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Causal directed acyclic graphs (cDAGs) have become popular tools for researchers to better

examine biases related to causal questions. DAGs comprise a series of arrows connecting nodes

that represent variables and in doing so can demonstrate the causal relation between different

variables. cDAGs can provide researchers with a blueprint of the exposure and outcome relation

and the other variables that play a role in that causal question. cDAGs can be helpful in the design

and interpretation of observational studies in pulmonary, critical care, sleep, and cardiovascular

medicine. They can also help clinicians and researchers to better identify the structure of different

biases that can affect the validity of observational studies.Most of the available literature oncDAGs

and their function use language that might be unfamiliar to clinicians. This article explains cDAG

terminology and the principles behindhow theywork.Weuse cDAGsand clinical examples that are

mostly focused in the area of pulmonary medicine to describe the structure of confounding, se-

lection bias, overadjustment bias, and detection bias. These principles are then applied to a more

complex published case study on the use of statins and COPDmortality.We also introduce readers

to other resources for a more in-depth discussion of causal inference principles.
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Introduction
Medical research often attempts to ascertain
the predictors of a certain outcome or
whether a treatment causes a certain
outcome. Randomized controlled trials
(RCTs) are considered the gold standard for
establishing causation. Because RCT data are
not available for most causal questions,
many research studies that address causal
questions use observational designs.
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At times, results from observational studies
can confuse the effect of interest with other
variables’ effects, leading to an association
that is not causal.1 It would be helpful for
clinicians and researchers to be able to
visualize the structure of biases in a clinical
study to ensure that the study design and
analysis considers these kinds of issues. By
visualizing these biases, researchers can
better identify and control for them.
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There has been an explosion in recent years of
observational studies in the areas of pulmonary, critical
care, sleep, and cardiovascular medicine using Big Data.
This has led to the identification of different types of
biases that might affect the validity of these studies.2

Causal directed acyclic graphs (cDAGs) are a relatively
new framework for visualizing the variables that play a
role in causal questions.3,4 Several reviews and tutorials
have been published on the use of cDAGs intended for
clinicians and clinician reseachers.5-8 A review by Lederer
et al8 introduces general concepts, including confounding
and selection bias for pulmonary medicine researchers.
The current article extends these concepts to include
other pertinent terminologies and principles of causal
inference that we believe researchers should be familiar
with. We also attempt to link principles of causal
inference to clinical examples that we believe are critical to
the understanding of these concepts for the readers.

The current review expands on the existing literature
and provides a more detailed review of how cDAGs can
identify four common types of biases in epidemiologic
studies (confounding, selection, overadjustment, and
detection bias) using, for the most part, examples from
the pulmonary, critical care, sleep, and cardiovascular
medicine literature. We will also use a published
research study on the effect of statin use and COPD
mortality as a case study and show, by drawing a cDAG,
how to identify and control for potential biases.9
TABLE 1 ] Common Definitions Used in Causal Directed Ac

Term

Arrow Shows direct causal effect

Box A box around a variable means that v

Path A series of adjacent arrows regardles

Ancestor/descendent In a directed path from A to B, A is an

Directed path A path in which all of the arrows lie ta

Undirected path A path in which some of the arrows lie
point in the same direction)

Collider A variable that has two arrowheads c

Collider bias A bias created when a collider variabl

Blocked path A path that contains a noncollider tha
where neither the collider nor its de

Causal path A directed path from the exposure to

Biasing path An open undirected path between the

Confounding path An undirected path that contains a co

Confounding Bias created by a confounding path

Confounder A variable that is on a confounding pa
can include but is not required to b

Mediator A variable that indirectly mediates th
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Directed Acyclic Graphs
DAGs comprise a series of arrows connecting nodes that
represent variables. Any series of adjacent arrows in the
graph, regardless of direction, forms a path. The series
must be acyclic, meaning it cannot form a feedback loop
in which one variable causes itself.

DAGs are based on mathematical graph theory and have
historically been used in computer science, particularly
in the creation of computer algorithms. They are
increasingly used to address causation in areas of science
such as epidemiology and medicine.10 DAGs that show a
causal effect between two or more variables are called
causal DAGs (cDAGs). Table 1 defines common terms
related to cDAGs. The following text discusses
application of cDAGs in identifying different types of
biases using clinical examples.

