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Human Circulating and  
Tissue-Resident CD56bright 
Natural Killer Cell Populations
Janine E. Melsen*, Gertjan Lugthart, Arjan C. Lankester and Marco W. Schilham

Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands

Two human natural killer (NK) cell subsets are usually distinguished, displaying the 
CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK 
cells present in blood, where the CD56dim NK cells predominate. However, CD56bright 
NK cells outnumber CD56dim NK cells in the human body due to the fact that they are 
predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright 
NK cell compartment, a major phenotypical and functional diversity is observed, as 
demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, 
and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- 
and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of 
CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and 
produce little interferon-γ upon monokine stimulation. Their distribution and specific phe-
notype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. 
In this review, we examine the CD56bright NK cell diversity by discussing the distribution, 
phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, 
we address the ongoing debate concerning the developmental relationship between cir-
culating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident 
CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells 
from circulating CD56bright NK cells is a prerequisite for the better understanding of the 
specific role of CD56bright NK cells in the complex process of human immune regulation.

Keywords: CD56bright NK cell populations, tissue resident, lymphoid tissues, liver, uterus, NK cell development

iNTRODUCTiON

Since the discovery of natural killer (NK) cells in 1975 (1, 2), major advances were made in 
deciphering the role of NK cells in health and disease. It is currently accepted that NK cells are not 
just “killers” that lyse infected or transformed cells but can also play an important role in modulation 
of immune responses due to the secretion of immunoregulatory cytokines (e.g., IFN-γ and TNF-α) 
and chemokines (e.g., CCL3 and CCL4). Based on this cytokine secretion profile, NK cells are 
classified into group 1 of the large family of innate lymphoid cells (ILCs). Developmentally, NK 
cells are not related to the other (non-cytotoxic) ILCs, and can be distinguished from the remaining 

Abbreviations: DNAM1, DNAX accessory molecule 1; EOMES, eomesodermin; FGFR1, fibroblast growth factor receptor 1; 
HEVs, high endothelial venules; HSCT, hematopoietic stem cell transplantation; ILC, innate lymphoid cell; KIR, killer-cell 
immunoglobulin-like receptor; ltNK cells, lymphoid tissue natural killer cells; MCM4, minichromosome maintenance 
 complex 4; S1PR1, sphingosine-1-phospate receptor 1.
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ILCs by the expression of the transcription factor Eomesodermin 
(EOMES) and the cytolytic protein perforin (3, 4).

In humans, two conventional NK cell subsets have been phe-
notypically defined based on CD56 and CD16 (FCRγIII) surface 
expression: CD56brightCD16−/+ and CD56dimCD16+. While the 
function of CD56 [neural cell adhesion molecule (NCAM)] on 
NK cells is not completely understood yet, CD16 can mediate 
antibody-dependent cellular cytotoxicity (5). Since most research 
in human NK cell biology is based on peripheral blood, the herein 
predominant CD56dim NK cell population is most extensively 
investigated. Based on circulating NK cells, CD56bright and CD56dim 
NK cells have usually been described as two functionally distinct 
subsets, cytokine producing and cytolytic, respectively. However, 
several observations challenge this strict difference, as that both 
subsets can be cytotoxic or produce cytokines, after appropriate 
in vitro stimulation. Upon target cell recognition, resting CD56dim 
NK cells are highly cytotoxic, but can produce cytokines as well 
(6–8). In contrast, CD56bright NK cells require monokine activa-
tion (combinations of IL2/IL12/IL15/IL18) to acquire cytolytic 
activity and produce cytokines (6, 9–11).

Although the CD56dim NK cells predominate in blood, the 
CD56bright NK cells are far more abundant in the human body 
due to their enrichment in lymphoid and non-lymphoid tissues 
(12–18). In addition, CD56bright NK cells comprise the major 
NK cell population in inflamed and cancer tissues (12, 14, 19). 
Recently, tissue-resident CD56bright NK cells were identified in 
liver, uterus, and lymphoid tissues, which points toward a tissue-
specific function of CD56bright NK cells (13, 15–17, 20–22). In order 
to understand the NK cell diversity, it is essential to focus on how 
CD56bright NK cells develop, distribute, and acquire or alter their 
phenotype and function specifically in a particular organ. The 
first four developmental stages (i.e., from hematopoietic stem cell 
to CD56bright NK cell) were already reviewed extensively elsewhere 
and will not be discussed here (23, 24). This review attempts to 
improve the understanding of human circulating and tissue-
resident CD56bright NK cells by reappraising their distribution 
and developmental, functional, and phenotypical characteristics. 
In addition, we will address to the developmental relationship 
between CD56bright (stage 4) and CD56dim NK cells (stage 5) and 
speculate on the position of tissue-resident CD56bright NK cells 
within the NK cell developmental pathway.

