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METHOD FOR THE RAPID ESTIMATION OF SPANWISE LOADING OF WINGS 
WITH CAMBER AND TWIST IN SUBSONIC ATTACHED FLOW

1. NOTATION AND UNITS

SI British

lift-curve slope degree–1 degree–1

aspect ratio 

effective aspect ratio, for wings with curved leading edges, see 
Equation (4.4) or (4.5)

coefficients used in estimation of zero-lift angle for cambered 
wing section, see Equation (3.1)

degree degree

local chord m ft

geometric mean chord, m ft

root chord m ft

effective root chord for wings with curved or cranked trailing 
edges, see Equation 

m ft

local lift coefficient

local lift coefficient due to wing twist

lift coefficient due to wing twist

value of  obtained by integration of local loading, see 
Equation (5.8)

lift coefficient due to unit twist of type A degree–1 degree–1

lift coefficient due to unit twist of type B degree–1 degree–1

overall lift coefficient

spanwise load functions, see Equation (4.3)

effective twist parameter for twist of type A, see Equation (5.2)
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effective twist parameter for twist of type B, see Equation (5.2)

Mach number

wing semi-span m ft

chordwise co-ordinate of the i ’th station measured from leading 
edge, see Sketch 1.1

m ft

distance of point on trailing edge measured in free-stream 
direction from root leading edge

m ft

camber ordinate at , see Equation (3.2) m ft

lower-surface ordinate at , measured from chord line, see 
Sketch 1.1

m ft

upper-surface ordinate at , measured from chord line, see 
Sketch 1.1

m ft

wing incidence measured from reference plane degree degree

wing incidence measured from reference plane radian radian

incremental local twist angle for cambered wing section degree degree

effective local twist angle, see Section 5.2 degree degree

local value of geometric twist degree degree

local value of total twist degree degree

datum value of , see Sketches 5.3 and 5.6 degree degree

zero-lift angle of incidence for wing section, see Equation (3.1) degree degree

compressibility parameter, 

wing twist angle relative to datum value, see Section 5 degree degree

root twist angle relative to datum value, , see Sketch 5.6 degree degree

tip twist angle relative to datum value, , see Sketch 5.6 degree degree

spanwise distance from root as a fraction of semi-span

spanwise centre of pressure position, 
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spanwise positions of intersection of twist segments, see 
Sketch5.7

value of  for wing with curved leading edge

value of  for planform having required chord distribution and 
span, but with unswept trailing edge

taper parameter, 

taper ratio, tip chord / cr

leading-edge sweep angle at degree degree

quarter-chord sweep angle at degree degree

mid-chord sweep angle at degree degree

trailing-edge sweep angle at degree degree

effective trailing-edge sweep angle for wing having cranked 
trailing edge, see Equation (4.2) degree degree

spanwise loading due to incidence, 

Subscripts

denotes twist of type , with kink at 

denotes twist of type , with kink at 

denotes twist of type , with kink at 

denote twist of type  with kink at 
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Sketch 1.1   

The chord line is defined as the straight line connecting the leading and trailing-edge points. For a 
with a finite base thickness, the trailing-edge point is taken as the mid-thickness point. The leadin
point is defined as that unique point at which a circle centred at the trailing-edge point is tangentia
section. 

2. INTRODUCTION AND SCOPE OF ITEM

2.1 Introduction

A method is presented for the rapid estimation of the theoretical spanwise loading of wings with c
and twist in wholly subsonic flow*. It utilises the basic method of Derivation 2 which gives spanwise loading
due to incidence for untwisted and uncambered wings and extends the procedure to take account of camber
and twist. The effect of camber is treated by considering it as imparting an equivalent incremental twist to
the wing. A simple artifice is used to represent the twist distribution by a combination of straigh
distributions, from which values of effective local twist are derived for use in the method. 

A step-by-step description of the calculation procedure to be followed for estimating the spanwise l
is given in Section 5.3. 

2.2 Scope of Item

The method is applicable to a wide range of wing planforms in unseparated flow at subcritical 
numbers. The simplifications adopted in accounting for camber and twist can involve some 
reservations on the choice of planform (see Section 6) and there are minor restrictions on the choice
leading-edge and trailing-edge shapes, see Section 4. 

3. BASIS OF METHOD

3.1 Uncambered and Untwisted Wings

A rapid method for estimating the theoretical spanwise loading due to incidence was develo
Derivation 2, where a full account can be found. In subsonic compressible flow the method embo
modified planform in which all spanwise dimensions are reduced by the factor . 

* A computer program, ESDUpac A9510, described in Item No. 95010 (Reference 7), is available that calculates the spanwise loadi
directly from steady lifting-surface theory using the Multhopp-Richardson solution.

β
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Derivation 2 is applicable to wings for which , and the charts contained in it are reproduced i
Item. An additional chart has been generated using data obtained from Derivations 3 and 4 to extend the
range of applicability to . Details of the procedure are given in Section 4. 

3.2 Cambered and Twisted Wings

The extension of Derivation 2 to cater for wings with camber and twist is based on factoring the span
leading due to constant unit incidence by an effective local twist angle, . The angle  is related to th
local total twist  that incorporates the effects of both camber and geometric twist. Sections 3.2.1 and
3.2.2 describe the calculation of . The calculation of  is described in Section 5. 

3.2.1 Representation of camber as a local twist

To cater for wings with camber, the spanwise distribution of the local zero-lift angle, , must fir
obtained. Values of  are estimated by the method of Derivation 1. An approximate expression for the
zero-lift angle of a cambered wing section is given by

(3.1)

where Bi is obtained from Table 3.1 and zCi is the camber ordinate given by

(3.2)

as shown in Sketch 1.1.

The approximate value of zero-lift angle given by Equation (3.1) is then interpreted as an incremental loc
twist angle, .

