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AEROFOIL AND WING PITCHING MOMENT COEFFICIENT AT ZERO ANGLE OF
ATTACK DUE TO DEPLOYMENT OF TRAILING-EDGE PLAIN FLAPS AT LOW

SPEEDS
1. NOTATION AND UNITS
Sl

A aspect ratio2s/c

a, theoretical rate of change of lift coefficient with wing angle of ~ rad™
attack

& theoretical rate of change of lift coefficient for aerofoil with deg?
trailing-edge flap deflection, Equatig8.3)

C. lift coefficient; (lift)/qc for aerofoil, (lift)/gSfor wing

Clo lift coefficient at zero angle of attack for aerofoil, based on

AC, increment in lift coefficient at zero angle of attack due to
deployment of trailing-edge plain flap on aerofoil, based on

C, pitching moment coefficient; (pitching momei for aerofoil,
(pitching moment4Sc for wing, referencedad@ for aerofoil
andtT /4 for wing, see Sketdhl

Cinao pitching moment coefficient at zero angle of attack for aerofoil,
based orc?2 and referencedtd

Crwao pitching moment coefficient at zero angle of attack for wing, based
on Sc and referenced o /4

AC o increment in pitching moment coefficient at zero angle of attack
due to deployment of trailing-edge plain flap on aerofoil, based on
c2 and referenced w4, see EquatiofB.1)

AC a0 increment in pitching moment coefficient at zero angle of attack
due to deployment of trailing-edge plain flap on wing, based on
Sc and referenced to /4, see Equati8ro)

c basic (plain) aerofoil chord.¢é. chord with high-lift devices m
undeployed), see Sketét?

C wing geometric mean chord m

T wing aerodynamic mean chord, see Item No. 76003 (RefeBahce M

c wing root chord, see Sketdh2 m
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Zum

chord of trailing-edge plain flap, see Skefch m

centre of incremental lift at zero angle of attack due to
trailing-edge plain flap deflection on aerofoil section, expressed as
fraction of chord, measured positive aft from aerofoil
quarter-chord position, see Equat{@mb)

theoretical value oh, , see Equatigh4)

efficiency factor for plain flap on aerofoil, required in
Equation(3.2), see Figure 1

efficiency factor for plain flap on wing, required in Equat{8tv),
see Figure 2

flap-type correlation factor, see Equati@:_)
flap-type correlation factor for wing sweep, see Equgitod)

part-span factor; pitching moment coefficient increment due to
part-span trailing-edge plain flaps extending symmetrically from
wing centre-line divided by pitching moment coefficientincrement
due to full-span trailing-edge plain flaps at the same deflection
angle and wing angle of attack, Figure 4

value ofK corresponding 19 = n; , required in Equati®i)
value ofK corresponding t9 = n, , required in Equati®is)
part-span factor dependent on wing sweep effect, see Figure 5
value ofK, corresponding tig = n; , required in Equa(i®®)
value ofK, correspondingtig = n, , required in Equali®)

free-stream Mach number
free-stream kinetic pressure

aerofoil Reynolds number based on free-stream conditions and
wing Reynolds number based on free-stream conditiong€and

wing planform area2sc
wing semi-span, see SkettH m
maximum thickness of aerofoil

maximum upper sugice ordinate of basic aerofoil, see Skdi¢h m

s 2.1/2
compressibility parametefl—M")

N/m

Ibf/ft2

ft2
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Subscripts

a0
( expt

( )pred

deflection of trailing-edge flap, positive trailing edge down, see deg
Sketchl.2

spanwise distance from wing centre-line as fraction of semi-span

value ofn atinboard limit of flap, see Sketth

value ofn at outboard limit of flap, see Skefch

wing leading-edge sweep angle, see Skétth deg
wing quarter-chord sweep angle, see Skétdh deg
wing trailing-edge sweep angle, see Skdidh deg

wing taper ratio (tip chord/root chord)

angle between aerofoil datum and tangent to upper surface at deg
trailing edge, see Sketdh2

denotes value at zero angle of attack

denotes experimental value

denotes predicted value

deg

deg
deg

deg

deg
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Moment —
reference centre
atc/4.