DiSTRiBUTiON, PHeNOTYPe 
AND FUNCTiON

CD56bright NK cells are widely distributed throughout the human 
body. When compared with blood, CD56bright NK cells are 
enriched in most human tissues. They represent the majority 
of NK cells in lymph nodes, tonsil, stomach, gut, liver, uterus, 
adrenal gland, and visceral adipose tissue (12–18). Although 
CD56bright NK cells seem to be outnumbered by CD56dim NK cells 
in lung, kidney, mammillary tissue, bone marrow and spleen, 
this is probably a reflection of the high blood perfusion of these 
organs (12, 13, 18, 25). Most knowledge on the phenotype 
and function of CD56bright NK cells is derived from blood, but 
it is important to realize that unique subsets of tissue-resident 
CD56bright NK cells have been described in lymphoid tissues, liver 

and uterus (13, 15, 22, 26). Conceivably, more organs contain 
tissue-resident CD56bright NK cell populations. To the best of 
our knowledge, no tissue-resident CD56dim NK cells have been 
described to date. Although residency is often used as a term for 
organ-infiltrating NK cells, it is generally not discussed whether 
these NK cells are just trafficking through the organ, or truly 
tissue resident. In this review, we only apply the term “resident” 
if there is substantial evidence, which allows to distinguish the 
tissue-resident CD56bright NK cells from circulating CD56bright NK 
cells. The lack of CD56 expression on murine NK cells hampers 
the one to one comparison of CD56bright NK cells to their murine 
counterpart. Due to limitations in obtaining human tissue sam-
ples, important findings in mice will be included in this review 
to cover the lack of human data.

Hallmarks of Tissue-Resident  
CD56bright NK Cells
In order to be retained within the tissue, tissue-resident CD56bright 
NK cells should possess characteristics, which prevent egress 
from the tissue. One of the mechanisms involved in residency 
is attributed to CD69, which is absent from blood-derived NK 
cells (13). Originally, CD69 was identified as an early activation 
marker, but today CD69 is known to be associated with tissue 
residency by suppressing sphingosine-1-phospate receptor 1 
(S1PR1) surface expression (27–29). Although initially identi-
fied in the context of T- and B-cell migration, S1PRs have also 
been proposed to mediate the egress of NK cells from tissues 
into blood and lymph in mice, driven by a S1P gradient (30–35). 
It has not been confirmed whether S1PRs are expressed as 
protein on the cell surface of human NK cell subsets in blood 
and tissues. At transcriptional level, however, both S1PR1 and 
S1PR5 are expressed in circulating human NK cells, with the 
latter being selective for CD56dim NK cells (33, 36, 37). In con-
trast to S1PR1, S1PR5 is not inhibited by CD69 (32). Another 
potential mechanism for tissue homing and/or residency is the 
engagement of chemokine receptors. For instance, CXCR6 and 
CCR5 are both highly expressed on tissue-resident CD56bright NK 
cells in lymphoid tissues and liver, but have a low expression on 
blood-derived CD56bright NK cells, which instead express CCR7 
(13, 15, 38). A third mechanism of tissue retention is driven by 
the expression or absence of adhesion molecules. For instance, 
the integrin CD49a is highly expressed on uterine CD56bright NK 
cells, but absent from blood NK cells (20). Furthermore, tissue-
resident CD56bright NK cells lack CD62L (L-selectin), which is 
like CCR7 involved in recruitment of circulating NK cells to 
lymphoid tissues via high endothelial venules (HEVs) (15, 17, 18, 
38, 39). Altogether, based on the expression of CD69, chemokine 
receptors, and adhesion molecules, tissue-resident CD56bright 
NK cells can be distinguished from circulating CD56bright NK 
cells. In addition to the phenotypical differences, tissue-resident 
CD56bright NK cells are functionally different from their circulat-
ing counterparts as will be discussed in the next sections.