Identifying Bias Structures in Epidemiologic
Studies Using cDAGs

Confounding Bias

Confounding is perhaps the most prevalent type of bias
that can affect the validity of epidemiologic studies.
Consider an observational cohort that uses a large health
claims database to examine the risk of new COPD
exacerbations with current users of a new long-acting
beta2-adrenergic receptor agonist (LABA). Suppose the
new LABA had previously been shown to reduce COPD
yclic Graphs

Definition

ariable is conditioned upon

s of their directions

ancestor of B and B is a descendent of A

il to head (pointing in the same direction)

tail to head and others head to tail (ie, not all of the arrows

onverging on it within a path

e is conditioned on. Also known as selection bias

t has been conditioned on or a path that contains a collider,
scendant have been conditioned on

the outcome

exposure and outcome

mmon cause of the exposure and outcome

th and, upon conditioning, blocks that path. A confounder
e common causes of exposure and outcome variables

e effect of the exposure on the outcome
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exacerbations in a large randomized trial but in the
observational cohort study, investigators observe the
opposite effect (a harmful effect with the drug). One
potential reason for this paradoxical effect is
confounding by indication.

Figure 1A shows the variables at play in this cohort
study. In this graphic, arrows represent a direct effect
from one variable to another. There is an arrow or causal
path from LABA use to COPD exacerbations because
this is the causal question we want to examine. This path
can also be called a directed path because it describes a
path that starts from LABA use and ends on COPD
exacerbations. Thus, all causal paths are directed paths.

COPD severity is an ancestor of COPD exacerbations,
whereas COPD exacerbations would be a descendent of
COPD severity. There is an arrow from COPD severity
to LABA use (patients with more severe COPD are more
likely to receive LABAs) and from COPD severity to
COPD exacerbations because severe COPD can lead to
COPD exacerbations.

The path LABA ) COPD severity / COPD
exacerbation is an undirected path because the sequence
of arrows is not directional from LABA use to
COPD exacerbation. This undirected path through
COPD severity is a biasing path. The path on which
COPD severity lies is also referred to as a confounding
path because it is a path that includes a common cause
of LABA use and COPD exacerbations. COPD severity
introduces confounding bias7,11 because it is a common
A

C D

COPD severity COPD exacerbationsLABA

Antipsychotic
agents

BMI Diabetes

Thiaz

A

Figure 1 – A, Example of confounding by indication. The effect of LABAs on
prescribed to patients with more severe COPD who are already at a higher risk
effect of fluoroquinolones on the risk of epilepsy will be biased if the data are r
bias that will spuriously associate fluoroquinolone use with the risk of epileps
use on the risk of diabetes will be biased if BMI, a mediator on the path, is adj
between thiazide diuretics and skin cancer can be spuriously observed if thiaz
nonusers, as they visit physicians more often due to skin rashes secondary to
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cause of COPD exacerbations and LABA use. This type
of confounding is referred to as confounding by
indication (also referred to as confounding by disease
severity or channeling bias) because it arises due to more
patients taking LABAs with more severe COPD
developing COPD exacerbations than those taking
LABAs with less severe COPD. Biasing paths such as a
confounding path need to be blocked to ascertain an
unbiased measure of the causal effect (Table 2).

Now that we have acknowledged that COPD severity is a
confounder, we can attempt to block the path that it
creates to prevent this bias from being transmitted. The
most common approach for blocking this path is to
statistically adjust for COPD severity. Approaches
include stratifying patients according to COPD severity,
matching LABA users and nonusers on COPD severity,
and restricting or excluding patients on a proxy for this
variable. All these methods are examples of
conditioning. Once we have conditioned on COPD
severity, the only causal path remaining in the cDAG is
the path from LABA use to COPD exacerbations.

