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Abstract— It is known that for a large magnitude push a
human or a humanoid robot must take a step to avoid a fall.
Despite some scattered results, a principled approach towards
“When and where to take a step” has not yet emerged.

Towards this goal, we present methods for computing Capture
Points and the Capture Region, the region on the ground where
a humanoid must step to in order to come to a complete stop.
The intersection between the Capture Region and the Base of
Support determines which strategy the robot should adopt to
successfully stop in a given situation.

Computing the Capture Region for a humanoid, in general, is
very difficult. However, with simple models of walking, compu-
tation of the Capture Region is simplified. We extend the well-
known Linear Inverted Pendulum Model to include a flywheel
body and show how to compute exact solutions of the Capture
Region for this model. Adding rotational inertia enables the
humanoid to control its centroidal angular momentum, much
like the way human beings do, significantly enlarging the Capture
Region.

We present simulations of a simple planar biped that can
recover balance after a push by stepping to the Capture Region
and using internal angular momentum. Ongoing work involves
applying the solution from the simple model as an approximate
solution to more complex simulations of bipedal walking, includ-
ing a 3D biped with distributed mass.

I. INTRODUCTION

Push recovery is important for humanoid robots operating

in human environments. No matter how well we attempt to

shield these robots, it is inevitable that they will occasionally

bump into objects and other people, and will be tripped up

by debris, rocks, and objects that go undetected. Therefore,

their ultimate utility will depend on good algorithms for push

recovery.

Like most aspects of bipedal walking, push recovery is

difficult because bipedal walking dynamics are high dimen-

sional, non-linear, and hybrid. Moreover, a humanoid robot

is underactuated and makes friction-limited unilateral contacts

with the ground. Despite these theoretical difficulties, animals

and humans are very adept at push recovery. As the push force

progressively grows larger, strategies that they use include

moving the Center of Pressure within the foot, accelerating in-

ternal angular momentum through lunging and “windmilling”

of appendages, and taking a step. Although the humanoid

literature contains several analysis and control techniques for

each strategy, there is yet to emerge a principled approach

towards “when and where to step” under a force disturbance.

This paper seeks to contribute in this direction using the

concept of Capture Points.

A Capture Point is a point on the ground where the robot can

step to in order to bring itself to a complete stop. A Capture
Region is the collection of all Capture Points. Fast and accurate

computation of Capture Points may be difficult and closed

form solutions might not exist for a general humanoid robot.

In this paper we examine simple models of walking that can

be used to explain push recovery strategies, and to develop

algorithms for implementing these strategies on humanoid

robots. In particular, we study an extension to the well-known

Linear Inverted Pendulum Model (LIP) [3], [4]. In this model

the biped is approximated as a “hip” point mass which is

maintained at a constant height, supported by a variable length

leg link. For the Linear Inverted Pendulum Model there is a

unique Capture Point corresponding to each state, for which

we can obtain a closed-form expression.

Human movements such as a forward lunge and rapid

arm rotations make use of angular momentum to maintain

balance. However, the Linear Inverted Pendulum Model lacks

rotational inertia and cannot capture this behavior. Therefore,

we replace the point mass by a flywheel to explicitly model

angular momentum about the body Center of Mass (CoM),

resulting in the “Linear Inverted Pendulum Plus Flywheel

Model” shown in Figure 1. By virtue of the ability to accelerate

the Center of Mass by changing the angular momentum stored

in the flywheel, the unique Capture Point extends to a set of

contiguous points, the Capture Region.

During bipedal walking, trajectories in space do not need to

be precise. In fact the only absolute constraints are usually to

get from one point to another without falling down. Therefore,

it is not critical that the feet be placed absolutely precisely.

In addition, having relatively large feet and internal inertia

provide additional control opportunities to make up for im-

precise foot placement. Therefore, solutions for push recovery

from the simple models we present can be successfully applied

as approximations for controlling more complex bipeds. In

ongoing work we are using the computations from the Linear

Inverted Pendulum Plus Flywheel Model to control a three

dimensional biped with distributed mass and feet, and without

the constraint of a constant height Center of Mass.
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Fig. 1. Abstract model of a biped in the single support phase with
a flywheel body and massless legs. The swing leg is not shown. The
two actuators of the biped are located at the flywheel center (also the
CoM of the biped) and the leg.

II. BACKGROUND

Human movements such as a forward lunge and rapid arm

rotations make use of angular momentum to maintain balance.