Lymphoid Tissues
Lymph Node
Lymph nodes contain 40% of the lymphocytes in the human body, 
of which 2–5% consist of NK cells (Figure 1A) (12, 13, 18, 40). 

http://www.frontiersin.org/Immunology/
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FiGURe 1 | Distribution of NK cell populations in blood and tissues. 
The distribution of CD56dim, non-resident CD56bright, and tissue-resident 
CD56bright NK cells is depicted as percentage of (A) total lymphocytes and (B) 
total NK cells within blood (13), lymph node (13, 18, 25), spleen (13, 18, 25), 
bone marrow (13, 18, 25), tonsil (18, 44), liver (15, 45, 46), endometrium (16, 
20), and decidua (20, 47). Tissue-resident CD56bright NK cells were defined as 
CD69+CXCR6+ (lymph node, spleen, and bone marrow), NKp44+CD103+ 
(tonsil), CD69+CXCR6+ (liver), and CD49a+ (endometrium and decidua). For 
phenotypical details, see Figure 2 and Table 1.
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More than 75% of the NK cells in lymph nodes have a CD56bright 
phenotype (Figure  1B) (13, 18, 25). Accumulating evidence 
suggests a model in which CD56bright NK cells circulate from 
the blood to tissues, enter the lymphatic system, and eventually 
migrate back to the periphery via the efferent lymph (41, 42). 
The mechanisms governing the migration to and infiltration of 
lymphoid tissues by CD56bright NK cells are mainly deduced from 
chemokine receptor expression on circulating CD56bright NK 
cells. As discussed earlier, circulating CD56bright NK cells express 
CCR7 and CD62L (38, 39). The chemokines engaging CCR7, 
CCL19, and CCL21 are both highly expressed in lymph nodes 
(12). HEVs might not be the only route for circulating CD56bright 
NK cells to enter the lymph node. NK cells in seroma fluid, 
which represents an accumulation of afferent lymph, resemble 
circulating CD56bright NK cells regarding low expression of CCR5, 
killer-cell immunoglobulin-like receptor (KIR), and CD16 and 
high expression of CCR7 and CD62L (12, 43). This suggests that 
circulating CD56bright NK cells enter the lymph node both via 
HEVs and afferent lymph vessels.

Recently, we identified a major lymphoid tissue-resident NK 
cell subset in lymph node, spleen, and bone marrow based on 
co-expression of CD69 and CXCR6 (Figure  2; Table  1) (13). 
In the lymph node, lymphoid tissue NK (ltNK) cells account for 
60% of all NK cells and cover the majority of the CD56bright NK 
cell compartment (Figure 1B). LtNK cells display a slightly less 
intense CD56 and more intense NKp46 expression compared 
with circulating CD56bright NK cells. In addition, the majority of 
ltNK cells is CD16−, CD49a−, and CD27+ (13). Interestingly, most 
ltNK cells do not express DNAX accessory molecule 1 (DNAM1), 
an activating receptor which is uniformly expressed on circulat-
ing CD56bright NK cells (13). The remaining CD56brightCD69− NK 
cells closely resemble circulating CD56bright NK cells, suggesting 
that these cells are blood-derived CD56bright NK cells transiently 
circulating through the lymph node (13).

FiGURe 2 | Phenotype of circulating and tissue-resident CD56bright NK cells. The cell surface markers on NK cells that are discriminative between circulating 
and tissue-resident NK cells in lymphoid tissue, liver, and uterus are shown (see references in text and Table 1). Circulating CD56bright NK cells typically express the 
lymphoid tissue homing makers CD62L (L-selectin) and CCR7. In addition, CD117 (c-kit) and CD127 (IL-7Rα) are expressed by a fraction of circulating CD56bright NK 
cells. Lymphoid tissue-resident NK cells express CD69 and CXCR6. Tonsil-resident NK cells (defined as NKp44+CD103+) express in addition ITGβ7, CD49a, and 
partly CD9. The majority of CD69+CXCR6+ liver-resident NK cells express CCR5. In contrast to circulating CD56bright NK cells, only a fraction of lymphoid tissue-, 
tonsil-, and liver-resident NK cells express DNAM1. A subset of CD49a+ uterus-resident NK cells (endometrium and decidua) expresses CD69, ITGβ7, CD103, and 
NKp44. The reported DNAM1 expression in the uterus is contradicting in the literature and therefore indicated with −*. % indicates that only a fraction of the NK cell 
population is positive for the marker.
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Lymphoid tissue NK cells were tested in the functional assays 
classically used for NK cells. The ltNK cells were less potent 
IFN-γ producers compared with circulating CD56bright NK cells 
nor did they lyse K562 target cells as efficient as CD56dim NK 
cells (13). However, the expression of EOMES and perforin 
distinguishes ltNK cells from the helper-ILC1 group (13). These 
phenotypical and functional characteristics, combined with their 
specific location in lymphoid tissues where immune responses 
are initiated and shaped, point to a distinct yet undefined role 
of ltNK cells (50).

