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RESUMO 

No campo de Transporte Inteligente, o planejamento urbano se beneficia de 

ferramentas computacionais de simulação de tráfego. Nas microssimulações, um 

passo importante é a calibração, que envolve o ajuste de parâmetros de entrada da 

simulação, de forma que as métricas de saída correspondam àquilo observado no 

mundo real. Trata-se de um processo iterativo e demorado, sendo tradicionalmente 

feito manualmente por um engenheiro de tráfego. Esta pesquisa propõe uma 

metodologia para calibrar automaticamente as simulações de tráfego. Inicialmente, 

executa-se um grande número de simulações e constrói-se um extenso banco de 

dados de casos. Depois, utiliza-se esse banco de dados para treinar redes neurais 

capazes de estimar as entradas do simulador que levam a determinados resultados, 

ou seja, dos cenários de estudo desejados. Este processo corresponde efetivamente 

à calibração da microssimulação de uma rede de transportes operando sob 

determinada condição. Experimentos de validação calibraram as configurações de 

roteamento e volume de tráfego nas simulações, sendo que nestes experimentos foi 

verificada uma alta correlação, acima de 80%, entre as estimativas das redes 

neurais e os valores desejados para as variáveis de entrada do simulador. Os 

experimentos demonstraram a possibilidade de automatizar e tornar escalável o 

processo de calibração. A avaliação das redes neurais forneceu as métricas 

individuais de cada variável de entrada do simulador, como volumes de veículos e 

decisões de rota, permitindo ao usuário escolher ou ignorar as estimativas com mau 

desempenho e alternativamente calibrá-las manualmente. Finalmente, dois 

experimentos investigaram a calibração de parâmetros comportamentais dos 

motoristas, um tipo de variável mais abstrata; Para esse tipo de variável, foram 

observados resultados com acurácia aceitável para cerca de metade dos parâmetros 

estimados. Neste caso, caberá ao usuário a escolha de ignorar as variáveis de pior 

desempenho e usar somente aquelas de desempenho satisfatório como um ponto 

de partida para refinamentos manuais. A metodologia proposta mostrou ser capaz 

de estimar com acurácia suficiente uma parte significativa dos parâmetros de 

calibração, o que reduzirá o esforço do engenheiro de tráfego na etapa de calibração 

e permitirá que se dedique ao seu trabalho de análise de cenários. 

 

Palavras-Chave: Rede Neural Artificial. Simulação de tráfego. Vissim. 

Automatização de calibração. Modelo de regressão. Transporte Inteligente. 



 
 

 

ABSTRACT 

In the topic of Smart Transportation, urban planning took great advantage from 

computational simulation tools for traffic. In microsimulations, one important step is 

calibration, which is accomplished by tuning the values of simulation inputs, in order 

to match its internal metrics with those from real-world data. The process is iterative, 

time-consuming and is traditionally done manually by a traffic engineer. This 

research proposes a methodology to automatically calibrate traffic simulations. 

Initially a large number of simulations are run to create an extensive dataset of 

examples. Then, the dataset is used for training Artificial Neural Networks that are 

capable of estimating the simulation inputs that deliver the target output metrics, thus 

calibrating the simulations upon request of specific scenarios. Validation experiments 

were conducted to calibrate the routing and flow setup of simulations, and in these 

experiments it has been verified a high correlation, above 80%, between the 

estimates from the Neural Networks and the desired values for the input variables of 

the simulator, therefore validating the proposed methodology and the capabilities of 

automation and scalability of the calibration process. The evaluation of the Neural 

Networks also delivers the metrics for each individual input variable, such as vehicle 

volumes and route decisions, thus allowing the user to choose or ignore the 

estimates for those variables with poor performance and instead proceed to manual 

calibration. Finally, two experiments investigated the calibration capabilities of driving 

behavior parameters, a more abstract type of variable. For this type, results were 

observed with acceptable accuracy for about half of the parameters. In this case, it is 

the user’s choice to ignore the variables with the worst performances and use those 

with acceptable performances as a starting point for refinement. The proposed 

methodology has been shown to be capable of estimating with sufficient accuracy a 

significant part of the calibration parameters, thus reducing the workload of a traffic 

engineer and allowing more dedication to the work of scenario analysis. 

 

Keywords: Artificial Neural Network. Traffic simulation. Vissim. Calibration 

automation. Regression model. Smart Transportation. 
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1. Introduction 

1.1. Context 

Smart Cities have become a topic of interest as an approach to tackle urban 

problems with new technologies (PECAR; PAPA, 2017). Furthermore, there is 

special focus on the advancements of Information and Communication Technologies 

(ICT) and one possible division of the Smart City concept from the literature is into 

the branches of Smart Health, Smart Energy, Smart Governance and Smart 

Transportation, among others (MOHANTY; CHOPPALI; KOUGIANOS, 2016). 

In Smart Transportation, one of the main goals is to improve urban mobility by 

applying ICT to the transportation infrastructure, multimodal transport integration 

schemes, vehicles, and to the procedures through which traffic authorities perform 

their planning and operational tasks. In the sense of enabling authorities to perform 

these tasks more efficiently, Smart Transportation implements Intelligent Transport 

Systems (ITS), an overlapping concept that also aligns with making updated traffic 

information available to the users of the road network. Smart Transportation uses ITS 

and considers roads critical, because they are generally regarded as inefficient in 

comparison to their potential of use (XIONG et al., 2012). 

The tasks of planning new transportation infrastructure and estimating the 

impact of modifications to current road networks have specially benefited from 

simulation software (CHU et al., 2003; FANG; ELEFTERIADOU, 2003; 

HOLLANDER; LIU, 2008), which can be used for the comparison between two 

simulations in a project proposal. In this comparison, one simulation displays the 

current traffic conditions in the region of interest, and another simulation highlights 

the benefits of the new proposed infrastructure (future scenario) by improving the 

desired performance metrics of that traffic network, as shown in Figure 1. 

Furthermore, traffic simulations are usually divided into macroscopic, 

microscopic and mesoscopic simulations. Macroscopic simulations assess the 

aggregate characteristics from vehicle volumes on road networks over large 

geographical areas. Microscopic simulations focus on the interaction between 

individual vehicles and the physical infrastructure, within areas that are smaller and 
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with high level of detail. Mesoscopic simulations fit as an intermediate case that 

analyzes small groups of vehicles, but under the assumption that their elements are 

homogeneous (VILARINHO, 2008; YIN; QIU, 2013). This research focuses on 

microscopic simulations. 

For traffic simulations an important step is calibration. Which is the process of 

matching the metrics from the modeled road network (e.g. average speeds, car 

queue lengths and average travel times) to the metrics observed in the real world, as 

shown in Figure 2. In the specific case of microsimulations (another name for 

microscopic simulations), which cover limited areas, this is accomplished by tuning 

the simulation inputs (e.g. number and types of vehicles that enter the simulation 

area and their characteristics) until the metrics match with small error in comparison 

to those observed in the real world. Then, the simulation is considered accurate and 

calibrated (HENCLEWOOD et al., 2016; RRECAJ; BOMBOL, 2015; TETTAMANTI et 

al., 2015). 

The area of the map is limited and is it is built as a network of nodes and link 

segments. The configured vehicle volumes are inserted in the edges of the map, 

whereas the metrics are evaluated both edge-to-edge and internally in the map. In 

the second case, the metrics are the results from the manifestation of the vehicle 

behaviors and interactions, outside of the direct control from the user, who can only 

configure fixed behaviors to the vehicles that enter the edges of the map. 

 

 
Figure 1 –Comparison between traffic simulations in current and proposed scenarios for a road 

network. 

Source: Author. 
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Figure 2 – Calibration as the search for the inputs that deliver desired output results. 

Source: Author 

 

1.2. Motivation 

Traditionally, calibration has been done manually and iteratively by a traffic 

engineer. Also, smaller road segments that have less influence on the network 

dynamics are usually omitted for simplicity. Even so, the process is often very time-

consuming and repetitive, as criticized by Chu et al. (2003) and Hollander and Liu 

(2008). 

By contrast, the availability of computational power is an incentive to develop 

tools that automate the repetitive, yet analytical task of calibration (AGHABAYK et al., 

2013; HENCLEWOOD et al., 2016; MA et al., 2015; PARK; QI, 2005; SHAFIEI; GU; 

SABERI, 2018). For some types of problems, one possible strategy is to run a large 

number of diversified and low-cost simulations at first, and then filter out a collection 

of the most successfully calibrated simulations (by chance). 

Rrecaj and Bombol (2015) identified that for VISSIM, a commercially available 

traffic simulator, there is a convergence point related to optimization techniques 

being used for automatic calibration, with Genetic Algorithms (GA) being the most 

commonly used. Bethonico (2016), Tettamanti et al. (2015) and Yu and Fan (2017) 

also used GA to solve calibration as an optimization problem. GAs are heuristic 

techniques and therefore deliver solutions that are expected to perform better as the 

iterations run, but are not guaranteed to be optimal. Furthermore, even if the same 

road network is being calibrated, but in a different traffic scenario, the optimization 
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procedure needs to start from the beginning to deliver a new solution. The exception 

would be to use the previous results as a starting point. 

On the other hand, Machine Learning techniques use large amounts of 

collected data to create models to classify or estimate variables. They have been 

used for calibration of traffic simulations and can alternatively use the results from the 

large number of simulations that are conducted in the heuristic optimization 

algorithms (SHAFIEI; GU; SABERI, 2018; OTKOVIC; TOLLAZZI; SRAML, 2013). 

Even if a large number of simulations need to be set and run to allow a more efficient 

learning process for the Machine Learning tools, one hypothesis is that those would 

not be more computationally expensive than the large number of simulations 

otherwise necessary for the optimization methods. Another advantage that this 

research seeks is the possibility of data reuse in the training of Artificial Neural 

Networks (ANN), specific computing systems that are used for supervised machine 

learning. 

 

1.3. Objectives 

 General objective: This research proposes a methodology to train 

Artificial Neural Networks that can automatically calibrate traffic 

microsimulations. 

 Specific objectives: 

 Automate computing tasks of the traffic simulator to deliver a large 

number of simulation results. 

 Identify the most commonly used calibration methods and the 

research gap. 

 Develop Artificial Neural Networks that reuse information from the 

history of simulations for the calibration of the simulator and 

validate the proposed methodology. 
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1.4. Dissertation structure 

The main text of this dissertation is organized as follows. Chapter 1 is an 

introduction that gives an overview of the research context, motivation, objectives 

and organization of this document. 

Chapter 2 gives an overview of the key concepts from traffic simulators that are 

necessary to proceed with the research, as it is interdisciplinary and about Electrical 

Engineering and Computer Science methods being proposed for Traffic Engineering 

applications. 

Chapter 3 describes and discusses the literature review related to calibration of 

traffic simulation and machine learning techniques applied to traffic problems. 

Chapter 4 formally states the problem, the research question and proposes a 

methodology as a solution. 

Chapter 5 describes the methods and setups to validate the proposed solution. 

Chapter 6 presents experimental results and discussions. 

Finally, chapter 7 describes the conclusions of this research and suggestions 

for further development. 
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2. Key concepts of traffic microsimulation 

2.1. Traffic simulator 

The proposed methodology performs the automatic calibration of traffic 

microsimulations. Microsimulation is one type in the broader scope of traffic 

simulations that includes macro, meso and micro. The main characteristic of 

microsimulations is that the elements (e.g. cars, buses and pedestrians) are modeled 

individually and that their interactions with one another and with the physical 

infrastructure are calculated at each simulation step (LLANQUE AYALA, 2013; 

BETHONICO, 2016). 

A traffic simulator is a computer program that receives as inputs a collection of 

simulation settings composed by four elements: 1) The simulation duration and time-

step configurations, 2) the virtual infrastructure (road network and attributes), 3) the 

description of the way in which the vehicles should navigate in the network and 4) the 

parameters that adjust the behavioral models used in the vehicles, pedestrians and 

other traffic elements. 

The simulator delivers as outputs all the calculated properties for all vehicles in 

the simulation, such as positions, speeds and accelerations; which are all identifiable 

and traceable. However, it is considered unreasonable that the simulation be 

completely deterministic (HOLLANDER; LIU, 2008), and therefore the simulation 

adds an element of randomness to the calculations. The simulator allows the creation 

of measurement devices for vehicle counts, car queue counts and travel times, 

among other results. In practical terms, these aggregate data are considered the 

simulator outputs and mathematically treated as statistical results. 

One possible interpretation of the traffic simulator is that of a mathematical 

function that receives all settings and parameter inputs, including the duration of the 

simulation; and delivers the states of the road network at each simulation step, 

alongside the output metrics that were set by the user and refer to the whole 

simulation, or to intervals within the simulation duration (e.g. measure vehicle counts 

on a road only within a specific time interval). The representation of a traffic simulator 

can be made by a black-box diagram, as shown in Figure 3 
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Figure 3 – The simulation abstraction as a black box. 

Source: Author. 

 

2.2. Characteristics of the PTV Vissim simulator 

PTV Vissim is the simulator used in the experiments. It is a commercially 

available microsimulator developed by the German company PTV Planung Transport 

Verkehr AG and is widely used both in the academia and in the industry. This 

simulator allows the user to build the road networks with a Graphical User Interface 

(GUI) and to observe the dynamic movement of the vehicles on a map while the 

simulation steps are running. One key functionality of the simulator license that was 

available for this research is that there is a Component Object Model (COM) interface 

enabled (PLANUNG TRANSPORT VERKEHR AG, 2018). The COM interface allows 

the loading scripts to execute programmed tasks in the simulator in an automated 

way. This enables the automatic execution of a large number of simulations that can 

be used in this research for an automatic calibration procedure. An example of the 

user interface screen of the Vissim software is presented in Figure 4. 
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Figure 4 – The main screen of PTV Vissim. 

Source: Author. 

 

Based on the works of Llanque Ayala (2013), Bethonico (2013) and Vilarinho (2008), 

for a specific case of VISSIM, the simulator inputs can be classified in the following 

four groups: 

1. Simulation configuration, e.g. simulation duration and step duration. The 

step duration will be assumed constant for the experiments of this research. 

The simulation duration is set by the Vissim user as the simulation scenario is 

being built. 

2. Infrastructure construction, which includes the road network links, ramps, 

traffic lights (but not their timing settings, as further explained) and measuring 

entities. A new user to Vissim would identify these as the map that the 

software simulates and these items are often fixed infrastructure (hence the 

configurable traffic light timing settings are considered in another group). For 

the experiments, they are all considered constant throughout the methodology 

procedure, because the experiments start from already built traffic simulations 

that the user wants to calibrate. 

3. Network inputs. In Vissim, the network map starts empty at the beginning of 

the simulation and receives the vehicles that enter the simulation. The network 

inputs refer mostly to the configuration of these vehicles, such as the vehicle 
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volume distributions that enter the edges of the map, their proportional 

composition among the different types of vehicles (e.g. buses, cars and 

motorcycles) and the distribution of route decisions, i.e. the proportion of 

vehicles that decide to take one route or another at each road fork in the map. 

4. Driving behavior parameters. For a single vehicle entity in Vissim, there are 

two models that define its behavior: the car-following and the lane-change 

models (BETHONICO, 2016). The car-following model dictates the 

acceleration and braking behaviors of the car within a lane, i.e. its longitudinal 

movement along the lane axis, according to the movement of the vehicle in 

front of it. The lane-change model relies on a decision algorithm dependent on 

the movement of surrounding vehicles to determine if the vehicle changes 

lane, i.e. its transversal movement along the lane axis (OLIVEIRA; CYBIS, 

2008). 

On the output side, the simulator calculates all applicable properties to all vehicle 

entities in the simulation (e.g. instantaneous speed, acceleration and route decision) 

at every simulation step. It is possible to access all result and log files from a given 

simulation, but in practical terms, aggregate data are generated from the measuring 

devices that are set in the simulation and these are considered the proper simulation 

outputs (Rrecaj; Bombol, 2015). 

