87001

WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL MACH NUMBERS

1. NOTATION AND UNITS
A aspect ratiop/t
b wing span
CiiT local lift coefficient due to effective twist
Cmo pitching moment coefficient at zero total wing lift,
M, /2pV2S7C
(Cmo)1 contribution toC,, due thCmO)oo , modified for planform
effects
(Cmo)2 contribution toC 0 due teffedive twist
c local chord
c, wing root (centre-line) chord
C wing tip chord
c standard (geometric) mean chof(lt)jcdr]
T aerodynamic mean chorfl(li(czlc‘:)dr]
F empirical correction factor applied (@mOi)ooth
f empirical correction factor in Equatid8.9) for (CmOi)1
g function of taper ratio in Equatidi3.24)
h function of aspect ratio and sweepback in Equaon5)
k empirical factor in Equatio(B8.21)
M free-stream Mach number
My pitching moment at zero total wing lift, positive nose up
S wing planform areapc
\ free-stream velocity
X streamwise co-ordinate, positive aft
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Ya

N

Subscripts
expt

[

pred

r

t

th

streamwise location of local quartchordpoint referred to
leading edge of wing root chord

streamwise location of Zireferred to leding edge of wing
root chord, see Sket¢hl

camber ordinate
angle of attack at zero lift

compressibility parametefl — Mz)l/2

local geometric twist (angle of local chord relative to root
chord, positive leading edge up)

local camber-dependent twist in Equat{Bnl7)
effective wing twistd + . , see Equati¢8.18)
value ofd, attip

equivalent linear tip twist, see Equati(8128)

spanwise distance from root as fraction of semi-span

spanwise location ot , see Ske&h
cos (n1t/8)

sweepback of ¥-chord line
sweepback of mid-chord line

taper ratiog; /c,

free-stream air density

denotes experimental value

denotes incompressible flow

denotes predicted value

denotes value at wing root

denotes value at wing tip

denotes approximate theoretical value

denotesero total wing lift
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00 denotes wing sectional value in two-dimensional flow
n denotes value at spanwise locatipn
N denotes value at, nE 1, 2, 3), see sectidh3.2

A bar (-) over a symbol denotes an average value.

INTRODUCTION

This Item provides a simple semi-empirical method for estimating wing pitching monedficient at

zero lift at subcritical Mach numbers. Thetimad, presented in Secti@consists of segrate estim@ons

of the low-speed contributions due to the ovesétict of camber via séonal pitching moments aero

lift and due to the combined effects of geometric and camber-dependent twist, modified for the effect of
Mach number in the subcritical range. The contribution due to the overall effects of camber via sectional
pitching moment atero lift (Section3.2) is based on an approximate theoretical estimate for the wing
sectional profile, corrected by means of empirical factors for the approximations involved in the theoretical
estimate and for planform effects. The contribution due to the combined effects of geometric and
camber-dependent twist (Secti8r8) is based on strip theory using the theoretical spanwise loading due
to twist. Two forms of the method are given, a simple one for application in those cases in which the twist
distribution is linear and a more general one for those cases in which the twist distribution is highly
non-linear. Also given is a simpler alternative method, which isfaetesy for most cases of non-linear
twist, in which the method for linear twist is employed in conjunction with an equivalent linear twist. The
effect of Mach number is given in Sectign.

The applicability and accuracy of the mettayd discussed in Sgan 4 and an illustration of a typical use
of the Item is given in worked examples in SecioAppendix A provides details of a computer program,
available on diskette in the Aerodynamics Saite/\blume.
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3. WING ZERO-LIFT PITCHING MOMENT

3.1 General

Hatched areo is sponwise loading at zero net wing lift

Sketch 3.1 Camlered and wisted wing at zero lift

From Sketcl8.1it can be seen that in the most general case of a cambered and twisted swept wing the wing
pitching moment coefficient atero lift can be considered t@msist of two contributions. The first
contribution, (C,, ;) , arises from the integration across the span of local (sectional) V&lygs, , of
C\ o+ Modified for planform effects. The second contributit®@,,,), , adds the effect of twist through
another spanwise integration involvil | roc/c , the load distribution at zero total wing lift. The load
distribution at zero total wing lift arises from a combination of geometric twist and what can be termed
“camber-dependent” twist for those cases in which the camber line, and hence the local zero-lift angle of
attack, varies across the span. The zero-lift pitching moment coefficient can therefore be written as