Notably, without the use of tissue-resident markers, CD69 and 
CXCR6, ltNK cells could previously not be distinguished from 
circulating CD56bright NK cells. Therefore, a re-examination of the 
function of CD56bright NK cells in lymphoid tissue is necessary, in 
particular in the lymph node where a large population of ltNK 
cells co-exists next to the non-resident or circulating CD56bright 
NK cells.

Spleen and Marrow
The spleen and bone marrow contain 14 and 10% of the total 
lymphocyte pool. NK cells constitute 5–20% and 4% of lympho-
cytes in spleen and marrow, respectively (Figure 1A) (13, 18, 40, 
43). The CD56bright and CD56dim NK cells are equally distributed 
in the spleen, but 90% of CD56bright NK cells consist of ltNK cells 
(Figure 1B) (13, 25, 40). Similar to the spleen, the bone mar-
row is enriched for CD56bright NK cells, of which the majority 
consists of ltNK cells (13, 25). The phenotype of ltNK cells in 

spleen and marrow resembles the ltNK cell population in lymph 
node. As mentioned before, the non-resident CD56brightCD69− 
and CD56dim NK cells in marrow and spleen closely resemble 
the circulating CD56bright and CD56dim NK cells and are probably 
circulating NK cells contained in the tissue at time of isolation. 
Previously, the spleen has been reported to be enriched in CD27+ 
and NKp46bright NK cells, which could be a reflection of ltNK 
cells. These findings further illustrate the importance of using 
tissue-resident markers to distinguish circulating from tissue-
resident CD56bright NK cells (51, 52). The manner in which NK 
cells enter the spleen differs from lymph node entrance, because 
the spleen does not contain afferent lymphatic vessels or HEVs 
(53). In mice, NK cells enter the spleen via arterioles in the mar-
ginal zone, rather than via arterioles directly connected to the 
red pulp, where most NK cells reside (54). Unfortunately, there 
is a lack of human studies focusing on how NK cells migrate to 
the spleen and bone marrow.

Tonsil
In tonsil, although the CD56bright subset is predominant, only 0.4% 
of the total lymphocytes consist of NK cells (Figure  1A) (18). 
Seventeen percent of the total NK cell population in the tonsil 
co-expresses CD69 and CXCR6 (Figure 1B) (44). In contrast to 
the ltNK cells in lymph node, marrow, and spleen, these tonsil-
resident NK cells also express NKp44, CD103, CD49a, Integrinβ7, 
and partly CD9 (Figure 2; Table 1) (44). Of note, tonsil-resident 
NK cells should be distinguished from NKp44+ ILC3s, which 

TABLe 1 | Phenotype of circulating and tissue-resident CD56bright NK cells.

Reference
Blood  

(13, 15, 17, 38)
Lymph node, spleen, marrow  

(13, 18)
Tonsil  

(18, 44)
Liver  

(15, 45, 46)
Uterus  

(16, 17, 20, 48, 49)

Definition CD69+ NKp44+ CD69+ CD49a+ CD49a+

CXCR6+ CD103+ CXCR6+ CD103− CD103+

CD56 ++ + +/++ + +++ +++
CD69 – + + + – +

Cytokine receptors
CD117 (c-kit) % – N.A. N.A. – –
CD127 (IL7-Rα) % – – N.A. – –

Chemokine receptors
CCR7 + – – – – –
CCR5 – % N.A. % – –
CXCR6 – + + + N.A. N.A.

