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In very high cycle fatigue, researchers and engineers are often confronted with S–N curves which exhibit
more than one type of failure. Generally, it is assumed that every specific crack-initiation type has its own
S–N curve, so that in this case two or more S–N curves can be drawn in the S–N diagrams. This paper will
show an S–N diagram with two failure types and will provide a generalised method of drawing correct S–
N curves for every single type of failure.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In very high cycle fatigue, researchers are often confronted with
multiple-flaw S–N curves that exhibit more than one type of failure
(e.g. [1–5]). Very typical are combinations of surface crack initia-
tion and crack initiations at inclusions. Generally, it is assumed
that every crack-initiation type has its own S–N curve, so that in
this case two S–N curves are drawn in the S–N diagrams. Estab-
lished and generally accepted methods for the analysis of multi-
ple-flaw S–N curves are not available.

For two failure modes Weixing and Shenjie offer the ‘‘duplex
peak distribution model” which assumes that the life-time of each
failure type is logarithmic normal distributed and obeys a distribu-
tion function F1 or F2, respectively [3]. For the life-time distribution
function F of examined specimens which show both failure modes
they suppose an addition of the weighted single-flaw distribution
functions to be a good approach. With t as weighting coefficient
the function F appears as

F ¼ t � F1 þ ð1� tÞ � F2 ð1Þ

Sakai et al. published a similar solution for the same problem
[5]. The difference to the model of Weixing and Shenjie concerns
only the type of the distribution functions F1 or F2, which they as-
sume to be Weibull distributions.

This paper shows another approach for life-time distribution
functions which is based on the assumption that the probability
of crack initiation at a certain flaw-type is independent from that
at another flaw-type. The model is demonstrated at an S–N dia-
ll rights reserved.
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gram with two failure modes: crack initiation at inclusions and
so-called ‘‘non-defect” crack initiation. The latter type of crack ini-
tiation is rather seldom and will be shown more detailed in chapter
4. The basic calculation of the life-time distribution function F for
two failure modes can be directly compared with Eq. (1):

F ¼ 1� ð1� F1Þ � ð1� F2Þ ð2Þ
2. Life-time distribution functions in constant-amplitude test

An S–N curve is the visualisation of a function Nf(Sa) that de-
scribes the number of cycles to failure depending on the stress
amplitude Sa. It is well known, that Nf, which is also called life-
time, is a random variable and obeys a distribution function F(N,
Sa) describing the probability P of the life-time to be smaller than
N:

FðN; SaÞ ¼ PðNf ðSaÞ < NÞ ð3Þ

Since F(N, Sa) describes the probability of the event ‘‘Nf < N”, its
physical sense is that of a failure probability. This means, the dis-
tribution function F(N, Sa) is identical with the probability, that
the specimen cycled with the stress amplitude Sa fails before
reaching the number of cycles N. In some cases, it is more conve-
nient to work with survival probabilities Ps. The relation between
the survival probability and the distribution function of the life-
time is the following:

PsðN; SaÞ ¼ 1� FðN; SaÞ ð4Þ

If the specimen exhibits more than one failure mode it can be
assumed that every failure mode i has its own life-time Nfi which
obeys its own dependence on the stress amplitude: Nf1(Sa), Nf2(Sa),
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etc. Again, the life-times Nfi are random variables obeying distribu-
tion functions Fi(N, Sa) describing their probabilities to be smaller
than N when cycled with the stress amplitude Sa:

F1ðN; SaÞ ¼ PðNf 1ðSaÞ < NÞ ð5Þ
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Fig. 2. Experimental values and calculated curves of the life-time distribution
functions of the flaws and of the specimen, Sa = 540 MPa, R = �1.
F2ðN; SaÞ ¼ PðNf 2ðSaÞ < NÞ etc: ð6Þ

Now, a specimen is regarded that exhibits, under fatigue condi-
tions, n failure modes. These can be imagined, for example, as fail-
ure from the surface, from type-1 inclusions, from type-2 inclusion,
etc. It is assumed that these failure modes do not influence each
other, a circumstance that is often valid in high-strength materials.
This specimen is loaded with a stress amplitude Sa and fails after a
number of cycles Nf. By repeating this test, the experimenter gets
finally the distribution function of the specimen life-time Nf. If he
wants to conclude the distribution functions of the failure-mode
specific life-times, he must know the relation between these distri-
bution functions Fi and that of the specimen’s life-time F. What is
the relation? The answer is easily formulated with survival proba-
bilities: The specimen will survive, if all failure modes survive.
According to the multiplication rule of probabilities of independent
events, this means that the survival probability Ps of the specimen
is the product of the failure-mode specific survival probabilities Psi:

PsðN; SaÞ ¼
Yn

i¼1

PsiðN; SaÞ ð7Þ

Translated to the distribution functions, it means the following:

FðN; SaÞ ¼ 1�
Yn

i

ð1� FiðN; SaÞÞ ð8Þ

This equation is the generalisation of Eq. (2) for the case of n failure
modes. Eqs. (7) and (8) show the relation between survival and fail-
ure probabilities. In the case of two failure modes a simple geomet-
rical interpretation of these equations is possible and shown in
Fig. 1: The area Ps represents the survival probability of a specimen
or component with two failure modes whereas the area F represents
its failure probability.

