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AEROFOIL AND WING PITCHING MOMENT COEFFICIENT AT ZERO ANGLE OF 
ATTACK DUE TO DEPLOYMENT OF TRAILING-EDGE SPLIT FLAPS AT LOW 
SPEEDS

1. NOTATION AND UNITS

SI British

aspect ratio, 

lift coefficient; (lift)/qc for aerofoil, (lift)/qS for wing

lift coefficient at zero angle of attack for aerofoil, based on 

increment in lift coefficient at zero angle of attack due to 
deployment of trailing-edge split flap on aerofoil, based on 

pitching moment coefficient; (pitching moment)/qc2 for 
aerofoil, (pitching moment)/  for wing, referenced to  
for aerofoil and  for wing, see Sketch 1.1

pitching moment coefficient at zero angle of attack for aerofoil, 
based on  and referenced to 

pitching moment coefficient at zero angle of attack for wing, 
based on  and referenced to , see Sketch 1.1

increment in pitching moment coefficient at zero angle of 
attack due to deployment of trailing-edge split flap on aerofoil, 
based on  and referenced to , see Equation (3.1)

increment in pitching moment coefficient at zero angle of 
attack due to deployment of trailing-edge split flap on wing, 
based on  and referenced to , see Equation (3.4)

basic (plain) aerofoil chord (i.e. chord with high-lift devices 
undeployed), see Sketch 1.2

m ft

wing geometric mean chord m ft

wing aerodynamic mean chord m ft

wing root chord m ft

chord of trailing-edge split flap, see Sketch 1.2 m ft

centre of incremental lift at zero angle of attack due to 
trailing-edge split flap deflection on aerofoil section expressed 
as fraction of chord, measured positive aft from aerofoil 
quarter-chord position, see Equation (3.2)
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theoretical value of , see Equation (3.3)

flap type correlation factor

flap type correlation factor for sweep

part-span factor; pitching moment coefficient increment due to 
part-span trailing-edge split flaps extending symmetrically 
from wing centre-line of unswept wing  divided by 
pitching moment coefficient increment due to full-span 
trailing-edge split flaps at same deflection angle and wing 
angle of attack

value of  corresponding to , Figure 1

value of  corresponding to , Figure 1

 wing sweep factor dependent on wing taper ratio and spanwise 
extent of trailing-edge flap, Equation (3.5)

value of  corresponding to , Figure 2

value of  corresponding to , Figure 2

free-stream Mach number

free-stream kinetic pressure N/m2 lbf/ft 2

aerofoil Reynolds number based on free-stream conditions and 
c

wing Reynolds number based on free-stream conditions and 

wing planform area, m2 ft2

wing semispan, see Sketch 1.1 m ft

maximum thickness of aerofoil m ft

lowest surface ordinate of basic aerofoil, see Sketch 1.2 m ft

deflection of trailing-edge flap, positive trailing-edge down, 
see Sketch 1.2

deg deg

spanwise distance from wing centre-line as fraction of 
semispan

value of  at inboard limit of flap, see Sketch 1.1

value of  at outboard limit of flap, see Sketch 1.1
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wing leading-edge sweep angle, see Sketch 1.1 deg deg

wing quarter-chord sweep angle, see Sketch 1.1 deg deg

 wing trailing-edge sweep angle, see Sketch 1.1 deg deg

wing taper ratio (tip chord/root chord)

Subscripts

denotes value at zero angle of attack

denotes experimental value

denotes predicted value

Λ0

Λ1/ 4

Λ1

λ

α0

( ) texp

( )pred
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Sketch 1.1   Wing notation (flaps undeployed)

Sketch 1.2   Deployed split flap notation (at Section AA)
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2. INTRODUCTION

This Item provides a method to obtain the increment in pitching moment coefficient at zero angle of attack
due to deployment of trailing-edge split flaps, either on an aerofoil or on a wing.  

For aerofoils the method predicts the centre of lift position, , due to split flap deployment, based
thin aerofoil theory of Derivation 19 and modified to obtain correlation with the experimental data
Derivations 5, 6, 12 and 17.  This is combined with the increment in aerofoil lift coefficient calculated from
Item No. 94029 (Derivation1) to estimate the pitching moment coefficient increment.