NK cell receptors
DNAM1 + % % % –a –a

KIR – – % – % %
NKp44 – – + – – %
NKp46 + ++ ++ ++ + +

Adhesion molecules
CD9 – N.A. % N.A. % +
CD49a (ITGα1) – – + – + +
CD62L (L-selectin) + – – – – –
CD103 (ITGαE) – – + N.A. – +
ITGβ7 N.A. N.A. + N.A. – +

The cell surface markers which are discriminative for circulating CD56bright NK cells, lymph node-, spleen-, bone marrow-, tonsil-, liver-, and uterus-resident NK cells are summarized. 
Uterus-resident NK cells can be subdivided based on CD103 expression.
++ and +++ indicate relatively higher levels of expression.
% indicates that only a fraction of the NK cell population is positive for the marker.
aContradicting literature exist on the DNAM expression on uterine NK cells. 
N.A., not assessed.
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are located in the mucosa surrounding the lymphoid follicles 
and secrete preferentially IL-22 (55, 56). Similar to circulating 
CD56bright NK cells, the total pool of CD56bright NK cells was shown 
to produce high levels of IFN-γ and to become cytolytic upon 
IL-2 and/or IL-12 stimulation (18). Tonsils do not have afferent 
lymph vessels but HEVs are present, which might support the 
trafficking of NK cells. Similarly, CCL19 and CCL21 are secreted 
to attract circulating CD56bright NK cells, which might explain the 
high content of CD56bright NK cells which lack a tissue-resident 
phenotype (57).

Liver
Hepatic NK cells comprise 40% of all hepatic lympho-
cytes (Figure  1A) (45). Recently, a major liver-resident 
EOMES+CD56bright NK cell population has been described, 
which comprises 45% of the hepatic NK cells and closely resem-
bles ltNK cells phenotypically and functionally (Figure 1B) (15, 
45, 46). Liver-resident CD56bright NK cells are characterized by a 
simultaneous expression of CD69 and CXCR6 (46). They have 
a high expression of CCR5 and NKp46, and low expression of 
DNAM1, as indirectly concluded from phenotypical analysis on 
total hepatic CD56bright NK cells (Figure 2; Table 1) (15, 45).

An independent report demonstrated the presence of a 
distinct minor liver-resident cell population characterized by 
CD49a expression (21). Those CD56brightCD49a+ cells make up 
2% of the total NK cell compartment in the liver but are not 
present in every individual (41% of donors) (13, 15, 21). The 
expression of CXCR6 has not been described. However, these 
cells do not express EOMES, suggesting that they do not belong 
to the NK cell lineage (21). Due to the low prevalence of this 
CD49a+EOMES− cell population, we can indirectly conclude 
that the major CD69+CXCR6+ liver-resident NK cell population 
is negative for CD49a. The IFN-γ production of liver-resident 
CD56bright NK cells after 4-h stimulation with IL12 and IL18 was 
lower compared with the non-resident hepatic NK cells (46). 
Similar to ltNK cells, liver-resident CD56bright NK cells express 
perforin and granzyme B at a low level, further supporting a 
non-cytotoxic function (46).

Several studies in mice demonstrated the existence of hapten 
and virus-specific hepatic NK cell memory, mediated by cells 
expressing CD49a and CXCR6 (21, 58, 59). In contrast, splenic 
CXCR6+ NK cells, which potentially resemble the human ltNK 
cells, were not able to mediate a memory response (58). Thus, 
although CXCR6 expression is not restricted to the liver, only 
hepatic NK cells were found to mediate a memory response in 
mice. Nevertheless, it would be interesting to further study the 
memory capacities of the highly prevalent CXCR6+ liver- and 
lymphoid tissue-resident CD56bright NK cells in humans.

Uterus
The uterine mucosa is populated by EOMES+CD56bright NK cells 
(16, 17, 23). In contrast to blood, there are hardly any CD56dim 
NK cells detectable in endometrium (no pregnancy) and 
decidua (pregnancy) (16, 17, 20, 60). Independent of the stage 
of the menstrual cycle, NK cells make up 30% of the endometrial 
lymphocytes (Figure  1A), although the absolute number of 