However, many models of bipedal walking, such as Kajita and

Tanie’s Linear Inverted Pendulum Model [3], treat the entire

humanoid body as a point mass and do not incorporate the

centroidal angular momentum, despite its significant influence

in gait and balance [1], [5], [17].

There have been recent extensions to the Linear Inverted

Pendulum Model that incorporate momentum. In particular,

the Angular Momentum Pendulum Model (AMPM) [6], [7]

is the closest to the model we present as the flywheel in our

model can be seen as a physical embodiment of an angular

momentum generator of the AMPM model.

To explicitly model centroidal angular momentum we

choose a flywheel with centroidal moment of inertia and rota-

tional angle limits. The flywheel (also called a reaction wheel)

is a standard device used to control satellite orientation[15],

[16]. Pratt [13] discussed the addition of a flywheel in simple

biped models, but did not fully explore the models. Kuo

and colleagues have demonstrated that humans use angular

momentum to capture balance after disturbed through a “hip

strategy” [8] and have pointed out the benefits of angular

momentum for lateral stability in walking.

Although applicable to systems with actual physical fly-

wheel devices, our approach to modeling the centroidal mo-

ment of inertia with a flywheel is intended for modeling bipeds

with relatively limited rotation angles and velocities. For an

example of using a traditional flywheel for the control of

balance, refer to the work by Mayer, Farkas, and Asada [9].

Other related work includes the “resolved momentum con-

trol” scheme [5], in which a number of humanoid tasks can

be controlled through the specification of linear and angular

momenta and Hofmann’s work [2] in which push recovery

from significant disturbances is achieved using numerical

optimization techniques.

III. CAPTURE POINTS AND PUSH RECOVERY STRATEGY

Using the concept of Capture Points and the Capture Region

we can determine when and where to take a step to recover

from a push:

• When to take a step: If a Capture Point is situated

within the convex hull of the foot support area (the

Base of Support), the robot is able to recover from the

push without having to take a step, see Figure 2, top.

Otherwise, it must take a step, see Figure 2, middle.

• Where to take a step: In order to stop in one step the

robot must step such that its Base of Support regains an

intersection with the Capture Region.

• Failure: The humanoid will fail to recover from a push in

one step if the Capture Region in its entirety lies outside

the kinematic workspace of the swing foot. In this case

the robot must take at least two steps in order to stop, if

it can stop at all. This is shown in Figure 2, bottom.

Fig. 2. When the Capture Region intersects the Base of Support, a
humanoid can modulate its Center of Pressure to balance and does
not need to take a step (top). When the Capture Region and Base of
Support are disjoint, the humanoid must take a step to come to a stop
(middle). If the Capture Region is outside the kinematic workspace
of the swing foot, the humanoid cannot stop in one step (bottom
figure).

The Capture Region makes it clear when and where a

humanoid must step to in order to stop and therefore may lead

to a more principled approach to humanoid push recovery.

In the next Section we provide a more formal definition of

Capture Points and Capture Regions.
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IV. CAPTURE POINTS AND CAPTURE REGIONS

We define a Capture State, a Safe Feasible Trajectory, and

a Capture Point as follows:
Definition 1 (Capture State): State in which the kinetic en-

ergy of the biped is zero and can remain zero with suitable

joint torques. Note that the Center of Mass must lie above

the Center of Pressure in a Capture State. The vertical upright

“home position”[1] is an example of a Capture State.

Definition 2 (Safe Feasible Trajectory): Trajectory through

state space that is consistent with the robot’s dynamics, is

achievable by the robot’s actuators, and does not contain any

states in which the robot has fallen.

Definition 3 (Capture Point): For a biped in state x, a Cap-

ture Point, P , is a point on the ground such that if the biped

covers P (makes its Base of Support include P ), either with

its stance foot or by stepping to P in a single step, and then

maintains its Center of Pressure to lie on P , then there exists

a Safe Feasible Trajectory leading to a Capture State.

The location of a Capture Point is dependent on the trajec-

tory through state-space before and after swinging the leg and

thus is not a unique point. Therefore, there exists a Capture

Region such that if the Center of Pressure is placed inside this

region, then the biped can stop for some state space trajectory.
Definition 4 (Capture Region): The set of all Capture

Points.
For more information on Capture Points, including a dis-

cussion on their usefulness in defining stability margins for

bipedal walking, please refer to [14]. While it is difficult to

compute Capture Points for a general humanoid, we can easily

compute them in closed form for some simplified models

of walking. In the next Section we compute exact closed-

form solutions of the Capture Region for the Linear Inverted

Pendulum Plus Flywheel Model.

