
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011
989

PAPER Special Section on Formal Approach

Modeling, Verification and Testing of Web Applications Using
Model Checker

Kei HOMMA†a), Nonmember, Satoru IZUMI††, Student Member, Kaoru TAKAHASHI†††,
and Atsushi TOGASHI†, Members

SUMMARY The number of Web applications handling online transac-
tion is increasing, but verification of the correctness of Web application
development has been done manually. This paper proposes a method for
modeling, verifying and testing Web applications. In our method, a Web
application is modeled using two finite-state automata, i.e., a page automa-
ton which specifies Web page transitions, and an internal state automaton
which specifies internal state transitions of the Web application. General
properties for checking the Web application design are presented in LTL
formulae and they are verified using the model checker Spin. Test cases
examining the behavior of the Web application are also generated by uti-
lizing the counterexamples obtained as the result of model checking. We
applied our method to an example Web application to confirm its effective-
ness.
key words: Web application, modeling, testing, automata, model checking,
Spin

1. Introduction

Web applications are evolving rapidly and used in impor-
tant transactions like online shopping and online banking,
and the correctness of Web applications is a primary con-
cern. Therefore, thorough analysis and verification of Web
Applications is indispensable to assure the high quality of
applications. On the other hand, Web applications need to
be developed rapidly in order to offer the latest information
to the customer.

In Web application development, a front-end, which is
a Web page, is important because it is a contact point to
users. But, the specification for a Web page usually takes
considerable time to be decided, and it is not rare that the
design of a Web page changes frequently. In order to reduce
the influence of the changes made to a Web page, the Web
page and the business logic should be developed separately,
as one of the development styles, in the development of large
Web applications.

One process taken for developing in the above men-
tioned way is to design the page transition first. Secondly,
using the page transition, Web pages and business logic are

Manuscript received July 22, 2010.
Manuscript revised November 14, 2010.
†The authors are with the Graduate School of Project Design,

Miyagi University, Miyagi-ken, 981–3298 Japan.
††The author is with the Research Institute of Electrical Com-

munication/Graduate School of Information Sciences, Tohoku
University, Sendai-shi, 980–8577 Japan.
†††The author is with the Sendai National College of Technology,

Sendai-shi, 989–3128 Japan.
a) E-mail: khomma@jp.ibm.com

DOI: 10.1587/transinf.E94.D.989

designed. Finally, Web pages and business logic are im-
plemented (e.g. JSPs for pages and Java Beans for business
logic). Since the page transition and the business logic are
designed in different phases, there is a need to check if they
are designed correctly.

Model checking [1], [2], a method for formally check-
ing state transition systems, has now become popular, be-
cause it allows the fully automatic analysis of designs of
software systems as well as hardware systems. There is
much work in which model checking is used on Web ap-
plication modeling and verification (e.g. [7], [11], [12]), and
on Web application testing (e.g. [13], [14]).

This paper proposes a method which uses the model
checker Spin [3], [4] for modeling, expressing, verifying and
testing Web applications. A Web application is modeled us-
ing the page transition and the internal state transition. They
are described as finite-state automata, and the whole Web
application is modeled using the product automaton of them.
The model can be checked with respect to general properties
such as deadlock-freeness using Spin, and its implementa-
tion can be tested using test cases which are generated from
the counterexamples to show that certain properties are false
for the model.

The characteristics of our method is summarized as fol-
lows, while the contrast with the related works is discussed
later.

• The development process of a Web application is to-
tally covered with our method from the modeling stage
through testing one, i.e., design by automata; both ver-
ification and testing by model checking.
• The entire Web application can be modeled as the syn-

chronized product between page transitions and inter-
nal state transitions, where each transition is specified
separately with little concern of synchronized actions.
• We devise a specific way to express the model in

Promela, the language used in Spin, and give a prac-
tical example. This way gives us a direct transforma-
tion method from automata in design stage into pro-
cesses by Promela language in the verification and test-
ing stage.
• General properties for verifying the Web applications

are presented, and expressed with LTL (Linear Tem-
poral Logic) formulae. These properties state general
assertions to be satisfied by all Web applications inde-
pendent of the intended functions.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

990
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

• A way to generate test cases examining state reacha-
bility and action feasibility of the Web application is
given. Those test cases are generated by utilizing coun-
terexamples that Spin produces for a false property rep-
resented in a certain LTL formula. So verification and
testing are done in a uniform framework using model
checking.
• We have illustrated modeling, verification, and testing

using a practical application which represents an online
store Web application. This illustrative example imi-
tates a real application on the intended functions and
state space without any specific exceptions. So, our
formal method covers various Web applications on the
view point of design, verification, and testing.
• Using our approach, it is feasible to design page transi-

tions of each page and its internal state transitions sepa-
rately at first. Then, we extend them to the whole appli-
cation satisfying requirements for the Web application.
This design process saves costs in software develop-
ment.