lymphocytes and NK cells increases robustly in the secretory stage 
(16). During early pregnancy, however, more than 70% of the 
lymphocytes in the uterine decidua is represented by CD56bright 
NK cells (Figure  1A) (47). Phenotypically, endometrial and 
decidual CD56bright NK cells closely resemble each other, and will 
be further referred to as uterine CD56bright NK cells. The CD56 
expression of the uterine NK cells is even more intense than their 
circulating CD56bright counterparts (Table 1) (17, 61). All uterine 
NK cells display CD49a but not CCR5, discriminating them 
from the circulating, lymphoid tissue, and liver-resident NK cell 
populations (Figure 2) (16, 20). DNAM1 has been reported to 
be absent on uterine NK cells, although a contradicting report 
on this observation exists (20, 48, 62). Recently, it was shown 
that a fraction of uterine NK cells expresses the heterodimer 
CD103/ITGβ7, NKp44, as well as CD69 (20, 62). Conversely, an 
earlier study reported that all decidual NK cells express CD69 
(17). Despite this discrepancy concerning the CD69 expression, 
both the CD56brightCD103− and CD56brightCD103+ NK cells are 
likely to represent a tissue-resident CD56bright NK cell popula-
tion, as demonstrated by the expression of KIRs, CD9, and 
poor IFN-γ production and cytotoxicity (16, 17, 20, 49, 63, 64). 
Moreover, transcriptome analysis of decidual NK cells and 
circulating NK cells highlighted the uniqueness of the uterine 
NK cells (17, 48). To the best of our knowledge, the presence 
of chemokine receptors, such as CXCR6 and CCR5, has not 
been reported. Compared with circulating CD56bright NK cells, 
decidual CD56bright NK cells highly express the activating 
receptors NKG2C and NKG2E at RNA level; however, <30% is 
NKG2C+ on protein level (17, 62, 65).

Initially, a suppressive function of decidual NK cells was 
thought to be essential to provide maternal–fetal tolerance 
(17,  64). However, accumulating evidence points toward a 
more active role of decidual CD56bright NK cells in regulating 
placentation, as reviewed elsewhere (66). Decidual NK cells 
are considered to stimulate trophoblast invasion and spinal 
artery remodeling via the production of various chemokines 
and angiogenic factors (including angiopoietins and GM-CSF) 
(67–69). Mice lacking decidual NK cells exhibit abnormalities in 
pregnancy, including abnormal vascular remodeling of decidual 
arteries (70). Although the process of placentation in humans is 
different, specific combinations of fetal HLA-C alleles, presented 
by trophoblasts, and maternal KIR expression were shown to be 
associated with successful placentation (69, 71). The similarities 
between endometrial and decidual CD56bright NK cells suggest that 
decidual CD56bright NK cells are a direct reflection of endometrial 
CD56bright NK cells in a pregnant tissue microenvironment. Taken 
together, the phenotypical and functional profile of the uterine 
CD56bright NK cell compartment supports their unique functional 
role during pregnancy.

DeveLOPMeNTAL ReLATiONSHiP 
BeTweeN CiRCULATiNG CD56dim 
AND CD56bright NK CeLLS

Thus far, we discussed the tissue-resident and circulating/non-
resident CD56bright NK cells within the tissues. Still, the origin 
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of the different CD56bright NK cell populations and their relation 
to the CD56dim NK cell subset remains unclear. The circulating 
CD56bright NK cells have been extensively investigated and are 
generally considered to be the precursors of the CD56dim NK cells. 
In the last section of this review, we will summarize the current 
evidence in favor and against the linear relationship between the 
circulating CD56bright and CD56dim NK cells, and speculate on 
the position of tissue-resident NK cells in this developmental 
pathway.

Several studies provided clues about the developmental 
relationship between CD56bright NK cells and CD56dim NK cells. 
First, it was shown that CD56bright, but not CD56dim NK cells, 
constitutively express the high-affinity IL-2Rα (CD25) and dis-
play a high proliferative response in the presence of picomolar 
concentrations of IL-2 (72, 73). Because CD56bright NK cells have 
significantly longer telomeres compared with CD56dim NK cells, 
they have been assumed to have a shorter proliferative history 
(74). A commonly used marker for immaturity, the tyrosine 
kinase c-kit (receptor for stem cell factor, CD117) is expressed on 
a fraction of CD56bright NK cells, but is absent on CD56dim NK cells 
(75, 76). In addition, the recovery of CD56bright NK cells in the 
first weeks after hematopoietic stem cell transplantation (HSCT) 
precedes the reconstitution of CD56dim NK, a sequential occur-
rence potentially pointing toward a developmental relationship 
(74, 77). Together, these findings resulted in the hypothesis that 
CD56dim NK cells are derived from CD56bright NK cells.

