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by discrete cohesive crack segments passing through the nodes. The cohesive crack seg-
ments govern the non-linear response of concrete in tension softening and introduce
anisotropy in the material model. The advantage of the presented discrete crack method
over other discrete crack method is its simplicity and applicability to many cracks. In con-

Key Wwds", . trast to most other discrete crack methods, no representation of the crack surface is
Computational mechanics . . s ..
Crack needed. On the other hand, the accuracy of discrete crack methods is maintained. This is
Fracture demonstrated through several examples.

Meshless © 2010 Elsevier Inc. All rights reserved.
EFG

Material failure

1. Introduction

The fracture process of structures made of quasi-brittle materials such as concrete is characterized by the formation of
microcracks that eventually coalesce and lead to the formation of continuous macrocracks. Though methods exists that
smear treat cracking in a smeared sense [1-15], it is believed that many applications require the description of discrete
cracks. Crack propagation in concrete materials is associated with localization of the strain field, which, in case of fully open
macrocracks becomes singular across the crack. Obviously, numerical analyses of this class of problems require robust mod-
els which adequately represent the discontinuous character of the fracture process. For the modeling of the non-linear mate-
rial behavior in the vicinity of the crack tip cohesive crack models [16-25], which take into account a gradual transition from
full material strength to zero material strength, are generally adopted. This is necessary for materials with strain softening
since the use of pure continuum models lead to mesh dependent results [26].

Since the mid of the 1960s considerable progress has been made in developing models to describe the evolution of cohe-
sive cracks in quasi-brittle materials using continuum-based approaches such as plasticity or damage formulations, rotating
or fixed crack models, which, since the mid of the 1980s, have been enhanced by means of adequate regularization tech-
niques (see, e.g. [1,27-29] for a smeared representations of cracks). At the same time, models allowing for a discrete repre-
sentation of cracks have been developed by introducing cracks as separate entities directly into the discretization. Meshless
methods have become popular for these applications since thanks to the absence of a mesh, discrete cracks can easily be
inserted into the discretization [2,30-40]. Though these methods can handle arbitrary crack propagation, they are usually
restricted to a few number of cracks due to computational efficiency. One major difficulty of discrete crack models is repre-
sentation and cracking of crack surface that becomes cumbersome when number of cracks increase. However, concrete
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structures generally undergo excessive cracking before failure. Therefore, numerical methods are needed that can handle
many cracks. We propose a method based on an idea developed in [41] that can handle many cracks and simultaneously
maintain the accurate character of discrete crack models. That method was successfully used for a variety of problems
[42-47]. Such methods are urgently needed to model and understand cracking phenomena in concrete materials.

We present a meshless method for cohesive cracks. The meshless method is based on local partition of unity in order to
model the crack. In contrast to most other methods, the crack is described by a set of discrete crack segments through a node.
Cohesive zone models are applied at the interfaces of these crack segments in order to take into account the energy dissi-
pation during cracking. The main advantage of the method is its simplicity. There is no need for tracking the crack path. This
makes the method well suited for simulation of many cracks as they occur in concrete materials.

2. The methodology - a flow chart

This paragraph briefly outlines the basic steps of the method. One of the key ingredients of the method is the element-free
Galerkin method, Section 3, that is capable of modeling arbitrary crack growth. The crack is modeled via local partition of
unity enrichment. Therefore, discrete cohesive crack segments are introduced into the element-free Galerkin method
through a simple enrichment scheme, Section 4, once a certain cracking criterion is met that is explained in Section 5.
The cohesive crack segments are required to pass through the entire domain of influence of a node and the orientation is
determined by the cracking criterion, Section 5.

The cohesive force term, Section 6, is introduced as external force into the governing equations, Section 7, and takes into
account the energy dissipation during the fracture process avoiding spurious mesh-dependence. The cohesive traction de-
pends on the jump in the displacement field that is given through the partition of unity enriched meshfree method. A flow
chart is given in Fig. 1.