The simulation outputs can be computed from any interval within the simulation 

duration. However, because Vissim simulation networks start empty (i.e. with no 

vehicles in circulation), an initial time interval is usually considered transient and 

discarded from the simulation results, such as the initial 5 to 15 minutes (MARTE et 

al., 2017a). 

From the COM interface and through script commands, all simulation parameters 

can be accessed and edited, including the construction of the road network. It is 

possible to write scripts to perform the full cycle of creating simulations, creating the 

road networks, loading all vehicle inputs and their characteristics, setting the 

measurement devices, running the simulations and saving the results (PLANUNG 

TRANSPORT VERKEHR AG, 2018). 
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However, the proposed methodology in this research is intended to support traffic 

engineers in their experimentation and analysis work with the traffic microsimulator. 

Therefore, the methodology starts with built simulation scenarios, as explained in the 

solution proposition in Chapter 4. 
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3. Literature review 

3.1. On the selected parameters for calibration 

In the references, where traffic engineers document the calibration process of a 

traffic microsimulation, such as in the theses from Llanque Ayala (2013) and Miller 

(2009), the simulation configuration and the infrastructure construction are mostly 

considered constant. There is a group of authors who focus on the calibration of 

driving behavior parameters (AGHABAYK et al., 2013; LLANQUE AYALA, 2013; 

OTKOVIC; TOMMAZZI; SRAML, 2013; MILLER, 2009; VILARINHO, 2008) related to 

the car-following and lane-changing models, and usually in smaller road networks 

(e.g. an intersection, roundabout or highway section). 

By contrast, Chu et al. (2003) criticized such calibrated models as incomplete 

and proposed a calibration procedure for the routing behavior of a larger and more 

complex network and by utilizing an Origin-Destination (O-D) matrix as reference. 

This routing calibration is proposed to be an additional step after the driving behavior 

calibration. Additionally, Tettamanti et al. (2015) used a Genetic Algorithm to 

calibrate the traffic volume demand on a group of roundabouts, and therefore their 

variables of interest were in the category of network inputs. 

An insight from the literature review is that there is no single set of parameters 

to be calibrated according to all authors. Llanque Ayala (2013) and Vilarinho (2008) 

respectively investigated the selection of parameters and an analysis of parametric 

sensitivity of the simulations. The conclusion is that the subset of parameters (and 

the other subset that can be left on the program defaults) depends on a case-by-case 

basis. Furthermore, Punzo, Montanino and Ciuffo (2014) reinforce the idea that a 

subset of parameters might be sufficient to consider the calibration of a traffic 

microsimulation adequate. 

Chu et al. (2003) observed that more limited traffic simulations (e.g. a single 

intersection or roundabout) are likely to be more sensitive to driving behavior 

parameters than larger and more complex networks, in which case network inputs 

such as routing decisions, vehicle compositions and volumes become more relevant. 
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3.2. On the calibration procedure 

Rrecaj and Bombol (2015) identified that calibration is widely considered an 

optimization problem. Furthermore, there is a convergence point in regard to 

calibration in Vissim, with the use of Genetic Algorithms being the most common and 

identified as the state of the art. As an optimization problem, calibration is the 

iterative process of reaching the maximum value of an objective function or 

alternatively the minimum value of a cost function. 

Hollander and Liu (2008) conducted a survey on calibration techniques where 

various cost functions are used, and they defend that, as a first approach to 

calibration, quadratic errors are the most appropriate form of measuring costs to be 

minimized. They argue that:  

 Positive and negative errors should not cancel each other. 

 The quadratic measurements place more penalty on larger errors. 

 Smaller statistical errors may be tolerable in microsimulations due to the 

stochastic nature of traffic. 

The works of Llanque Ayala (2013), Vilarinho (2008), Chu et al. (2003) and 

Miranda (2018) are examples where the iterations of calibration were not automated. 

For a given calibration set, i.e. a set of determined values for all simulation 

parameters, the cost function is computed; the steps are tracked and the engineer 

chooses new calibration sets with the help of sensitivity analysis of the cost function 

and with some room for guessing, directed by the familiarity with the traffic simulator 

due to previous experiences. Both Chu et al. (2003) and Hollander and Liu (2008) 

were critics to the repetitive nature of the calibration task. 

Henclewood et al. (2016) propose a calibration procedure that relies on 

automation of simulations and a Monte Carlo approach. The procedure runs a large 

number of simulations with random parameters and measures squared errors; 1000 

simulations were performed to extract 93 and 34 calibrated models for noon and 

evening periods in their location of testing, thus showing the calibration differences 

between different time periods at the same location. Their hypothesis is that 

disaggregate individual vehicle data ought to be obtainable with the expansion of 
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vehicle-based data collection technologies. However, by comparing results of 

disaggregate data, the authors came to the conclusion that their solution is not 

scalable for larger networks and real-time applications. 

On the other hand, Bethonico (2016), Tettamanti et al. (2015) and Aghabayk et 

al. (2013) automated the calibration procedure by using Genetic Algorithms to solve 

an optimization problem. The Genetic Algorithm is a search heuristic that iterates 

through groups of calibration sets called generations; inspired by evolutionary theory, 

the new generations are created from combinations of the most successful 

calibration sets from the previous generation, with an added element of randomness. 

Success is determined by maximizing a fitness function (or alternatively minimizing a 

cost function) and, in practical terms, the algorithm delivers a successful generation 

of calibration parameters after a large arbitrary number of iterations. However, there 

is no mathematical guarantee that the algorithm eventually delivers the optimal 

calibration set, i.e., the set which absolutely minimizes the cost function. 

Shafiei, Gu and Saberi (2018) use machine learning techniques to calibrate 

simulations at a mesoscopic level. In their research, the subject of calibration is a 

Dynamic Traffic Assigment (DTA) model and machine learning is used to cluster 

archived data from the traffic authorities to identify the normal daily traffic dynamics, 

as reference for the DTA. Furthermore, as mesoscopic simulations deal with the 

abstraction of homogeneous groups of vehicles, clustering is also used to identify 

groups of roads for the DTA model, implicitly from the data (e.g. roads of 2, 3, or 4 

lanes and the desired speeds of 80 or 100 km/h). 

Otkovic, Tollazzi and Sraml (2013) proposed a calibration methodology for 

Vissim microsimulations on a roundabout scenario that uses Artificial Neural 

Networks (ANN). Within machine learning tools, the ANN is a supervised learning 

model that is trained with the input-output pairs of the desired phenomenon, which 

can be either a classification or regression problem; once trained, the ANN should 

model the transfer function between inputs and outputs in a generalized way. In their 

methodology, ANN models are trained and compared to best fit the direct transfer 

function of the Vissim microsimulator as a first step, i.e., the relationship between 

simulator inputs and generated outputs is modeled by ANNs and described as a 
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simulator prediction function. This prediction function delivers simulator output 

estimates directly and is less time-consuming than running a full VISSIM simulation. 

Furthermore, the calibration methodology of Otkovic, Tollazzi and Sraml (2013) 

iterates through calibration sets by utilizing the ANN estimates to score results more 

quickly (replacing Vissim as a first approach). Their ideas share similarities with the 

calibration methodology proposed in this research, as both use Vissim simulation 

results to generate examples for ANN training.  

However, key differences are that this research does not intend to model the 

direct transfer function of a traffic microsimulator, but to use machine learning to 

identify other patterns in traffic calibration, as it will be further explained in the formal 

methodology proposal in Chapter 4. 

 

3.3. On Machine Learning techniques for traffic problems 

Machine Learning is a field of computer science that uses statistical methods to 

allow computer programs to learn a task, as opposed to being directly programmed. 

The task is learned from a variety of methods applied to example data, such as 

pattern recognition, regression or clustering (SAMUEL, 1959; KOZA et al., 1996). 

Problems of interest of machine learning include classification of sample data 

and regression of transfer functions between input and output data of an observable 

phenomenon. Both regression and classification problems have appeared in the 

literature of traffic engineering and machine learning has been proposed as a 

solution. One machine learning technique of interest to this research is the Artificial 

Neural Network (ANN), a class of computing models that are inspired by biological 

neurons and are used for machine learning of regression and classification tasks 

(GERVEN; BOHTE, 2018). The subclass of deep learning ANNs are used for pattern 

recognition and considered by some authors to be the state of the art in machine 

learning (CIRESAN; MEIER; SCHMIDHUBER, 2012). Other varieties include 

convolutional ANNs, recurrent ANNs, and the simplest ANN model is the feedforward 

neural network (SCHMIDHUBER, 2014). A more detailed explanation of the model 

used in this research for the proof of concept is in Chapter 5. 
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Zhou, Qu and Li (2017) proposed a recurrent ANN model to predict traffic 

oscillations in the car-following model of microsimulations. The recurrent ANN is a 

type of network designed to be trained from time-series sample data and deliver 

predictions of future data. This model is used to replace the car-following models that 

are usually sets of equations for calculating the interaction between cars in a same 

road lane (BETHONICO, 2016). The recurrent ANN had a better performance than 

the classical models in predicting the trajectory of subsequent vehicles; the better 

than the classical models, the farther the subsequent vehicles were from the 

reference vehicle. 

Conversely to the driving behavior parameters, Tang et al. (2016) used a type 

of network called fuzzy ANN to estimate travel times in the real world from road loop 

detectors, thus the ANN implicitly computes a traffic simulation and delivers the travel 

time outputs, if we consider the loop counts and speeds as the inputs of this 

hypothetical simulation. 

In the context of Smart Transportation and not necessarily traffic simulation 

calibration; Alkheder, Taamneh and Taamneh (2016) used ANNs to classify the 

severity of traffic accidents from the data filled in the police reports. The goal of the 

ANN was to estimate how severe a new accident is from the data that is provided in 

the emergency call, and therefore the traffic authorities are better informed to send 

appropriate help to the location. In an analogous way and also in the context of 

Smart Transportation mapping, Ngwangwa et al. (2009) built a classifier of road 

defects with ANNs based on the pattern recognition of road accelerometers. 

As another example of ANN use outside of traffic calibration, Chen et al. (2017) 

used a combination of Genetic Algorithms and ANNs to create a system to predict 

rear-end collisions. Instead of training a single ANN to predict the collision from car-

following patterns that are fed from the Vehicle-to-Infrastructure (V2I), Vehicle-to-

Vehicle (V2V) and Global Positioning System (GPS) infrastructures; their 

methodology generates collections of ANN that compete in a Genetic Algorithm to 

deliver near-optimal ANN models. Their proposed model was more accurate than 

kinematics equations in the proof of concept. 
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Deka and Quddus (2014) used the pattern recognition properties of ANN to 

propose an accident mapping tool. They argue that police reports are inaccurate in 

their scenario of study, and an ANN model was trained to estimate the relationship 

between the given coordinates of the accident and the matching coordinates of the 

location on an actual road and with improved accuracy. 

Finally, Zhang and El Kamel (2017) proposed a novel driving model that is 

solely based on an ANN learning vehicle trajectories from sets of examples, thus the 

resulting ANN modeled the transfer function of the driving behavior model. They also 

implemented a traffic simulator to demonstrate how to replace the classical equation-

based car following models by the ANN transfer function. Their conclusions were 

positive in regard to the novel model being able to reproduce a broader variety of 

vehicle behaviors, i.e., calibration between the novel model and real-world data was 

more accurate under different scenarios. 

This research focuses on the use of feedforward Neural Networks to build a 

regression model of the calibration function, with emphasis on the experimentation of 

different topologies and optimizer strategies. 
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4. Research proposal 

4.1. Research gap 

Smart Cities have been highlighted as one of the current technological trends in 

urban scenarios, and Smart Transportation has been identified as one of its key 

elements (XIONG et al., 2012). Furthermore, Chu et al. (2003), Fang and 

Elefteriadou (2003), and Hollander and Liu (2008) have shown evidence of the 

advantages of traffic simulators for Smart Transportation planning. Additionally, traffic 

simulators are virtual environments that allow experimentation of research in traffic 

engineering, e.g. Zhang and El Kamel (2017) propose a new behavior model to 

replace the car-following model that is widely used in traffic microsimulations. 

Calibration has been identified as one of the challenging steps of the 

preparation of traffic simulation scenarios due to it being repetitive and time-

consuming (CHU et al., 2003). Furthermore, automation and the interpretation of 

calibration as an optimization problem has led to positive results in regard to 

improving accuracy, reliability and reproducibility of the calibration task (RRECAJ; 

BOMBOL, 2015). Genetic algorithms were identified as the most commonly used 

optimization methods for calibration, and while their results are promising, one 

drawback is that a large number of simulations are performed throughout the 

iterations for the heuristic to achieve a small set of highly specific solutions to the 

single scenario under calibration. In case of new traffic simulations using the same 

input and output variables (with some constraints that will be further explained), the 

calibration process by optimization needs to start over from the beginning. 

Figure 5 shows an example of a Genetic Algorithm. The hypothesis inspired by 

the theory of evolution is that successful candidates are created by a combination of 

successful candidates from the previous generation that survived the called fitness 

function, which evaluates their performance. 

Each iteration includes the recombination of the competing candidates into new 

candidates, highlighted in green, and the following discard of candidates that failed 

the evaluation of the fitness functions, marked with a red X. In (a), A, B, C, D and E 

represent a first generation of candidates for the optimal parameter set and upon a 

round of evaluation through the fitness function; C and D are discarded because their 
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performances are the two worst. In (b), A, B and E were left from the previous step to 

recombine alongside mutations α and β for a new set of candidates that still 

competes with A, B and E. In this round, B and E are discarded because of their 

inferior performance. 

The process continues iteratively in (c), where A, (A+B+α) and (B+E+β) left 

from the previous step recombine to generate (A+B+E+γ) and in this round, A and 

(B+E+β) are discarded. In (d), the survivor candidates (A+B+α) and (A+B+E+γ) 

recombine to generate (A+B+E+δ). Finally, the algorithm ends when, upon evaluation 

and discard of the candidates with the worst performances (A+B+E+γ) and 

(A+B+E+δ); (A+B+α) is left as the only candidate and considered close to optimal in 

this heuristic method. 

There is a possibility of using evaluation results from the intermediate 

candidates as a starting point for a new calibration, but the reuse of data was not 

mentioned as a key element in any of the references from the literature review. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 5 – Genetic Algorithm iterations process. 

Source: Author. 

 

Aghabayk et al. (2013) proposed a methodology for Vissim calibration that 

relies on parallelism to improve computing performance. They worked directly with 

the company that developed the Vissim software, PTV AG; and their research’s 

underlying assumption was that traffic microsimulations run on Computing 

Processing Units (CPU) in most cases, which imposes restrictions in scalability for 

larger networks and methodologies that require large numbers of simulations. 

Moreover, Xu et al. (2014) and Vu and Tan (2017) conducted research on the use of 

Graphical Processing Units (GPU) to improve performance of mesoscopic 

simulations with focus on scalability of network sizes. Their research indicates that 

CPU is the major trend in time-stepped simulations across the simulation software 

alternatives, thus GPU-based simulators are still under research and not considered 

widely available. 

Given that a bottleneck has been identified in scalability due to the computing 

architecture mostly used for traffic microsimulators, and that the currently used 
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calibration methods need a large number of simulations to be performed anyway. In 

this way, one possible research opportunity is in the direction of data reuse and the 

development of generalist procedures to calibrate multiple traffic microsimulations at 

once. Furthermore, as opposed to calibrating a single simulation through the 

optimization approach and restarting the process for every new simulation, the 

modeling of a generalist calibration function for the simulation of a road network map 

under different traffic scenarios has been identified as a research gap. 

 

4.2. Research question 

From the identified opportunities in the previous item, an elaboration of the 

research question is: 

 How to create automatic calibration models that are reusable across 

similar traffic simulations? 

From the research question, it is important to clarify what are simulations that 

are considered similar as a first step. The solution proposal to the question is a 

methodology, and the validation experiments are developed by using PTV Vissim as 

the traffic simulator of choice. Referring back to Chapter 2, Vissim (and other 

simulators) performs the simulation function from the set of all the simulator inputs 

(e.g. driving behavior parameters and network inputs) to the set of all simulation 

outputs (e.g. simulation states at each step and output aggregate metrics). 