V. COMPUTATION OF CAPTURE REGION FOR THE LINEAR

INVERTED PENDULUM PLUS FLYWHEEL MODEL

A. Equations of Motion of Planar Biped with Flywheel
We begin with a biped system abstracted as a planar inverted

pendulum with an inertial flywheel centered at the Center of

Mass as shown in Figure 1. The legs of the biped are massless

and extensible. The biped has two actuators located at the

flywheel and the leg. The equations of motion during the single

support phase are

mẍ = fk sin θa − τh

l
cos θa (1)

mz̈ = −mg + fk cos θa +
τh

l
sin θa (2)

Jθ̈b = τh (3)

where m and J are the mass and rotational inertia of the

flywheel, g is the gravitational acceleration constant, x and

z are the CoM coordinates, l is the distance from the point

foot to the CoM, θa and θb are respectively, the leg and the

flywheel angles with respect to vertical, τh is the motor torque

on the flywheel, and fk is the linear actuation force on the leg.

B. Linear Inverted Pendulum Plus Flywheel Model

The Linear Inverted Pendulum Plus Flywheel Model can be

derived as a special case of the above model by setting ż = 0
and z = z0. From Equation 2 we can solve for fk as

fk =
mg

cos θa
− 1

l

sin θa

cos θa
τh (4)

Replacing cos θa = z
l and sin θa = x

l , we get

fk =
mg

z0
l − 1

l

x

z0
τh (5)

Substituting fk into Equation 1, we get the equations of motion

for the Linear Inverted Pendulum Plus Flywheel Model,

ẍ =
g

z0
x − 1

mz0
τh

θ̈b =
1
J

τh (6)

Note that these equations of motion are linear, given that z

is constant. This linearity is what makes the Linear Inverted

Pendulum Model and the flywheel extension valuable as an

analysis and design tool.

Before solving for the Capture Region for the Linear

Inverted Pendulum Plus Flywheel Model, we first compute

the Capture Point when the flywheel is not available.

C. Capture Point for Linear Inverted Pendulum Model

By setting τh = 0 we get the equation of motion for the

Linear Inverted Pendulum Model:

ẍ =
g

z0
x (7)

We can derive a conserved quantity called the “Linear

Inverted Pendulum Orbital Energy” [3] by noting that this

equation represents a mass-spring system with unit mass and

a negative-rate spring with a stiffness of − g
z0

:

ELIP =
1
2
ẋ2 − g

2z0
x2 (8)

If the Center of Mass is moving toward the foot and ELIP >
0, then there is enough energy for the CoM to go over the

foot and continue on its way. If ELIP < 0, then the CoM

will stop and reverse directions before getting over the foot.

If ELIP = 0, then the CoM will come to rest over the foot.

The equilibrium state ELIP = 0 defines the two eigenvectors

of the system,

ẋ = ±x

√
g

z0
(9)

Equation 9 represents a saddle point with one stable and one

unstable eigenvector. x and ẋ have opposite signs (the Center

of Mass is moving toward the Center of Pressure) for the stable

eigenvector and the same signs (the CoM is moving away from

the CoP) for the unstable eigenvector.

The Orbital Energy of the Linear Inverted Pendulum re-

mains constant until the swing leg is placed and the feet change

roles. Assuming that the exchange happens instantaneously,

without energy loss, we can solve for foot placement based
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on either desired Orbital Energy, or desired speed at a given

value of x [3], [4]. For computing the Capture Point, we are

interested in the foot placement required to obtain an Orbital

Energy of zero and corresponding to the stable eigenvector

from Equation 9,

xcapture = ẋ

√
z0

g
(10)

For a given state the Linear Inverted Pendulum Model has a

single Capture Point corresponding to the footstep that would

put the state of the robot onto the stable eigenvector. When the

flywheel is made available, this point will grow to a Capture

Region. If the state is on one side of the stable eigenvector in

phase space, then a clockwise acceleration of the flywheel will

capture balance. If on the other side, then a counterclockwise

acceleration will be required.

