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AEROFOIL AND WING PITCHING MOMENT COEFFICIENT AT ZERO ANGLE OF 
ATTACK DUE TO DEPLOYMENT OF TRAILING-EDGE PLAIN FLAPS AT LOW 
SPEEDS

1. NOTATION AND UNITS

SI British

aspect ratio, 

theoretical rate of change of lift coefficient with wing angle of 
attack

rad–1 rad–1

theoretical rate of change of lift coefficient for aerofoil with 
trailing-edge flap deflection, Equation (3.3)

deg–1 deg–1

lift coefficient; (lift)/qc for aerofoil, (lift)/qS for wing

lift coefficient at zero angle of attack for aerofoil, based on c

increment in lift coefficient at zero angle of attack due to 
deployment of trailing-edge plain flap on aerofoil, based on c

pitching moment coefficient; (pitching moment)/qc2 for aerofoil, 
(pitching moment)/  for wing, referenced to c/4 for aerofoil 
and /4 for wing, see Sketch 1.1

pitching moment coefficient at zero angle of attack for aerofoil, 
based on  and referenced to c/4 

pitching moment coefficient at zero angle of attack for wing, based 
on and referenced to /4

increment in pitching moment coefficient at zero angle of attack 
due to deployment of trailing-edge plain flap on aerofoil, based on 

 and referenced to c/4, see Equation (3.1)

increment in pitching moment coefficient at zero angle of attack 
due to deployment of trailing-edge plain flap on wing, based on 

and referenced to /4, see Equation (3.6)

basic (plain) aerofoil chord (i.e. chord with high-lift devices 
undeployed), see Sketch 1.2

m ft

wing geometric mean chord m ft

wing aerodynamic mean chord, see Item No. 76003 (Reference32) m ft

wing root chord, see Sketch 1.2 m ft
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chord of trailing-edge plain flap, see Sketch 1.2 m ft

centre of incremental lift at zero angle of attack due to 
trailing-edge plain flap deflection on aerofoil section, expressed as 
fraction of chord, measured positive aft from aerofoil 
quarter-chord position, see Equation (3.5)

theoretical value of , see Equation (3.4)

efficiency factor for plain flap on aerofoil, required in 
Equation(3.2), see Figure 1

efficiency factor for plain flap on wing, required in Equation (3.7), 
see Figure 2

flap-type correlation factor, see Equation (3.8)

flap-type correlation factor for wing sweep, see Equation (3.9)

part-span factor; pitching moment coefficient increment due to 
part-span trailing-edge plain flaps extending symmetrically from 
wing centre-line divided by pitching moment coefficient increment 
due to full-span trailing-edge plain flaps at the same deflection 
angle and wing angle of attack, Figure 4

value of  corresponding to , required in Equation (3.6)

value of  corresponding to , required in Equation (3.6)

part-span factor dependent on wing sweep effect, see Figure 5

value of  corresponding to , required in Equation (3.6)

value of  corresponding to , required in Equation (3.6)

free-stream Mach number

free-stream kinetic pressure N/m2 lbf/ft2

aerofoil Reynolds number based on free-stream conditions and 

wing Reynolds number based on free-stream conditions and 

wing planform area, m2 ft2

wing semi-span, see Sketch 1.1 m ft

maximum thickness of aerofoil m ft

maximum upper surface ordinate of basic aerofoil, see Sketch 1.2 m ft

compressibility parameter, 

ct

h2

h2T h2

Jp
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deflection of trailing-edge flap, positive trailing edge down, see 
Sketch 1.2

deg deg

spanwise distance from wing centre-line as fraction of semi-span

value of  at inboard limit of flap, see Sketch 1.1

value of  at outboard limit of flap, see Sketch 1.1

wing leading-edge sweep angle, see Sketch 1.1 deg deg

wing quarter-chord sweep angle, see Sketch 1.1 deg deg

wing trailing-edge sweep angle, see Sketch 1.1 deg deg

wing taper ratio (tip chord/root chord)

angle between aerofoil datum and tangent to upper surface at 
trailing edge, see Sketch 1.2

deg deg

Subscripts

denotes value at zero angle of attack

denotes experimental value

denotes predicted value

δt°

η

ηi η

ηo η

Λ0

Λ1/4

Λ1

λ

φt°

α0

( )expt

( )pred
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Sketch 1.1   Wing notation (flaps undeployed)

Sketch 1.2   Deployed plain flap notation (at Section AA)
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2. INTRODUCTION

This Item provides a method to obtain the increment in pitching moment coefficient at zero angle of 
due to deployment of trailing-edge plain flaps, either on an aerofoil or on a wing.