3.2.2 Local total twist due to camber and geometric twist

The local total twist angle, , is obtained by adding the geometric local twist, , and the increm
local twist, , resulting from wing camber. Thus

(3.3)

TABLE 3.1 

i 1 2 3 4 5 6 7

0 0.025 0.05 0.1 0.2 0.3 0.4

Bi 1.45 2.11 1.56 2.41 2.94 2.88 3.13

i 8 9 10 11 12 13 14

0.5 0.6 0.7 0.8 0.9 0.95 1.00

Bi 3.67 4.69 6.72 11.75 21.72 99.85 –164.88
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for cambered, untwisted wings,  and ; for uncambered, twisted wings, 
.

4. ESTIMATION OF THEORETICAL SPANWISE LOADING DUE TO INCIDENCE

4.1 Scope of Method

The method used is that of Derivation 2* , extended to . Neither  nor  is required as inp
Charts used in the rapid estimation of the theoretical spanwise loading due to incidence are pres
Figures 1 to 8. 

The spanwise centre of pressure position, , is derived from Figures 1 to 5 in terms of aspect ratio,
mid-chord sweep, Mach number and a taper parameter. This taper parameter caters for arbitrary
edges, but excludes wings with inverse taper . The method has an upper limit of 
mid-chord sweep angles such that . The lower limit of  is 1.5, except that for w
with straight leading and trailing edges and  it is known that  converges rapidly to the 
corresponding to elliptic loading  as . This may sometimes be used as an extra
on the plot required in step (iii) of Section 4.2.

The method should not be applied to planforms having cranked leading or trailing edges with discont
greater than about 40°.

4.2 Wings with Straight or Cranked Leading and Trailing Edges

The procedure of Derivation 2 is as follows.

(i) Evaluate the taper parameter

(4.1)

 for a straight tapered wing.

(ii) Knowing  and , obtain  from Figures 1 to 5 for  and 12, respectively.

(iii) Plot  against  to obtain  for the required value of .

 for a straight leading edge.

Note that  for wings with straight trailing edges.

* A computer program listing for the method of Derivation 2 is contained in an Addendum to that Derivation.

(iv) Evaluate (4.2)
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(v) Obtain ,  and  from Figures 6, 7 and 8, for selected values of  correspondin
to step (i) in Section 5.2.

(vi) Evaluate the local spanwise loading due to incidence from the equation 

(4.3)

where the last term is omitted if .

4.3 Swept Wings with Curved Leading Edges

Curved leading edges are defined here as having continuous slope, apart from the root, and stre
wing tips of zero chord. The procedures used depend on the form of the trailing edge and are only applicable
when the sweep angles  and  are approximately equal.

(a) Complete step (i) of Section 4.2.

(b) Evaluate the empirical parameter .

For straight trailing edges

. (4.4)

For curved or cranked trailing edges

(4.5)

and  is obtained from Equation(4.2).

(c) Step (ii) of Section 4.2 now requires the evaluation of 

, (4.7)

where  is obtained from Figures 1 to 5 with the true  and  from Equation (4.1) but with
.

(d) Steps (iii) to (vi) of Section 4.2 follow with  replaced by .

where (4.6)
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5. ESTIMATION OF THEORETICAL SPANWISE LOADING FOR CAMBERED AND TWISTED
WINGS

The wing incidence, , and the spanwise variation of  must be defined relative to a common ref
plane (see Sketches 5.1 and 5.2). 

Sketch 5.1   View in the longitudinal direction

Sketch 5.2   *View in the lateral direction

It is implicit that when the reference plane lies in the stream direction the wing is at zero incidence .

For the purpose of this Item  is defined in terms of a datum value, , and the twist, , relative 
datum value (see Sketch 5.3). 

* For purposes of clarity in Sketch 5.2, the root and tip chords are shown as having a common trailing edge (t.e.) location lying 
reference plane. In practice this will not usually be the case.

α αT

α 0=( )

αT αT0 δ
8
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Sketch 5.3   Definition of  in terms of  and  (Note that in this sketch  is negative)

The lift distribution at  then consists of contributions due to  and . The contribution d
 is simply an incidence loading and may be determined as such. Thus it remains to determ

spanwise loading due to the spanwise twist distribution, . The procedure adopted here is desc
Sections 5.1 to 5.3. 

5.1 Representation of Twist Distribution by Linear Segments

As stated in Section 3.2, the method requires a distribution of effective twist, , to be derived from
distribution of twist, .To do this,  must first be represented by a series of contiguous linear seg
Two basic types of linear twist distribution are used, as defined in Sketches 5.4 and 5.5 in which  and

 respectively are the values of  at the wing root and wing tip. 

Sketch 5.4   Twist of Type A

αT αT0 δ αT0

α 0= αT0 δ
αT0

δ

αE
αT αT

δA
δB δ
9
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Sketch 5.5   Twist of Type B

In principle a given twist distribution can be represented by a number of linear segments, but it is
that most distributions encountered in practice can be adequately represented by up to four linear s
and only such cases are considered here. A two-segment representation, for example, could be us
twist distribution illustrated in Sketch 5.6. The extension of the method for an arbitrary number of segm
is considered in Appendix A. 

In Sketch 5.6,  is the value of  at  derived from the two-segment representation, a
negative as drawn. For this illustration  and  are positive. The parameters , ,  and 
define the twist distribution across the span (see Example 1 in Section 8.1).

Sketch 5.6   

Many practical twist distributions have marked changes in twist near the wing root and tip. For such
four linear segments can often be used to represent the twist, as shown in Sketch 5.7.

αT0 αT η ηK=
δA δB δA δB ηK αT0
10
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Sketch 5.7   

In Sketch 5.7,  and  are positive as drawn, whilst ,  and  (the common value of
where the segments join at ) are negative as drawn. The parameters  and  are obta
extrapolating the appropriate segments to the root  and tip  respectively. The para

, , , , , ,  and  then define the twist distribution across the span (see Exa
3 in Section 8.3). 

It is immediately clear that the full line in Sketch 5.7 comprises two twist distributions of type A and tw
of type B as shown in Sketch 5.8.

