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INTRODUCTION TO AERODYNAMIC DERIVATIVES, EQUATIONS OF MOTION 
AND STABILITY

Many Items throughout the ESDU Aerodynamics Sub-series give methods for the prediction of
aerodynamic derivatives.  To illustrate the use of such derivatives in the study of the dynamic motion
of an aircraft, this Item describes how they appear in the rigid-body equations of motion to describe
the response of an aircraft to a small disturbance from steady trimmed flight.  The dependence of
the stability of the aircraft on the values of the aerodynamic derivatives is displayed.

1. AXIS SYSTEMS AND NOTATION

1.1 Axis Systems

A number of different axis systems are used to describe the disturbed motion of an aircraft and the forces
and moments acting on it. The necessary definitions for the systems used in this Item are given below. Each
is right-handed and orthogonal. It is assumed that the aircraft has a longitudinal plane of symmetry.

1.1.1 Body-axis systems, 0xyz

These systems are fixed in the body and move with it. For simplicity, in this Item the origin 0 is taken to
be at the centre of gravity position of the aircraft in a steady (datum) flight condition. The x-axis and z-axis
lie in the longitudinal plane of symmetry, x positive forwards and z positive downwards, with the y-axis
positive to starboard. The direction of the x-axis is fixed to define particular systems. Two are considered.

(a) Aerodynamic-body axes constitute a system where the undisturbed direction of the x-axis is along
the projection onto the longitudinal plane of symmetry of the tangent to the flight path in the datum
condition.  In a datum condition of straight and symmetrical flight the direction of the x-axis is in
the direction of motion of the aircraft.

(b) Geometric-body axes constitute a system where the fixed x-axis is defined parallel to some
convenient geometric longitudinal datum.

1.1.2 Earth-axis systems, , 

These systems have the direction of their axes fixed in space.  The -axis is directed vertically downwards,
the -axis is directed forwards in the vertical plane containing the aircraft datum direction of motion and
the y0-axis completes the right-handed system.  An Earth-fixed system has an origin  that is fixed in
space.  An aircraft-carried system has an origin 0 that is fixed in the aircraft and moves with it, and in this
Item 0 is taken to be coincident with the centre of gravity position, as in the body-axis systems.

1.2 Notation and Units

Alphabetical trios are used to denote components of force, moment, linear displacement, velocity and
angular velocity.  They are listed in the table in Sketch 1.1.  The diagram in Sketch 1.1 shows a body axis
system 0xyz and indicates positive directions.  Forces and linear velocities are positive in the direction of
the axes.  Angular velocities are positive if, when looking along the appropriate axis in the positive sense,
the aircraft is seen to be rotating clockwise.  Moments are positive in the same sense.

The same symbols are used for dimensional quantities and the corresponding dimensionless ones
represented in normalised systems (see Sections 3.4 and 4.5).
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Sketch 1.1   System of body axes showing positive directions

Quantity Components

Force
Moment
Linear displacement
Linear velocity
Angular velocity

X
L
x
u
p

Y
M
y
v
q

Z
N
z
w
r

SI British

constant in typical solution of equations of motion, see 
Equation (5.3)

m/s ft/s

matrix in Equation (5.1)

partition matrix from 

constants in characteristic equations; subscripts 1, 2 
denote longitudinal, lateral equations; see Section 5.3

matrix in Equation (5.1)

partition matrix from 

hinge moment, positive when tending to increase positive 
control deflection

N m ft lbf

increment in hinge moment N m ft lbf

wing span m ft

inertia ratios / , / , /

ai

A

Aij A

A B C D E, , , ,

B

Bij B

B

∆B

b

bx by bz, , Iz Iy�( ) Ix Ix Iz�( ) Iy Iy Ix�( ) Iz
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matrix in Equation (5.1)

partition matrix from 

hinge moment coefficient (B divided by  and 
representative length and area of control)

drag coefficient, D /

lift coefficient, L /

lift coefficient of tailplane (tailplane lift / )

force coefficient, R /

, , force coefficients, X / , Y / , Z /

, , moment coefficients, L  / , M /  N  / ; 
see Section 3.1

standard mean chord (or first mean chord) m ft

mean aerodynamic chord (or second mean chord) m ft

drag N lbf

differential operator d/dt s�1 s�1

perpendicular distance from centre of gravity position to 
thrust vector, positive when thrust gives positive pitching 
moment; see Section 3.5.1

m ft

, , inertia ratios, , , 

, , inertial ratios, , , 

free-control factor, see Section A5.1

, , inertia ratios, , , 

acceleration due to gravity vector m/s2 ft/s2

magnitude of acceleration due to gravity m/s2 ft/s2

, , components of acceleration due to gravity in x-, y-, 
z-direction

m/s2 ft/s2

g cos m/s2 ft/s2

g sin m/s2 ft/s2

angular momentum vector kg m2/s slug ft2/s

dimensionless distance of centre of gravity position aft of 
reference point, see Appendix A

C

Cij C

CB
1
2
---ρV2

CD
1
2
---ρV2S

CL
1
2
---ρV2S

CLT
1
2
---ρV2ST

CR
1
2
---ρV2S

CX CY CZ
1
2
---ρV2S 1

2
---ρV2S 1

2
---ρV2S

Cl Cm Cn
1
2
---ρV2Sl 1

2
---ρV2Sl 1

2
---ρV2Sl

c

c=

D

D

dT

dx dy dz Iyz � /Ix Iyz � /Iy Iyz � /Iz

ex ey ez Izx � /Ix Izx � /Iy Izx � /Iz

F

fx fy fz Ixy � /Ix Ixy � /Iy Ixy � /Iz

g

g

gx gy gz

g1 θe

g2 θe

H

hcg
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, dimensionless distance of pitch manoeuvre point aft of 
reference point controls-fixed, controls-free; see Appendix 
A

, dimensionless distance of neutral point aft of reference 
point controls-fixed, controls-free; see Appendix A

unitary (i × i) matrix

inertia matrix kg m2 slug ft2

, , moments of inertia of aircraft about x-, y-, z-axis kg m2 slug ft2

, , products of inertia of aircraft about x- and y-axes, y- and 
z-axes, z- and x-axes

kg m2 slug ft2

, , inertia parameters , , 

J denotes imaginary part of

angular momentum vector of rotating parts of aircraft or 
engines

kg m2/s slug ft2/s

, , components of  about x-, y-, z-axis kg m2/s slug ft2/s

, dimensionless centre of gravity margin (c.g. margin) 
controls-fixed, controls-free; see Appendix A

, dimensionless manoeuvre margin controls-fixed, 
controls-free; see Appendix A

, dimensionless static margin controls-fixed, controls-free; 
see Appendix A

lift N lbf

L , M , N moments about x-, y-, z-axis (rolling moment, pitching 
moment, yawing moment), with associated aerodynamic 
derivatives , , ,  etc.; see Section 3.2

N m lbf ft

, , concise moments, � L / , � M / , � N / N/kg m lbf/slug ft

characteristic length of aircraft m ft

unit of length in aero-normalised system, see Section 3.4 m ft

distance of aerodynamic centre of tailplane aft of centre of 
gravity position

m ft

moment vector N m lbf ft

Mach number

datum value of aircraft mass, unit of mass in 
dynamic-normalised system; see Section 4.5

kg slug

normal acceleration in units of g, see Appendix A

hm hmf

hn hnf

Ii

In

Ix Iy Iz

Ixy Iyz Izx

ix iy iz Ix /mel0
2 Iy /mel0

2 Iz /mel0
2

J

Jx Jy Jz J

kcg kcgf

km kmf

ks ksf

L

Lu Mu Mw Nv

l m n Ix Iy Iz

l

l0

lT

M

M

me

n
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ambient pressure of air N/m2 lbf/ft2

, , angular velocity about x-, y-, z-axis, (roll rate, pitch rate, 
yaw rate)

rad/s rad/s

aerodynamic force vector N lbf

magnitude of aerodynamic force vector N lbf

Reynolds number, 

Routh�s discriminant

R denotes real part of

characteristic (reference) area m2 ft2

tailplane planform area m2 ft2

, axis transformation matrices, see Section 4.1

period of oscillation s s

thrust N lbf

, component of thrust in x-, z-direction N lbf

time s s

, time to half amplitude, time to double amplitude s s

state vector of perturbation variables

, partitions of 

, , components of aircraft velocity relative to air in x-, y-, z- 
direction

m/s ft/s

aircraft velocity vector relative to air m/s ft/s

magnitude of velocity vector m/s ft/s

datum value of V, unit of speed in aero-normalised and 
dynamic-normalised systems

m/s ft/s

aircraft weight N lbf

, , components of force in x-, y-, z-direction, with associated 
aerodynamic derivatives , , , ,  etc.; see 
Section 3.2

N lbf

, , concise forces, �X / , �Y / , �Z / N/kg lbf/slug

, , body axis co-ordinates in x-direction (positive forwards), 
y-direction (positive to starboard), z-direction (positive 
downwards)

m ft

, , co-ordinates in Earth-axis system m ft

P

p q r

R

R

R ρVl / µ

R

S

ST

SΦΦΦΦ Sφφφφ

T

T

Tx Tz

t

t1/2 t2/1

u

u1 u2 u

u v w

V

V

Ve

W

X Y Z
Xu Xw Yv Zu Zw

x y z me me me

x y z

x0 y0 z0
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, , 
, , 

co-ordinates in intermediate axis systems used in defining 
attitude angles, , , ; see Figure 1

m ft

angle of attack, rad rad

angle of sideslip, rad rad

angle of climb rad rad

ratio of specific heat capacities of air

downwash derivative at tailplane

, , rudder, elevator, aileron deflection angle rad rad

elevator angle required to trim rad rad

increment in rad rad

vector of control perturbations rad rad

, partitions of rad rad

, , bank, inclination, azimuth attitude angles rad rad

, , roll, pitch, yaw attitude-deviation angles rad rad

variable of characteristic stability equation

root of characteristic equation

relative density parameter, 

dynamic viscosity of air kg/m s slug/ft s

density of air kg/m3 slug/ft3

unit of time in dynamic-normalised system,  
see Section 4.5

s s

elevator trim-tab deflection angle rad rad

value of  for trim rad rad

angular velocity vector rad/s rad/s

Dressings

Dot as in , denotes differentiation with respect to time

Dip as in , denotes an aero-normalised quantity

Cap as in , denotes a dynamic-normalised quantity

Ord as in ,denotes a quantity expressed in ordinary 
dimensional units

Prime as in , denotes a perturbation

x1 y1 z1
x2 y2 z2 Ψ Θ Φ

α w/u( )1�tan

β v/V( )1�sin

γ

γ

∂ε/∂α

ζ η ξ

η

∆η η

η

η1 η2 η

Φ Θ Ψ

φ θ ψ

λ

λi

µ me / 
1
2
---ρeSl0

µ

ρ

τ me / 
1
2
---ρeVeS

τη

τη τη

Ω

·( ) w·

4( ) Xu4
$( ) Xu$
°( ) Xu

°

′( ) u′ u ue�=
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Subscripts

as in , denotes a datum quantity

, denote integers

as in  etc., denote partial derivatives with respect to 
variable

denotes tail

denotes wing-body

e me

i j

u v w w· v·, , , ,
p q r, ,
η ξ ζ, , 






Xu

T

WB
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2. INTRODUCTION

2.1 General Remarks

To determine whether an aircraft is stable in a given trimmed steady flight condition it is necessary to
analyse the motion of the aircraft after it has suffered a small disturbance (or perturbation) from that datum
flight condition.  If the disturbance dies out the aircraft is stable and if it does not then the aircraft is unstable.
It is often convenient to analyse the motion of an aircraft by deriving representative equations.  This requires
knowledge of the aerodynamic and inertial forces acting on the aircraft.

The motion after a small disturbance can be described by linearised quasi-steady perturbation equations
developed from the general rigid-body equations of motion.  Although an aircraft is a flexible structure it
is acceptable to study its dynamic behaviour through the equations of motion for a rigid body by modifying
the aerodynamic derivatives to account for quasi-steady structural flexure under low frequency
aerodynamic and inertial loads.  The perturbation equations can be analysed in terms of the roots of a
so-called �characteristic� polynomial equation.  The values of the roots determine whether or not the aircraft
is stable.  In the perturbation equations the influence of aerodynamic forces and moments is expressed
through aerodynamic derivatives.  The aim of the present Item is to show the connection between these
aerodynamic derivatives and the roots of the characteristic equation.