The proposed categories of simulation inputs are simulation configuration, 

infrastructure construction, network inputs and driving behavior parameters. In the 

scope of this research, similar traffic simulations share the same values and settings 

for simulation configuration and infrastructure construction, which are in practical 

terms simulations over the same road network map and with the same duration. 

Similar simulations also share the listing of network inputs and driving behavior 

parameters. However, the values of those variables are not fixed. Figure 6 highlights 

the fixed and variable inputs for PTV Vissim alongside the aggregated data results, 

the only outputs used for calibration in practical terms. 
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Figure 6 – Fixed and variable inputs for similar simulations. 

Source: Author. 

 

The idea behind the research is to create automatic calibration models that can 

be used for various simulations of the same map, but under different traffic conditions 

(e.g. the same avenue or intersection; but under various traffic demands, varying 

vehicle compositions, varying routing decisions and various driver profiles), such as 

exemplified in Figure 7. 
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Figure 7 – Relationship between similar traffic simulations. 

Source: Author. 

 

4.3. Statement of the research proposal 

This research proposes a methodology to create automatic calibration models 

that are reusable to calibrate traffic microsimulations that are considered similar 

among themselves. The goal of the methodology is to perform all tasks necessary to 

deliver a reusable automatic calibration model from an initially uncalibrated traffic 

microsimulation setup. This calibration model is created through means of supervised 

learning, a branch of techniques in Machine Learning and, particularly, Artificial 

Neural Networks (ANN or simply Neural Networks for short, NN) are used in the 

validation experiments of this research. 

The Neural Networks perform the regression of a non-linear function with 

multiple inputs and outputs, and the learning of this behavior is conducted by 

mirroring a dataset of examples of input-output pairs. One assumption is that the 

examples in the training dataset are sufficient to represent the behavior of the 

function to be learned, across a wide range of its possible input and output values 

(HAYKIN, 2009). Once the Neural Network is trained and receives new inputs, it 

should deliver outputs according to the behavior that it learned in the training phase. 
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The methodology is, therefore, divided into two parts: the creation of the training 

dataset with sufficient input-output examples of calibration, and the training of a 

Neural Network to perform such task with adequate accuracy. A novel approach is to 

use a large number of traffic simulation results to build the dataset of what is defined 

as the calibration function, which reverses the input/output order of the traffic 

simulator, i.e. the simulation outputs are used as inputs of the calibration function, 

and the simulation inputs are the desired outputs of the modeled calibration function. 

This relationship between the simulation and calibration functions is 

represented by diagram shown in Figure 8. According to this model, values of input 

parameters should be mapped into values of aggregate outputs and vice-versa. As it 

will be further described in the experiments, the range of values for both input 

parameters and aggregate outputs are well-known for the applications of traffic 

simulations and traffic engineers who use the proposed methodology can spot 

inconsistencies after the calibration model delivered the estimations of values for 

calibration. 

Examples for identifying inconsistencies are that vehicle traffic volumes should 

be positive numbers limited by the maximum capacity of the road segment, travel 

times should be positive and range from seconds to hours; the ratio of route 

decisions at a road fork for one side should range between 0% to 100%, and average 

speeds should be positive numbers and limited by what is physically possible on the 

road segments. 
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Figure 8 – Relationship between simulation and calibration functions. 

Source: Author. 

 

Finally, as described by Hattab and Motelica-Heino (2014) in their research with 

Neural Networks for regression in a different application, there is a problem in 

modeling an inverse function because of the probable non-uniqueness of the input-

output pairs, i.e., different input parameter values can lead to identical values of 

aggregate outputs, in such a way that tracing the reverse function has a high chance 

of error. Measures to minimize the effects of the non-uniqueness issue include 

verifying inconsistencies in the values of the variables and evaluating the Neural 

Network error across a large number of testing examples. 

In the implementation, the software describes the performance metrics for each 

variable to be calibrated; hence the traffic engineer can choose to ignore some of the 

suggestions from the calibration model. The proposed methodology is explained by 

the list of tasks below. 

Start with: Simulation road network. 

1. Dataset creation 

1.1.  Generate random values for inputs to be calibrated. 

1.2. Run multiple simulations. 
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1.3. Exchange simulation inputs and outputs to create the dataset of the 

calibration function. 

2. Neural Network training 

2.1. Separate training and testing datasets. 

2.2. Train neural network as a regression model. 

2.3. Evaluate which inputs are estimated correctly. 

End with: Regression model for automatic calibration. 

The global input is a traffic microsimulation of interest, with the simulation 

configuration and infrastructure construction inputs set; and with the network inputs 

and driving behavior parameters for calibration defined, but not necessarily with the 

values set. The methodology starts by creating random sets of values for the 

variables intended to be calibrated and running multiple traffic simulations. 

So far, the methodology resembles the optimization methods from the literature 

review, in regard to the large number of simulations being performed from randomly-

generated sets of inputs. This process in both cases is automated by using the COM 

interface to launch the simulation jobs in the software, but the difference is that in this 

methodology the collection of simulation results is used to train a machine learning 

tool, as opposed to being filtered out in order to create new sets of more specialized 

simulations (e.g. new generations of simulations in the case of genetic algorithms). 

The regression model for automatic calibration is created with an Artificial 

Neural Network, which is trained with a selection of the dataset and evaluated with 

the remaining examples in order to eliminate bias, i.e., it is possible that a Neural 

Network be overly trained and memorizes the training examples with small error, 

which is undesirable and not the network learning the relationships between inputs 

and outputs of the dataset. 

Once the calibration model has been created, new similar simulations can be 

calibrated by applying the calibration function directly (thus by deployment of the 

ANN model), using the desired simulation outputs, i.e. the calibration reference, as 

the inputs of the calibration tool. 
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Finally, the proposed methodology is intended to automate the calibration 

process that would be traditionally performed by the traffic engineer manually or with 

some degree of repetitiveness. Furthermore, it focuses on the calibration of the 

simulation inputs that were identified as of interest in the literature review, and 

advances the identified state of the art methods by making the calibration model 

reusable for other simulations, within the constraints that define them as similar. 

For a completely new simulation, which can be interpreted as a new map 

location, the methodology must be followed from the beginning, but with it a new 

group of similar simulations becomes available for the reuse of the newly created 

calibration model. 
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5. Methodology implementation 

5.1. Experimental parts to validate the methodology 

According to the proposed methodology, the validation experiments can be 

divided into two parts: building a training dataset that represents the calibration 

function and creating the neural network models. Additionally, all steps can be 

automated in a software implementation. The first part uses traffic simulation 

software that are commonly found in the traffic engineering references of the 

literature review, being an implication that some widely used alternatives are 

proprietary. By contrast, the literature of machine learning algorithms is mostly open-

source and the experimental setups use the collaborative libraries that are generally 

well-documented. 

 

5.2. Traffic microsimulation software 

In the first part of the methodology, the traffic microsimulation software is used 

to build a dataset that represents the traffic simulation model. The PTV Vissim, which 

is a proprietary traffic microsimulator from PTV Planung Transport Verkehr AG 

(2018), was chosen from the software alternatives mentioned in the literature review. 

One of the reasons for this choice was because the current state-of-the-art 

calibration methods with Genetic Algorithms have been conducted with simulations 

on Vissim, as referenced in the survey of Rrecaj and Bombol, 2015. Another reason 

was because of the availability of a software license with COM interface, enabling the 

automation through scripts. 

Figure 9 presents an overview of a loaded scenario in Vissim. Even though the 

COM interface allows commands for the creation of entire network maps and 

scenarios, traffic engineers usually recreate real-world networks with drawing tools 

and the reference map layer in the background. The same editing alternatives apply 

to the various physical and abstract entities in the map (e.g. vehicles, traffic lights, 

route decisions and driving behavior parameters), as they can be either input by the 

user through the button panel or directly edited with script commands. From the 

perspective of the user, the button panels are usually preferred, whereas the 
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proposed methodology takes advantage of the COM interface for automation of 

simulation jobs with full control. 

 

 
Figure 9 – Overview screen of PTV Vissim. 

Source: Author. 

 

Vissim is used to run a large number of simulations, in order to use their results 

to build a dataset that represents the calibration function, and to do so a list of input 

and output variables of the simulator must be defined. As described in Figure 8, the 

calibration function’s inputs and outputs, in the dataset built, are respectively the 

simulator outputs and inputs of normal simulation runs. Furthermore, a well-defined 

list of input and output variables of the simulator determines all that is taken into 

consideration during calibration. 

As discussed by Punzo, Montanino and Ciuffo (2014), not all variables are 

equally important for calibration. The gradient descent is the principle underlying the 

learning methods for the Neural Networks, as it will be further explained, and it 

emphasizes learning from the strongest input-output relationships, i.e. those with 

highest correlations. Therefore, the Neural Networks offer flexibility to the listing of 

inputs and outputs from Vissim. An insufficient number of listed variables may result 
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in unsuccessful calibration attempts, whereas an excessive number of variables adds 

computational complexity to the Neural Network training phase and may add the 

noise of input-output relationships that are weakly correlated. 

The simulation inputs and outputs vary according to the experiment and 

network map. From the performed experiments, the variables that belong to each 

group are listed in the following, even though not all variables were necessarily used 

in all experiments. 

 Vissim inputs: Vehicle volumes, vehicle volume distributions, vehicle 

compositions, traffic light timing settings, static route decisions and 

driving behavior parameters. 

 Vissim outputs: Vehicle volume counts, vehicle average speeds, 

vehicle travel times and vehicle queue counters. 

 Vissim parameters kept constant: Simulation duration, which depends 

on the scenario of interest; and the simulation step, which is kept on 

default unless there is the suspicion that it interferes with the 

performance of the calibration function modelling. 

All the listed Vissim inputs and outputs parameters are accessible through the 

COM interface. It should be noted that they are variables of interest to the traffic 

engineer, as discussed in the literature review. 

It has been empirically observed on a default installation on the Windows 

Operating System, the computational processing of the simulator models run mostly 

on the Central Processing Unit (CPU). Whereas Xu et al. (2014) and Vu and Tan 

(2017) make considerations about parallel processing and the use of a Graphics 

Processing Unit (GPU) to improve performance. Therefore, parallelization is a 

direction of future research once the proposed methodology is validated, since a 

GPU should be already available to optimize the training of the machine learning 

model. 

Additionally, the number of simulations that were run in each experiment in 

order to build the training dataset was determined empirically and is another topic for 

research and experimentation. The lower and upper boundaries for the simulation 
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number are the number that suffices to represent the behavior of the simulator with 

generalization for the former, and the number of simulations that takes a time slot 

that is manageable in practical terms for the latter. 

 

5.3. Dataset built 

The dataset of the calibration function has the format described in Figure 10, 

which highlights that the input and output roles are reversed depending on whether 

the simulation or calibration function is being performed. The columns list the input 

and output variables, and the rows list the simulation runs. The simulation input 

variables (referred to as parameters) are set to a variety of randomly generated 

values within a defined range that is appropriate to the application (e.g. vehicle 

volumes are non-negative integers that range from 0 vehicles/hour to the maximum 

theoretical capacity of the road, according to a uniform distribution). 

In the proposed methodology, the user defines the value ranges and number of 

simulation runs after building the infrastructure map and choosing the variables of 

interest. To keep the scripts within the same programming environment, although not 

necessary, the tables can be managed with Python libraries such as NumPy or 

Pandas, which have optimized functions for operations of large tables and random-

value generation. Spreadsheet software like Microsoft Excel or other open-source 

alternatives can be used in order to quickly generate the variable values and confirm 

their statistical distributions. 
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Figure 10 – Example of input-output dataset. 

Source: Author. 

 

5.4. Neural network training 

The second part of the experiments uses open-source software that is trending 

in machine learning research to implement Artificial Neural Networks (ANNs) 

Python (PYTHON SOFTWARE FOUNDATION, 2018) is a general-purpose 

interpreted programming language that is used both for the COM interface scripts in 

Vissim and the development of the machine learning models. TensorFlow (ABADI et 

al., 2016) is a library created to implement Neural Networks in a scalable manner and 

is GPU-enabled to improve performance through computing paralellism. Keras 

(CHOLLET, 2015) is a library that works as the frontend of TensorFlow as is used for 

its simplicity to create feedforward Neural Network models. It also has the optimized 

implementation of various data preprocessing methods, optimizer methods for the 

network’s weight updates, evaluation methods and other training and validation 

adjustments. 

The main approach for modelling the defined calibration function is with an ANN 

of the type Multilayer Perceptron (MLP) (HAYKIN, 2009). The perceptron is a 

computational model inspired by the biological neuron cells, presented in Figure 11. 

The artificial neuron computes the weighted sum of the inputs and delivers the result 
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of the activation function, which represents if the neuron was triggered or not. The 

MLP is the concatenation on perceptron’s in order to create a larger and more 

abstract model, presented in Figure 12. 

 

 
Figure 11 – The perceptron model. 

Source: Author. 

 

 
Figure 12 – The Multilayer Perceptron. 

Source: Author. 

 

The generalization capacity of MLPs makes them adequate as both regression 

models and pattern classifiers. The first refers to modelling multivariable continuous 

non-linear functions based on data samples and interpolation properties. Whereas 

the second refers to delivering the probability of an entity belonging to groups after 

training the model with previous entity examples and their features. 
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The configuration of the neurons and their connections in a graph is referred to 

as the ANN topology; whereas training is the process of adjusting the connection 

weights between neuron layers in order for the MLP to reproduce the input-output 

results of the training dataset with minimized error. The training process is iterative 

and in the MLP uses the Backpropagation algorithm (HAYKIN, 2009), which involves 

computing the contributions of each connection weight to the output error by means 

of the gradient function of the error function.  

One of the simplest strategies for training and evaluating an Artificial Neural 

Network is to divide the dataset of examples for learning into a training dataset and a 

testing dataset. The training phase of the Neural Network is then conducted using 

only the training samples and, once the training is finished and there are no more 

adjustments to the network, the testing samples are used to evaluate the 

performance of the Neural Network (e.g. mean quadratic error in regression problems 

and accuracy in classification problems) in a deployment scenario. It is important that 

the training phase be blind to the examples that are used for testing, thus eliminating 

bias from the network. The traditional dataset split is presented in Figure 13, and 

Figure 14 presents the block diagram of the training process. 
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Figure 13 – The training and testing dataset split. 

Source: Author. 

 

 
Figure 14 – Block diagram of the training process. 

Source: Author. 

 

To perform the iteration steps for the weight tuning of the neurons, the error 

function (between the outputs of Neural Network and the desired outputs from the 

training dataset samples) is calculated and can be visualized as a multi-variable 

surface, as presented in Figure 15. Furthermore, the set of coordinates of the lowest 



 
 

42 

point on the surface represents the set of weights that minimizes the error function 

and thus a good-performing Neural Network. The gradient vector of the error function 

surface is calculated to indicate the slopes of the function, and the training phase is 

the iterative navigation through the error function surface to search for the point of 

lowest error (by following the opposite direction of the gradient vector). Finally, the 

method is heuristic and randomization of the starting point is used to prevent the 

recurring trapping of this optimization method in local minima while searching for the 

global minimum. 

 

 
Figure 15 – Visualization of training iterations on the error function surface. 

Source: Author. 

 

 
Figure 16 – Paths to the local minimum with different hypothetical optimizers. 

Source: Author. 
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Apart from the randomization of the starting conditions, the training iteration 

steps can follow a variety of strategies to compute the gradients efficiently and 

navigate the error function quickly and accurately, as presented in Figure 16. The 

strategies involve the computation of adaptive iteration step sizes, momentum 

corrections to prevent stagnation on function plateaus or local minima; the selection 

of activation functions in the neurons with derivatives that are fast to compute (the 

derivatives are necessary to compute the error function gradient) or the division of 

the training samples into batches according to a computation advantage. These 

strategies depend on the application and are usually chosen through experimentation 

during the development of the Neural Network, as discussed by Ruder (2016). 