3. Element free Galerkin method

The element-free Galerkin (EFG) method [48] is derived from moving-least-squares (MLS) approximation, that can be
written in terms of a polynomial basis p(x) and unknown coefficients a(x):

1 Compute Displacement, eq. (25)

!

Compute Strains and Stresses

!

Check Cracking criterion
Criterion Met?

! !

Yes No
Introduce Cohesive Crack Segment Goto?2

!

Compute Jump in Displacement Field
Eq. (10)

!

Compute Cohesive Traction
Eq. (15)

}

2 Assemble Stiffness Matrix and RHS

}

Gotol

Fig. 1. Flow chart of the proposed method.
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Here, the superimposed con denotes the continuous character of the approximation, p is set to p’(x)= (1,x,y) and hence
NP =3.
Let us define the discrete weighted £, error norm J
N
J= (PT(xpax) — w)*wx —x;, h) (2)

I=1

with kernel function w(x — x;,h) where h is the interpolation radius of the kernel function, P'(x,)a(x;) is the matrix expression
of Eq. (1) and N is the number of nodes that are within this interpolation radius. The number of nodes N has to be larger (or at
least equal) than the number of polynomial functions NP in order to uniquely determine the unknown coefficients a. We
chose the quartic B-spline with circular support size for our kernel function:

1-6s248s> —3s%, s<1,

0, s>1 3)

w(X — X, h) =w(s) = {

with s = X for circular support size. The size 2h is the interpolation radius and is two times the distance between nodes.
Minimizing J, Eq. (2), with respect to the unknown coefficients a leads to the final EFG approximation

N
u(x) =Y Ni(x)u (4)
I=1

with the meshless shape functions
Ni(x) = p" (04" (x)D (x) (5)
and
Di(x) = w(x — X;, h)p' (1),
A(x) = > wx — X, )PP’ (X,). ()
1

4. Displacement field approximation

Crack is a discontinuity in the displacement field. Therefore, Eq. (4) is complemented with another term that is capable to
capture the jump in the displacement field. We can think of decomposing the displacement field into a continuous part u“rn,
Eq. (4), and discontinuous part u® that will be defined subsequently:

u(x) = u“(x) + u®(x). (7)

To discretize the discontinuous displacement field, we take advantage of the local partition of unity [49] method, local means
that the approximation is only modified in the vicinity of the crack. The partition of unity concept is especially useful in the
context of material failure since the kinematics of the crack can be incorporated into the formulation elegantly.

Instead of describing the crack as continuous surface, we propose to model the discrete crack by discrete cohesive crack
segments that pass through the entire domain of influence of a node, Fig. 2. This circumvents the need of tracking the crack
path. The jump in the displacement field is obtained by the discontinuous displacement approximation that is active only for
nodes that contain the cohesive crack segments:

ui(x) = 3" Ni(x) P (X)a, ®)

Iew,

where W, is the set of enriched nodes, q; are additional unknowns and Y(x) is the enrichment function:
Y(x) = {

1 ifn-(x-x)>0,
-1 ifn-(x-x)>0.

)

Note that only cracked nodes are enriched. The length of the cohesive segment is equal to the size of the domain of influence
of the associated cracked node. The jump in the displacement field [[u]] = u®+ — u®, where the subscript of €2 indicates the
different sides of the crack, Fig. 3, only depends on the additional degrees of freedom q;:
[ux))] =Y 2Ni(x)q;. (10)
Iewe
Instead of using the step function, Eq. (9), the heaviside enrichment could for instance be used that would result in pure po-
sitive enriched shape functions. The factor of 2 would then disappear in Eq. (10). In fact, any discontinuous function can be
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(a) continuous crack (b) Discretization with crack segments

Fig. 2. (a) Continuous crack and (b) representation of the crack with discrete cohesive crack segments.

domain of influence

Fig. 3. Cracked node where the crack segment crosses the entire domain of influence of the node.

used in order to model the jump in the displacement field. The additional nodal degrees of freedom q would adjust automat-
ically. We choose the step function since it result in a symmetric enriched shape function.
The discrete strain field can be derived as

V) = 3 VN @ + 3 VN ©)P(xg,. (11)

Iew Iew,

where W is the set of all nodes and W. is the set of cracked nodes.