See Reference 32_‘
for definition
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Sketch 1.1 Wing notation (flaps undeployed)

aerofoil datum

(chord line)

Sketch 1.2 Deployed plain flap notation (at Section AA)
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3.1

INTRODUCTION

This Item provides a method to obtain the increment in pitching moment coefficient at zero angle of attack,
due to deployment of trailing-edge plain flaps, either on an aerofoil or on a wing.

For aerofoils the method predicts the centre of lift positign, , due to plain flap deployment, based on the
thin-aerofoil theory of Derivatio29 and modified to obtain correlation with the experimental data of
Derivations4 to 11, 22 and23. This is combined with the increment in aerofoil lift coefficient calculated
from Item No. 94028 (DerivatioR) to estimate the pitching moment coefficient increment.

For wings with full-span trailing-edge plain flaps, factors, dependent on planform geometry, are applied to
the pitching moment coefficient increment on a section that is representative of the wing, to allow for
three-dimensional effects. DerivatioB8 and 31 were used as the basis for these factors, with some
adjustment to the simple theoretical assumptions. The method of Item No. 97011 (DeBjvatiosed
(instead of Item No. 94028) to predict the increment in section lift to obtain the section pitching moment
increment. For wings with part-span trailing-edge flaps, additional factors are introduced that are dependent
on taper ratio, aspect ratio, sweep and spanwise extent of the flap.

Section3 describes the prediction method and Sediigiscusses Mach number and Reynolds number
effects. The accuracy and applicability of the method are addressed in Secliom Derivation and
References are given in Secti@rSection/ illustrates worked examples for an aerofoil and a wing.

PREDICTION METHOD

The method for aerofoils requires the use of Item No. 94028, to determine the lift increment characteristics
of the aerofoil/flap combination from which to derive the pitching moment coefficient increment.

However, for wings the method requires the use of Item No. 97011 to determine the lift increment
characteristics of the representative section/flap combination from which to derive the section pitching
moment coefficient increment. Tlereamwisesection and flap geometries and angles at the mid-span of
the flap panel are taken to be representative of the wing/flap system, see Skdtemekl.2. By this

means, the effects of spanwise variation are averaged out. Empirical corrections allow for the effects of
wing planform geometry and the spanwise extent of the flaps.

Aerofoil Pitching Moment Coefficient IncrementAC .

The increment in the pitching moment coefficient at zero angle of attack for deployment of a plain flap on
an aerofoil is obtained as the product

ACrmo = —AC, oths - (3.1)

mta 0

Here,AC,  is the increment in lift coefficient at zero angle of attack due to deployment of a plain flap on
an aerofoil and is evaluated as

AC o = 338, (3.2)

whereJ_ is an empirical efficiency factor taken from Item No. 94028, and is given in Figure 1 as a function
of the angle(5,° + @,°) ,see Skettt?, anda, is the theoretical rate of change of lift coefficient with
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3.2

respect to the deflection anglg® , positive trailing edge down, at constant angle of attack, given by
thin-plate theory as

O 1 2.1/2[]
a, = (W90) gn—- cos(2¢c/c—-1)+[1-(2¢c/c-1)] Q. (3.3)
U U

Values ofa, have been evaluated and the results are presented in Figure 2a.
The centre of the liftincrement at zero angle of attbi:k, , expressed as a fraction of the chord and measure

positive aft from the quarter-chord point, is derived empirically from its theoretical value in Deri@tion
for a hinged plate on a thin aerofoil

2.1/2 O 1 2.1/2[1
h2T =0.29 1-( z,/c-1)7] [l—(ZCt/C—l)]/ E}T—COS (2c/c-1)+[1-(2c/c-1)7] E (3.4)

Values ofh,; have been evaluated and are given in Figure 2b.