Selection Bias

Selection bias is another type of bias that can affect the
validity of epidemiologic studies. Unlike confounding,
selection bias is created by researchers at the study design
stage. It occurs when a study conditions on a variable that
is a common effect of both the exposure and outcome.7,10

Consider a researcher who wants to examine the risk of
epilepsy with oral fluoroquinolones, as these drugs have
Pneumonia
B

Electrolyte imbalance

Fluoroquinolones Epilepsy

H
(Hospitalization)

ide diuretics

ll skin cancers

Skin changes Diagnosed
skin cancer

COPD exacerbations can be confounded by COPD severity if LABAs are
of developing exacerbations. B, Example of collider or selection bias. The
estricted to those who are hospitalized. This restriction creates a selection
y. C, Example of overadjustment bias. The causal effect of antipsychotic
usted for. D, Example of detection bias. An otherwise absent causal effect
ide diuretic users are more likely to be diagnosed with skin cancer than
thiazide use. LABA ¼ long-acting beta2-adrenergic receptor agonist.
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TABLE 2 ] Description of Different Types of Bias, Their Causal Structure, and the Need for Adjustment

Type of Bias cDAG
Adjustment,

Yes/No Explanation

Confounding

C E O

Yes Adjustment for C is necessary
to control for confounding
bias

Collider bias

General
structure

E O C

No C is a collider, and adjustment
for C will introduce collider
bias

Descendent of
a collider

E O CS

No C is a descendent of collider S,
and its adjustment will
introduce collider bias

M bias A

E

C

B

O

No C is a collider and should not be
adjusted for

Overadjustment
bias

E C O

No C is a mediator between E and
O Its adjustment will bias the
total effect of E on O

Unlike confounding bias, where adjustment for C is necessary, adjustment for C will introduce bias in the case of both collider and overadjustment bias.
recently been linked to adverse events in the CNS by the
US Food and Drug Administration.12 Figure 1B is a
cDAG depicting this scenario. There are two causal
paths from fluoroquinolone use to epilepsy, one a
directed path and the other an undirected path that
could lead to bias. Two arrows originate from
pneumonia and go to fluoroquinolone use and
hospitalization, as pneumonia causes both outcomes.
Similarly, two arrows originate from electrolyte
imbalance and go to epilepsy and hospitalization.
Pneumonia and electrolyte imbalance both cause
hospitalization; thus, their effects are said to collide on
hospitalization, and hospitalization is called a collider on
this path.7,13 Because the collider sits on the undirected
path between the exposure (fluoroquinolone use) and
the outcome (epilepsy), it prevents the transmission of
any bias through this blocked path. The presence of the
collider means that this undirected path is not a biasing
path. However, this blocked path can be opened
S24 Supplement
upon conditioning on the variable hospitalization
(Table 2).

In our example, imagine a researcher who is not aware
of the structure of this cDAG and is curious to know if
the risk of epilepsy with fluoroquinolones differs among
those who are hospitalized compared with those who are
not. The researcher decides to restrict (a form of
conditioning) the data to hospitalized patients only. This
approach will now open the path that was previously
blocked by hospitalization; that is, initially there was no
flow of information from fluoroquinolone use to
epilepsy due to the path blocked by the variable
“hospitalization” and hence no possibility for
transmission of bias. Upon conditioning by
hospitalization this previously blocked path is now open,
creating the path: fluoroquinolones ) pneumonia /

hospitalization ) electrolyte imbalance / epilepsy.
This new path will introduce a biased, noncausal
association referred to as a selection bias or collider
[ 1 5 8 # 1 S CHE S T J U L Y 2 0 2 0 ]



bias.7,13 Thus, hospitalization should not have been
conditioned on. A remedy to this situation would be to
block the transmission of this bias by adjusting for
pneumonia and/or electrolyte imbalance.

Overadjustment Bias

Investigators are often careful to control for all potential
confounding variables, usually using statistical
adjustment. Peer reviewers and journal editors also want
to be convinced that a submitted study has adjusted for
all potential confounding variables. Adjusting for
variables that should not be adjusted for leads to
overadjustment bias.14 Overadjustment bias usually
occurs when an intermediate variable (also called a
mediator) is adjusted for. Mediators are variables that
alter the effect of an exposure on the outcome through a
specific mechanism.

For example, antipsychotic agents can increase the risk
of diabetes.15 Consider an investigator who wants to
look at the total effect of antipsychotic use on the risk of
diabetes in a cohort study. Figure 1C shows two causal
paths: a direct path from antipsychotic agents to diabetes
and an indirect path from antipsychotic agents to
diabetes through BMI. The investigator might choose to
stratify the antipsychotic users according to their BMI,
categorizing this value into a binary variable: > 30 kg/
m2 or < 30 kg/m2. Conditioning on an intermediate
variable will block the flow of information from
antipsychotic use to diabetes through an indirect path
via BMI (Table 2). The resulting association will be
biased due to overadjustment bias.