For wings with full-span trailing-edge split flaps, factors, dependent on planform geometry, are app
the pitching moment coefficient increment on an aerofoil section that is representative of the wing, to
for three-dimensional effects.  For wings with part-span trailing-edge flaps, additional factors are introduc
that are dependent on the wing taper ratio, aspect ratio and sweep as well as on the spanwise extent of
flap.  Derivations 20 and 21 were used as the basis for three dimensional effects, with some adjustm
the simple theoretical assumptions.

Section 3 describes the prediction method and Section 4 discusses Mach number and Reynolds numb
effects.  The accuracy and applicability of the method are addressed in Section 5.  The Derivation and
References are given in Section 6.  Section 7 presents a worked example that illustrates the steps of
calculation.

3. PREDICTION METHOD

The method of this Item requires the use of Item No. 94029 to determine the lift increment charact
of the aerofoil/trailing-edge split-flap combination.  

For a wing the streamwise section and trailing-edge split flap geometries and angles at the mid-span 
flap panel are taken to be representative of the wing/split-flap system, see Sketches 1.1 and 1.2.  By this
means the effects of spanwise variation are averaged out.  Empirical corrections allow for the effec
wing planform geometry and the spanwise extent of the flaps.

3.1 Aerofoil Pitching Moment Coefficient Increment, 

The increment in the pitching moment coefficient at zero angle of attack, for deployment of a split f
an aerofoil is

(3.1)

where  is the increment in lift coefficient at zero angle of attack due to deployment of a split flap o
an aerofoil and is obtained from the method of Item No. 94029.

The centre of the lift increment, at zero angle of attack, , derived empirically for a split flap defl
on an aerofoil section, expressed as a ratio of the chord and measured positive aft from the quartr-chord
point, is given by

(3.2)

where  is the ratio of the flap chord to the aerofoil chord, 

h2

Cmtα0∆

Cmtα0∆ CL0t  h2∆–=

CL0t∆

h2

h2 h2T 0.025– 0.22 ct/c( )2 0.0000457ct/c( ) δt°( )2 0.0436 ct /c( ) zlm/c( )δ t
°––+=

ct/c
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 is the flap deflection angle in degrees,

 is the ratio of the lowest surface ordinate to the aerofoil chord as in Sketch 1.2

and  is the theoretical value of  for a hinged plate on a thin aerofoil from Derivation 19 and is given by

. (3.3)

3.2 Wing Pitching Moment Coefficient Increment, 

For a wing at zero angle of attack the increment in pitching moment coefficient due to split flap deployment
is 

(3.4)

where  and , the part-span wing factors, are obtained from Figure 1 as functions of the inboard and
outboard limits of the trailing-edge split flap,  and  respectively, and the taper ratio, .  Note th
has been modified from the theory of Derivation 20 to improve correlation.

The flap type correlation factors for split flaps have been derived from the data of Derivations 2 to 4, 7
to 11, 13 to 16 and 18 to be  and ,

 is the wing aspect ratio

and  and , the wing sweep factors, are obtained for part-span split flaps from Figure 2, as functions
of the inboard and outboard limits of the trailing-edge split flap,  and  respectively, and the tape

.  Note that for all cases for a full-span split flap and for all wings with an unswept quarter-chord line the
second term in Equation (3.4) has a value of zero.

The data for  given in Figure 2 were obtained from Derivation 20, in the simplified form

. (3.5)

4. EFFECTS OF MACH NUMBER AND REYNOLDS NUMBER

4.1 Mach Number Effects

High local Mach numbers will occur at low free-stream Mach number as a result of high angle deplo
of trailing-edge split flaps.  Significant Mach number effects will occur at free-stream Mach numbers g
than about 0.2.  None of the data considered for this Item was for a Mach number greater than 0.2

4.2 Reynolds Number Effects

For the data used in the derivation of this Item no effect of Reynolds number on  or  was
found over the ranges of Reynolds number shown in Tables 5.1 and 5.2.