The simple dataset split into training and testing from Figure 13 can be used in 

an initial approach to train Neural Networks. However, there are disadvantages in 

using only training samples to evaluate the network performance during the training 

phase and to determine when the iterations should stop. In this approach, there are 

two options for the stopping criteria. 

One alternative is using the training error as a reference for the stopping 

threshold. The Neural Network is a computing system that learns the general 

relationships between inputs and outputs in the dataset that it is learning, as opposed 

to strictly memorizing the input-output pairs, and therefore evaluating the network 

with the same training samples introduces an undesirable bias, because the network 

is being evaluated solely on examples that it knows from training. 

The second alternative is to stop training at a fixed amount of training epochs, 

which are the full round of iterations across the entire training dataset. Determining 

the best number of training epochs is necessary to avoid both underfitting and 

overfitting of the Neural Network. Underfitting means that there have not been 

enough training epochs for the network to reach the surroundings of a local minimum 

on the error function surface, and thus the training error is high. Overfitting, on the 

other hand, refers to the network exhaustively learning the regression model from the 

training data and instead memorizing the training samples. 

Figure 17 shows the difference between a correctly fitted and an overfitted 

regression model for a set of training data. The black dots on the XY plane represent 
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samples from function to be modeled by the Neural Network as a regression model. 

The blue curve approximates the general trend of the data and should model 

accurately the underlying phenomenon of the function. By contrast, the red curve 

represents an overfitted regression model. In this case the exhaustive training of the 

Neural Network, with the goal of minimizing the training error, has led the regression 

model to also approximate the statistical noise of the data points. The consequence 

is that for a new (blind) set of testing points, the red overfitted curve has a higher 

regression error than the blue curve. 

 

 

Figure 17 – Visualization of a fitted (blue) and an overfitted (red) regression model for the 

training data. 

Source: Author. 

 

One strategy to avoid overfitting of the regression model is called early-stopping 

of the training (CARUANA; LAWRENCE; GILES, 2001). It is worth mention that for 

an unbiased evaluation of the Neural Network in a deployment scenario, the testing 

dataset is not used at any stage of the network development and no adjustments can 

be made to the network after the testing performance has been evaluated. 
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Since an overfitted model performs better than a model with fewer epochs for 

the training data, but performs worse for a new set of testing data, a part of the 

training dataset is separated for blind validation at each training epoch, as 

represented in Figure 18. 

 

 
Figure 18 – Separation of a part of the training dataset for validation. 

Source: Author. 
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Figure 19 – Comparison between the training (blue) and validation (red) errors to determine the 

early-stopping of the training. 

Source: Author. 

 

The fraction of the validation split is determined empirically and reduces the size 

of the training dataset because the validation samples are not used for computing the 

error gradient function. After each training epoch, the performance is evaluated on 

basis of the validation samples to determine the early-stopping of the training. 

Figure 19 presents the decay of the training and the validation errors of a 

hypothetical Neural Network undergoing training. Both training and validation errors 

decay at the beginning of the training phase, since the regression model is being 

developed from the training dataset. Exhaustive training leads to the decaying of the 

training error. However, overfitting can be detected as the performance error for the 

blind validation samples increases after an inflexion point. In the early-stopping 

strategy, the epoch in which the validation error starts increasing is when the training 

stops. 

In the proposed methodology of this research, the dataset is generated from a 

large number of traffic simulations. In particular, the performed experiments were 
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conducted with data obtained from between 2000 and 10000 simulations, a number 

that was determined empirically and feasible with the available computing power. 

However, a limited number of dataset samples can be a problem in the training 

of Neural Networks, and a strategy called cross-validation can be used to reduce the 

effects of sampling variation and deliver performance metrics that are more unbiased 

across the available dataset, in comparison to the simple training-testing split from 

Figure 13. As an example, from the literature, Singh and Panda (2011) used a 10-

fold cross-validation technique to minimize training bias in their development of a 

Neural Network. Figure 20 presents a simplification of their strategy with 4 folds. 

 

 
Figure 20 – Evaluation with 4-fold cross-validation of training (Tr) and testing (Te) dataset 

sections. 

Source: Author. 

 

In the example of the 4-fold cross-validation strategy, the dataset is divided into 

4 equal parts and, for each part, a different permutation of the training-testing splits is 

used in the training of a Neural Network model. Finally, the combination of the 

performance metrics of the 4 individual networks represents statistically the 

performance metrics of a hypothetical Neural Network that is trained using the entire 

available dataset. The cross-validation strategy was not used in the experiments 
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because there were no constraints for obtaining more simulation samples if 

necessary. 

 

5.5. Neural Network prototyping software 

Multiple Back-Propagation (LOPES; RIBEIRO, 2001, 2003, 2009, 2010, 2011) 

is an alternative software worth of mention for fast and simple prototyping, as well as 

teaching and visualization because of its simple interface shown in Figure 21. It was 

used in the early stages of this research for quick prototyping of feedforward Neural 

Networks before switching to the TensorFlow environment due to limited settings for 

training the Neural Networks. There is no choice of optimization method and the 

choices for stopping criteria of the training are either upon reaching a fixed number of 

training epochs, or by verifying that the training error has reached a determined 

threshold. 

 

 
Figure 21 – Interface of the Multiple Back-Propagation software. 

Source: Author. 

 

Switching to the TensorFlow and ultimately Keras environment was necessary 

because of flexibility in the experimentation with Neural Networks. One of the 

reasons for using Keras in Python scripts is the ability to vary the sizes of the Neural 
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Network layers in an automated way. Once the dataset is prepared for training, a 

collection of networks with different depth and width configurations is trained and 

evaluated. As shown in Figure 22, a network is built by organizing the neuron nodes 

in a topology. 

This research utilizes feedforward networks and the layer configuration refers to 

the hidden layers, since the input and output layers are determined by the number of 

variables in the dataset. Therefore, the notation used in the results is that, for 

example, a 50-50-50 topology represents a Neural Network with three layers, each 

containing 50 neurons in width. 

 

 
Figure 22 – Layers of a feedforward Neural Network. 

Source: Author. 

 

A second reason for using Keras is that the strategy of early-stopping the 

training is already implemented, and also are various commonly used activation 

functions and optimizer algorithms. Variation of these settings is done to verify the 

consistency of the results that validate the proposed methodology. Despite the wide 

range of activation functions, eleven at the time of writing, the developed Neural 

Networks were kept with the default sigmoid function, one of the non-linear 
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continuous activation functions that is adequate for regression, as recommended in 

the Keras documentation. 

However, the Keras library includes the implementation of various optimizer 

algorithms for the network training and they had effect in the training times and 

number of epochs before the early-stopping trigger. From those recommended in the 

documentation for use in regression problems, the six tested optimizers are listed 

below; all kept with their default internal settings. 

 Stochastic Gradient Descent (SGD), as discussed by Ruder (2016). 

 Adagrad (DUCHI; HAZAN; SINGER, 2011). 

 Adadelta (ZEILER, 2012). 

 Adam (KINGMA; BA, 2014). 

 Adamax (KINGMA; BA, 2014). 

 Nadam (SUTSKEVER et al, 2013). 

Additionally, to improve the performance of the optimizer algorithms, the dataset 

samples can be normalized before the network training. The reason for normalization 

of the input samples is that different input variables can vary in numerical range (e.g. 

vehicle counts range from zero to thousands of vehicles/hour, while average speeds 

have a smaller range from zero to highway speeds of around 100 km/h at maximum). 

Therefore, some direction axis of the error function surface can be stretched with 

orders of magnitude in comparison to others, resulting in more computationally 

expensive iterations because of the numerical disparity. 

Normalization of the inputs (subtraction of the variable’s mean and division by 

its standard deviation) is therefore a step that reduces the computational complexity 

of the iterations. On the other hand, outputs with larger ranges (e.g. vehicle volume 

inputs ranging from zero to thousands of vehicles/hour, while route decision variables 

are fractions between zero and one) can bias the training against fitting the outputs 

with smaller ranges. Consequently, normalization of the output samples is also 

desirable in order to keep all the outputs equally important in the modelling of the 

calibration function. 
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Once a Neural Network has been trained and is deployed, new inputs are 

normalized before being processed and the outputs are later denormalized for use. 

 

5.6.  Result evaluation 

Training the MLP is an iterative optimization problem of searching for the 

minimum of the error function. The selected error function is customizable and 

computed between the model outputs at a given iteration and the desired outputs 

listed in the training dataset. There are different training strategies that range from 

one training dataset sample being computed by iteration, to the division of the 

training samples in batches for group computation, and finally the use of the entire 

training dataset to compute a more generalized version of the error gradient to 

update the connection weights. In Keras, the default batch size is 32 and this value 

was kept throughout the experiments. 

According to the survey of Hollander and Liu (2008), the literature has a variety 

of error functions that are used to evaluate the calibration and convergence of an 

ANN model. For the specific application of traffic microsimulations, they argue that 

the stochastic nature of traffic makes appropriate the use of quadratic errors, mean 

quadratic errors and root mean quadratic errors, with some authors using them 

interchangeably. The adequate error functions are presented in Table 1, from which 

the Mean Squared error was selected to be used in the experiments, since it was one 

the default alternatives in Keras. 

  



 
 

52 

Table 1 – Adequate error functions for training and evaluation. 

Name Formula 

Squared error (𝑥 − 𝑦 )  

Mean squared error 
1

𝑁
(𝑥 − 𝑦 )  

Root mean squared error 
1

𝑁
(𝑥 − 𝑦 )  

Root mean squared normalized error 
1

𝑁

(𝑥 − 𝑦 )

𝑦
 

Source: Author. 
 

However, it is proposed in the methodology that the user (e.g. a traffic engineer) 

have information to evaluate the trained Neural Network for each individual 

calibration variable. Furthermore, the user can verify the variables that were modeled 

with satisfactory error and use them, while ignoring the suggestion from the Neural 

Network for the variables that were modeled poorly. 

The evaluation of performance for each variable is done with the testing 

dataset. The test inputs are processed by the Neural Network, and the outputs are 

compared with the desired outputs from the dataset. Additionally, the selected metric 

to measure performance in a normalized way is the correlation between the 

network’s predictions and the desired test outputs. The correlation functions as a 

score of the quality of the calibration for each variable and it is calculated with 

Equation 1, where x and y are the predicted and desired values of the outputs. 
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Equation 1 – Correlation formula. 

𝑟 =
∑(𝑥 − �̅�)(𝑦 − 𝑦)

∑(𝑥 − �̅�) (𝑦 − 𝑦)
, −1 ≤ 𝑟 ≤ 1 

 

Variables with negative and small correlation values should be ignored by the 

user, as those represent that the network’s predictions do not match the desired 

values with accuracy, and therefore the accuracy of the network upon deployment is 

questionable. By contrast, variables with correlation values close to 1 will be possibly 

calibrated with accuracy by the network upon deployment. 

Graphically, a plot of the x and y variables on the XY plane indicates a weak 

correlation when the points are randomly distributed, as opposed to a strong 

correlation when the points are close to the x=y line, as presented in Figure 23(a) 

and (b). 

 

 

(a) 

 

(b) 

Figure 23 – Example of x and y variables with weak (a) and strong (b) correlation. 

Source: Author. 
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6. Experimental results 

6.1. Overview of the experiments 

Over twenty experiments were progressively conducted in this research. This 

project involved learning phases with the traffic simulator, the automation steps and 

the training of the Neural Networks, and the history of experiments is incremental 

with iterations of fine-tuning and correction of errors. 

Therefore, this dissertation presents four major experiments that were 

conducted to validate the methodology proposed to automatically calibrate traffic 

microsimulations. The traffic simulations were run in the PTV Vissim software and the 

Neural Network models were developed in the Python and Keras environment. 

The four experiments were performed with two road networks of interest due to 

their complexity and frequent traffic congestions. The road network used in 

Experiment 1 is shown in Figure 24, the access roundabouts between the avenues 

Radial Leste-Oeste and 23 de Maio in the city center of São Paulo, Brazil. In this 

network, Neural Networks were used to calibrate vehicle volumes entering the edges 

of the map and the proportion of cars that follow each direction in every road fork. All 

experiments use the equivalent vehicle model to compute volumes, i.e. the 

simulation only presents car entities, under the assumption that motorcycles are 

implicitly represented as equivalent to less than one car, and buses and trucks are 

equivalent to more than one car (MARTE et al., 2017b). 

Experiments 2, 3 and 4 were performed on the road network shown in Figure 

25, a return access on the Raposo Tavares highway in São Paulo, Brazil. In this 

network, Experiment 2 is similar to Experiment 1 and calibrates the vehicle volumes 

entering the edges of the map and their routing decisions. 

The road network from Figure 25 is the same that was calibrated by Klapper et 

al. (2017) in their work. By using their report as reference, the vehicle volumes and 

routings were kept at fixed values and Experiments 3 and 4 use Neural Networks to 

calibrate the driving behavior parameters, respectively from the Wiedemann 74 and 

Wiedemann 99 car-following models, which are the options available in the PTV 

Vissim simulator. 
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Figure 24 – Access roundabouts from Avenida Radial Leste-Oeste to Avenida 23 de Maio (red 

avenues). 

Source: OpenStreetMap. 

 

 
Figure 25 – Return access (yellow) at km 23 on the Raposo Tavares highway (red). 

Source: OpenStreetMap. 
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6.2. Running multiple simulations 

The first part of the proposed methodology is the creation of the dataset by 

running a large number of traffic simulations, with different input parameters in order 

to map the transfer function of the simulator. Table 2 presents an example of input 

table that can be automatically read by a Python script and loaded into PTV Vissim. 

The tables with the input data can be created with either Microsoft Excel or the 

Pandas library from Python and saved into a CSV file. Each variable should follow a 

statistical distribution that suits the application. The ranges of values used for each 

experiment is further explained in their setups. 

 

Table 2 – Examples of inputs for multiple simulations. 

Simulation* 

Vehicle 

volume 1 

(vehs/h) 

Vehicle 

volume 2 

(vehs/h) 

Vehicle 

volume 2 

(vehs/h) 

Route 

decision 1a 

Route 

decision 

1b** 

1 629 2003 304 0.15 0.85 

2 321 3544 221 0.91 0.09 

3 404 120 50 0.35 0.65 

4 20 2 1020 0.56 0.44 

* The simulation index is removed from the table before the Python script is run to read the 

data from the table. 

** For simplicity, route decisions are modeled as always pairs and the sum of the routing 

options (a) and (b) always equals to 1. Therefore, the Neural Network only has to estimate the 

value of option (a) for each route decision. 

Source: Author. 

 

A Python script example to run multiple simulations is presented in Figure 26. 

The script loop reads and loads the data from each row individually and then 

launches a simulation run. The loop counter, the command to load the data and the 

launch of the simulation are highlighted in red. Minor changes are necessary for each 

different experiment and the full scripts are in the Appendices. 
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 After all the simulation runs, PTV Vissim generates a table with the outputs for 

each simulation listed in the same format as in Table 2. Finally, the dataset for 

training the Neural Network is created from the use of Vissim input parameters as the 

Neural Network outputs, and the Vissim output results as the Neural Network inputs. 

The script that concatenates the tables is also in the Appendices. This script also 

removes the rows of data that are incomplete and appear, for example, when not a 

single car has been able to pass a travel-time segment in very congested traffic 

simulations. In all the experiments, these scenarios were observed in less than 3% of 

the simulations. 