An incremental adjustment to obtain correlation with experimental data gives

o 3 o
h, = h,; +0.01% 44-3%,°) z,/c + 0.011(c,/c)" 3", (3.5)

where
ct/c is the ratio of the flap chord to the aerofoil chord,

d,° is the flap deflection angle, in degrees,

and

Z,{C is the ratio of the maximum upper-surface ordinate to the aerofoil chord as shown in1Sketch
Wing Pitching Moment Coefficient IncrementAC

mtwa O

For awing at zero angle of attack the increment in pitching moment coefficient due to plain flap deployment
is correlated to be

AC = —K; (Ky = K)AC, oy + KA (Kpo = K ) (A12)AC, g tanAy,,, (3.6)

mtwa 0

whereA is the aspect ratio aA€, is now calculated for the representative section of the wing, taken
at flap mid-span and, instead of Equat({dr2),

whereJ ,, is an empirical efficiency factor for a plain flap on the representative section, taken from Item
No. 97011 and given in Figure 3.



bo

98017

4.1

4.2

The part-span factots; aig,  are obtained from Figure 4 as functions of taper ratio and the inboard anc
outboard limits of the trailing-edge plain flap,  amg respectively.

The flap type correlation factors for plain flaps have been derived from the data of Derit&tioris/
and20to be

K. = (a/2m)™* (3.8)
and Kin = COSA (3.9)

wherea, is the wing lift slope obtained from Item No. 70011 (Derivation 1).

The part-span wing sweep factdts; o, are obtained for plain flaps from Figure 5 as functions of
taper ratio and the inboard and outboard limits of the trailing-edge plaimflap, nj,and respectively.

Note that for all cases with a full-span plain flap or an unswept quarter-chord line the second term in
Equation(3.6) has a value of zero.

The data folK, were obtained from Derivathin the simplified form

« - N-mIA+22) -n(@-2%)]
/\ 2 )
4(L+ A+ A7)

(3.10)

which is equivalent to Figure 5.

EFFECTS OF MACH NUMBER AND REYNOLDS NUMBER

Mach Number Effects

High local Mach numbers will occur at low free-stream Mach number as a result of high angle deployment
of trailing-edge plain flaps. Significant Mach number effects will occur at free-stream Mach numbers
greater than about 0.2, at large valuegdf +¢,°) , and at progressively smaller values as Mach numbel
is increased. None of the data considered for this Item was for a Mach number greater than 0.27.

Reynolds Number Effects

For the data used in the derivation of this Item no effect of Reynolds numb& an, AC_or.o was
found over the ranges of Reynolds number shown in Tablemnd5.2
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5.1

5.1.1

5.1.2

APPLICABILITY AND ACCURACY

Applicability

Aerofoils

The method given in this Item for estimating the position of the centre of the lift increment and of the
increment in pitching moment coefficient at zero angle of attack, due to deployment of a trailing-edge plain

flap, applies only to aerofoils without the deployment of a leading-edge device and with no chord extension.

Table5.1 summarises the parameter ranges covered by the experimental data, obtained from Derivations
41011, 22, 23 and25, from which Equatiori3.5) was derived to obtain correlation.

TABLE 5.1 Parameter ranges for test data for trailing-edge plain flaps on
aerofoils used in the method of SectioB.1

Parameter Range
t/c 0.06 to 0.16
Z,.{C 0.03 t0 0.093

c,/c 0.1t0 0.5

5° 50 to 75°

5°+@° 12° to 84°

R,x10° 1.0t0 9.0
M 0.11t0 0.17

wings

The method given in this Item for estimating the increment in pitching moment coefficient at zero angle of
attack, due to deployment of a trailing-edge plain flap on a wing, has been shown to be applicable to
straight-tapered wings covering a wide range of planform parameters5Taslenmarises the parameter
ranges covered by the experimental data that were obtained from Derit&ttor2d, 24 and26 to 28and

used in the development of the method. Note that the method should apply to the full range of chord ratios
and flap angles in Tabke 1

For awing where,/c is not constant, the flap should be divided into several spanwise portions, calculation
made separately for each, using the mid-span geometries, and the results summed to provide a total valt
of AC The number of portions required will depend on how rapidly the ¢gtio varies across the
span.

mtwa 0
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5.2

521

5.2.2

No wings with cranked leading or trailing edges or curved tips were included in the analysis. It is suggested
that for such wings the planform parameters  Ang be calculated for the equivalent straight-tapered
planform as defined in Item No. 76003 (Refere@2e Care should be taken with the definitionapfc

and the user of the final result should be aware of the non-validated use of the method for such wings.