For aerofoils the method predicts the centre of lift position, , due to plain flap deployment, based
thin-aerofoil theory of Derivation 29 and modified to obtain correlation with the experimental data
Derivations 4 to 11, 22 and 23. This is combined with the increment in aerofoil lift coefficient calculat
from Item No. 94028 (Derivation 2) to estimate the pitching moment coefficient increment.

For wings with full-span trailing-edge plain flaps, factors, dependent on planform geometry, are app
the pitching moment coefficient increment on a section that is representative of the wing, to allo
three-dimensional effects. Derivations 30 and 31 were used as the basis for these factors, with so
adjustment to the simple theoretical assumptions. The method of Item No. 97011 (Derivation 3) is used
(instead of Item No. 94028) to predict the increment in section lift to obtain the section pitching m
increment. For wings with part-span trailing-edge flaps, additional factors are introduced that are dep
on taper ratio, aspect ratio, sweep and spanwise extent of the flap.

Section 3 describes the prediction method and Section 4 discusses Mach number and Reynolds num
effects. The accuracy and applicability of the method are addressed in Section 5. The Derivation and
References are given in Section 6. Section 7 illustrates worked examples for an aerofoil and a wing.

3. PREDICTION METHOD

The method for aerofoils requires the use of Item No. 94028, to determine the lift increment charact
of the aerofoil/flap combination from which to derive the pitching moment coefficient increment.

However, for wings the method requires the use of Item No. 97011 to determine the lift incr
characteristics of the representative section/flap combination from which to derive the section p
moment coefficient increment. The streamwise section and flap geometries and angles at the mid-spa
the flap panel are taken to be representative of the wing/flap system, see Sketches 1.1 and 1.2. By this
means, the effects of spanwise variation are averaged out. Empirical corrections allow for the ef
wing planform geometry and the spanwise extent of the flaps.

3.1 Aerofoil Pitching Moment Coefficient Increment 

The increment in the pitching moment coefficient at zero angle of attack for deployment of a plain f
an aerofoil is obtained as the product

 . (3.1)

Here,  is the increment in lift coefficient at zero angle of attack due to deployment of a plain fl
an aerofoil and is evaluated as

 , (3.2)

where  is an empirical efficiency factor taken from Item No. 94028, and is given in Figure 1 as a fu
of the  angle  , see  Sketch  1.2,  and    is  the  theoretical  rate  of  change  of  lift  coefficient  w

h2

∆Cmtα0
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respect to the deflection angle , positive trailing edge down, at constant angle of attack, gi
thin-plate theory as

 . (3.3)

Values of  have been evaluated and the results are presented in Figure 2a.

The centre of the lift increment at zero angle of attack, , expressed as a fraction of the chord and m
positive aft from the quarter-chord point, is derived empirically from its theoretical value in Derivatio29
for a hinged plate on a thin aerofoil

 . (3.4)

Values of  have been evaluated and are given in Figure 2b.

An incremental adjustment to obtain correlation with experimental data gives

, (3.5)

where 

 is the ratio of the flap chord to the aerofoil chord,

 is the flap deflection angle, in degrees,

and

 is the ratio of the maximum upper-surface ordinate to the aerofoil chord as shown in Sketch1.2.

3.2 Wing Pitching Moment Coefficient Increment 

For a wing at zero angle of attack the increment in pitching moment coefficient due to plain flap deplo
is correlated to be

, (3.6)

where  is the aspect ratio and  is now calculated for the representative section of the wing
at flap mid-span and, instead of Equation (3.2),

, (3.7)

where  is an empirical efficiency factor for a plain flap on the representative section, taken from
No. 97011 and given in Figure 3.
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The part-span factors  and  are obtained from Figure 4 as functions of taper ratio and the inbo
outboard limits of the trailing-edge plain flap,  and  respectively.