We first show two methods for computing an upper bound

on the Capture Region assuming the flywheel can make either

an instantaneous velocity change or an instantaneous position

change. We then derive a more realistic Capture Region based

on a torque-limited and angle-limited flywheel.

D. Instantaneous Flywheel Velocity Change

Suppose we produce an impulsive torque on the flywheel,

that causes a step change in the rotational velocity of the

flywheel of Δθ̇b. Then we get a step change in the forward

velocity of Δẋ = − J
mz0

Δθ̇b. In this case, the instantaneous

Capture Region will be√
z0

g
(ẋ− J

mz0
Δθ̇bmax) < xcapture <

√
z0

g
(ẋ− J

mz0
Δθ̇bmin)

(11)

E. Instantaneous Flywheel Position Change

Suppose we could produce a step change in the rotational

position of the flywheel of Δθb. This would cause a step

change in the position of the CoM of Δx = − J
mz0

Δθb. In

this case, the instantaneous Capture Region will be√
z0

g
ẋ − J

mz0
Δθbmax < xcapture <

√
z0

g
ẋ − J

mz0
Δθbmin

(12)

F. Torque and Angle Limited Linear Inverted Pendulum Plus
Flywheel Capture Region

Assuming step changes in either flywheel angular velocity

or position results in easy to compute and potentially useful

upper bounds on the Capture Region. However, such step

changes are not physically possible. Here we assume the

flywheel is torque limited and has limits on its minimum and

maximum rotation angles.

Torque limits are realistic since most motors are torque

limited and they can achieve the maximum torque nearly

instantaneously when compared to physical time constants. By

using step torque profiles, we can compute the Capture Region

for the Linear Inverted Pendulum Plus Flywheel model fairly

easily since the dynamics are linear and unit steps have simple

Laplace Transforms.

Suppose the robot is moving at ẋ0 and the flywheel is

spinning at θ̇0 and has an angle of θ0 with respect to vertical.

We wish to find a flywheel torque profile and a stepping

location that will bring the robot to rest over its foot with

no forward velocity or flywheel angular velocity.

The torque profile that will provide the most influence on

velocity is the one which accelerates the flywheel as hard as

possible in one direction and then decelerates it, bringing it to

a stop at the maximum flywheel angle,

τ(t) = τmaxu(t)− 2τmaxu(t−TR1)+ τmaxu(t−TR2) (13)

where τmax is the maximum torque that the joint can apply,

u(t−T ) is the unit step function starting at T , TR1 is the time

at which the flywheel stops accelerating and starts decelerating

and TR2 is the time at which the flywheel comes to a stop.

Given the torque profile in Equation 13, the flywheel angular

velocity and position will be

θ̇(t) = θ̇0 +
τmax

J

(
u1(t) − 2u1(t − TR1) + u1(t − TR2)

)
(14)

θ(t) = θ0 + θ̇0t + (15)

τmax

J

(
1
2
u2(t) − u2(t − TR1) +

1
2
u2(t − TR2)

)

At time TR2 we want θ̇(TR2) = θ̇f and θ(TR2) = θmax. To

find the extents of the Capture Region, θ̇f = 0. However, we

keep θ̇f in the equation since it may be desirable to have a

final velocity which helps return the flywheel to the starting

position. Solving for TR1 in Equation 16 we get

TR1 =
1
2
TR2 +

J

2τmax
(θ̇f − θ̇0) (16)

Substituting TR1 into Equation 14 and rearranging, we get

a quadratic equation in TR2,[τmax

4J

]
T 2

R2 +
[
1
2
(θ̇f + θ̇0)

]
TR2 +[

θ0 − θmax − J

4τmax
(θ̇f − θ̇0)2

]
= 0 (17)

which can be solved for TR2. Note that if θ̇f = θ̇0 = 0, then

TR1 = 1
2TR2 and

TR2 =
√

4J

τmax
(θmax − θ0) (18)

We can now determine the position and velocity trajectories

of the mass by integrating the equations of motion for the

Linear Inverted Pendulum Plus Flywheel model,

ẍ =
g

z0
x − 1

mz0
τh (19)

Written in form of Laplace transforms, we have

X(s)
τ(s)

= − 1
mz0

(
1

s2 − w2

)
(20)
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where w =
√

g
z0

. The zero input response of this system is

x(t)ZIR = x0 cosh(wt) +
1
w

ẋ0 sinh(wt)

