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HINGE MOMENT COEFFICIENT DERIVATIVES FOR TRAILING-EDGE 
CONTROLS ON WINGS AT SUBSONIC SPEEDS

1. NOTATION AND UNITS (see Sketch 1.1)

SI British

aspect ratio

lift-curve slope with angle of attack for two-dimensional 
section in incompressible flow

rad–1 rad–1

lift-curve slope with control deflection for two-dimensional 
section in incompressible flow

rad–1 rad–1

 hinge moment coefficient derivative rad–1 rad–1

value of b1 for two-dimensional section in incompressible flow rad–1 rad–1

contribution from induced camber to b1 rad–1 rad–1

hinge moment coefficient derivative rad–1 rad–1

hinge moment coefficient derivative rad–1 rad–1

value of b2 for two-dimensional section in incompressible flow rad–1 rad–1

contribution from induced camber to b2 rad–1 rad–1

hinge moment coefficient for control, 

lift coefficient for wing, 

wing chord m ft

wing chord measured normal to wing quarter-chord line m ft

control balance chord forward of hinge line measured normal to 
wing quarter-chord line

m ft

control chord aft of hinge line m ft

control chord aft of hinge line measured normal to wing 
quarter-chord line 

m ft

geometric mean control chord aft of hinge line,  m ft

A

a1( )
0

a2( )
0

b1 ∂CH /∂α

b1( )
0

b1∆

b2 ∂CH /∂δ
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aerodynamic mean control chord aft of hinge line, m ft

factor on induced camber contributions to allow for control 
balance

functions used in calculation of induced camber contribution, 
see Equations (3.5) and (3.6)

rad–1 rad–1

hinge moment N m lbf ft

correction factor for rectangular wing, see Section 3.4

lift N lbf

Mach number

Reynolds number based on wing mean chord

wing area m2 ft2

wing semispan m ft

control span, m ft

maximum thickness of wing section m ft

thickness of control at hinge line m ft

free-stream velocity m/s ft/s

angle of attack rad rad

mean induced angle of attack rad rad

compressibility parameter, (1 – M2)½

control deflection angle measured in plane parallel to plane of 
symmetry

rad rad

control deflection angle measured in plane normal to hinge line rad rad

sweep angle of wing quarter-chord line deg deg

sweep angle of wing half-chord line deg deg

sweep angle of control hinge-line deg deg

spanwise distance from wing centre-line as fraction of 
semispan

c= f

c
2
f

η i

ηo
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Sketch 1.1   Planform and section geometry

, values of  at inboard and outboard limits of aileron at hinge 
line

ratio of wing tip chord to wing centre-line chord

density of air kg/m3 slug/ft3

section trailing-edge angle in plane normal to quarter-chord 
line 

deg deg

Superscript

as in denotes properties for a ‘standard’ section for which 

Subscript

 as in (a1)0T denotes theoretical value

η i ηo η

λ

ρ

τ′

* a1( )
0
*

τ′ 2 t/c′( )tan-1=

T
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2. INTRODUCTION 

This Item provides a method for estimating the hinge moment coefficient derivatives b1 and b2 for full-span
and part-span sealed controls on swept and unswept wings at speeds where the flow over the wing 
subsonic and fully attached.  It may also be used for controls on tailplanes or fins.  The method follo
traditional approach for a wing of finite aspect ratio, whereby the two-dimensional sectional valu
corrected for the effects of induced angle of attack and induced camber, see Derivations 1, 2, 11, 12 and
18 for example.  The basic equations for the derivatives are essentially in the form of lifting-line th
but with lifting-surface theories used to give a better evaluation of the induced angle of attack and to pro
the important additional contribution due to induced camber.  The equations permit ready substitu
known two-dimensional characteristics.  

None of the various published versions of the above technique is sufficiently comprehensive
theoretical calculations to cover in a satisfactory manner all configurations of interest.  The method
Item follows Derivation 18 in its treatment of wing sweep, which was based on a successful modific
to the earlier work of Derivation 11.  The presence of control balance is allowed for by adapting
theoretical calculations made in Derivation 2 for unswept wings.  Empirical corrections are presented 
part-span effects for controls that extend from a general inboard station  to near the wing tip, 
The two-dimensional properties of the wing and control are assumed to be effectively constant over the
span of the control.  Prandtl-Glauert similarity parameters are employed to model the first order eff
compressibility at low to moderate subsonic speeds.  