To summarize the characteristic, this paper shows prac-
tical approaches on how to make use of formal methods for
the design, verification and testing of Web systems based on
formal techniques such as automata theory, concurrent cal-
culus, and model checking. The methods are applied to a
practical Web system with enough size of volume. The il-
lustrated example is equivalent in essence to the real Web
system in functions and size. The experimental result of this
paper shows the usefulness of the proposed methods. This
paper reduces the existing gap between formal theory and
practice, and appeals for the importance of formal methods
in software development.

The remainder of this paper is structured as follows:
Section 2 describes some preliminaries. The proposed
model of Web application is given in Sect. 3, followed by
verification and test generation presented in Sect. 4; Sec-
tion 5 shows the result of applying the proposed method to
an example Web application (online store) and provide the
case studies; In Sect. 6, we discuss related work, and Sect. 7
concludes the paper.

2. Preliminaries

2.1 Model Checking

Model checking [1], [2] is a technique for formally verifying
hardware or software systems represented as finite state sys-
tems. Given a model of a system, a model checking tool au-
tomatically checks whether this model satisfies the specifi-
cation of a given property such as reachability and deadlock-
freeness. The specification is typically given by a formula in
LTL or CTL (Computation Tree Logic). In particular, if the
model does not satisfy the specification, the model check-
ing tool will produce a counterexample that can be used to
detect the source.

In this paper, we will use the model checker Spin [3],

[4] as a model checking tool and LTL formulae to specify
properties to be checked.

2.2 Linear Temporal Logic

The propositional linear temporal logic or simply LTL ex-
tends traditional propositional logic with temporal opera-
tors. Formally, an LTL formula ϕ has the following syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | Gϕ | Fϕ | Xϕ
where p is an atomic proposition, U is the until operator,
G (or �) is the always operator, F (or �) is the eventually
operator, and X (or©) is the next operator.

Given a set of atomic propositions AP, let M =

〈S ,T, S 0, L〉 be a Kripke structure, where S is a set of states,
T ⊆ S × S is a transition relation, S 0 ⊆ S is a set of initial
states, and L is a labeling function from S to the power set
of AP. A state sequence π = 〈s0, s1, · · · 〉 is a path of M if
s0 ∈ S 0 and (si, si+1) ∈ T for all i (i ≥ 0). We denote |π|
as the length of a given state sequence π. If π is an infinite
sequence of states, then |π| = ∞, assuming that ∞ is greater
than any integer. An empty sequence of states is denoted
as ε, and |ε| = 0. A path is called finite if it is a finite se-
quence of the form 〈s0, s1, . . . , sk〉 such that (sk, s) � T for
all s ∈ S . πi = 〈si, si+1, . . .〉 denotes the suffix of a sequence
π = 〈s0, s1, . . .〉 starting at si. We assume that πi = ε for
|π| ≤ i. Also, note that π0 = π.

Given a model M, the semantics of an LTL formula ϕ
is given by defining a satisfaction relation which is a relation
between M, a state sequence π of M and ϕ, and shows that
ϕ is true in the situation M and π, written as π |= ϕ:

(1) π |= p ⇔ |π| > 0 and p ∈ L(s0)
(2) π |= ¬ϕ ⇔ π |=/ ϕ
(3) π |= ϕ ∧ ψ ⇔ π |= ϕ and π |= ψ
(4) π |= ϕ U ψ ⇔ there exists i (0 ≤ i < |π|)

such that πi |= ψ, and for all j (0 ≤ j < i), π j |= ϕ
(5) π |= Gϕ ⇔ for all i (0 ≤ i < |π|), πi |= ϕ
(6) π |= Fϕ ⇔ for some i (0 ≤ i < |π|), πi |= ϕ
(7) π |= Xϕ ⇔ π1 |= ϕ

3. Modeling

3.1 Modeling of Web Applications

The general architecture of a Web application is a client-
server system. Communication between the client and the
server in the Web application typically revolves around the
navigation of Web pages [5]. Therefore, the page transition
is a significant ingredient in the Web application design. The
Web pages in the page transition can be treated as states
and the page transition as state transition. Thereby the page
transition can be regarded as a finite-state automaton, and
we call it a page automaton.

Definition 1: A page automaton is a quadruple:

MG = 〈QG,Σ, δG, q0G〉

HOMMA et al.: MODELING, VERIFICATION AND TESTING OF WEB APPLICATIONS USING MODEL CHECKER
991

Fig. 1 Model of Web application.

where

(1) QG is a finite set of states (pages);
(2) Σ is a finite set of input symbols (actions to Web appli-

cation);
(3) δG (⊆ QG × Σ × QG) is a transition relation (page tran-

sition);
(4) q0G (∈ QG) is the initial state (top page).

An example of a page automaton is shown in Fig. 1.
A Web application executes a business logic and so the

most important model of the system focuses on the business
logic and business state [5], and we call this an internal state.
The internal states are determined by the set of variables
and values from input. The internal state transition occurs
synchronously with page transition triggered by actions. We
call this internal state transition an internal state automaton.