ẋ(t)ZIR = wx0 sinh(wt) + ẋ0 cosh(wt) (21)

The zero state response, given the input in Equation 13 is

x(t)ZSR = − τmax

mz0w2 [(cosh(wt) − 1)u(t)
− 2(cosh(w(t − TR1)) − 1)u(t − TR1)
+ (cosh(w(t − TR2)) − 1)u(t − TR2)]

ẋ(t)ZSR = − τmax

mz0w [sinh(wt)u(t)
−2 sinh(w(t − TR1))u(t − TR1)
+ sinh(w(t − TR2))u(t − TR2)](22)

Combining the zero input response and the zero state response

at time TR2 we have

x(TR2) = P1 + P2x0

ẋ(TR2) = P3 + P4x0 (23)

where

P1 =
1
w

ẋ0 sinh(wTR2)

− τmax

mz0w2
[cosh(wTR2) − 2 cosh(w(TR2 − TR1)) + 1]

P2 = cosh(wTR2)
P3 = ẋ0 cosh(wTR2)

− τmax

mz0w
[sinh(wTR2) − 2 sinh(w(TR2 − TR1))]

P4 = w sinh(wTR2) (24)

To solve for a Capture Point, we need the state to lie on the

stable eigenvector of the Linear Inverted Pendulum system

after the flywheel stops at TR2,

ẋ(TR2) = −wx(TR2) (25)

Using Equations 23 and 25 and the fact that cosh(y) +
sinh(y) = ey , we can solve for x0,

x0 = − 1
w

ẋ0 +
τmax

mg

[
(ewTR2 − 2ew(TR2−TR1) + 1)

ewTR2

]
(26)

The Capture Point is then −x0. To find the other boundary of

the Capture Region, the above can be repeated with the torque

limit of τmin and the angle limit of θmin. To find a Capture

Point without the use of angular momentum, one can repeat

the above, except set TR1 = 0. TR2 will be long enough to

stop any spin that the flywheel may currently have and x0 can

be solved as before.

G. Ground Reaction Forces in Linear Inverted Pendulum Plus
Flywheel Model

The ground reaction forces in the Linear Inverted Pendulum

Plus Flywheel model can be computed considering a free body

diagram and examining ẍ and z̈:

fz = mg, fx =
mg

z0
x − τh

z0
(27)

To prevent slipping, the ground reaction force vector must stay

within the friction cone. Given a coefficient of friction, α,

−α <
fx

fz
=

x

z0
− τh

mgz0
< α (28)

If τh = 0 then we get fx

fz
= x

z0
, which means that the angle

of the virtual leg from the Center of Mass to the Center of

Pressure must be inside the friction cone. For nonzero τh, the

ground reaction force vector is rotated to produce this torque

about the CoM. For typical coefficients of friction, the above

equation gives us a limit on τh, or equivalently on θ̈b = τh

J .

Note that a step change in either θ̇b or θb, would require an

impulsive torque, which would cause the ground reaction force

to be horizontal, causing slipping on any non-attached surface.

H. Dimensional Analysis
We can perform a dimensional analysis [10] of the state

variables and parameters of the Linear Inverted Pendulum plus

Flywheel Model to reduce the number of variables involved.

Let us define dimensionless position, velocity, time, inertia,

torque, and angles as

x′ ≡ x

z0
(29)

ẋ′ ≡ 1√
gz0

ẋ (30)

t′ ≡ t

√
g

z0
(31)

J ′ ≡ J

mz2
0

(32)

τ ′ ≡ τ

mgz0
(33)

θ′ ≡ J ′θ (34)

Note that the dimensionless inertia can also be written as a

ratio of the radius of gyration of the pendulum and the Center

of Mass height, J ′ ≡ J
mz2

0
= R2

gyr

z2
0

. For a point mass, J ′ = 0,

and for a flywheel with all of its mass on the rim, which just

touches the ground, J ′ = 1.0.
With these dimensionless quantities, the equations of mo-

tion for the Linear Inverted Pendulum Plus Flywheel Model

(Equation 6) become

ẍ′ = x′ − τ ′ (35)