TABLE 5.2 Parameters ranges for test data for trailing-edge plan flaps on
wings used in the method of Sectio8.2

Parameter Range
A 2.0 to 9.0
Atan)\ 0 to 6.9
Atan\, ), —-0.4 to 5.7
Ny 0 to 63°
Ny -11° to 58°
A 0.25 to 1.0
c/c 0.19 to 0.30
3,° 2° to 60°
5°+¢° 6° to 72°
n; 0 to 0.73
No 0.32 to 1.0
R, x10° 0.9 to 45
M < 0.27
Accuracy
Aerofoils

Sketch5.1 shows the comparison between predicted and experimental values of the centre of the lift
incrementh,, , due to deployment of trailing-edge plain flaps on an aerofoil, for data from Deri¥ations

to 11, 22, 23 and 25, and 92% are correlated to with#D.02 . Sket&BR shows the corresponding
comparison between predicted and experimental values of pitching moment coefficient increments, where
95% of the data are correlated to witki®.04

Wings

The comparison between predicted and experimental values of the pitching moment coefficient increment,
AC, inqo> due to deployment of both full-span and part-span trailing-edge plain flaps is shown on
Sketchb.3 for unswept wings and on Sketshl for swept wings, for data from Derivatiohg to 21, 24
and26to 28. In the two sketches 93% of the data are correlated to withD2 and the rms error is 0.010.
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6.1

6.1.1

6.1.2
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7. EXAMPLES

7.1 Example 1: Pitching Moment Increment due to a Plain Trailing-edge Flap on an Aerofoll

Estimate the increment in pitching moment coefficient at zero angle of attack due to the deployment of a
plain trailing-edge flap installed on a NACA 6212 section .

The required geometrical parameters are

ct/c = 0.25 and 6t° 35°

z,/c = 0.07 and ¢° = 6.5°.

The flow conditions aré = 0.2 ariac = 45x 1(f3 , both of which are within the ranges of Bdble

Sketch 7.1 Flap Geometry

Q) Determine AC,

From Equatior(3.3)

O 21127
a, = (W90) gn— cos{(2c/c-1) +[1-(2c/c-1)7]
0 0
1/2
= (3.142/90 Ep.mz— cosY(2x 0.25- )+ [L—(2x 0.25— 17 E

0.0668 deg?.
From Figure 1, withd,° = 35° ang¢,° = 6.5 sothaf® + ¢,° = 41.5

Jp = 0.463

From Equatiorn(3.2)

AC o = Jpat6t°

0.463x 0.0668< 35
1.082.

17
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7.2

(2) Determine h,

From Equatior(3.4)

_ 2.1/2 O 1 2.1/21
hyr = 0.2 1-( Z,/c-1)7] [1—(2ct/c—l)]/ Eﬂ—cos* (2¢/c-1) +[1—(2c/c-1)7] E

2.1/2 O -1 2.1/2[]
=025 1-(2x 0.25 )] [1-(2x0.25 1] /DT[—COS (2x0.25- D+[1-(2x0.25 3] O
O O

= 0.1697

From Equatior(3.5)

o 3 ]
h, h, + 0.012 44-5,°) z,./c + 0.011(c,/c) "o,

0.1697+ 0.012 44 3px 0.07+ 0.011x ( 0.25 x 35
0.1833.

3) Determine AC .10

From Equatior(3.1)

AC —AC, .h

Lot''2
—1.082x 0.1833
—0.1983
—0.198

mtaO

n

Example 2: Pitching Moment Increment due to a Plain Trailing-edge Flap on a Wing

Estimate the increment in pitching moment coefficient at zero angle of attack for a Reynolds number
R. = 4.5x 10 and a free-stream Mach numbér= 0.2 for the wing with a part-span trailing-edge plain
flap shown in Sketcfi.2 The wing has the planform parameter values

A = 8,/\1/4 = 25° andA = 0.4,

and a constant streamwise section across the span, NAG2183which is the same as that used in
Example 1.

The flap has the same streamwise geometrical parameters as those used in Example 1 and extends from t
wing centre-line to 60% of the wing semi-span. The location of the flap hinge-line is a constant proportion
(75%) of the local wing chord. Note that this example is for the same planform as that in the example in
Item No. 97011, in which the calculation of the required planform parameters apd of s detailed.

