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Abstract Traffic microsimulation models normally include a large number of parameters

that must be calibrated before the model can be used as a tool for prediction. A wave of

methodologies for calibrating such models has been recently proposed in the literature, but

there have been no attempts to identify general calibration principles based on their col-

lective experience. The current paper attempts to guide traffic analysts through the basic

requirements of the calibration of microsimulation models. Among the issues discussed

here are underlying assumptions of the calibration process, the scope of the calibration

problem, formulation and automation, measuring goodness-of-fit, and the need for repeated

model runs.

Keywords Calibration � Microsimulation � Traffic models

Introduction

Traffic microsimulation models (hereafter TMMs) are used by researchers and practitio-

ners for a detailed analysis of the performance of transport systems. Estimates generated by

a TMM are based on explicit representation of various aspects of individual behaviour.

These aspects range from the driver’s choice of route and departure time (Hu and

Mahmassani 1997; Dia 2002; Liu et al. 2006; Zhang et al. 2006) to various features of

driving behaviour, such as car following and lane changing (Toledo et al. 2005; Zhang and

Kim 2005; Laval and Daganzo 2006; Ossen et al. 2006). Most TMMs include a large

number of parameters that represent various characteristics of the travellers, the vehicles

and the road system. These parameters must be calibrated before the TMM is used as a tool

for prediction.
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In the last few years there has been a wave of valuable research work that discussed

procedures for TMM calibration, but there have been no attempts to identify general

calibration principles based on their collective experience. The current paper concentrates

on several related issues that are repeatedly brought up, based on around twenty different

calibration methodologies. We hope our discussion can guide traffic analysts through some

of the basic requirements of TMM calibration.

The paper is organised as follows. The following section discusses some basic concepts

that the reviewed methodologies are based on. Next is a section that compares the different

approaches to TMM calibration with respect to their scope. The subsequent section looks at

the formulation of different calibration problems and techniques used to solve them. This is

followed by a section that focuses on the different mathematical expressions used to

minimise the discrepancies between simulation outputs and field data. Another section

examines the number of times the TMM needs to be run at every stage of the calibration

process. The subsequent section discusses the validation of calibration results. We

conclude with some comments and practical recommendations.

Calibration conventions and underlying assumptions

A TMM typically consists of several sub-models, each of which tries to reproduce the

mechanism of a single decision made by an individual traveller, such as the decision to

change lane or to use a gap in the opposing traffic in order to enter an intersection. Each

sub-model includes several parameters, and a complete TMM sometimes includes many

dozens of parameters. Direct measurement of these parameters is very complicated, either

because many of them represent subtle features that are hard to isolate, or because it

requires extensive data collection. Works that directly study the value of a TMM parameter

do exist, but we are not aware of any work where it was possible to do so for all parameters

of a TMM.

In the calibration process, the parameters are adjusted so that the model outputs are

similar to observed data. Due to the abovementioned difficulties, all the studies reviewed

here do this using aggregate data, which do not describe the behaviour of individual drivers

or vehicles. This type of data includes such measures as travel times, flows, speeds or

queue lengths. When a model is calibrated using aggregate data, there is a risk that the

result has limited behavioural power. The main justification for such calibration is the idea

that the TMM is built of sub-models which are based on well-founded behavioural theo-

ries, and that the user of the full TMM only needs to verify the model works well for the

situation of current interest. Nevertheless, we discuss later additional measures that should

be taken to assure that the behavioural aspects of calibrated model are well-established.

It is worth noticing that some difference lies between the calibration of a TMM and

calibration of other network models. The likely flaws in the forecasts made by an

improperly-calibrated assignment model are of a local nature (e.g. erroneous flows at a

specific location), while a TMM not adequately calibrated is prone to fail both locally and

globally. There are other tools that go through a calibration process, such as volume-delay

functions, which are similar to TMMs in that failure to calibrate them appropriately leads

to wrong forecasts throughout the modelled network. However, such functions are

aggregate tools by definition, and the parameters determined during their calibration are

not said to represent behavioural features of individual drivers or vehicles.