Intermediate or mediator variables should not be
conditioned on when the study question assesses an
exposure’s overall effect on an outcome. More complex
methodologies are needed if an investigator wants to
examine how much of the total effect is derived from the
intermediate variable.14

Detection Bias

Measurement error, also called misclassification of the
outcome or exposure, can affect the validity of
epidemiologic studies as well. Detection bias is a type of
outcome misclassification in which a group of patients
are more likely to be diagnosed with a certain condition
than another group because of a third variable.

For example, studies have linked the use of thiazide
diuretics to skin cancer.16,17 This increase in risk might
be driven by detection bias, as shown by the cDAG in
Figure 1D. There is an arrow from thiazides to skin
chestjournal.org
changes (an adverse event with thiazide diuretics) and
an arrow from skin changes to all skin cancers. There
are also arrows from all skin cancer (diagnosed and
undiagnosed) to diagnosed skin cancer and skin
changes. The cDAG makes it clear that there is no true
effect (arrow) from thiazide diuretics to skin cancer.
Notice that although skin changes might appear to be a
mediator, they actually are not because we know that
thiazides do not cause skin cancer through skin changes.
Skin changes are simply an adverse event of thiazides
that can lead to a higher number of diagnosed skin
cancers. The spurious association is due to detection
bias: thiazide users are more likely to go to their
physician with skin change-related issues than nonusers,
which increases the chance of their skin cancer being
spotted, regardless of whether it is related to the
thiazide.

We can theoretically control for the detection bias by
conditioning on or adjusting for skin changes, blocking
the pathway thiazides / skin changes / diagnosed
skin cancer. However, the variable “all skin cancer” also
has an effect on skin changes. Skin changes is a collider
on the remaining undirected path: thiazides / skin
changes ) all skin cancer / diagnosed skin cancer.
Although conditioning on skin changes removes
detection bias, it introduces collider bias. In large
database studies, one must often assess the tradeoff
between accepting detection bias or collider bias. If a
clinical trial design had been used, this problem could
have been mitigated by using better screening for skin
cancer for both thiazide users and nonusers.
Drawing a cDAG and Addressing Bias: A Case
Study
We now present a case study to illustrate how to
generate a cDAG and use it to identify biasing paths. A
group of researchers investigated the effect of statin
medications on lung-related mortality in patients with
COPD.9 Some evidence suggested that statins may lower
mortality through their antiinflammatory properties.18

They examined this question with a cohort study using
patients with COPD from a population health database.
To control for survival bias (immortal time bias), the
investigators started follow-up for statin users and
nonusers 1 year following cohort entry. Several potential
confounders were controlled for in the Cox regression
model, including age, sex, comorbidity, number of
physician and hospital visits, geographic location, and
income level.
S25
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Income level

Income level

A

B

Smoking Heart disease

COPD severity
(U)

Comorbidity

Comorbidity

Age Smoking

Sex

Heart disease

COPD

Statins

SPMD visits

COPD severity
(U)

COPD

Statins

MD visits SP

Lung-related mortality

Lung-related mortality

Figure 2 – A, Causal directed acyclic graph for the statin and lung-related mortality case study. B, Causal directed acyclic graph for the statin and lung-
related mortality case study with a complete set of all pertinent variables. Dotted straight arrow indicates causal relation under investigation; solid
arrows indicate known relations. MD ¼ physician; SP ¼ survival 1 year following statin prescription; U = unmeasured confounder.
Figure 2A presents the cDAG for this study. The dotted
arrow from statins to total lung mortality shows that this
is the causal question under investigation. The variables
that were controlled for are indicated with a box. They
were adjusted because they lie on biasing paths. “SP”
represents survival 1 year following the first statin
prescription, which is a condition created by the
investigators in the study design. COPD indicates that
the cohort was restricted to patients with COPD.

All shared causes (causes shared by statin use and lung
mortality) must be included in a cDAG. We have
therefore added the variables heart disease and smoking
to Figure 2A. However, to avoid overcrowding the
cDAG and aid visualization of the biasing paths, we have
S26 Supplement
omitted sex and age from this graphic. All variables are
shown in a complete version of the cDAG in Figure 2B.

The aim is to keep all causal paths from statin use to
lung-related mortality open and to block all biasing
paths that are open undirected paths between the
exposure and outcome. For this question, we need to
block biasing paths that include a common cause of
statins and mortality by adjusting for confounders. We
must also avoid adjusting for colliders or descendants of
colliders in other undirected paths, which could
introduce collider bias7,13 (Table 2).