θ̈′ = τ ′ (36)

where time derivatives are with respect to non-dimensional

time: ẍ′ ≡ d2x′
dt′2 and θ̈′ ≡ d2θ′

dt′2 . With this formulation,

the only remaining parameters used in our derivation of

Capture Regions are τ ′
max, θ′max, τ ′

min, and θ′min. Therefore,

two Linear Inverted Flywheel Plus Pendulum systems are

dynamically similar if they have the same values of those four

quantities. In order to reformulate the equations for computing

the Capture Region, one can replace all the variables with their

dimensionless versions and set m, g, J and z0 all to one. For

example, the ground reaction force limits become

−α < x′ − τ ′ < α (37)
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Fig. 3. Phase portrait of Linear Inverted Pendulum Model, with expanded
Capture Region (dotted). The Figure is plotted using dimensionless quantities,

with τ ′
max = 0.5, θ′max = π

4
, θ′0 = 0, and θ̇′0 = 0. The green curve is a

trajectory using angular momentum of the flywheel in order to stop, starting
from initial conditions of x′

0 = −0.6 and ẋ′
0 = 0.8.

VI. PHASE PORTRAIT AND PARAMETER VARIATIONS

In this Section we present phase portraits of the non-

dimensional system as well as figures showing how the

Capture Region changes as the maximum torque or maximum

rotation angle change. We assume that the robot starts with

zero initial rotation angle and velocity (θ0 = 0, θ̇0 = 0).

Therefore, the extents of the Capture Region can be solved

using the non-dimensional version of Equation 26 with TR1 =
1
2TR2,

x′
0 = −ẋ′

0 + τmax

[
(eT ′

R2 − 2e
1
2 T ′

R2 + 1)
eT ′

R2

]
(38)

where

T ′
R2 = 2

√
θ′max − θ′0

τ ′
max

(39)

Figure 3 shows the phase portrait of the Linear Inverted

Pendulum Model in dimensionless coordinates, along with the

expanded region of state space that the robot can stop from

(dotted) resulting from the addition of angular momentum.

For generating this figure we used τ ′
max = 0.5, θ′max = π

4 ,

τmin = −τmax, θmin = −θmax, θ′0 = 0, and θ̇′0 = 0. Also

shown is the resultant trajectory (green) for recovering balance

with the aid of the flywheel for one set of initial conditions.

Figure 3 shows that with the flywheel, the robot can stop

from a wide band of states centered about, and parallel

to, the stable eigenvector line. Note the excursions of the

example trajectory outside the Capture Region. This excursion

is possible since the flywheel has a rotational velocity during

this trajectory, whereas the extents of the Capture Region

assume zero initial rotational velocity.

Figure 4 shows how the Capture Region varies as the

maximum torque, τ ′
max, varies and Figure 5 shows how the

Capture Region varies as the maximum rotation angle, θ′max,

Fig. 4. Variation of the Capture Region for ẋ′
0 = 0.5 as the maximum

dimensionless torque varies from τ ′
max = 0.0 to τ ′

max = 2.0. Figure plotted

using dimensionless quantities, with θ′max = π
4

, θ′0 = 0, and θ̇′0 = 0.

Fig. 5. Variation of the Capture Region for ẋ′
0 = 0.5 as the maximum

dimensionless flywheel angle varies from θ′max = 0.0 to θ′max = 3.0.
Figure plotted using dimensionless quantities, with τ ′

max = 0.5, θ′0 = 0,

and θ̇′0 = 0.

varies. For both of these figures ẋ′
0 = 0.5, τ ′

min = −τ ′
max,

θ′min = −θ′max, θ′0 = 0, and θ̇′0 = 0. For Figure 4, θ′max = π
4 .

For Figure 5, τ ′
max = 0.5.

Both Figure 4 and Figure 5 reach asymptotic limits as τ ′
max

or as θ′max approaches infinity. We can solve for these limits

using Equations 38 and 39 and L’Hospital’s rule. The results

are

lim
τ ′

max→∞
x′

0 = −ẋ′
0 + θ′max − θ′0 (40)

lim
θ′

max→∞
x′

0 = −ẋ′
0 + τ ′

max (41)

Note that the first of these matches the result in Equation 12

where we assumed we could make an instantaneous angular

position change of the flywheel. That would be the case as the

maximum torque approaches infinity.