Item No. Aero C.04.01.00 (Derivation 29) provides a general introduction to the treatment of control hin
moment coefficient derivatives within the Aerodynamics Sub-series.  It should be consulted for a b
description of the individual Items that are available and their inter-relationship.  In addition, it gives
qualitative guidance on the effects of control geometry and flow conditions on the range of linea
hinge moment characteristics.  

3. METHOD

3.1 Basic Equations 

In incompressible flow the derivatives for a finite wing are related to the section values normal to th
quarter-chord line by the equations

(3.1)

and , (3.2)

where  is the mean induced angle of attack and  and  are induced camber contributions.
equations make the assumption that the angle  is constant across the span, which is a reasona
assumption for wings that are approximately elliptically loaded.  For loadings that depart significantly
the elliptical a spanwise integration with  as a function of  is necessary, as described in Deriv2
or Item No. Aero C.04.01.06 (Derivation 28).  However, a relatively simple correction is possible for a
rectangular wing that has constant two-dimensional properties, see Section 3.4.

ηi ηo 0.9≥

b1 b1( )
0

1
αi

α
-----– 

  Λ¼cos= Λhcos b1∆+

b2 b2( )
0

αi

δ
-----–

= b1( )
0
 Λ¼ Λhcoscos b2∆+

αi b1∆ b2∆
αi

αi η
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3.2 Derivative b1

The assumptions made in Derivation 18 lead to the substitution

, (3.3)

where (a1)0 is the two-dimensional lift-curve slope for the section normal to the wing quarter-chord
and  is the wing lift-curve slope estimated by lifting-surface theory.  Values of  ca
obtained from Item No. 70011 (Derivation 34).  As in Derivation 20, for example, Prandtl-Glauert similarity
parameters are incorporated to allow for first-order compressibility effects.  With  calculat
the Mach number of interest, the general form for b1 becomes

. (3.4)

In this Item the correction  is evaluated as

, (3.5)

where G1 is the theoretically based contribution for a full-span control and G2 is a purely empirical
correction for part-span effects.  

Lifting-surface values of Gl for a plain control in incompressible flow were calculated in Derivation 18 for
 and .  These are reproduced in Figure 1 where  is given in

three carpets as a function of  and  for values of the control chord ratio measured n
to the quarter-chord line,  = 0.2, 0.3 and 0.4.  The data for unswept wings have been slightly a
to be compatible with the data for unswept wings given in Derivation 2 as these covered higher aspe
ratios.  For swept wings, extrapolations above  have been made by taking the form of the va
for the unswept wing as a guide and noting that, for all sweep angles, G1 must tend to zero as  become
very large. The factor FB allows for control balance and has been deduced from the data give
Derivation2 for nose-balanced and internally-balanced controls on unswept wings.  For those two
of control FB is given in Figure 2 as a function of  and balance .  For a plain control FB is unity.  

The empirical part-span correction G2 is obtained from Figure 3 where  is given
in a carpet as a function of  and .  It is assumed that .  

3.3 Derivative b2 

In the evaluation of b2 given in Derivation 18 for full-span controls, some necessary simplifications we
made to facilitate the lifting-surface calculations of the control-deflected loadings and only a p
evaluation of the induced effects was performed.  Comparisons with experimental data showed that t
overall contribution of the neglected components was acceptably small.  However, although the re
equation for b2 resembles Equation (3.2) the approximation is such that the separate effects of indu
angle of attack and induced camber cannot be identified.  The equation for b2 is

, (3.6)

αi

α
----- 1

dCL/dα
a1( )

0
Λcos ¼

-----------------------------–=

dCL/dα dCL/dα

dCL/dα

b1

b1( )
0

a1( )
0

------------
dCL

dα
---------- 

 = Λhcos b1∆+

b1∆

b1∆ G1 G2+=

2 A 6≤ ≤ 0 Λ¼ 45°≤ ≤ 2πβG1/FB a1( )
0

Λhcos
1/β( ) Λ¼tan βA

cf′/c′

βA 6=
βA
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where the function G3 has been introduced in this Item to provide a further empirical allowance for part-
effects on the induced camber contribution, in addition to that made in b1 .  Similarity parameters are again
introduced to allow for the effects of compressibility.  The lift-curve slope with control deflection (a2)0 is
for a section normal to the wing quarter-chord line and a control chord ratio .  Figure 4 gives

 as a function of .  It is assumed that .  