The natural dynamic behaviour of the basic aircraft can be artificially changed by the inclusion in the overall
aircraft system of certain automatic flight-control features of varying degrees of complexity.  The aircraft
is then said to be augmented.  Simple �stability augmentation� may, for instance, be provided by yaw or
pitch dampers where controls operate to oppose a sensed disturbance.  Item No. 83024 (Reference 26) of
the Dynamics Sub-series illustrates the operation of a yaw damper.  In more sophisticated cases the design
features incorporated into the control system can encompass �manoeuvre-command� systems that improve
handling qualities in response to pilot commands, relaxed requirements on natural stability, protective
systems to guard against mishandling of the aircraft, and the many aspects of active control technology
with its incorporation of direct-force controls.  All of these are discussed in Reference 28.  Any such systems
need to be modelled within the equations of motion.  Nevertheless the dynamic behaviour of the
unaugmented aircraft remains important as a sub-system even in advanced designs.  For the introductory
purposes of this Item it is sufficient to restrict attention to the unaugmented aircraft.

The symbols adopted for describing the dynamic motion of an aircraft have varied over the years and
between different authors.  For many years the system of Reference 5 (Bryant and Gates) was in widespread
use in the UK.  However, this and other systems had the disadvantage that there was often a loss of
recognisable connection between the symbols themselves and the physical quantities they represented.  To
remedy this, a general system that can be recommended for universal adoption has been published by
Hopkin in Reference 16.  That reference contains a complete description of a scheme of nomenclature for
aircraft dynamics and the associated aerodynamics.  The versatility of the complete form allows it to be
unambiguous in the most exacting circumstances. In less demanding circumstances considerable
simplification is usually possible.  The system has provided much of the background material for the
notation adopted by the International Organisation for Standardisation (ISO) in Reference 18, and is used
in the ESDU Dynamics Sub-series where it is described in some detail in Item Nos 67001 to 67003
(References 12 to 14).

The system of Reference 16 has also become standard in the Aerodynamics Sub-series.  In Reference 16
there are tables of factors for conversion to or from the system of Reference 5.
8
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2.2 Organisation of Item

Section 3 introduces the concepts of aerodynamic forces and moments and their derivatives.  A systematic
method for expressing these quantities in dimensionless form is given.  Equations are provided for
calculating the derivatives associated with longitudinal motion variables and reference is made to existing
Items that contain methods for predicting the derivatives associated with lateral motion variables.  A table
is given that shows the conversion factors between derivatives expressed in the notation of this Item and
in the notation most widely used in the USA.

Section 4 develops the general equations of motion for an aircraft treated as a rigid body, and shows how
linearised quasi-steady perturbation equations can be formed.  The equations apply rigorously only to
infinitesimal disturbances but they can be used with good accuracy for quite large amplitudes provided
there are no great departures from linearity.

Section 5 describes the principles underlying the analysis of the perturbation equations and shows that
under certain simplifying assumptions they separate into two independent sets involving the longitudinal
and the lateral motions of the aircraft.  A detailed study is made of an aircraft slightly disturbed from straight
and symmetrical steady flight, with controls fixed.  Reference is made to the connections with the classical
concepts of static margin and manoeuvre margin.  Consideration is mainly confined to controls-fixed
stability because the advent of power-operated controls has now rendered the problem of controls-free
stability less important than in the past.

Section 6 contains a list of references.  Section 7 sets out a worked example for the investigation of the
controls-fixed longitudinal and lateral stability of a civil jet-transport aircraft.

Appendix A contains a traditional treatment of the problem of controls-fixed and controls-free longitudinal
stability, starting from a consideration of static stability, which is concerned only with the equilibrium of
the static forces and moments that develop on an aircraft in straight flight when it is disturbed slightly from
a  trimmed state.  It then introduces the concepts of static margin and manoeuvre margin and discusses the
relation between static stability and general stability in a dynamic sense.  It is to be noted that the general
stability of an aircraft can be studied without explicit reference to the concepts of static stability.

Appendix B provides a description in simple physical terms of the commonly occurring lateral modes of
motion of an aircraft that may follow a small disturbance.

3. AERODYNAMIC FORCES AND MOMENTS AND THEIR EXPANSIONS

3.1 Form of Forces and Moments

The solution of problems in flight dynamics requires the aerodynamic forces and moments to be expressed
in a form that adequately reflects the nature of the motion being considered and is convenient for the solution
of the equations of motion.  In order to set up a suitable form it is necessary to relate the forces and moments
to the motion variables and other quantities that specify the aircraft flight condition (or state). For conditions
of steady flight the forces and moments are fully determined by a reduced set of variables.

A general description of unsteady motion requires the whole set of time-varying state variables, and forces
and moments that depend not only on the present values of the variables but also on the whole time history
of the motion.   However, the mathematical arguments developed by Tobak (see References 6 and 20 and
the  discussion  in  Reference  27),  together  with  practical  experience,  show  that  it  is  permissible  in  most
9
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problems of aircraft stability to adopt an approach whereby the forces and moments are assumed to depend
on the values of the state variables and the first derivatives with respect to time of the linear velocity
components.

The aerodynamic forces depend on 

(a) the overall shape of the aircraft and its skin roughness,

(b) the size of the aircraft typified by some length, l,

(c) the properties of the air, specified by the ambient pressure, P, density, , and dynamic viscosity, ,

(d) the motion of the aircraft relative to the air, defined by the components of linear velocity, u, v, w,
and of angular velocity, p, q, r,

(e) the control settings, where the elevator, aileron and rudder angles  are used as examples but
other controls such as thrust vectors or direct force generators are assumed to be included,

(f) the nearness and orientation of the aircraft relative to another large object, usually the Earth (ground
effect).  With an Earth-fixed axis system this may be defined in terms of the co-ordinates , ,

 and three attitude angles,  (bank),  (inclination) and  (azimuth).

For an aircraft of given shape and surface condition a typical force component Z can be expressed

Z  =  Z(l, P, , , , , , , , , u, v, w, p, q, r, , , , , , ), (3.1)

where although they are not independent variables ,  and  have been included to emphasise the fact
that they are used to represent knowledge of the history of the aircraft motion.*

A particular force or moment will usually be mainly determined by a sub-set of the variables in
Equation (3.1).  For the force Z and symmetrical flight a sensibly abbreviated form is

(l, P, , , , , , u, w, q, , , ). (3.2)

At this stage it is usually convenient to restrict attention to motion well away from the Earth or other large
object so that ,  and  may be omitted, so that

(l, P, , , u, w, q, , , ). (3.3)

This can be written in a dimensionless form such as

(3.4)

where V is the magnitude of the aircraft velocity.

* See Reference 29 for a mathematically rigorous formulation.

ρ µ

η ξ ζ, ,

x0 y0
z0 Φ Θ Ψ

ρ µ x0 y0 z0 Φ Θ Ψ η ξ ζ u· v· w·

u· v· w·

Z  Z≈ ρ µ x0 z0 Θ η u· w·

x0 z0 Θ

Z  Z≈ ρ µ η u· w·

Z

ρV2l2
--------------  Z P

ρV2
--------- µ

ρVl
--------- w

V
---- ql

V
---- η u· l

V2
------ w· l

V2
------, , , , , , 

 ≈
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There is the alternative and more familiar form involving Mach number, M = V , Reynolds number,
R = , and a reference area, S,

 . (3.5)

For symmetrical flight at low angles of attack  and  and there is the form 

 . (3.6)

The dimensionless quantity  is known as the aerodynamic force coefficient  and similar
relationships exist for  and .  The aerodynamic moment coefficients ,  and  are similar
except that the length  appears also in the divisor.  Different choices of  will normally be made for the
longitudinal and lateral coefficients;  or  is usual for  and b or b/2 for  and .

3.2 Expansion of Forces and Moments

When considering the motion of an aircraft after a small perturbation from a datum flight condition a return
is made to a form such as Equation (3.1), since it is reasonable to express the aerodynamic forces and
moments in linear expansions about their datum values.  Before developing such expansions it is noted that
as P,  and  are all functions of the height above sea level, for air in equilibrium they may be replaced
by this single variable.  Therefore if, as is customary, it is assumed that the atmosphere is essentially uniform
for small changes in height the variation of forces and moments with height can be ignored.

For an aircraft with a longitudinal plane of symmetry the usual expansion of the forces and moments with
respect to a system of body-axes Oxyz (defined in Section 1.1), where the x-axis and z-axis lie in the plane
symmetry, is

where the subscript  denotes datum conditions and primes denote perturbation from the datum, for
example .  The quantities  etc. in the expansions are commonly referred to as aerodynamic
derivatives.  They are evaluated at datum conditions and hence at a specified Mach number and Reynolds
number.  They correspond to the partial differentials  etc. when it is valid to assume that the influence
of the history of the motion on the aerodynamic forces and moments is adequately represented through
present values of ,  and .

= = + + + + +  , (3.7)

= = + + + + +  , (3.8)

= = + + + + +  , (3.9)

= = + + + + +  , (3.10)

= = + + ' + + +  , (3.11)

= = + + + + +  , (3.12)

ρ/γP( )1/2

ρVl/µ

Z
1
2
---ρV2S
---------------  Z M R w

V
---- ql

V
---- η u· l

V2
------ w· l

V2
------, , , , , , 

 ≈

α w/V≈ α· w· /V≈

Z
1
2
---ρV2S
---------------  Z M R α ql

V
---- η u· l

V2
------ α· l

V2
------, , , , , , 

 ≈

Z/1
2
---ρV2S CZ

CX CY Cl Cm Cn
l l

c= c Cm Cl Cn

ρ µ

X′ X Xe� Xuu′ Xww′ Xw· w· ′ Xqq′ Xηη′ …

Y′ Y Ye� Yvv′ Ypp′ Yrr′ Yξξ′ Yζζ′ …

Z′ Z Ze� Zuu′ Zww′ Zw· w· ′ Zqq′ Zηη′ …

L ′ L Le� Lvv′ Lpp′ Lrr′ Lξξ′ Lζζ′ …

M ′ M Me� Muu′ Mww′ Mw· w· Mqq′ Mηη′ …

N ′ N Ne� Nvv′ Npp′ Nrr′ Nξξ′ Nζζ′ …

e
u′ u ue�= Xu

∂X/∂u

u· v· w·
11



86021ESDU
Engineering Sciences Data Unit

TM
The selected terms shown in Equations (3.7) to (3.12) are those known to be significant for a wide range
of flight conditions.  In certain other cases additional terms and control variables may be needed.  For
example, for aircraft with highly swept wings at high angles of attack the terms  and  may be
important (see References 11 and 22).  No cross-coupling terms such as ,  etc. have been included
since for a symmetrical aircraft they may normally be treated as zero, although the pitching moment due
to sideslip, , can assume significant values for some aircraft (see Reference 23).  In the case of
vertical-lift aircraft some further cross terms may be important.

Aerodynamic coefficients may themselves be expanded in analogous forms to those developed for the
dimensional forces and moments.  In such an expansion the dependence on speed and density is largely
embodied within the factor .  As indicated in Reference 16 such expansions are appropriate when
there is a substantially varying speed or density.

3.3 Concise Forms

To provide a compact way of writing the equations of motion, concise forms of forces and moments are
introduced whereby the forces are divided by the aircraft mass and the moments by the moment of inertia
about the appropriate axis.  In both cases a change of sign is introduced.  The concise forms are denoted
by a lower case letter corresponding to the original force or moment.  Concise forms of aerodynamic
derivatives are produced in an identical manner.  For example, the concise forms of the force Z and the
moment L  are

 and  , (3.13)

and concise forms of typical derivatives are

 and  . (3.14)

3.4 Aero-normalised System

Thus far it has been tacitly assumed that the forces and moments and aerodynamic derivatives are quantities
measured in a system of ordinary dimensional units, e.g. the SI system.