The flap type correlation factors for plain flaps have been derived from the data of Derivations 12 to 17
and 20 to be

(3.8)

and , (3.9)

where  is the wing lift slope obtained from Item No. 70011 (Derivation 1).

The part-span wing sweep factors  and  are obtained for plain flaps from Figure 5 as funct
taper ratio and the inboard and outboard limits of the trailing-edge plain flap,  and  respective

Note that for all cases with a full-span plain flap or an unswept quarter-chord line the second t
Equation (3.6) has a value of zero.

The data for  were obtained from Derivation 30 in the simplified form

 , (3.10)

which is equivalent to Figure 5.

4. EFFECTS OF MACH NUMBER AND REYNOLDS NUMBER

4.1 Mach Number Effects

High local Mach numbers will occur at low free-stream Mach number as a result of high angle deplo
of trailing-edge plain flaps. Significant Mach number effects will occur at free-stream Mach num
greater than about 0.2, at large values of , and at progressively smaller values as Mach 
is increased. None of the data considered for this Item was for a Mach number greater than 0.27.

4.2 Reynolds Number Effects

For the data used in the derivation of this Item no effect of Reynolds number on  or 
found over the ranges of Reynolds number shown in Tables 5.1 and 5.2.

Ki Ko
ηi ηo

Kf a1/2π( )0.46
=
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5. APPLICABILITY AND ACCURACY

5.1 Applicability

5.1.1 Aerofoils

The method given in this Item for estimating the position of the centre of the lift increment and 
increment in pitching moment coefficient at zero angle of attack, due to deployment of a trailing-edg
flap, applies only to aerofoils without the deployment of a leading-edge device and with no chord ext

Table 5.1 summarises the parameter ranges covered by the experimental data, obtained from Der
4 to 11, 22, 23 and 25, from which Equation (3.5) was derived to obtain correlation.

5.1.2 Wings

The method given in this Item for estimating the increment in pitching moment coefficient at zero an
attack, due to deployment of a trailing-edge plain flap on a wing, has been shown to be applic
straight-tapered wings covering a wide range of planform parameters. Table 5.2 summarises the paramete
ranges covered by the experimental data that were obtained from Derivations 12 to 21, 24 and 26 to 28 and
used in the development of the method. Note that the method should apply to the full range of chor
and flap angles in Table 5.1.

For a wing where  is not constant, the flap should be divided into several spanwise portions, calc
made separately for each, using the mid-span geometries, and the results summed to provide a to
of . The number of portions required will depend on how rapidly the ratio  varies acros
span.

TABLE 5.1 Parameter ranges for test data for trailing-edge plain flaps on 
aerofoils used in the method of Section 3.1

Parameter Range

0.06 to 0.16

0.03 to 0.093

0.1 to 0.5

5º to 75º

12º to 84º

1.0 to 9.0

0.11 to 0.17

t/c

zum/c

ct/c

δt°

δt° φt°+

Rc 10
6–×

M

ct/c

∆Cmtwα0 ct/c
8
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No wings with cranked leading or trailing edges or curved tips were included in the analysis. It is sug
that for such wings the planform parameters  and  be calculated for the equivalent straight-
planform as defined in Item No. 76003 (Reference 32). Care should be taken with the definition of 
and the user of the final result should be aware of the non-validated use of the method for such w

5.2 Accuracy

5.2.1 Aerofoils

Sketch 5.1 shows the comparison between predicted and experimental values of the centre of 
increment, , due to deployment of trailing-edge plain flaps on an aerofoil, for data from Derivati4
to 11, 22, 23 and 25, and 92% are correlated to within . Sketch 5.2 shows the corresponding
comparison between predicted and experimental values of pitching moment coefficient increments
95% of the data are correlated to within .