VII. SIMULATION RESULTS

We performed simulations on a simple, four degree of

freedom, bipedal walking model using the Yobotics Simulation

Construction Set. The two legs have rotating hip joints, exten-

sional knee joints, and point feet. The center of mass of the

body is at the hip joint and is represented as a flywheel with

mass of m = 25kg and inertia of J = 1.225kgm2. The legs
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Fig. 6. Time elapsed image sequence showing the simulated robot recover
from a disturbance by lunging its body. Snapshots are left to right, top to
bottom, and are taken at 0.1 second increments.

are very light compared to the body, modeled as point masses

of 0.0025kg at each foot. The maximum flywheel angle is

θmax = 3
4π and the maximum hip torque is τmax = 100Nm.

The desired Center of Mass height is z0 = 0.9375m. With

these values, the non-dimensional parameters are J ′ = 0.0558,

τ ′
max = 0.435, θ′max = 0.131.

Figure 6 shows a time elapsed image sequence after an

impulsive disturbance that changes the velocity from rest

to 0.2m/s. Figure 7 shows the corresponding data. The

disturbance occurs at 0.5s and the lunge is completed by

approximately 0.8s.

Figure 8 shows a time elapsed image sequence of the robot

walking with a top-of-stride velocity of 0.5m/s and then

stopping in a single step by lunging. Figure 9 shows the corre-

sponding data. The command to stop is given at approximately

3.9s and the lunge is completed at approximately 4.25s.

In both of these simulations, we were able to have nearly

zero orbital energy (to within three decimal places) after the

lunge, thereby providing validation to our theoretical analysis.

Discrepancies from exactly 0.0 orbital energy can be attributed

to the small but finite mass in the feet, the compliance of

the simulated ground, numerical discretization and roundoff

effects.

VIII. DISCUSSION AND FUTURE WORK

A. Application to More Complex Humanoids

All of the equations presented in this paper are exact for

the Linear Inverted Pendulum Plus Flywheel Model. How

well they will work as approximations for controlling a non-

simulated three-dimensional humanoid with distributed mass

that does not walk at a constant height needs to be determined.

Ongoing work is directed at relaxing the constant height

constraint, empirically determining the effects of model dis-

crepancies by examining more complex models, and applying

our results to a real bipedal robot.

Note that exact computations for a general humanoid may

not be required and the approximations used in this paper may

be acceptable. As long as approximations of Capture Points

can be kept on the order of the size of a humanoid foot, the

ability to move the Center of Pressure inside the foot may

be able to make up for errors due to the use of approximate

Fig. 7. Simulation data corresponding to Figure 6. The robot is impulsively
pushed at 0.5 sec., increasing its velocity to 0.2 m/s. A body lunge recovers
balance without requiring a step.

models. Also, in many cases it is not critical to stop in one step.

Small errors in Capture Point locations may simply require two

or three steps to stop, when one step could have been possible.

The approximations presented in this paper can also be used

as seed values if learning or adaptation techniques are used to

automatically determine where to step and how to lunge in

order to stop after a disturbance. Using seed values promises

to result in faster learning than pure “black box” approaches.

B. Under-Constrained Lunge

In both of the simulations presented, the maximum hip

torque of 100Nm and the maximum body pitch of 3
4π were

not required to stop the robot. In other words, in both cases,

the foot was inside the Capture Region before the lunge took

place. Therefore an infinity of torque profiles could have been

used to stop. We chose to use a bang-bang profile in which

TR2 was determined assuming full torque and rotation angle

were required. Then we solved for the actual step torque

profile that results in stopping the robot, given the value of

TR2. Alternatively, we could have used the maximum torque

and solved for the lunge time and rotation angle, or used the

maximum rotation angle and solved for the torque and lunge

time. Which of these or other lunge method is used could

be determined through many techniques, including solving an

optimization problem, and is an area that needs to be explored.
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Fig. 8. Time elapsed image sequence showing the robot stop walking in a
single step by lunging its body. Snapshots are left to right, top to bottom, and
are taken at 0.25 second increments.

C. Capture Region and Biped Design Considerations

Increasing the amount of available non-dimensional torque,

τ ′
max, or rotation angle, θ′max, increases the size of the Capture

Region. However, if one of the values is fixed, there is

diminishing returns in increasing the other, as seen in Figures

4 and 5. In addition, the maximum torque must not exceed

the value that would cause foot slipping.

Therefore, these two parameters should be designed to-

gether, using Equations 38 to 41 to analyze their effect on the

Capture Region. A feasible approach would be to use Equation

37 to set a good maximum torque and then increase the

maximum rotation angle until there are diminishing returns.

Determining how maximizing the Capture Region fits in with

other design criterion needs to be explored further.
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