Just as the conversion of aerodynamic forces and moments into dimensionless coefficients is a convenient
means of handling such data in that it isolates the dependence on velocity, density and size, a parallel
�normalising� procedure is used to express aerodynamic derivatives and motion variables in dimensionless
form.  The standard system adopted for aerodynamic derivatives in the Aerodynamics Sub-series is the
aero-normalised system  recommended in Reference 16.

The aero-normalised system uses divisors based on the appropriate combinations of three reference units
of force, speed and length.  The unit of force is , where  and  are datum values of air density
and aircraft speed, and can be sensibly taken as the conditions existing immediately before a disturbance.
The unit of speed is  and the unit of length is , a characteristic length for the aircraft.  The devisor
required for any other physical quantity can be constructed by dimensional analysis, for example the divisor
for a moment is  and that for an angular velocity is .  If the equations of motion are expressed
in the aero-normalised system a single value of  must be used throughout.

It is a feature of the aero-normalised system that the same symbols are used to represent both dimensional
and dimensionless quantities as there will seldom be confusion as to which system is being used.  If it is
necessary, a dressing  as in may be used to distinguish the dimensional form or a dressing  as
in  may be used to denote the aero-normalised form.  The first three columns of Table C1.1 demonstrate
the normalising process for aerodynamic derivatives.

Lv·v
· Nv·v

·

Xvv Yuu

Mvv

1
2
---ρV2

z   Z/me�= l  L /Ix�=

zu  Zu/me�= lv  L� v/Ix=

1
2
---ρeVe

2S ρe Ve

Ve l0
1
2
---ρeVe

2Sl0 Ve/l0
l0

°( ) Xu
°

4( )
Xu4
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3.5 Estimation of Aerodynamic Derivatives

Numerical values of stability derivatives can be obtained from wind-tunnel tests of a particular model, from
theoretical or semi-empirical prediction methods, or from an analysis of flight-test results.  The values
depend on the particular body-axis system chosen.  Although conversion from one system to another can
be made, it is convenient to adopt a system in which the derivatives are available directly.

In cases where the angle of attack is small or moderate, an aerodynamic-body axis system, defined in
Section 1.1, is convenient.  In the UK aerodynamic-body axes have in the past been referred to as wind-axes
or wind-body axes.  In the USA they are usually referred to as stability axes.  They are used in many
semi-empirical prediction methods.

The chief alternative to the use of aerodynamic-body axes are geometric-body axes, defined in Section 1.1,
and these are well suited to the study of motion at high angles of attack.  In some cases it is possible to
choose the geometric-body axes to coincide with the principal axes of inertia.  This has the benefit that all
the cross products of inertia are eliminated from the equations of motion.

3.5.1 Longitudinal derivatives

For studies of small disturbances from straight and symmetrical steady flight the controls-fixed longitudinal
derivatives about aerodynamic-body axes are often approximated by simple formulae that involve the lift,
drag and thrust characteristics of the aircraft, see Reference 25.  The relevant equations for the
aero-normalised derivatives are

 , (3.15)

 , (3.16)

 , (3.17)

 , (3.18)

 , (3.19)

 , (3.20)

 , (3.21)

 , (3.22)

 , (3.23)

 , (3.24)

 , (3.25)
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(3.26)

The derivatives ,  and  which are of negligible importance, have been set to zero.  The derivatives
,  and  are represented as the sum of a wing-body contribution and a tail contribution, with the

two wing-body moment derivatives being referred to the aircraft centre of gravity position.  For aircraft
with long tail arms the tail contributions dominate and the wing-body contributions ,  and

 may be omitted.  The derivative  is the tailplane lift-curve slope based on tailplane
planform area,  and  is the distance of the aerodynamic centre of the tailplane aft of the centre of
gravity position.  The factor  represents the downwash at the tailplane.  The lift and drag coefficients
and their derivatives are all evaluated at the steady datum conditions.

It is assumed in the equations that the thrust acts along the x-axis.  If the thrust axis is inclined to the x-axis
and its line of action passes at a perpendicular distance  below the centre of gravity position then the
component of thrust  acting parallel to the x-axis replaces  in Equation (3.15).  There are also small
additional terms, /  in Equation (3.19) associated with the thrust component parallel to
the z-axis and /  in Equation (3.23) associated with the thrust moment about the centre
of gravity position.  These two terms are usually small enough to be ignored (see Reference 22).

Equation (3.15) involves the variation of the engine thrust with speed, which will depend on the operating
conditions and type of engine.  For example, in the case of a piston-engined aircraft with variable-pitch
propellers a reasonable approximation is that the power and efficiency of the engine are constant, i.e.
TV = constant and .  There is much less dependence of thrust on speed for jet engines.

The derivatives of the aerodynamic coefficients ,  and  with respect to V reflect changes in
slipstream (see Reference 9), compressibility and Reynolds number effects, although the last of these is
insignificant for full-scale flight.  The general classical treatment (Reference 2), that is not confined to the
assumption of a rigid body, also allows for the effect of a change in aircraft shape due to low frequency
structural flexure that is in phase with the local aerodynamic loading.  If such derivatives are negligible
then some of the equations simplify.  In particular, and for steady horizontal flight, Equation (3.24) can be
replaced by

 , (3.27)

where  is the static margin (see Equation (A2.1) of Appendix A).
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3.5.2 Lateral derivatives

Items in the Aerodynamics Sub-series may be used for predicting controls-fixed lateral stability derivatives
about aerodynamic-body axes.  For subcritical speeds there is a complete coverage of the derivatives due
to sideslip, roll rate and yaw rate.  Items for predicting the rolling moment derivatives are introduced by
Item No. Aircraft 06.01.00 (Reference 8) and those for predicting yawing moment sideforce derivatives
are introduced in Item No. Aircraft 07.01.00 (Reference 3).

3.5.3 Comparison of derivative definitions

In Reference 16 it is explained that various systems of stability notation are used in the USA.  This Section
contains information on the differences between aerodynamic derivatives expressed in a widely used
American system and the aero-normalised system of Reference 16.

In this American system the basic symbols such as X, Y, Z, u, v, w, ,  etc. remain standard but derivatives
of dimensionless coefficients based on constant values of  and V are used to denote aerodynamic
derivatives, for example the symbol  is used instead of .  Also, unlike the aero-normalised system,
the American system uses different representative lengths for the normalised motion variables and the
moment coefficients, respectively /2 and  for the longitudinal derivatives and b/2 and b for the lateral
derivatives.  When derivatives with respect to  and  are formed there is usually the implication that

/V and /V so that  etc.

If it is assumed that in the American system all coefficients are evaluated at datum conditions and that the
reference dimensions for the longitudinal coefficients are  and  and for the lateral coefficients are 
and , then Table C1.2 allows for all of these differences and relates the American derivatives to the
corresponding aero-normalised derivatives.  In practice, symbols other than ,  and  will probably be
used to denote control deflections.

All of the individual Items in the Aerodynamics Sub-series which give methods for the prediction of stability
derivatives have before their Notation a note that gives the American style of the derivative, with a warning
to check on reference dimensions.

α β
ρ

Cxu Xu

c= c=

α β
α  w≈ β  v≈ Clβ Clv=

S c= S
b

η ξ ζ
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4. EQUATIONS OF MOTION

This Section sets out the general equations of motion for an aircraft treated as a rigid body.  It goes on to
develop the linearised perturbation equations that are widely used to describe the motion following a small
disturbance.

It is assumed throughout that the variation of atmospheric properties with small changes in height is
insignificant, that the effects of the Earth�s curvature and rotation may be neglected, and that the velocity
of the surrounding air relative to the Earth is zero.  The aircraft is taken to be well clear of the Earth so that
there is no ground effect on the aerodynamic forces and moments.

4.1 Attitude Angles

The inertial quantities and instantaneous motion of the aircraft can be defined with respect to any set of
body-axes 0xyz, as defined in Section 1.1.  The choice of particular systems can introduce simplification
into the equations of motion and those brought about by aerodynamic-body axes are demonstrated in later
sections.

Because the body axes move in space a complete description of the aircraft motion requires the definition
of a reference axis system whose axes are in fixed directions in space.  In this Item an aircraft-carried Earth
system  is chosen, as defined in Section 1.1.2.

The position occupied by an aircraft in space may then be specified by the position of the axis origin 0
relative to the Earth and by the aircraft�s attitude relative to the axis system .  The latter may be
defined by specifying three independent angular rotations,  (bank),  (inclination) and  (azimuth),
which if applied in a standard sequence to an axis system initially coincident with the Earth-axis system
would bring it into alignment with the body-axis system.  

The standard sequence of rotations, which is illustrated in Figure 1, is

(i) an initial rotation  in the positive sense about the -axis,

(ii) a second rotation  in the positive sense about the resulting (intermediate) position of the y-axis,

(iii) a third rotation  in the positive sense about the resulting final position of the x-axis.

For small perturbation studies it is convenient to express the disturbed orientation of the aircraft relative to
a datum attitude defined by , , .  This is done by defining attitude-deviation angles , , .
Application of these rotations to the body-axes system in its datum condition, in the same way that the
rotations , ,  are applied to the Earth-axis system, change the orientation of the body-axis system
from the datum position to the disturbed position.

0x0y0z0

0x0y0z0
Φ Θ Ψ

Ψ z0

Θ

Φ

Φe Θe Ψe φ θ ψ

Φ Θ Ψ
16



86021ESDU
Engineering Sciences Data Unit

TM
If the direction cosines of the Earth axes ,  and  with respect to the body axes are , , ;
, , ; , , ; respectively, a vector quantity in the Earth-axis system can be transformed into

the body-axis system through multiplication by the transformation matrix.

(4.1)

where, by virtue of the definition of the attitude angles,

The attitude , ,  may be considered as being the result of rotations to the datum attitude , ,
 followed by rotations through the attitude-deviation angles , , , so that  may be written

 , (4.11)

where  and  are matrices of the same form as .  If, in addition, the attitude-deviation angles are
small  reduces to

 . (4.12)

It is to be noted that the attitude-deviation angles are not equal to perturbations of the attitude angles.  For
small angles their general relationship, given in Reference 16, is

 , (4.13)

 , (4.14)

 . (4.15)

= cos  cos  , (4.2)
= cos  sin  , (4.3)
= � sin  , (4.4)

= sin  sin  cos  � cos  sin  , (4.5)
= sin  sin  sin  + cos  cos  , (4.6)
= sin  cos  , (4.7)

= cos  sin  cos  + sin  sin  , (4.8)
= cos  sin  sin  � sin  cos  , (4.9)
= cos  cos  . (4.10)

0x0 0y0 0z0 l1 m1 n1
l2 m2 n2 l3 m3 n3

SΦ

l1 l2 l3
m1 m2 m3

n1 n2 n3

=

l1 Θ Ψ
l2 Θ Ψ
l3 Θ

m1 Φ Θ Ψ Φ Ψ
m2 Φ Θ Ψ Φ Ψ
m3 Φ Θ

n1 Φ Θ Ψ Φ Ψ
n2 Φ Θ Ψ Φ Ψ
n3 Φ Θ

Φ Θ Ψ Φe Θe
Ψe φ θ ψ SΦ

SΦ SφSΦe=

SΦe Sφ SΦ
Sφ

Sφ

1 ψ θ�
ψ� 1 φ
θ φ� 1

=

φ  Φ′  Ψ′  Θesin�=

θ  θ′  Φe  Ψ′ +  Φe  Θecossincos=

ψ   Θ′  Φe  Ψ′  Φe  Θecoscos+sin�=
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4.2 Kinematic Relationships

To set up the full set of equations governing the aircraft motion it is necessary to interrelate the body-axis
angular velocity components p, q, r and the rates of change of the attitude angles , ,  or the
attitude-deviation angles , , .

The resultant angular velocity besides having components p, q, r along the body axes has the following
components

along the 0x axis,

along the intermediate 0y axis,

along the  axis.

Hence by resolving these along the ,  and  axes the following relationships result,

(4.16)

(4.17)

 . (4.18)

The inverse relationships are given by

(4.19)

(4.20)

 . (4.21)

The angular velocity components may also be considered as composed of components , ,  along
the datum axes together with the components

along the  axis,

along the intermediate  axis,
along the  axis.