CmO = (Cm0)1+ (Cm0)2 (3.1)
where,
2
]‘(C:mo)ooC
(Cmo)y = F(A Al/z)_[oﬁdn (3.2)
A X =X, co
and (Crmo), = Ioz—%:LLTOEDnd”' (3.3)
C

The practical evaluation of Equatiof3.2) and (3.3) for low speeds is given in SectioB2 and 3.3
respectively. The effect of Mach number is considered in Se8tibn
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3.2

Evaluation of(CmOi)1

From Equatior(3.2) the contribution C)4 is given by

1(Cm0i)ooC2
(CmOi)]_ = f(A /\1/2)].07 (3.4)
= f(A Ay,)(Cmoi)e (3.5)

where (Cioi)., iNcorporates any effects wfing taper and is a spanwise average of the local
two-dimensional values
(C

F(C (3.6)

mOi)oo = mOi)ooth'
Here,(CmOi)ooth is the value obtained bging Item No. 72024 (Derivati@), and the empirical correction
factorF, in Figurel, is a function of C,5))tn Obtained from comparisong6f,y;) wth with wind-tunnel
test data for a large number of aerofoils in Derivatibna and4 to 12. If the camber line is unchanged

across the wing span theéﬁ:mOi)mth is constant, giving

(Cmoi)eo = F(Crngi)orp (3.7)

i.e. independent of wing taper. If, however, the camber line varies across the span a good approximation to

(Cioi), for straight tapered wings is given by

2 I F(Crgi) o] (08 0.2)2 + [F(C

(Cmoi)es = ————
2(1+ A + A0

moeoth] 0 5(0-2 * 0.8’\)2§3.8)

which is based on the integrand of Equat{8) at the carefully chosen spanwise locations 0.2
and 0.8.

The empirical factorf(A, A\;,) , correcting for planform effects in Equafi®d) was found from an
analysis of wind-tunnel data on wings (Derivatiddgo 30) to be given by

2A

oA + 10N

f(A Ay,) (3.9)

v

Equation(3.4)therefore becomes, in the most general case,

3Acos/\1/2
(0.2+ 0.8\)2} [(3.10)

(o), = (2A+1)(1+A +)\2){[F(CmOi)ooth]o.z(o'8+ 0'2‘)2+[F(Cm0i)ooth]0.8

which, within a good approximation, reduces to

A
= 2—cos/\

(Croi); = 577 C0SMF(C (3.11)

mOi)ooth

when the camber line is unchanged across the span.
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3.3

Evaluation of(CmOi)2
From Equatior(3.3) the contribution( CmOi)2 is given by
1( X — Xl/ ) (o]
- 4 =0
(Cmoi)z - '[0 - %:LLTOCDQ dn. (3.12)

From Sketct8.1 for a straight tapered wing

(X =xy,) b = A = c
_—14 = —(n -n)tanA,, = E(r] —-n)=—_tanA,, (3.13)
c 2C ¢
G 2
where £ - _S(L+A)7 (3.14)
z 4(1+ A +A2)
= _ 1+ 2hg
and N = 3EToaD (3.15)
Equation(3.12)therefore becomes,
(C..). = MAtan/\ 1(r:] - n)%D €0 gy (3.16)

wheren is given by Equatiai8.15). In Equation(3.16) (CiLT0i €/C) is the local loading at zero total
wing lift due to the combinedffects of local geometric twis§y , and local camber-depertaésit, 6C.
The local geometric twist is defined as the angle of the local chord relative to the roa-{icentchord,
and the local camber-dependent twist is defined as tlezatice between local and root section values of
Ag;,i.e

6. = (0gjp), = (Ogi)y,- (3.17)
Thus a combined, or effective, local twiég , can be given as

e Cc

0, = 0+9d. = 6+(0(0ir)00—(0(0m)00 (3.18)

which can be interpreted as the angle of the local zero-lift line relative to that of the root section. An estimate
of (Gom)m can be obtained from Item No. 87031 (Derivatiéin

At the tip, Equatior(3.18)becomes

Oy = O * (dgip),, — (Ugi),, - (3.19)
When the camber line is unchanged across the ¢pgp)_ = (0g;) , and EqBat®meduces to
0., = O (3.20)

et te

* Note that in Item No. 83040 (Referent® 1| is given the symbok
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3.3.1 Linear twist

Analysis of approximate solutions to Equati@16) in Derivation34, for wings with a linear spanwise
distribution of twist, has shown that the integral in that equation can be approximated by

1
= ED - = A
J (7 =M eiiroigh 0 = K350 (3.21)
for 2<A<10 andOsAtan/\l/456 where

k
falling to k

0.019 for0<A<0.5
0.017 forA =1 .