For control deflection angles measured normal to the hinge line, the hinge moment coefficient deriv

. (3.7)

3.4 Rectangular Wing

For a rectangular wing with uniform section and control geometry, Item No. Aero C.04.01.06 co
information on the spanwise variation of the ratio of  for a rectangular wing to the value of  f
elliptically-loaded wing.  This information has been used to deduce a simple factor K to modify Equations
(3.4) and (3.6).  The factor is simply the mean value of the  ratio over the span of the control.  Fig5
shows K as a function  for .  The equations for b1 and b2 become

(3.8)

and . (3.9)

With K taken from Figure 5, the equations are otherwise evaluated as in Sections 3.2 and 3.3.  If K = 1,
Equations (3.8) and (3.9) reduce to Equations (3.4) and (3.6) with .  For a full-span control

, but the correction becomes important for part-span controls.  

3.5 Sectional Properties

The sectional properties that are required in the calculation of b1 and b2 can be obtained as indicated in th
table, or experimental values may be substituted if they are known.  

The use of these Derivations is illustrated in the Example (see Section 6). 

Parameter Item No. Aero Derivation

(al)0 
(a2)0
(bl)0
(b2)0 
Corrections to (bl)0 
and (b2)0 for balance

W.01.01.05 
C.01.01.03 
C.04.01.01 (plain control) 
C.04.01.02 (plain control) 
C.04.01.03 (nose balance) 
C.04.01.04 (Irving internal balance)

30
31
32
33
26
27 

cf′/c′
2πβG3/FB a1( )

0
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4. ACCURACY AND APPLICABILITY

4.1 Accuracy 

Sketches 4.1 and 4.2 demonstrate the overall accuracy of prediction at low speeds using test data
Derivations 2 and 4 to 25.  In general, b1 is predicted to within about  rad–1 and b2 to within 
rad–1 .  As would be expected, estimated values are usually more reliable when known two-dimen
section properties are available.  The method gives best estimates for full-span controls on unswep
but there is otherwise no general trend within the overall scatter.  For comparison, the accuracy qu
Item Nos Aero C.04.01.01 and 02 for (bl)0 and (b2)0 is  rad–1 .  

The use of similarity parameters provides a reasonable representation of compressibility effects fo
numbers at which the flow over the wing is wholly subsonic and fully attached, provided the section p
are thin,  say, and the controls have straight-tapered profiles aft of the hinge line.  The variatio
with Mach number are small in these cases.  The method is unsatisfactory for predicting the larger variatio
associated with thicker sections and more complex control profiles.  Examples of the different variations
with Mach number that are displayed by various controls are contained in Derivation 9.  

The empirical part-span correction for b1 differs considerably from the theoretical one given for unswe
wings in Derivations 3 and 12.  Indeed, as demonstrated by the form of G2 , best predictions are achieve
with no correction for unswept wings, although one is needed for swept wings.  The further emp
part-span correction introduced in the calculation of b2 , namely G3 , could only be defined crudely within
a considerable scatter of experimental results but it does remove a bias that would otherwise exi
prediction.  For both part-span corrections, particular notice was taken of the results of parametric 
which the control span was altered systematically.

4.2 Applicability 

The derivatives b1 and b2 are defined over small ranges of angle of attack and control deflection, w
the hinge moment coefficient varies linearly.  A general discussion on factors affecting the extent of the
linear range is given in the introductory Item No. Aero C.04.01.00 (Derivation 29). 

An indication of the range of wing and control geometries covered in the development of the me
given in the table.  The method applies to sealed controls with streamwise side-edges.  If the side e
normal to a swept hinge-line then there can be a significant change in b2 , although the effect on b1 is small
(Derivation 10).  

The main method in Sections 3.2 and 3.3 assumes that the wing loading is elliptical and that the wing 
control two-dimensional properties are essentially constant over the span of the control.  The 
departures from these conditions that are normally expected will not lead to undue errors in predic
simple modification is given in Section 3.4 for rectangular wings with constant two-dimensional properti
For the special case of full-span controls on unswept wings with a large spanwise variation in se
properties the method of Item No. Aero C.04.01.06 (Derivation 28) may be used. 

Parameter Range Parameter Range

A 2 to 8 
0 to 50°

0.2 to 0.4

0.06 to 0.14
6° to 20°

0 to 0.8

0.05± 0.07±

0.05±

t/c′ 0.14≤

Λ½
cf′/c′

t/c′
τ′
ηi
7
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The method is based on an analysis of data on controls that extend to near the wing tip; therefore, it must
be used with caution if applied to controls that are well inboard with  substantially less than 0.9.