5. Cracking criterion

We used the Rankine criterion to generate a crack. The crack is introduced once the maximum principal tensile stress
exceeds the uni-axial tensile strength. The orientation of the crack is defined by the vector n and parallel to the direction
of the maximum principal tensile stress. The principal stresses (and their orientation) are obtained via the solution of the
eigenvalue problem:

(03 — 0pdy)n; = 0. (12)

op being the eigenvalue, i.e. the principal stress, and n; being the associated eigenvector that determines the orientation of
the principal stress and hence the orientation of the crack.

To avoid erratic crack patterns, the stress field in the vicinity of cracked nodes are averaged. The non-local stress tensor P
is computed as a weighted average of the stresses at NG Gauss points. It results from the sum of the local stresses P, at the
Gauss points I, weighted with w; and the associated area A;:
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Fig. 4. Fixed crack segments illustrated by dashed lines for nodes far away from the crack segment of the node at the tip. Rotated crack segments are
illustrated by solid lines.
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P=> PwA (13)
1
with
. w(s)
W(S) == (14)
;VGWIAI

where w(s) is the quartic B-spline.

The stress field will change when the crack propagates. The Rankine criterion for crack initiation is met when only small
changes of the principal (stress) axes occur. Therefore, we allow the crack segments to rotate according to changes of the
direction of principal stress axis. This avoids artificial cracking of already existing macro-cracks far away from the crack
tip (see Fig. 4).

6. The cohesive law

In general, cohesive traction appear normal to the crack and in tangential direction as e.g. pointed out by [18,50]. In this
manuscript, we neglect cohesive tractions in tangential direction and leave the influence of the cohesive traction in tangen-
tial direction. This is indeed a simplification but other authors that deal with similar problems with more complex numerical
methods [31,49,51-58] reported good results. Since we also aim a direct comparison to those methods and our focus is on
the numerical method, we aim to remove other influences as much as possible.

In the cohesive model, the traction is related to the crack opening, Eq. (10):

th="fi —5—t[[uﬂn if [[u]], < dmax and [}, > [[u]];

otherwise t, = 0 when [[u]]5™" > [[u]]", (15)
where
([u]], = [[u]] (16)

is the crack opening and 6,4 is the point where the traction have decayed to zero. Unloading is linear elastic. We neglected
shear traction in our studies but intend to incorporate them in the future.

7. Equilibrium equations and discretization

The equation of equilibrium is given by

V- P+b=0, XxecQ, (17)
u=u, xel, (18)
n-P=t xely, (19)
n.-P=t([u))), xerl,, (20)
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where u are the displacements, t are the tractions, P is the stress tensor, b are the body forces, I' is the boundary and the

subscriptu, t, c denote “displacement”, “traction” and “crack”, respectively. With the test functions v that are of similar struc-
ture than the trial functions, Eqgs. (4), (8), the weak form of the equations of equilibrium can be assembled:

Z{/ stj:PdQ+/ v.thF}_Z/ v.-tdrl. (21)
=1 [V Iej =1 T

Inserting the trial functions, Egs. (8) and (4), and the test functions that are of similar structure into Eq. (21), the equation to
be solved is given in matrix form:

c.