Definition 2: An internal state automaton is a quadruple:

Me = 〈Qe,Σ, δe, q0e〉
where

(1) Qe is a finite set of states (internal states of Web appli-
cation);

(2) Σ is a finite set of input symbols (actions to Web appli-
cation);

(3) δe (⊆ Qe×Σ×Qe) is a transition relation (internal state
transition);

(4) q0e (∈ Qe) is the initial state.

An example of an internal state automaton is shown in
Fig. 1.

Given a page automaton MG and an internal state au-
tomaton Me, we define the whole Web application as their
product MG × Me, and call it a product automaton (see
Fig. 1).

Definition 3: The product automaton of a page automaton
MG = 〈QG,Σ, δG, q0G〉 and an internal state automaton Me =

〈Qe,Σ, δe, q0e〉 is defined as:

M = MG × Me = 〈Q,Σ, δ, q0〉
where

(1) Q = QG × Qe;
(2) ((qG, qe), a, (q′G, q

′
e)) ∈ δ ⇔ (qG, a, q′G) ∈ δG and

(qe, a, q′e) ∈ δe;
(3) q0 = (q0G, q0e)

with qG, q′G ∈ QG, qe, q′e ∈ Qe and a ∈ Σ.

For readability purpose, we denote (q, a, q′) ∈ δ as

q
a−→ q′. For w ∈ Σ∗, q

w−→ q′ is inductively defined as
follows:

q
ε−→ q where ε is an empty sequence;

q
aw′−→ q′ ⇔ for some q′′, q

a−→ q′′ and q′′
w′−→ q′

where a ∈ Σ and w′ ∈ Σ∗. The symbol
a−→/ is the negation of

the relation
a−→, and

∗−→ means
w−→ for some w ∈ Σ∗.

3.2 Modeling with Variables

We extend a page automaton and an internal state automaton
by introducing variables. An automaton can be defined eas-
ily by extending the state transition to depend on the values
of the variables in the definition of its transition relation.

Let X = {x1, · · · , xn} be a finite set of variables which
store values derived from outside (e.g. input from the user
through Web pages), and store values used inside the sys-
tem (e.g. data in a database). With the addition of enabling
predicate depending on X and value assignment to X, a page
automaton and an internal state automaton with variables are
defined as follows.

Definition 4: A page automaton with variables is a 6-
tuple:

MG = 〈QG,Σ, δG, q0G, {Ri}i∈{1,··· ,n}, {v0i}i∈{1,··· ,n}〉
where

(1) QG is a finite set of states (pages);
(2) Σ is a finite set of input symbols (actions to Web appli-

cation);
(3) δG (⊆ QG × (Πi∈{1,··· ,n}Ri → {true, false})×Σ×QG) is a

transition relation (page transition);
(4) q0G (∈ QG) is the initial state (top page);
(5) Ri is the finite domain of variable xi;
(6) v0i (∈ Ri) is the initial value of variable xi.

In this definition, the set Πi∈{1,··· ,n}Ri represents the di-
rect product R1×· · ·×Rn. The second elementΠi∈{1,··· ,n}Ri →
{true, false} (equivalently 2Πi∈{1,··· ,n}Ri) of the transition rela-
tion δG represents the enabling predicate depending on the
values of the variables. There is no value assignment to the
variables.

Definition 5: An internal state automaton with variables
is a 6-tuple:

Me = 〈Qe,Σ, δe, q0e, {Ri}i∈{1,··· ,n}, {v0i}i∈{1,··· ,n}〉
where

992
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

(1) Qe is a finite set of states (internal states of Web appli-
cation);

(2) Σ is a finite set of input symbols (actions to Web appli-
cation);

(3) δe (⊆ Qe × (Πi∈{1,··· ,n}Ri → {true, false}) × Σ ×
Πi∈{1,··· ,n}(Π j∈{1,··· ,n}Rj → Ri) × Qe) is a transition re-
lation (internal state transition);

(4) q0e (∈ Qe) is the initial state;
(5) Ri is the finite domain of variable xi;
(6) v0i (∈ Ri) is the initial value of variable xi.

In this definition, the fourth element Πi∈{1,··· ,n}
(Π j∈{1,··· ,n}Rj → Ri) of the transition relation δe represents
the assignment of the values to the variables.

3.3 Representation of the Model

Spin which we use as the model checking tool has its own
specification language called Promela. Here we give a way
to express the page automaton and the internal state automa-
ton using Promela.

Each automaton is expressed as a Promela process de-
noted by using the keyword proctype, like “proctype
PageAutomaton() {..}.” To represent each state of an au-
tomaton, we use label. For example, “A:” represents a state
named “A.” The action accompanied with a state transition
is written in the do..od statement. A conditional action is
expressed using the if statement.