Sketch 5.8   

5.2 Evaluation of Effective Local Twist

To determine the incremental spanwise loading, , due to , an effective local twist, 
defined such that

δA1 δB1 δA1 δB2 αT0 αT
ηK δA1 δB1

η 0=( ) η 1=( )
δA1 δA2 δB1 δB2 ηA ηB ηK αT0

CLLT c/c( ) αT αE
11
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, (5.1)

where the spanwise load distribution due to incidence, , is determined from Section 4 and the lift-curve
slope, , is determined from Reference 5. In setting up a procedure for the rapid determination of 
the method of Derivation 4 has been used to calculate values of  for a wide range of w
planforms having twist distributions of types A and B. The results have been collapsed in terms of effective
twist parameters KA and KB by substituting into Equation (5.1)

. (5.2)

To a very good approximation (see Section 6), the parameters KA and KB depend only on  and  and
they are given numerically in Tables 9.1 to 9.5. Their use for two- and four-segment linear twis
distributions is described in step (vi) of Section 5.3. Their use for an arbitrary number of segments is outlin
in Appendix A. 

5.3 Procedure for Estimating Spanwise Loading for Wings with Camber and Twist

(i) Select from those in Tables 9.1 to 9.5 a number of spanwise locations, , at which the spanw
loading is to be determined. 

(ii) Obtain the theoretical spanwise loading due to incidence, , for the required planform and
number, as detailed in Section 4. 

(iii) Use Reference 5 to derive  which is a function of ,  and , and hen
. For wings with cranked leading or trailing edges, or with curved leading ed

Reference 6 will be required to determine an equivalent planform for use in conjunction w
Reference 5. 

(iv) Calculate the equivalent local twist, , due to camber from the method in Section 3.2.1 which
must be applied for each of the spanwise locations chosen in step (i). Derive values of tota
angle, , by the addition of  to the local geometric twist, . 

(v) Represent  by linear segments as illustrated in Section 5.1. 

The remaining steps must be evaluated for each spanwise location chosen in step (i). 

(vi) Evaluate the effective local twist angle as follows.

(a) For two linear segments, as shown in Sketch 5.6*,

, (5.3)

where KA and KB are obtained from Tables 9.1 to 9.5 as functions of  and . In using Table
9.1 to 9.5 linear interpolation is satisfactory for values of  or  intermediate to those gi
except for low values of .

(b) For four linear segments, as shown in Sketch 5.7*,

* The values of  used in Equations (5.3) and (5.4) must be those from the linear representation. The use of the true values in calcu
, while having certain attractions, would be inconsistent with the values of  developed in step (vii).
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c

c
---- σa1αE=

σ
a1 αE

CLLT c/c( )

αE αT δAKA δBKB+ +=

βA ηK

η

σ

dCL/dα′( )/A βA λ A Λ½tan
dCL/dα′

αC

αT αC αG

αT

αE αT δAKA δBKB+ +=

βA ηK
βA ηK

ηK

αT
αE CLT
12



83040�

,
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where
In both Equations (5.5) and (5.6),  is the lift-curve slope per degree
 having been determined in step (iii). 

(5.4)

where, using linear interpolation if satisfactory, KA1 and KA2 are values of KA obtained from
Tables 9.1 to 9.5 as functions of  and, respectively,  and ; similarly KB1 and KB2 are
values of KB obtained from Tables 9.1 to 9.5 as functions of  and  and  and 
respectively. 

(vii) Derive the incremental lift coefficient due to twist. 

(a) For two linear segments

(5.5)

where  and  are obtained from Tables 9.1 to 9.5 as functions of  and  using
linear interpolation where necessary. It may be noted that  and  are the tota
coefficients per degree for twists of type A and type B respectively in the special case 

 (see Sketch 5.6). 

(b) For four linear segments 

(5.6)

where , ,  and  are also obtained from Tables 9.1 to 9.5 in a manner
similar to that used to obtain KA1 , KA2 , KB1 and KB2 in step (vi).

(viii) Calculate the spanwise loading due to twist as follows

. (5.7)

where  is given by Equation (4.3) and  is given by Equations (5.3) and (5.4). 

(ix) Calculate the spanwise loading for a wing with twist.

(a) For a given incidence

. (5.8)

αE αT δA1KA1 δA2 KA2 δB1KB1 δB2KB2++ + +=

βA ηK ηA
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where  is given by Equation (5.5) or (5.6) and  is given by Equation (5.7).

As with (a), for a given incidence, it is prudent to check the compatibility of the value of  
the value of  obtained via Equation (5.10). As before, if the two values are significantl
different, by more than the likely error in the integration procedure, 0.0001, say, then the valu

 should by substituted for  in Equation (5.12). This will at least ensure that the ensuin
total spanwise load distribution will be compatible with the requested value of . As with
the results should be applied with caution for such cases. 

The total lift coefficient is given by

which, within the accuracy of the method given here, is identically equal to

. (5.9)

The assumption in the method of this Item is that  in Equation (5.9) is also given to a
satisfactory accuracy by Equation  (5.5) or (5.6). In practice it is prudent to check the adequacy
the assumption by comparing the value of  given by Equation (5.5) or (5.6) with that,

, given by an integration of the spanwise loading due to twist, i.e.

. (5.10)

If the two values are significantly different, by more than the likely error in the integra
procedure, 0.0001, say, then the value of  should be used in Equation (5.9) instead of

, for consistency with the spanwise load distribution. In such cases, however, the r
should be treated with some caution since the differences between the values of  and  f
the wing and the datum values of 25° and 0.4 could be significant, see Section 6. 

(b) For a given lift coefficient the incidence is given by 

 degrees. (5.11)

Therefore, from Equation (5.8)

(5.12)
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6. ACCURACY

The accuracy of that part of the method providing the spanwise loading due to incidence (Sectio4) is
illustrated in Section 5 of Derivation 2 in which results using the rapid method are compared with res
from lifting-surface theory and with experimental data. 

