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Abstract

Conventional design codes base their recommendations still on the common prejudice that an “endurance limit” exists. However,
several investigations prove clearly that in the high-cycle regime a decrease of fatigue strength with increased number of cycles still
occurs, even if corrosion or temperature effects are excluded. Therefore, the fatigue design of components submitted to loadings below
the knee point of the SN-curve must consider this fact in order to avoid failures. With regard to the course of the SN-curve in the very
high-cycle area, material and manufacturing dependent recommendations are given.
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1. Introduction

Fatigue strength is subdivided in different regions,
Fig. 1, while especially the high-cycle behaviour of
materials and components is still discussed very contro-
versially with regard to the course of the SN-curve in this
regime. Especially, the expression ‘“endurance limit” or
“fatigue limit”, in German ‘“‘Dauerfestigkeit”, in French
“limite d’endurance”, etc., still misleads many design
engineers into assuming that a structural element will
not fail as long as the so-called fatigue limit is not
exceeded, Fig. 2. This assumption is semantically implied
by the English term “limit” as well as by the German
term “Dauer” (duration) and is a part of several design
regulations [1-5] and more.

The existence of a steadily decreasing fatigue strength
beyond the knee point of the SN-curve in the range of high
cycles observed for materials like aluminium or austenitic
steels with face centred cubic structures has always been
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the state-of-the-art, but for materials with body centred
cubic structures such as ferritic steels the existence of a
“fatigue limit” has always been claimed. Various design
regulations and standards point out [2-6] that a “fatigue
limit” does not exist in the case of

e jointed components, such as press-fits of railway-wheel-
sets [7] or bolted joints because of fretting corrosion,
Fig. 3,

e high temperatures, and/or

e corrosive environments [8]if a passivation of the surface
does not occur, Fig. 4.

It is also common knowledge that welded joints under
axial loading or bending, due to residual tensile stresses,
and under torsion exhibit decreasing fatigue strength at
load levels leading to more than 107 load cycles. Some
regulations [4,5] take this into account up to 5 x 10° cycles
but show constant fatigue strength at larger number of
cycles, thus allowing the use of a non-existent fatigue
limit.

For structural and heat treatable steels with ferritic,
bainitic or martensitic microstructure, a “fatigue limit” is
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Nomenclature

D damage sum

N cycle

f frequency

P probability

J safety factor

c density

k, k*, k' slopes of the SN-curve
R load or stress ratio
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R. roughness
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1% stress

K, threshold stress intensity
s thickness

T scatter
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Fig. 1. Partition of fatigue strength.

still believed to be exhibited except when environmental
effects exist. Thus, for structural parts like connecting rods,
crankshafts, and helical springs being subjected to far more
than 10° service peak load cycles, experiencing during their
total service life up to 10'° cycles and designed such that
corresponding maximum peak stresses stay below the so-
called “endurance limit”, only the application of suitable
safety factors prevents fracture, Fig. 2. Structural durabil-
ity designing to withstand variable amplitude loadings also
allows loading in the range of finite life fatigue strength, i.e.
exceeding of the so-called “endurance limit”, to obtain a
lightweight structure, Fig. 5. In this case, the drop of fati-
gue strength in the high-cycle range is considered using
Woehler-curves for the damage calculation with fictitious

slopes beyond the knee point' of k&' =2k — 1 or 2k —2
(according to Haibach [9]) depending on material condi-
tion (wrought, cast or welded). Therefore, here it is not nec-
essary to know the real shape of the Woehler curve in the
high-cycle regime.

In this context, it should be mentioned that about 65
years ago for constant amplitude design the use of the
fatigue strength amplitude to be determined at N = 10®
cycles was recommended already for different steels and
aluminium alloys of that time [10]. Obviously, the inten-

! Physically a knee point does not exist, as the Woehler-curves change
their slope fluently in the transition range (from finite to high-cycle fatigue
strength). The knee point is solely a parameter for strength estimations.
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Fig. 3. Fatigue strength of the railway-wheelsets at press-fits (constant amplitude loading).

tion was to consider by this the decrease of fatigue
strength at least up to 10® cycles with the testing possibil-
ities of that time.

In the following, an exemplary presentation of selected,
not commonly known results up to N = 10'! cycles will be
made, disproving the existence of a fatigue limit, and sug-
gestions will be made to consider fatigue behaviour under
real or idealized constant amplitude loading in the range
of large number of cycles if an experimental proof is not
feasible. The decrease of fatigue strength in this range is
caused by failure mechanisms related to microstructural
phenomena occurring more or less at macroscopic elastic
deformations [11,14,17,21-23].