TMMs, similar to other models, are not free from simplification; for instance, they often

take limited account of the effects of roadside activity or road incidents. But when we
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compare observed and simulated data during the calibration process, we unavoidably

assume that the model includes all factors that exist in the actual network. This is a source

of error in the calibrated parameters that we have no means to tackle; it should remind us

that there is a need to constantly seek ways to improve the behavioural explanatory power

of the TMM itself, independently of the calibration methodology.

The number of parameters we would ideally like to calibrate is high, but this is seldom

possible because of the computational effort involved and limited data availability. All

calibration methodologies reviewed here concentrate on a relatively small subset of

parameters, but we found no study where this subset is chosen systematically. Analysts

should remember that putting much effort in a powerful calibration methodology can bring

little gain if some parameters that strongly influence the traffic measure of interest have not

been included in the calibration subset.

The conventions and assumptions discussed in the previous paragraphs are common to

all the calibration methodologies reviewed here. In the subsequent sections we discuss

issues where major differences exist between the different procedures. A systematic

comparison between the reviewed methods and case studies is presented in Table 1.

Scope of the calibration problem

All the studies summarised in Table 1 deal with TMM calibration (or validation), but in

fact there are considerable differences between the problems they discuss. A first major

difference lies in the definition of the problem itself: while some studies concentrate on the

calibration of driving behaviour parameters only (e.g. Jayakrishnan et al. 2001; Ma and

Abdulhai 2002; Hourdakis et al. 2003; Kim and Rilett 2003, 2004), some others (e.g.

Toledo et al. 2003; Ben Akiva et al. 2004; Chu et al. 2004; Dowling et al. 2004; Oketch

and Carrick 2005) incorporate this in a broader problem, where a route choice model and/

or an origin-destination matrix are calibrated too. The authors who propose the broader

problems present evidence that procedures which simultaneously tackle multiple problems

result in stronger models, and that solving the sub-problems separately might lead to biased

estimates.

The various sub-problems might differ from each other in their data requirements. For

example, to calibrate driving behaviour parameters it is important to use data from a range

of traffic settings (e.g. both arteries and minor streets), while for estimating the demand

matrix it is more important that they are collected in a large number of locations (inde-

pendent of the road type). Still, even if data availability is limited, solving a reduced

problem does not in itself reduce the risk of bias. If the analyst intends to use an available

set of data to solve various problems, doing this simultaneously is methodologically more

correct.

Among the case studies that accompany the calibration methodologies there is sub-

stantial variation in the number of parameters being calibrated (from 3 to 19 parameters).

The advantage in focusing on a smaller number of parameters is that it enables paying

more attention to each parameter when its value is modified; in some cases this is done

through a manual procedure (see more on this issue later in the paper). Bigger parameter

subsets are normally calibrated using automated algorithms, and hence get more efficiently

closer to an optimal solution, but also make it harder to follow changes in the value of each

parameter. Overall, when an analyst chooses a set of calibration parameters, the ambitious

task is to choose a number of parameters that is big enough to cover the various behav-

ioural elements in the model, but small enough to enable paying individual attention to the
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value of each parameter, and also small enough to make the procedure computationally

feasible. We recommend tackling this dilemma by undertaking an initial review of all the

parameters of the TMM that is being used, and dividing them into the following groups:

1. Parameters whose values are relatively easy to measure directly (e.g. average car

length or average bus boarding time per passenger).

2. Parameters whose values can be taken from previous studies that are applicable to the

time and place being currently modelled.

3. Parameters whose influence on the outputs can be considered negligible. To check if a

parameter belongs to this group, the TMM should be run several times with a range of

values of the parameter, without varying the other parameters.

4. Parameters which are inappropriate to adjust because of the nature of the input data.

For example, if the data are all taken from a motorway that is not used by buses, it is

improper to include bus acceleration as a calibration parameter.

5. All the parameters that remain after omitting the above. Modellers should attempt to

include all the parameters in this group in the calibration set.