The accuracy of that part of the method providing the spanwise loading due to camber and twist (Sec
5) is comparable with that for the spanwise loading due to incidence. The effective twist parameteKA
and KB) in Tables 9.1 to 9.5 have been derived for  values ranging from 1.5 to 12, but they corres
to fixed values  and . However, calculations of KA and KB for other wing planforms
have shown that sweep and taper have an effect on these parameters of secondary importance to that of

. No significant deterioration in the accuracy of the method should occur for the range of sweep a
taper parameters covered in this Item. However, some caution is advised if the sweep parameter, 
exceeds about 4 in combination with taper ratios much different from 0.4. 

The adequacy of the method of this Item in estimating the spanwise loading due to camber and t
any given case will obviously depend on the adequacy of the linear representation chosen to appr
the total twist distribution . For a wide range of practical twist distributions the two or four seg
representations in Section 5.1 will be satisfactory. For those twist distributions which are not so satisfacto
represented the method of Appendix A should be used. 

7. DERIVATION AND REFERENCES

7.1 Derivation

The Derivation lists selected sources that have assisted in the preparation of this Item.

7.2 References

The References list selected sources of information supplementary to that given in this Item.
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8. EXAMPLES

8.1 Example 1

For M = 0 and  and 10°, it is required to obtain the spanwise loading of, and the lift coefficien
a straight tapered wing with A = 8,  and , without camber and with the twist distributio
defined in Sketch 8.1.

Sketch 8.1   

The steps in the calculation follow the procedure of Section 5.3.

(i) Select a number of spanwise locations for which spanwise loadings are to be produced.

Use  to 0.9 in steps of 0.1,  and 0.98.

(ii) Obtain the theoretical spanwise loading due to incidence, as detailed in Section 4.

Evaluate  for .

.

Derive  and .

From the planform geometry,

and .

7. ESDU Computer program for estimation of spanwise loading of wings 
camber and twist in subsonic attached flow. ESDU International, I
No. 95010, 1995. ESDUpac A9510.

α 2°=
λ 0.4= Λ¼ 25°=

η 0= η 0.95=

κ 1 2λ+
3 1 λ+( )
-----------------------= λ 0.4=

κ 1 0.8+
3 1.4×
------------------ 0.429= =

A Λ½tan A Λ1tan

A Λ½tan A Λ¼
1 λ–
1 λ+
-------------- 

 –tan 3.7305 0.4286– 3.302= = =

A Λ1tan A Λ¼ 3
1 λ–
1 λ+
-------------- 

 –tan 3.7305 1.2857– 2.445= = =
16
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Derive .

Since M = 0,  and, from Figure 4, .

Obtain the functions , , and  from Figures 6, 7 and 8.

Calculate the spanwise loading due to incidence.

.

For this Example, this reduces to

because  for a straight tapered wing.

(iii) From Reference 5, derive .

, giving  per radian.

(iv) The wing is uncambered; thus  and .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

1.208 1.205 1.194 1.175 1.145 1.102 1.041 0.954 0.825 0.618 0.450 0.290

–0.0148 –0.0060 0.0006 0.0048 0.0067 0.0065 0.0043 0.0009 –0.0031 –0.0060 –0.0059 –0.00

0.0030 0.0026 0.0013 –0.0004 –0.0022 –0.0034 –0.0036 –0.0023 0.0006 0.0040 0.0047 0.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

1.197 1.212 1.206 1.183 1.143 1.090 1.022 0.937 0.822 0.636 0.474 0.311

η

βA 8= η 0.4374=

F η η,( ) G η( ) H η( )

η

F η η,( )

G η( )

H η( )

σ F η η,( ) A Λ1tan( )G η( ) βA 4–( ) 1 3.5β 1– Λ1
*tan+( )H η( )+ +=

σ F η η,( ) 2.445G η( ) 8.279H η( )+ +=

Λ*
1 Λ1=

η

σ

dC( L/dα ' )/A

1
A
---

dCL

dα '
---------- 0.563=

dCL

dα '
---------- 4.50=

αC 0= αT αG=
17
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(v) Replace the twist distribution, , by two linear segments as shown below.

This divides into twist distributions of types A and B as shown below, with .

(vi) For each spanwise station, evaluate the effective local twist angle for a two linear segment case
using Equation (5.3).

,

where  for 

and  for .

Type A: , . Type B: , .

αT

αT0 1°=

δA 3°= ηK 0.5= δB 1°= ηK 0.5=

αE αT δAKA δBKB+ +=

αT δA 1
η

ηK

-------– 
  αT0+= 0 η ηK≤ ≤

αT δB

η ηK–

1 ηK–
------------------

 
 
 

αT0+= ηK η 1≤ ≤
18
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Obtain KA and KB at the required spanwise positions from Table 9.4, for , using .
The calculations for  are summarised below.

(vii) Derive the incremental lift coefficient due to twist for two linear segments, using Equation (5.5)
and Table 9.4 obtain  and .

where  per degree.

Thus .

(viii) Calculate the spanwise loading due to twist using Equation (5.7).

. 

It will be found that the value of  obtained by integrating the spanwise loading du
twist, see Equation (5.10), is in satisfactory agreement with the value of  from step (vii),
would be expected for a wing with the datum values of  and , see Section 6.

(ix) Calculate the spanwise loading for a wing with twist using Equation (5.8), for  and
.

. 