 

# import format: 3 vehicle volumes + 14 static route RelFlows 
# Vol1, Vol2, ..., Rout1_opt1, Rout1_opt2, ..., Rout2_opt1,... 
import csv 
 
with open('inputs.csv', 'rb') as csvfile: 
    all_flows = Vissim.Net.VehicleInputs.GetAll() 
    all_routes = Vissim.Net.VehicleRoutingDecisionsStatic.GetAll() 
    myfile = csv.reader(csvfile, delimiter=';') 
 
    # first row is the variable names 
    input_variable_names = myfile.next() 
 
    for k in range(4000): 
        this_line = myfile.next() 
        index = 0 
        for t in range(len(all_flows)): 
            all_flows[t].SetAttValue("Volume(1)", this_line[index]) 
            index+=1 
        for m in range(len(all_routes)): 
            options = all_routes[m].VehRoutSta 
            for n in range(len(options)): 
                options[n].SetAttValue("RelFlow(1)", this_line[index]) 
                index+=1 
 
        Vissim.Simulation.RunContinuous() 

 
Figure 26 – Example script for automated 4000 simulation runs. 

Source: Author. 
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6.3. First experiment 

The first experiment uses the road network presented in Figure 27 and Figure 

28. The desired inputs for calibration are the 5 vehicle volumes that enter the edges 

of the map, and the ratios of the 5 route decisions that are part of the road network. 

The output performance metrics from PTV Vissim that are used by a Neural 

Network to calibrate simulations on this map are 13 travel times with also their 

vehicle counts. 

 

 
Figure 27 – Inputs for calibration of the road network in the first experiment. 

Source: Author. 
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Figure 28 – Output results used as inputs of the Neural Network in the first experiment. 

Source: Author. 

 

The preparation of the simulation runs followed the setup listed below. 

 Number of simulations: 4000. The number was chosen empirically. 

The ratio between training/testing is 80/20, and the validation split within 

the training dataset is 20%. 

 Inputs 

 5 vehicle volumes, following a uniform distribution between 0 and 

1800 vehicles per hour per lane, the maximum theoretical capacity 

according to Dhamaniya and Chandra (2014), and Spack (2011). 

The objective is to allow a variety of combinations of free-flow and 

congested traffics (BETHONICO, 2016). 

 5 Route decisions, following a uniform distribution between zero 

and one. 

 Simulation duration: 3600 seconds, chosen empirically, ignoring the 

initial 600 seconds for transient behavior in the road network, which 

starts empty (MARTE et al., 2017a). 
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 Desired speeds: Set to the regulatory speed limits of the road 

segments. 

 Outputs: 13 travel times for the segments shown in Figure 28. The travel 

time entities also count the vehicles that passed through the segment for 

the calculation; hence there are 13 additional vehicle counts. 

 Driving behaviors: All parameters for the Wiedemann 74 car-following 

model, lateral behavior and lane-change behavior were kept in their 

default values (FRANSSON, 2018; MIRANDA et al., 2018). 

After the simulations and the creation of the training dataset, a collection of 

Neural Networks was trained and tested, using the correlation between the desired 

values for calibrating the simulation and the Neural Network’s estimates as the 

performance metric. For all trained networks in all the experiments, the 

training/testing dataset split was empirically determined as 80/20 from the common 

practice in the reviewed literature. Within the training dataset, 80/20 was also the 

ratio of the validation split. 

Due to the number of input and output variables, the topology of 2 hidden layers 

with 50 neurons each (the notation is a 50-50 configuration) was fixed, as an initial 

attempt, for experimentation with 6 optimizer algorithms recommended for regression 

in the Keras documentation. Figure 29 shows how many epochs were necessary for 

training the Neural Networks with each optimizer, before the early-stopping callback. 

It can be observed that the Stochastic Gradient Descent (SGD) optimizer 

required more epochs in two orders of magnitude, being the possible reason that this 

optimizer uses a fixed step size for navigation on the error function surface. By 

contrast, the other 5 optimizer alternatives implement adaptive-sized steps and 

required around 100 epochs before possibly overfitting the models. 
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Figure 29 – Comparison of training epochs in the first experiment. 

Source: Author. 

 

Figure 30 shows the comparison between the average of the correlation metrics 

for the 6 tested optimizers. The variation of performance is less than 1% and 

therefore it has been concluded that the optimizers affect the training time of the 

Neural Networks, but not their performance in this particular experiment. 

 
Figure 30 – Comparison of correlations for each optimizer in the first experiment. 

Source: Author. 

 



 
 

62 

The next step of experimentation is the effect of the hidden-layer topology in the 

performance of the model. To isolate the effects of the topology, the optimizer was 

kept with the Adadelta alternative, the best-performing for the previous step, and the 

activation functions of the neurons were kept at the default sigmoid option for 

simplicity. Figure 31 shows a comparison between the average correlation metrics of 

21 trained Neural Networks, with topologies that are the combinations of 1, 2 and 3 

layers in depth, with 2, 3, 5, 10, 15, 20 and 50 neurons in width. 

The overall best performance is that of networks with 1 and 2 hidden layers, as 

opposed to 3 layers. One possible explanation is the vanishing gradient problem, as 

explained by Glorot and Bengio (2010). The transfer function representing the Neural 

Network is a concatenation of the transfer functions of its layers. Since the 

recommended activation functions for non-linear regression are normalized or limited 

between -1 and 1 (e.g. sigmoid and tahn), the gradient error function vanishes (in 

other words, the error function surface flattens) if it is computed over networks with 

many concatenated layers. 

 

 
Figure 31 – Comparison of correlations for each topology in the first experiment. 

Source: Author. 

 



 
 

63 

 
Figure 32 – Comparison of correlations of each variable in the first experiment. 

Source: Author. 

 

Figure 32 compares the performance of calibration for each variable in PTV 

Vissim, in the case of the four best-performing Neural Networks. The choice of 

network in these four cases has small impact on the performance and the measured 

correlation was between 0.8 and 0.9 (which are desirable values) for all variables 

except for Rout_2. The latter has a correlation close to zero and the conclusion that 

the Neural Networks estimates random values for its calibration. 

The results for the variables where high correlation was measured are positive 

to validate the proposed methodology. However, the non-existent correlation 

measured for Rout_2 should be examined. From the map in Figure 27, route decision 

2 is a corner access between the avenues with only one lane. Additionally, cars can 

take both alternatives on route decision 2 to the same destination on Avenida 23 de 

Maio. 

Punzo, Montanino and Ciuffo (2014) discuss in their work that a subset of 

variables may be sufficient for calibration, and that a sensitivity analysis can be used 

to determine what variables to ignore. It is possible that the Neural Network’s 

learning process is unable to capture the relationship between the Rout_2 variable 
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and the output metrics due to complexity limitations, but it is also possible that the 

contribution of this variable to the metrics is too small to be considered for calibration. 

At the end of the Neural Network development, the correlations of the individual 

variables are delivered. In cases such as that of this first experiment, the user can 

verify the metrics and choose or not to use the network’s suggestions as the values 

of calibration. Variables such as Rout_2 can then be either calibrated manually or set 

at a default value and ignored if the overall result satisfies the requirements of the 

traffic engineer, for example. 

Since the training dataset has been normalized, all the inputs and outputs from 

the Neural Network are equally balanced. Even though there are measured vehicle 

counts in the edge segments of the road network and the network attempts to 

calibrate the vehicle inputs to those segments, the Neural Network also takes into 

consideration the error of the inner measurements of the map. 

Except for Rout_2, the Vol variables did not show significantly higher 

correlations than the Rout variables because the Neural Network did not exactly 

match the vehicle volume inputs to the vehicle counts of the edge segments, for the 

benefit of reducing also the error of the inner segments. 

 

6.4. Second experiment 

The second experiment uses the road network presented in Figure 33, Figure 

34 and Figure 35. It follows the format from the first experiment and the desired 

inputs for calibration are the 3 vehicle volumes on the edges of the map and 7 route-

decision ratios. 

The output performance metrics from PTV Vissim that are used for calibrating 

simulations on this map are 12 travel times, 14 vehicle counts, and 14 harmonic 

average speeds computed on those counters throughout the simulation period. 
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Figure 33 – Inputs for calibration of the road network in the second experiment. 

Source: Author. 

 

 
Figure 34 – Output results from the travel time entities, used as inputs of the Neural Network in 

the second experiment. 

Source: Author. 
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Figure 35 – Output results from the vehicle counter entities, used as inputs of the Neural 

Network in the second experiment. 

Source: Author. 

 

The preparation of the simulation runs followed the setup listed below. 

 Number of simulations: 4000, chosen empirically. The ratio between 

training/testing is 80/20, and the validation split within the training dataset 

is 20%. 

 Inputs 

 3 vehicle volumes, following a uniform distribution between 0 and 

1800 vehicles per hour per lane (DHAMANIYA; CHANDRA, 2014; 

SPACK, 2011). 

 7 Route decisions, following a uniform distribution between zero 

and one. 

 Simulation duration: 1800 seconds, chosen empirically, ignoring the 

initial 300 seconds for transient behavior (MARTE et al., 2017a). 

 Desired speeds: Set to the regulatory speed limits of the road 

segments. 

 Outputs: 12 travel times, 14 vehicle counts and 14 harmonic speed 

averages. 
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 Driving behaviors: All parameters for the Wiedemann 74 car-following 

model, lateral behavior and lane-change behavior were kept in their 

default values (FRANSSON, 2018; MIRANDA et al., 2018). 

After the simulations and the creation of the training dataset, the Neural 

Networks were trained and tested using the same methods from the first experiment 

of measuring correlations between estimated and desired Neural Network outputs. 

Similarly to the first experiment, the topology of 2 hidden layers with 50 neurons 

each was fixed for experimentation with the 6 recommended optimizer algorithms in 

Keras. Figure 36 shows the number of epochs necessary to reach a possible 

overfitting of the Neural Networks. In a similar result from the previous experiment, 

there was a disparity of order of magnitude between the optimizers. 

Figure 37 reproduces the result from the first experiment that the optimizers 

affect the training time more than the correlation measurements. Following the 

reference from the previous experiment and due to the small variation in results, the 

Adadelta optimizer was kept fixed in order to experiment with the hidden layer 

topologies. The activation function remained the default sigmoid for simplicity. 

 

 
Figure 36 – Comparison of training epochs in the second experiment. 

Source: Author. 
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Figure 37 – Comparison of correlations for each optimizer in the second experiment. 

Source: Author. 

 

The combinations of depths and layer widths used to vary the hidden-layer 

topologies were those of 1, 2 and 3 layers with 3, 5, 10, 15, 20 or 50 neurons each. 

The average correlations for each of these networks are compared in Figure 38. 

Finally, the measured correlations at individual variables are compared for the overall 

best-performing networks in Figure 39. 

 

 
Figure 38 – Comparison of correlations for each topology in the second experiment. 

Source: Author. 
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Figure 39 – Comparison of correlations of each variable in the second experiment. 

Source: Author. 

 

The best Neural Network in this experiment had the 50-50 configuration with the 

Adam optimizer. All variables had a correlation between 0.8 and 0.9, except for 

Rout_7, which is a roundabout corner access. Following the justification from the first 

experiment, it is possible that the relationships between this variable and the PTV 

Vissim metrics are too complex for the Neural Networks to absorb during training. 

The user has access to the individual metrics of the calibration variables after 

the Neural Network development. A traffic engineer has the possibility to separately 

calibrate this variable manually, or to ignore it at a default value if the overall results 

of the estimated calibration values are adequate to the project’s requirements. 

 

6.5. Third experiment 

The third experiment used the same road network from the second experiment 

and has the goal of calibrating another group of variables of interest: the driving 

behavior parameters. More specifically, the car-following and lane-change models 

are abstract and used to compute the interactions between the drivers. 
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Aghabayk et al. (2013), Llanque Ayala (2013), Otkovic, Tommazzi and Sraml 

(2013), Miller (2009) and Vilarinho (2008) are all authors who conducted research on 

the calibration of driving behaviors, with focus on the Wiedemann 74 and 

Wiedemann 99 car-following models. These models are equations to describe the 

positions and speeds of the vehicles that follow the same lane. Even though these 

parameters can be accessed and edited in PTV Vissim, their meanings are abstract 

and often a topic of discussion in the reviewed literature. 

Klapper et al. (2017) have calibrated a PTV Vissim simulation of the map from 

the second experiment with data from the real-world, and the simulation file was 

available to use in this research. The route decisions were kept fixed at the values 

from the calibration and the vehicle volumes were kept fixed at 80% of each road’s 

capacity for simplicity. This value was chosen empirically because a low occupancy 

rate minimizes the interactions between drivers, which would reduce the sensitivity of 

the simulation output metrics to the variation of the driving parameters. 

By contrast, a very congested road network would not allow the vehicles to 

reach higher speeds and display behaviors related, for example, to overtaking and 

aggressive braking. The work from Miranda et al. (2018) and Fransson (2018) were 

used as reference to select 4 variables of interest, related to the Wiedemann 74 car-

following model and the lane-change model, which affects the aggressiveness in 

overtaking cars. The PTV Vissim outputs used for calibration were identical to those 

of the second experiment: travel times, vehicle counts and harmonic average 

speeds. The preparation of the simulation runs followed the setup listed below. 

 Number of simulations: 3000, chosen empirically. The ratio between 

training/testing is 80/20, and the validation split within the training dataset 

is 20%. 

 Inputs 

 W74ax, uniformly distributed between 0.5m and 3m 

 W74bxAdd, uniformly distributed between 0.5m and 4m. 

 W74bxMult, uniformly distributed between 0.5m and 6m. 

 MinHdwy, the variable that corresponds to the minimum headway 

distance with the vehicle at an adjacent lane, used as a threshold 
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for changing lanes. This variable was uniformly distributed 

between 0.5m and 7m. 

 The above ranges for the variables were determined from the 

works from Miranda et al. (2018), Fransson (2018) and Sukennik 

and Kautzsch (2018). 

 Simulation duration: 1800 seconds, chosen empirically, ignoring the 

initial 300 seconds for transient behavior (MARTE et al., 2017a). 

 Desired speeds: Set to the regulatory speed limits of the road 

segments. 

 Outputs: 12 travel times, 14 vehicle counts and 14 harmonic speed 

averages. 

 Vehicle volumes: Fixed at 80% of the capacity of the edge segments. 

 Route decisions: Fixed at the values from the calibration work from 

Klapper et al. (2017). 

After the simulations and the creation of the training dataset, the Neural 

Networks were trained and tested using the same methods from the previous 

experiments. Following the same procedures of experimenting with the 6 Keras 

optimizers in a 50-50 topology, the results are presented in Figure 40 and Figure 41. 

The results are consistent with the conclusions from the previous two experiments 

that the choice of optimizer affects the training time but has a small effect on the 

correlation results of the Neural Networks. 
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Figure 40 – Comparison of training epochs in the third experiment. 

Source: Author. 

 

 
Figure 41 – Comparison of correlations for each optimizer in the third experiment. 

Source: Author. 

 

For consistency and simplicity, the Adadelta optimizer and the sigmoid 

activation function were kept fixed for the experimentation with topologies. The 

combinations of depths and layer widths used to vary the hidden layers were those of 

1, 2 and 3 layers with 1, 2, 3, 5, 10 or 50. The results are presented in Figure 42 and 

Figure 43. 
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Figure 42 – Comparison of correlations for each topology in the third experiment. 

Source: Author. 

 

 
Figure 43 – Comparison of correlations of each variable in the third experiment. 

Source: Author. 

 

The number of variables for calibration was smaller in the third experiment than 

in the previous two, and a smaller Neural Network with a single layer of 10 neurons 
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was the best-performing for the collection. W74ax and MinHdwy are variables with 

consistent correlations above 0.8, which is a desirable value. 

However, W74bxMult has a weaker correlation below 0.6 and poses a situation 

for the evaluation of the user. The level of abstraction of the driving behavior models 

makes it more difficult to explain a poorer performance of calibration than variables 

with more visible effects on the road network. A traffic engineer that uses the 

proposed methodology can choose to ignore this variable or use the Neural 

Network’s estimate as a starting point for further fine-tuning. 