There are also significant differences between the various calibration studies in terms of

their geographical scale. Such differences exist both in the size of the simulation network

and in the spread and density of data sources over this network. In terms of network size,

the studies vary from a single intersection (e.g. at Ma and Abdulhai 2002) to an extensive

metropolitan area (e.g. at Park and Qi 2005). The dispersion of sources of input data is

sometimes as limited as two observation points in a medium-sized network (Dowling et al.

2004) or, in contrast, dozens of points in a network that is not much bigger (Chu et al.

2004; Oketch and Carrick 2005). In principle, many calibration methodologies can be

implemented in various networks. But most methodologies are at least partially tailored to

the scale in which they are later implemented: automated calibration is preferred if data is

available from many measurement points (e.g. Ma and Abdulhai 2002 or Ben Akiva et al.

2004); comparison of multiple traffic measures is used in cases where there is much data

but only from a small number of locations (e.g. Dowling et al. 2004; Merrit 2004). We

discuss these issues further in subsequent sections, but would stress at this point that if the

modeller wishes to use the TMM as a general tool for multiple purposes, this must be

reflected in the geographical and typological scope of the calibration inputs.

The scope of the calibration problem also has to do with the choice of traffic measures

used to compare observed data to the simulation outputs. Some of the proposed procedures

use a single measure; for instance, Ma and Abdulahi (2002) and Kim and Rilett (2003,

2004) compare only flows. Some others use more than one measure, normally by per-

forming a sequence of calibration sub-processes, each one of which uses a different traffic

measure to calibrate a separate group of parameters. In the procedure proposed by Dowling

et al. (2004) simulated and observed capacities are compared in the first stage to calibrate

driving behaviour parameters, then flows are compared to calibrate route choice parame-

ters, and finally all parameters are fine-tuned by comparing travel times and queue lengths.

Hourdakis et al. (2003) start with calibrating global parameters (such as maximum

acceleration and other vehicle characteristics) by comparing flows; then they calibrate local

parameters (such as speed limits) by comparing speeds; an optional third calibration stage

is suggested, where any measure chosen by the user can be compared. A similar multi-

stage concept is also proposed by Chu et al. (2004).

Decomposing the main calibration problem into sub-problems is tempting since these

can be solved more efficiently. If some parameters are of a local nature, or if different

traffic measures seem more appropriate for calibrating different parameters (e.g. flows for

352 Transportation (2008) 35:347–362
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route choice parameters and speeds for car following parameters), then it is indeed sensible

to assign different parameters to different sub-problems. But as mentioned previously,

simultaneous optimisation reduces the risk that improved fit is achieved by adjusting the

wrong parameters. Therefore, decomposition of the calibration problem should replace the

simultaneous procedure only if the sub-problems are independent from each other; this is

seldom the case. In most cases we would advise that the decomposition should precede the

simultaneous calibration (as done, for instance, by Dowling et al. 2004).

Formulation and automation of the calibration process

Many of the discussions of TMM calibration (Jayakrishnan et al. 2001; Hourdakis et al.

2003; Park and Schneeberger 2003; Barcelo and Casas 2004; Dowling et al. 2004; Merrit

2004; Chu et al. 2004; Shaaban and Radwan 2005; Oketch and Carrick 2005) stress the

need for consistent judgement but do not include an explicit formulation of a calibration

problem. Thus they form an intermediate stage in the evolution of more cohesive concepts

of calibration.

When an explicit calibration procedure is presented, it often has the form of an opti-

misation problem. It is sometimes presented as a mathematical program and in other cases

only described verbally, but in most cases, at least an objective function is introduced.

Systematic calibration procedures must use a solution algorithm which is normally an

iterative process, and is often described as a flow chart.

