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METHOD FOR THE RAPID ESTIMATION OF SPANWISE LOADING OF WINGS
WITH CAMBER AND TWIST IN SUBSONIC ATTACHED FLOW

1. NOTATION AND UNITS
Sl
a, lift-curve slope degreé
A aspect ratid= 2s/c)
A effective aspect ratio, for wings with curved leading edges, see
Equation(4.4) or (4.5)
B; coefficients used in estimanh of zero-lift angle for cambered degree
wing section, see Equatid8.1)
c local chord m
1
c geometric mean chorg, c dn m
0
c, root chord m
c*r effective root chord for wings with curved or cranked trailing m
edges, see Equation
CL local lift coefficient
CiiT local lift coefficient due taving twist
CLt lift coefficient due to wing twist
(CLT)int Value ofC_1 obtained by integration of local loading, see
Equation(5.8)
— . - e =1
CLta lift coefficient due to unit twist of type A degree
— . - e =1
CLTt lift coefficient due to unit twist of type B degree
CL overall lift coefficient
F(n, n) .
G(n) B spanwise load functions, see Equatfdrs)
H(n) DO
Ka effective twist parameter for twist of type A, see EquatmRg)
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effective twist parameter for twist of type B, see Equatof)

Mach number

wing semi-span

m

chordwise co-ordinate of thih station measured from leading m

edge, see Sketchl

distance of point on trailing edge measured in free-stream
direction from root leading edge

camber ordinate at, , see Equat(8rR)

lower-surface ordinate a measured from chord line, see

Sketchl.1

upper-surface ordinate a measured from chord line, see

Sketchl.1
wing incidence measured from reference plane
wing incidence measured from reference plane

incremental local twist angle for cambered wing section
=—d,)
0

effective local twist angle, see Sectior2

local value of geometric twist

local value of total twis{= a5 +0a)

datum value ob(T , see Sketche8 and5.6

zero-lift angle of incidence fawing section, see Equati@8.1)
compressibility parametef]l — Mz)l/2

wing twist angle relative to datum value, see Secdion

root twist angle relative to datum Va|L£BTO , see SkBt6h

tip twist angle relative to datum valuey, , see Skétéh

spanwise distance from root asgraction of semi-span

1
spanwise centre of pressure positiporrm dn

m

m
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Subscripts
Al
A2
B1

B2

spanwise positions of intersection of twist segments, see
Sketch5.7

value ofn for wing with curved leading edge

value ofn for planform having required chord distribution and
span, but with unswept trailing edge

1
taper paramete"0 gr] dn

taper ratio, tip chord¢,

leading-edge sweep anglerpt= 0 degree
guarter-chord sweemgle atn = 0 degree

mid-chord sweep angle gt= 0 degree
trailing-edge sweep angle gt= 0 degree

effective trailing-edge sweep angle for wing having cranked

trailing edge, see Equatida.2) degree
. . o C..c
spanwise loading due to incidences—
C.c

denotes twist of typd , with kink
denotes twist of typd , with kink &,
denotes twist of typ® , with kink

denote twist of typd8  with kink ajg

degree

degree
degree

degree

degree
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2.1

2.2

3.1

Chord
line

o ;

Sketch 1.1

The chord line is defined as the straight line connecting the leading and trailing-edge points. For a section
with a finite base thickness, the trailing-edge point is taken as the mid-thickness point. The leading-edge
point is defined as that unique point at which a circle centred at the trailing-edge point is tangential to the
section.

INTRODUCTION AND SCOPE OF ITEM
Introduction

A method is presented for the rapid estimation of the theoretical spanwise loading of wings with camber
and twist in wholly subsonic flowIt utilises the basic method of Derivatidwhich gives spanwise loading

due to incidence for untwisted and uncambered wings and extends the proceduradodakeof camber

and twist. Theeffect of camber is treated bgmsidering it as imparting an equivalentiemental twist to

the wing. A simple artifice is used to represent the twist distribution by a combination of straight line
distributions, from which values effective localtwist are derived for use in the method.

A step-by-step description of the calculation procedure to be followed for estimating the spanwise loading
is given in Sectiorb.3.

Scope of Item

The method is applicable to a wide range of wing planforms in unseparated flow at subcritical Mach
numbers. The simplifications adopted in accounting for camber and twist can involve some minor
reservations on the choice of planform (see Sed@)joand there are minor restrictions on the choice of
leading-edge and trailing-edge shapes, see Settion

BASIS OF METHOD

Uncambered and Untwisted Wings

A rapid method for estimating the theoretical spanwise loading due to incidence was developed in

Derivation 2, where a full account can be found. In subsonic compressible flow the method embodies a
modified planform in which all spanwise dimensions are reduced by the factor

A computer program, ESDUpac A9510, described in Item No. 95010 (Refefgriseavailable that calculates the spanwise loading
directly from steady lifting-surface theory using the Multhopp-Richardson solution.
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3.2

3.21

3.2.2

Derivation?2 is applicable to wings for whicBRA<8 , and the charts contained in it are reproduced in this
Iltem. An additional chart has been generated using data obtained from Deri@adiomé to extend the
range of applicability t§3A = 12 . Details of the procedare given in Seon 4.

Cambered and Twisted Wings

The extension of Derivatiohto cater for wings with camber and twist is based on factoring the spanwise
leading due to constant unit incidence byetfactive locakwist angle,ag . The angle s related to the
local total twista that incorporates the effects of both camber and geometric twist. SB@idresd

3.2.2 describe the calculation of, . The calculation gf is described in SBction

Representation of camber as a local twist

To cater for wings with camber, the spanwise distribution of the local zero-lift am(gle, , must first be
obtained. Values ofi, are estimated by the method of Derivatiém approximate expression for the
zero-lift angle of a cambered wing $ea is given by

i =14
Z .
Ci
ag, = -2 z BiT (3.1)

i=1
whereB; is obtained from Tabl8.1andz; is the camber ordinate given by

z, (%) + (%)
Zi = f (3.2)
as shown in Sketch.1

The approximate value of zero-lift angle given by Equatih)is then interpreted as an incremental local
twist angle,ac =-0a;, .