The product of the automata is implemented as a means
of the synchronous message passing mechanism of Promela
which uses a rendezvous port, denoted like “chan port
= [0] of {..}” for example. We will explain how the
page automaton and the internal state automaton synchro-
nize. Let “a” be an executable action of the page automa-
ton. Then, it is sent from the page automaton using the ren-
dezvous port, denoted like “port!a.” It is received by the
internal state automaton using the same port, denoted like
“port?a,” and the response “res” is sent back, denoted like
“port!res” which is received by the page automaton, de-
noted like “port?res.” Then, both automata move to the
next states synchronously.

4. Verification and Testing

4.1 Verification

We will present general properties for Web application de-
sign, and a way to express and verify them in Spin where
M = MG × Me = 〈Q,Σ, δ, q0, {Ri}i∈{1,··· ,n}, {v0i}i∈{1,··· ,n}〉.
(1) The page reachable from the top page always has a next

page in the transition.

A Web application is defined to be
deadlock-free if every page has a next page
during its execution. In this sense, the
property implies the Web application is
deadlock-free:

For all q ∈ Q such that q0
∗→ q,

there exist a ∈ Σ and
q′ ∈ Q such that q

a→ q′.

To verify this property, we observe the
execution of Promela statements. In the
Web page more than one action is avail-
able, so which statement is executed is de-
cided at random in Promela. It gives rise to
non-deterministic choice. If all statements
within the page are not executable, then the
system is deadlocked. In other words, dead-
lock does not occur when at least one action
is sent and received synchronously.

(2) Every page is reachable from the initial state.

All pages in the Web application can be
reached from the initial state via other
pages:

For all qe ∈ Qe and qG ∈ QG,
there exist w ∈ Σ∗ and q′e ∈ Qe

such that (q0G, q0e)
w→ (qG, q′e).

To verify this property, we use LTL formu-
lae. It is unable to express “every page” us-
ing the LTL formula. Therefore, verification
is done by specifying each concrete page.
The following formula states that from the
top page, there exists a path to a given page:

� (p ∧ � q)

where p is the top page and q is a given
page.

Different from CTL, LTL cannot be ap-
plied to verify “at least one path” when there
are many possible paths. Therefore, using
the negation of the LTL formula, Spin will
find a counterexample showing the execu-
tion path from the top page to a given page:

¬ � (p ∧ � q)

where p is the top page and q is a given
page.

By switching the target page, all pages
can be checked whether they are reachable
from the top page. Therefore, comprehen-
sive verification may take a certain amount
of time. But it can be done in a repetitive
manner without much effort.

(3) The top page is reachable from all pages.

There is no end page in the Web application,
so that we have to be able to return back to
the top page from any Web page in order to
deal with the process repeatedly:

For all qG ∈ QG and qe ∈ Qe

such that (qG, qe) ∈ Q,

HOMMA et al.: MODELING, VERIFICATION AND TESTING OF WEB APPLICATIONS USING MODEL CHECKER
993

there exist w ∈ Σ∗ and q′e ∈ Qe

such that (qG, qe)
w→ (q0G, q′e).

This property can be verified using the same
previous method. The LTL formula can be
shown as follows:

¬ � (p ∧ � q)

where p is a given page and q is the top
page.

(4) Every variable value is under the designated domain.

No variable takes the values beyond the do-
main during the execution:

Let dom(xi) be the set of values of
the variable xi while the applica-
tion is running. Then:
dom(xi) ⊆ Ri for all i (1 ≤ i ≤ n).

In the similar way as mentioned above, the
LTL formula is used for verifying this prop-
erty. A value of variable should be between
minimum (xmin) and maximum (xmax) of the
designated domain:

� (p ∧ q)

where p is x >= xmin and q is x <= xmax.

4.2 Test Generation

We will show a way to generate test cases, using the Web ap-
plication model we previously defined. The Web application
model we defined is intended for use in the design phase, so
the test cases correspond to the application design, which is
done in the “system test” phase. Because of system test, the
generated test cases are applied in a black box testing for
testing the functional structure.

Combined with the Web application model, each state
and/or each action can be treated as test target. Therefore,
the test cases are a combination of the following patterns:

(1) covering states (pages, internal states, and a combina-
tion of pages and internal states)

(2) covering the occurrence of actions

Test case generation can be done by utilizing coun-
terexamples produced by Spin, using the following form of
the LTL formula:

� (¬p)

where a state (page or internal state) or action is set to p
as a test object. If the test object is reachable in the Web
application model, then an “error” is output as a result of
verification in Spin creating the “trail file.” Using the trail
file, the way to transit from the initial state to the target state
is guided, which can be used as a test case.

To be more concrete, let us assume a page Z of a page

automaton A as a test state. Then, we execute model check-
ing by Spin with the Promela description of the model and
the formula setting p being Z of A. If �(¬p) is not satisfied,
i.e. the page Z is reachable, the path leading to Z is obtained
from the counterexample. The action sequence included in
the path can be used as a test case for state reachability of Z.

