Quantum Theory of Many-Body systems in Condensed Matter (4302112) 2020

Prof. Luis Gregório Dias
luisdias@if.usp.br

Today's class: Non-interacting electron gas

- Jellium model
- Non-interacting Fermi gas.
- Ground-state: Fermi energy.
- Density of states.

Electrons in a solid: the jellium model

- Model for electrons in a metal.
- "Core ions": form a homogenous "fluid", positively charged (positive background).
- Conduction electrons: move "freely" in this background, weakly interacting with each other.
- The whole system is charge neutral.
- Electrons behave as in a "Fermi gas".

Free fermion "gas": single-particle picture

- Single-particle Hamiltonian: $\hat{h}\left|\varphi_{\mathbf{k}}\right\rangle=\varepsilon_{\mathbf{k}}\left|\varphi_{\mathbf{k}}\right\rangle \quad \mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$
- Schrödinger's equation for a particle of mass m^{*} :

$$
-\frac{\hbar^{2}}{2 m^{*}} \nabla^{2} \varphi(\mathbf{r})=\varepsilon \varphi(\mathbf{r}) \Rightarrow \nabla^{2} \varphi(\mathbf{r})=-k^{2} \varphi(\mathbf{r})
$$

Solution (plane waves):

- Let us consider periodic boundary conditions:

$$
\varphi_{\mathbf{k}}\left(x+L_{x}, y, z\right)=\varphi_{\mathbf{k}}\left(x, y+L_{y}, z\right)=\varphi_{\mathbf{k}}\left(x, y, z+L_{z}\right)=\varphi_{\mathbf{k}}(x, y, z)
$$

$$
\begin{gathered}
\varphi_{\mathbf{k}}(\mathbf{r}+\mathbf{L})=A e^{i \mathbf{k} \cdot \mathbf{r}} e^{i \mathbf{k} \cdot \mathbf{L}} \\
e^{i \mathbf{k} \cdot \mathbf{L}}=1
\end{gathered}
$$

- Solution: energy quantization:

$$
\varphi_{\mathbf{k}}(\mathbf{r})=A e^{i \mathbf{k} \cdot \mathbf{r}} \quad|\mathbf{k}|^{2}=\frac{2 m^{*} \varepsilon}{\hbar^{2}}
$$

$$
\begin{aligned}
& k_{x} L_{x}+k_{y} L_{y}+k_{z} L_{z}=2 m \pi \\
& m=n_{x}+n_{y}+n_{z}=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

"Counting" the states.

- Possible \mathbf{k} values: $\quad k_{x(y, z)}=\frac{2 \pi n_{x(y, z)}}{L_{x(y, z)}}$ with $n_{x(y, z)}=0, \pm 1, \pm 2, \ldots$

Tip: to go from discrete \rightarrow continuum!

$$
\frac{1}{V_{\mathbf{r}}} \sum_{\mathbf{k}} \rightarrow \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}
$$

- State and energy for each \mathbf{k} :

$$
\varphi_{\mathbf{k}}(\mathbf{r})=\frac{1}{\sqrt{L_{x} L_{y} L_{z}}} e^{i \mathbf{k} \cdot \mathbf{r}} \varepsilon_{\mathbf{k}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m^{*}}
$$

- Number of states in \mathbf{k} space (3D) :
"Volume" of each state in \mathbf{k}

$$
V_{\mathbf{k}}^{1 \mathrm{st}}=\left(\frac{2 \pi}{L_{x}}\right)\left(\frac{2 \pi}{L_{y}}\right)\left(\frac{2 \pi}{L_{z}}\right)=\frac{(2 \pi)^{3}}{V_{\mathbf{r}}}
$$

Number of states in a given volume in \mathbf{k} :

$$
N_{\mathrm{st}}=\sum_{\mathbf{k}}=\int \frac{d^{3} \mathbf{k}}{V_{\mathbf{k}}^{1 \mathrm{st}}}=V_{\mathbf{r}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}
$$

N-particle Hamiltonian

- Need to account for spin $(\sigma=\uparrow, \downarrow)$. The single-particle states are then:

$$
\hat{h}\left|\varphi_{\mathbf{k}, \sigma}\right\rangle=\varepsilon_{\mathbf{k}}\left|\varphi_{\mathbf{k}, \sigma}\right\rangle \quad\left|\varphi_{\mathbf{k}, \sigma}\right\rangle=c_{\mathbf{k}, \sigma}^{\dagger}|0\rangle
$$