TABLE 3.1
[ 1 2 3 4 5 6 7
(x/c), 0 0.025 0.05 0.1 0.2 0.3 0.4
B; 1.45 211 1.56 241 2.94 2.88 3.13
[ 8 9 10 11 12 13 14
(x/c), 0.5 0.6 0.7 0.8 0.9 0.95 1.00
B; 3.67 4.69 6.72 11.75 21.72 99.85 -164/88

Local total twist due to camber and geometric twist

The local total twist anglen(T , is obtained by adding the geometric local tx/\é’st, , and the incremental
local twist, ac, resulting from wing camber. Thus

ap = Og+0g; (3.3)
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for cambered, untwisted Wings(,G =0 amﬂT = 0c ; for uncambered, twisted WtiI@;, 0 and
GT = GG .
4, ESTIMATION OF THEORETICAL SPANWISE LOADING DUE TO INCIDENCE

4.1 Scope of Method

The method used is that of Derivati#h extended t@A = 12 . Neithef, nar is required as input.
Charts used in the rapid estimation of the theoretical spanwise loading due to incidence are presented a
Figuresl to 8.

The spanwise centre of pressure positign, , is derived from Figuie$ in terms of aspect ratio,
mid-chord sweep, Mach number and a taper parameter. This taper parameter caters for arbitrary leading
edges, but excludes wings with inverse tafier 1) . The method has an upper [BAit-012 , With
mid-chord sweep angles such tifat Atan/A\,, <6 . The lower limi Af is 1.5, except that for wings
with straight leading and trailing edges aitan/\,, <2 itis knownmhat converges rapidly to the value
corresponding to elliptic loadin(n = 0.4244 - 0 . This may sometimes be used as an extra point
on the plot required in step (iii) of Section 4.2.

The method should not be applied to planforms having cranked leading or trailing edges with discontinuities
greater than about 40°.

4.2 Wings with Straight or Cranked Leading and Trailing Edges

The procedure of Derivatiohis as follows.

® Evaluate the taper parameter
le
= [ =nd 4.1
: .[O ¢ (4.1)
ﬁ for a straight tapered wing.

(i) Knowing K andAtan/\l/2 , obtaim from Figurdsto5 for BA = 1.5, 3 5 &and 12, respectively.

(i)  Plot n againstBA to obtaim for the required valuehof

. 1x+(n)
(iv) EvaluatetanA*1 = I T
0

5 (12n - 6)dn (4.2)

12
= tanAy - X(l — 2K) for a straight leading edge.

Note thatA*1 = A\, for wings with straight trailing edges.

A computer program listing for the method of Derivatiis contained in an Addendum to that Derivation.
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4.3

v)

(vi)

ObtainF(n,n) ,G(n) andd(n) from Figures 7 and8, for selected values of  corresponding
to step (i) in Sectio®.2
Evaluate the local spanwise loading due to incidence from the equation

C
o = ol = F(n,n) + (AtanA)G(n) + (BA-4)(1 + 3.5[3_1tan/\*1)H(r]) (4.3)

where the last term is omitted A <4

Swept Wings with Curved Leading Edges

Curved leading edges are defined here as having continuous slope, apart from the root, and streamwis

wing tips of zero chord. The procedures used depend on the form of the trailing edge@niyg aplicable
when the sweep anglés, and are approximately equal.

(@)
(b)

()

(d)

Complete step (i) of Section 4.2.
Evaluate the empirical parame#&r

For straight trailing edges

c -1
x _ r 0
A" = -1.2A+ 8'8D S + tan/\, — tanAOD (4.4)
For curved or cranked trailing edges
. -1
. [RC, . 0
A" = —12A + 8.8 + tan/\; — tan/Ay[J (4.5)
Oos 0
1
where ¢ = I xr(n)(4 — 6n)dn (4.6)
0
andtan/\*1 is obtained from Equati@h?2).
Step (i) of Sectiord.2 now requires the evaluation of
e _ A
n = (M-na)7% *Na (4.7)

wheren, is obtained from Figurdsto 5 with the trueBA and&k from Equatidd.1) but with
Atan/\l/2 =6 1- X).

Steps (iii) to (vi) of Sectiod.2follow with n replaced byn*
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5.

ESTIMATION OF THEORETICAL SPANWISE LOADING FOR CAMBERED AND TWISTED

WINGS

The wing incidenceq , and the spanwise variatioupf
plane (see Sketchésland5.2).

e
e,
positive Reference plane B
. Wing Wing
T root tip
negative

Sketch 5.1 View in the longitudinal direction

Reference plane @ at root

a " :

¢4
Free le.— Tip

Sketch 5.2 "View in the lateral direction

must be defined relative to a common reference

Itis implicit that when the reference plane lies in the stream direction the wirggi®ancidencga = 0)

For the purpose of this Item;  is defined in terms of a datum valye,
datum value (see Sketéh3).

, and thedtwist, , relative to this

For purposes of clarity in Sket¢h2, the root and tip chords are shown as having a common trailing edge (t.e.) location lying in the

reference plane. In practice this will not usually be the case.
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51

Reference plane

~
Wing
root

Sketch 5.3 Definition ofa; in terms ofu;, and (Note that in this sketcti;, is negative)

The lift distribution ata = 0 then consists of contributions duei{g and . The contribution due to
a1 Is simply an incidence loading and may be determined as such. Thus it remains to determine the

spanwise loading due to the spanwise twist distributdon, . The procedure adopted here is described in
Sectionss.1t05.3.

Representation of Wist Distribution by Linear Segments

As stated in Sectio.2, the method requires a distribution of effective tvvd%, , to be derived from the
distribution of twist,a; .To do thisy; must first be represented by a series of contiguous linear segments.
Two basic types of linear twist distributiame used, as defined in Sketcle$and5.5in which s, and

dg respectively are the values &f  at the wing root and wing tip.

|
f
l
l
I
I
I
|
|

o)
o
rO

LM Mk

(i) 8, positive (ii) 8, negative

Sketch 5.4 Twist of Type A
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o
S - -
]

K
(i) 8 positive (i) 8 negative

Sketch 5.5 Twist of Type B

In principle a given twist distribution can be represented by a number of linear segments, but it is likely
that most distributions encountered in practice can be adequately represented by up to four linear segment
and only such cases are considered here. A two-segment representation, for example, could be used for th
twist distribution illustrated in Sketéh6. The extension of the method for an arbitrary number of segments

is considered in AppendiX.

In Sketch5.6, a1 is the value oftx; af =ny, derived from the two-segment representation, and is
negative as drawn. For thisillustration a4 are positive. The parardgtedg n, , ar,and then
define the twist distribution across the span (see Example 1 in S8ctjon

ar

o True distribution
AN
NS Representation by two segments
N ~ /
‘/ e
N
N .
» M

5, AN
Reference plane

Sketch 5.6

Many practical twist distributions have marked changes in twist near the wing root and tip. For such cases
four linear segments can often be used to represent the twsbipwaa in Sketch.7.