As mentioned in Sect. 3.3, each state of an automaton
is represented by label in Promela. The label can be speci-
fied in the LTL formula. However, action only appears as a
message of rendezvous port. Therefore, we use a temporary
variable, which will store action if the action is executed
normally. We specify this temporary variable in the LTL
formula to create test case.

There are some problems in this test case generation.
The first problem is that if there are a large amount of test
cases, each state has to be verified and each counterexample
is output separately. The second problem is that test cases
may become redundant in this way of generation.

These problems can be solved using the following
method:

�(¬p) ∨ �(¬q) ∨ �(¬r) . . .

A counterexample for transition to more than one state can
be output by verifying multiple states at the same time.

5. Illustrative Examples

5.1 Modeling

As an example of modeling, we use an online store Web ap-
plication (e.g. amazon.com [6]). This application has eleven
Web pages and six internal states. Its page transition and
internal state transition are outlined in Figs. 2 and 4, respec-
tively. The initial Web page is “A. Top Page” and the initial
internal state is “α. no item selected.” A product is selected
and the amount of the product is entered in the page “B.
Product List.” The order is placed in the page “J. Place
Order.” Finally, the order completes in page “K. Comple-
tion.” The user can increase and decrease the amount of
order, but five orders are the maximum in this example Web
application.

The example application can be modeled by two au-
tomata. The page automaton MG (Fig. 3) is defined as fol-
lows:

MG = 〈QG,Σ, δG, q0G, {Ri}i∈{1,··· ,3}, {v0i}i∈{1,··· ,3}〉
where

QG = {A, B,C,D, E, F,G,H, I, J,K}
Σ = {a1, a2, b1, b2, c1, c2, c3, d1, d2, d3,

e1, e2, e3, e4, f 1, f 2, f 3, g1, h1, h2, h3,

i1, i2, i3, i4, i5, j1, j2, j3, j4, j5, k1}
δG = refer to Fig. 3

q0G = A

R1 = R2 = R3 = {1, 2, 3, 4, 5}
v01 = v02 = v03 = 1.

994
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

Fig. 2 Page transition.

Fig. 3 Page automaton.

Fig. 4 Internal state automaton.

HOMMA et al.: MODELING, VERIFICATION AND TESTING OF WEB APPLICATIONS USING MODEL CHECKER
995

Fig. 5 Product automaton.

The variables x1, x2 and x3 in MG represent input from “B.
Product List,” “D. Shopping Cart” and “I. Product Confir-
mation,” respectively. The variable x1 describes the amount
of the product for purchase, and the variables x2 and x3 de-
scribe the amount of the products for cancellation. p is an
enabling predicate which returns true if the value of the ar-
gument is in its domain, and false otherwise. It represents
input validation in the application.

The internal state automaton Me (Fig. 4) is defined as
follows:

Me = 〈Qe,Σ, δe, q0e, {Ri}i∈{1,··· ,4}, {v0i}i∈{1,··· ,4}〉
where

Qe = {α, β, γ, δ, ε, ζ}
Σ = {a1, a2, b1, b2, c1, c2, c3, d1, d2, d3,

e1, e2, e3, e4, f 1, f 2, f 3, g1, h1, h2, h3,

i1, i2, i3, i4, i5, j1, j2, j3, j4, j5, k1}
δe = refer to Fig. 4

q0e = α

R1 = R2 = R3 = {1, 2, 3, 4, 5}
R4 = {0, 1, 2, 3, 4, 5}
v01 = v02 = v03 = 1

v04 = 0.

The variables x1, x2 and x3 in Me represent the same ones
as in MG. The variable x4 describes the total amount of
product for purchase. It stores values input at “B. Product
List” page and values are changed at “D. Shopping Cart”
and “I. Product Confirmation.”

The product automaton M of the page automaton MG

and the internal state automaton Me is defined as follows:

M = MG × Me = 〈Q,Σ, δ, q0, {Ri}i∈{1,··· ,4}, {v0i}i∈{1,··· ,4}〉
where

Q = {(A, α), (A, β), (B, α), (B, β), (C, β),

(D, α), (D, β), (E, β), (E, δ), (E, ε),

(F, γ), (G, δ), (G, ε), (H, γ), (H, δ), (H, ε),

(I, α), (I, δ), (I, ε), (J, ε), (K, ζ)}
Σ = {a1, a2, b1, b2, c1, c2, c3, d1, d2, d3,

ee1, e2, e3, e4, f 1, f 2, f 3, g1, h1, h2, h3,

ei1, i2, i3, i4, i5, j1, j2, j3, j4, j5, k1}
δ = refer to Fig. 5

q0 = (A, α)

R1 = R2 = R3 = {1, 2, 3, 4, 5}
R4 = {0, 1, 2, 3, 4, 5}
v01 = v02 = v03 = 1

v04 = 0.

996
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

5.2 Representation of the Model

We have presented the way to express the page automaton
and the internal state automaton in Promela in Sect. 3.3. In
this section, we will describe the specific way to express two
automata by using the automaton model of the example Web
application.