When Equation$3.15)and(3.21) are subtituted into it, Equatiof3.16) becomes

(Cmoi), _ k(@+MN@+2)) A2
5, 8 (L+A+A2) (A+10)

tanA,, (3.22)

with the planform restrictions and valueskads set out below Equati@®.21)

Equation(3.22)can be written as

(Croi)
6”" 2 = g(\) h(A AtanA,,) (3.23)

et

kK(1+A)(1+ 2))
where A) = = 3.24
(M) 8 (1+A+A2 (3:29)
A

and h(A AtanA,) = - Ax 10Atan/\%. (3.25)

Equationg3.24)and(3.25) are presented graphically in FiguZzand3.

Provided that the spanwise distribution of effective twist is linear Equéi@2) would be expected to
provide satisfactory estimates. For effective twist distributions that are highly non-linefferandi
approach is required.

3.3.2 Non-linear twist

For wings with a general distribution of effective twist, Derivatidrgives

_ 3. (1+n)2 cn g
(Croi), = TB(1+ A+ ;\z)Ata”’\%[O'l%B:LLTOi <, * 0.175:L, | 1o <Ch,
(3.26)

* 0-106%:LLT0%%13J
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3.4

where(C, | 1o;c/C),, isthe spanwise loading at zero total lift due to given valiefteofive wist, o, , at
n=n,= cos(nTr/r@) with n, = 0.924, n, = 0.707 andng = 0.383 . The spanwise loading can be
obtained from the approximate method of Item No. 83040 (Refekefcelowever, the use of Equation
(3.26), even with the simple method of Item No. 83040 is somewhat time consuming and it has been found
that the use of an equivalent linear twat dependent on valdigs ofn = &2 and 0.8 in conjunction
with Equation(3.22)gives satisfactory agreement with values obtained using the full procedure of Equation
(3.26) Thus, even for some cases of extreme discontinuous twist distribution, such as those used in
Examples 8.1 and 8.3 of Item No. 83040, it is sufficient to take

K(L+A)(1+2\) A?

(Cmoids = =g (14 rsrz) A+100e M (3:27)
where the equivalent linear twist is given by
8oy = (3¢ 08— e 02)/0.6 (3.28)
and, from Equatioii3.18),
8¢ 02 = 2+ (Agir),, = (Agj 0.2), (3.29)
O 08 = Og* (Agir), = (%g; 08),,- (3:30)

Effect of Mach Number

From simple consigrations of the effect of compressibility ¢

, the contributi()ﬁT':,nO)1 and
(Cmo)zare given by

mOi)

(Cmo)y = 22[3AA—+-|-11( moi)y (3.31)
and
(Cmo), = [Q++1100( - (3.32)

inwhich = (1- Mz)l/2 and Cpi)1 and Cpyi)o are obtained respectively from Equati¢sLO)or (3.11)
and(3.22) (3.26)or (3.27)

APPLICABILITY AND ACCURACY

The method given in this Item for estimating wing pitching momeeffiogent at zero lift at subcritical

Mach numbers is applicable to straight tapered wings with camber and twist provided that #féelcibze

twist is not excessive),<10 degrees, say) and provided that the flow over the wing is attached and wholly
subsonic at theero-lift condition. The method has been applied successfully to wings with cranked or
curved edges by means of the “equivalent wing planform” concept detailed in Item No. 76003
(Referencelb).
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The method can cope (via Derivati®nwith any shape of camber line which can also vary across the span.

In principle, the method is capable of dealing with any form of spanwise twist distribution but is simplest
to use for wings with an approximately linear twist distribution. For most applications of non-linear twist
the use of an equivalent linear twist in conjunction with the simple linear twist method is found to be
satisfactory.

Itis recommended that use of the method be restricted in general to planformsin tha mbhg2s A< 10
andOsAtan/\14s6 . For untwisted wings the upper limit on aspect ratio can be exceeded and moreover
the method can be applied to wings with forward sweep.