10



83040

True distribution

Saz P Representation by four segments

|
|
|
|
L n

M plane

Sketch 5.7

In Sketchb.7, 6A1 andé’)Bl are positive as drawn, whi&;{l 552 emﬂ) (the common valuqr of

where the segments join gi ) are negative as drawn. The paradgiers dg,and are obtained by
extrapolating the appropriate segments to the ¢got 0) an(h tipl) respectively. The parameters
6A1’ 6A2 ; 631 7632 Na -Ng Nk andeO then define the twist distribution across the span (see Example

3 in SectiorB.3).

It is immediately clear that the full line in Sketsl¥ comprises two twist distributions of type A and two
of type B as shown in Sket¢h8.

T

o
o —

o] 1-0 0 I t+-0
. ) L 1 1 n
Ma K
Sketch 5.8
Evaluation of Effective Local Twist
To determine the incremental spanwise Ioad'ﬁgl,_T(c/é) , dumTto , an effective IocalotEvist, TS

defined such that

11
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(@]

CLLT% = 0a,0, (5.1

where the spanwise load distribution due to incideace, |, is determined from Seatidrihe lift-curve
slope,a, , is determined from Refereriedn setting up a procedure for the rapid determinatioa of ,
the method of Derivatiod has been used to calculate valuesCpf +(c/C) for a wide range of wing
planforms having twist distributions of types A and B. The results have been collapsed in &ffettioé

twist parameter&, andKg by substituting into Equatiof®.1)

O = 07 +90,K, +05Kg. (5.2)
To a very good approximation (see Sectithe parameteds, andKg depend only oA ang, and
they are given numerically in Tablés1l to 9.5. Their use for two- and four-segment linear twist,
distributions is described in step (vi) of SectioB Their use for an arbitrary number of segments is outlined
in AppendixA.

5.3 Procedure for Esimating Spanwise Loading for Wings with Camber and Twist

® Select from those in Tablés1to 9.5a number of spanwise locationy, , at which the spanwise
loading is to be determined.

(i) Obtain the theoretical spanwise loading due to incideace, , for the required planform and Mach
number, as detailed in Sectidn

(i) Use Referencé to derive(dC, /da’)/A which is a function A A\ anktan/\l/2 , and hence
dC,/da’. For wings with cranked leading or trailing edges, or with curved leading edges,
References will be required to determine an equivalent planform for use in conjunction with
Reference.

(iv) Calculate the equivalent local twist,~ , due to camber from the method in S8didmvhich
must be applied for each of the spanwise locations chosen in step (i). Derive values of total twist
angle,O(T , by the addition ojc to the local geometric tV\dt%,

(V) Representi; by linear segmentslastrated in Sectior. 1.

The remaining steps must be evaluated for each spanwise location chosen in step (i).

(vi) Evaluate the effective localist angle as follows.

@) For two linear segments, as shown in Skétéh

ap = O+ 3,K, + 05K, (5.3)
whereK, andKg are obtained from Tablés1to 9.5as functions oA and, . In using Tables
9.1to9.5linear interpolation is satisfactory for valuesfph s intermediate to those given,

except for low values off

(b) For four linear segments, as shown in Skétah,

* The values ofu-l- used in Equatiorisd) and 6.4) must be those from the linear representation. The use of the true values in calculating
ag, while having certain attractions, would be inconsistent with the valu€g pf developed in step (vii).

12
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(vii)

(b)

(viii)

(ix)

ap = O+ 3x1Kpy +3ay Kpp +351Kpy + 85,5Kp; (5.4)
where, using liear interpoltion if satisfactory,Ky; andKpy, are values oK, obtained from
Tables9.1to 9.5 as functions oBA and, respectively, ang ; similahyy andKpg, are
values ofKg obtained from Table$.1 to 9.5 as functions ofA and), anfA  angs
respectively.

Derive the incremental lift coefficient due to twist.

@) For two linear segments
C_:LT = SAC_:LTA + SBC_:LTB + 0192y (5.5)

whereC 1o andC g are obtained from Tab®s to 9.5 as functions oA and,  using
linear interpolation where necessary. It may be noted @giy Grg are the total lift
coefficients per degree for twists of type A and type B respectively in the special case where
aqo = O (see Sketch.6).

For four linear segments

CLT = 85 CLTAL + 8p,CLTA2 + 8, CLTBL *+ 8,CLTB2 + U703y (5.6)

whereC 1a1 sCita2 -CLTey andC_tgp are also obtained from TaBldsto 9.5in a manner
similar to that used to obtak, , Kao, Kg; andKg, in step (vi).

In both Equationg5.5) and (5.6), a; = (dC,/da')Tv/180 is the lift-curve slope per degree,
dC,/da’ having been determined in step (iii).

Calculate the spanwise loading due to twist as follows
C 1= = 5.7
LTS = 0a,0¢. (5.7)

whereo is given by Equatidd.3) anda is given by EquatiorfS.3) and(5.4).
Calculate the spanwise loading for a wing with twist.

@) For a given incidence

C

%. (5.8)

CLL

ollo

= oay(a+ag) = ga; 0+ Cp g

13
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The total lift coefficient is given by

_ A ¢y
CL = IOCLLE n

which, within the accuracy of the method given here, is identically equal to
C_:L = alo( + E:LT- (5.9)

The assumption in the method of this Item is tRat in Equabod) is also given to a
satisfactory accuracy by Equatidb.5)or (5.6). In practice it is prudent to check the adequacy of
the assumption by comparing the value @f given by Equdgbdp) or (5.6) with that,
(C_:LT)im, given by an integration of the spanwise loading due to tuest,

_ 1
(CLDint = IOCLLTc/Edr]. (5.10)

If the two values are significantly different, by more than the likely error in the integration
procedure, 0.0001, say, then the value((B[T)im should be used in Eq(fafpmstead of

C_t. for consistency with the spanwise load distribution. In such cases, however, the results
should be treated with some caution since tffiferdinces between the values/(nf/4 and for

the wing and the datum values of 25° and 0.4 could be significant, see $ection

(b) For a given lift coefficient the incidence is given by
a = (C_:L - E:LT)/a1 degrees. (5.12)
Therefore, from Equatio(b.8)

C

= (5.12)

C — -
CLL% = O'(CL - CLT) + CLLT

whereC 1 is given by Equatiof®.5) or (5.6) and C__tc/c is given by Equatiof®.7).