/ B'PdQ+ [ N't.dlr= | N'tdI'+ / N'bdQ, (22)
Q Q

re re
where B and N contain continuous and discontinuous shape functions and their spatial derivatives, respectively. Continuous
B-matrix:

[Ny O

B/=| 0 Ny (23)
| Niy  Nix

Discontinuous B-matrix:

Nix 0
Bl=| 0 N, (24)
L Nl.y Nl‘x

with N = N?(x).
The final system of equations

K;}“ Klqu . All] _ f;l,ext_flu.int (25)
K& K| Aq | (£,

Lext Lint

is solved with an incremental iteration scheme in which
Ki = / (B))'C B]dQ + K / N'DNdT, (26)
Q I'e

where k¥ =1 when i =j = g, otherwise x = 0, D is the tangential stiffness of the cohesive model and the superscript i and j indi-
cate u and q for the continuous and discontinuous shape functions and

fl. = /r (N;')Ttdr+ /Q (N;')deg, (27)
fl, = /g (B;)TPdQ+ /Q (N))"t.dr. (28)

The integrals are evaluated by Gauss quadrature. Therefore, a background mesh is constructed such that the EFG nodes span
the background mesh. More detailed about Gauss quadrature in the EFG method can be found e.g. in [59,60].

8. Results

After validation of our method, we present three examples: The first example is a pre-notched sample under four-point
bending. The second example is mixed-mode failure of concrete and the last example is a three-point bending beam that
develops several cracks.

8.1. Validation

To validate our method, we studied examples where an analytical solution is available. We present results for plate under
uni-axial tension, Fig. 5. We solved this problem with three different methods:

o Finite element method with bilinear quadrilateral shape functions.
e EFG method with visibility criterion.
e Crack segment method.

In the finite element analysis, the crack is aligned with the crack. In the crack segment method, the crack segments are
placed in the middle of the specimen. The error in the energy norm is shown in Fig. 6a. The meshless methods are more accu-
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Fig. 6. Results for the plate in tension.

rate than the finite element method. The crack segment method is of the same accuracy as the EFG method with visibility
criterion but the crack segment method is computationally more efficient since it does not require representation of crack
surface. Fig. 6b shows the stress intensity factor (SIF) K; for the problem. Visibility method and crack segment method are
more accurate than finite element method and the crack segment method is similar to visibility method.

8.2. Tensile-shear beam

Consider the pre-notched beam in Fig. 7 that is subjected to concentrated forces F. Experimental data was reported by
[61]. The beam has a rectangular cross-section with thickness 156 mm. The pre-notch has a length of 82 mm. The material’s
Young's modulus is E = 25,000 MPa, Poisson’s ratio v = 0.2, tensile strength f; = 2.8 MPa and fracture energy Gy= 100 N/m.

The crack propagates from the pre-notch obliquely. Initially shear stresses dominate the crack orientation. In the later
stage, dominant tensile stresses cause the crack to straighten. Fig. 8 shows the crack pattern at the end of the simulation.
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Fig. 7. (a) The pre-notched beam subject to two concentrated loads; all dimensions are in mm and (b) definition CMSD (Crack Mouth Sliding Displacement).

(a) Mises stress

(b) Deformed beam

Fig. 8. Crack in the tensile-shear beam.

The load-Crack Mouth Sliding Displacement (CMSD) curve is in close agreement with the load-deflection curve reported in
[61]. The definition of CMSD is shown in Fig. 7. The ultimate load in the numerical simulation for the coarsest discretization
is 0.134 MN and the ultimate load for the finest discretization is 0.137 MN, that agrees well with the experiments from [61]
(see Fig. 9).

8.3. Nooru-Mohamed test

Next example is the mixed-mode fracture test of [62]. A double notched specimen as depicted in Fig. 10 is loaded simul-
taneously in tension and shear. In the experiment, the shear force is first increased up to a certain value while the tensile
force is kept zero. Then, the shear force is kept constant while the tensile force is increased until the specimen fails. We con-
sider displacement control experiments with

(1) shear force = 5 kN;
(2) shear force = 27.38 kN.

In the first case, the crack paths was almost straight while a curved crack paths occurs for case two. This experiment is

often used to test numerical methods.
The material parameters for this problem are Young’s modulus E =36.0 GPa, Poisson’s ratio v = 0.22, tensile strength

fr=2.2 MPa and fracture energy Gy= 100.0 N/m.
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Fig. 10. Nooru-Mohamed mixed-mode test [62].