5.2.2 Wings

The comparison between predicted and experimental values of the pitching moment coefficient inc
, due to deployment of both full-span and part-span trailing-edge plain flaps is show

Sketch5.3 for unswept wings and on Sketch 5.4 for swept wings, for data from Derivations 12 to 21, 24
and 26 to 28. In the two sketches 93% of the data are correlated to within  and the rms error is 

TABLE 5.2 Parameters ranges for test data for trailing-edge plan flaps on 
wings used in the method of Section 3.2

Parameter Range

2.0 to 9.0

0 to 6.9

– 0.4 to 5.7

0 to 63º

–11º to 58º

0.25 to 1.0

0.19 to 0.30

2º to 60º

6º to 72º

0 to 0.73

0.32 to 1.0

0.9 to 4.5

0.27

λ Λ1/4
ct/c

A

A Λ0tan

A Λ1/2tan

Λ0

Λ1

λ

ct/c

δt°

δt° φt°+

ηi

ηo

Rc 10
6–×

M ≤

h2
0.02±

0.04±

∆Cmtwα0

0.02±
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Sketch 5.1   Comparison of predicted and experimental values of 
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Sketch 5.2   Comparison of predicted and experimental values of  for deployment of plain

flaps on aerofoils
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Sketch 5.3   Comparison of predicted and experimental values of  for deployment of plain

flaps on unswept wings

−(∆Cmtwα0)pred

0.300.250.200.150.100.05

−(∆Cmtwα0)expt

0.30

0.25

0.20

0.15

0.10

0.05
X

X

X

X

X

0.
02

0.
02

0

Full Span

Inner Flap

Outer FlapX

Mid-Flap

∆Cmtwα0
12



98017�

 
Sketch 5.4   Comparison of predicted and experimental values of  for deployment of plain

flaps on swept wings
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6.1.3 Theory
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7. EXAMPLES

7.1 Example 1: Pitching Moment Increment due to a Plain Trailing-edge Flap on an Aerofoil

Estimate the increment in pitching moment coefficient at zero angle of attack due to the deployme
plain trailing-edge flap installed on a NACA 631-212 section .

The required geometrical parameters are

 and  ,

 and .

The flow conditions are  and , both of which are within the ranges of Table 5.1

Sketch 7.1   Flap Geometry

(1) Determine 

From Equation (3.3)

From Figure 1, with  and  so that ,

.

From Equation (3.2)

ct /c 0.25= δt° 35°=

zum/c 0.07= φ t° 6.5°=

M 0.2= Rc 4.5 106×=

c

ct =  0.25c
φt° = 6.5°

δt° = 35°

ct =  0.25c

∆CL0t

at π /90( ) π 2ct /c 1–( ) 1 2ct /c 1–( )2
–[ ]

1/2
+1–cos–

 
 
 

=

3.142/90( ) 3.142 2 0.25 1–×( ) 1 2 0.25 1–×( )2
–[ ]

1/2
+1–cos–

 
 
 

=

0.0668 deg 1– .=

δt° 35°= φt° 6.5°= δt° φ t°+ 41.5°=

Jp 0.463=

∆CL0t Jpatδ t°=

0.463 0.0668 35××=

1.082 .=
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(2) Determine  

From Equation (3.4)

From Equation (3.5)

(3) Determine 

From Equation (3.1)

7.2 Example 2: Pitching Moment Increment due to a Plain Trailing-edge Flap on a Wing

Estimate the increment in pitching moment coefficient at zero angle of attack for a Reynolds n
 and a free-stream Mach number  for the wing with a part-span trailing-edge 

flap shown in Sketch 7.2. The wing has the planform parameter values

,  and ,

and a constant streamwise section across the span, NACA 631-212, which is the same as that used 
Example 1.