Thus

, (4.22)

Φ Θ Ψ
φ θ ψ

Φ·

Θ·

Ψ
·

0z0

0x 0y 0z

p  Φ·   Ψ·   Θsin�=

q  Θ·   Φ  Ψ·   Φ  Θcossin+cos=

r   Θ·   Φ  Ψ·   Φ  Θcoscos+sin�=

Φ·   p  q  Φ  Θ  r  Φ  Θtancos+tansin+=

Θ·   q  Φ  r  Φsin�cos=

Ψ·   q  Φ  Θ  r  Φ  Θseccos+secsin=

pe qe re

φ· 0x

θ· 0y
ψ· 0z0
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q
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 Sφ 
pe
qe
rq

  
φ ·  ψ·   θsin�
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so that, when ,  and  are all zero,

, (4.23)

, (4.24)

, (4.25)

analogous relationships to Equations (4.16) to (4.18).  If ,  and  are not zero but the attitude-deviation
angles are small, the perturbation angular velocities are

, (4.26)

, (4.27)

. (4.28)

If both simplifying conditions are assumed, there is the simplest result

, (4.29)

, (4.30)

. (4.31)

It is also possible to form expressions for ,  and  in terms of perturbation of the attitude angles, ,
 and , but these are more complicated than Equations (4.23) to (4.31) and only the expressions in ,

 and  are given in this Item.

4.3 Components of the Gravitational Force

In addition to the aerodynamic forces and moments acting upon it the aircraft weight must also be resolved
into components along the body axes.  For an aircraft these are denoted by ,  and  and ,

 and  are expressible in terms of the attitude angles defined previously,

, (4.32)

so ,  and .

Using Equation (4.11) it is also possible to write

, (4.33)

pe qe re

p φ ·  ψ·   θ sin�  p′= =
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and the form of  for small attitude-deviation angles implies that the increments in ,  and  due to
a perturbation are

, (4.34)

, (4.35)

,

, (4.36)

where  and  have been introduced for convenience.

For a datum unbanked flight condition  and so

, (4.37)

, (4.38)

. (4.39)

These relationships are valid for any body-axis system.  For the particular case of aerodynamic-body axes
and horizontal datum flight conditions  is also zero, so that

, (4.40)

, (4.41)

. (4.42)

4.4 Equations of Motion in their General and Perturbation Forms

If, as is usual, the force and moment equations of motion based on Newton�s second law are expressed in
a moving body-axis system with origin at the aircraft centre of gravity position, allowance must be made
for the instantaneous rotation of these axes relative to an initially coincident inertial axis system.  If the
vector  denotes the instantaneous angular velocity of the body axes, then general vector analysis (see
Reference 24, for example) gives derivatives with respect to time of the velocity and angular momentum
vectors,  and  in the inertial axis system, equal to  and  in the body axis system.
Using these expressions, the vector equation describing the motion of the centre of gravity in body axes is

, (4.43)

and the vector equation for the rotation of the body about the centre of gravity position is

, (4.44)

Sφ gx gy gz
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gy′  g  Θecos( ) φ  g  Θesin( ) ψ +  g1 φ  g2 ψ+= =
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20



86021ESDU
Engineering Sciences Data Unit

TM
The components of  and  are the aerodynamic forces and moments acting on the aircraft.  The
components of the gravitational force  have been discussed previously in Section 4.3.  There are no
moments due to gravity because the axes origin is at the centre of gravity position.

The angular momentum vector can be expressed as

(4.45)

where the body-axis inertia matrix is

, (4.46)

and  represents the constant angular momentum of rotating parts of the aircraft or engines.

Expansion of Equations (4.43) and (4.44) in scalar form gives

, (4.47)

, (4.48)

, (4.49)

 , (4.50)

 , (4.51)

. (4.52)

The standard technique in the subsequent treatment of the equations for the study of small disturbances
from a trimmed steady state is to seek linearised forms.  To achieve this, all variables are expressed in terms
of perturbations with respect to datum values appropriate to the trimmed steady state, and the substitutions

, , , etc. are made.  Simplification is then obtained because
the datum values, as a set, satisfy the equations of motion and products of perturbations, for example ,
can be neglected.  With the further simplifying assumption that the angular momentum of rotating parts of
the aircraft and engines is negligible, so that , the linearised equations of motion are

, (4.53)

, (4.54)

, (4.55)

, (4.56)
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, (4.57)

, (4.58)

where, for convenience, the inertia ratios

 , (4.59)

 , (4.60)

 , (4.61)

and (4.62)

have been introduced.  The forces and moments are written in the concise forms , , , , , ,
defined in Section 3.3.  For their solution Equations (4.53) to (4.58) must be associated with the kinematic
relationships of Equations (4.26) to (4.28) of Section 4.2 relating angular velocity perturbations to rates of
change of attitude-deviation angles.  Nine simultaneous equations for , , , , , , ,  and 
are therefore involved.

It is to be noted that for an aircraft with mass symmetry about the  plane 
and there is a considerable simplification of Equations (4.56) to (4.58),

, (4.63)

, (4.64)

. (4.65)

4.5 Dynamic-normalised System

So far the equations of motion have been developed in dimensional form.  More generality is provided by
a consistent set of dimensionless units.

Although the aero-normalised system (see Section 3.4) is convenient from an aerodynamic viewpoint, it is
not well suited to the discussion of aircraft dynamics.  It has two main drawbacks, the first of these being
the smallness of the unit of time, , and the second being the fact that it is unrelated to the inertial
properties of the aircraft.  To remedy these drawbacks an alternative normalising system is required for
forming dimensionless quantities in dynamic studies, and the dynamic-normalised system recommended
in Reference 16 is adopted.

In the dynamic-normalised system the basic units are those of force, speed and mass.  As in the
aero-normalised system the unit of force is  and the unit of speed is .  The unit of mass is that
of the aircraft, strictly at the datum condition, .  The same symbols are used to denote quantities in
dimensionless or dynamic-normalised form.  There is seldom any confusion as to which system is being
used but, if necessary, a dressing  for the former or a dressing  for the latter may be adopted, e.g. 
or .
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By dimensional analysis the normalising factors for any quantity can be found by an appropriate
combination of the basic units.  This process, which is also a feature of the aero-normalised system, ensures
that all units are mutually consistent.  In consequence the equations of motion assume the same form whether
in ordinary, aero-normalised or dynamic-normalised units and need carry no distinguishing marks.

Tables C1.3 and C1.4 give the normalising factors required to convert the most commonly needed quantities
from dimensional to dynamic-normalised form.  These involve  and the dynamic-normalised unit of time,

 . (4.66)

The ratio of the dynamic-normalised unit of mass to the aero-normalised unit of mass is expressed as the
relative density parameter

. (4.67)

The ratios of the units of length and time are also equal to  and this parameter features prominently in
the conversion of aero-normalised data to dynamic-normalised form.  Aerodynamic derivatives will in most
cases be provided in aero-normalised form, and so it is convenient to convert them directly into
dynamic-normalised concise derivatives for substitution in dynamic-normalised equations of motion.  The
last three columns of Table C1.1 give the simple relationships by which this is achieved.  The conversion
factors for the  force derivatives are �1 or �1/ .  Those for the moment derivatives are �1 or �  with an
inertia parameter divisor , as appropriate, where

. (4.68)

The basic units of the dynamic-normalised system do not involve a choice of length.  Therefore the length
 selected for forming the aero-normalised derivatives is immaterial so long as the conversion to

dynamic-normalised concise derivatives is carried out with consistent substitution.  For example, if the
aero-normalised value of  is based on  it is essential to associate this with  defined
as  and  as  so that the dynamic-normalised value of  is independent of b.  Because
of this, separate sets of longitudinal and lateral aero-normalised derivatives based on two different
representative lengths, for example  or  for the former and b or b/2 for the latter, will provide a
single consistent set of concise dynamic-normalised derivatives suitable for studying coupled motion,
provided that they are associated with longitudinal and lateral values of  and inertia parameters that are
in each case based on the relevant reference length.
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5. ANALYSIS OF EQUATIONS

5.1 State-space Formulation

The ready availability of computerised matrix handling techniques allows numerical solutions for the nine
simultaneous equations describing small perturbation motion to be achieved rapidly.  This is accomplished
most simply if the complete set of equations is arranged in a state-space form where the time derivation of
each state variable is expressed as a function of the current values of the state variables and any forcing
inputs.

Throughout Section 5 only perturbation motions are considered and therefore the primes that are used
formally to identify perturbation variables are dropped from the notation.

Thus if  is the state vector of perturbation variables, and  is the vector of control perturbations the
equations of motion may be expressed in the form

(5.1)

where ,  and  are matrices.

For controls-fixed motion  and the nine roots (or eigenvalues) of the determinant 
determine the stability of the aircraft.

The roots satisfy a ninth-order polynomial in  given by

(5.2)

which is known as the characteristic equation.  This can be extracted either numerically or algebraically,
although the latter approach is only really practicable in simple cases.

Each variable will have a solution involving the nine roots which, taking u as an example, will be of the form

, (5.3)

where  is constant.

A study of the roots of the characteristic equation shows up certain critical features of the disturbed motion
which may be examined independently of the full solution of the equations of motion.  Stability depends
on the nature of all the roots and the aircraft is only stable if every root corresponds to a disturbance that
ultimately dies out.

u η

A  u·   B u  C η + +  0=

A B C

η  0=  λλλλ I9  A 1�  B +

λ

det  λ I9  A 1�  B + 0=

u ai  λit( )exp
i 1=

9
∑=

ai
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The motions associated with individual roots of different type are as follows,

Thus the aircraft is stable if there is no root with a positive real part.  The parameters,  and T are
measured in the time unit of the system of units being used.  For a dimensional system they are expressed
in seconds, in a dynamic-normalised system in units of  etc.  Other parameters can be used to categorise
the damping of the motions and these are discussed in Item No. 67038 (Reference 15) of the Dynamics
Sub-series.

The dependence of the stability of an aircraft on some particular parameter is best presented graphically.
For example, a root locus can be plotted on an Argand diagram as the parameter is varied.  A description
of this and other types of graphical display may be found in Item No. 74020 (Reference 19) of the Dynamics
Sub-series.

5.2 Separation of Equations into Longitudinal and Lateral Groups

In some cases it is possible to separate the equations of motion into a �longitudinal� group involving only
the variables u, w, q,  and  and a �lateral� group involving v, p, r, , ,  and .  In such a case the
longitudinal and lateral motions are fully independent and exist with no coupling.

The first requirement is to impose a datum condition of straight (rectilinear) motion, .
This removes cross-coupling from the kinematic equations and allows Equations (4.29) to (4.31) to be used.
It also reduces, but does not eliminate, the cross-coupling of linear and angular velocities in Equations (4.53)
to (4.55),  etc., and removes some, but not all, of the inertia related cross-coupling in Equations
(4.56) to (4.58), i.e. the terms involving  and  disappear.

The concise forms of the aerodynamic forces and moments are now expanded in derivative form.  In addition
to the derivatives such as ,  etc. that correspond to the concise forms of the aerodynamic derivatives
appearing explicitly in the expansions of Equations (3.7) to (3.12), for illustration purposes velocity
derivatives such as ,  etc. are included as typical cross-coupling derivatives.  With some rearrangement
to anticipate separation the simplified equations of motion may now be written in the state-space form of

zero corresponds to an undamped persistence of the original disturbance 
(neutral stability),

real and positive corresponds to an increasing disturbance (divergence) 
with time to double amplitude, ,

real and negative corresponds to a decreasing disturbance (subsidence) 
with time to half amplitude, ,

and complex corresponds to an oscillation, increasing in magnitude if the real 
part is positive or decreasing in magnitude if it is negative.  The time to 
double or half amplitude to , and the period of 
oscillation is .