 

6.6. Fourth experiment 

The fourth experiment is an adaptation of the third with the only change of the 

car-following model. The lane-change MinHdwy was kept fixed at its default value of 

0.5, and the Wiedemann 74 car-following model was replaced by Wiedemann 99, a 

more complete model that was designed for use in highways. Wiedemann 99 has 10 

parameters that relates to acceleration, braking, reaction times and safe distances 

among others. Calibration of these parameters is a subject of interest for research 

and discussion because of their abstract meanings and because their tuning has 

been suggested as means to model the behavior of autonomous vehicles 

(SUKENNIK; KAUTZSCH, 2018). 

However, the work from Punzo, Montanino and Ciuffo (2014) discusses the 

effectiveness of attempting to calibrate all parameters at the expense of simplicity, 

especially if low sensitivity of the traffic simulations is observed to some of the 

parameters. The preparation of the simulation runs followed the setup listed below. 

 Number of simulations: 2000, chosen empirically. The ratio between 

training/testing is 80/20, and the validation split within the training dataset 

is 20%. 

 Inputs: Wiedemann 99 has 10 parameters, of which 9 can be 

automatically edited with scripts in the COM interface (W99cc1 is a drop-

down menu with the default value 0.9 and was kept fixed for simplicity). 
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The ranges of the W99 parameters below were chosen to contain the 

suggested values in the report from Sukennik and Kautzsch (2018). 

 W99cc0: Uniformly distributed between 0.5m and 2m. 

 W99cc1: Fixed at 0.9s. 

 W99cc2: Uniformly distributed between 0m and 5m. 

 W99cc3: Uniformly distributed between -12 and -4. 

 W99cc4: Uniformly distributed between -0.4 and 0. 

 W99cc5: Uniformly distributed between 0 and 0.4. 

 W99cc6: Uniformly distributed between 0 and 12. 

 W99cc7: Uniformly distributed between 0m/s² and 0.3 m/s². 

 W99cc8: Uniformly distributed between 0 m/s² and 5m/s². 

 W99cc9: Uniformly distributed between 0 m/s² and 3m/s². 

 Simulation duration: 1800 seconds, chosen empirically, ignoring the 

initial 300 seconds for transient behavior (MARTE et al., 2017a). 

 Desired speeds: Set to the regulatory speed limits of the road 

segments. 

 Outputs: 12 travel times, 14 vehicle counts and 14 harmonic speed 

averages. 

 Vehicle volumes: Fixed at 80% of the capacity of the edge segments. 

 Route decisions: Fixed at the values from the calibration work from 

Klapper et al. (2017). 

Following the same procedures of experimenting with the 6 Keras optimizers in 

a 50-50 topology as an initial approach, the results are presented in Figure 44 and 

Figure 45, and are consistent with all three other experiments. However, the average 

correlations in all cases are below 0.5. Figure 46 compares 24 Neural Networks with 

the sigmoid activation functions and the Adadelta optimizer, in combinations of 1, 2 

and 3 layers with 2, 3, 5, 10, 15, 20, 30 and 50 neurons per layer. In all cases, the 

average correlations were below 0.5. 
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Figure 44 – Comparison of training epochs in the fourth experiment. 

Source: Author. 

 

 
Figure 45 – Comparison of correlations for each optimizer in the fourth experiment. 

Source: Author. 
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Figure 46 – Comparison of correlations for each topology in the fourth experiment. 

Source: Author. 

 

Upon investigation of the individually calibrated variables, the results in Figure 

47 show that one of the W99 parameters had a correlation above 0.8, three had 

values between 0.4 and 0.7; and four had very weak correlation values below 0.3. 

These results show that the automatic calibration with Neural Networks might 

not be accurate in this case for half of the variables involved. From the reviewed 

literature, the calibration of Wiedemann 99 parameters often involves straight road 

segments, roundabouts or small road networks with low complexity. It is possible that 

the mathematical complexity of the relationships between these inputs and the 

simulator output metrics is high for Neural Networks to model, due to highly 

stochastic nature of traffic microsimulations and the high abstraction of the 

Wiedemann 99 car-following model. 

Finally, evaluation from the user is required. Since the calibration is often an 

iterative and manual process, the estimates from the Neural Network can offer 

starting points for refinement when convenient and reduce workload. The discussion 

from Punzo, Montanino and Ciuffo (2014) holds for the actual sensitivity of the 

simulations to all the W99 parameters, since it can be practice to calibrate only the 

parameters that resemble the Wiedemann 74 model, as the former is a more detailed 

extension of the latter. 
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Figure 47 – Comparison of correlations of each variable in the fourth experiment. 

Source: Author. 
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7. Conclusions 

This research proposes a methodology to automatically calibrate traffic 

microsimulations with Neural Networks. The motivation derived from the possibility of 

reuse of the intermediate results from heuristic optimization algorithms, examples of 

which are the Genetic Algorithms that have been identified as the state-of-the-art 

solution for automated calibration. 

The research gap was identified as the hypothesis that a calibration function 

could be defined as the inverse function of the direct computations of the traffic 

simulator. Building a regression model of such non-linear function, in the case that it 

is possible to obtain numerous examples of multivariate input-output pairs is a 

problem for which Neural Networks are among the current state-of-the-art 

techniques, and hence the link of both subjects, calibration of simulations and 

supervised learning, was created in this research. 

Four major experiments were performed to validate the proposed methodology. 

Since this research uses techniques from Computer Science and Engineering to 

solve a problem in the context of Traffic Engineering, the setups of the experiments 

were developed from the Traffic Engineering references and the proposed 

methodology, despite automated, allows for feedback and evaluation of the user of 

the software. 

One of the validated hypotheses in the proposed methodology is that the steps 

can automated in a future software implementation, since they were conducted by 

scripts through all experiments. The first two experiments calibrated one of the 

common subjects of interest: the routing information of the road network, represented 

by volumes and route decisions. 

In both experiments, the measurements of correlation between desired values 

and their estimates by the Neural Networks were above 0.8 and considered high, 

with exception of one variable in each. It has been argued that the Neural Network 

development process delivers the metrics of the individual variables, and that traffic 

engineers have the chance to evaluate if results are satisfactory and should be used 

in their work. In those grounds the methodology has been validated. 
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In the last two experiments the subject of calibration were the driving behavior 

models, which are abstract and posed high complexity for the Neural Networks to 

model. There is ongoing discussion about the effects of the behavioral parameters 

and the sensitivity of the traffic simulations to the models as the road networks grow 

in size, since the opposite in scale are macrosimulations that rely heavily on statistics 

and have no individualized behavior for the vehicles. 

The difficulties in calibrating the driving behaviors could be observed as the 

measured performance metrics were lower in the last two experiments. Even so, for 

some of the parameters of the Wiedemann 74 car-following model, the lane-change 

headway and half of the Wiedemann 99 parameters, the methodology provided 

results that can serve as a starting point for refinement, and one of the contribution of 

this research lies on the fact that the previous solutions did not take advantage of 

data reuse to increase scalability. 

One direction for further research is establishing criteria to identify beforehand 

the variables that would have a weak correlation in the regression model, of which 

one possibility is to perform sensitivity analyses. Another direction for improvement is 

to study how many measuring entities on the road network (e.g. vehicle counters, 

time counters, queue counters and measurements of speeds) are sufficient for the 

regression models to deliver satisfactory calibration performance. Finally, a third 

direction for development is the expansion of the proposed methodology to 

macrosimulations, since the calibration of this group is also a topic of research. 
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APPENDIX A 

 
Python scripts run in the PTV Vissim COM interface to automate simulation runs. 

1. Variation of vehicle volume inputs and route decisions (experiments 1 

and 2): 

 
# import format: 3 vehicle volumes + 14 static route RelFlows 
# Vol1, Vol2, ..., Rout1_opt1, Rout1_opt2, ..., Rout2_opt1,... 
import csv 
 
with open('inputs.csv', 'rb') as csvfile: 
    all_flows = Vissim.Net.VehicleInputs.GetAll() 
    all_routes = Vissim.Net.VehicleRoutingDecisionsStatic.GetAll() 
    myfile = csv.reader(csvfile, delimiter=';') 
 
    # first row is the variable names 
    input_variable_names = myfile.next() 
 
    # ranges up to excel row+1 
    for k in range(4000): 
        this_line = myfile.next() 
        index = 0 
        for t in range(len(all_flows)): 
            all_flows[t].SetAttValue("Volume(1)", this_line[index]) 
            index+=1 
        for m in range(len(all_routes)): 
            options = all_routes[m].VehRoutSta 
            for n in range(len(options)): 
                options[n].SetAttValue("RelFlow(1)", this_line[index]) 
                index+=1 
 
        Vissim.Simulation.RunContinuous() 
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2. Variation of the driving behavior Wiedemann 74 and lane change  

parameters (experiment 3): 

 

# import format: W74ax, W74bxAdd, W74bxMult, MinHdwy 
import csv 
 
with open('inputs.csv', 'rb') as csvfile: 
    driving_behavior_list = Vissim.Net.DrivingBehaviors.GetAll() 
 
    myfile = csv.reader(csvfile, delimiter=';') 
 
    # first row is the variable names 
    input_variable_names = myfile.next() 
 
    # ranges up to excel row+1 
    for k in range(3000): 
        this_line = myfile.next() 
 
        driving_behavior_list[0].SetAttValue("W74ax", this_line[0]) 
        driving_behavior_list[0].SetAttValue("W74bxAdd", this_line[1]) 
        driving_behavior_list[0].SetAttValue("W74bxMult", this_line[2]) 
        driving_behavior_list[0].SetAttValue("MinHdwy", this_line[3]) 
 
        Vissim.Simulation.RunContinuous() 
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3. Variation of the driving behavior Wiedemann 99 parameters (experiment 

4): 

 

# import format: W99 CC 1-9 
import csv 
 
with open('inputs.csv', 'rb') as csvfile: 
    driving_behavior_list = Vissim.Net.DrivingBehaviors.GetAll() 
 
    myfile = csv.reader(csvfile, delimiter=';') 
 
    # first row is the variable names 
    input_variable_names = myfile.next() 
 
    # ranges up to excel row+1 
    for k in range(2000): 
        this_line = myfile.next() 
 
        # Cycle-Track is the by default in the 4th Driving Behavior. 
        driving_behavior_list[0].SetAttValue("W99cc0", this_line[0]) 
        # driving_behavior_list[4].SetAttValue("W99cc1", this_line[1]) 
        driving_behavior_list[0].SetAttValue("W99cc2", this_line[1]) 
        driving_behavior_list[0].SetAttValue("W99cc3", this_line[2]) 
        driving_behavior_list[0].SetAttValue("W99cc4", this_line[3]) 
        driving_behavior_list[0].SetAttValue("W99cc5", this_line[4]) 
        driving_behavior_list[0].SetAttValue("W99cc6", this_line[5]) 
        driving_behavior_list[0].SetAttValue("W99cc7", this_line[6]) 
        driving_behavior_list[0].SetAttValue("W99cc8", this_line[7]) 
        driving_behavior_list[0].SetAttValue("W99cc9", this_line[8]) 
 
        Vissim.Simulation.RunContinuous() 
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APPENDIX B 

 
Python scripts run in the Python environment to create the training datasets from the 
concatenation of the PTV Vissim outputs and inputs, in inverse order. 
 
Experiment 1: 
 
import pandas as pd 
 
inputs = pd.read_csv('inputs8.csv', decimal=',', sep=';') 
times = pd.read_excel('results8.xlsx', decimal=',', sep=';', sheet_name='times') 
 
inputs = inputs.drop(columns=['Rout1b', 'Rout2b', 'Rout3b', 'Rout4b', 'Rout5b']) 
times = times.pivot(index='SimRun', columns='VehicleTravelTimeMeasurement') 
times = times.reset_index() 
 
dataset = pd.concat([times, inputs], axis=1) 
 
dataset.columns = dataset.columns.map(str) 
dataset.rename(columns='_'.join, inplace=True) 
dataset.columns = dataset.columns.str.replace('[^a-zA-Z0-9]', '') 
 
dataset = dataset.drop(columns='SimRun') 
dataset = dataset.dropna() 
 
dataset.to_csv('dataset8.csv', decimal='.', sep=',', index=False) 
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Experiment 2: 
 
import pandas as pd 
 
inputs = pd.read_csv('inputs5.csv', decimal=',', sep=';') 
times = pd.read_excel('results5.xlsx', decimal=',', sep=';', sheet_name='times') 
counts = pd.read_excel('results5.xlsx', decimal=',', sep=';', sheet_name='counts') 
 
inputs = inputs.drop(columns=['Rout_1b', 'Rout_2b', 'Rout_3b', 'Rout_4b', 'Rout_5b', 

'Rout_6b', 'Rout_7b']) 
times = times.pivot(index='SimRun', columns='VehicleTravelTimeMeasurement') 
times = times.reset_index() 
counts = counts.pivot(index='SimRun', columns='DataCollectionMeasurement') 
counts = counts.reset_index() 
 
dataset = pd.concat([times, counts, inputs], axis=1) 
 
# for multi-level indexing only 
dataset.columns = dataset.columns.map(str) 
dataset.rename(columns='_'.join, inplace=True) 
dataset.columns = dataset.columns.str.replace('[^a-zA-Z0-9]', '') 
 
dataset = dataset.drop(columns='SimRun') 
dataset = dataset.dropna() 
 
dataset.to_csv('dataset5.csv', decimal='.', sep=',', index=False) 
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Experiment 3: 
 
import pandas as pd 
 
inputs = pd.read_csv('inputs6.csv', decimal=',', sep=';') 
times = pd.read_excel('results6.xlsx', decimal=',', sep=';', sheet_name='times') 
counts = pd.read_excel('results6.xlsx', decimal=',', sep=';', sheet_name='counts') 
 
times = times.pivot(index='SimRun', columns='VehicleTravelTimeMeasurement') 
times = times.reset_index() 
counts = counts.pivot(index='SimRun', columns='DataCollectionMeasurement') 
counts = counts.reset_index() 
 
dataset = pd.concat([times, counts, inputs], axis=1) 
 
# for multi-level indexing only 
dataset.columns = dataset.columns.map(str) 
dataset.rename(columns='_'.join, inplace=True) 
dataset.columns = dataset.columns.str.replace('[^a-zA-Z0-9]', '') 
 
dataset = dataset.drop(columns='SimRun') 
dataset = dataset.dropna() 
 
dataset.to_csv('dataset6.csv', decimal='.', sep=',', index=False) 
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Experiment 4: 
 
import pandas as pd 
 
inputs = pd.read_csv('inputs7.csv', decimal=',', sep=';') 
times = pd.read_excel('results7.xlsx', decimal=',', sep=';', sheet_name='times') 
counts = pd.read_excel('results7.xlsx', decimal=',', sep=';', sheet_name='counts') 
 
times = times.pivot(index='SimRun', columns='VehicleTravelTimeMeasurement') 
times = times.reset_index() 
counts = counts.pivot(index='SimRun', columns='DataCollectionMeasurement') 
counts = counts.reset_index() 
 
dataset = pd.concat([times, counts, inputs], axis=1) 
 
# for multi-level indexing only 
dataset.columns = dataset.columns.map(str) 
dataset.rename(columns='_'.join, inplace=True) 
dataset.columns = dataset.columns.str.replace('[^a-zA-Z0-9]', '') 
 
dataset = dataset.drop(columns='SimRun') 
dataset = dataset.dropna() 
 
dataset.to_csv('dataset7.csv', decimal='.', sep=',', index=False) 
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APPENDIX C 

 
Python scripts using the Keras library to train and evaluate the Neural Network 
models. 
 