As with (a), for a given incidence, it is prudent to check the compatibility of the valDgof with
the value Of(CLT)int obtained via Equati@®10) As before, if the two values are significantly
different, by more than tHiely error in the integration procedure, 0.0001, say, then the value of
(CLT)int should by substituted f&, 1  in Equatiti12) This will at least ensure that the ensuing
total spanwise load distribution will be compatible with the requested val@g of . As with (a),
the results should be applied with caution for such cases.

14
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6.

7.1

7.2

ACCURACY

The accuracy of that part of the method providing the spanwise loading due to incidence @aestion
illustrated in Sectio® of Derivation2 in which results using the rapid method are compared with results
from lifting-surface theory and with experimental data.

The accuracy of that part of the med providing the spanwise loading due to camber and twist (Section

5) is comparable with that for the spanwise loading due to incidence. The effective twist parafpeters (
andKg) in Tables9.1t0 9.5 have been derived f@#A  values ranging from 1.5 to 12, but they correspond

to fixed valuesA = 0.4 and\l/4 = 25° . However, calculationskgf andKg for other wing planforms

have shown that sweep and taper have an effect on these parameteonddiryeitnportance to that of

BA. No significant deterioration in the acagy of the mthod should occur for the range of sweep and
taper parameters covered in this Item. However, some caution is advised if the sweep pdxamAtl%r, ,
exceeds about 4 in combination with taper ratios much different from 0.4.

The adequacy of the method of this Item in estimating the spanwise loading due to camber and twist for
any given case will obviously depend on the adequacy of the linear representation chosen to approximate
the total twist distributior{a) . For a wide range of practical twist distributions the two or four segment
representations in Sectiéril will be satisfactory. For those twist distributions which are not so satisfactorily
represented the method of Appendixshould be used.

DERIVATION AND REFERENCES

Derivation

The Derivation lists selected sources that have assisted in the preparation of this Item.

1. PANKHURST, R.C. A method for the rapid evaluation of Glauert’'s expression for the angle
of zero lift and the moment at zero lift. ARC R & M 1914, 1944,

2. ESDU Method for the rapid estimation of theoretical spanwise loading due to a
change of incidence. T.D. Memo 6403, ESDU International Ltd,
London, March 1964. Computer program Addendum, August 1983.

3. GARNER, H.C. Unpublished work at RAE (Farnborough), 1977.
4, CAIRNS, I.C.D. FORTRAN program of the Multhopp-Richardson method for estimating
CAME, N.J. spanwise loadings. Unpublished. British  Aerospace plc,

Weybridge-Bristol Division, January 1980.

References

The References list selected sources of information supplementary to that given in this ltem.

5. ESDU Lift-curve slope and aerodynamic centre position of wings in inviscid
subsonic flow. Item No. 70011, Engineering Sciences Data Unit,
London, 1970.

6. ESDU Geometrical properties of cranked and straight tapered wing planforms.
Iltem No. 76003, Engineering Sciences Data Unit, London, 1976.
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7. ESDU Computer program for estimation of spanwise loading of wings with
camber and twist in subsonic attached flow. ESDU International, Item
No. 95010, 1995. ESDUpac A9510.

8. EXAMPLES
8.1 Example 1
ForM =0 anda = 2° and 10°, it is required to obtain the spanwise loading of, and the lift coefficient on,

a straight tapered wing with=8,A = 0.4 and/\l/4 = 25° , without camber and with the twist distribution
defined in Sketcl8.1

2
|._
Qg
05 1-0
i VI K
_|_
Sketch 8.1

The steps in the calculation follow the procedure of Seéign
® Select a number of spanwise locations for which spanwise loadiegs be produced.
Usen =0 to 0.9in steps of 0.4, = 0.95 and 0.98.

(i) Obtain the theoretical spanwise loading due to incidence, as detailed in Skction

Evaluate K = 1+—2)\ forA = 04 .
3(1+A)
Kk = 2198 _ 4400,
3x14

DeriveAtan/\l/2 andAtan/\1 .

From the planform geometry,

= AtanA 0L —Ag = 3.7305- 0.4286= 3.302

Atan/\; Ve~ 04 + \O

Yo

_ L =Ag -
and  AtanA, = AtanA,, - 35 = 3.7305- 1.2857= 2.445.

16
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Deriven .

SinceM = 0, BA = 8 and, from Figurd, n = 0.4374.

Obtain the function&(n,n) G(n) ,and(n) from Figu&s ands.

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9% 0.98

F(n,n) | 1.208 | 1.205| 1.194| 1.179 1.145 1.10p 1.041 0.954 0.825 0.518 01450 g.290
G(n) —0.0148 -0.0060 0.0006 0.0048 0.0067 0.0065 0.0043 0.0009 -0.0031 —0.0060 -0.0059 0.0044

H(n) 0.0030| 0.0026/| 0.0013 -0.0004 -0.0022 -0.0p34 -0.p036 -—-0.0023 00006 Q.0040 0.0047 |0.0038

Calculate the spanwise loading due to incidence.

o = F(,7) + (AtanA)G(n) + (BA—4)(1+ 3.3 tanA] YH(n).

For this Example, this reduces to
0 = F(n,Nn) +2.4455(n) +8.27H(n)

because’\’i = A\, for a straight tapered wing.

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98
o [1.197 | 1.212| 1.206| 1.183 1.143 1.090 1.022 0.937 0.822 0.636 0j474 (.311

(i) From Referencé, derive(dC, /da’')/A .

= 0.563, givi OI6L—450 di
Ada’ = U. , giving da’ = 4, per radian.

(iv) The wing is uncambered; thug. = 0 amd: = og

17
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(V) Replace the twist distributiomy , by two linear segments as shown below.

TypeA: 5, = 3°, Nk = 0.5. TypeB: 05 = 1°, N = 0.5.

(vi) For each spanwise station, evaluate the effective local twist angle for a aao siegment case
using Equatior{5.3).

o +6 K +E>BKB,

where o, = A%l a D+ drg for0<ns<ny
M — Nk
and a; = BBl——D+ apo forng <n <

18
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ObtainK 5, andKg at the required spanwise positions from Té&blefor A = 8, usingn, = 0.5 .
The calculations fon  are summarised below.