The sweep angled, = 27.5° and, =17° , the planform paranfetiA, = 4.16 , the Mach number
and the Reynolds number, all lie within the ranges shown on 3able

18
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/ 9\ . Wing planform (flap undeployed)
moment
reference
centre
atc/4

ni=0

Y

A

Flap geomety on Section AA ¢,= 0.2%

Sketch 7.2 Flap geometry on Section AA
Q) Determine AC,
Note that although this example is for the same section and flap geometry as for Example 1, the
efficiency factord, for an aerofoil is replaced for the section on a wing. The required value
for &, remains the same (0.0668) as for the aerofoil of Example 1.

From Figure 3, withy,° = 35° ang,®° = 6.5 sothgt+¢° =415

Jp0 = 0.580.

From Equatiorn(3.7)

AC g = Jpod;°
0.580x 0.0668< 35
1.356 .

19
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(2) Determine AC .0
From Equatior(3.6)

AC = —K; (K, = K)AC gy + Kin(Kpo = Kp)(AI2)AC, o tanA,

mtwo 0
in which h, has the same value (0.1833) as in Example 1.

From Figure 4 fom; =0 and = 0.4

and forn, = 0.6

K, = 0.80.

From Figure 5 fom; =0 and = 0.4

Kai = 0

and forn, = 0.6

Kn, = 0.0498

The flap type correlation factd¢; is given by Equafidr8)as
K. = (a/2m)®*®

172
With AtanA\,,, = 3.302andBA = (1—0.22) x8 =7.84 ,across-plotihn  from Figures lato
le of Item No. 70011, fok = 0.4 gives

a 4.57 rad?.

1

(457 2x 3.143)*%°
0.8637.

Thus Kf

The flap type correlation factdt;, is given by Equai{dr®)as

Kin = COSAy,

cos25°
0.9063 .

20
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Therefore

AC = —0.8637x ( 0.80- 0.px 1.356x 0.1833

+ 0.9063x ( 0.0498- 0.0x 8/2 x 1.356x tan 28

mtwa 0

= —0.2147x 0.8+ 0.906% 0.0498 «4 1.3% 0.4663
= —0.1718+ 0.1142

= —0.0576

= —0.058
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THE PREPARATION OF THIS DATA ITEM

The work on this particular Data Item, which supersedes, in part, Item Nos Aero F.08.01.01 and 02 was monitored andhguided by t
Aerodynamics Committee, which first met in 1942 and now has the following membership:

Chairman

Mr H.C. Garner — Independent

Members

Dr M.Z. Boutef — Raytheon Aircraft Co., Wichita, Kansas, USA

Mr P.D. Chappell — Independent

Dr P.C. Dexter — British Aerospace plc, Sowerby Research Centre, Bristol
Mr J.R.J. Dovey — Independent

Dr K.P. Garry — Cranfield University

Mr D.H. Graham — Northrop Grumman Corp., Pico Rivera, Calif., USA

Mr M.J. Green — Independent

Dr H.P. Horton — Queen Mary and Westfield College, University of London
Dr D.W. Hurst — University of Glasgow

Mr M. Jager — Boeing, Long Beach, Calif., USA

Mr K. Karling" — Saab-Scania AB, Linkdping, Sweden

Dr E.H. Kitchen — Rolls Royce plc, Derby

Miss M. Maina — Aircraft Research Association

Mr M. Maurel — Aérospatiale, Toulouse, France

Mr C.M. Newbold
Mr J.B. Newton

DERA, Farnborough
British Aerospace Defence Ltd, Warton

Mr M.J. Pow — British Aerospace Airbus Ltd, Filton

Mr R. Sanderson — Daimler-Benz Aerospace Airbus, GmbH, Bremen, Germany
Mr J. Tweedie — Short Brothers plc, Belfast

Mr A.J. Wells — Avro International Aerospace, Woodford

Corresponding Member.

The technical work involved in the assessment of the available information and the development and subsequent consguction of t
Data Item method was carried out under contract to ESDU by Mr J.R.J. Dovey.
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