The crack paths and stress distribution for our numerical simulation is illustrated in Fig. 11. We capture the straight as
well as the curved crack paths as they approximately occurred in the experiment. Fig. 12 compares the load displacement
curves of simulation and experiment. The ultimate load for simulation 1 is 14.5 kN that deviates around 10% from the exper-
imental ultimate load. The ultimate load for simulation 2 is —2.03 kN and the deviation to the experiment is within 15%. Note
the experiments underly a certain deviation as well.

8.3.1. Three-point bending beam

The last example is the three-point bending beam in bending illustrated in Fig. 13. There are five little vertical imperfec-
tions (pre-cracks) of 2 mm length in order to facilitate crack propagation.

The material has a Young’s modulus E = 36,000 MPa, Poisson’s ratio v = 0.2, tensile strength f; = 3 MPa, 5,4, = 0.33 mm and
fracture energy Gy= 100 N/m. Initially, bending stresses are dominant at crack initiation at the bottom and cracks propagate
perpendicular to the bottom line. The cracks incline due to shear stresses at a later stage. Fig. 14 shows the crack pattern at
the end of the simulation. There is no experimental data available but the crack pattern looks reasonable. The ultimate load is
15.5 kN.



4228 Y. Dong et al./Applied Mathematical Modelling 34 (2010) 4219-4231

(a) shear stress (b) normal stress

(c) shear stress (d) normal stress

Fig. 11. Results for the Nooru-Mohamed test: (a,b) for a shear force of 5kN and (c,d) for a shear force of 27.38 kN.

8.4. Four-point shear test

The last example to demonstrate the applicability of our method is the four-point shear test experimentally studied by
[63]. This test is particularly challenging for numerical methods and was studied with complex discrete crack methods.
The experimental set-up is shown in Fig. 15. The ratio of the applied forces F,/F, was set equal to the geometry parameters
¢/S and the ratio ¢/D is set to 0.4. The thickness of all specimen was 100 mm. To test size effects, [63] varied the size of the
specimen:

(1) Model 1: D =50 mm;
(2) Model 2: D=100 mm;
(3) Model 3: D =200 mm.

The ultimate load increased therefore with increasing height (and length) D. The ultimate load for Model 1 was 19.6 kN,
the ultimate load of Model 2 was 32.3 kN and the ultimate load of Model 3 was 58.8 kN that perfectly matches the exper-
imental observations. We use plane stress assumption and the following material parameters [63]: Young's modulus
E =36.53 GPa, Poisson’s ratio v = 0.22, tensile strength f; = 2.18 MPa and fracture energy Gy=93.0 N/m.

The fracture patterns of the three model are illustrated in Fig. 16. A strong size effect occurs that is also observed exper-
imentally. Two cracks appear for the small specimen while for Model 3 only one main crack reaches the opposite side of the
specimen.
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(a) Model 1

(b) Model 2

(¢) Model 3

Fig. 16. Fracture pattern and contour plot of maximum tensile stress of four-point shear test for different specimen sizes.

9. Conclusions

We studied fracture of concrete structure with a simplified meshless method. Therefore, fracture is modeled with discrete
crack model. Modeling of fracture is important for assessment and reliability analysis of concrete structures. Since the global
response is influenced by local phenomena such as cracking, a detailed crack model is needed. In our discrete crack method,
the crack was modeled by a set of cohesive crack segments that directly pass through the nodes such that no representation
of the crack surface is necessary. This makes the method ideally suited for concrete due to occurrence of many cracks in the
concrete material. It simultaneously maintains the high accuracy of discrete crack methods.

In the future, we will extend the method to reinforced and fibre reinforced concrete structures with bigger dimensions.
These structures undergo excessive cracking. They are currently developed at our Institute and our method will be extended
to predict the behavior of these structures.
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