δt°

zlm/c

h2T h2

h2T 0.25 1 2ct/c 1–( )2–[ ]1 2/ 1 2ct/c 1–( )–[ ]/ π 2ct/c 1–( )1–
1 2ct/c 1–( )2–[ ]1 2/+cos–{ }=

Cmtwα0∆
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5. APPLICABILITY AND ACCURACY

5.1 Applicability

5.1.1 Aerofoils

The method given in this Item for estimating the position of the centre of the lift increment and 
increment in pitching moment coefficient at zero angle of attack, due to deployment of a trailing-edg
flap, applies only to aerofoils without the deployment of a leading-edge device and with no chord exte

Table 5.1 summarises the parameter ranges covered by the experimental data, obtained from Der
5, 6, 12 and 17, from which Equation (3.2) was derived to obtain correlation.

5.1.2 Wings

The method given in this Item for estimating the increment in pitching moment coefficient, at zero
of attack, due to deployment of a trailing-edge split flap on a wing, has been shown to be applic
straight-tapered wings covering a wide range of planform parameters.  Table 5.2 summarises the paramete
ranges that were used in the development of the method.  Note that the method should apply to
range of chord ratios and flap angles in Table 5.1.

For a wing where  is not constant, the flap should be divided into several equal spanwise portions,
calculation made for each and the results summed to provide a total value of .  The num
portions required will depend on how rapidly the ratio  varies across the span.

No wings with cranked leading or trailing edges or curved tips were included in the analysis.  It is sug
that for such wings the planform parameters,  and , for the purposes of Figures 1 and 2 and for use
in Equation (3.4) and for the estimation of  and , be calculated for the equivalent straight-tapered
planform as defined in Item No. 76003 (Reference 22).  Care should be taken with the definition of 
and the user of the final result should be aware of the non-validated use of the method for such wi

The method has only been validated for wings with no leading-edge devices and with no chord ex
due to split flap deployment.

TABLE 5.1 Parameter ranges for experimental data for trailing-edge 
split flaps on aerofoils used in the method of Section 3.1

Parameter Range

0.06 to 0.30

–0.019 to –0.135

0.1 to 0.4

0 to 90°

2.0 to 6.0

0.11 to 0.17

t/c

zlm/c

ct/c

δt°

Rc 10 6–×

M

ct/c
∆Cmtwα0

ct/c

λ Λ1/4
Kf KfΛ

ct/c
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5.2 Accuracy

5.2.1 Aerofoils

Sketch 5.1 shows the comparison between predicted and experimental values of the centre of 
increment, , due to deployment of trailing-edge split flaps on an aerofoil, for data from Derivatio5,
6, 12 and 17;  92% of the data for  are correlated to within .  Sketch 5.2 shows the corresponding
comparison between predicted and experimental values of pitching moment coefficient increments
of the data are correlated to within .

5.2.2 Wings

Sketch 5.3 shows the comparison between predicted and experimental values of the pitching m
coefficient increment, , due to deployment of both full-span and part-span trailing-edge split flap
on unswept wings and on swept wings, for data from Derivations 2 to 4, 7 to 11, 13 to 16 and 18;  92% of
the data points are within  and the rms error is 0.011.

TABLE 5.2 Parameter ranges for experimental data for trailing-edge
split flaps on wings used in the method of Sections 3.2

Parameter Range

3.4 to 9.0

0 to 8.5

0 to 7.6

0 to 63°

–12° to 53°

0.2 to 1.0

0.15 to 0.25

10° to 75°

0 to 0.8

0.2 to 1.0

0.6 to 7.0

A

A Λ0tan

A Λ1/2tan

Λ0

Λ1

λ

ct/c

δt°

ηi

ηo

R
c=

10 6–×

M 0.2≤

h2
h2 0.02±

0.04±

Cmtwα0∆

0.02±
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Sketch 5.1   Comparison of predicted and experimental values of 
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Sketch 5.2   Comparison of predicted and experimental values of 

(−∆Cmtα0)pred
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Sketch 5.3   Comparison of predicted and experimental values of 
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6.1.3 Theory
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7. EXAMPLE

Estimate the increment in pitching moment coefficient at zero angle of attack for a Reynolds n
 and a free-stream Mach number  for the wing with a part-span trailing-edge

flap shown in Sketch 7.1.  The wing has the planform parameter values

,   and  

and across the span, the constant section, NACA 631-212, for which

.