λ

λ
t2/1 2elog( )/λ=

λ
t1/2 2elog( )/ λ�( )=

λ

2elog( ) /  R λ( ) 
T 2π /  J λ( ) =

t2/1 t1/2,

τ

θ η φ ψ ξ ζ

pe qe re 0= = =

qew′ 0=
dx bx ey by  fz, , , , bz

xu yv
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Equation (5.1) with

(5.4)

(5.5)

A = A11 A12
A21 A22 

 
 
 

A = 1 xw· 0  0 0 0 0 0 0

0 1 zw·+ 0 0 0 0 0 0 0

0 mw· 1 0 0 fy dy 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 fx 0 0 1 ex 0 0

0 0 dz 0 0 ez 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B = B11 B12
B21 B22 

 
 
 

A = xu xw  xq we+   g1 Φecos xv 0 ve� 0 g1 Φesin�

zu zw zq ue� g2 zv ve 0 g1 Φesin 0

mu mw mq 0 mv 0 0 0 0

0 0 1� 0 0 0 0 0 0

yu yw 0 0 yv  yp we  � yr ue  + g1 Φecos� g2�

lu lw 0 0 lv lp lr 0 0

nu nw 0 0 nv np nr 0 0

0 0 0 0 0 1� 0 0 0
0 0 0 0 0 0 1� 0 0 
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 
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 
 
 
 
 
 
 
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 
 
 
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(5.6)

(5.7)

and  . (5.8)

In partitioned form Equation (5.1) is

. (5.9)

For the longitudinal and lateral motions to be separable it is necessary that 
.

For the case shown, where control input is provided through ,  and ,  and  are both zero and
the controls provide no coupling.  For more general control systems this may not be so.  But attention will
now be formally restricted to motion with fixed controls and only matrices  and  will be considered.

C = C11 C12
C21 C22 
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u
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It can be seen that the imposition of straight flight is not in itself sufficient for separation of the longitudinal
and lateral motions.  For the matrix ,  and  are zero only if , ,  and  are all zero.  This
requires , a condition that will be satisfied if the aircraft has mass symmetry about the 
plane.  If this is so then separation depends only on requirements imposed on the matrix .

The conditions on matrix  for separating the longitudinal equations are more stringent than those for the
lateral equations.  The lateral equations can be treated separately provided that any lateral cross-coupling
derivatives,  etc. appearing in  are zero.  The longitudinal equations can always be considered
separately if the lateral perturbations , , , ,  are zero.  However, if lateral perturbation is permitted,
the longitudinal equations separate only if the datum flight condition is symmetrical so that there is no
sideslip velocity, , and no bank angle, , and if any longitudinal cross-coupling derivatives,

 etc. are also zero, so that every element of  is zero.  Reference 16 contains a more general discussion
on the conditions for separation of the equations, and gives the additional requirements if the aircraft is in
ground effect or there is a wind.

With the necessary conditions for separation satisfied the longitudinal motion in straight symmetrical flight
with controls fixed is governed by the matrix equation.

, (5.10)

with characteristic roots given by the quartic equation

 . (5.11)

Similarly, the separated equations for lateral motion are

(5.12)

with characteristic roots given by the quintic equation

. (5.13)

Thus of the nine roots of the general solution of controls-fixed motion four are now associated with the
longitudinal motion and five with the lateral motion.

From Equations (5.4), (5.5) and (5.10), the longitudinal equations are expanded and slightly rearranged to
give

, (5.14)

, (5.15)

, (5.16)

, (5.17)

where  is the differential operator d/dt.  

A A12 A21 fx fy dy dz
Ixy Iyz 0= = xz

B

B

yu B21
v p r φ ψ

ve 0= Φe 0=
xv B12

A11 u· 1 B11 u1+ 0=

det  λ I4  A11
1�  B11 + 0=

A22 u· 2 B22 u2+ 0=

det  λ I5  A22
1�  B22 + 0=

D xu+( ) u xw· D xw+( ) w xq we+( ) q g1θ+ + + 0=

zu u 1 zw·+( ) D zw+[ ] w zq ue�( ) q g2θ+ + + 0=

mu u mw· D mw+( ) w D mq+( ) q+ + 0=

 q� Dθ+ 0=

D
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Similarly, from Equations (5.4), (5.5) and (5.12), the group of lateral equations is

, (5.18)

, (5.19)

, (5.20)

, (5.21)
. (5.22)

These equations hold for any body-axis system.  If aerodynamic body-axes are specified there is the
simplification  and , and  is equal to the angle of climb, .  Although the equations
are of equal validity in dimensional, aero-normalised or dynamic-normalised form, the last of these is
customary and permits the substitution .  With the assumptions of aerodynamic-body axes and
dynamic normalised form the gravitational factors become proportional to the lift coefficient in the datum
condition with

(5.23)

and . (5.24)

5.3 Analysis of Separated Equations

A simultaneous solution of all nine roots of the controls-fixed motion can be achieved by computer directly
from Equation (5.2) with the elements of the matrices  and  satisfying the conditions necessary for
separation of the longitudinal and lateral motions.  Alternatively, and more simply, the four roots of the
longitudinal motion can be found by solving Equation (5.11) and the five roots of the lateral motion by
solving Equation (5.13).  Numerical solutions are now customary and provide a direct test of stability.

Nevertheless, it is constructive to consider the characteristic equations of the separated longitudinal and
lateral motions in their algebraic forms so that the importance of the various individual aerodynamic
derivatives is clear.  For the longitudinal motion the connections with the classical concepts of static margin
and manoeuvre margin, as introduced in Reference 2, can also be demonstrated.

With the assumption of aerodynamic-body axes and a dynamic-normalised system the algebraic form of
the characteristic equation for the longitudinal motion is obtained through Equation (5.10) as

(5.25)

which is equivalent to Equation (5.11).

D yv+( ) v yp we�( ) p yr ue+( ) r g1φ� g2ψ�+ + 0=

lvv D lp+( ) p exD lr+( ) r+ + 0=

nvv ezD np+( ) p D nr+( ) r+ + 0=

p� Dφ+ 0=
r� Dψ+ 0=

ue Ve= we 0= Θe γe

Ve 1=

g1 g  Θecos CLe= =

g2  g  Θesin CLe  Θetan CLe  γetan= = =

A B

det  λ A11  B11 +  = det 

λ xu  + xw· λ xw+   xq   g1

zu 1 zw·+( )λ zw+   zq 1�   g2

mu mw· λ mw+   λ mq+   0

0 0   1�   λ

 = 0
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This can be fully expanded as the quartic equation 

, (5.26)

where , (5.27)

, (5.28)

, (5.29)

, (5.30)

and . (5.31)

Similarly, the characteristic equation for the lateral group is obtained via Equation (5.12)

(5.32)

which is equivalent to Equation (5.13).

In expanded form this is a quintic equation

, (5.33)

where , (5.34)

, (5.35)

, (5.36)

, (5.37)

and . (5.38)

It can be seen that Equation (5.33) has one trivial root .  This reflects the fact that the aircraft heading
(azimuth) is immaterial so far as stability is concerned (see also Reference 25).*  Thus the longitudinal
motion and, in essence, the lateral motion are both governed by characteristic quartic equations.  Although

* And a stable aircraft will not necessarily resume its original heading after a disturbance.
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 = 0
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it is nowadays normally rendered superfluous by direct numerical extraction of the roots, there is a
traditional test that can be applied to a quartic equation to verify that there is no root with a positive real
part, implying overall stability.  If the equation is of the form

, (5.39)

then the necessary and sufficient condition is that all of the coefficients must be positive and Routh�s
discriminant

(5.40)

must be positive.

5.3.1 Longitudinal motion

(i) Static stability and manoeuvrability

For an angle of climb  Equation (5.31) can be written

. (5.41)

References 2 and 9 show that the coefficient  is proportional to and has the same sign as the derivative
, where the differentiation is performed subject to the imposed condition

 ( = constant for constant ). (5.42)

In the general case, when the coefficient derivatives  and  are not zero, the static
margin  is written

.(5.43)

Positive static stability, , is a necessary but not sufficient condition for stability in dynamic motion.

In the basic case, when , and for horizontal flight, , there are
simplified forms of Equations (5.41) and (5.43),

(5.44)

and . (5.45)

Attention is now restricted to a horizontal flight condition under the assumption that speed does not change,
that is .  With respect to aerodynamic-body axes the disturbed motion in this case is described by the
equations
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, (5.46)

and , (5.47)

where the small terms in  and  have been neglected.  Their characteristic equation is

. (5.48)

The conditions which lead to Equation (5.48) are precisely those underlying the derivation of the manoeuvre
margin (see Appendix A).  There is therefore a close link between the manoeuvre margin and the constant
term .  In fact, with the assumption , the manoeuvre margin is

. (5.49)

In general, see References 2 and 9, it can be shown that when a steady-state (or trimmed) flight condition
is changed to a neighbouring one the increment in elevator angle, , required to maintain this new state
is proportional to the constant term of the appropriate characteristic equation.  In this way the physical
significance of the two concepts is that, as indicated in Appendix A,

(i) the controls-fixed static margin is proportional to ,

(ii) the controls-fixed manoeuvre margin is proportional to  per g.

(ii) Nature of the motion

To place the preceding discussion within the context of the full longitudinal motion it is necessary to return
to the general quartic form of Equation (5.26).  Although other possibilities exist, the characteristic equation
will almost always separate into two quadratic factors, each with a pair of complex conjugate roots.

For aircraft for which  and , a good approximation to the exact factorisation is provided by

. (5.50)

The first factor in Equation (5.50) is akin to the characteristic equation of the constant speed motion,
Equation (5.48).  It usually corresponds to a well-damped short-period oscillation that, in the general case,
mainly involves changes in pitch rate, q, and angle of attack with very little change in forward speed.

The second factor usually corresponds to a lightly-damped long-period oscillation, the so-called phugoid.
In this mode of motion the main changes occur in forward speed and pitch angle, , (or height) with very
little change in angle of attack.

Thus in any motion initiated by changes in pitch rate or angle of attack the short-period mode dominates
the initial stages whilst the phugoid persists into and dominates the closing stages of the disturbed motion.
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5.3.2 Lateral motion

The four non-trivial roots of Equation (5.33) embody the nature of the lateral motion.  In contrast to the
longitudinal motions the lateral roots are more dependent on the geometry and inertia constants of the
aircraft through the ratios  and .

For a wide range of aircraft with wings of large aspect ratio and of modest sweep there are two real roots
corresponding to two exponential modes, the rolling subsidence and the spiral mode, and a pair of complex
conjugate roots corresponding to an oscillation, the so-called Dutch roll.  A physical description of the
motion in the two exponential modes and the Dutch roll (each in isolation) is given in Appendix B, but the
salient points in relation to the roots of the quartic factor of Equation (5.33) are made below.

General ways of solving the characteristic equation are described in Item No. 83024 (Reference 26) of the
Dynamics Sub-series, but for aircraft for which ,  and  there are two simple
approximations to the roots for the exponential modes.  There is the large root

, (5.51)

and the small root

. (5.52)

The first root corresponds to the rolling subsidence.  The second root corresponds to the spiral motion.  For
small disturbances from horizontal flight  and its sign depends on the relative
magnitude of  and .  For many aircraft  is positive and the sign of  determines the sign of
the root, and if  the spiral motion subsides and if  it diverges.

The lateral oscillation is determined by the remaining pair of complex roots and increases or decreases
according to the sign of their real part.  The period and damping of the motion depend in a complicated
way on the aerodynamic derivatives and inertia characteristics of the aircraft but once the two real roots
have been determined accurately the quadratic factor containing the roots of the Dutch roll is easily isolated
numerically, see the worked example in Section 7.

Where the geometrical and inertial characteristics depart markedly from those described above, for example
for aircraft with highly swept wings of small aspect ratio, the above approximations become increasingly
less reliable (see References 7 and 11).

Eventually it is possible for aircraft that have highly swept wings and are inertially slender to exhibit
different modes of lateral motion, namely two oscillatory modes.  The Dutch roll exists as before, but has
a much increased roll to yaw ratio, and a long period oscillation replaces the roll subsidence and spiral
modes.

Alternatively, and rarely, it is possible for the Dutch roll to break down into two exponential modes (see
Reference 21).

In all the cases mentioned the more general approximate solutions given in Item No. 83024 provide
satisfactory results.

ex ez
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5.4 Controls-free Stability

The advent of power-operated controls has reduced the former significance of controls-free stability,
although it is still of importance for aircraft for which there is a simple mechanical link between the cockpit
controls and the control surfaces.