The method of combining the failure-mode specific life-time
distributions to a specimen life-time distribution which is de-
scribed by Eq. (8) is quite different from the method Weixing
and Shenjie [3] suggested. The next chapters show an application
of the proposed model.
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Fig. 1. Geometric interpretation of the Eqs. (7) and (8) for the case of two failure
modes.
3. Constant-amplitude test with single-flaw Weibull-type life-
time distribution functions

Slightly notched specimens were machined of the steel SAE
5115 (DIN 20MnCr5), carburised, quenched and tempered. After
that, the notches were ground resulting in a smooth surface with
compressive residual stresses. Four specimens were stressed at a
resonance pulsator with a nominal amplitude Sa = 540 MPa, a
stress ratio R = �1 and a frequency f = 190 Hz. Due to grinding
and the hardness profile resulting from heat treatment, two failure
modes were analysed in the broken specimens:

(1) failure from inclusions at N = 47,126,000 and N = 82,456,000
(2) non-defect failure at N = 2,578,200 and N = 9,582,300

Fatigue failure from inclusions is very common for high-strength
steels. Fig. 3 shows a typical crack initiation site of this failure type.

The non-defect failure is a less common failure mode which is
typical for very high cycle fatigue and was described by different
authors [6,7]. Fig. 4 shows a typical crack initiation site of this fail-
ure type.

The life-time distribution function of these specimens can be
calculated according to Stepnov’s method [8]: The experimental
life-times are ordered and indexed with a running number j from
1 to 4 in the way that Nj 6 Nj+1 is valid. Now, the experiments yield
Fig. 3. Crack initiation at an inclusion in specimen D35, SEM micrograph,
Sa = 500 MPa, Nf = 31,582,000. The picture shows part of a cavity which has been
the home of an inclusion.



Fig. 4. Non-defect crack initiation in specimen D23, SEM micrograph, Sa = 580 MPa,
Nf = 13,462,000.

Table 2
Parameters of the single-flaw life-time distribution functions.

i Nmi mi

Inclusion 79,000,000 2.94
Non-defect 28,000,000 0.54

Table 3
Results of constant-amplitude experiments.

Specimen number Sa MPa Nf Crack initiation

D13 460 119,890,000 Non-defect
D14 480 >200,000,000
D16 >200,000,000
D49 >200,000,000
D35a 500 31,582,000 Inclusion
D57 77,631,500 Inclusion
D01 94,334,000 Inclusion
D04 >200,000,000
D30 520 3,695,000 Non-defect
D25 19,598,000 Non-defect
D12 25,593,000 Non-defect
D38 >200,000,000
D51 540 2,578,200 Non-defect
D45 9,582,200 Non-defect
D15 47,126,000 Inclusion
D59 82,456,000 Inclusion
D58 580 2,617,900 Non-defect
D03 3,596,000 Non-defect
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four experimental values for the distribution function of the spec-
imen life-time:

FexpðNjÞ ¼
j� 0:5

4
ð9Þ

The second information which can be drawn from the experi-
ments is the ratio between inclusion and non-defect crack initiation
(Finclusion/Fnon-defect)exp. These ratios were calculated according to
this instruction: (Finclusion/Fnon-defect)exp = (number of inclusion fail-
ures before Nj)/(number of non-defect failures before Nj). The failure
type at Nj is according to Stepnov’s principle counted with the num-
ber ½.

The experimental value Finclusion,exp for the inclusion life-time
distribution can be calculated from the experimental values Fexp

and (Finclusion/Fnon-defect)exp with Eq. (8). This conducts to the follow-
ing equation:

F inclusion; exp ¼
1
2
� 1þ F inclusion

Fnon-defect

� �
exp

 !

�
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The experimental values for the inclusion life-time distribution
Finclusion,exp can be calculated as follows:

Fnon-defect ¼ F inclusion; exp
F inclusion

Fnon-defect

� �
exp

,
ð11Þ

With this concept, it is possible to get experimental values for all
life-time distributions. Table 1 shows the result. In the case j = 1
which describes the earliest failure the application of Eq. (11) is
not yet possible since the ratio (Finclusion/Fnon-defect)exp equals zero.
In this case Stepnov’s formula (Eq. (9)) was applied.