Experiment 1: 
 
import matplotlib.pyplot as plt 
import keras 
import numpy as np 
import pandas as pd 
import tensorflow as tf 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.models import load_model 
import pickle 
 
layer_width = [50, 20, 15, 10, 5, 3, 2] 
 
n_inputs = 26 
n_outputs = 10 
 
config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
keras.backend.set_session(tf.Session(config=config)) 
 
dataset = pd.read_csv('dataset8.csv') 
 
train_dataset = dataset.sample(frac=0.8, random_state=0) 
test_dataset = dataset.drop(train_dataset.index) 
 
train_stats = train_dataset.describe() 
train_stats = train_stats.transpose() 
# train_stats.to_csv('train_stats.csv') 
 
 
def norm(x): 
    return (x - train_stats['mean']) / train_stats['std'] 
 
 
normed_train_data = norm(train_dataset) 
normed_test_data = norm(test_dataset) 
 
train_data_as_numpy = normed_train_data.values 
test_data_as_numpy = normed_test_data.values 
x_train = train_data_as_numpy[:, 0:n_inputs] 
y_train = train_data_as_numpy[:, n_inputs:] 
x_test = test_data_as_numpy[:, 0:n_inputs] 
y_test = test_data_as_numpy[:, n_inputs:] 
 
for width in layer_width: 
    model = Sequential() 
    model.add(Dense(units=width, activation='sigmoid', input_dim=n_inputs)) 
    model.add(Dense(units=width, activation='sigmoid')) 
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    # model.add(Dense(units=width, activation='sigmoid')) 
    model.add(Dense(units=n_outputs, activation='sigmoid')) 
    model.compile(loss='mean_squared_error', 
                  optimizer='Nadam', metrics=['mean_squared_error']) 
 
    early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=2) 
 
    history = model.fit(x_train, y_train, validation_split=0.2, epochs=50000, 
                        callbacks=[early_stop, keras.callbacks.TensorBoard()], verbose=1) 
 
 
    def plot_history(history): 
        hist = pd.DataFrame(history.history) 
        hist['epoch'] = history.epoch 
 
        plt.figure() 
        plt.xlabel('Epoch') 
        plt.ylabel('Mean Square Error') 
        plt.plot(hist['epoch'], hist['mean_squared_error'], 
                 label='Train Error') 
        plt.plot(hist['epoch'], hist['val_mean_squared_error'], 
                 label='Val Error') 
        plt.ylim([0, 1]) 
        plt.legend() 
        plt.show() 
 
 
    # plot_history(history) 
 
    # hist = pd.DataFrame(history.history) 
 
    # with open('history.txt', 'wb') as file: 
    #     pickle.dump(history.history, file) 
 
    loss, mse = model.evaluate(x_test, y_test, verbose=0) 
 
    outputs = model.predict(x_test, verbose=0) 
 
    correlations = np.zeros(outputs.shape[1]) 
 
    for i in range(len(correlations)): 
        correlations[i] = np.corrcoef(y_test[:, i], outputs[:, i])[0, 1] 
 
    print(normed_test_data.columns.values[26:]) 
    print(correlations) 
 
       # model.save('calibration_nn.h5') 
    del model 
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Experiment 2: 
 
import matplotlib.pyplot as plt 
import keras 
import numpy as np 
import pandas as pd 
import tensorflow as tf 
from keras.models import Sequential 
from keras.layers import Dense 
import pickle 
 
layer_width = [50, 20, 15, 10, 5, 3] 
 
n_inputs = 40 
n_outputs = 10 
 
config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
keras.backend.set_session(tf.Session(config=config)) 
 
dataset = pd.read_csv('dataset5.csv') 
 
train_dataset = dataset.sample(frac=0.8, random_state=0) 
test_dataset = dataset.drop(train_dataset.index) 
 
train_stats = train_dataset.describe() 
train_stats = train_stats.transpose() 
# train_stats.to_csv('train_stats.csv') 
 
 
def norm(x): 
    return (x - train_stats['mean']) / train_stats['std'] 
 
 
normed_train_data = norm(train_dataset) 
normed_test_data = norm(test_dataset) 
 
train_data_as_numpy = normed_train_data.values 
test_data_as_numpy = normed_test_data.values 
x_train = train_data_as_numpy[:, 0:n_inputs] 
y_train = train_data_as_numpy[:, n_inputs:] 
x_test = test_data_as_numpy[:, 0:n_inputs] 
y_test = test_data_as_numpy[:, n_inputs:] 
 
for width in layer_width: 
 
    model = Sequential() 
    model.add(Dense(units=width, activation='sigmoid', input_dim=n_inputs)) 
    model.add(Dense(units=width, activation='sigmoid')) 
    # model.add(Dense(units=width, activation='sigmoid')) 
    model.add(Dense(units=n_outputs, activation='sigmoid')) 
 
    model.compile(loss='mean_squared_error', 
                  optimizer='Nadam', metrics=['mean_squared_error']) 
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    early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=2) 
 
    history = model.fit(x_train, y_train, validation_split=0.2, epochs=50000, 

callbacks=[early_stop], verbose=1) 
 
 
    def plot_history(history): 
        hist = pd.DataFrame(history.history) 
        hist['epoch'] = history.epoch 
        epoch = history.epoch 
        print("Epochs: " + epoch[-1]) 
 
        plt.figure() 
        plt.xlabel('Epoch') 
        plt.ylabel('Mean Square Error') 
        plt.plot(hist['epoch'], hist['mean_squared_error'], 
                 label='Train Error') 
        plt.plot(hist['epoch'], hist['val_mean_squared_error'], 
                 label='Val Error') 
        plt.ylim([0, 1]) 
        plt.legend() 
        plt.show() 
 
 
    # plot_history(history) 
 
    # hist = pd.DataFrame(history.history) 
 
    # with open('history.txt', 'wb') as file: 
    #     pickle.dump(history.history, file) 
 
    loss, mse = model.evaluate(x_test, y_test, verbose=0) 
 
    outputs = model.predict(x_test, verbose=0) 
 
    correlations = np.zeros(outputs.shape[1]) 
 
    for i in range(len(correlations)): 
        correlations[i] = np.corrcoef(y_test[:, i], outputs[:, i])[0, 1] 
 
    print(normed_test_data.columns.values[n_inputs:]) 
    print(correlations) 
    del model 
  



 
 

97 

Experiment 3: 
 
import matplotlib.pyplot as plt 
import keras 
import numpy as np 
import pandas as pd 
import tensorflow as tf 
from keras.models import Sequential 
from keras.layers import Dense 
import pickle 
 
layer_width = [50, 10, 5, 3, 2, 1] 
 
n_inputs = 40 
n_outputs = 4 
 
config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
keras.backend.set_session(tf.Session(config=config)) 
 
dataset = pd.read_csv('dataset6.csv') 
 
train_dataset = dataset.sample(frac=0.8, random_state=0) 
test_dataset = dataset.drop(train_dataset.index) 
 
train_stats = train_dataset.describe() 
train_stats = train_stats.transpose() 
# train_stats.to_csv('train_stats.csv') 
 
 
def norm(x): 
    return (x - train_stats['mean']) / train_stats['std'] 
 
 
normed_train_data = norm(train_dataset) 
normed_test_data = norm(test_dataset) 
 
train_data_as_numpy = normed_train_data.values 
test_data_as_numpy = normed_test_data.values 
x_train = train_data_as_numpy[:, 0:n_inputs] 
y_train = train_data_as_numpy[:, n_inputs:] 
x_test = test_data_as_numpy[:, 0:n_inputs] 
y_test = test_data_as_numpy[:, n_inputs:] 
 
for width in layer_width: 
    model = Sequential() 
    model.add(Dense(units=width, activation='sigmoid', input_dim=n_inputs)) 
    model.add(Dense(units=width, activation='sigmoid')) 
    # model.add(Dense(units=width, activation='sigmoid')) 
    model.add(Dense(units=n_outputs, activation='sigmoid')) 
 
    model.compile(loss='mean_squared_error', 
                  optimizer='Nadam', metrics=['mean_squared_error']) 
 
    early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=2) 
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    history = model.fit(x_train, y_train, validation_split=0.2, epochs=50000, 

callbacks=[early_stop], verbose=1) 
 
 
    def plot_history(history): 
        hist = pd.DataFrame(history.history) 
        hist['epoch'] = history.epoch 
 
        plt.figure() 
        plt.xlabel('Epoch') 
        plt.ylabel('Mean Square Error') 
        plt.plot(hist['epoch'], hist['mean_squared_error'], 
                 label='Train Error') 
        plt.plot(hist['epoch'], hist['val_mean_squared_error'], 
                 label='Val Error') 
        plt.ylim([0, 1]) 
        plt.legend() 
        plt.show() 
 
 
    # plot_history(history) 
 
    # hist = pd.DataFrame(history.history) 
 
    # with open('history.txt', 'wb') as file: 
    #     pickle.dump(history.history, file) 
 
    loss, mse = model.evaluate(x_test, y_test, verbose=0) 
 
    outputs = model.predict(x_test, verbose=0) 
 
    correlations = np.zeros(outputs.shape[1]) 
 
    for i in range(len(correlations)): 
        correlations[i] = np.corrcoef(y_test[:, i], outputs[:, i])[0, 1] 
 
    print(normed_test_data.columns.values[n_inputs:]) 
    print(correlations) 
    del model 
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Experiment 4: 
 
import matplotlib.pyplot as plt 
import keras 
import numpy as np 
import pandas as pd 
import tensorflow as tf 
from keras.models import Sequential 
from keras.layers import Dense 
import pickle 
 
layer_width = [50, 30, 20, 15, 10, 5, 3, 2] 
 
n_inputs = 40 
n_outputs = 9 
 
config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
keras.backend.set_session(tf.Session(config=config)) 
 
dataset = pd.read_csv('dataset7.csv') 
 
train_dataset = dataset.sample(frac=0.8, random_state=0) 
test_dataset = dataset.drop(train_dataset.index) 
 
train_stats = train_dataset.describe() 
train_stats = train_stats.transpose() 
# train_stats.to_csv('train_stats.csv') 
 
 
def norm(x): 
    return (x - train_stats['mean']) / train_stats['std'] 
 
 
normed_train_data = norm(train_dataset) 
normed_test_data = norm(test_dataset) 
 
train_data_as_numpy = normed_train_data.values 
test_data_as_numpy = normed_test_data.values 
x_train = train_data_as_numpy[:, 0:n_inputs] 
y_train = train_data_as_numpy[:, n_inputs:] 
x_test = test_data_as_numpy[:, 0:n_inputs] 
y_test = test_data_as_numpy[:, n_inputs:] 
 
for width in layer_width: 
    model = Sequential() 
    model.add(Dense(units=width, activation='sigmoid', input_dim=n_inputs)) 
    model.add(Dense(units=width, activation='sigmoid')) 
    # model.add(Dense(units=width, activation='sigmoid')) 
    model.add(Dense(units=n_outputs, activation='sigmoid')) 
 
    model.compile(loss='mean_squared_error', 
                  optimizer='Nadam', metrics=['mean_squared_error']) 
 
    early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=2) 
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    history = model.fit(x_train, y_train, validation_split=0.2, epochs=50000, 

callbacks=[early_stop], verbose=1) 
 
 
    def plot_history(history): 
        hist = pd.DataFrame(history.history) 
        hist['epoch'] = history.epoch 
 
        plt.figure() 
        plt.xlabel('Epoch') 
        plt.ylabel('Mean Square Error') 
        plt.plot(hist['epoch'], hist['mean_squared_error'], 
                 label='Train Error') 
        plt.plot(hist['epoch'], hist['val_mean_squared_error'], 
                 label='Val Error') 
        plt.ylim([0, 1]) 
        plt.legend() 
        plt.show() 
 
 
    # plot_history(history) 
 
    # hist = pd.DataFrame(history.history) 
 
    # with open('history.txt', 'wb') as file: 
    #     pickle.dump(history.history, file) 
 
    loss, mse = model.evaluate(x_test, y_test, verbose=0) 
 
    outputs = model.predict(x_test, verbose=0) 
 
    correlations = np.zeros(outputs.shape[1]) 
 
    for i in range(len(correlations)): 
        correlations[i] = np.corrcoef(y_test[:, i], outputs[:, i])[0, 1] 
 
    print(normed_test_data.columns.values[n_inputs:]) 
    print(correlations) 
    del model 
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APPENDIX D 

 
Python script to load a previously saved Neural Network file and run it over a 
new array of inputs. 
 
from keras.models import load_model 
import keras 
import pandas as pd 
import numpy as np 
 
new_inputs = pd.read_csv('new_inputs.csv', sep=',', decimal='.') 
 
model = load_model('calibration_nn.h5') 
 
train_stats = pd.read_csv('train_stats.csv', index_col=0, sep=',', decimal='.') 
 
input_stats = train_stats.drop(index=['Vol1', 'Vol2', 'Vol3', 'Vol4', 'Vol5', 'Rout1a', 

'Rout2a', 'Rout3a', 'Rout4a', 'Rout5a']) 
 
 
def norm(x): 
    return (x - input_stats['mean']) / input_stats['std'] 
 
 
normed_new_inputs = norm(new_inputs) 
 
x_numpy = normed_new_inputs.values 
 
y_numpy = model.predict(x_numpy) 
 
new_outputs = pd.DataFrame(y_numpy, columns=['Vol1', 'Vol2', 'Vol3', 'Vol4', 'Vol5', 

'Rout1a', 'Rout2a', 'Rout3a', 'Rout4a', 'Rout5a']) 
 
output_stats = train_stats.loc[['Vol1', 'Vol2', 'Vol3', 'Vol4', 'Vol5', 'Rout1a', 'Rout2a', 

'Rout3a', 'Rout4a', 'Rout5a']] 
 
 
def denorm(y): 
    return (y * output_stats['std']) + output_stats['mean'] 
 
 
new_outputs = denorm(new_outputs) 
 
new_outputs.to_csv("new_outputs.csv", index=False) 
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APPENDIX E 

 
Tables with the correlations of the individual variables, for all trained Neural Networks 
in all experiments. 
 
Experiment 1: 
 

 
  