Figure 6 shows a part of Promela source code for the
example Web application. In lines 01 and 19, each au-
tomaton is expressed as a process using the built-in word
proctype, and in lines 02, 08, and 20 the alphabets such
as “A:”, “B:” and “a:” show states of the automaton,
respectively. The product of the automata is expressed
as synchronous communication using channels which is
“param” in line 04 for example. “param_var” is also a syn-
chronous communication channel for sending input values
from the Web page. “tmp_rec” in InternalStateAutomaton
is a temporary variable for storing the action value.

“selectAmount();” in line 10 is an inline function
which sets the value between one and five to the variable
x1. This inline function represents the values derived from
outside (i.e. input from the user), and covers the range of
values which meet the requirement, so the exhaustive verifi-

Fig. 6 Promela source code (part).

cation can be done by Promela.
We will describe how the page automaton and the inter-

nal state automaton communicate by using the action “a1” in
Fig. 6. Lines 03 to 06 show the page A and its actions. There
are two actions “a1” and “a2” in the page A. The action “a1”
is sent (denoted by ‘‘!’’) to the internal state automaton
using the channel “param,” and it is received (denoted by
‘‘?’’) by the state α (a:) of the internal state automaton in
line 22, and the response (“res”) is sent to the page automa-
ton using the same channel. The “skip” in line 22 describes
that no transition occurs by this action. The “res” is received
by the page automaton in line 04, and the page moves to “B.
Product List” by the method “goto B.”

By the way, the variables used in the Promela code,
such as x1, x2 and x3, are defined as global variables. So the
variables can be used in the page automaton and the inter-
nal state automaton without using the channel. However we
used the channel for two reasons. One reason is to resem-
ble the implementation of the Web Application. The chan-
nel represents the data passing between the browser and the
server. The other reason is to get values sent by the channel
from the trail file, which is created when the Spin verifica-
tion is not satisfied. This value can be used for input for
testing.

5.3 Verifying the Web Application Model

Using the automaton model of the example Web application,
we now verify it with the properties listed in Sect. 4.1.

(1) Deadlock-Freeness in Page Automaton

We verified the property (1) in the example Web applica-
tion using Spin. The verifier is generated from the Promela
source code, and the verifier is compiled to create an exe-
cutable verifier. We executed it and no error was detected.
Therefore, we confirmed there was no deadlock in the ex-
ample Web application.

(2) Page Reachability from the Top Page

The property (2) in the example Web application was ver-
ified using Spin. Taking the following LTL formula, we
checked that the page , “I.Product Confirmation,” is reach-
able from the top page “A.Top Page.” We created and exe-
cuted the executable verifier, and an error was detected. The
error-trail file is dumped showing a counterexample which
is a route from “A.Top Page” to “I.Product Confirmation.”

¬ � (p ∧ � q)

#define p (PageAutomaton[1]@A)

#define q (PageAutomaton[1]@I)

Here, #define is a reserved word in Promela which
defines the proposition for the LTL formula, e.g. p is
true if the current process page is PageAutomaton[1]@A.
PageAutomaton[1] represents the process PageAutoma-
ton with its ID “1.” @A and @I are labels in PageAutomaton
which describe the Web page.

HOMMA et al.: MODELING, VERIFICATION AND TESTING OF WEB APPLICATIONS USING MODEL CHECKER
997

The same LTL formula is used for this verification.
Therefore, by changing labels in PageAutomaton, all pages
were verified in the same way.

(3) Top Page Reachability from every Page

The property (3) is the opposite of the property (2). Using
the following LTL formula, we checked the top page “A.Top
Page” is reachable from the page “I.Product Confirmation.”
The executable verifier searched state space and detected er-
ror. The error-trail file is dumped showing the counterexam-
ple, same way as previous, which is a route from “I.Product
Confirmation” to “A.Top Page.”

¬ � (p ∧ � q)

#define p (PageAutomaton[1]@I)

#define q (PageAutomaton[1]@A)

All pages were verified using the same way.

(4) Taking Values under the Designated Domain

To verify the property (4), we verified that the value of the
variable x4, the total amount of products for purchase in In-
ternal State Automaton, is in its domain. The value of the
variable x4 is not input from the Web page, therefore it de-
pends on inputs from the Web page and how the enabling
predicate is designed. Using the following LTL formula, we
checked that no error was detected showing the variable x4

under its designated domain.

� (p ∧ q)

#define p (x4 <= 5)

#define q (x4 >= 0)

All variables were verified using the same method.

5.4 Generating Test Cases from the Model

In this section, we will explain how to generate test cases for
covering the states and the occurrence of actions using the
example application.

(1) Covering States

We will use two pages “H.Gift Wrap” and “I. Product Con-
firmation” as states. Using the LTL formula listed below,
the trail file (Fig. 7) is created to show a counterexample.

