha�1 was
37 years, 8 years less than at the Paracou research site. The shorter
recovery time with the CELOS system could be associated with the
lower reduction in ACS losses associated with logging, estimated
to be one fifth of initial ACS. In Paracou, ACS loss immediately after
logging with conventional logging was estimated at one third of
initial ACS.

Analytically, the Bayesian framework employed in our analysis
enabled us to make probabilistic statements about recovery at
different time points after logging. In particular, the use of data
from forty-one plots across the Guiana Shield helped address
two major shortcomings of our dataset that would otherwise
have resulted in lower precision and less confidence in our annu-
alized increments: (1) long census intervals that lead to unrec-
orded growth of trees that die between censuses as well as the
contributions of trees that recruited but died before being mea-
sured (Clark et al., 2001); and, (2) our small sample size
(N = 12) of small (1-ha) plots that can lead to prediction bias
due to failure to capture much of the characteristic spatial hetero-
geneity of carbon stocks in tropical forests (Phillips et al., 2002).
We found the mean rate of aboveground carbon productivity in
unlogged forests to be 4% higher in the model with informative
priors, which is similar to the �1–3% underestimates caused by
not accounting for growth and recruitment of trees that die
between censuses (Carey et al., 1994). The combination of the
results from other studies with our own data represents a cost-
effective statistical method to improve confidence associated with
model inferences when census intervals are long and there is high
uncertainty associated with carbon stocks across the landscape
(McCarthy and Masters, 2005).

4.1. Forest management implications

Our model predictions indicate a 67% probability that tim-
ber stocks will recover in 25 years to pre-logging levels after
careful harvests of 25 m3 ha�1; in Suriname, 25 years is the
minimum cutting cycle duration and 25 m3 ha�1 is the maxi-
mum harvest intensity. Similarly, we estimate the probability
of ACS recovery under these same rules as only 27%. If forest
managers want >90% confidence in both ACS and timber stock
recovery to pre-logged levels, cutting cycles will have to be
set at 70 and 40 years, respectively. These results indicate a
trade-off between carbon and timber values, with longer cut-
ting cycles needed to recover initial ACS compared to timber
stocks. Carbon payments can potentially be used to extend
the cutting cycle, thereby enabling additional carbon seques-
tration and storage.

The CELOS system, though intended to be environmentally good
logging, may not ensure long term profitable timber management
alone due to the low recruitment of commercial timber species. To
sustain timber yields and profits across multiple cutting cycles,
timber stand improvements aimed at increasing growth rates
and recruitment of commercial timber species could be used
(Putz and Ruslandi, 2015). The application of stand improvement
treatments to increase timber stocks could however further
decrease carbon storage and sequestration between cutting cycles
(Blanc et al., 2009). Nevertheless, adoption of the CELOS harvest
system that is guided by RIL practices improves post-logging
recovery rates of both timber stocks and ACS compared to conven-
tional logging (Sasaki et al., 2016).
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