Consequently, a “fatigue limit” is realistic only if no
damage-causing microstructural defects and no aggressive
surface conditions exist.

2. Examples of decreasing fatigue strength in the range of
high cycles

Whereas conventional servo-hydraulic fatigue testing
machines, resonant actuators and shakers run at maximum
frequencies up to 400 Hz, ultrasonic test machines allow
frequencies to be larger by a factor of 100, i.e. up to
40 kHz; thereby it is feasible to conduct tests in the range
of giga cycles (10%) up to 10'* within a suitable testing time
[11-20] and others. However, this principle of testing has
some restrictions, as for example:

e Testing is only feasible with small specimens (d<
10 mm).

e Despite cooling, self-heating in the specimen core must
be considered.
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Fig. 4. Influence of the salt-spray corrosion on the fatigue strength of cast aluminium under constant and variable amplitude loading.
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Fig. 5. Design against variable amplitudes (spectrum loading).

e Load monitoring is inaccurate at N < 10° because of the
very short control time.

e A fluent transition of results from low frequency testing
with those from ultrasonic frequency testing is not
always possible [16,17].

Despite these difficulties the application of this tech-
nique indicates and evaluates correct tendencies regarding
the decrease of fatigue strength and the apparent failure
mechanisms [14,21]. Furthermore, results more recently
derived from 400 and 20 Hz testing in the high-cycle regime
will be considered. However, only the outcomes of the
400 Hz tests resulting in lives N > 10° should be evaluated
because of the difficulties of correct load adjustment below
10° cycles.

In the following, this paper shows Woehler-curves from
10 materials, Tables 1 and 2, often applied by the automo-
tive and aircraft industry. The materials are as follows the
following:

e the precipitation hardening steel 38MnVS6 BY for the
fabrication of connecting rods and crankshafts,

e cast nodular iron GGG 50 for the fabrication of hubs
and steering parts,

e steel 100Cr6 for ball bearings,

e cast aluminium alloy G-AlSi5Cu3Mg0.4 TS for crank-
shaft housings and motor bearings,

o sintered steel Fe-4.0Ni-1.5Cu-0.5Mo + 0.5C for gear
parts such as synchronizing hubs and levers,

e wrought aluminium alloys AlCuMg2 T351
AlZnMgCul.5 T66 of aircraft structures,

e wrought aluminium alloy AIMgSil T6 for load carrying

car components,

cast magnesium alloy MgA19Znl for housings, and

the shot-peened high-strength spring steel SiCr for heli-

cal springs.

and

Compared to their presentation in the primary literature
[12-23], here the important design characteristics slope of
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Table 1
Materials and chemical composition
Materials DIN Code C Si Mn P S Mo Cr Ni Cu G Ai \% Mg Fe Zn Ti Pb Sn
1 38 MnVS6 BY 0.38 0.567 1.23 0.012 0.064 0.018 — 0.063 0.063 0.183 0.025 0.089 - Rest - - - -
2 GGG50 3.65 249 050 - - - - - 070 - - - 0.04 Rest - - - -
3 100Cr6 1.03 024 034 - 0.008 0.03 146 0.15 - - - - - Rest - - - -
4 G-AlSi5Cu3Mg0.4 T5 - 530 032 - - - - 0.03 315 - Rest — 0.36 0.55 0.17 0.11 0.02 115ppm
5 Fe-4.0ONi-1.5Cu.0.5Mo+0.5C 0.5 - - - - 0.50 - 4.00 .50 - - - - Rest - - - -
6 AlCuMg2 T351 - 1.00 070 - - - <0.05 - 450 - - - 1.50 020 <0.05 <0.03 - -
7 AlZnMgCul.5 T66 - 0.14 007 - - - 0.02 - .73 - - - 2.72 0.27 7.26 0.06 — -
8 AlMgSi T6 - 1.00 070 - - - <0.25 - <0.10 - - - 090 <0.50 <0.20 <0.10 - -
9 MgAl9Znl - 0.002 0.114 - - - - 0.005 0.002 - 8.69 - - 0.022 0.906 - - -
10 VDSiCr 0.55 140 070 <0.025 <0.02 - 0.65 - <0.006 - - 020 - Rest - - - -
Table 2
Materials and mechanical data
Material DIN Code International standard R, in MPa R,, in MPa Asin % E in GPa Hardness
1 38MnVS6 NF EN 10267 608 878 20 210 246 HV30
2 GGG50 NF EN 1563 460 795 9 170 265 HV30
3 100Cr6 AISI-SAE 52100 NF - 2300 - 210 780 HV30
EN ISO 687-17 63 HRc
4 G-AlSi5Cu3Mg0.4 TS5 NF EN 1780-2 182 222 1 72 99 HV30
5 Fe-4.0Ni-1.5Cu-0.5Mo - - 1005 - 155 336 HV30
-+0.5C (35 min/1120 °C)
¢ =7.28 g/cm?
6 AlCuMg?2 T351 AA 2024 352 460 18 72 128 HV30
7 AlZnMgCul.5 T66 AA 7075 606 641 4 71 185 HV30
8 AlMgSil T6 AA 6082 T6 240 340 9.0 70 -
9 MgAl9Znl Znl AZ 91 139 199 1.3 40 68 HV0.01
10 VDSiCr - - 2216 - 206 -