- N-body Hamiltonian:

$$
\hat{H}=\sum_{n=1}^{N} \hat{h}^{(n)}=\sum_{\mathbf{k}, \sigma=\uparrow, \downarrow} \varepsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}, \sigma}^{\dagger} \hat{c}_{\mathbf{k}, \sigma}=\sum_{\mathbf{k}, \sigma=\uparrow, \downarrow} \varepsilon_{\mathbf{k}} \hat{n}_{\mathbf{k}, \sigma}
$$

- Eigenstates and eigenenergies:

$$
\left\{\begin{array}{l}
\varepsilon_{\mathbf{k}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m^{*}} \\
n_{\mathbf{k}, \sigma}=0,1
\end{array}\right.
$$

$$
\hat{H}\left|\ldots n_{\mathbf{k}, \uparrow}, n_{\mathbf{k}, \downarrow} \ldots\right\rangle=\left[\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}}\left(n_{\mathbf{k}, \uparrow}+n_{\mathbf{k}, \downarrow}\right)\right]\left|\ldots n_{\mathbf{k}, \uparrow}, n_{\mathbf{k}, \downarrow} \ldots\right\rangle
$$

- Let's consider N even (non-polarized gas): ($\mathrm{N} / 2 \mathrm{spin} \uparrow, \mathrm{N} / 2$ spin \downarrow).

$$
N=\sum_{\mathbf{k}} n_{\mathbf{k}, \uparrow}+n_{\mathbf{k}, \downarrow} \text { with } \frac{N}{2}=\sum_{\mathbf{k}} n_{\mathbf{k}, \uparrow}=\sum_{\mathbf{k}} n_{\mathbf{k}, \downarrow}
$$

N -particle ground state

- For a given set of occupations: $\quad E_{n_{\mathbf{0}, \uparrow}, n_{\mathbf{0}, \downarrow} \ldots n_{\mathbf{k}, \uparrow}, n_{\mathbf{k}, \downarrow} \ldots}=\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}}\left(n_{\mathbf{k}, \uparrow}+n_{\mathbf{k}, \downarrow}\right)$
- Ground-state of the N-particle system:

$$
\varepsilon_{\mathbf{k}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m^{*}}
$$

$$
\left\{\begin{array}{l}
\hat{H}|\mathrm{GS}\rangle=\mathrm{E}_{\mathrm{GS}}|\mathrm{GS}\rangle \\
E_{\mathrm{GS}}=\langle\mathrm{GS}| \hat{H}|\mathrm{GS}\rangle
\end{array}\right.
$$

$$
\langle\mathrm{GS}| \hat{N}|\mathrm{GS}\rangle=\langle\mathrm{GS}| \sum_{\mathbf{k}, \sigma} \hat{n}_{\mathbf{k}, \sigma}|\mathrm{GS}\rangle=N
$$

- Ground state energy :

$$
\begin{aligned}
E_{\mathrm{GS}}= & \sum_{|\mathbf{k}|<\left|\mathbf{k}_{F}\right|} \varepsilon_{\mathbf{k}}\left(n_{\mathbf{k}, \uparrow}+n_{\mathbf{k}, \downarrow}\right)
\end{aligned}\left\{\begin{array}{l}
n|\mathbf{k}| \leq\left|\mathbf{k}_{F}\right|, \sigma=\uparrow, \downarrow \\
n|\mathbf{k}|>\left|\mathbf{k}_{F}\right|, \sigma=\uparrow, \downarrow=0 \\
\\
\mathbf{k}_{\mathrm{F}} \text { : Fermi wave vector }
\end{array} \quad \begin{array}{l}
\frac{N}{2}=\sum_{|\mathbf{k}| \leq\left|\mathbf{k}_{F}\right|}\langle\mathrm{GS}| \hat{n}_{\mathbf{k}, \uparrow}|\mathrm{GS}\rangle=\sum_{|\mathbf{k}| \leq\left|\mathbf{k}_{F}\right|}\langle\mathrm{GS}| \hat{n}_{\mathbf{k}, \downarrow}|\mathrm{GS}\rangle .
\end{array}\right.
$$

N -particle ground state: Fermi Energy.

- Fermi energy ε_{F} : single-particle energy of the latest occupied states.

■ $\varepsilon=\varepsilon_{F}$: sphere in k space.

