1 Some Facts on Symmetric Matrices

Definition: Matrix A is symmetric if $A = A^T$.

Theorem: Any symmetric matrix

- 1) has only real eigenvalues;
- 2) is always diagonalizable;
- 3) has orthogonal eigenvectors.

Corollary: If matrix A then there exists $Q^TQ = I$ such that $A = Q^T\Lambda Q$.

Proof:

1) Let $\lambda \in \mathbb{C}$ be an eigenvalue of the symmetric matrix A. Then $Av = \lambda v$, $v \neq 0$, and

$$v^*Av = \lambda v^*v, \qquad v^* = \bar{v}^T.$$

But since A is symmetric

$$\lambda v^* v = v^* A v = (v^* A v)^* = \bar{\lambda} v^* v.$$

Therefore, λ must be equal to $\bar{\lambda}!$

2) If the symmetric matrix A is not diagonalizable then it must have generalized eigenvalues of order 2 or higher. That is, for some repeated eigenvalue λ_i there exists $v \neq 0$ such that

$$(A - \lambda_i I)^2 v = 0, \quad (A - \lambda_i I) v \neq 0$$

But note that

$$0 = v^*(A - \lambda_i I)^2 v = v^*(A - \lambda_i I)(A - \lambda_i I) \neq 0,$$

which is contradiction. Therefore, as there exists no generalized eigenvectors of order 2 or higher, A must be diagonalizable.

3) As A must have no generalized eigenvector of order 2 or higher

$$AT = A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \Lambda = T\Lambda, \quad |T| \neq 0.$$

That is $A = T^{-1}\Lambda T$. But since A is symmetric

$$T^{-1}\Lambda T = A = A^T = (T^{-1}\Lambda T)^T = T^T\Lambda T^{-T}$$
 \Rightarrow $T^T = T^{-1}$

or

$$T^TT = I$$
 \Rightarrow $v_i^T v_i = 1, \quad v_i^T v_j = 0, \forall i \neq j.$

1.1 Positive definite matrices

Definition: The symmetric matrix A is said positive definite (A > 0) if all its eigenvalues are positive.

Definition: The symmetric matrix A is said positive semidefinite $(A \ge 0)$ if all its eigenvalues are non negative.

Theorem: If A is positive definite (semidefinite) there exists a matrix $A^{1/2} > 0$ $(A^{1/2} \ge 0)$ such that $A^{1/2}A^{1/2} = A$.

Proof: As A is positive definite (semidefinite)

$$\begin{split} A &= Q^T \Lambda Q, \qquad Q^T Q = Q Q^T = I \\ &= Q^T \Lambda^{1/2} \Lambda^{1/2} Q, \qquad \Lambda_{ii}^{1/2} = \sqrt{\lambda_i} \\ &= \underbrace{Q^T \Lambda^{1/2} Q}_{A^{1/2}} \underbrace{Q^T \Lambda^{1/2} Q}_{A^{1/2}}, \end{split}$$

Theorem: A is positive definite if and only if $x^T A x > 0$, $\forall x \neq 0$.

Proof:

Assume there is $x \neq 0$ such that $x^T A x \leq 0$ and A is positive definite. Then there exists $Q^T Q = I$ such that $A = Q^T \Lambda Q$ with $\Lambda_{ii} = \lambda_i > 0$. Then for $y \neq 0$ such that $x = Q^T y$

$$0 \ge x^T A x = y^T Q A Q y = y^T Q Q^T \Lambda Q Q^T y = y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2 > 0$$

which is a contradiction.

2 Controllability Gramian

LTI system in state space

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t)$$

Problem: Given x(0)=0 and any \bar{x} , compute u(t) such that $x(\bar{t})=\bar{x}$ for some $\bar{t}>0$.