Differentiation from CD56bright  
to CD56dim NK Cells In Vitro
In efforts to provide evidence for this hypothesis, numerous 
studies aimed to recapitulate the differentiation from CD56bright 
to CD56dim NK cells in vitro. CD56bright NK cells were shown to 
acquire a CD56dim-like phenotype upon in vitro activation with 
IL-2, IL-15, and/or co-culture with T cells. This resulted in the 
upregulation of CD16 and KIRs and the downregulation of 
IL-7Rα (CD127), CD117, CXCR3, and CCR7 (10, 74). However, 
the intensity of CD56 expression was not reduced on monokine-
activated CD56bright NK cells. The presence of fibroblast growth 
factor receptor 1 (FGFR1) was demonstrated to be critical for the 
in vitro differentiation of CD56bright NK cells to cytotoxic CD56dim 
NK cells in a contact-dependent manner (78). FGFR1 is a ligand 
for CD56 and is constitutively expressed on fibroblasts (79, 80). 
The high density of CD56 on CD56bright NK cells may thus be of 
importance in the interaction with fibroblasts and differentiation 
toward CD56dim NK cells.

Differentiation from CD56bright  
to CD56dim NK Cells In Vivo
The in vivo evaluation of the relationship between CD56bright and 
CD56dim NK cells is hampered by the lack of CD56 expression 
on murine NK cells. The vast majority of human CD56bright NK 
cells displayed a reduction of CD56 expression intensity after 
infusion into immune-deficient mice (78). Whether these in vivo 
differentiated CD56dim NK cells were phenotypically and func-
tionally similar to human blood-derived CD56dim NK cells were 
not addressed in this study, leaving the possibility that the bright 

CD56 expression is not sustained in mice lacking human fibro-
blasts expressing FGFR1. An alternative for murine experiments 
can be provided by the study of rhesus macaques. Gene tracking 
data in rhesus macaques transplanted with lentiviral barcoded 
hematopoietic stem cells demonstrated that the lineage origin 
of the macaque NK cell homologs of CD56bright (CD56+CD16−) 
and CD56dim (CD56−CD16+) NK cells is different (81). While the 
CD56bright homolog was derived from the same progenitors as 
T-cell, B-cell, and myeloid cells, the CD56dim homolog displayed 
a unique clonal pattern, suggesting that these cells do not develop 
from the CD56bright population but may belong to an independent 
lineage (81).

In addition to mice and macaques studies, human NK cell 
deficiencies can provide clues about the developmental rela-
tionship between CD56bright and CD56dim NK cells. Mutations 
in the transcription factor gene GATA2 result in the absence of 
CD56bright NK cells while CD56dim NK cells are still present (82). 
This observation argues against the theory that CD56dim NK 
cells are derived from CD56bright NK cells. On the other hand, 
humans with a partial minichromosome maintenance complex 
4 (MCM4) deficiency, a molecule involved in proliferation, have 
reduced numbers of circulating CD56dim NK cells but normal 
numbers of CD56bright NK cells (83). This could indicate that 
maintenance of the CD56dim NK cell subset requires prolifera-
tion, which might be dependent or independent of the CD56bright 
NK cells. To the best of our knowledge, there are no mutations 
in transcription factors described, which cause a lack of CD56dim 
NK cells while the CD56bright NK cells are spared. Recently, Zeb2 
was identified as the essential regulator of terminal NK cell 
maturation in mice and shown to be higher expressed in circu-
lating CD56dim compared with CD56bright NK cells (84). Together, 
these studies emphasize the need for additional experimental 
evidence on the transcriptional regulation of human NK cell 
development.