To study the controls-free stability, the equations describing the motion of the aircraft must now include
control force and moment terms and be solved simultaneously with the equations that describe the motion
of the controls about their hinge line.  This increases the order of the characteristic equation.  For example,
with a free elevator the longitudinal motion (assumed to be separable) has a characteristic equation that is
a sextic, although simplifying assumptions are available to reduce it to a quartic, see Reference 9.  Similar
considerations apply for lateral motion with a free rudder, see Reference 4.
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7. EXAMPLE

Find the roots of the characteristic equations for the controls-fixed longitudinal and lateral stability of the
civil jet transport aircraft shown in Sketch 7.1 when it is slightly disturbed from straight and symmetrical
steady level flight.

The aircraft properties and flight conditions are given in the table.  The values are based on information
given in Reference 17.

Sketch 7.1   

= 75600 kg
= 180 m2  
= 36 m2  rad�1

= 18 m  rad�1 (based on )
 rad�1

(longitudinal) =  = 6 m
(lateral) = b = 36 m  m/s

 kg/m3

= 2.5 × 106 kg m2

= 4.8 × 106 kg m2

= 7.3 × 106 kg m2  m/s2

= � 0.47 × 106 kg m2

=

me CL 0.700=
S CD 0.020 0.050CL

2+=
ST ∂CL/∂α 4.50=
lT ∂CLT/∂α 3.50= ST

∂Cm/∂α 0.675�=
l0 c= ∂ε/∂α 0.5=
l0 Ve 120=

ρe 0.700=
Ix Me 0.4=
Iy dT/dV 0=
Iz g 9.81=
Izx
Ixy Iyz 0=
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The datum conditions of straight and symmetrical level flight  and the fact that
the aircraft has mass symmetry about the xz-plane  satisfy the conditions for the longitudinal
and lateral motions of the aircraft to be considered separately (see Section 5.2).  The equations of motion
will be considered in dynamic-normalised form and for a system of aerodynamic-body axes (so 
and ).

Longitudinal stability

Equations (3.15) to (3.26) may be used to calculate the longitudinal aero-normalised aerodynamic
derivatives.  It is assumed that the derivatives ,  and  can be set to zero.  Using
the aerodynamic data from the table, assuming that the wing-body contributions ,  and

 can be neglected in comparison with the tailplane contributions, and noting that , it
follows that

The relative density parameter is

,

the dynamic-normalised unit of time is

s,

and the inertia parameter

.

= � 2 (0.020 + 0.050 × 0.7002) � 0 + 0 = � 0.0890,
= 0.700 � (0.1 × 0.700 × 4.5) = 0.385,
= 0,
= 0,

= � 2 × 0.700 + 0 = � 1.400,
= � (0.0445 + 4.5) = � 4.545,
= 0,
= 0 � (3.50 × 36 × 18)/(180 × 6) = � 2.10,

= 0,
= � 0.675,
= 0 � (3.50 × 36 × 182)/(180 × 62) × 0.5 = � 3.15,
= 0 � (3.50 × 36 × 182)/(180 × 62) = � 6.30.

pe qe re ve Φe 0= = = = =( )
Ixy Iyz 0= =( )

ue 1=
we 0=

∂CL/∂V ∂CD/∂V ∂Cm/∂V
Zq( )WB Mw·( )WBMq( )WB dT/dV 0=

Xu
Xw
Xw·

Xq

Zu
Zw
Z

w·

Zq

Mu
Mw
Mw·

Mq

µ
me

1
2
---ρeSl0
--------------- 75600

1
2
--- 0.700 180 6×××
-------------------------------------------- 200= = =

τ
me

1
2
---ρeVeS
----------------- 75600

1
2
--- 0.700 120 180×××
-------------------------------------------------- 10.0= = =

iy
Iy

mel0
2

----------- 4.8 106×

75600 62×
-------------------------- 1.764= = =
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From the relationships set out in columns three to five of Table C1.1 the dynamic-normalised concise forms
of the derivatives are

From Table C1.4 the dynamic-normalised value of g is .  A datum condition of level flight implies
 so the dynamic-normalised values of  and  are

and .

Using computerised matrix handling techniques the characteristic equation and its roots can be found for
the longitudinal motion by substituting the appropriate values of the concise derivatives, gravitational terms
and datum conditions  into Equation (5.11),

.

From Equations (5.4) and (5.5)

and .

= � = 0.0890,
= � = � 0.385,
= � = 0,
= � = 0,

= � = 1.400,
= � = 4.545,
= � = 0,
= � = 0.0105,

= � = 0,
= � = 76.531,
= � = 1.786,
= � = 3.571.

xu Xu
xw Xw
xw· X

w·
/µ

xq Xq/µ

zu Zu
zw Zw
zw· Zw· /µ
zq Zq/µ

mu µMu/iy
mw µMw/iy
mw· Mw· /iy
mq Mq/iy

g°τ/Ve
Θe 0= g1 g2

g1 g  Θecos 9.81  10
120
--------- 1×  ×  0.818= = =

g2 g  Θesin 0= =

ue 1 ve, we Φe 0= = = =( )

det  λ I4  A11
1�  B11 + 0=

A11 = 1 xw· 0 0

0 1 zw·+ 0 0

0 mw· 1 0

0 0 0 1 
 
 
 
 
 
 
  = 1 0 0 0

0 1 0 0

0 1.786 1 0

0 0 0 1 
 
 
 
 
 
 
 

B11 = xu  xw  xq we+  g1  Φecos

zu  zw  zq ue� g2

mu  mw  mq 0

0  0  1� 0 
 
 
 
 
 
  = 0.0890 0.385� 0 0.818

1.400 4.545 0.990� 0

0 76.531 3.571 0
0 0 1� 0 

 
 
 
 
 
 
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Hence the characteristic equation is

,

which has the two pairs of complex conjugate roots

(i)

and (ii) .

From the expressions in Section 5.1, the period of the first (short-period) oscillation is

 in dynamic-normalised units

 s in ordinary units,

and the time to half amplitude is

 in dynamic-normalised units

 s in ordinary units.

Similarly, for the second oscillation (the phugoid), in ordinary units,

 s
and  s.

Alternatively the constants of the characteristic equation can be found from the algebraic forms of Equations
(5.27) to (5.31) as

Since  and , estimates of the roots can be obtained by writing the characteristic equation in
the approximate form of Equation (5.50).

,

.

λ4 9.973 λ3 93.415 λ2 12.158 λ 87.643+ +++ 0=

λ   4.97� 8.21i±=

λ   0.0147� 0.975i±=

T 2π
8.21
---------- 0.765= =

T 0.765 τ× 7.65= =

t1/2
2elog

4.97
------------- 0.139= =

t1/2 0.139 τ× 1.39= =

T 6.44 τ× 64.4= =
t1/2 47.2 τ× 472= =

and

A1 = 1,

B1 = 9.973,

C1 = 93.415,

D1 = 12.158,

E1 = 87.643 ⋅

D1«C1 E1«C1
2

A1λ
2 B1λ C1+ +

 
 
 

λ2 C1D1 B1E1�( )

C1
2

------------------------------------λ
E1
C1
------+ +

 
 
 

0=

λ2 9.973λ 93.415+ +( ) λ2 0.030λ 0.938+ +( ) 0=
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In this case the first quadratic factor gives the roots of the short-period oscillation as

.

so, in ordinary units,

 s
and  s.

From the second quadratic factor the roots of the phugoid are

,

so, in ordinary units,

 s
and  s.

The exact and approximate results are summarised in the following table.

The approximate values are thus very close to the exact values.

Lateral stability

The following set of lateral aero-normalised aerodynamic derivatives may be inferred from the information
given for the subject aircraft in Reference 17,

Mode Exact values Approximate values

(s) (s) (s) (s)

Short-period
oscillation

� 4.97
±

8.21i

7.65 1.39 � 4.99
±

8.28i

7.59 1.39

Phugoid � 0.0147
±

0.975i

64.4 472 � 0.0150
±

0.968i

64.9 462

= � 0.242 = 0.147 = � 0.603

= 0.0829 = � 0.0867 = 0

= � 0.192 = � 0.0261 = 0

λ  4.99 �  8.28i±=

T 0.759 τ× 7.59= =
t1/2 0.139 τ× 1.39= =

λ  0.0150 �  0.968i±=

T 6.49 τ× 64.9= =
t1/2 46.2 τ× 462= =

λ T t1/2 λ T t1/2

Lv Nv Yv

Lr Nr Yr

Lp Np Yp
40



86021ESDU
Engineering Sciences Data Unit

TM
The relative density parameter is

,

and, as before,

 s.

The inertia parameters are

 ,

and ,

.

As before, for level flight,

and .

From the relationships set out in Table C1.1 the dynamic-normalised concise forms of the derivatives are

= � = 316.024,

= � = � 3.251,

= � = 7.529,

= � = � 65.706,

= � = 1.164,

= � = 0.350,

= � = 0.603,

= � = 0,

= � = 0.

µ
me

1
2
---ρeSl0
--------------- 75600

1
2
--- 0.700 180 36×××
----------------------------------------------- 33.3= = =

τ 10.0=

ix
Ix

mel0
2

----------- 2.5 106×

75600 362×
----------------------------- 0.0255= = =

iz
Iz

mel0
2

----------- 7.3 106×

75600 362×
----------------------------- 0.0745= = =

ex  Izx/Ix�  0.47 106×�

2.5 106×
----------------------------- 0.188= = =

ez  Izx/Iz�  0.47 106×�

7.3 106×
----------------------------- 0.0644= = =

g1 g  Θecos 0.818= =

g2 g  Θesin 0= =

lv µLv /ix
lr Lr /ix
lp Lp /ix

nv µNv /iz
nr Nr /iz
np Np /iz

yv Yv
yr Yr /µ

yp Yp /µ
41



86021ESDU
Engineering Sciences Data Unit

TM
Using computerised matrix handling techniques the characteristic equation and its roots can be found for
the lateral motion by substituting the appropriate values of the concise derivatives, gravitational and inertial
terms and datum conditions  into Equation (5.13),

.

From Equations (5.4) and (5.5)

and

and the characteristic equation is

.

The five exact numerical roots of the characteristic equation are

(i) , the trivial solution

(ii) , the rolling subsidence root

(iii) , the spiral motion root

(iv)  the roots of the Dutch roll.

The expressions in Section 5.1 give, in ordinary units,

 s   for the rolling subsidence,

and  s   for the spiral motion,

with  s

and  s   for the Dutch roll.

ue 1 we, 0 Φe, 0= = =( )

det  λ I5  A22
1�  B22 + 0=

A22 = 1 0 0 0 0
0 1 ex 0 0

0 ez 1 0 0

0 0 0 1 0
0 0 0 0 1 

 
 
 
 
 
 
 
  = 1 0 0 0 0

0 1 0.188 0 0
0 0.0644 1 0 0

0 0 0 1 0

0 0 0 0 1 
 
 
 
 
 
 
 
 

B22 = yv yp we� yr ue+ g1  Φecos� g2�

lv lp lr 0 0

nv np nr 0 0

0 1� 0 0 0
0 0 1� 0 0 

 
 
 
 
 
 
 
  = 0.603 0 1 0.818� 0

316.024 7.529 3.251� 0 0

65.706� 0.350 1.164 0 0

0 1� 0 0 0
0 0 1� 0 0 

 
 
 
 
 
 
 
 

λ 0.988 λ4 9.432 λ3 101.288 λ2 879.892 λ 126.170+ +++( ) 0=

λ 0=

λ  8.99�=

λ  0.146�=

λ  0.207� 9.87i±=

t1/2
2elog

8.99
------------- τ× 0.771= =

t1/2
2elog

0.146
------------- τ× 47.5= =

T 2π
9.87
---------- τ× 6.37= =

t1/2
2elog

0.207
------------- τ× 33.5= =
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Alternatively the constants in the characteristic equation may be found from the algebraic forms of
Equations (5.34) to (5.38) as

The two real roots can then be approximated by Equations (5.51) and (5.52), giving

 for the rolling subsidence

and  for the spiral motion.

Dividing  out of the characteristic equation leaves an approximate quadratic factor

,

giving the pair of complex conjugate roots

 suggesting a divergent Dutch roll.