The total lift coefficient is given by Equation (5.9)

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

2.0 1.4 0.8 0.2 –0.4 –1.0 –0.8 –0.6 –0.4 –0.2 –0.1 –0.04

–0.34 –0.18 –0.08 0.02 0.11 0.21 0.15 0.12 0.09 0.08 0.07 0.07

–1.02 –0.54 –0.24 0.06 0.33 0.63 0.45 0.36 0.27 0.24 0.21 0.21

0.02 0.02 0.02 0.02 0.05 0.09 –0.05 –0.13 –0.20 –0.27 –0.29 –0.31

0.02 0.02 0.02 0.02 0.05 0.09 –0.05 –0.13 –0.20 –0.27 –0.29 –0.31

1.00 0.88 0.58 0.28 –0.02 –0.28 –0.40 –0.37 –0.33 –0.23 –0.18 –0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.094 0.084 0.055 0.026 –0.002 –0.024 –0.032 –0.027 –0.021 –0.011 –0.007 –0.0

βA 8= ηK 0.5=
αE

η

αT

KA

δAKA

KB

δBKB

αE

CLTA CLTB

CLT δACLTA δBCLTB αT0a1+ +=

a1

dCL

dα′
---------- π

180
--------- 4.50

π
180
---------× 0.0785= = =

CLT 3.0 0.0254×( ) 1.0 0.0112×( ) 1.0 0.0785×( )–+ 0.0089= =

CLLT
c

c
---- σa1αE=

η

CLLT
c
c
--

CLT( )int
CLT( )

Λ¼ λ

α 2°=
α 10°=

CLLT
c

c
---- σa1α CLLT 

c

c
----+=

CL a1α CLT+=
19
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8.2 Example 2

It is required to calculate the spanwise loading of the wing defined in Section 8.1, but at a given value of
lift coefficient, . Find also the corresponding incidence.

Steps (i) to (viii) are as for Example 1.

and the spanwise loading for a wing with twist at a given value of  then follows f
Equation (5.12).

where  and  are obtained from steps (ii) and (viii) of Example 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.188 0.190 0.189 0.186 0.179 0.171 0.160 0.147 0.129 0.100 0.074 0.49

2 0.166 0.094 0.084 0.055 0.026 –0.002 –0.024 –0.032 –0.027 –0.021 –0.011 –0.007 –0.00

0.282 0.274 0.244 0.212 0.177 0.147 0.128 0.120 0.108 0.089 0.067 0.046

0.940 0.951 0.947 0.929 0.897 0.856 0.802 0.736 0.645 0.499 0.372 0.244

10 0.794 0.094 0.084 0.055 0.026 –0.002 –0.024 –0.032 –0.027 –0.021 –0.011 –0.007 –0.00

1.034 1.035 1.002 0.955 0.895 0.832 0.770 0.709 0.624 0.488 0.365 0.241

(ix) The incidence is calculated using Equation (5.11), and the values of  and  from step (vii)
of Example 1.

α° CL η

σa1α

CLLT
c
c
---

CLL
c
c
---

σa1α

CLLT
c
c
---

CLL
c
c
---

CL 0.3=

CLT a1

α CL CLT–( )/a1=

0.3 0.0089–( )0.0785=

3.71 degrees=

CL 0.3=

CLL
c
c
---- σ CL CLT–( ) CLLT

c
c
----+=

σ CLLT
c
c
--
20
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Since the wing planform and twist distribution are the same as in Example 1, the spanwise l
due to twist is compatible with the value of , see step (viii) of Example 1. The overall spanwise
loading is therefore also compatible with the required value of .

8.3 Example 3

It is required to obtain the spanwise loading for the wing planform used in Example 1 but wit
geometric twist distribution defined in Sketch 8.2, and at  as in Example 2.

Sketch 8.2   

Steps (i) to (iv) are the same as for Example 1.

This divides into two twist distributions of type A and two of type B as in Sketch 5.8 with

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

1.197 1.212 1.206 1.183 1.143 1.090 1.022 0.937 0.822 0.636 0.474 0.31

0.348 0.353 0.351 0.344 0.332 0.317 0.298 0.273 0.239 0.186 0.138 0.09

0.094 0.084 0.055 0.026 –0.002 –0.024 –0.032 –0.027 –0.021 –0.011 –0.007 –0.

0.442 0.437 0.406 0.370 0.331 0.293 0.266 0.246 0.218 0.174 0.131 0.08

(v) Replace the twist distribution, , by four linear segments as shown below.

η

σ

σ CL( CLT)–

CLLT
c
c
---

CLLT
c
c
---

CLT
CL 0.3=

CL 0.3=

αT
21
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, such that 

      , , , ,

, , and . 

It will be noted that the twist distributions denoted by A1 and B1 and the value of  are the sam
as those for Example 1.

where  for ,

 for ,

 for 

and  for .

(vi) For each spanwise station, evaluate the effective local twist angle using Equation (5.4).

αT0 1°–=

δA1 3.0°= δA2 1.0°–= ηA 0.1= ηK 0.5=

δB1 1.0°= δB2 0.5°–= ηB 0.9=

αT0

αE αT δA1KA1 δA2KA2 δB1+ KB1 δB2KB2+ + +=

αT δA1 1
η

ηK

-------– 
  δA2 1

η
ηA

------– 
  αT0+ += 0 η ηA≤ ≤

αT δA1 1
η

ηK

-------– 
  αT0+= ηA η ηK≤ ≤

αT δB1

η ηK–

1 ηK–
------------------

 
 
 

αT0+= ηK η ηB≤ ≤

αT δB1

η ηK–

1 ηK–
------------------

 
 
 

δB2

η ηB–

1 ηB–
------------------

 
 
 

αT0+ += ηB η 1≤ ≤
22
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The values of KA1 , KA2 ; KB1 , KB2 are obtained from Table 9.4 at the required spanwise position
and values of , ; ,  respectively.

As with Example 1, it will be found that the value of  obtained by integrating the span
loading due to twist, see Equation (5.10), is in satisfactory agreement with the value of  fro
step (vii).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

1.0 1.40 0.80 0.20 –0.40 –1.00 –0.80 –0.60 –0.40 –0.20 –0.35 –0.44

–0.34 –0.18 –0.08 0.02 0.11 0.21 0.15 0.12 0.09 0.08 0.07 0.07

–1.02 –0.54 –0.24 0.06 0.33 0.63 0.45 0.36 0.27 0.24 0.21 0.21

–0.73 0.16 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01

0.73 –0.16 –0.09 –0.06 –0.04 –0.03 –0.03 –0.02 –0.02 –0.01 –0.01 –0.0

0.02 0.02 0.02 0.02 0.05 0.09 –0.05 –0.13 –0.20 –0.27 –0.29 –0.31

0.02 0.02 0.02 0.02 0.05 0.09 –0.05 –0.13 –0.20 –0.27 –0.29 –0.31

0 0 0 0 0 0 0 0.01 0.02 0.08 –0.29 –0.49

0 0 0 0 0 0 0 –0.01 –0.01 –0.04 0.15 0.25

0.73 0.72 0.49 0.22 –0.06 –0.31 –0.43 –0.40 –0.36 –0.28 –0.29 –0.30

(vii) Derive the incremental lift coefficient due to twist using Equation (5.6) and Table 9.4.

where  per degree, as obtained in step (vii) of Example 1.

