

Distribution phase

Plasma concentration of diazepam with time 10 mg IV bolus dose of diazepam in a young male adult

-CFRR-USP

FRP-USP

Protein Bound Drug in Plasma

FCFRP-USP

Proteins to which drugs bind in plasma

Condition Albumin **Renal failure** Hepatic cirrhosis **Arthritis** Surgery Burns **Myocardial infarction Stress / trauma** Pregnancy

Alpha-1-Acid glycoprotein

The fraction of drug in plasma unbound varies widely among drugs

Protein binding

Tissue

Unbound

XENOBIOTIC TRANSPORTING SYSTEMS PRESENT IN THE LIVER

- **OATP** Organic anion transporting polypeptide
- **OAT Organic anion transporter**
- **OCT** Organic cation transporter

MDR1/P-gp P-glycoprotein BCRP Breast cancer resistance protein MRP2 Multidrug resistance protein 2 BSEP Bile salt excretory protein MATE Multidrug and toxin extrusion transporter

Uptake transporter-based interactions at the liver

HEPATIC INTERACTION

Interaction Mechanism Drug

		•
torvastatin	Кпат	m
		- P

- Cerivastatin Cyclosporine
- Glyburide Rifampin
- OCT1 Metformin reduced function allele
- Repaglinide Cyclosporine
- Rosuvastatin Cyclosporine

Rosuvastatin Gemfibrozil **Inhibition of OATP1B1 uptake**

Inhibition of OATP1B1 uptake

Reduced OATP2B1 uptake

Reduced OCT1 uptake

Inhibition of OATP1B1 uptake

Inhibition of OATP1B1 uptake

Inhibition of OATP1B1 uptake

- **94.3%**
- ↓ 66.7%
- **↓ 67.4%**
- **↓ 53.9%**
- **↓ 59.0%**
- **↓ 90.6%**
- **↓ 27.5%**

Polymorphic OATP 1B1 is a major determinant of repaglinide pharmacokinetics: **CYP2C8 and CYP3A**

FCFRP-USP

HEPATIC TRANSPORTERS AND DRUG DISPOSITION

Uptake Transporters Metabolizing Enzymes

Atorvastatin

Cerivastatin

Pravastatin

Rosuvastatin

OATP1B1

OATP1B1

CYP3A4

CYP3A4
CYP2C8

OATP1B1 OATP2B1

OATP1B1 OATP1B3 OATP2B1 Bile Canalicular Transporters

> MRP2 MDR1

MRP2 MDR1

achē

TREZ R rosuvastatina cálcica

- Polimorfismo genético (variedade de genes): dependendo da sua constituição genética, o nível de rosuvastatina pode aumentar no seu organismo. Neste caso, seu médico poderá ajustar a dose de Trezor. Genótipos de SLCO1B1 (OATP1B1) c.521CC e ABCG2 (BCRP) c.421AA têm mostrado ser associados com um aumento da exposição à rosuvastatina (ASC) em comparação com SLCO1B1 c.521TT e ABCG2 c.421CC. Para os pacientes com genótipo c.521CC ou c.421AA, recomenda-se uma dose máxima de 20 mg de rosuvastatina, uma vez por dia.

achē

TREZ R rosuvastatina cálcica

- Terapia concomitante: a rosuvastatina é um substrato de várias proteínas transportadoras (por exemplo, OATP1B1 e BCRP). O risco de miopatia (incluindo rabdomiólise) é maior quando Trezor é administrado concomitantemente com certos medicamentos que podem aumentar a concentração plasmática da rosuvastatina devido às interações com essas proteínas transportadoras (por exemplo, ciclosporina e alguns inibidores de protease, incluindo combinações de ritonavir com atazanavir, lopinavir, e/ou tipranavir. É recomendado que seu médico consulte as informações relevantes dos medicamentos quando considerar administrar esses medicamentos concomitantemente com Trezor. Seu médico poderá considerar um tratamento alternativo ou a interrupção temporária de Trezor. Em situações em que a coadministração destes medicamentos com Trezor é inevitável, o benefício e o risco do tratamento concomitante e ajustes da posologia de Trezor devem ser cuidadosamente considerados.

MECHANISMS OF TISSUE DISTRIBUTION OF METFORMIN

Mol. Pharmacol., v. 63, p. 844-848, 2003.

Transportadores de catións orgânicos (OCT): a metformina é um substrato tanto de transportadores
OCT1 quanto de OCT2. A coadministração de metformina com:

Substratos/inibidores de OCT1 (como verapamil) podem reduzir a eficácia de metformina.
Indutores do OCT1 (como a rifampicina) podem aumentar a absorção gastrointestinal e a eficácia.
Substratos/inibidores de OCT2 (como cimetidina, dolutegravir, crizotinibe, olaparibe, daclatasvir, vandetanibe) podem diminuir a eliminação renal da metformina e assim levar a uma concentração aumentada de metformina no plasma.

