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CONTRIBUTION OF WING PLANFORM TO ROLLING MOMENT DERIVATIVE DUE
TO SIDESLIP, (L,),,, AT SUBSONIC SPEEDS

1. NOTATION AND UNITS

The derivative notation used is that proposed in ARC R&M 3562 (Hopkin, 1970) and described in Item
No. 86021. Cefficients andaeronormalised derivatives are evaluated in aerodynamic body axes with origin
at the aircraft centre of gravity and with the wing span as the characteristic length. The deldiyative is

often written asdC,/d oC,

in other systems of notation, but attention must be paid to the reference

dimensions used and it is to be noted that a constant datum valie efployed in the Hopkin system.

Sl British

A aspect ratiop?/S
A, modified aspect ratichsec\,,
b wing span m ft
C. wing lift coefficient
C rolling moment coefficient# /¥%pV2Shb
f(AL) function of A, , see Equatio3.3)
fi(A), f5(A)  functions ofA , see Equatiori3.7) and(3.8)
Kwu factor for Mach number effect o(rLV)W , see Secfidh
&z rolling moment N m Ibf ft
L, aeronormalised rolling moment derivative due to sideslip,

L, = (0£10v)/%%2pVSDb
(LV)W wing planform contribution ta.,
[(LV)W]0 zero sweep contribution t(d_V)W
[(LV)W] A, sweep contribution tt()LV)W
M free-stream Mach number
Rz Reynolds number based on wiagrodynamic mean chord
S wing reference area M ft2
\% velocity of arcraft relative to air m/s ft/s
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Y sideslip velocity m/s ft/s
B sideslip angle,sin‘l(v/V) radian radian
n spanwise location of centre of pressurefrastion ofwing
semi-span
Ny, sweepback of wing half-chord line degree degree
A ratio of wing tip chord to centre line chord
p density of air kg/m slug/ft3

INTRODUCTION

This Item provides a semi-empirical method for predic{ihg) , the contribution of the wing planform

to the roiling moment derivative due to sideslip. The method applies for subsonic speeds and angles of
attack and sideslip for which the variation of lift coefficient with angle of attack and rolling moment
coefficient with sidelip angleare linearj.e. for wholly attached flow. The basis of the method is outlined

in Section3 while Sectiond discusses the accuracy and applicability of the method. Sedttiores a

worked example.

The various other contributions kg, for the aircraft, including body effects, are dealt with in other Items,
detailed in Item No. Aero A.06.01.00 (Referedéz.

THE METHOD

Incompressible Flow

The wing planform contribution to the rolling moment derivative due to sidé&ljp , may bearexdsid

to consist of two components, or{eLV)W] , being independent of wing sweeaffetk and the other,

[(Lv)w]/\ , being largely dependent on wing sweepback, so that in incompressible flow
Y

L)y, = (L) lo* (Ll

Each of the two components may be assumed to be linear with wingefficent prosided the flow
remains fully attached, so thb\t,/CL is the relevant parameder,

AE) Ry Ay,
U + g

o Co C. g

(L), =C_ (3.1)

w

Figureslatoldpresent(L,) /C, as afunction of aspect ratipand sweepback of the half-chord line,
Ny, for wings withA = 0,0.25 0.5 and 1.0 respectively. The data were obtained as follows.
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The wing sweepback contribution ¢bV)W was estimated using the equation

L)), [0 = Hitann, f(A) (32)

wheren is the spanwise location of the centre of pressure, which was obtained from Item No. T.D. Memor.
6403 (Derivatiom3) in the Transonic Aerodynamics Sub-series, and

2+(4+A2)” AZ/8
f(AL) = > 1 YR (3.3)
2+ (4+Az/4)7 4+ A2l4+2(4+As14)7
where A, = Ased\,, . (3.4)

Equation(3.2) was obtained from Derivatioh2 which uses a lifting-line approach with simple sweep
considerations applied to the leading and trailing halves of the sideslipping wing. The method was
developed in terms of an untapered wing and in order to take amuant of theffects ofwing taper it

is suggested in Derivatiat? that the sweepback of the half-chord line be used rather than the quarter-chord
sweepback customarily associated with lifting-line theory, and this artifice has been adopted here.

The relationship between the half-chord and quarter-chord sweepback angles is given by the equation

_ 1f—AQ

Ay, = tan—l[tan/\%— ,&%}T)\DJ . (3.5)

Figure2 presents\,, as a function 6f a1$AD
Y s MO
The zero sweep contribution (thV)W is given by the equation
(L) Iy £,(N)
0_1

- =TA R (3.6)
in which f,(A) andf,(A) are functions &f given by

fi(\) = 0.25+ 0.7% —0.34\? (3.7)
and f,(A) = 0.05+ 0.08 —0.04A2 . (3.8)
Equation(3.6) is empirical, being obtained from an analysis of experimental da(dL@)V(/ (Derivations

1to13, 15to41 and44) in conjunction with Equation@.1)and(3.2).