The flap has the same streamwise geometrical parameters as those used in Example 1 and extend
wing centre-line to 60% of the wing semi-span. The location of the flap hinge-line is a constant prop
(75%) of the local wing chord. Note that this example is for the same planform as that in the exam
Item No. 97011, in which the calculation of the required planform parameters and of  is detailed

The sweep angles  and , the planform parameter , the Mach nu
and the Reynolds number, all lie within the ranges shown on Table 5.2.

h2

h2T 0.25 1 2ct/c 1–( )2
–[ ]

1/2
1 2ct/c 1–( )–[ ]  π 2ct/c 1–( ) 1 2ct/c 1–( )2

–[ ]
1/2

+1–cos–
 
 
 

=

0.25 1 2 0.25 1–×( )2
–[ ]

1/2
1 2 0.25 1–×( )–[ ]  π 2 0.25 1–×( ) 1 2 0.25 1–×( )2–[ ]

1/2
+

1–
cos–

 
 
 

=

0.1697=

h2 h2T 0.012 44 δt°–( ) zum/c 0.011 ct /c( )3δt°+ +=

0.1697 0.012 44 35–( ) 0.07 0.011 0.25( )3
35××+×+=

0.1833 .=

∆Cmtα0

∆Cmtα0  ∆CL0t h2–=

 1.082 0.1833×–=

 0.1983–=

  0.198.–≈

R
c=

4.5 10
6×= M 0.2=

A 8= Λ1/4 25°= λ 0.4=

a1

Λ0 27.5°= Λ1 17°= A Λ0tan 4.16=
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 1, the
value
Sketch 7.2   Flap geometry on Section AA

(1) Determine 

Note that although this example is for the same section and flap geometry as for Example
efficiency factor  for an aerofoil is replaced by  for the section on a wing. The required 
for  remains the same (0.0668) as for the aerofoil of Example 1.

From Figure 3, with  and  so that ,

.

From Equation (3.7)

c

ct =  0.25c
φt° = 6.5°

δt° = 35°

ct =  0.25cFlap geometry on Section AA

Wing planform  (flap undeployed)
moment
reference
centre
at 

= =

ηi = 0 ηo = 0.6

25°

c

A

A

c=

c= 4⁄

∆CL0t

Jp Jp0
at

δt° 35°= φt° 6.5°= δt° φt°+ 41.5°=

Jp0 0.580=

∆CL0t Jp0atδt°=

0.580 0.0668 35××=

1.356 .=
19
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to
(2) Determine 

From Equation (3.6)

in which  has the same value (0.1833) as in Example 1.

From Figure 4 for  and 

and for 

.

From Figure 5 for  and 

and for 

.

The flap type correlation factor  is given by Equation (3.8) as

.

With  and , a cross-plot in  from Figures 1a 
1e of Item No. 70011, for  gives

 rad–1 .

Thus

.

The flap type correlation factor  is given by Equation (3.9) as

∆Cmtwα0

∆Cmtwα0 Kf Ko Ki–( )∆CL0th2 KfΛ KΛo KΛ i–( ) A/ 2( )∆ CL0t Λ1/4tan+–=

h2

ηi 0= λ 0.4=

Ki 0=

ηo 0.6=

Ko 0.80=

ηi 0= λ 0.4=

KΛi 0=

ηo 0.6=

KΛo 0.0498=

Kf

Kf a1/2π( )0.46
=

A Λ1/2tan 3.302= βA 1 0.2
2

–( )
1/2

8× 7.84= = λ
λ 0.4=

a1 4.57=

Kf 4.57/ 2 3.142×( )( )0.46
=

0.8637=

KfΛ

KfΛ Λ1/4cos=

25°cos=

0.9063 .=
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Therefore

∆Cmtwα0  0.8637 0.80 0.0–( )× 1.356 0.1833××–=

0.9063 0.0498 0.0–( )× 8/2 1.356 25°tan×××+

 0.2147 0.8 0.9063 0.0498 4 1.356 0.4663××××+×–=

0.1718– 0.1142+=

 0.0576–=

 0.058.–≈
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FIGURE 1  EFFICIENCY FACTOR  FOR PLAIN FLAP ON AN AEROFOIL
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FIGURE  2a  VARIATION OF  WITH 

FIGURE 2b  VARIATION OF  WITH 
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FIGURE 3  EFFICIENCY FACTOR  FOR PLAIN FLAP ON A WING
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FIGURE 4  PART-SPAN FACTOR K FOR PLAIN FLAPS
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FIGURE 5  PART-SPAN FACTOR  FOR PLAIN FLAPS
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