XENOBIOTIC TRANSPORT SYSTEMS IN THE PROXIMAL TUBULE OF THE KIDNEY

FCFRP-USP

OAT Organic anion transporter OCT Organic cation transporter OATP

Organic anion transporting polypeptide

MRP

Multidrug resistance protein MDR1/P-gp P-glycoprotein

MATE

Multidrug and toxin extrusion transporter

Effects of transporter inhibition/dysfunction on volume of distribution

XENOBIOTIC TRANSPORTING SYSTEMS THAT CONTRIBUTE TO THE BLOOD-BRAIN BARRIER

MDR1/P-gp P-glycoprotein (MDR1) **BCRP** Breast cancer resistance protein **MRP** Multidrug resistance protein **OATP** Organic anion transporting polypeptide

FCFRP-USP

XENOBIOTIC TRANSPORTING SYSTEMS THAT CONTRIBUTE TO THE BLOOD-BRAIN BARRIER

FCFRP-USP

Levels of digoxin in plasma and brain of mice **MDR1/P-gp** (+/+) and (-/-)

FCFRP-USP

Hours after i.v. injection

Ther. Drug Monit., v.22, p.137-140, 2000

TRANSPORT SYSTEMS THAT CONTRIBUTE TO THE BARRIER FUNCTION OF THE PLACENTA

MDR1/P-gp P-glycoprotein MRP Multidrug resistance protein BCRP Breast cancer resistance protein

P-gp in the placenta: substrates and inhibitors

Clinically significant P-gp substrates	ſ
Cytotoxic drugs Vinca alcaloids, taxanes, antracyclines, actinomycin D, epipodophyllotoxins	
HIV protease inhibitors amprenavir, saquinavir, ritonavir, nelfinavir, indinavir	
Antibiotics erythromycin, levofloxacin, gramicidin D	
Cardiac drugs digoxin, quinidine, carvedilol, celiprolol, talinolol	
Antiemetics domperidone, ondansetrone	
Others ivermectine, colchicine, losartan, phenytoin morphine	
MINI	P-9

P-gp inhibitors

First generation chemosensitizers verapamil,quinidine cyclosporine A progesterone, tamoxifen trifluoperazine, trifluopromazine,flupentixol

Second generation chemosensitizers dexverapamil, PSC833 biricodar (VX-710), GF120918, MS-209

Third generation chemosensitizers LY335979, OC144093, XR9576

Herbal extracts

St John's wort, Rosemary, Rhei Rhizoma, Ephedrae herba

Antibodies MRK16

FORP-USP Volume de distribuição (Vd)

Vd é uma constante de proporcionalidade que relaciona a quantidade do fármaco no sistema biológico com a concentração no plasma

Vd =Dose ivCp no tempo zero

volume (mL, L)

Unidade

Volume de distribuição

Droga
Quinacrina
Cloroquina
Amiodarona
Clopromazina
Minoxidil
Digoxina
Morfina
Ampicilina
lbuprofeno
Eritropoetina

The effects of a two-fold increase in the volume of distribution FGERP-USP of a drug on its plasma concentration-time profile IV bolus

CL of 1.16 L/h and V of 10 L for the "Normal V" scenario. V was increased to 20 L for the "Increased V" scenario.

The effects of a two-fold increase in the volume of distribution FORP-USP of a drug on its plasma concentration-time profile

Oral

CL of 1.16 L/h, V of 10 L, absorption rate constant of 1 hr -1, and F of 1 for the "Normal V" scenario. V was increased to 20 L for the "Increased V" scenario.

The effects of a two-fold increase in the volume of distribution FORP-USP of a drug on its plasma concentration-time profile Constant IV infusion

CL of 1.16 L/h and V of 10 L for the "Normal V" scenario. V was increased to 20 L for the "Increased V" scenario. TSS indicates the time to reach 94% of steady state (ie, 4 t¹/₂'s).

FORF-USP Volume of distribution

1

It can be used to compute a loading dose

$D = Vd \times C_{ss}$, target

FCFRP-USP

2

It can be used to calculate the amount of drug in the body at any given time

Amount in the body = Vd x C_{observed}

Volume of distribution

FCFRP-USP

3

It can be used to estimate the feasibility of using hemoperfusion or dialysis for drug removal in cases of drug overdoses

> Vd < efficient any drug removal

Central and Peripheral Compartiments

Central COMPARTIMENTS

Heart Liver Lungs Kidney Blood Examples of Peripheral Compartiments

Fat Tissue

Cerebral Fluid

Muscle Tissue

One-compartment model

OP

Where:

X₀ = Dose of drug X₁ = Amount of drug in body K = Elimination rate constant

Κ

One-compartment model before administration

One-compartment model immediately after administration

FORRE-USP Determination of rate constants **One - compartment model Intravascular route**

 $AUC^{0-\infty} =$

Elimination rate constant (Kel)

 $C = C_0 \cdot e^{-Kelt}$

 $\ln C = \ln C_0 - Kel.t$

$t = T1/2, C = 0.5C_0$

 $\ln 0.5C_0 = \ln C_0 - Kel.(T1/2)$

 $\ln 0.5 = \ln 1 - Kel.(T1/2)$

Kel.(T1/2) = ln 1 - ln 0.5

FORP-USP Determination of rate constants **One - compartment model Extravascular route**

B C°p=B=A $AUC^{0-\infty} =$ A Ka Kel

Cp=B.e^{-kel.t} - A.e^{-ka.t}

Two-compartment model

Two-compartment model immediately after administration

Two-compartment model

FOR Determination of rate constants Two - compartment model Intravascular route

ß

CL

C°p=A+B

$Cp=B.e^{-\beta.t} + A.e^{-\alpha.t}$

Determination of rate constants FCFRP-USP Two - compartment model Extravascular route

BACK-EXTRAPOLATED MONOEXPONENTIAL

 $Cp=B.e^{-\beta.t} + A.e^{-\alpha.t} - C^{\circ}p.e^{-kat}$

FCFRP-USP

Exercício 1

A Figura abaixo mostra o decaimento das concentrações plasmáticas de teofilina em função do tempo após a administração de uma dose única iv de 500 mg a um paciente de 70 kg. Considerando que a AUC (tempo zero ao infinito) é 125 mg.h/L, calcular o volume de distribuição da teofilina.