It is however possible to improve on these initial estimates by making trial-and-error substitutions in the
characteristic equation of values near to the initial estimates of the two real roots.  This quickly leads to the
two exact roots

and .

The approximate quadratic factor then becomes

giving the roots

 for the Dutch roll.

The table below summarises the exact and approximate results.  Estimates made using the solution method
of Item No. 83024 (Reference 26), see Section 5.3.2, are included and for the magnitude of  concerned
involve Equations (3.7) and (3.10) of that Item.

and

A2 = 0.988,

B2 = 9.432,

C2 = 101.288,

D2 = 879.892,

E2 = 126.170.

λ  B2/A2�  9.55�= =

λ  E2/D2�  0.143�= =

λ λ 9.55+( ) λ 0.143+( )

0.988 λ2 0.145 λ 101.343+ +( )

λ + 0.0734 10.13i±=

λ  8.99�=
λ  0.146�=

0.988 λ2 0.406 λ 96.282+ +( )

λ  0.205 �  9.87i±=

µ
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The first estimates of the approximate values of the roots of the rolling subsidence and spiral motion give
reasonable estimates of  for these modes, but they are not good enough to allow a satisfactory estimate
of the roots of the Dutch roll.  Their removal from the characteristic equation, together with the trivial root,
leaves a quadratic factor that has a complex conjugate pair of roots with positive real part, implying an
unstable oscillation.  Improved estimates of the real roots lead to good accuracy in all cases, as indeed does
the method of Item No. 83024.

Mode Exact Values Approximate Values Estimates using Item 
No. 83024

(s) (s) (s) (s) (s) (s)

Rolling 
subsidence

� 8.99 � 0.771 � 9.55 1st estimate
� 8.99 final estimate

�
�

0.736
0.771

� 9.01 � 0.769

Spiral 
motion

� 0.146 � 47.5 � 0.143 1st estimate
� 0.146 final estimate

�
�

48.5
47.5

� 0.145 � 47.8

Dutch roll � 0.207
±

9.87i

6.37 33.5 0.0734  
±  1st estimate

10.13i
� 0.205

±  final estimate
9.87i

6.20

6.37 33.8

� 0.197
±

   9.88i

6.36 35.2

λ T t1/2 λ T t1/2 λ T t1/2









t2/1 94.4=( )

t1/2
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APPENDIX A   LONGITUDINAL STABILITY AND CONTROL: CLASSICAL CRITERIA

This Appendix examines the classical concepts of static margin and manoeuvre margin.  It demonstrates
how the �static margin� may be derived from a consideration of only the static moments which arise when
an aircraft is disturbed from a trimmed state in straight and level flight, and the �manoeuvre margin� from
a consideration of the incremental pitching moments that arise in the transition to or from horizontal flight
and circling flight at a constant normal acceleration.

These concepts are related to the constant terms of the approximate characteristic equation of the dynamic
motions discussed in Section 5.3.1 of the main text.  In the past, when in the main only static wind-tunnel
data were readily available and methods of estimating the aerodynamic derivatives generally were crude
or non-existent, these concepts played an important part in aircraft design.  Developments, both theoretical
and experimental, together with the ease with which the roots of the characteristic equation can be evaluated,
have much reduced that importance.

As power-operated controls have become an increasingly common feature of present-day aircraft the
problem of controls-free stability has become less and less important.  Nevertheless there are still aircraft
types for which a simple mechanical link between the cockpit controls and the control surfaces is
appropriate.  The remarks on controls-free stability in this Appendix apply to such aircraft, where a need
to study controls-free stability may arise.

A1. GENERAL DEFINITIONS

A1.1 Controls Fixed and Controls Free

Stability is considered in two distinct conditions.

(a) With the controls set to trim in steady flight and then held fixed throughout the subsequent motion.

(b) With the controls set to trim with zero control hinge moments in steady flight and the controls left
free throughout the subsequent motion.

An aircraft may be stable with controls fixed and unstable with controls free or vice versa.  The control
movements which the pilot has to make to maintain a changed state are related to the controls-fixed
condition, while the control hinge moments required to be overcome influence the controls-free condition.

The difference between controls-fixed and controls-free stability depends on the degree of static
mass-balance of the controls, on the design of their aerodynamic balance, and on the inertial properties of
the control circuits, and is therefore adjustable within certain limits.

A1.2 Static Stability

For a simple initial presentation, static stability can be defined in a �basic� case with engine off, when there
are no effects, such as those due to slipstream, structural flexure, Reynolds number or compressibility, to
cause variations in the pitching moment coefficient with speed, so that at the flight condition .
In this case it can be said that, when the aircraft is flying in a straight glide and is displaced in the pitch
plane, static stability is positive if the static moment (proportional to the angle of attack) tends to restore it
to the initial condition, and negative if the moment increases the disturbance.  To preserve the relationship
between static stability and the dynamic motion in the general case, the definition must also include a change
in speed when the aircraft is displaced from the equilibrium condition.  The following more precise
definition covers all cases.

∂Cm/∂V 0=
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Consider an aircraft for which pitch control is provided by an elevator, with trim tab, fitted to a tailplane.
Suppose the aircraft is trimmed for straight flight at a given speed, angle of attack and engine condition
and is then held at the same engine condition and elevator position but at a slightly higher speed and at the
angle of attack appropriate to trimmed flight at that higher speed.  The aircraft is then statically stable with
controls fixed if the pitching moment tends to restore it to the original angle of attack.  In flight the elevator
position must be changed to maintain trimmed flight at the modified speed, the change being proportional
to the restoring or disturbing moment.  The aircraft is therefore stable with controls fixed if the elevator is
moved downwards to retrim the aircraft at a slightly higher speed.

A similar argument applies with controls free.  In this case the aircraft is statically stable if an upward
change in elevator trim-tab angle is required for straight flight at a speed slightly higher than the trimmed
speed.

A1.3 Stability in Dynamic Motion

The aircraft is said to be stable in dynamic motion, controls-fixed, if, when the controls are fixed, it returns
to its initial trimmed state after a small temporary disturbance.  Similarly, if the controls are left free, and
the aircraft returns to the initial trimmed state, it is said to be stable, controls-free.  The disturbance in speed
and angle of attack may subside gradually, the amplitude being halved in  seconds, or the speed and
incidence may oscillate about the trimmed values.  In both cases the damping is measured by 1/ .

For an aircraft that is unstable in dynamic motion the speed and angle of attack may diverge from the
trimmed values or may oscillate about them with ever-increasing amplitude.  The rate of growth is then
measured by the time  to double the amplitude.

A number of different forms of damping criteria are discussed in Item No. 67038 (Reference 15) of the
Dynamics Sub-series.

Immediately after a disturbance the motion is a combination of a number of modes but, after a short time,
the heavily damped modes die out and the dynamic motion persists in the form of the least stable mode.  If
the aircraft is statically unstable, one of these modes will be divergent.  Thus, a statically unstable aircraft
is also unstable in dynamic motion, but a statically stable aircraft is not necessarily stable in dynamic motion.

A2. BASIC THEORY OF STATIC STABILITY

A2.1 Assumptions

(i) The force, pitching moment and hinge moments coefficients, , ,  and , are
independent of variations in speed and air density.  Slipstream effects and structural flexure are
excluded and the aerodynamic coefficients are not affected through the motion by compressibility
or Reynolds number effects.

(ii) The air density remains constant during the motion.

(iii) The lift coefficient, , and the moment coefficients,  and , are linear functions of angle
of attack and control setting.

A2.2 Neutral Point

The neutral point is the position of the c.g. (centre of gravity) at which the static stability is neutral.  For
this c.g. position the same elevator angle will trim the aircraft at all speeds with controls fixed.  Similarly,

t1/2
t1/2

t2/1

CL CD Cm CB

CL Cm CB
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at the neutral point with controls free, if the elevator trim-tab angle is set to trim with controls free at one
speed, there will be no control hinge moments for trim at any other speed.

The distance of the neutral point behind some aircraft reference point is written as  with controls fixed,
and as  with controls free, where  is some characteristic length.  If the distance of the c.g. from the
reference point is denoted by , the aircraft is statically stable with controls fixed when  and
with controls free when .

A2.3 Static or c.g. Margin

The degree of static stability is measured by the static margin which is equal in magnitude but opposite in
sign to the rate of change of the incremental pitching moment coefficient with incremental , where

= .

In the basic theory the static margin is also equal to the c.g. margin,  or , the distance of
the c.g. ahead of the neutral point.  Thus, with controls fixed, the static margin is

, (A2.1)

where , about the c.g. and  are measured with the elevator and elevator trim-tab fixed.  Similarly,
with controls free, the static margin is

 , (A2.2)

where  and  are measured with the elevator trim-tab fixed and the elevator free.

In flight tests (see Reference 1) the static margin with controls fixed is determined from the elevator position
required to maintain steady flight at each speed.  Thus,

(A2.3)

where here, and in  the following paragraph, the expressions with a bar refer to a trimmed state of flight at
constant , so that  is the elevator angle required for trim and  is measured with  constant.
Similarly, with elevator free

(A2.4)

where  is the elevator trim-tab angle for trim.  Alternatively,  may be kept constant and the hinge
moment coefficient  determined from hinge moment measurements, in which case

. (A2.5)
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A3. MORE GENERAL THEORY OF STATIC STABILITY

A3.1 Assumptions

A more general theory (References 2 and 9) has been developed to include the effects of variations of the
aerodynamic coefficients with speed.  Of the assumptions of the basic theory (Section A2.1) only
assumptions (ii) and (iii) are retained.  It should be noted that because assumption (iii) remains, the effects
of slipstream or wake are not completely covered because linear effects are assumed.

In the general theory the condition  is replaced by , where R is the resultant
of the aerodynamic forces acting on the aircraft (lift, drag and thrust).

In general, the static margin is not equal to the distance of the c.g. ahead of the neutral point and a clear
distinction between static and c.g. margins is essential.  The theory stresses the importance of the static
margin as the measure of static stability, the position of the neutral point being relatively insignificant.

A3.2 Static Margin

In place of Equation (A2.1) the controls-fixed static margin is equated to the differential , where
 and  are functions of  and , so that

 . (A3.1)

The differential  is obtained from the imposed condition relating  and  in steady flight in a
uniform atmosphere,

 (= constant for constant ), (A3.2)

and can be written

. (A3.3)

Equations (A3.1) and (A3.3) are used in References 2 and 9 to show that the constant term,  of the
characteristic stability equation for longitudinal motion, see Section 5.3, has the same sign and is
proportional to .

In place of Equation (A2.3) there is the general result

 . (A3.4)

The static margin at a given  is measured at , i.e. with the elevator in the correct position for
trim at that .  In the estimation of  from flight tests this condition is automatically satisfied.
The slope  is measured at the trimmed condition.
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Similar conditions apply to the measurement of the static margin with controls free,

. (A3.5)

The slope  must be measured at the elevator trim-tab setting for which the hinge moment
coefficient  at the chosen .

It is shown in Section 5.3.1 that for many aircraft in controls-fixed motion a necessary but not sufficient
requirement for stability is .  In controls-free motion there is a similar requirement, .  Both
results follow because the static margin is proportional to, and has the same sign as, the constant term in
the characteristic equation that contains the roots of the equations of motion.

A3.3 Neutral Point and c.g. Margin

The neutral point at  or  is the c.g. position for which the static margin is zero.

The c.g. margin is given by:

 with controls free (A3.6)

or  with controls fixed.

At any particular speed,  (or  is proportional to  (or ) but the factor of proportionality varies
with speed and may become infinite or negative.  Thus it is possible for the c.g. margin to be negative while
the static margin is positive.  In such cases the static margin and not the c.g. margin defines the degree of
static stability.

A4. THEORY OF MANOEUVRABILITY

A completely general criterion for response to elevator control, or manoeuvrability in the longitudinal plane,
can be defined in terms of the ratio of the control movement or hinge moment in a pull-out from a dive to
the centripetal acceleration built up in the pull-out.

This ratio varies with the pilot�s technique and the stage reached in the pull-out.  Accordingly for the purpose
of establishing a definite criterion of manoeuvrability the following approximations and assumptions are
made.

(a) Steady flight in an arc of a circle in the vertical plane at constant speed and constant centripetal
acceleration  can be maintained.  Effects related to variations in speed are therefore absent.