.

(viii) Calculate the spanwise loading due to twist using Equation (5.7).

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.069 0.069 0.046 0.020 –0.005 –0.027 –0.034 –0.029 –0.023 –0.014 –0.011 –0.007

ηK ηA ηK ηB

η

αT

KA1
δA1KA1

KA2
δA2KA2

KB1
δB1KB1

KB2
δB2KB2

αE

CLT δA1CLTA1 δA2CLTA2 δB1CLTB1 δB2CLTB2 αT0a1+ + + +=

a1 0.0785=

CLT 3.0 0.0254×( ) 1.0 0.0054×–( ) 1.0 0.0112×( ) 0.5 0.0013×–( )+ + +=

1.0 0.0785×–( )+

0.0029=

CLLT
c

c
---- σa1αE=

η

CLLT
c
c
--

CLT( )int
CLT
23
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(ix) Calculate the spanwise loading for a wing with twist at  using Equation (5.12).

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

1.197 1.212 1.206 1.183 1.143 1.090 1.022 0.937 0.822 0.636 0.474 0.311

0.356 0.360 0.358 0.351 0.340 0.324 0.304 0.278 0.244 0.189 0.141 0.092

0.069 0.069 0.046 0.020 –0.005 –0.027 –0.034 –0.029 –0.023 –0.014 –0.011 –0.0

0.425 0.429 0.404 0.371 0.355 0.297 0.270 0.249 0.221 0.175 0.130 0.085

CL 0.3=

CLL
c
c
---- σ CL CLT–( ) CLLT

c
c
----+=

η

σ

σ CL( CLT)–

CLLT
c
c
--

CLLT
c
c
--
24
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9. TABLES

 

TABLE 9.1 Values of  and  for 

a. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 –0.85 0.11 0.08 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.002

0.2 –0.74 –0.28 0.16 0.13 0.11 0.09 0.08 0.07 0.07 0.06 0.06 0.06 0.004

0.3 –0.65 –0.35 –0.07 0.20 0.17 0.14 0.13 0.11 0.10 0.09 0.09 0.09 0.006

0.4 –0.58 –0.35 –0.15 0.04 0.23 0.20 0.17 0.15 0.14 0.12 0.12 0.11 0.008

0.5 –0.52 –0.33 –0.18 –0.03 0.11 0.26 0.22 0.20 0.17 0.16 0.15 0.15 0.011

0.6 –0.46 –0.31 –0.18 –0.06 0.05 0.16 0.28 0.24 0.21 0.19 0.19 0.18 0.013

0.7 –0.41 –0.28 –0.17 –0.07 0.02 0.11 0.20 0.29 0.26 0.23 0.22 0.22 0.015

0.8 –0.37 –0.26 –0.16 –0.07 0.01 0.09 0.16 0.23 0.31 0.27 0.26 0.25 0.017

0.9 –0.33 –0.23 –0.15 –0.07 0 0.07 0.14 0.20 0.26 0.32 0.30 0.29 0.018

1.0 –0.30 –0.21 –0.13 –0.06 0 0.06 0.12 0.18 0.23 0.28 0.31 0.33 0.020

b. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 0.24 0.24 0.16 0.08 0.01 –0.06 –0.12 –0.18 –0.24 –0.31 –0.33 –0.35 0.01

0.2 0.19 0.19 0.21 0.11 0.03 –0.05 –0.12 –0.19 –0.26 –0.33 –0.36 –0.38 0.01

0.3 0.15 0.15 0.16 0.18 0.07 –0.02 –0.11 –0.20 –0.28 –0.36 –0.38 –0.41 0.00

0.4 0.11 0.11 0.12 0.13 0.15 0.03 –0.08 –0.19 –0.28 –0.38 –0.42 –0.45 0.007

0.5 0.08 0.08 0.09 0.10 0.11 0.14 –0.02 –0.15 –0.28 –0.40 –0.46 –0.49 0.005

0.6 0.06 0.06 0.06 0.06 0.07 0.09 0.12 –0.08 –0.25 –0.41 –0.49 –0.54 0.004

0.7 0.04 0.04 0.04 0.04 0.05 0.05 0.07 0.10 –0.16 –0.40 –0.52 –0.58 0.002

0.8 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.08 –0.32 –0.51 –0.62 0.001

0.9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.06 –0.38 –0.62 0.000

KA KB βA 1.5=

KA

η

ηK

CLTA

KB

η

ηK

CLTB
25
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TABLE 9.2 Values of  and  for 

a. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 –0.82 0.12 0.08 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.003

0.2 –0.70 –0.25 0.17 0.13 0.10 0.09 0.07 0.06 0.06 0.05 0.05 0.05 0.007

0.3 –0.60 –0.31 –0.05 0.21 0.16 0.13 0.11 0.10 0.08 0.08 0.07 0.07 0.010

0.4 –0.53 –0.31 –0.12 0.05 0.23 0.18 0.15 0.13 0.11 0.10 0.10 0.09 0.014

0.5 –0.47 –0.29 –0.15 –0.02 0.11 0.24 0.20 0.17 0.15 0.13 0.12 0.12 0.017

0.6 –0.41 –0.27 –0.15 –0.04 0.05 0.15 0.25 0.21 0.18 0.16 0.15 0.15 0.020

0.7 –0.37 –0.24 –0.14 –0.05 0.02 0.10 0.17 0.26 0.22 0.19 0.18 0.17 0.023

0.8 –0.33 –0.22 –0.13 –0.06 0.01 0.07 0.14 0.20 0.27 0.23 0.22 0.21 0.026

0.9 –0.30 –0.20 –0.13 –0.05 0.01 0.06 0.11 0.17 0.22 0.28 0.26 0.25 0.028

1.0 –0.27 –0.18 –0.11 –0.05 0 0.05 0.10 0.15 0.19 0.24 0.27 0.28 0.031

b. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 0.19 0.20 0.12 0.05 –0.02 –0.07 –0.13 –0.18 –0.23 –0.27 –0.29 –0.30 0.01

