1 Some Facts on Symmetric Matrices

Definition: Matrix A is symmetric if $A=A^{T}$.
Theorem: Any symmetric matrix

1) has only real eigenvalues;
2) is always diagonalizable;
3) has orthogonal eigenvectors.

Corollary: If matrix A then there exists $Q^{T} Q=I$ such that $A=Q^{T} \Lambda Q$.

Proof:

1) Let $\lambda \in \mathbb{C}$ be an eigenvalue of the symmetric matrix A. Then $A v=\lambda v$, $v \neq 0$, and

$$
v^{*} A v=\lambda v^{*} v, \quad v^{*}=\bar{v}^{T} .
$$

But since A is symmetric

$$
\lambda v^{*} v=v^{*} A v=\left(v^{*} A v\right)^{*}=\bar{\lambda} v^{*} v .
$$

Therefore, λ must be equal to $\bar{\lambda}$!
2) If the symmetric matrix A is not diagonalizable then it must have generalized eigenvalues of order 2 or higher. That is, for some repeated eigenvalue λ_{i} there exists $v \neq 0$ such that

$$
\left(A-\lambda_{i} I\right)^{2} v=0, \quad\left(A-\lambda_{i} I\right) v \neq 0
$$

But note that

$$
0=v^{*}\left(A-\lambda_{i} I\right)^{2} v=v^{*}\left(A-\lambda_{i} I\right)\left(A-\lambda_{i} I\right) \neq 0,
$$

which is contradiction. Therefore, as there exists no generalized eigenvectors of order 2 or higher, A must be diagonalizable.
3) As A must have no generalized eigenvector of order 2 or higher

$$
A T=A\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right] \Lambda=T \Lambda, \quad|T| \neq 0 .
$$

That is $A=T^{-1} \Lambda T$. But since A is symmetric

$$
T^{-1} \Lambda T=A=A^{T}=\left(T^{-1} \Lambda T\right)^{T}=T^{T} \Lambda T^{-T} \quad \Rightarrow \quad T^{T}=T^{-1}
$$

or

$$
T^{T} T=I \quad \Rightarrow \quad v_{i}^{T} v_{i}=1, \quad v_{i}^{T} v_{j}=0, \forall i \neq j
$$

1.1 Positive definite matrices

Definition: The symmetric matrix A is said positive definite $(A>0)$ if all its eigenvalues are positive.
Definition: The symmetric matrix A is said positive semidefinite $(A \geq 0)$ if all its eigenvalues are non negative.

Theorem: If A is positive definite (semidefinite) there exists a matrix $A^{1 / 2}>0$ $\left(A^{1 / 2} \geq 0\right)$ such that $A^{1 / 2} A^{1 / 2}=A$.
Proof: As A is positive definite (semidefinite)

$$
\begin{aligned}
A & =Q^{T} \Lambda Q, \quad Q^{T} Q=Q Q^{T}=I \\
& =Q^{T} \Lambda^{1 / 2} \Lambda^{1 / 2} Q, \quad \Lambda_{i i}^{1 / 2}=\sqrt{\lambda_{i}} \\
& =\underbrace{Q^{T} \Lambda^{1 / 2} Q}_{A^{1 / 2}} \underbrace{Q^{T} \Lambda^{1 / 2} Q}_{A^{1 / 2}},
\end{aligned}
$$

Theorem: A is positive definite if and only if $x^{T} A x>0, \quad \forall x \neq 0$.

Proof:

Assume there is $x \neq 0$ such that $x^{T} A x \leq 0$ and A is positive definite. Then there exists $Q^{T} Q=I$ such that $A=Q^{T} \Lambda Q$ with $\Lambda_{i i}=\lambda_{i}>0$. Then for $y \neq 0$ such that $x=Q^{T} y$

$$
0 \geq x^{T} A x=y^{T} Q A Q y=y^{T} Q Q^{T} \Lambda Q Q^{T} y=y^{T} \Lambda y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}>0
$$

which is a contradiction.

2 Controllability Gramian

LTI system in state space

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)
\end{aligned}
$$

Problem: Given $x(0)=0$ and any \bar{x}, compute $u(t)$ such that $x(\bar{t})=\bar{x}$ for some $\bar{t}>0$.