(b) Assumptions (ii) and (iii) of the basic theory (Section A2.1) are retained.

(c) Changes in the gravity component due to change in flight path during the manoeuvre can be
neglected in comparison with .

The difference,  (or ), between the elevator angle (or hinge moment) to maintain the centripetal
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acceleration , (i.e. nW = L � W) and the angle (or moment) to trim in straight flight at the same speed is
proportional to , and hence the following definitions apply:

(1) elevator angle per g = (A4.1)
(2) elevator angle moment per g = .

The manoeuvre points, controls-fixed and controls-free, are the c.g. positions at which  and
, respectively, and are located at distances  and  behind the aircraft reference point.

The manoeuvre margins are equal to the distances of the c.g. ahead of the manoeuvre points.  They are
written as

 with controls fixed (A4.2)

or  with controls free ,

and  and  are proportional to  and  respectively.  In the general theory the factor
of proportionality is a function of speed.

A5. RELATIONSHIP BETWEEN STATIC AND MANOEUVRE MARGINS AND STABILITY OF
DYNAMIC MOTION

A5.1 Basic Theory

Within the simplifying assumptions of the basic theory of Section A2.1 there is a close relationship between
the static and manoeuvre margins, given by

, (A5.1)

where it has been assumed that  is small in relation to .  Moreover, if the pitch damping is entirely due
to the tailplane

, (A5.2)

where F is the ratio of the controls-free to controls-fixed tailplane lift-curve slopes.

The terms  and  are due to the angular velocity in the pull-out.  The pitch damping
derivative  is aero-normalised for datum conditions  and , corresponding to steady values of 
and , and .  The relative density parameter  where the datum mass is .
At low speeds  is small and the static and manoeuvre margins are nearly equal.

Equations (A5.1) and (A5.2) express the fact that the manoeuvre point in the basic case lies aft of the c.g.
position for neutral static stability by an amount such that in pitching motion with the c.g. at the manoeuvre
point the couple due to the static instability is just balanced by the damping couple.

Flight with the c.g. in the region of the manoeuvre point is characterised by a rapid change of normal
acceleration following small, and possibly inadvertent, movements of the elevator.
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A5.2 General Theory

It must be noted that in general both static and manoeuvre margins are functions of speed and vary
independently of each other.  There is no close relationship between them and Equations (A5.1) and (A5.2)
no longer hold, see Reference 9.

A5.3 Stability of Dynamic Motion

For most aircraft the motion following a disturbance in the plane of symmetry consists of two oscillatory
modes, as shown in Section 5.3.1.  Necessary but not sufficient requirements for the stability of those modes
are that the static and manoeuvre margins be positive.

When the static and manoeuvre margins are both large and positive, the motion with controls fixed consists
of

(a) a slowly damped oscillation, commonly known as the phugoid, with a period of the order of 30
seconds.

(b) a well damped pitching oscillation with a period typically of from 2 to 8 seconds, generally referred
to as the short period oscillation.

With controls free there is an additional heavily damped rapid oscillation of the elevator, and the short
period pitching oscillation may under certain conditions become unstable.  Reference 2 gives the following
summary of the types of instability that will occur when the margins become small or negative.

The behaviour with controls free is similar.

 Type of Instability

(a) positive, negative. Slow divergence

(b) negative, negative. Rapid divergence

(c) negative, positive. Very unstable oscillation or rapid divergence

(d) positive, large and positive. Unstable phugoid oscillation when  is large 
and  is small

km ks

km ks

km ks

km ks ks
km
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APPENDIX B   DESCRIPTION OF LATERAL MODES OF MOTION

B1. INTRODUCTION

It has been shown in Section 5.3.2 that the disturbed lateral motion of an aircraft that has been slightly
disturbed from straight and symmetrical flight, with controls fixed, is determined by the four non-trivial
roots of a characteristic lateral stability quintic.  For an aircraft with wings of high aspect ratio and modest
sweep there are normally three modes, a rolling subsidence, a spiral motion and a lateral oscillation known
as Dutch roll.  In what follows an attempt is made to explain in physical terms how each of these modes
develops, its nature, and how the three freedoms of sideslip, roll rate and yaw rate are coupled in the three
modes.  It should be stressed that the argument presents the development of the motion in a sequential
manner whereas in reality it occurs in a simultaneous fashion.

B2. ROLLING SUBSIDENCE

Assume that the aircraft has been given a slight rolling velocity  in the positive sense, the starboard wing
dropping.  This rolling velocity decays very rapidly, aperiodically in unstalled flight (rapid subsidence),
due to the large damping moment from the wing (negative ).  This rolling moment derivative due to
rolling is large in comparison with the other rolling derivatives for aircraft with wings of high aspect ratio
and modest sweep; in such a case a good approximation to the initial behaviour of an aircraft in roll is
obtained by assuming it to be free to roll only.

Due to the rolling velocity there is a yawing moment ( ) and since this is normally negative, the aircraft
will tend to yaw to port, that is, the starboard wing will move forward.  Due to the angle of bank consequent
on the rolling moment, the aircraft starts sideslipping to starboard, and the sideslip in turn will induce a
yawing moment.  For an aircraft with positive weathercock stability, this yawing moment will tend to turn
the aircraft into the direction towards which it is sideslipping, that is, to starboard.  It is seen that the yawing
moments due to rolling and sideslipping oppose each other, the direction of yawing depending on which
of these has the predominant effect.

Both the sideslipping and the yawing velocities will normally cause a rolling moment.  That due to sideslip
normally acts in the sense tending to reduce the angle of bank, i.e.  is negative, thus being additional to
the damping moment from the wing.  The direction of the yawing velocity may vary and the resulting rolling
moment due to yawing may therefore either tend to increase or decrease the original rolling velocity.

B3. SPIRAL MOTION

Consider the aircraft to experience a slight positive yawing velocity, nose to starboard.  The yawing moment
due to yawing of a normal aircraft is always damping (  negative), and by itself would cause the yawing
velocity to decay; but due to the increase in relative velocity over the port wing and decrease over the
starboard wing, there is a rolling moment associated with yawing  which causes the aircraft to roll in
a positive sense, so that the starboard wing drops and a sideslip to starboard follows.  The effect of these
latter motions must now be considered in more detail.

Let it be assumed first that the aircraft has no rolling moment due to sideslip .  If the aircraft has
positive weathercock stability the sideslip velocity creates a yawing moment tending to turn the aircraft
into the direction to which it is sideslipping (  positive), that is, to starboard.  This, as shown already,
induces a positive rolling moment which will cause the aircraft to roll further to starboard, thereby increasing
in turn the sideslip velocity.  In the absence of a restoring moment the aircraft will tend to fall into a tightening
turn; this type of instability is known as �spiral� instability.

p
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Nr
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The moment required to stop the sideslip is one which will eliminate the angle of bank.  The source of
rolling moment that can accomplish this in the present case is that due to sideslip, that is, a negative  is
required.  The effect of this negative  must overbalance the positive rolling moment due to the yawing
velocity  which the aircraft has acquired.

The same requirement applies regardless of whether the motion is, in the first instance, due to a yawing or
rolling disturbance or more directly due to an angle of bank.

B4. LATERAL OSCILLATION (DUTCH ROLL)

Assume again an initial yawing moment to starboard, leading to a clockwise rolling moment and
consequently to a sideslip to starboard.  As already indicated it is assumed that the rolling moment due to
sideslip outweighs that due to yawing, so an anticlockwise roll will develop, and because of inertia the
angle of bank will change sign, and this in turn will ultimately reverse the sign of the sideslip angle.   The
same sequence of events will now occur in the opposite direction, and an oscillation will result.

For the class of aircraft to which the above description specifically applies, the ratio of the rolling motion
to the yawing motion depends on the values of particular aerodynamic derivatives and the inertia
characteristics.  The ratio is always small to modest for the type of aircraft referred to in the opening
paragraph of this Appendix.

To determine the amplitude ratios and the phase relationships of the motions involved in the Dutch roll it
is necessary to insert the solution for the Dutch roll in the equations of motion.  It is convenient to use the
complex form of the solution for this purpose (see Reference 7).  Such calculations show that, in addition
to the result already referred to for the roll to yaw ratio, the ratio of the sideslip angle  to the yaw angle

 is only slightly removed from unity and the two angles are nearly 180º out of phase.  This implies that
during the Dutch roll motion the aircraft�s centre of gravity deviates but little from the rectilinear.

The foregoing argument applies whatever the initial displacements of the aircraft may have been, since the
rolling, yawing and sideslipping motion are all coupled.

B5. VARIATION OF DUTCH ROLL CHARACTERISTICS

As indicated in the preceding Section the character of the Dutch roll motion can vary widely from aircraft
to aircraft.  The changes in the amplitude ratios, phase differences, damping and frequency are the result
of the wide range of aircraft geometry and speed range (and hence aerodynamic derivatives) on the one
hand, and mass and mass distribution on the other.

Decrease of wing aspect ratio, increase of sweep and greater concentration of the mass within the
comparatively longer fuselage result in a marked increase in the roll to yaw ratio.  In general, therefore,
this ratio may vary from small, yielding a mainly yawing oscillation with a slight amount of rolling motion,
to large, yielding an oscillation in which the roll to yaw ratio is so great that the Dutch roll approaches a
pure rolling oscillation (see References 7, 10 and 11).

As already mentioned the damping and frequency of the Dutch roll are affected to a similar extent.  These
changes place different emphasis on the various aerodynamic derivatives.

In the same way some changes will occur in the other two lateral modes, the roll subsidence and the spiral
motion, but to a lesser extent, although under some extreme flight conditions these two aperiodic modes
may combine to give a long period lateral oscillation.

Lv
Lv

Lr( )

β
ψ
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APPENDIX C   CONVERSION FACTORS

C1. TABLES

TABLE C1.1  CONVERSION FACTORS FOR AERODYNAMIC DERIVATIVES

Dimensional form of 
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NOTES:

(i) In some systems the differentiation with respect to u is carried out without the assumption that the
coefficients are based on a constant value of V.  In such cases (for small  and ignoring Mach
variations)

,

and .

(ii) Elevator, aileron and rudder angles may be denoted by ,  and  instead of ,  and ,
respectively.  Also, sometimes  represents the sum of port and starboard aileron angles and is
then equal to .

(iii) In an aerodynamic body-axis system, alternatives to ,  etc. are ,  etc.

TABLE C1.2  COMPARISON OF AMERICAN AND AERO-NORMALISED DERIVATIVES

Aero-normalised 
derivative

(1)

American
equivalent

(2)

Factor to obtain
(2) from (1)

Aero-normalised 
derivative

(1)

American
equivalent

(2)

Factor to obtain
(2) from (1)

1 1

1

1

1 1

1

1

1

2( )2

2( )2
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TABLE C1.3  
CONVERSION FACTORS FOR DYNAMIC-NORMALISED CONCISE DERIVATIVES

Dimensional form of 
concise derivative
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Multiplying factor to obtain 
dynamic-normalised concise 

derivative
(2)

Dynamic-normalised 
concise derivative
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TABLE C1.4  
CONVERSION FACTORS FOR OBTAINING DYNAMIC-NORMALISED QUANTITIES

Quantity in 
dimensional units

(1)

Multiplying factor to obtain 
dynamic-normalised quantity
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(iii)  THIRD ROTATION: 
THROUGH  ABOUT ( )

 system

body-axis system

Φ 0x2 0x≡≡≡≡

Ψ Θ Φ
58

FIGURE 1  SEQUENCE OF ROTATIONS DEFINING ATTITUDE ANGL

(i) FIRST ROTATION: 
THROUGH  ABOUT ( )

(ii)  SECOND ROTATION: 
THROUGH  ABOUT ( )

  Initial position of axis system, coincident with Earth-axes
  Position of axis system after first rotation 
  Position of axis system after second rotation 

       Final position of axis system , coincident with 

Ψ 0z0 0z1≡≡≡≡ Θ 0y1 0y2≡≡≡≡
0x0y0z0
0x1y1z1 0z1 0z0≡( )
0x2y2z2 0y2 0y1≡( )
0xyz 0x 0x2≡( )
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