The method has been coarpdwith wind-tunnel test data for a wide range of aerofoils (Derivatigi2s

and4 to 12) and wings both without geometric twist (Derivatidasto 30) and with twist (Derivation4?,

18, 21, 27, 31to 33and35 to 44). The comparisons for low-speed flow are shown in Sket¢éHe® 4.3

for aerofoils, unswept wings and swept wings, respectively. The test data correlate to withinl&bout per
cent for those cases inside the previously stated limitations on planform and twist. However, for
‘Cmoi‘ <0.02 correlation to within about0.005 can be expected. The effects of fixing boundary-layer
transition and of varying the Reynolds number (provided that it is greater than aBdais2@ ort ) can

be ignored within these error bands.

The effect of compredsility for bothaerofals and wings using Equatiof3.1), (3.31)and(3.32)has been
compared with wind-tunnel test data from Derivatid8s20, 21, 22, 26, 35, 43 and44. For subcritical
Mach numbers the accuracy of the hust is in general unchanged from that at low speeds.

Most of the test data were restricted to straight-tapered swept-back wings; exceptionally, Derl@ations
and 22 related to swept-forward wings without twist and Derivati@@sand 30 related to a wing with
cranked trailing edges.
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Conventional NACA gerofoils
Symbol Family NACA mean line
X NACA 4- digit 64
+ NACA 5-digit 230
o NACA 63 a=|
D NACA 64 a=1i
a NACA 65 a=1
v NACA 66 a= |
[ NACA 63 =03
A NACA 65 a=0:5,0:6,0-8
v NACA 66 6=0-6
o NACA 63A 6=0-8(mod)
o NACA 64A a=0-8 (mod)
< Modern aerofoils
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Sketch 4.1 Correlation of method with test data for aerofoils

10
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O Without twist
® Wwith twist

Prime (/) denotes wing with NACA 4-digit section
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Sketch 4.2 Correlation of method with test data for unswept Wing(s/\%: 0)
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A Note :
v — 46 (i) Open symbols represent wings with no twist
. : - :: (ii) Filled symbols represent wings with twist
. 22 1023 (-3:'565 8t< -8:-5)
] o) 28 t040 (iii) Primed (‘) symbols denote wings with NACA
a a 45 t0 46 4 - digit sections
> &l (iv) —> denotes improvement using test dato
for (Croi)eo
-0-10
bo\f
N4
X
-0-08 / ,//
o\o
/ )
// ,/
-0-06 / //
(Cmoi)expt /
A B /’/
_0.04 /
w] /
A '/
/'/
-0-02
L
Y/
V4
0-04 0:-02 ’ -0-02 -0-04 -0-06 -0 -0-10
° b/ (Cmoi) pred
0-02
7
/ 7
/ 0-04

Sketch 4.3 Correlation of method with test data for swept WingA1/4¢ 0

12
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45. ESDU Wing angle of attack faero lift atsubcritical Mach numbers. Item No.

87031. ESDU International plc, London, 1987.
See also Derivationk7, 18, 21 and27.
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EXAMPLES
Example 1

The pitching moment coefficient at zero lift and a Mach number of 0.8isresl for the wing shown in
Sketch6.1 The planform parameters for the equivalent wing, shown dottedi arer, /\1/ =25°
Ny, =213, andA = 0.3 . The wing has a fixed section with the camber line ordinates in61'§lsh£own
in Sketch6.2 The wing has a spanwise distribution of twist, shown in Sk&th

ofx
— ~
3

' /
S e
25" /

o] -1 -4

S (degrees)
Sketch 6.1 Wing Planform
Sketch 6.2 Camber line Sketch 6.3 Twist distribution
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TABLE 6.1 Camber line ordinates

x/c zlc x/c zlc
0 0 0.5 0.0047
0.025 0.0028 0.6 0.0082
0.050 0.0037 0.7 0.0104
0.1 0.0045 0.8 0.0105
0.2 0.0038 0.9 0.0079
0.3 0.0022 0.95 0.0050
0.4 0.0020 1.0 0

Use of Addendum A of Item No. 72024 (Derivatigngives, for the camber line ordinates in Tablg

(Crngi) gy, = —0-0589.

From Figurel, with this valueF = 0.87.

Equation(3.11)therefore gives, foA = 7 andA,, = 21.3°

2A
mOi)l 2A + 1008/\1/2

- %xo 9317% 0.87% (—0.0589

(C F (CmOi)ooth
= -0.0446.