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095 0.98
o 2.0 1.4 0.8 0.2 -04 -10 08 -06 -04 -02 -01 -0.04
Ky | -0.34| -0.18 -0.08 0.0z 011 021 0.15 012 009 0j08 Q.07 0.07

O0,Kn| —1.02| -0.54 -0.24 0.06 033 0638 045 036 O0R7 024 Q021 021
D

D

Kg | 0.02 | 0.02| 0.02| 0.02 0.05 0.0 -0.05 -0.13 -020 -0.27 -p.29 -0.31
OgKg| 0.02 | 0.02| 0.02] 0.02] 0.05 0.0 -0.05 -0.13 -020 -0.27 -p.29 -0.31
O 1.00 | 0.88| 0.58, 0.28 -0.0p -0.28 -040 -0,37 -0.33 -0.23 -0.18 -+0.14

(vii)  Derive the incremental lift coefficient due twist for two linear segments, using Equat{arb)
and Tabled.4obtainC 1o andC, 1g -

C.t = 6ACLTA + 6BCLTB + GTOal

dC. 1t
where a, = ——

T
= 450x — = 0.0785 per degree.
1 da' 180 180 P J

Thus Cit = (3.0x 0.0254 + (1.0 x 0.0112 — (1.0 x 0.0789 = 0.0089.

(viii)  Calculate the spanwise loading due to twist using Equd&on.

c
CLLT% = oa;0¢.

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 O.EJS 0.98

CLLTg 0.094| 0.084 0.055 0.026 —-0.0p2 -0.024 -0.032 -0j027 -0.021 -p.011 -+0.007 -0.003
C

It will be found that the value o@‘CLT)im obtained by integrating the spanwise loading due to
twist, see Equatio(b.10), is in satisfactory agreement with the valug Gf 1) from step (vii), as
would be expected for a wing with the datum vaIue;Q\{}Ac Jand , see Séction

(ix) Calculate the spanwise loading for a wing with twist using Equato®), for a = 2° and
o =10°.

(@]

CLLT% = oaa+Cp

ollo

The total lift cefficient isgiven by Equatior{5.9)

C_:L = alo( + C_:LT-

19
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ga,o | 0.188| 0.1990 0.189 0.186 0.179 0.171 0.160 0.147 0.129 0{100 0Q.074 p.49

2 | 0.166 C|_|_T: 0.094 0.084 0.055 0.026 -0.002 -0.024 -0)032 -0.027 -p.021 +0.011 -0.007 |-0.003

CLLZ | 0.282| 0274 0.244 0.212 0.177 0.147 0.128 0.]120 0108 0,089 Q.067 0.046

0a,a | 0.940| 0.951] 0.947 0.929 0.897 0.856 0.802 0.736 0.p45 0{499 Q.372 (0.244

Cc
10 | 0.794 C|_|_T: 0.094 0.084 0.085 0.026 -0.002 -0.p24 -0/032 -0.027 -0.021 +0.011 [-0.007 |-0.003

Cc
C|_|_: 1.034| 1.03§ 1.002 0955 0.895 0.832 0.7/0 0.709 0.624 0{488 (.365 0(.241

8.2 Example 2

It is required to calculate the spanwise loading of the wing defined in S&ctidut at a given value of
lift coefficient, C| = 0.3. Find also the corresponding incidence.

Steps (i) to (viii) are as for Example 1.

(ix) The incidence is calculated using Equat{fril) and the values o€ 1 army  from step (vii)
of Example 1.

a = (éL —é|_T)/<’:l1
= (0.3- 0.00890.0785
= 3.71degrees
and the spanwise loading for a wing with twist at a given valug of 0.3 then follows from

Equation(5.12)
Cc - = c
CLLE = o(CL-Cr7) + CLLTE

whereo ancELLTg are obtained from steps (ii) and (viii) of Example 1.

20



n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98
o 1.197| 1.212| 1.206] 1.183% 1.143 1.090 1.022 0.987 0.§22 0.636 0474  (0.311
O(CL —CLT) 0.348 | 0.353| 0.351 0.344 0.332 0.31)7 0.298 0.2)73 0.239 0.186 0138  (.091
C
CLLTE 0.094| 0.084| 0.055 0.02¢ -0.002 -0.024 -0.032 -0.p27 -0j021 -Q.011 —0.007 +10.003
C
CLLTE 0.442| 0.437| 0.406 0.37( 0.331 0.293 0.266 0.246 0.218 0.174 0131  (.088

Since the wing planform and twist distribution are the same as in Example 1, the spanwise loading

due to twist is compatible with the value®f
loading is therefore also compatible with the required valug of 0.3

8.3 Example 3

, see step (viii) of Example 1. Erelbspanwise

It is required to obtain the spanwise loading for the wing planform used in Example 1 but with the
geometric twist distribution defined in Sket8l?, and atC; = 0.3 as in Example 2.

Sketch 8.2

Steps (i) to (iv) are the same as for Example 1.

(V) Replace the twist distributiory

, by four linear segments as shown below.

This divides into two twist distributions of typ& and two of typeB as in Sketchb.8 with
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Qg = —1°, such that

dpy =3.00,8,,=-1.00,n,=01,n, =05,
dgy = 1.0°, 8, = -0.5°, andng = 0.9 .

It will be noted that the twist distributions denotedAdyandB1 and the value ofi, are the same
as those for Example 1.

(vi) For each spanwise station, evaluate the effective local twist angle using Eq&atjon

ap = O+ 0x1Kpq +3pyKpo + 01 Kpy + 35,5Kp;
where a; = Al%l L D+ 6A2%l + Org for0snsn,,
ap = Al% +0(T0forr]A<r]<r]K,
M — Nk

ar = dg Bl—mamforn,( n<ng

s P M -Ng
and a; =& Sl_—D+5 ZD—HE+GTO forng<n <

22
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The values 0K, , Kas; Kgq , Kgo are obtained from TabR4 at the required spanwise positions

and valuesofi, N, Nk Mg

respectively.