XXX—XXX (£007) XXX andyn,] Jo [pUInof [pUoDUIIU] | OUISUOS "N D



C.M. Sonsino | International Journal of Fatigue xxx (2007) xxx—xxx

1000 ———r——r—— T —— T
900 Material:  38MnVS6 BY (D38MSV5S) H
800 Stress ratio: R = -1, Notch factor: K,=1.0

s 700
©
% 600
= . k=20
_g- o '““'—AN Tl=1:115
[ 400 (C) \--._‘. _\_eh\xq.\:‘\[\ i 7!
» i
g \%.\%T‘—‘_"L P [%]:
= o L i S 1 10
v 300 N L ! 50
]
A 30Hz k=56 ‘
MP
a O 20kHz Ref.: |. Marineset al. |,
10° 10°* 10° 10° 107 10° 10° 10" 10" 10"
Cycles to rupture Ny
Fig. 6. SN-curve of a precipitation hardening steel up to the giga-cycle regime.
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Fig. 8. SN-curve of a martensitic steel up to the giga-cycle regime.
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Fig. 11. SN-curve of two aluminium alloys up to the giga-cycle regime.
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Fig. 14. Fatigue strength of shot-peened springs up to the giga-cycle regime.
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the Woehler-curves, knee points, and scatters presented in
a double logarithmic plot are now newly evaluated, Figs.
6-14.

The failure criterion of the illustrated test results is total
specimen fracture. Crack propagation velocity as well as
crack propagation life up to an initial crack size of
a=0.5mm and beyond were generally not considered
here. A corresponding differentiation of the total fatigue
life regarding the evaluation of cracks in relation to com-
plex conditions such as stress gradients and larger specimen
size would have been advisable.

3. Evaluation of the examples

The slopes ahead and beyond the knee point, & and
k™ =1g(N2/N1)/1g(041/042), Tespectively, result from linear
regression analyses as well as curve fitting. Following the
concept of normalized Woehler-curves [9], the test results
were covered by scatter bands with uniform scatter bands

T, = l:[o4(Ps = 10%)/5,(Ps = 90%)] based on experiences
[24-30] and depending on the material. All Woehler-curves
shown and the evaluation of the other results [27-29,31]
reveal a continuous decrease of fatigue strength in the
range of large cycle numbers. Many materials such as the
martensitic steel 100Cr6, Fig. 8, exhibit no knee point at
all. With the slope k™ the decrease of fatigue strength per
decade is determined, Table 3.

The observed decrease per decade after the knee point or
in the high-cycle range is below 5% for steels and below
10% for aluminium alloys. These results support practical
experiences at hand [23,33]. However, the decrease per dec-
ade of fatigue strength for the aluminium alloy of about
15% is extraordinarily large compared to the investigations
with the ordinary test machines (up to 107 cycles), which
lead also to values below 10% [32].

4. Recommendations and final conclusions

Under the premise that no environmental or fretting
corrosion is present and in the case that testing up to the