- The radius of this sphere is k_{F}

$$
k_{F}=\frac{\sqrt{2 m^{*} \varepsilon_{F}}}{\hbar}
$$

- In each occupied state $\left(k \leq k_{F}\right)$ there are 2 Fermions (Pauli).
- For N fermions:
$N=2 \sum_{|\mathbf{k}| \leq\left|\mathbf{k}_{F}\right|}\langle\mathrm{GS}| \hat{n}_{\mathbf{k}, \uparrow}|\mathrm{GS}\rangle=2 \sum_{|\mathbf{k}|<k_{F}}=2 V_{\mathbf{r}} \int_{V_{\mathbf{k}}} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}$
Integrating over the Fermi sphere in k space:
$\square \frac{N}{V_{\mathbf{r}}}=\frac{2}{8 \pi^{3}} \frac{4}{3} \pi k_{F}^{3}=\frac{k_{F}^{3}}{3 \pi^{2}}$
- In terms of the density $n=N / V_{r}$:

$$
\varepsilon_{F}=\left(\frac{\hbar^{2}\left(3 \pi^{2}\right)^{\frac{2}{3}}}{2 m^{*}}\right) n^{\frac{2}{3}}
$$

$$
\ln 3 D, \varepsilon_{F} \sim n^{2 / 3}!
$$

Ground-state energy of the N-particle state.

- Integrating e rearranging:

$$
E=\frac{3}{5} V_{\mathbf{r}} n \varepsilon_{F} \Rightarrow \frac{E}{N}=\frac{3}{5} \varepsilon_{F}
$$

Energy per particle in a Fermion gas.

- Typical values in metals (Copper) :

$$
\left\{\begin{array}{l}
\varepsilon_{F} \approx 7.03 \mathrm{eV}=81600 \mathrm{~K} / \mathrm{k}_{B} \\
\lambda_{F}=\frac{2 \pi}{k_{F}} \approx 4.6 \AA \\
v_{F}=\frac{\hbar k_{F}}{m^{*}} \approx 1.57 \times 10^{6} \mathrm{~m} / \mathrm{s} \approx 0.005 c
\end{array}\right.
$$

- Usefu! ($1 \mathrm{meV}=11.6 \mathrm{~K} / \mathrm{k}_{B}$)
- Adding the energies of each occupied state:

$$
E_{\mathrm{GS}}=2 \sum_{|\mathbf{k}|<\left|\mathbf{k}_{F}\right|} \varepsilon_{\mathbf{k}} n_{\mathbf{k}, \uparrow}=2 \sum_{|\mathbf{k}|<k_{F}} \varepsilon_{k}=2 V_{\mathbf{r}} \int_{V_{\mathbf{k}}} \frac{\hbar^{2} k^{2}}{2 m^{*}} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}
$$

Density of states.

- No of states between k and $k+\Delta k$ (3D):

$$
\Delta N_{\mathrm{st}}^{\Delta \mathbf{k}}=2 \frac{\Delta V_{\mathbf{k}}}{V_{\mathbf{k}}^{1 \mathrm{st}}}=V_{\mathbf{r}} \frac{8 \pi k^{2} d k}{(2 \pi)^{3}}
$$

$$
\Delta N_{\mathrm{st}}^{\Delta \mathbf{k}}=V_{\mathbf{r}} \frac{k^{2} d k}{\pi^{2}}
$$

- No. of states between ε and $\varepsilon+\Delta \varepsilon$:

$$
\Delta N_{\mathrm{st}}^{\Delta \varepsilon}=\rho(\varepsilon) d \varepsilon
$$

where $\rho(\varepsilon)$ is the density of states:

- Converting from k to $\boldsymbol{\varepsilon}$:

$$
\varepsilon_{k}=\frac{\hbar^{2} k^{2}}{2 m^{*}} \Rightarrow d \varepsilon=\frac{\hbar^{2} k d k}{m^{*}}
$$

Since the number of states is the same:

$$
\Delta N_{\mathrm{st}}^{\Delta \mathrm{k}}=\Delta N_{\mathrm{st}}^{\Delta \varepsilon}=\frac{V_{\mathbf{r}}}{2 \pi^{2}}\left(\frac{2 m^{*}}{\hbar^{2}}\right)^{\frac{3}{2}} \varepsilon^{\frac{1}{2}} d \varepsilon
$$

- Density of states in 3D:

$$
\rho_{3 \mathrm{D}}(\varepsilon)=\frac{V_{\mathbf{r}}}{2 \pi^{2}}\left(\frac{2 m^{*}}{\hbar^{2}}\right)^{\frac{3}{2}} \varepsilon^{\frac{1}{2}}
$$