Income level and comorbidity are common causes of
statin use and lung-related mortality. Age, number of
[ 1 5 8 # 1 S CHE S T J U L Y 2 0 2 0 ]



hospitalizations, number of prescriptions (the variables
number of hospitalizations and number of prescriptions
were excluded to prevent overcrowding of the cDAG),
sex, number of physician visits, and comorbidity are on
confounding paths with statin use and mortality. These
confounders were correctly adjusted for by the
investigators.

Heart disease, smoking (assuming smoking occurred
prior to heart disease), and COPD severity are also
confounders of statin use and lung-related mortality.
Although smoking and COPD severity were not
available in the study database, they are shown in the
cDAG because they are also on a path that includes a
common cause (income level). Heart disease was
measured in the database but not adjusted in the study.
The cDAG suggests that it should have been adjusted for
because it causes both lung-related mortality and statin
use. The path statins ) heart disease ) smoking /

lung-related mortality is a confounding path. Either
smoking or heart disease should have also been adjusted
for.

Two additional biasing paths have been created by the
conditioning steps in the study design. Restricting the
cohort to patients with COPD created the biasing path:
statin ) heart disease )smoking / COPD )

income level / lung-related mortality. The collider bias
created by conditioning on COPD can be blocked by
conditioning on income level or smoking. Because
income level is already adjusted for, collider bias is
averted.

Only patients who had been taking statins for 1 year
were included in the study. This cohort restriction
created the biasing path: statin / SP ) COPD severity
/ lung-related mortality. This collider bias could not be
adjusted for in the analysis because COPD severity is
usually not available in most population-based
databases.

In summary, the variables adjusted for by the
investigators included age, sex, number of physician
visits, comorbidity, income level, number of
hospitalizations, and number of prescriptions received.
Based on our cDAG variables, heart disease and COPD
severity should have also been adjusted for. Heart
disease could have been adjusted by the investigators
because these data were available to them; COPD
severity was an unmeasured confounder and could not
have been adjusted for. The cDAG also tells us that two
collider biases were introduced: (1) COPD, which was
controlled for as a result of adjustment for income level;
chestjournal.org
and (2) variable SP, which could not be controlled for
because it was introduced at the design stage of the
study.

Causal Diagram Resources for Clinicians
Those interested in learning more about the basic
principles behind causal diagrams and accessing more
detailed discussions of identifying and controlling for
confounders and colliders are directed toward reviews
and tutorials aimed at clinicians.5-8 Harvard University
offers an excellent introductory online course on casual
inference with worked examples for those looking for a
more interactive experience.19

Several resources are available for drawing causal
diagrams. Simple cDAGs can be drawn using Microsoft
PowerPoint (Microsoft Corporation). Dagitty (http://
www.dagitty.net/) is a freely available software program
that has been specifically built for drawing causal
diagrams.

Limitations of cDAGs
As with any methodologic or statistical technique, causal
diagrams have limitations. They do not convey
information about important aspects of causal relations,
such as the magnitude of the bias. cDAGs might imply
that several sets of variables are sufficient for bias
adjustment but offer no further guidance on which to
use. The absence of key variables in a cDAG might itself
lead to bias, which may be mitigated by researchers
proposing different cDAGs to gain a better sense of the
effects of different causal assumptions. cDAGs are
insensitive to biases that result from small sample sizes,
such as bias due to chance confounding20 or sparse data
bias.21 In practice, one cannot be certain of the
temporality between variables because they may be
measured simultaneously. Similarly, if a causal relation
between two variables is misrepresented, the accuracy of
the cDAG will be compromised. Although cDAGs are
useful for qualitatively conceptualizing causality,
advanced quantitative causal models should be used to
estimate causal effects.2,22-24

Summary and Conclusion
Judea Pearl, who pioneered the adaptation of cDAGs
from quantitative sciences to medical research, said,
“Causal analysis without graphs is like medicine without
anatomy.”25 Although cDAGs should not be considered
a panacea for the proper conduct of high-quality
research, they are a useful tool for contending with
confounding and selection use. We hope that this primer
S27
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will encourage researchers to make use of cDAGs and
the resources available to support their use, while also
highlighting the limitations of these tools.
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