Problems

In each of Problems 1 through 6, determine the radius of convergence of the given power series.

1. $\sum_{n=0}^{\infty}(x-3)^{n}$
2. $\sum_{n=0}^{\infty} \frac{n}{2^{n}} x^{n}$
3. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$
4. $\sum_{n=0}^{\infty} 2^{n} x^{n}$
5. $\sum_{n=1}^{\infty} \frac{\left(x-x_{0}\right)^{n}}{n}$
6. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}}$

In each of Problems 7 through 13, determine the Taylor series about the point x_{0} for the given function. Also determine the radius of convergence of the series.
7. $\sin x, x_{0}=0$
8. $e^{x}, x_{0}=0$
9. $x, x_{0}=1$
10. $x^{2}, x_{0}=-1$
11. $\ln x, x_{0}=1$
12. $\frac{1}{1-x}, \quad x_{0}=0$
13. $\frac{1}{1-x}, \quad x_{0}=2$
14. Let $y=\sum_{n=0}^{\infty} n x^{n}$.
a. Compute y^{\prime} and write out the first four terms of the series.
b. Compute $y^{\prime \prime}$ and write out the first four terms of the series.
15. Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$.
a. Compute y^{\prime} and $y^{\prime \prime}$ and write out the first four terms of each series, as well as the coefficient of x^{n} in the general term.
b. Show that if $y^{\prime \prime}=y$, then the coefficients a_{0} and a_{1} are arbitrary, and determine a_{2} and a_{3} in terms of a_{0} and a_{1}.
c. Show that $a_{n+2}=\frac{a_{n}}{(n+2)(n+1)}, n=0,1,2,3, \ldots$.

In each of Problems 16 and 17, verify the given equation.
16. $\sum_{n=0}^{\infty} a_{n}(x-1)^{n+1}=\sum_{n=1}^{\infty} a_{n-1}(x-1)^{n}$
17. $\sum_{k=0}^{\infty} a_{k+1} x^{k}+\sum_{k=0}^{\infty} a_{k} x^{k+1}=a_{1}+\sum_{k=1}^{\infty}\left(a_{k+1}+a_{k-1}\right) x^{k}$

In each of Problems 18 through 22, rewrite the given expression as a single power series whose generic term involves x^{n}.
18. $\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}$
19. $x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{k=0}^{\infty} a_{k} x^{k}$
20. $\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}$
21. $\sum_{n=1}^{\infty} n a_{n} x^{n-1}+x \sum_{n=0}^{\infty} a_{n} x^{n}$
22. $x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}$
23. Determine the a_{n} so that the equation

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

is satisfied. Try to identify the function represented by the series $\sum_{n=0}^{\infty} a_{n} x^{n}$.