The experimental data included in the Derivation of Equgto®) include low aspect ratiQA<2) delta
wings. The use of the method of this Item for such wingsesgquite well with experimental data and
with the slender body equation from Derivatib i.e.

_ -2 (3.9)
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3.2 Compressible Flow

Theoretical studies of compressibility using a Prandtl-Glauert transformation applicable to sweptback
wings (see Derivatiod2 or Referencel6, for example) showed an effect of Mach number only on the
sweepback component {&,),, , which by reference to experimental data for unswept wings is clearly
incorrect. This being so, resort is made here to an empirical method which is based on systematic
experimental data given in Derivatid@. The data, for ten wings mid-mounted on axisymmetric bodies,
were analysed in terms of a facty, (= [(L)wlm/[(L)wlm = o) in order toimise any effects of the

body. The data were found to correlate quite well with the component of free-stream Mach number normal
to the half-chord line. The results of the analysis are given in F3guinich should be considered somewhat
tentative in view of the small number of available data. Extrapolations (linear in aspect ratio) beyond the
area covered by the experimental data hosve as broken lines and should be used with caution.

4. ACCURACY AND APPLICABILITY
4.1 Accuracy

For wings with aspect ratios from 1 to 6, comparisons of the valuds, of measured in low-speed
wind-tunnel tests on many isolated wings indicate that for 90 per cent of the experimental datalBigures
to 1d predict (L,) /C, to within +20 pecent when(L,) /C, 20.25 and to within £0.05 when
(LV)W/CL <0.25 There are very few suitable experimental data available from tests on isolated wings with
aspect ratios between 6 and 12, and assessment of the accuracy oflEtutedor this range is limited

to comparisons with a small number of wind-tunnel data extracted from tests on wing-body combinations
(no fin or tailplane) typical of civil transport aircraft. These danot ideal for compadn purposes,

not only because of the body but also because of the presence of wing twist, wing dihedral and, sometimes
cranks in the wing planform, all of which may affect the planform component slightly. Nevertheless, these
data suggest that for wing aspect ratios between 6 and 12 Figuted.d can be expected to predict
(L)w/CL to within £0.0. Only a limited number of data are available for assessing the accuracy of
Figure 3 but these suggest that it predicts the effects of compressibility to within about per cent for
Mach numbers up to that at which the aerodynamic characteristics start to change rapidly.

4.2 Applicability

The method is applicable to angles of attack and sideslip for which the variation oéfiftient with
angle of attack and rolling moment coefficient with sideslip angle are lineafior fully attached flow.
The method also applies for Mach numbers up to that at which the aerodynanaictetistics start to
change rapidly.

The method has been developed from data for straight tapered wings. For other wings, with a cranked
trailing-edge for example, an equivalent straight tapered wing with the same wing area and tip chord should
be constructed as described in Item No. 76003 (Refekefce

The data presented in Figurksto 1d relate only to sweptback wind#\,,>0) . Forcaaft withwings

where the leading-edge is unswept or slightly sweptback but, due to the wing taper, the fachgridal

line is swept slightly forward-10°<A,,<0) comparisons with low-speed wind-tunnel dat,on
indicate that a better prediction of the overall value. pf is obtained for wing-body and wing-body-tail
combinationsif(L,),, is estimated from Figudesto1dat a value of\,, = 0 , rather than by extrapolating

the curves to negative values of wing sweep. Itis recommended that this procedure is adopted in such case

In principle, the method forming the basis of this Item for low speeds is applicable to wings with large
amounts of forward sweep in that the wing contribution due to forward sweep may be determined by using
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Equation(3.2), provided that appropriate data are usedrfor  (see Refeténfr example). However,

until the values predicted for swept forward wings can be verified against a substantial number of
experimental data they can only be regarded as tentative. There are no compressible flow data for wings
with significant forward sweep with which to establish the applicability of Figuoesuch wings. In lieu

of better information it is suggested that Fig8rge used with caution for swept forward wings.

Table4.1 shows the ranges of geometric and flaavgmetersansidered in the development of this Item.
The experimental data indicate no significefiects of either seicin shape or Reynolds number over the
range considered.

TABLE 4.1 Range of Experimental Data

Parameter Range Parameter Range
A 1to7 A Oto1l
Ay, —7°to 70° R 0.5x 16 to 13x 106
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6. EXAMPLE

It is required to estimate the planform contributioifo  for a wing at a Efficeent of 0.5 and a Mach
number of 0.7 with geometrical parametérs 6, A,, = 30 degrees anl = 0.25

From Figure2 with A,, = 30 degrees an al—:;\E: %x %L%E: 0.1 A, =255 degrees.

From Figurelbwith A =6 and\,, = 25.5 degrees,

Therefore, for incompressible flov(/l,_v)W = [(LV)W]M _o= 0.119% 0.5 = -0.0595
From Figure3 with Mcos\,, = 0.7x cos 25.5 = 0.63 andA = 6, Ky, = 1.19.
Therefore [(L\)yIpy =07 = Km*[(LDwim=0

=-1.19 x 0.0595
=-0.071.
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