�(¬p) ∨ �(¬q)

#define p (PageAutomaton[1]@H)

#define q (PageAutomaton[1]@I)

By using the trail file (Fig. 7), we can find a path to
reach two pages. This can be done by searching which
events are processed before the trail file ends. An easy way
of tracing events is to select the events following param! in
the trail file. In the example application, the trail file shows
six events are required for this test:

“a1. Select Product”→ “b1. Put into Cart”→
“c1. Proceed to Checkout”→ “e2. Select”→
“h1. Continue”→ “f3. Change”

Fig. 7 Trail file (part).

Also, the trail file shows the value set in PageAutoma-
ton. The value following param_var! in the trail file shows
the value sent from PageAutomaton to InternalStateAu-
tomaton. Therefore, input values for pages are generated
specifically for use in the test case.

Test case generation for InternalStateAutomaton is also
feasible using the same method.

(2) Covering Actions

We generate a test for covering three events, “d2. Delete
Product”, “e1. Select”, and “i3. Delete Product.” In the
same way as (1), an LTL formula is used and the trail file is
created to show a counterexample.

�(¬p) ∨ �(¬q) ∨ �(¬r)

#define p (tmp_var == d2)

#define q (tmp_var == e1)

#define r (tmp_var == i3)

tmp_var is a temporary variable which holds actions, and
define p (temp_var == d2) means p is true if the ac-
tion “d2” occurs.

998
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

Fig. 8 Cost of verification.

5.5 Verification Cost

The verification in Sect. 5.3 was done using a PC with Win-
dows XP for OS, Intel Core2 Duo 2 GHz for CPU, and 2 GB
Memory. The cost of verification, the used memory and the
elapsed time, for each verification case is shown in Fig. 8.
The top four rows show the cost of verification in Sect. 5.3,
where the range of x4 (the total amount of product for pur-
chase) is R4 = {0, 1, 2, 3, 4, 5}. The bottom four rows show
the cost of verification which the range of x4 is changed to
R4 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The range for the other
variables remain the same, i.e. R1 = R2 = R3 = {1, 2, 3, 4, 5}.

The costs for cases (1) and (4) are different from cases
(2) and (3). The verification for (1) and (4) covers all states
and transitions. However, the verification for (2) and (3)
comes to a stop when a counterexample is found. The result
also shows that used memory and the elapsed time increase
when the range of variables is expanded in verification (1)
and (4). Therefore, the modeling of the application needs to
be done with consideration of size and number of variables.

6. Related Work

In this section, we briefly discuss some of the researches
related to modeling, verification and testing of Web applica-
tions using model checking.

There is much research in which an Web application is
modeled as a directed graph. In [7], [8], components of win-
dow (e.g., a page, a frame, and a link) are modeled as states.
The reachability between states is defined as requirements of
a Web application, and they are verified using model check-
ing. In the research, pages, frames, and links are modeled
by a single state transition system (a single automaton). On
the other hand, our model has two automata, so, not only
page transition but also the internal state is considered for
the verification of reachability.

In [9]–[11], they took an approach to model Web appli-
cations using parallel composition of UML diagrams. The
papers [9], [10] propose a model of Web application using
the UML class diagram. The model is used for reachabil-

ity checking and semi-automatic test case generation. Our
model differs from their models in the level of abstraction,
as our model is more abstract than their models in Web ap-
plication design. The paper [11] presents an approach that
uses statecharts to model adaptive navigation of Web appli-
cation formally and checks for the unreachable Web page.
This model focuses only on users mode (e.g., whether they
are logged in or not) and page history (e.g., what pages the
user has visited previously). The internal state automaton in
our model can deal with the adaptive navigation as it is.

In [12], the authors present a formal approach for
modeling Web applications using communicating automata.
They observe the external behavior of an explored part of
Web application using a monitoring tool. The observed be-
havior is then converted into communicating automata rep-
resenting all windows, frames, and framesets of the applica-
tion under test by intercepting HTTP requests and responses
using a proxy server. Their model is different from ours as
they focus on external behavior.

There is some research on test case generation using
model checker [13], [14]. In [13], the authors propose an
automatic test case generation method using the NuSMV
model checker. Their method can extract test cases that
cover all states or all transitions in the Statechart from the
counterexamples produced by the model checker. Our test
case generation method is based on their idea. We extend
their method according to our model for testing Web appli-
cation.

The paper [14] presents an approach that uses model
checkers to generate test sets without redundant test sets. In
this approach, a system is modeled by one Stateflow and
test sets are generated based on the Stateflow. Our method
is based on two automata. Therefore, our method gener-
ates test cases in various perspectives such as only Web
page transition or Web page transition with internal business
logic.

7. Conclusion

In this paper, we have described a method for modeling, ver-
ifying and testing Web applications. We have shown that the
entire Web application can be expressed using the product of
a page automaton and an internal state automaton. We have
devised a way to express the model in Promela and we have
given a means of verifying the Web application and generat-
ing test cases using Spin and LTL formulae. The proposed
method has been validated through an example Web appli-
cation. The example application and validation showed that
our modeling, verification and testing are well applied to it.