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095 098
ap 10 | 140| 080| 0.20/ -040 -1.00 -080 -0.60 -040 -0]20 035 -D.44
Kaq -0.34| -0.18| -0.08 0.02 0.11 0.21 0.1% 0.1p 0.9 0.08 0{07 007

3p1Kpp | -102| 054 -0.24 0.0  0.33 0.63 0.45% 0.36 0.27 0.24 0j21 021
Kap -0.73| 0.16| 0.09| 0.06 0.04 0.03 0.03 0.02 0.02 0.01 01  o|o1
LIV 0.73 | -0.16| -0.09 -0.06 -0.04 -0.08 -003 -0.p2 -0/02 -001 -p01 -0.01
Kgq 0.02 | 002| 002| 0.02 0.05 009 -005 -0.143 -0.20 -027 Q29 P31
3g1Kg1 0.02 | 002| 002| 0.02 0.05 009 -005 -0.13 -0.20 -0]27 Q29 P31
Kgp 0 0 0 0 0 0 0 0.01 0.02 0.08| -029 -0.49

3g,Kg2 0 0 0 0 0 0 0 -0.01| -0.01] -0.04 0.1% 025
ag 073 | 072 | 049| 022/ -00§d -031 -043 -040 -0B6 -0]28 -0.29 -0.30
(vii)  Derive the incremental lift coefficient due teist using Equatior5.6) and Table9.4.
CLt = 051CL7AL + 055CLTA2 + 05,CLTB1 + 05,CLTB2 + O1p2y
where a; = 0.0785 per degree, as obtained in step (vii) of Example 1.
CLt = (3.0% 0.0253 + (—1.0x 0.0052 + (1.0x 0.0112 +(-0.5% 0.0013
+ (-1.0 x 0.0789
= 0.0029
(viii)  Calculate the spanwise loading due to twist using Equd&on.
c
CLLT% = 0a;0g.
n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 095 098
c
C,_,_Té 0.069 | 0.069 | 0.046 | 0.020| -0.005 -0.027 -0.034 -0.029 -0/023 -0.014 -D.011 -0.007

As with Example 1, it will be found that the value( 1)

int

obtained by integrating the spanwise

loading due to twist, see Equatiti10) is in satisfactory agreement with the valueCpf
step (vii).

23

from



83040

alculate the spanwise loading for a wing wi is€at= 0. usin uesi
(X)  calculate the sp loading f g with twisCat= 0.3 g Equégiag
c — — c
CLLE = o(CL—-Cr7) + CLLTE .
n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98
o] 1197 | 1.212| 1206 1.183 1.143 1.090 1.022 0.9B7 0.822 0.636 0474 (0.311
o(C -C_p) | 0.356 | 0.360| 0.358 0.35] 0.34p 0324 0304 0278 0244 0189 0141 0.092
CLLT('(:; 0.069 | 0.069| 0.046 0.020 -0.005 -0.027 -0.034 -0.029 -0/023 -Q.014 -0.011 {0.007
C,_,_Tg 0.425| 0.429| 0.404 0371 0.355 0297 0270 0249 0221 O0.175 0[130 0.085
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9. TABLES

a. Values 01KA

TABLE 9.1 Values ofK, andKy forBA = 1.5

Nl o 01| 02| 03| 04| 05 06 07 08 9 095 O0.p€ 1A

Nk

0.1 | -0.85 0.11] 0.08 0.06 0.05 005 0.04 004 003 0103 0.03 0.03 0.0023
0.2 | -0.74 -0.28 0.16 0.13 0.11 0.09 008 007 007 Q06 0.06 p.06 0.0045
0.3 | -0.65 -0.35 -0.0f 0.20 0.17 0.14 0.3 0f11 010 Q.09 0.09 [0.09 0.0068
04 |-058 -0.35 -0.15 0.04 0.23 020 O0.L7 o015 0214 Q.12 0.12 [0.11 0.0089
05 | -0.52 -0.33 -0.18 -0.03 0.11 0.26 0p2 020 017 0.16 0.15 [0.15 0.0111
0.6 | -0.46/ -0.31 -0.18 -0.06 0.05 0.16 0p8 024 021 0.19 0.19 |0.18 0.0131
0.7 | -0.41 -0.28 -0.1f -0.07 0.02 0.11 0p0 029 026 023 0.22 [0.22 0.0151
0.8 | -0.37| -0.26 -0.1p -0.07 0.1 0.09 0.6 023 031 027 0.26 [0.25 0.0170
0.9 |-0.33 -0.23 -0.15 -0.07 O 007 014 00 026 {32 0.30 p.29 0.0188
1.0 | -0.30, -0.21 -0.18 -0.06 O 0.06 0.12 018 0}23 (.28 0.31 p.33 0.0203
b. Values ofKg

Nl o | 01| 02| 03| 04| 05 06 07 08 S 095 0.0€ g

Nk

0.1 | 0.24| 0.24| 0.1 0.08 0.0L -0.06 -0J12 -0.18 -0.24 —0.31 -+0.33 +0.35 0.0128
0.2 | 0.19| 0.19| 0.21 0.11 0.03 -0.05 -0j12 -0.19 -0.26 —0.33 -+0.36 +-0.38 0.0108
0.3 | 0.15| 0.15| 0.1 0.18 0.0f -0.02 -0J11 -0.20 -0.28 —0.36 -+0.38 0.41 (.0090
04 | 011 0.11| 0.12 0.13 0.15 0.03 -008 -019 -0.28 -D.38 -0.42 +0.45 0.0072
0.5 | 0.08| 0.08/ 0.09 0.10 011 0.4 -002 -015 -0.28 -D.40 -0.46 +0.49 0.0055
0.6 | 0.06| 0.06| 0.0§ 0.06 0.0F 0.09 012 -008 —0.25 -p.41 —0.49 +0.54 0.0040
0.7 | 0.04| 0.04/ 0.04 0.04 005 0.05 007 0.0 -0.16 -0.40 —0.52 10.58 0.0026
0.8 | 0.02| 0.02| 0.02 0.02 0.02 0.03 003 0.p5 0/08 -0.32 —0.51 -+0.62 0.0014
0.9 | 0.01| 0.01] 0.01 0.01 o00L 0.01 001 0p1 0J02 006 -0.38 10.62 (.0005
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a. Values 01KA

TABLE 9.2 Values of K, andKg forBA =3

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 095 0.9€ 14

Nk

0.1 | -0.821 0.12f 0.08 0.06 0.0p 0.04 0.04 0.03 0j03 (.03 0.02 p.02 0.0036
0.2 | -0.700 -0.25 0.17 0.13 0.10 0.09 0.07 006 006 Q.05 0.05 p.05 Q@.0071
0.3 | -0.60 -0.31 -0.06 0.21 0.6 0.13 0.,11 0410 008 .08 0.07 [0.07 Q.0106
04 | -053 -0.31 -0.12 005 0.23 0.18 0.15 043 011 0.10 0.10 [0.09 Q.0140
05 | -0.47/ -0.29 -0.15 -0.02 0.11 0.24 0.0 0j17 015 0.13 0.12 |0.12 0.0173
0.6 | -0.41 -0.27 -0.15 -0.04 0.05 0.15 0.5 0§21 0.18 0.16 0.15 |0.15 0.0204
0.7 | -0.37) -0.24 -0.14 -0.05 0.02 0.10 O0.17 0§26 0.22 0.19 0.18 |0.17 0.0234
0.8 | -0.33 -0.22 -0.18 -0.06 0.01 0.07 0.14 0j20 0.27 0.23 0.22 |0.21 0.0263
0.9 | -0.300 -0.20 -0.18 -0.05 0.01 0.06 o0.11 0j17 Q.22 0.28 0.26 |0.25 0.0289
1.0 | -0.27, -0.18 -0.1p -0.05 O 0.05 0.10 o045 0}19 Q24 0.27 p.28 0.0313
b. Values ofK