Equation(3.31)gives theeffect of Mach number as

(Cro)y = ap75Croi)y

which, forM = 0.8 {.e. = 0.6), A= 7 and C,;); = — 0.0446, gives

_ 15
(Crg)y = 5 5% (-0.0449
= 1.596x (-0.0446 = —0.0712.

Equation(3.27)gives, forA = 0.3 A=7, Al/4 = 25° anck =0.019,

(Con), = - K(1+N)(1+2)\) A2
moi 8 (1+A+A2) (A+10)

_0.019 1.3x16 49
8 1.39 17

= — 0.00478x &'y,

(tan/\1/4) Ot

x0.4663% O

17
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6.2

From Sketct6.3and Equatiorf3.28)the equivalent linear twisd',; , is given as
Oyt = [-4-(-1)]/0.6=-5".
Therefore

(Cgi), = (-0.00478 x (-5)
= 0.0239.

Equation(3.32)gives theeffect of Mach number as

_ A+10
(Cm0)2 - BA+ 1O(Cm0i)2

which, for3 = 0.6 ,A =7 and C,;), = 0.0239 gives

_ 17
mo) = T4 5%0.0239

=1.197x0.0239= 0.0286

(C

Therefore, from Equatio(B.1)

CmO = (Cm0)1+ (Cmo)z
= -0.0712+0.0286
= —-0.0426.

It can be seen that the nose-down pitch due to camber has been considerably alleviated by the applicatiol
of twist to reduce the local angle of attack of the outboard sectionsacethpith the root seion (i.e.
“wash-out”), the primary uses of which on swept-back wings are to prevent premature tip stalling and to
produce a spanwise loading nearer to the elliptical ideal.

Itis worth noting thaC,,;; =-0.0446 +0.0239 =-0.0207, which compare€yjth —0.0426, showing
that in this example compressibility effects cause the zero-lift pitching moment to double its magnitude.

EXAMPLE 2

Itis required to offset further the inherent nose-down pitching moment at zero lift for the wing of Example 1
by maintaining the camber line at the wing tip but reducing the camber ordinates linearly to zero at the
wing root.

Because the camber line is now varying (linearly) across the span, Eq@atidns appropriate. In that

equation values oh‘:(CmOi)ooth at = 0.2 and 0.8 are required.

Because the camber ordinates are proportional to

[Conoi)tnly = M(Crnoi) gy

since Coi U z/c O r](zC/c)1 .

18
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Therefore [(C

mOi)OOth]O,S = 0.8%x(-0.0589 = -0.0471

and, from Figurel, the corresponding = 0.89

Similarly, [(C = -0.118 andF = 0.96 .

mOi)ooth]olz

Therefore, Equatio(B8.10) gives, withA = 7 ,A,, = 21.3 and = 0.3 ,

3Acos/\1/2

(C > E[F(Cmm)mth]o_z(o.w 0.21)2

mOi)]_
A+ D ((1+A+A)O

0.2+ 0.8)2
O

+[ I:(CmOi )ooth] 0.8

21x 0.9317 , 2
e . - . . + . _ . )
15 x 139 \ 0-96(~0.0115(0.86) + 0.8%(~0.0473(0.44)}

—0.0155

which, with the compressibility factor of 1.597 obtained in Example 1, gives

(C = 1.597x (- 0.0155 = —0.0248.

m0)1

The change in camber distribution hagéfere reduced the magude of Cp,)), by 65 per cent. However,
due to a reduction in the effective twist, this will be partially offset by a decreaSg,i)»(, as follows.

Use of Item No. 87031 gives, for the camber line ordinates in Bahle

(0git),, = —1.68 degrees, and given thed ;) =0 , therefore
(0(Oi 08)oo = 0.8x(-1.68 = -1.344degrees
and (0(Oi 0 )oo = 0.2x(-1.68 = -0.336degrees.

Therefore, Equationg.29)and(3.30)give

B, 0.2 = 00.2% (Aoir), = (A ),
-1+0-(-0.339
-0.664degrees
and 667 08> Oy gt (Goir)m—(doi’ 0. )oo
= -4+0-(-1.349
= —2.656degrees

19
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Thus from Equatiorf3.28)

Ot = (B¢, 0.8~ ¢, 0.2)/0.6
= [-2.656—(—0.664]/0.6
= -1.9920.6 = —3.32degrees

Therefore, with(C = —0.00478x 6'et from Example 1,

mOi)z
(Cmoi)2 = -0.00478%(-3.32
= 0.0159,

i.e. a reduction of about 33 per cent which, with the compressibility factor of 1.197 obtained in Example 1,

gives(Cmo)2 =0.0190.