0.2 0.15 0.15 0.17 0.09 0.01 –0.06 –0.13 –0.19 –0.24 –0.29 –0.32 –0.33 0.01

0.3 0.11 0.12 0.13 0.15 0.05 –0.04 –0.11 –0.19 –0.25 –0.32 –0.34 –0.36 0.01

0.4 0.08 0.08 0.09 0.11 0.13 0.02 –0.09 –0.18 –0.26 –0.34 –0.37 –0.39 0.010

0.5 0.06 0.06 0.06 0.07 0.09 0.12 –0.02 –0.14 –0.26 –0.36 –0.40 –0.43 0.008

0.6 0.04 0.04 0.04 0.05 0.06 0.07 0.11 –0.07 –0.23 –0.37 –0.43 –0.47 0.005

0.7 0.02 0.02 0.03 0.03 0.03 0.04 0.06 0.10 –0.15 –0.36 –0.47 –0.52 0.003

0.8 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.08 –0.30 –0.47 –0.56 0.002

0.9 0 0 0 0 0.01 0.01 0.01 0.01 0.02 0.07 –0.35 –0.58 0.0008

KA KB βA 3=

KA

η

ηK

CLTA

KB

η

ηK

CLTB
26
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TABLE 9.3 Values of  and  for 

a. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 –0.78 0.14 0.09 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.004

0.2 –0.65 –0.21 0.18 0.13 0.09 0.08 0.06 0.05 0.05 0.04 0.04 0.04 0.009

0.3 –0.54 –0.26 –0.03 0.21 0.15 0.12 0.10 0.08 0.07 0.06 0.06 0.06 0.013

0.4 –0.47 –0.26 –0.10 0.06 0.22 0.17 0.13 0.11 0.09 0.08 0.08 0.08 0.017

0.5 –0.41 –0.24 –0.12 –0.01 0.11 0.23 0.17 0.14 0.12 0.10 0.10 0.10 0.021

0.6 –0.36 –0.22 –0.12 –0.03 0.05 0.13 0.22 0.18 0.15 0.12 0.12 0.11 0.025

0.7 –0.32 –0.20 –0.12 –0.04 0.02 0.09 0.15 0.22 0.18 0.15 0.14 0.14 0.029

0.8 –0.29 –0.18 –0.11 –0.05 0.01 0.06 0.11 0.17 0.23 0.19 0.17 0.17 0.032

0.9 –0.26 –0.17 –0.11 –0.05 0 0.05 0.09 0.14 0.18 0.23 0.21 0.20 0.035

1.0 –0.24 –0.15 –0.10 –0.04 0 0.04 0.08 0.12 0.16 0.20 0.22 0.24 0.038

b. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 0.14 0.16 0.09 0.02 –0.04 –0.09 –0.13 –0.17 –0.21 –0.24 –0.25 –0.26 0.02

0.2 0.11 0.11 0.13 0.05 –0.02 –0.08 –0.13 –0.18 –0.22 –0.26 –0.27 –0.27 0.01

0.3 0.08 0.08 0.09 0.12 0.02 –0.05 –0.12 –0.18 –0.23 –0.28 –0.30 –0.30 0.01

0.4 0.05 0.06 0.06 0.08 0.11 0 –0.09 –0.17 –0.24 –0.30 –0.32 –0.33 0.012

0.5 0.04 0.04 0.04 0.05 0.07 0.10 –0.03 –0.14 –0.24 –0.32 –0.35 –0.37 0.009

0.6 0.02 0.02 0.03 0.03 0.04 0.05 0.09 –0.07 –0.21 –0.33 –0.38 –0.41 0.007

0.7 0.01 0.01 0.02 0.02 0.02 0.03 0.05 0.09 –0.14 –0.32 –0.41 –0.45 0.004

0.8 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.09 –0.27 –0.42 –0.51 0.002

0.9 0 0 0 0 0 0 0.01 0.01 0.02 0.07 –0.32 –0.54 0.0011

KA KB βA 5=

KA

η

ηK

CLTA

KB

η

ηK

CLTB
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TABLE 9.4 Values of  and  for 

a. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 –0.73 0.16 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.0054

0.2 –0.57 –0.16 0.20 0.13 0.09 0.07 0.06 0.04 0.04 0.03 0.03 0.03 0.010

0.3 –0.47 –0.20 0 0.21 0.14 0.11 0.08 0.07 0.05 0.05 0.04 0.04 0.0158

0.4 –0.39 –0.20 –0.06 0.08 0.21 0.15 0.11 0.09 0.07 0.06 0.06 0.06 0.020

0.5 –0.34 –0.18 –0.08 0.02 0.11 0.21 0.15 0.12 0.09 0.08 0.07 0.07 0.025

0.6 –0.29 –0.17 –0.08 0 0.06 0.13 0.20 0.15 0.11 0.09 0.09 0.09 0.0298

0.7 –0.26 –0.13 –0.08 –0.01 0.04 0.09 0.13 0.19 0.14 0.12 0.11 0.10 0.033

0.8 –0.23 –0.14 –0.07 –0.02 0.03 0.07 0.10 0.14 0.19 0.14 0.13 0.13 0.037

0.9 –0.21 –0.13 –0.07 –0.02 0.02 0.05 0.08 0.12 0.15 0.19 0.17 0.16 0.041

1.0 –0.19 –0.12 –0.07 –0.02 0.01 0.04 0.07 0.10 0.13 0.16 0.18 0.19 0.044

b. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 0.11 0.12 0.05 0 –0.05 –0.08 –0.12 –0.15 –0.18 –0.20 –0.20 –0.20 0.026