Sketch 4.1   Comparison of predicted and experimental values of b1

Sketch 4.2   Comparison of predicted and experimental values of b2

ηo
8



89009�

e
23

tail
11,

gley

e
nel.

5.1°
2.8°
.49.

ol
ote

ent
A

ing
ing
IL

 of
ote

ces
8.

rol
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6. EXAMPLE

Calculate the hinge moment derivatives for the control shown in Sketch 6.1.  Assume a Mach number o
0.4 and a Reynolds number of 3.5 × 107 based on wing mean chord.  The required geometric parame
are summarised in the table.  The control has a nose balance with a rounded forward profile.

Sketch 6.1   

From planform geometry From section geometry

A = 7.7 = =

= = =

= = =

= = =

λ 0.3 τ′ 15.0°
Λ¼ 20.0° ηi 0.70 t/c′ 0.1

Λ½ 16.4° ηo 0.95 cb′/c′ 0.06

Λh 13.4° cf /c 0.30 cf′/c′ 0.32
12
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or a
(i) Determine section properties (a1)0 , (a2)0 , (b1)0 , (b2)0 .

If experimental data are available for section properties, go to Step (ii ).

From Item No. Aero W.01.01.05, with a Reynolds number R = 3.5 × 107 , a trailing-edge angle ,
a thickness chord ratio = 0.10, and an assumed boundary-layer transition point of 0.3 ,

and ,

so .

From Item No. Aero C.01.01.03, with  = 0.32,  = 0.10 and ,

 rad–1 ,

and ,

so .

The calculation of (b1)0 and (b2)0 requires corresponding values, denoted  etc, for a ‘standard’
aerofoil section with .  By again using Item Nos Aero W.01.01.05 and Aero C.01.01
with ,

and ,

so .

Also 

and ,

so .

Then from Item No. Aero C.04.01.01 with  = 0.10,  = 0.32 and  = 0.906, f
plain unbalanced control in incompressible flow

 rad–l

τ′ 15°=
t/c′ c′

a1( )
0

a1( )
0T

--------------- 0.883=

a1( )
0T

6.788 rad
1–
    =

a1( )
0

5.994 rad
1–

=

cf′/c′ t/c′ a1( )
0
/ a1( )

0T
0.883=

a2( )
0T

4.600=

a2( )
0

a2( )
0T

--------------- 0.835=

a2( )
0

3.841 rad
1–

=

a1( )
0
*

τ′ 2 t/c′( )1–tan=
τ′ 2 0.10( )1–tan 11.4°= =

a1( )
0
*

a1( )
0T

*
------------------- 0.906=

a1( )
0T

* 6.781 rad
1–

=

a1( )
0
* 6.143 rad

1–
=

a2( )
0T

* 4.600 rad
1–

=

a2( )
0
*

a2( )
0T

*
------------------- 0.862=

a2( )
0
* 3.965 rad

1–
=

t/c′ cf′/c′ a1( )
0
*/ a1( )

0T
*

 b1( )
0T

*  –  0.580=
13
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of
. Aero
and ,

Similarly, from Item No. Aero C.04.01.02 with ,  and  = 0.862,

and ,

The control has a nose balance so Item No. Aero C.04.01.03 must be used to correct the values  bl and
b2 that have been calculated above for plain controls.  (For an Irving internal balance see Item No
C.04.01.04.)

With t/c' = 0.10, a round nose profile, and a balance ratio given by

,

Item No. Aero C.04.01.03 gives the ratio of balanced to plain control derivatives

and .

Therefore, for the balanced control,

(b1)0 = – 0.421 × 0.89 = – 0.375 rad–1

and (b2)0 = – 0.754 × 0.78 = – 0.588 rad–1 .

(ii) Calculate  for the wing

For M = 0.4, .

so (b1)0 =

= – 0.580 × 0.795 + 2[6.781 – 6.143] (tan 7.5° – 0.10)

= – 0.421 rad–1 .

so (b2)0 =

= – 0.902 × 0.880 + 2[4.600 – 3.965] (tan 7.5° – 0.10)

= – 0.754 rad–1 .

 b1( )
0
*

b1( )
0T

*
-------------------- 0.795=

 b1( )
0
* 2 a1( )

0T
* a1( )

0
*–[ ] ½tan τ′ t/c′–( )+

t/c′ 0.10= cf′/c′ 0.32= a2( )
0
*/ a2( )