Thus, from Equatio3.1)
CmO = (Cm0)1+ (Cmo)z

= -0.0248+0.0190
= —0.0058.

It can be seen that the particular combination of spanwise variation of camber and geometric twist has
resulted in a wing with a very small pitching moment at zero lift.

20
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APPENDIX A

PROGRAM FOR CALCULATING WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

Every reasonable effort has been made to ensure that the program performs the intended calculation:
satisfactorily. However, in common with all providers of software, ESDU International cannot guarantee
the suitability or fitness of the program for any particular purpose and no liability for any loss occasioned
by any person as a direct imdirect result of use of the program, whether arising from negligence or
otherwise, can be accepted. In no event shall ESDU International or any individuals associated with the
development of the program be liable for any damage, including loss of profit or consequential loss, arising
out of or in connection with the program.

Al INTRODUCTION

A computer program, called ESDUpac A8701, for the method of the Item has been written by the Computer
Products Group of ESDU International.

The program has been written in “STRICT” Microsoft FORTRAN 77 for use on machines using PC/MS
DOS. A diskette containing files for the source code and some worked examples, together with an
information file is provided in the Aerodynamics Software Volume. Guidance on copying, compilation and
running the program is given in the “Introduction to ESDUpacs” in that volume. However, if any difficulty

is experienced in using the program please contact ESDU International and we will do all we can to assist
in overcoming the problem.

SectionA2 describes the data required for the input file and Seét®mgives a number of examples of
input and output using the program, including those in Seétion
A2. INPUT

The following is a complete list of the input file data required. However, not all the data are required in
every case, as explained later, for the various combinations of camber and twist.

Variable Notation Units Definition

Name in Item

A A - Aspect ratio.

SB25 N, degree Sweepback of ¥-chord line.

SB50 Ay, degree Sweepback of mid-chord line.

LAMBDA A - Taper ratio.

M M - Free-stream Mach number.

ICAM - - Pointer to indicate camber line constant or vandnmss

span (see NOTE 1).

ITWIST - - Pointer to indicate whether or not the wing has geometric
twist (see NOTE 2).
CINF (Coi) - Aerofoil theoretical pitching moment coefficient at zero-lift
mOi/ oth

in low-speed flow (from Item No. 72024).
ALF (%) degree Zero-lift angle for wing root section in low-speed f(tnom
° Item No. 87031).

23
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Definition

Zero-lift angle for section aj = 0.2

(from Item No. 87031).

Zero-lift angle for sectiongat= 0.8

(from Item No. 87031).

Variable Notation Units
Name in ltem
ALF20 degree
(GOi,O.Z)oo 9
ALF80 degree
(GOi,O.B)oo 9
C20 [(CmOi)ooth]o,z -
C80 [(CmOi)ooth]o,B -
D20 3 5 degree
D80 308 degree
NOTE:

(1)
ICAM = 0.

(@)

72024).

72024).

Geometric twist gt= 0.2
Geometric twist gt= 0.8

Required input for various combinations of camber and twist:-

ICAM=1 [ICAM=1 [ICAM=0 [ICAM=0
ITWIST=0 |ITWIST=1 [ITWIST=0 [ITWIST=1
A A A A
SB25 SB25 SB25 SB25
SB50 SB50 SB50 SB50
LAMBDA  |LAMBDA  LAMBDA  LAMBDA
M M M M
1 1 0 0
0 1 0 1
CINF CINF ALF ALF
D20 ALF20 ALF20
D80 ALF80 ALF80
C20 C20
C80 C80
D20
D80

24

in low-speed flow

in low-speed flow

Theoretical pitching moment coefficient at zero-lift in
low-speed flow for section a = 0.2 (from Item No.

Theoretical pitching moment coefficient at zero-lift in
low-speed flow for section a = 0.8 (from Item No.

For camber line constant across the span, ICAM = 1. For camber line varying across the span,

For spanwise geometric twist, ITWIST = 1. For no geometric twist, ITWIST = 0.
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A3. EXAMPLES OF INPUT AND OUTPUT

SectionsA3.1 andA3.2 concern Examples 1 and 2 given in Sec@arf the Item. Additional examples are
given in Sections3.3toA3.5to illustrate, firstly, the other two possible combinations of camber and twist
for the wing planform and Mach number used in Examples 1 and 2, and secondly a case of forward sweep.