Solution: We know that

$$\bar{x} = x(\bar{t}) = \int_0^{\bar{t}} e^{A(\bar{t}-\tau)} Bu(\tau) d\tau.$$

If we limit our search for solutions u in the form

$$u(t) = B^T e^{A^T(\bar{t}-t)} \bar{z}$$

we have

$$\begin{split} \bar{x} &= \int_0^{\bar{t}} e^{A(\bar{t}-\tau)} B B^T e^{A^T(\bar{t}-\tau)} \bar{z} d\tau, \\ &= \left(\int_0^{\bar{t}} e^{A(\bar{t}-\tau)} B B^T e^{A^T(\bar{t}-\tau)} d\tau \right) \bar{z}, \qquad \xi = \bar{t} - \tau \\ &= \left(\int_0^{\bar{t}} e^{A\xi} B B^T e^{A^T\xi} d\xi \right) \bar{z}, \end{split}$$

and

$$\bar{z} = \left(\int_0^{\bar{t}} e^{A\xi} B B^T e^{A^T \xi} d\xi \right)^{-1} \bar{x},$$

$$\Rightarrow \qquad u(t) = B^T e^{A^T (\bar{t} - t)} \left(\int_0^{\bar{t}} e^{A\xi} B B^T e^{A^T \xi} d\xi \right)^{-1} \bar{x}$$

The symmetric matrix

$$X(t) := \int_0^t e^{A\xi} B B^T e^{A^T \xi} d\xi$$

is known as the Controllability Gramian.

2.1 Properties of the Controllability Gramian

Theorem: The Controllability Gramian

$$X(t) = \int_0^t e^{A\xi} B B^T e^{A^T \xi} d\xi,$$

is the solution to the differential equation

$$\frac{d}{dt}X(t) = AX(t) + X(t)A^{T} + BB^{T}.$$

If $X = \lim_{t \to \infty} X(t)$ exists then

$$AX + XA^T + BB^T = 0.$$

Proof: For the first part, compute

$$\frac{d}{dt}X(t) = \frac{d}{dt} \int_{0}^{t} e^{A\xi} BB^{T} e^{A^{T}\xi} d\xi = \frac{d}{dt} \int_{0}^{t} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} d\tau,
= \int_{0}^{t} \frac{d}{dt} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} + e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} \Big|_{\tau=t},
= A \left(\int_{0}^{t} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} d\tau \right)
+ \left(\int_{0}^{t} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} d\tau \right) A^{T} + BB^{T},
= AX(t) + X(t) A^{T} + BB^{T}.$$

For the second part, use the fact that X(t) is smooth and therefore

$$\lim_{t \to \infty} X(t) = X \quad \Rightarrow \quad \lim_{t \to \infty} \frac{d}{dt} X(t) = 0.$$

2.2 Summary on Controllability

Theorem: The following are equivalent

- 1) The pair (A, B) is controllable;
- 2) The Controllability Matrix C(A, B) has full-row rank;
- 3) There exists no $z \neq 0$ such that $z^*A = \lambda z$, $z^*B = 0$;
- 4) The Controllability Gramian X(t) is positive definite for some $t \geq 0$.

Proof:

Everything has already been proved except the equivalence of 4).

Sufficiency: Immediate from the construction of u(t).

Necessity: First part:

$$X(t) = \int_0^t e^{A\xi} B B^T e^{A^T \xi} d\xi \ge 0$$

by construction. We have to prove that when (A,B) is controllable then X(t)>0. To prove this assume that (A,B) is controllable but X(t) is not positive definite. So there exists $z\neq 0$ such that

$$z^* e^{A\tau} B \equiv 0, \quad \forall \, 0 \le \tau \le t.$$

But this implies

$$\left. \frac{d^i}{d\tau^i} (i! \, z^* e^{A\tau} B) \right|_{\tau=0} = \left. z^* A^i e^{A\tau} B \right|_{\tau=0} = z^* A^i B = 0, \quad i = 0, \dots, n-1$$

which implies $\mathcal{C}(A,B)$ does not have full-row rank (see proof of the Popov-Belevitch-Hautus Test).

3 Observability Gramian

LTI system in state space

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t)$$

Problem: Given u(t) = 0 and y(t) compute x(0).