Solution: We know that

$$
\bar{x}=x(\bar{t})=\int_{0}^{\bar{t}} e^{A(\bar{t}-\tau)} B u(\tau) d \tau .
$$

If we limit our search for solutions u in the form

$$
u(t)=B^{T} e^{A^{T}(\bar{t}-t)} \bar{z}
$$

we have

$$
\begin{aligned}
\bar{x} & =\int_{0}^{\bar{t}} e^{A(\bar{t}-\tau)} B B^{T} e^{A^{T}(\bar{t}-\tau)} \bar{z} d \tau, \\
& =\left(\int_{0}^{\bar{t}} e^{A(\bar{t}-\tau)} B B^{T} e^{A^{T}(\bar{t}-\tau)} d \tau\right) \bar{z}, \quad \xi=\bar{t}-\tau \\
& =\left(\int_{0}^{\bar{t}} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi\right) \bar{z}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{z}=\left(\int_{0}^{\bar{t}} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi\right. &)^{-1} \bar{x} \\
& \Rightarrow \quad u(t)=B^{T} e^{A^{T}(\bar{t}-t)}\left(\int_{0}^{\bar{t}} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi\right)^{-1} \bar{x}
\end{aligned}
$$

The symmetric matrix

$$
X(t):=\int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi
$$

is known as the Controllability Gramian.

2.1 Properties of the Controllability Gramian

Theorem: The Controllability Gramian

$$
X(t)=\int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi
$$

is the solution to the differential equation

$$
\frac{d}{d t} X(t)=A X(t)+X(t) A^{T}+B B^{T}
$$

If $X=\lim _{t \rightarrow \infty} X(t)$ exists then

$$
A X+X A^{T}+B B^{T}=0
$$

Proof: For the first part, compute

$$
\begin{aligned}
\frac{d}{d t} X(t)= & \frac{d}{d t} \int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi=\frac{d}{d t} \int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)} d \tau, \\
= & \int_{0}^{t} \frac{d}{d t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)}+\left.e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)}\right|_{\tau=t} \\
= & A\left(\int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)} d \tau\right) \\
& \quad+\left(\int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)} d \tau\right) A^{T}+B B^{T} \\
= & A X(t)+X(t) A^{T}+B B^{T} .
\end{aligned}
$$

For the second part, use the fact that $X(t)$ is smooth and therefore

$$
\lim _{t \rightarrow \infty} X(t)=X \quad \Rightarrow \quad \lim _{t \rightarrow \infty} \frac{d}{d t} X(t)=0
$$

2.2 Summary on Controllability

Theorem: The following are equivalent

1) The pair (A, B) is controllable;
2) The Controllability Matrix $\mathcal{C}(A, B)$ has full-row rank;
3) There exists no $z \neq 0$ such that $z^{*} A=\lambda z, \quad z^{*} B=0$;
4) The Controllability Gramian $X(t)$ is positive definite for some $t \geq 0$.

Proof:

Everything has already been proved except the equivalence of 4).
Sufficiency: Immediate from the construction of $u(t)$.
Necessity: First part:

$$
X(t)=\int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi \geq 0
$$

by construction. We have to prove that when (A, B) is controllable then $X(t)>0$. To prove this assume that (A, B) is controllable but $X(t)$ is not positive definite. So there exists $z \neq 0$ such that

$$
z^{*} e^{A \tau} B \equiv 0, \quad \forall 0 \leq \tau \leq t
$$

But this implies

$$
\left.\frac{d^{i}}{d \tau^{i}}\left(i!z^{*} e^{A \tau} B\right)\right|_{\tau=0}=\left.z^{*} A^{i} e^{A \tau} B\right|_{\tau=0}=z^{*} A^{i} B=0, \quad i=0, \ldots, n-1
$$

which implies $\mathcal{C}(A, B)$ does not have full-row rank (see proof of the Popov-Belevitch-Hautus Test).

3 Observability Gramian

LTI system in state space

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)
\end{aligned}
$$

Problem: Given $u(t)=0$ and $y(t)$ compute $x(0)$.
Solution: We know that

$$
y(t)=C e^{A t} x(0)
$$

Multiplying on the left by $e^{A^{T} t} C^{T}$ and integrating from 0 to t we have

$$
\int_{0}^{t} e^{A^{T} \xi} C^{T} y(\xi) d \xi=\left(\int_{0}^{t} e^{A^{T} \xi} C^{T} C e^{A \xi} d \xi\right) x(0)
$$

from which

$$
x(0)=\left(\int_{0}^{t} e^{A^{T} \xi} C^{T} C e^{A \xi} d \xi\right)^{-1} \int_{0}^{t} e^{A^{T} \xi} C^{T} y(\xi) d \xi
$$

The symmetric matrix

$$
Y(t):=\int_{0}^{t} e^{A^{T} \xi} C^{T} C e^{A \xi} d \xi
$$

is known as the Observability Gramian.