It is now assumed that the failure-mode specific life-times obey
two-parametric Weibull distributions [9]. Under this assumption
these distributions can be written as:
Table 1
Experimental values for the life-time distribution functions.

j Nj Fexp (Finclusion/Fnon-defect)exp Finclusion,exp Fnon-defect,exp

1 2,578,200 0.13 0.00 0.00 0.13
2 9,582,300 0.38 0.00 0.00 0.38
3 47,126,000 0.63 0.25 0.14 0.56
4 82,456,000 0.88 0.75 0.54 0.73
FiðN; SaÞ ¼ 1� 2
� N

Nmi ðSaÞ

� �mi

ð12Þ

In this notation, Nmi is the median of the life-time in failure
mode i, whereas mi is the Weibull exponent, describing the slope
of the distribution function. The distribution function of the spec-
imen life-time which contains n failure modes has now to be writ-
ten as:

FðN; SaÞ ¼ 1� 2
�
Pn

i

N
Nmi ðSa Þ

� �mi

ð13Þ

By use of the least-squares method applied to the differences
Finclusion,exp � Finclusion and Fnon-defect,exp � Fnon-defect between the
experimental and the calculated values of the distribution func-
tions the best fitting model parameters Nm,non-defect, mnon-defect,
Nm,inclusion and minclusion have been calculated from the experimen-
tal values in Table 1. Table 2 shows these parameters.

Fig. 2 gives a graphic presentation of the distribution function
values from Table 1 and the calculated curves of the distribution
functions. By the described method it is possible to conclude the
life-time distribution function of the non-defect and the inclusion
failure, respectively, from the experiment with specimens showing
both crack initiation mechanisms.

4. Single-flaw Basquin-type S–N diagrams with Weibull-type
life-time distribution functions

Eq. (12) describes the failure probability in an S–N diagram for a
certain failure type i. The term Nmi(Sa) specifies the S–N curve for a
failure probability Fi = 0.5. Accordingly, Eq. (13) describes the
failure probability in an S–N diagram with n failure types. In the
D29 10,969,000 Non-defect
D23b 13,462,000 Non-defect
D60 620 467,600 Non-defect
D10 726,000 Non-defect
D18 1,112,200 Inclusion
D07 1,420,000 Non-defect
D32 700 327,800 Non-defect
D26 353,365 Non-defect

a The crack initiation site of specimen D35 is shown in Fig. 3.
b The crack initiation site of specimen D23 is shown in Fig. 4.



Table 4
Parameters of the failure-specific S–N diagrams.

i Sfi MPa ki mi

Inclusion 12,658 6 1.55
Non-defect 1647 15 0.73

300
100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

Number of cycles N

specimens with non-defect failure

specimens with inclusion failure

run-out specimens

S-N curve for non-defect failure

S-N curve for inclusion failure

S-N curve for the specimens

600

900

N
om

in
al

 s
tr

es
s 

am
pl

itu
de

 S
a

[M
Pa

]

Fig. 5. Experimental S–N values of the specimens with indication of the crack-
initiation type and calculated S–N curves for non-defect crack initiation, for crack
initiation from inclusions and for the specimens that contain both failure types. The
S–N curves represent a fracture probability of 50%. R = �1.
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following description, it is assumed that the failure-mode specific
S–N curves Nmi(Sa) can be described according to Basquin [10]:

NmiðSaÞ ¼
Sfi

Sa

� �ki

ð14Þ

In this equation, Sfi represents the stress amplitudes corresponding
to the life-time Nmi = 1 whereas ki describes the slopes of the S–N
curves. With the Basquin specification of Eq. (14) the Eqs. (11)
and (12) turn to:

FiðN; SaÞ ¼ 1� 2
� N� Sa

Sfi

� �ki
� �mi

ð15Þ

FðN; SaÞ ¼ 1� 2
�
Pn

i¼1

N� Sa
Sfi

� �ki
� �mi

ð16Þ

Additional specimens of the type described in chapter 3 were
cycled at different stress amplitudes in order to gather data for
an S–N diagram. Table 3 shows the results.

The best fitting parameters Sf,inclusion, kinclusion, minclusion,

Sf,non-defect, knon-defect, and mnon-defect have been calculated from
the experimental values in Table 3. Table 4 shows the result.
Fig. 5 shows the S–N diagram including the experimental values
differentiated according to their failure type and the S–N curves for
non-defect failure, for inclusion failure and for the specimens. The
S–N curves represent a fracture probability of 50%. Since the spec-
imens contain both flaw types their life-time is always shorter than
that of the single flaws. By the described method it is possible to
conclude the S–N curves for non-defect and inclusion failure from
the experiments on specimens with both failure possibilities. The
assumption of Basquin-type S–N curves for inclusion and non-de-
fect failure leads to a non-linear curve of the specimen’s S–N curve
if a double-logarithmic scale is chosen for the S–N diagram.

5. Conclusions

Simple provisions for the theory of probabilities lead to the re-
sult that survival probabilities of different crack-initiation modes
have to be multiplied in order to get the survival probability of a
specimen which exhibits the regarded crack-initiation modes. This
leads to a derivation of a specimen life-time distribution function
on the base of the crack-initiation specific life-time distributions.
An introduction of the dependence of the life-time on the stress
amplitude opens the possibility to evaluate crack-initiation specific
S–N curves of parts with multiple-flaw crack-initiation
mechanisms.
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