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.§ 09 095 0.8 1g

Nk

0.1 | 019, 0.20f 0.12 0.0 -0.02 -0.p7 -0{13 -Q.18 -0.23 —0.27 +0.29 |0.30 0.0192
0.2 | 0.15| 0.15/ 0.17 0.09 o.00 -0.06 -0{13 -0.19 -0.24 -0.29 +0.32 {0.33 0.0162
03 | 0.11| 0.12| 0.13 0.1% 0.0p -0.p4 -0{11 -0.19 -0.25 -0.32 +0.34 +0.36 0.0134
04 | 0.08, 0.08/ 0.09 0.11 0.1838 0.02 -0409 -0.18 -0.26 -D.34 -+0.37 {0.39 0.0107
05 | 0.06| 0.06/ 0.0 0.07 0.0 0.12 -0J02 -014 -0.26 -D.36 -+0.40 {0.43 (.0082
06 | 0.04, 0.04] 0.04 0.0 0.06 0.7 0.11 -007 -0.23 -p.37 —0.43 +0.47 (.0059
0.7 | 0.02| 0.02f 0.03 0.03 0.08 0.04 0.06 0.,0 -Q0.15 —-0.36 —0.47 +0.52 0.0039
08 | 0.01| 0.01] 0.0 0.01 0.0 0.02 0.03 0.p4 o0Jj08 -0.30 —0.47 +0.56 Q.0021
0.9 0 0 0 0 0.01f 0.0 0.01 o0.0L 0.02 0.07 -035 -0.58 0.0008
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a. Values 01KA

TABLE 9.3 Values of K, andKg forBA =5

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 095 0.9€ 14
Nk
0.1 | -0.78 0.14] 0.09 0.0 0.0p 0.04 0.03 0.03 0j02 0.02 0.02 p.02 0.0046
0.2 | -0.65 -0.21 0.18 0.13 0.09 0.08 0.06 005 005 Q.04 0.04 p.04 (0.0091
0.3 | -0.54 -0.26 -0.08 0.2L 0.5 0.12 0..0 0408 007 0.06 0.06 [0.06 Q.0134
04 | -0.47/ -0.26 -0.1p 0.06 0.22 0.17 0.3 0j11 009 0.08 0.08 [0.08 Q.0176
05 | -0.41 -0.24 -0.12 -0.01 0.121 0.23 0..7 0j14 012 0.10 0.10 |0.10 0Q.0217
0.6 | -0.36) -0.22 -0.12 -0.03 0.05 0.13 0.2 0j18 0.15 0.12 0.12 |0.11 0.0256
0.7 | -0.32) -0.20 -0.1p -0.04 0.02 0.09 oO0.15 022 0.18 0.15 0.14 |0.14 0.0293
0.8 | -0.29) -0.18 -0.11 -0.05 0.01 0.06 o0.11 0j17 023 0.19 0.17 |0.17 0.0327
09 | -0.26f -0.17 -0.11 -0.05 O 0.05 0.09 o014 0}18 (@23 0.21 pP.20 0.0359
1.0 | -0.24/ -0.13 -0.1p -0.04 O 0.04 0.08 0412 0}16 @20 0.22 p.24 0.0388
b. Values ofK

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.§ 09 095 0.8 1g
Nk
0.1 | 0.14| 0.16/ 0.09 0.02 -0.04 -0.09 -0{13 -0.17 —-0.21 —0.24 +0.25 0.26 0.0232
0.2 | 0.11| 0.11] 0.13 0.0 -0.02 -0.p8 -0{13 -Q.18 —-0.22 —0.26 +0.27 0.27 0.0195
0.3 | 0.08| 0.08/ 0.09 0.12 0.0 -0.05 -0J12 -0.18 -0.23 -0.28 +0.30 0.30 0.0161
0.4 | 0.05| 0.06/ 0.0 0.08 0.11L 0/ -0.09 -0{17 -0.24 —-0.30 -0.32 +0.33 0.0129
05 | 0.04, 0.04|] 0.04 0.0 o0.0f 0.10 -0403 -014 -0.24 -p.32 —+0.35 {0.37 0.0099
06 | 0.02| 0.02f 0.03 0.03 0.04 0.05 0.09 -007 -0.21 -p.33 —+0.38 +0.41 (.0071
0.7 | 0.01| 0.01f 0.02 0.02 0.0 0.03 0.05 0.p9 -0.14 -0.32 —0.41 +0.45 0.0047
08 | 0.01| 0.01] 0.0 0.01 o.00 0.02 0.02 0.p4 0J09 -0.27 —-0.42 +0.51 Q.0026
0.9 0 0 0 0 0 0 0.0} 0.01 0.02 0.07 -0.32 -0/54 0.0011
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a. Values 01KA

TABLE 9.4 Values of K, andKg forBA =8

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 095 0.9€ 14
Nk

0.1 |-0.73 0.16f 0.09 0.06 0.04 0.03 0.03 0.02 0j02 Q.01 0.01 0.01 0.0054
0.2 | -0.57 -0.16 0.20 0.13 0.09 0.07 0.06 004 004 Q.03 0.03 p.03 Qq.0107
0.3 | —0.47| —0.2( 0 0.21 0.14 0112 0.08 0.07 0/05 005 Q.04 0.04 00158
0.4 |-0.39 -0.20 -0.06 0.08 0.21 0.15 0.,.1 0409 007 0.06 0.06 [0.06 Q.0207
05| -0.34 -0.18 -0.08 0.02 0.21 0.21 0.15 0412 009 0.08 0.07 .07 Q.0254
0.6 | -0.29) —-0.17 -0.0B O 0.06 0.13 0.20 0.5 0j11 0.09 0.09 0.09 0.0298
0.7 | -0.26/ -0.13 -0.08 -0.01 0.04 0.09 0..3 0/19 014 0.12 0.11 |0.10 0.0339
0.8 | -0.23 -0.14 -0.0f -0.02 0.03 0.07 0..0 0j14 019 0.14 0.13 |0.13 0.0379
09| -0.21 -0.13 -0.0f -0.02 0.02 0.05 0.p8 0j12 015 0.19 0.17 |0.16 0.0415
10| -0.19 -0.12 -0.0f -0.02 0.1 0.04 0.p7 0/10 0.13 0.16 0.18 [0.19 0.0448
b. Values ofK