intermediate Stages Connecting  
CD56bright to CD56dim NK Cells
If CD56bright and CD56dim NK cells are successive stages in the NK 
cell developmental pathway, developmental intermediates should 
exist. Independent studies reported the existence of phenotypic 
and functional intermediate stages in the progression from 
CD56bright to CD56dim NK cells in peripheral blood of healthy 
donors and patients after HSCT. These studies mainly focused 
on CD16, CD27, or CD117, for which CD56bright NK cells have 
a bimodal expression profile (10, 51, 85–88). Both CD16+ and 
CD27− CD56bright NK cells were independently suggested to 
represent intermediate populations based on phenotype and 
functional characteristics (10, 51, 88). A relative increase of 
CD16+, CD27−, and CD117− CD56bright NK cells was observed 
early after HSCT (85, 86). Notably, the expression of CD16, 
CD117, and CD27 on CD56bright NK cells can also be modulated 
by cytokine-activation (10, 51, 74). Because the post-HSCT set-
ting presents a cytokine-rich environment, the “intermediate” 
CD16+, CD27−, and CD117− CD56bright NK cells may represent 
cytokine-activated CD56bright NK cells instead of developmental 
intermediates between CD56bright and CD56dim NK cells (85, 86).
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In general, the potential differentiation of circulating 
CD56bright NK cells to CD56dim NK cells is characterized by loss 
of CD27, CD117, NKG2A, and CD62L expression and gain of 
CD16, KIRs, and CD57 expression. Both within the CD56bright 
compartment (CD117↓, CD27↓, and CD16↑) as well as within 
the CD56dim compartment (NKG2A↓, CD62L↓, KIRs↑, and 
CD57↑), the sequential loss and acquisition of these surface 
markers do not occur in a fixed order (10, 51, 87, 89, 90). Only 
the extremes of these markers, for instance CD117 and CD57, 
are mutually exclusively expressed. Together, this illustrates that 
uniform intermediate stages of differentiation between CD56bright 
and CD56dim NK cells cannot easily be identified.

DeveLOPMeNTAL POSiTiON OF TiSSUe-
ReSiDeNT CD56bright NK CeLLS

Studies on the relationship between the NK cell populations 
have been based on blood-derived CD56bright and CD56dim NK 
cells. The starting point of most of these studies was a linear 
developmental relationship between CD56bright and CD56dim NK 
cells. However, the discovery of distinct tissue-resident CD56bright 
NK cell populations increases the number of possible relation-
ships between the NK cell populations. Tissue-resident NK cells 
could be a precursor to circulating NK cells, but the absence of the 
immature markers CD117 and CD127 argues against this. It also 
seems unlikely that tissue-resident NK cells represent a transitory 
population between the circulating CD56bright and CD56dim NK 
cells. Detailed transcriptome analysis comparing uterine NK cells 
with both circulating CD56bright and CD56dim NK cells highlighted 
major differences in gene expression profile between the three NK 
cell populations (17). Moreover, data from transcription factor-
deficient mice suggested that circulating and tissue-resident NK 
cells are derived from different cell lineages (91). In our opinion, the 
distinct phenotype and functional signature of the tissue- resident 
NK cell populations, together with their absence from blood, 
argues in favor of the hypothesis that tissue-resident CD56bright 
NK cells develop locally, independently of the circulating NK 
cells. It seems likely that the organ microenvironment is essential 
to induce the phenotype and retain tissue localization of tissue-
resident cells. Nevertheless, additional studies are needed to shed 
new light on the developmental relationship between CD56bright, 
CD56dim and tissue-resident CD56bright NK cell populations.

CONCLUDiNG ReMARKS

The recent identification of tissue-resident CD56bright NK cells in 
the lymphoid tissues, liver, and uterus led us to reappraise the 
characteristics of CD56bright NK cell populations in the circulation 
and tissues. The function of tissue-resident CD56bright NK cells 
in liver and lymphoid tissues has not been elucidated, although 
it is very likely that these cells, such as uterine NK cells, exert 
tissue-specific functions.

The existence of tissue-resident NK cells raises the question 
whether, and if so how, all the NK cell populations are develop-
mentally related to each other. Based on the available evidence, 
we conclude that it is still possible that CD56dim NK cells develop 
independently from the CD56bright NK cells. Tissue-resident NK 
cells may develop from circulating CD56bright NK cells, or follow 
their own developmental pathway. Current in vitro models do not 
sufficiently mimic the in  vivo situation, especially considering 
the potentially important role of the tissue microenvironment 
in shaping the features of tissue-resident CD56bright NK cells. As 
mouse models do not suffice in the evaluation of human NK 
cell subsets, other animal models might be exploited. Studying 
patients with aberrations in NK cell development due to genetic 
mutations could provide novel insights in the origin and devel-
opment of tissue-resident NK cells. Furthermore, transcriptome 
analysis of non-resident and resident CD56bright NK cell popula-
tions will provide tools to further decipher the role of CD56bright 
NK cell populations in human immune responses. In conclusion, 
distinguishing tissue-resident CD56bright NK cells from circulating 
CD56bright NK cells is a prerequisite for the better understanding 
of the specific role of CD56bright NK cells in the complex process 
of human immune regulation.
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