A3.1 Example 1
This is an example with ICAM = 1, ITWIST = 1.
Input

;
25

21.3
0.3

0.8

1

1
-0.0589
-1

-4

Output

ESDU International plc
Program A8701

ESDUpac Number: A8701

ESDUpac Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

Data Item Number: 87001

Data Item Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

ESDUpac Version: 1.1 JULY 1991 -- Data Item Amendment B

(See Data Item for full input/output specification and interpretation)

ASPECT RATIO = 7.000
SWEEPBACK OF 1/4-CHORD LINE = 25.00
SWEEPBACK OF MID-CHORD LINE = 21.30
TAPER RATIO = .3000
FREE-STREAM MACH NUMBER = .8000

RESULTS FOR CAMBER LINE CONSTANT ACROSS SPAN
WITH SPANWISE GEOMETRIC TWIST

(Cmoi)infTH = - 5890E-01
(Cmoi)1 = -.4472E-01
(Cmo)1 = -.7137E-01
DELTAO.2 =-1.000
DELTAO.8 = -4.000
DELTA'et = -5.000
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A3.2

(Cmoi)2 = .2388E-01
(Cmo)2 = .2859E-01
Cmo = -4278E-01
Example 2

This is an example with ICAM = 0, ITWIST = 1.
Input

;
25

21.3
0.3

0.8

0

1

0
-0.336
-1.344
-0.0118
-0.0471
-1

-4

Output

ESDU International plc
Program A8701

ESDUpac Number: A8701

ESDUpac Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

Data Item Number: 87001

Data Item Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

ESDUpac Version: 1.1 JULY 1991 -- Data Item Amendment B

(See Data Item for full input/output specification and interpretation)

ASPECT RATIO = 7.000
SWEEPBACK OF 1/4-CHORD LINE = 25.00
SWEEPBACK OF MID-CHORD LINE = 21.30
TAPER RATIO = .3000
FREE-STREAM MACH NUMBER = .8000

RESULTS FOR CAMBER LINE VARYING ACROSS SPAN
WITH SPANWISE GEOMETRIC TWIST

(ALPHAOIn)inf = .0000
(ALPHAO0i,0.2)inf =-.3360
(Cmoi)infTH]0.2 = -.1180E-01
(ALPHAO0i,0.8)inf =-1.344
[(Cmoi)infTH]0.8 = -.4710E-01
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A3.3

(Cmoi)1 = -.1548E-01
(Cmo)1 = -.2471E-01
DELTAe0.2 = -.6640
DELTAe0.8 =-2.656
DELTA'et =-3.320
(Cmoi)2 = .1586E-01
(Cmo)2 = .1899E-01
Cmo = - .5724E-02
Example 3

This is an example with ICAM = 1, ITWIST = 0.
Input

7
25

213
0.3

0.8

1

0
-0.0589

Output

ESDU International plc
Program A8701

ESDUpac Number: A8701

ESDUpac Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

Data Item Number: 87001

Data Item Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

ESDUpac Version: 1.1 JULY 1991 -- Data Item Amendment B

(See Data Item for full input/output specification and interpretation)

ASPECT RATIO = 7.000
SWEEPBACK OF 1/4-CHORD LINE = 25.00
SWEEPBACK OF MID-CHORD LINE = 21.30
TAPER RATIO = .3000
FREE-STREAM MACH NUMBER = .8000

RESULTS FOR CAMBER LINE CONSTANT ACROSS SPAN
WITH NO SPANWISE GEOMETRIC TWIST

(Cmoi)infTH = - 5890E-01
(Cmoi)1 = -.4472E-01
(Cmo)1 = -.7137E-01
(Cmoi)2 = .0000

Ccmo = -.7137E-01
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A3.4 Example 4
This is an example with ICAM = 0, ITWIST =0.
Input

7
25

213
0.3

0.8

0

0

0
-0.336
-1.344
-0.0118
-0.0471

Output

ESDU International plc
Program A8701

ESDUpac Number: A8701

ESDUpac Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

Data Item Number: 87001

Data Item Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

ESDUpac Version: 1.1 JULY 1991 -- Data Item Amendment B

(See Data Item for full input/output specification and interpretation)

ASPECT RATIO = 7.000
SWEEPBACK OF 1/4-CHORD LINE = 25.00
SWEEPBACK OF MID-CHORD LINE = 21.30
TAPER RATIO = .3000
FREE-STREAM MACH NUMBER = .8000