N
N

 settings
Epochs

Vol_1
V

ol_2
V

ol_3
Vol_4

V
ol_5

Rout_1
Rout_2

Rout_3
Rout_4

Rout_5
A

verage
Keras 50-50 Adadelta

96
0.88963988

0.9080342
0.84240521

0.90000808
0.8411398

0.89287077
0.0327211

0.86927261
0.89022485

0.88494244
0.795125894

Keras 50-50 Adagrad
102

0.88488808
0.90464712

0.83944082
0.90253992

0.83286746
0.88555843

0.06165541
0.86391774

0.89003549
0.88122656

0.794677703
Keras 50 Adadelta

0.88697601
0.90696226

0.83468251
0.90181605

0.84620575
0.88838025

0.04494046
0.86191733

0.88301628
0.88379402

0.793869092
Keras 50-50 SGD

8587
0.88983084

0.91068358
0.83884225

0.90585291
0.83777133

0.89160328
0.01926797

0.8610858
0.88782832

0.88248197
0.792524825

Keras 20 Adadelta
0.88830913

0.91012925
0.83246672

0.89611138
0.82394402

0.88439628
0.05231575

0.86335468
0.88599901

0.87811016
0.791513638

Keras 15 Adadelta
0.88870515

0.90872832
0.82827505

0.89989369
0.82619677

0.89380482
0.04108194

0.86321475
0.88085613

0.87876057
0.790951719

Keras 50-50 Adam
61

0.88083658
0.8983201

0.82158176
0.89952595

0.82898581
0.88881008

0.0517023
0.86665454

0.8876959
0.88140551

0.790551853
Keras 50-50 N

adam
46

0.8744322
0.90107812

0.82350363
0.89445449

0.84030539
0.88905288

0.03797661
0.86700083

0.87654292
0.88241721

0.788676428
Keras 10 Adadelta

0.88686681
0.90125948

0.83575012
0.9054052

0.80761003
0.88632929

0.02767602
0.85212742

0.88690689
0.88978267

0.787971393
Keras 50-50 Adam

ax
85

0.88175128
0.90244251

0.83154758
0.89726514

0.83817128
0.88945704

0.01050369
0.86357294

0.88298871
0.87512619

0.787282636
Keras 20-20 Adadelta

0.8774082
0.89803578

0.83491244
0.89370652

0.8375738
0.88032964

0.03620772
0.85429025

0.87631716
0.86792493

0.785670644
Keras 15-15 Adadelta

0.87133868
0.89668157

0.83176985
0.89702269

0.32987754
0.88218906

0.04576841
0.84409315

0.8728679
0.86467373

0.733628258
Keras 50-50-50 Adadelta

0.47009117
0.88904958

0.81396858
0.89880622

0.32376578
0.89242187

0.03025602
0.86276048

0.88473767
0.85371259

0.691956996
Keras 10-10 Adadelta

0.86477899
0.89628773

0.83176352
0.89844724

0.04230324
0.87981527

0.01935995
0.85054223

0.39935953
0.8399518

0.65226095
Keras 20-20-20 Adadelta

0.46851041
0.88806292

0.81900235
0.89072557

0.341365
0.89217294

0.01525279
0.83763831

-0.06237872
0.84602485

0.593637642
Keras 15-15-15 Adadelta

0.84639485
0.88982932

0.29398777
0.89245513

0.12174517
0.88595978

0.03748187
0.36408368

0.43052599
0.83505308

0.559751664
Keras 5 Adadelta

0.84838774
0.8680583

0.20944833
0.89757085

0.03842087
0.8860757

0.02609467
0.33461573

0.22584583
0.84986553

0.518438355
Keras 10-10-10 Adadelta

0.46558426
0.8845495

0.31300337
0.88897372

0.04639141
0.87455742

0.00408925
0.00127703

0.81516882
0.86460498

0.515819976
Keras 5-5 Adadelta

0.83220747
0.81754859

0.21163671
0.86482375

0.05941734
0.8709682

0.02057282
0.40298266

0.40751528
0.25129944

0.473897226
Keras 3 Adadelta

0.45227976
0.89525298

0.07043554
0.52889844

0.1518815
0.87731313

0.02073553
0.02679383

0.04012395
0.81166424

0.38753789
Keras 3-3 Adadelta

0.38025469
0.84476504

0.10983211
0.82698518

0.08731916
0.46801468

0.00207892
-0.01560337

0.24959713
0.83770678

0.379095032
Keras 5-5-5 Adadelta

0.46474954
0.88478534

0.07043914
0.51052344

0.08178535
0.85625132

-0.01401901
0.01782141

0.02816933
0.22471892

0.312522478
Keras 2 Adadelta

0.28994843
0.46069404

0.0331598
0.81525085

0.0672782
0.78784426

0.02428283
0.40633669

-0.0450958
0.05807877

0.289777807
Keras 2-2 Adadelta

0.44861718
0.87852906

0.08033388
0.76521064

0.06463259
0.43610536

-0.00524497
0.02297877

0.01304983
0.09322453

0.279743687
Keras 3-3-3 Adadelta

0.86982634
0.83781475

0.00226637
0.0703821

0.04009756
0.49172343

-0.02333576
0.05323867

0.01960109
0.007043

0.236865755
Keras 2-2-2 Adadelta

0.21899124
0.85391627

0.03741041
0.09652482

0.05164143
0.49903866

-0.03149741
0.09565261

0.02979064
0.01771064

0.186917931

Correlation
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Experiment 2: 
 

 
  

N
N

 settings
Epochs

V
ol_1

V
ol_2

V
ol_3

Rout_1
Rout_2

Rout_3
Rout_4

Rout_5
Rout_6

Rout_7
A

verage
Keras 50-50 Adam

84
0.86940132

0.88685541
0.88875575

0.88530436
0.85118906

0.86996409
0.88791071

0.84876074
0.87633715

-0.02568743
0.783879116

Keras 50-50 SG
D

8337
0.87427934

0.89035043
0.90113538

0.88112686
0.84233216

0.86898835
0.88253301

0.78970863
0.86919387

0.00275544
0.780240347

Keras 10 Adadelta
0.85293152

0.88595659
0.90099175

0.86987851
0.83827249

0.86693192
0.87479635

0.83266396
0.85947074

0.00907403
0.779096786

Keras 50-50 Adagrad
951

0.86793183
0.88738953

0.89086801
0.88186743

0.84654058
0.87441656

0.88072984
0.81185964

0.86958212
-0.02700678

0.778417876
Keras 50-50 Adadelta

117
0.87295967

0.88519572
0.89138043

0.87998744
0.8497705

0.87686189
0.88508411

0.81042067
0.85806912

-0.02962927
0.778010028

Keras 15 Adadelta
0.86063315

0.88349582
0.89287821

0.8895902
0.8393493

0.86949919
0.87359663

0.83158109
0.8609776

-0.02192558
0.777967561

Keras 50-50 N
adam

39
0.86602235

0.88016191
0.8873788

0.88218083
0.84733749

0.85815391
0.88573032

0.83496771
0.87255119

-0.03665971
0.77778248

Keras 50 Adadelta
0.85758406

0.88490672
0.89465038

0.88396346
0.84222839

0.87029718
0.88847174

0.81091763
0.8638303

-0.03105193
0.776579793

Keras 50-50 Adam
ax

138
0.847661

0.88017
0.88086796

0.88138655
0.84593902

0.87339742
0.88176203

0.82000879
0.87208814

-0.01963495
0.776364596

Keras 20 Adadelta
0.85988598

0.8921356
0.88883518

0.89061585
0.85052693

0.86391357
0.87704758

0.80419462
0.87181106

-0.04120679
0.775775958

Keras 20-20 Adadelta
0.8595386

0.86978455
0.88817519

0.87086614
0.83865199

0.86638203
0.86165975

0.83780872
0.87418009

-0.06450687
0.770254019

Keras 10-10 Adadelta
0.86245391

0.88640982
0.87201825

0.86574411
0.84963641

0.85754151
0.88015723

0.84777441
0.85452697

-0.07814808
0.769811454

Keras 15-15 Adadelta
0.85300409

0.86848289
0.88622447

0.87063081
0.84135337

0.85712656
0.86826463

0.8085464
0.85886301

-0.03760305
0.767489318

Keras 20-20-20 Adadelta
0.491438

0.86975844
0.8529429

0.86596322
0.82061446

0.85696369
0.8659067

0.48271119
0.8551431

0.00524813
0.696668983

Keras 50-50-50 Adadelta
0.81459565

0.88514776
0.88194535

0.79639706
0.78470426

0.61891518
0.87251287

0.49326662
0.8565597

-0.03918089
0.696486356

Keras 5 Adadelta
0.61842603

0.82863693
0.86465783

0.69655294
0.6141229

0.06029195
0.8711338

0.35131454
0.49994978

-0.05494548
0.535014122

Keras 5-5 Adadelta
0.75463627

0.83681682
0.86496341

0.85901458
0.77055383

0.24636019
0.382561

0.26086829
0.1180169

-0.00587791
0.508791338

Keras 15-15-15 Adadelta
0.83609238

0.81493179
0.87844028

0.87969323
0.4502598

0.20332781
0.05845353

0.22463864
0.26556061

-0.02011117
0.45912869

Keras 10-10-10 Adadelta
0.84616978

0.86265688
0.85386225

0.85860808
0.17499031

0.10204119
0.03446398

0.22303416
0.48394968

0.01350761
0.445328392

Keras 5-5-5 Adadelta
0.47828774

0.81777466
0.79220122

0.84288859
0.473648

0.09243419
0.02192594

0.17659722
0.42361915

-0.01248044
0.410689627

Keras 3 Adadelta
0.45259669

0.73965612
0.03127356

0.78786345
0.29018226

0.51080897
0.83767472

0.0807908
0.10296154

0.01325247
0.384706058

Keras 3-3 Adadelta
0.03597093

0.86415853
0.80622372

0.85339531
0.02161914

0.17700293
0.0487495

0.05459658
0.43001449

0.04015707
0.33318882

Keras 3-3-3 Adadelta
0.06982726

0.81612118
0.80235026

0.03959677
0.07333056

0.42931384
0.1179581

0.02293118
0.4306383

0.02621425
0.28282817

Correlation
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Experiment 3: 
 

 
  

NN settings Epochs W74ax W74bxAdd W74bxMult HeadwayLaneChange Average
Keras 10 Adadelta 0.82744514 0.73205179 0.55050382 0.85052307 0.740130955
Keras 50-50 SGD 6627 0.82597493 0.73045219 0.53542305 0.85138868 0.735809713
Keras 50-50 Adagrad 667 0.8202803 0.72979363 0.52675644 0.85463448 0.732866213
Keras 5 Adadelta 0.8284987 0.71767662 0.53825702 0.83722585 0.730414548
Keras 50-50 Adamax 68 0.81567189 0.71467057 0.52402788 0.84958111 0.725987863
Keras 50 Adadelta 0.81290327 0.71088586 0.53574365 0.84162438 0.72528929
Keras 50-50 Nadam 24 0.81184628 0.71192222 0.51417265 0.84251744 0.720114648
Keras 10-10 Adadelta 0.8191621 0.69921326 0.51644338 0.84126279 0.719020383
Keras 50-50 Adam 42 0.80466827 0.69862179 0.51876204 0.84667394 0.71718151
Keras 50-50 Adadelta 57 0.81245311 0.69095628 0.52019235 0.84098844 0.716147545
Keras 3-3 Adadelta 0.827451 0.6875826 0.51390996 0.83240693 0.715337623
Keras 50-50-50 Adadelta 0.79805387 0.69143609 0.52351269 0.84441539 0.71435451
Keras 3 Adadelta 0.82407297 0.68676344 0.50548182 0.83993494 0.714063293
Keras 5-5 Adadelta 0.81837327 0.68390253 0.50741743 0.83719595 0.711722295
Keras 10-10-10 Adadelta 0.8080715 0.66276677 0.51046118 0.83020229 0.702875435
Keras 5-5-5 Adadelta 0.78954623 0.67856075 0.49995989 0.8398604 0.701981818
Keras 2-2 Adadelta 0.80170527 0.69105007 0.50244555 0.09169528 0.521724043
Keras 3-3-3 Adadelta 0.80164769 0.68338834 0.50144345 0.09400452 0.520121
Keras 2 Adadelta 0.81157527 0.688282 0.50815715 -0.07037097 0.484410863
Keras 2-2-2 Adadelta 0.3875158 0.66173387 0.45636839 0.17634942 0.42049187
Keras 1 Adadelta 0.68719056 0.41248284 0.25418703 0.12818089 0.37051033
Keras 1-1-1 Adadelta 0.64846014 0.42085591 0.29885588 -0.01968541 0.33712163
Keras 1-1 Adadelta 0.32774311 0.61120822 0.42859119 -0.07568311 0.322964853

Correlation



 
 

105 

Experiment 4: 
 

 

N
N

 settings
Epochs

W
99cc0

W
99cc2

W
99cc3

W
99cc4

W
99cc5

W
99cc6

W
99cc7

W
99cc8

W
99cc9

A
verage

Keras 50 Adadelta
0.67994408

0.63161451
0.85082674

0.09465286
0.07881449

-0.02622938
0.2325094

0.68998811
0.49151402

0.413737203
Keras 50-50 Adagrad

869
0.661642

0.65286355
0.8583192

0.08438413
0.02353456

-0.02218539
0.17691857

0.6872705
0.49659844

0.402149507
Keras 50-50 N

adam
49

0.69286431
0.6638401

0.85028254
0.07189521

0.02312333
-0.03678529

0.17805327
0.68161318

0.4616457
0.398503594

Keras 30-30 Adadelta
0.69700445

0.64575143
0.85378669

0.06546901
0.01671138

-0.04490702
0.16416489

0.69187558
0.4909388

0.397866134
Keras 30 Adadelta

0.69337075
0.63036248

0.85053633
0.08960549

-0.05202433
-0.04102024

0.20406419
0.69320283

0.5039621
0.396895511

Keras 50-50 Adam
67

0.69296348
0.6469937

0.84672171
0.07923129

-0.01812136
-0.02537193

0.16586795
0.68268525

0.50041188
0.396820219

Keras 15 Adadelta
0.66946464

0.6363558
0.85084036

0.07672927
-0.03334974

-0.03676572
0.20797288

0.67569586
0.49432869

0.393474671
Keras 50-50 SG

D
10617

0.69174245
0.64449313

0.84750817
0.01894159

0.0057077
-0.03271713

0.17167728
0.68194536

0.50482259
0.392680127

Keras 10 Adadelta
0.678980644

0.638928442
0.858109856

0.07382374
-0.000188441

-0.035253134
0.168653323

0.64613575
0.502010332

0.392355612
Keras 20 Adadelta

0.69428683
0.62383891

0.85641758
0.06119287

-0.00986928
-0.05621054

0.17903332
0.67575059

0.50605754
0.392277536

Keras 5 Adadelta
0.683456643

0.603099724
0.858073754

-0.000153343
0.027163253

-0.025698775
0.18239566

0.700758247
0.492811849

0.391323001
Keras 50-50 Adam

ax
87

0.68218321
0.6141295

0.85227262
0.02143897

0.02808606
-0.02279812

0.19549253
0.65720475

0.47759153
0.389511228

Keras 15-15 Adadelta
0.70276432

0.63138907
0.85030263

0.06205447
-0.02337197

-0.02435553
0.13319913

0.64272605
0.52958121

0.389365487
Keras 20-20 Adadelta

0.67715177
0.62657883

0.85275077
0.08412757

0.01761778
-0.01376741

0.10371261
0.59823965

0.49583254
0.382471568

Keras 50-50 Adadelta
108

0.68133201
0.55844438

0.85245764
0.04039904

0.00225218
-0.03657933

0.15277527
0.66902236

0.49580126
0.379544979

Keras 10-10 Adadelta
0.6703881

0.63858164
0.84881545

0.03434192
0.02151154

-0.0250605
0.06284365

0.598968
0.23614931

0.34294879
Keras 3 Adadelta

0.5466117
0.41986064

0.84465102
0.01061538

0.02528067
-0.02667717

0.07477505
0.55256585

0.27910035
0.302975943

Keras 3-3 Adadelta
0.51949242

0.45349873
0.81284761

0.05036858
0.0493917

0.05434997
-0.02875468

0.4602885
0.17327009

0.282750324
Keras 5-5 Adadelta

0.48897463
0.51267985

0.82563819
-0.0394154

0.0265089
-0.01614763

0.02498356
0.50754028

0.20693451
0.281966321

Keras 10-10-10 Adadelta
0.53711961

0.4888509
0.8119646

-0.04804926
0.06476478

-0.00768442
0.00774752

0.46960796
0.1311136

0.272826143
Keras 2 Adadelta

0.40576461
0.52294548

0.82677568
-0.06529561

0.01817634
-0.03315162

0.01075275
0.40236297

0.10907841
0.244156557

Keras 2-2 Adadelta
0.29476613

0.39325114
0.81189575

-0.07438982
0.04113553

0.01217221
-0.00415795

0.4696831
0.13560101

0.231106344
Keras 50-50-50 Adadelta

0.14498806
-0.0476313

0.42579882
0.00196682

-0.00205149
0.02855089

0.010717
0.70535247

0.44439191
0.190231464

Keras 20-20-20 Adadelta
0.11049254

-0.00252296
0.81916172

-0.06714494
0.03296045

-0.02261005
0.02238805

0.60949017
0.14873865

0.183439292
Keras 30-30-30 Adadelta

0.07520939
0.20274562

0.59830301
-0.0944344

-0.05022409
-0.07906546

0.08632062
0.53678372

0.31314259
0.176531222

Keras 3-3-3 Adadelta
0.46628541

0.42177838
0.2106333

0.03521348
0.01339501

-0.00498095
-0.01659692

-0.00204688
0.3328805

0.161840148
Keras 5-5-5 Adadelta

-0.086383124
-0.155407142

0.827573469
-0.012423455

0.012759751
-0.000759891

0.006371354
0.675912821

0.136232471
0.155986251

Keras 2-2-2 Adadelta
0.07328759

0.25624415
0.46148535

-0.03133619
-0.02305439

-0.04396055
0.05810235

0.18829887
0.41269476

0.150195771
Keras 15-15-15 Adadelta

0.15887339
0.26706057

0.52339799
-0.05062216

-0.06277622
-0.03276501

0.05585237
0.00383042

0.3582226
0.135674883

Correlation