Solution: We know that

$$y(t) = Ce^{At}x(0).$$

Multiplying on the left by $e^{A^Tt}C^T$ and integrating from 0 to t we have

$$\int_{0}^{t} e^{A^{T}\xi} C^{T} y(\xi) d\xi = \left(\int_{0}^{t} e^{A^{T}\xi} C^{T} C e^{A\xi} d\xi \right) x(0)$$

from which

$$x(0) = \left(\int_0^t e^{A^T \xi} C^T C e^{A\xi} d\xi\right)^{-1} \int_0^t e^{A^T \xi} C^T y(\xi) d\xi.$$

The symmetric matrix

$$Y(t) := \int_0^t e^{A^T \xi} C^T C e^{A\xi} d\xi$$

is known as the Observability Gramian.

3.1 Properties of the Observability Gramian

Theorem: The Observability Gramian

$$Y(t) = \int_0^t e^{A^T \xi} C^T C e^{A\xi} d\xi,$$

is the solution to the differential equation

$$\frac{d}{dt}Y(t) = A^{T}Y(t) + Y(t)A + C^{T}C.$$

If $Y = \lim_{t \to \infty} X(t)$ exists then

$$A^TY + YA + C^TC = 0.$$

3.2 Summary on Observability

Theorem: The following are equivalent

- 1) The pair (A, C) is observable;
- 2) The Observability Matrix $\mathcal{O}(A,C)$ has full-column rank;
- 3) There exists no $x \neq 0$ such that $Ax = \lambda x$, Cx = 0;
- 4) The Observability Gramian Y=Y(t) is positive definite for some $t\geq 0$.

Lemma: Consider the Lyapunov Equation

$$A^T X + XA + C^T C = 0$$

where $A \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{m \times n}$.

- 1. A solution $X \in \mathbb{C}^{n \times n}$ exists and is unique if and only if $\lambda_j(A) + \lambda_i^*(A) \neq 0$ for all $i, j = 1, \dots, n$. Furthermore X is symmetric.
- 2. If A is Hurwitz then X is positive semidefinite.
- 3. If (A, C) is detectable and X is positive semidefinite then A is Hurwitz.
- 4. If (A, C) is observable and A is Hurwitz then X is positive definite.

Proof:

Item 1. The Lyapunov Equation is a linear equation and it has a unique solution if and only if the homogeneous equation associated with the Lyapunov equation admits only the trivial solution. Assume it does not, that is, there $\bar{X} \neq 0$ such that

$$A^T \bar{X} + \bar{X} A = 0$$

Then, multiplication of the above on the right by $x_i^* \neq 0$, the *i*th eigenvector of A and on the right by $x_i^* \neq 0$ yields

$$0 = x_i^* A^T \bar{X} x_j + x_i^* \bar{X} A x_j = [\lambda_j(A) + \lambda_i^*(A)] x_i^* \bar{X} x_j.$$

Since $\lambda_i(A) + \lambda_j(B) \neq 0$ by hypothesis we must have $x_i^* \bar{X} x_j = 0$ for all i, j. One can show that this indeed implies $\bar{X} = 0$, establishing a contradiction. That X is symmetric follows from uniqueness since

$$0 = (A^{T}X + XA + C^{T}C)^{T} - (A^{T}X + XA + C^{T}C)$$

= $A^{T}(X^{T} - X) + (X^{T} - X)A$

so that $X^T - X = 0$.

Item 2. If A is Hurwitz then $\lim_{t\to\infty}e^{At}=0$. But

$$X = \int_0^\infty e^{A^T t} C^T C e^{At} \, dt \succeq 0$$

and

$$A^TX + XA = \lim_{t \to \infty} \int_0^\infty \frac{d}{dt} e^{A^Tt} C^T C e^{At} dt = \left. e^{A^Tt} C^T C e^{At} \right|_0^\infty = -C^T C.$$

4 Controllability, Observability and Duality

Primal LTI system in state space

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t)$$

Dual LTI system in state space

$$\dot{x}(t) = A^T x(t) + C^T u(t),$$

$$y(t) = B^T x(t).$$

The primal system is observable if and only if the dual system in controllable. The primal system is controllable if and only if the dual system in observable.