0T
*

b2( )
0T

*– 0.902 rad
1–

=

 b2( )
0
*

b2( )
0T

*
------------------- 0.880=

b2( )
0
* 2 a2( )

0T
* a2( )

0
*–[ ] ½tan τ′ t/c′–( )+

cb′/cf′( )2
½ th/cf′( )2

–[ ]½ 0.06/0.32( )2
½ 0.056/0.32×( )2

–[ ]½ 0.166= =

b1( )
0Bal

b1( )
0Plain

------------------------ 0.89=

b2( )
0Bal

b2( )
0Plain

------------------------ 0.78=

dCL/dα

β 1 M
2

–( )½ 0.917= =
14
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From Item No. 70011, with , , and ,

so .

(iii) Calculate b1

From Figure 1 with ,  and , the full-span
induced camber contribution parameter is

.

For a nose-balanced control with  = 0.06/0.32 = 0.188 and  = 0.32, the balance factor FB from
Figure 2a is 0.935,

so .

(Note that the bracketed numerical expression involved in evaluating G1 , G2 and G3 is dimensionless
because (a1)0 is normalised by the presence of the theoretical thin aerofoil value  rad–1.)

From Figure 3 with  and  the part-span induced camber contribution parameter is

,

so .

Therefore, from Equation (3.5)

and from Equation (3.4)

λ 0.3= A Λ½tan 7.7 16.4°tan 2.27= = βA 0.917 7.7× 7.06= =

1
A
---

dCL

dα
---------- 0.630 rad

1–
=

dCL

dα
---------- 7.7 0.630× 4.851 rad

1–
= =

βA 7.06= cf′/c′ 0.32= 1/β( ) Λ¼tan 1/0.917( ) 20°tan 0.397==

2πβG1

FB a1( )
0

Λhcos
-----------------------------------  0.008 – rad

1–
=

cb′/cf′ cf′/c′

G1  0.008
0.935 5.994× 13.4°cos×

2 π× 0.917×
------------------------------------------------------------×–  0.008 0.946×–  0.008–  rad

1–
= = =

2π

A Λ½tan 2.27= ηi 0.70=

2πβG2

FB a1( )
0

Λhcos
----------------------------------- 0.070 rad

1–
=

G2 0.070
0.935 5.994× 13.4°cos×

2 π× 0.917×
------------------------------------------------------------× 0.070 0.946× 0.066 rad

1–
= = =

b1∆ G1 G2+=

 0.008 0.066 0.058 rad
1–

=+– ,=

b1

b1( )
0

a1( )
0

-------------
dCL

dα
---------- 

  Λhcos b1∆+=

0.375–
5.994

---------------- 4.851 13.4°cos 0.058+×× 0.295– 0.058+  0.237 rad 1– .–= = =
15
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 is
(iv) Calculate 

From Figure 4 with  the parameter giving the further part-span induced camber contribution

,

so .

Therefore, from Equation (3.6)

For control angles measured normal to the hinge line,

=

=

= .

=

=

= .

b2

ηi 0.7=

2πβG3

FB a1( )
0

Λhcos
----------------------------------- 0.105 rad

1–
=

G3 0.105
0.935 5.994× 13.4°cos×

2 π× 0.917×
------------------------------------------------------------× 0.105 0.946× 0.099 rad

1–
= = =

b2 b2( )
0

a2( )
0

a1( )
0

------------ b1( )
0

–
 
 
  Λhcos

β2 2tan Λ¼+( )½
--------------------------------------

a2( )
0

a1( )
0

------------ b1 G3+( )+

0.588–
3.841
5.994
-------------  0.375–( )– 

  13.4°cos

0.9172 2tan 20°+( )½
------------------------------------------------- 3.841

5.994
-------------  0.237 0.099+–( )+

0.343– 0.088–  0.431 rad 1––=

b′2 b2 Λhcos

 0.431 13.4°cos–

 0.419 rad 1––
16
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FIGURE 1  INDUCED CAMBER CONTRIBUTION FOR FULL-SPAN CONTROLS
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FIGURE 2  FACTOR ON INDUCED CAMBER CONTRIBUTION TO ALLOW FOR CONTROL BALANCE
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FIGURE 3  INDUCED CAMBER PART-SPAN CORRECTION FOR b1

FIGURE 4  ADDITIONAL PART-SPAN CORRECTION FOR b2
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FIGURE 5  INDUCED ANGLE OF ATTACK CORRECTION FACTOR FOR RECTANGULAR WINGS
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