The flap extends from the wing centre-line to 60% of the wing semispan.  The location of the flap hing
is a constant proportion (75%) of the local wing chord.  The required streamwise geometrical para
for the flap are

,   .

Sketch 7.1   

Rc= 7 10
6×= M 0.2=

A 8= Λ1/4 25°= λ 0.4=

zlm/c 0.0497–=

ct/c 0.25= δt
° 50°=

A

ηi = 0 ηo = 0.6A

= =

25°

c

c=

Moment 
reference 
centre at 
c= 4⁄

Aerofoil datum 

c

ct = 0.25c

 
δt = 50% % 

zlm– 0.0497c=

Wing planform (flap undeployed)

Flap geometry on section AA
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(1) Determine 

Note that this example is for the same geometry as the example given in Item No. 
(Reference23) to illustrate the derivation of the value of the increment in lift coefficient at zero
angle of attack, .  To avoid repetition the value of  required for this example is t
from Item No 97009, in which

.

Also from the example of Item 97009 the sweep angles  and  and
parameter  all lie within the ranges shown on Table 5.2.

(2) Determine 

From Equation (3.3)

From Equation (3.2)

(3) Determine 

From Equation (3.1)

(4) Determine 

From Equation (3.4)

∆CL 0t

∆CL0tw ∆CL0t

∆CL0t 1.237=

Λ0 27.5°= Λ1 17°=
A Λ0tan 4.16=

h2

h2T 0.25 1 2ct/c 1–( )2–[ ]1 2/ 1 2ct/c 1–( )–[ ]/ π 2ct/c 1–( )1–cos– 1 2ct/c(– 1– )2[ ]
1 2/

+{ }=

0.25 1 2 0.25 1–×( )2–[ ]1 2/ 1 2 0.25 1–×( )–[ ]/ π 2 0.25 1–×( )1–cos– 1 2 0.25 1–×( )2–[ ]1 2/+{ }=

0.25 1 0.5–( )2–[ ]1 2/ 1 0.5–( )–[ ]/ 3.142 0.5–( )1–cos– 1 0.5–( )2–[ ]1 2/+{ }×=

0.25 0.866× 1.5/ 3.142 2.094– 0.866+{ }×=

0.1697 .=

h2 h2T 0.025– 0.22 ct/c( )2 0.0000457ct/c( ) δt°( )2– 0.0436 ct/c( ) zlm/c( )δt°–+=

0.1697 0.025– 0.22 0.25( )2 0.0000457 0.25 502 0.0436 0.25 0.0497–( ) 50×××–××–×+=

0.1697 0.025– 0.0138 0.0286– 0.0271+ +=

0.1570 .=

∆Cmtα0

∆Cmtα0 ∆CL0th2–=

1.237 0.1570×–=

0.1942 .–=

∆Cmtwα0

∆Cmtwα0 Kf Ko Ki–( )∆Cmtα0 KfΛ KΛo KΛ i–( ) A/2( )∆CL0t Λ1/4tan[ ]+=
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From Figure 1 for  and 

and for 

.

From Figure 2 for  and 

and for 

.

Also 

and 

.

Hence

ηi 0= λ 0.4=

Ki 0=

ηo 0.6=

Ko 0.79=

ηi 0= λ 0.4=

KΛ i 0=

ηo 0.6=

KΛo 0.0498=

Kf 1.0=

KfΛ Λ¼cos=

25°cos=

0.9063=

∆Cmtwα0 1.0 0.79 0.0–( ) 0.1942–( ) 0.9423 0.9063× 0.0498 0.0–( ) 8/2 1.237 25°tan×××[ ]×+××=

 0.79 0.1942 0.9423+ 0.9063 0.0498 4 1.237 0.4663××××××–=

0.1534– 0.1041+=

 0.0493–=

  0.049 .–≈
17
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FIGURE 1  PART-SPAN FACTOR, , FOR SPLIT FLAPS
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FIGURE 2  PART-SPAN FACTOR, , FOR SPLIT FLAPS
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