Table 3 range of giga cycles is not possible, a Woehler-curve repre-
Decrease of fatigue strength per decade in the region of high cycles senting results from tests with normal frequencies (f<
Materials DIN Code P Decrease of 50 Hz) in the finite life range may be extrapolated into
fatigue strength the long life range beyond the knee point N, with the fol-
per decade in % Jowing slope data:
1 G-AlSi5Cu3Mg0.4 TS 32 7
2 GGG50 121 2 e For steels, cast irons and magnesium alloys k* = 45 cor-
i ?gol\é[né\’% BY g? ‘3‘ responding to a decrease of 5% per decade if no large
I . .
5 Fe4 ONi_1 5C0.0.5Mo 50 5 tensile rem.d}lal stresses are present. .
+0.5C, ¢ = 7.28 g/em® e For aluminium alloys welded magnesium alloys, and
6 AlCuMg 2 T351 14 15 welded steels k" =22 corresponding to a decrease of
7 AlCuMgl.5 T66 14 15 10% per decade.
8 AlMgSi T6 22 10
9 MgAl9Znl 29 ~8 . . .
10 VSSiCr 30 3 The position of the knee point depends on the material
(alloy), on its strength and also on the kind of loading
Table 4
Recommended knee points, slopes after the knee point and scatters
Material N k* Decrease per decade 1:7T,
Steel, not welded 5% 10°, high strength 45 5 1.20
2% 10%, structural steels
Steel, welded 1 x 10°, thermal stress relieved 45 5 1.50
1x107, high tensile residual stresses 22 10
Cast steel 5x 10°, high strength 45 5 1.40
2 % 10°, medium strength
Sintered steel 5x 10°, high strength 45 5 1.25
2 % 10°, medium strength
Cast nodular iron 5x 10°, high strength 45 5 1.40
2 % 10°, medium strength
Wrought aluminium alloys,not welded 1x10°%-5x 10° 22 10 1.25
Wrought aluminium alloys, welded 1 x 10° thermal stress relieved 22 10 1.45
1 x 107, high tensile residual stresses
Cast aluminium 1x10°-5x 10° 22 10 1.40
Sintered aluminium 1% 10° 22 10 1.25
Wrought magnesium alloys, not welded 5% 10%1x 10° 45 5 1.20
Cast magnesium 1x10°-5x 10° 45 5 1.30
Wrought magnesium alloys, welded 5x 10°, low tensile residual stresses 22 10 1.50

1 x 107, high tensile residual stresses
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10

(axial, bending, torsion, stress ratio) [2,7,22,34-36] and, in
the case of welded joints, additionally on the magnitude of
the residual stresses [37,38]. The scatter T, fixed to a given
mean value and required to derive safety factors and corre-
sponding allowable strength data [9] depends decisively on
material quality (pureness, population of defects); Table 4
presents some details.

Based on these findings and on the observed decrease
of fatigue strength beyond 107 cycles reported in other
investigations [39-43], the existing IIW — Recommenda-
tions for the structural durability designing of welded
components [43] have already been revised [44], Figs.
15-17.
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The data given in Fig. 15 were obtained with fillet
welded longitudinal stiffeners, butt welded plates and girth
welded tubes. They were tested under the stress ratios
R = -1, 0 and >0. The testing frequency for the longitudi-
nal stiffeners was f'= 125 Hz, for the butt welds and tubes
between 10 and 30 Hz.

For the sake of completeness, supplementary details to
the Woehler-curve slope ahead the knee point are offered
here also for components, because they contain notches
leading to steeper slopes in the finite life range depending
on material. Due to the more or less macroscopic elastic
deformations, the slope is not significantly influenced in
the long life range. By this aspect, slope data for the finite

| ¢ Failures Skopek=3,k*=22  ------ Ps 90% —-—-Ps10% ———Ps97.7% @ Run-outs |
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Fig. 15. Overall normalized evaluation and comparison with the proposed course of the SN-curve for welded steel joints.
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life range (N < Ny) of k=5 up to 8 are proposed for non-
welded components of steel, cast steel, cast nodular iron,
sintered steel, aluminium, and magnesium alloys. For
welded thin-walled components and structures made of
steel as well as aluminium and magnesium alloys k = 5-8,
and for welded thick-walled components and structures
k = 3-5 may be applied.

As a consequence of the knowledge gained, one should
be aware, when traditionally designing against a so-called
“endurance limit”, that the continuous decrease of fatigue
strength diminishes the real safety” j... (N) under service
loading with increasing number of load cycles, Fig. 18,
and thereby increases the failure probability Pry.

Many in-service failures of components like connecting
rods, crankshafts, helical springs, shafts of stationary tur-
bines, and more, subjected to load spectra with maximum

2 Designing against maximum service load and assuming a log-normal
distribution, the safety factor j can be calculated for a required probability

of failure Pr=1 — P [45]: j = (L) exp <(2'367 W)

loads of high number of occurrences (N > 10°) and there-
fore being considered as subjected to constant amplitude
loading could be avoided, if the safety factors consider
the decrease of fatigue strength. The insight gained is also
transferable to the fracture mechanics with the meaning
that a threshold stress intensity, AKy,, does not exist below
which, in correlation with a so-called fatigue limit [46], a
crack does not grow any more.
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