0.2 0.07 0.08 0.10 0.03 –0.03 –0.08 –0.12 –0.16 –0.19 –0.21 –0.22 –0.22 0.022

0.3 0.05 0.05 0.06 0.09 0 –0.05 –0.11 –0.15 –0.20 –0.23 –0.24 –0.24 0.018

0.4 0.03 0.03 0.04 0.05 0.08 –0.01 –0.09 –0.15 –0.20 –0.25 –0.26 –0.27 0.014

0.5 0.02 0.02 0.02 0.02 0.05 0.09 –0.05 –0.13 –0.20 –0.27 –0.29 –0.31 0.011

0.6 0.01 0.01 0.02 0.02 0.03 0.04 0.08 –0.07 –0.18 –0.28 –0.31 –0.34 0.008

0.7 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.08 –0.12 –0.28 –0.35 –0.39 0.005

0.8 0 0 0 0.01 0.01 0.01 0.02 0.03 0.08 –0.24 –0.36 –0.44 0.0030

0.9 0 0 0 0 0 0 0 0.01 0.02 0.08 –0.29 –0.49 0.0013
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TABLE 9.5 Values of  and  for 

a. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 –0.67 0.18 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.006

0.2 –0.50 –0.12 0.20 0.12 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.02 0.011

0.3 –0.40 –0.15 0.02 0.20 0.13 0.09 0.07 0.05 0.04 0.03 0.03 0.03 0.017

0.4 –0.33 –0.15 –0.03 0.08 0.20 0.13 0.09 0.07 0.05 0.04 0.04 0.04 0.022

0.5 –0.29 –0.14 –0.05 0.04 0.11 0.19 0.13 0.09 0.07 0.06 0.06 0.05 0.027

0.6 –0.25 –0.13 –0.05 0.01 0.06 0.12 0.18 0.12 0.09 0.07 0.06 0.06 0.032

0.7 –0.22 –0.12 –0.05 0 0.04 0.08 0.12 0.17 0.11 0.09 0.08 0.08 0.036

0.8 –0.20 –0.11 –0.05 –0.01 0.03 0.07 0.10 0.12 0.16 0.11 0.10 0.09 0.040

0.9 –0.18 –0.11 –0.06 –0.01 0.03 0.05 0.08 0.10 0.12 0.15 0.13 0.12 0.044

1.0 –0.17 –0.10 –0.05 –0.01 0.02 0.05 0.07 0.09 0.10 0.12 0.14 0.16 0.048

b. Values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

0.1 0.07 0.09 0.03 –0.01 –0.05 –0.08 –0.10 –0.12 –0.15 –0.15 –0.14 –0.14 0.02

0.2 0.05 0.05 0.07 0.01 –0.04 –0.07 –0.10 –0.13 –0.15 –0.17 –0.16 –0.15 0.02

0.3 0.03 0.03 0.04 0.07 –0.01 –0.06 –0.10 –0.13 –0.16 –0.18 –0.18 –0.17 0.01

0.4 0.02 0.02 0.03 0.04 0.07 –0.02 –0.08 –0.12 –0.17 –0.20 –0.19 –0.19 0.01

0.5 0.02 0.02 0.02 0.02 0.04 0.07  –0.04 –0.11 –0.17 –0.21 –0.22 –0.23 0.012

0.6 0.01 0.01 0.01 0.01 0.02 0.03 0.07 –0.06 –0.16 –0.23 –0.25 –0.26 0.008

0.7 0 0.01 0.01 0.01 0.01 0.01 0.03 0.07 –0.11 –0.23 –0.28 –0.30 0.005

0.8 0 0 0 0 0 0.01 0.01 0.02 0.08 –0.20 –0.30 –0.36 0.0033

0.9 0 0 0 0 0 0 0 0.01 0.02 0.09 –0.25 –0.42 0.0014
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βA = 1.5
FIGURE 1  THEORETICAL SPANWISE CENTRE OF PRESSURE
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FIGURE 2  THEORETICAL SPANWISE CENTRE OF PRESSURE
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βA = 5
FIGURE 3  THEORETICAL SPANWISE CENTRE OF PRESSURE
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βA = 8
3
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FIGURE 4  THEORETICAL SPANWISE CENTRE OF PRESSURE
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βA = 12
FIGURE 5  THEORETICAL SPANWISE CENTRE OF PRESSURE
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FIGURE 6  THE FUNCTION 

η
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FIGURE 7  THE FUNCTION 
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FIGURE 8  THE FUNCTION 
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APPENDIX A   EXTENSION OF METHOD OF SECTION 5 FOR AN ARBITRARY NUMBER OF
LINEAR TWIST SEGMENTS 

A1. ADDITIONAL NOTATION

A2. TWIST REPRESENTATION BY N LINEAR SEGMENTS

Sketch A2.1 illustrates a generalised twist distribution which has been idealised in the form of an arbrary
number (N) of linear segments.

Sketch A2.1                             

For the twist distribution shown in Sketch A2.1 the effective local twist is given by 

(A2.1)

number of linear twist segments

Subscripts

denotes i ’th linear twist segment of type B (i = 1 to n)

denotes n’th linear twist segment of type B (n = 1 to N – 1)

N

i

n

αE αT δA1KA1 Σ
n 1=

N 1–
δBnKBn++=
38
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where

where n = 1 to N – 1 and .

The corresponding lift coefficient is given by

. (A2.3)

= for 

(A2.2)
= for 

αT αT0 δA1 ηK1 η–( )/ηK1+ 0 ηK1≤
 







αT0 Σ
i 1=

n
δBi η( ηKi )–+ / 1 ηKi–( ) ηKn η ηK n 1+,≤ ≤

ηKN 1=

CLT αT0a1 δA1CLTA1 Σ
n 1=

N 1–
δBnCLTBn++=
39
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Williams of British Aerospace plc, Bristol. 
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