3.1 Properties of the Observability Gramian

Theorem: The Observability Gramian

$$
Y(t)=\int_{0}^{t} e^{A^{T} \xi} C^{T} C e^{A \xi} d \xi
$$

is the solution to the differential equation

$$
\frac{d}{d t} Y(t)=A^{T} Y(t)+Y(t) A+C^{T} C
$$

If $Y=\lim _{t \rightarrow \infty} X(t)$ exists then

$$
A^{T} Y+Y A+C^{T} C=0
$$

3.2 Summary on Observability

Theorem: The following are equivalent

1) The pair (A, C) is observable;
2) The Observability Matrix $\mathcal{O}(A, C)$ has full-column rank;
3) There exists no $x \neq 0$ such that $A x=\lambda x, \quad C x=0$;
4) The Observability Gramian $Y=Y(t)$ is positive definite for some $t \geq 0$.

Lemma: Consider the Lyapunov Equation

$$
A^{T} X+X A+C^{T} C=0
$$

where $A \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{m \times n}$.

1. A solution $X \in \mathbb{C}^{n \times n}$ exists and is unique if and only if $\lambda_{j}(A)+\lambda_{i}^{*}(A) \neq 0$ for all $i, j=1, \ldots, n$. Furthermore X is symmetric.
2. If A is Hurwitz then X is positive semidefinite.
3. If (A, C) is detectable and X is positive semidefinite then A is Hurwitz.
4. If (A, C) is observable and A is Hurwitz then X is positive definite.

Proof:
Item 1. The Lyapunov Equation is a linear equation and it has a unique solution if and only if the homogeneous equation associated with the Lyapunov equation admits only the trivial solution. Assume it does not, that is, there $\bar{X} \neq 0$ such that

$$
A^{T} \bar{X}+\bar{X} A=0
$$

Then, multiplication of the above on the right by $x_{i}^{*} \neq 0$, the i th eigenvector of A and on the right by $x_{j}^{*} \neq 0$ yields

$$
0=x_{i}^{*} A^{T} \bar{X} x_{j}+x_{i}^{*} \bar{X} A x_{j}=\left[\lambda_{j}(A)+\lambda_{i}^{*}(A)\right] x_{i}^{*} \bar{X} x_{j} .
$$

Since $\lambda_{i}(A)+\lambda_{j}(B) \neq 0$ by hypothesis we must have $x_{i}^{*} \bar{X} x_{j}=0$ for all i, j. One can show that this indeed implies $\bar{X}=0$, establishing a contradiction.
That X is symmetric follows from uniqueness since

$$
\begin{aligned}
0 & =\left(A^{T} X+X A+C^{T} C\right)^{T}-\left(A^{T} X+X A+C^{T} C\right) \\
& =A^{T}\left(X^{T}-X\right)+\left(X^{T}-X\right) A
\end{aligned}
$$

so that $X^{T}-X=0$.
Item 2. If A is Hurwitz then $\lim _{t \rightarrow \infty} e^{A t}=0$. But

$$
X=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} d t \succeq 0
$$

and

$$
A^{T} X+X A=\lim _{t \rightarrow \infty} \int_{0}^{\infty} \frac{d}{d t} e^{A^{T} t} C^{T} C e^{A t} d t=\left.e^{A^{T} t} C^{T} C e^{A t}\right|_{0} ^{\infty}=-C^{T} C
$$

4 Controllability, Observability and Duality

Primal LTI system in state space

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \\
& y(t)=C x(t)
\end{aligned}
$$

Dual LTI system in state space

$$
\begin{aligned}
\dot{x}(t) & =A^{T} x(t)+C^{T} u(t), \\
y(t) & =B^{T} x(t)
\end{aligned}
$$

The primal system is observable if and only if the dual system in controllable. The primal system is controllable if and only if the dual system in observable.