RESULTS FOR CAMBER LINE VARYING ACROSS SPAN
WITH NO SPANWISE GEOMETRIC TWIST

(ALPHAOIn)inf = .0000
(ALPHAO0i,0.2)inf =-.3360
(Cmoi)infTH]0.2 = -.1180E-01
(ALPHAO0i,0.8)inf =-1.344
[(Cmoi)infTH]0.8 = -.4710E-01
(Cmoi)1 = -.1548E-01
(Cmo)1 = -.2471E-01
DELTAe0.2 = .3360
DELTAe0.8 = 1.344
DELTA'et = 1.680
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A3.5

(Cmoi)2 = -.8025E-02
(Cmo)2 = -.9607E-02
Cmo = -.3432E-01
Example 5

This is an example for a wing with forward sweep and ICAM =0, ITWIST = 1.
Input

12
-30
-30

0.8

-0.386
-1.544
-0.0118
-0.0471
-1

-4

Output

ESDU International plc
Program A8701

ESDUpac Number: A8701

ESDUpac Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

Data Item Number: 87001

Data Item Title: WING PITCHING MOMENT AT ZERO LIFT AT SUBCRITICAL
MACH NUMBERS

ESDUpac Version: 1.1 JULY 1991 -- Data Item Amendment B

(See Data Item for full input/output specification and interpretation)

WARNING! ASPECT RATIO IS NOT IN THE RANGE 2 TO 10
SEE SECTION 4 OF DATA ITEM NO.87001

WARNING! FOR FORWARD SWEPT WINGS SEE SECTION 4 OF DATA ITEM NO.87001

ASPECT RATIO = 12.00
SWEEPBACK OF 1/4-CHORD LINE =-30.00
SWEEPBACK OF MID-CHORD LINE =-30.00
TAPER RATIO = 1.000
FREE-STREAM MACH NUMBER = .8000

RESULTS FOR CAMBER LINE VARYING ACROSS SPAN
WITH SPANWISE GEOMETRIC TWIST
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(ALPHAOoIr)inf
(ALPHAO0i,0.2)inf
(Cmoi)infTH]0.2
(ALPHAO0i,0.8)inf
[(Cmoi)infTH]0.8

(Cmoi)l
(Cmo)1

DELTAe0.2
DELTAeO0.8
DELTA'et

(Cmoi)2
(Cmo)2

Cmo

= .0000
=-.3860
=-.1180E-01
=-1.544
=-4710E-01

=-.2214E-01
=-.3594E-01

=-.6140
=-2.456
=-3.070

=-.4931E-01
=-.6307E-01

=-.9900E-01
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THE PREPARATION OF THIS DATA ITEM

The work on this particular Iltem, which supersedes Iltem No. Aero W.08.03.01, was monitored and guided
by the Aerodynamics Committee which first met in 1942 and now has the following membership:

Chairman
Mr H.C. Garner — Independent

Vice-Chairman

Mr P.K. Jones — British Aerospace plc, Civil Aiadt Div., Woodford
Members

Mr E.A. Boyd — Cranfield Institute of Technology

Mr K. Burgin — Southampton University

Mr A. Condaminas — Aérospatiale, Toulouse, France

Dr T.J. Cummings — Short Brothers plc

Mr W.S. Chen — Northrop Corporation, Hawthorne, Calif., USA

Mr J.R.J. Dovey — Independent

Dr J.W. Flower — Bristol University

Mr A. Hipp — British Aerospace plc, Army Weapons Div., Stevenage
Mr R. Jordan — Aircraft Researdssociation

Mr J. Kloos — Saab-Scania, Linképing, Sweden

Mr J.R.C. Pedersen — Independent

Mr I.H. Rettie — Boeing Aerospce Company, Seattle, Wash., USA

Mr R. Sanderson — Messerschmitt-Bolkow-Blohm GmbH, Hamburg, W. Germany
Mr A.E. Sewell — McDonnell Douglas, Long Beach, Calif., USA

Mr M.R. Smith — British Aerospace plc, Military Aircraft Div., Weybridge
Mr F.W. Stanhope — Rolls-Royce plc, Derby.

* Corresponding Member

The technical work involved in the assessment of the available information and the construction and
subsequent development of the Data Item was undertaken by

Mr P. D. Chappell — Head of the Aircraft Aerodynamics Group.
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