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 095 0.8 1g
Nk
0.1| 0.11| 0.12| 0.05 0| -0.05 -0.08 -0/12 -0/15 -0.18 -p.20 —0.20 +0.20 0.0263
0.2 | 0.07| 0.08/ 0.10 0.03 -0.03 -0.p8 -0{12 -Q.16 —-0.19 —0.21 +0.22 0.22 0.0221
0.3 | 0.05| 0.05| 0.0 0.09 0| -0.05 -0.11 -0j25 —-Q.20 -p.23 —0.24 +0.24 0.0182
0.4 | 0.03| 0.03] 0.04 0.0 0.08 -0.01 -0/09 -0.15 -0.20 —0.25 -+0.26 +0.27 0.0146
05| 0.02| 0.02] 0.02 0.02 0.0 0.09 -0/05 -013 -0.20 -p.27 +0.29 +0.31 0.0112
06| 0.01| 0.01f 0.02 0.02 0.08 0.04 0.08 -007 -0.18 -p.28 —+0.31 +0.34 (.0081
0.7| 0.01| 0.01f 0.0 0.01 o.0p0 002 0.04 0.p8 -0.12 -0.28 —0.35 +0.39 0.0054
0.8 0 0 0 0.01| 0.01 0.01 0.02 0.03 0.08 -0{24 -0.36 -D.44 0.0030
0.9 0 0 0 0 0 0 0 0.0 0.02 0.08 -0.29 -0{49 0.0p13
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a. Values 01KA

TABLE 9.5 Values of K, andKg forBA = 12

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 095 0.9€ 14
Nk
0.1 | -0.67/ 0.18) 0.08 0.06 0.04 0.03 0.02 002 0j01 @01 0.01 p.o1 o0.0061
0.2 | -0.500 -0.12 0.20 0.12 0.08 0.06 0.5 004 003 Q.02 0.02 p.02 Q.0119
0.3 | -0.40, -0.15 0.02 0.20 0.13 0.09 0.07 005 004 Q.03 0.03 .03 g.0174
0.4 | -0.33 -0.15 -0.08 0.08 0.20 0.13 0.p9 0J07 005 0.04 0.04 [0.04 0Q.0226
05 | -0.29) -0.14 -0.06 0.04 0.211 0.19 0.3 0J09 007 0.06 0.06 [0.05 0.0276
0.6 | -0.25 -0.13 -0.06 0.0L 0.06 0.12 0..8 0j22 009 0.07 0.06 [0.06 0.0323
0.7 | -0.220 -0.12 -0.06 O 0.04 0.08 0.12 o0.7 0j21 Q.09 0.08 .08 0.0368
0.8 | -0.200 -0.11 -0.0b -0.01 0.03 0.07 o040 O0j12 Q.16 0.11 0.10 |0.09 0Q.0409
09 | -0.18 -0.11 -0.06 -0.01 0.03 0.05 0.p8 010 Q.12 0.15 0.13 |0.12 Q.0448
1.0 | -0.17, -0.10 -0.0p -0.01 0.02 0.05 0.7 0j09 0.20 0.12 0.14 |[0.16 0.0483
b. Values ofK

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.§ 09 095 0.8 1p
Nk
0.1 | 0.07| 0.09] 0.03 -0.00 -0.05 -0.p8 -0{10 -0.12 -D.15 —0.15 +0.14 |-0.14 D.0283
0.2 | 0.05| 0.05| 0.077 0.01 -0.04 -0.p7 -0{10 -Q.13 -0.15 —0.17 +0.16 0.15 0.0238
0.3 | 0.03| 0.03f 0.04 o0.07f -0.01 -0.p6 -0{10 —-Q.13 -0.16 —0.18 +0.18 0.17 0.0197
0.4 | 0.02| 0.02] 0.03 0.04 o0.0f -0.02 -0/08 -0.12 -0.17 —0.20 +0.19 {-0.19 0.0158
05 | 0.02| 0.02f 0.02 0.02 o0.04 0.7 -0{04 -0.11 —-0.17 -p.21 +0.22 {0.23 0.0122
06 | 0.01, 0.01] 0.0 0.01 0.0 0.03 0.07 -006 -0.16 —-p.23 —0.25 +0.26 0.0089
0.7 0 0.01| 0.01j 0.0 0.01 o0.0p 0.03 0.07 -011 —-0.23 -p.28 -+0.30 (.0059
0.8 0 0 0 0 0 0.01] 0.01 0.02 0.08 -0.20 -0/30 —-Q.36 0.0033
0.9 0 0 0 0 0 0 0 0.0 0.02 0.09 -0.25 -0/42 0.0014
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APPENDIX A EXTENSION OF METHOD OF SECTION 5 FOR AN ARBITRARY NUMBER OF
LINEAR TWIST SEGMENTS

Al ADDITIONAL NOTATION

N number of linear twist segments
Subscripts

i denotes’th linear twist segment of type B£ 1 ton)

n denoteqi’th linear twist segment of type BIE 1 toN— 1)

A2. TWIST REPRESENTATION BY N LINEAR SEGMENTS

SketchA2.1illustrates a generalised twist distribution which has been idealised in the form of eamarbit
number N) of linear segments.

Note thata., and 8Bz are negative as drawn

Kn /}I/ 852 83.
|
[

BN
BN-1

Sketch A2.1
For the twist distribution shown in Sketé2.1 the effective local twist is given by

N-1
Qg = o+ 6A1KA1+nZ_1 9sKgn (A2.1)
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= Qg+ 0a;(NKy —N)/Mky

Q
-
|

n
Gro* §15Bi(” —Nki)/(1-N;)

wheren=1toN-1andn,, =1 .
The corresponding lift coefficient is given by

N-1

Cur = Aoy +0a,Curar+ 2 S Cran-

39

for 0<ny,

(A2.2)
for Ny <N <Ny neq

OoodoOod

(A2.3)
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