If the page transition and internal state transition are
specified and integrated in the design phase of Web appli-
cation development, it is possible to effectively test the im-
plementation using our method as well as verification of its
design.

Our future work includes an application of our method
for larger Web applications and a solution for the state space
explosion problem.

HOMMA et al.: MODELING, VERIFICATION AND TESTING OF WEB APPLICATIONS USING MODEL CHECKER
999

References

[1] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and Ph. Schnoebelen, Systems and Software Verification —Model-
Checking Techniques and Tools, Springer, 2001.

[2] E.M. Clarke, O. Grumberg, and D.E. Long, “Model checking and
abstraction,” ACM OPLAS, vol.16, no.5, pp.1512–1542, 1994.

[3] G.J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw.
Eng., vol.23, no.5, pp.279–295, 1997.

[4] G. Holzmann, The Spin Model Checker, Primer and Reference Man-
ual, Addison-Wesley, 2003.

[5] J. Conallen, “Modelling Web applications architectures with UML,”
Commun. ACM, vol.42, no.10, pp.63–70, 1999.

[6] amazon.com, amazon.com (online):
available from http://www.amazon.com/ (accessed 2009-12-20).

[7] E.D. Sciascio, M.F. Donini, M. Mongiello, and G. Piscitelli, “Web
applications design and maintenance using symbolic model check-
ing,” Proc. Seventh European Conference on Software Maintenance
and Reengineering (CSMR’03), pp.63–72, 2003.

[8] E.D. Sciascio, M.F. Donini, M. Mongiello, and G. Piscitelli, “An-
Web: A system for automatic support to Web application verifica-
tion,” Proc. International Conference on Software Engineering and
Knowledge Engineering (SEKE ’02), pp.609–616, 2002.

[9] F. Ricca and P. Tonella, “Analysis and testing of Web applica-
tions,” Proc. International Conference on Software Engineering
(ICSE2001), pp.25–34, 2001.

[10] F. Ricca and P. Tonella, “Web site analysis: Structure and evo-
lution,” Proc. International Conference on Software Maintenance
(ICSM2000), pp.76–86, 2000.

[11] M. Han and C. Hofmeister, “Modeling and verification of adaptive
navigation in Web applications,” Proc. International Conference on
Web Engineering (ICWE’06), pp.329–336, 2006.

[12] M. Haydar, A. Petrenko, and H. Sahraoui, “Formal verification of
Web applications modeled by communicating automata,” Proc. In-
ternational Conference on Formal Techniques for Networked and
Distributed Systems (FORTE2004), LNCS 3235, pp.115–132, 2004.

[13] M. Kadono, T. Tsuchiya, and T. Kikuno, “Using the NuSMV model
checker for test generation from statecharts,” Proc. International
Symposium on Dependable Computing, pp.37–42, 2009.

[14] G. Hamon, L. Moura, and J. Rushby, “Generating efficient test sets
with a model checker,” Proc. International Conference on Software
Engineering and Formal Methods (SEFM’04), pp.261–270, 2004.

Kei Homma received the B. E. degree and
M. E. degree from Waseda University in 2001
and 2003, respectively. Currently, he is pursu-
ing his doctoral degree in the Graduate School
of Project Design, Miyagi University, and he is
also working at IBM Japan. His research inter-
ests include Web application, formal approach,
and model checking. He is a student member of
IPSJ.

Satoru Izumi graduated from the Advanced
Engineering Course, Sendai National College of
Technology in 2007. He received the M. S. de-
gree in 2009 from Tohoku University, Japan.
Currently, he is pursuing his doctoral degree
in the Graduate School of Information Sciences
(GSIS), Tohoku University. His research inter-
ests include specification and verification of sys-
tem, ontology engineering and its application.
He is a student member of IPSJ.

Kaoru Takahashi received the Ph.D. degree
from Tohoku University in 1992. From 1993
to 1995, he was a senior visiting researcher in
the Advanced Intelligent Communication Sys-
tems Laboratories. He is now a professor in the
Department of Information Systems, Sendai Na-
tional College of Technology. Currently, he is
doing research on software engineering, Seman-
tic Web, sensor applications and so on. He is a
member of IPSJ.

Atsushi Togashi received the B.E. degree
from the Yamagata University in 1979, the M.E.
and the Dr. of Eng. degrees from Tohoku Uni-
versity in 1981 and 1984, respectively. He
worked at Tohoku University (1984–96), Uni-
versity of Sussex as a guest researcher (1995–
96), Shizuoka University (1996–1997), and
also Kyushu University, Sapporo University,
The Open University of Japan, University of
Tsukuba as an adjunct professor. Currently, he
is a Professor at Miyagi University. His research

interests include process calculi, model checking, ICT applications to real
fields. He is a member of the IPSJ, JSSS, AI in Japan, ACM, and IEEE.