Some optimisation approaches are repeatedly used for different TMM calibration

studies. Several studies conduct the search for the best parameter set using a Genetic

Algorithm (Ma and Abdulhai 2002; Kim and Rilett 2004; Kim et al. 2005; Park and Qi

2005). Various other studies use the Downhill Simplex Method (e.g. Kim and Rilett 2003)

or the similar Box’s Complex Algorithm (Ben Akiva et al. 2004). The choice of these

concepts illustrates some features that calibration of a TMM commonly requires:

1. The optimisation technique should not restrict the number of variables.

2. A solution technique that requires fewer evaluations of the objective function during

the process is preferable. This is due to the fact that the TMM often needs to be run

more than once even for a single evaluation of the objective (we discuss this later),

hence each evaluation is time-consuming.

3. The technique must not use derivatives of the objective function, because the objective

of a calibration problem is not explicitly a function of the optimised parameters.

Calculating derivatives in this case would require, again, a large number of TMM runs.

There is often a trade-off between the run time per iteration and the number of iterations

required to reach a satisfactory solution. The Simplex Method and Genetic Algorithms

represent two extreme cases in this respect. The former approach only requires a single

evaluation of the objective function in most iterations, but improvement between iterations

is slow. In contrast, the latter examines many candidate solutions concurrently but

generally requires fewer iterations. The practice of using both methods suggests that one

additional iteration of a Genetic Algorithm, in which the objective value is calculated for K
new candidates, is not likely to improve the solution as much as multiple additional

iterations of the Simplex Method, with K evaluations in total. Observe that almost all

calibration methodologies (see Table 1) that use genetic algorithms only use one run of the

TMM for each evaluation of the objective function; we find this inappropriate, as we

discuss later. Park and Qi (2005) use a genetic algorithm and base each evaluation of the
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objective function on five runs, but they only model a single intersection, and therefore do

not face considerate run time problems. Overall, of the automated solution techniques used

in the studies we reviewed, we find the Simplex Method the most appropriate, because it is

more likely to minimise the total number of objective function evaluations. Nevertheless,

note that innovative optimisation methods are intensively discussed in the literature in

Mathematics and in Operational Research; we advise traffic analysts to constantly review

recent developments in this field and seek improved solution methods for the TMM

calibration problem.

As mentioned earlier, some calibration methods are partially or entirely manual. Merritt

(2004) and Shaaban and Radwan (2005) predetermine several discrete values of each

parameter and then check each feasible combination to find which one gives the best fit.

Hourdakis et al. (2003) and Oketch and Carrick (2005) use automated search but cali-

bration is only performed at one location at a time. Generally, manual calibration should be

considered only if the expected application of the TMM is of a very limited scale. As

discussed earlier, the risk that an automatic procedure might not be sensitive enough to the

behavioural foundations of each parameter provides strong motivation for undertaking

manual calibration. But in most cases we find that only an automated approach is practical.

Even when the calibration problem is formulated as an optimisation problem, it is

unlikely to lead to a global optimum, due to the multidimensionality of the solution search

space and the tendency of the observed data to exhibit various inconsistencies. Therefore,

we urge modellers not to belittle the importance of the stages that precede or follow the

solution procedure: proper definition of the likely range of values for each parameter (e.g.

based on other studies), a clear validation methodology (as we discuss later), and a search

for irregularities in the performance of the calibrated model by scrutinising the graphical

display as it runs.

Measuring goodness of fit

At the heart of any calibration technique is a comparison between simulation outputs and

observed measurements of various traffic measures. The measures of fit used for this

purpose by the different calibration methodologies are summarised in Table 2. The

notation used is explained below the table.

It is important to note that:

1. Most of the measures will identify poor fit between the central tendencies of the

compared samples, while only few measures (especially Theil’s indicators) are

sensitive to the variance and covariance. The latter should be used when the calibrated

model is to be used for analysis of variation.

2. Some measures (PE, ME, MNE) let errors with a similar size but a different sign

balance each other. Such measures are useful for detecting systematic bias, but they

should generally be avoided in calibration procedures.

3. Some measures (MAE, MANE) use the absolute value of the difference between the

observed and simulated measurements; thus they give equal weights to all errors.

Other measures (SE, RMSE, RMSNE) depend on the squared difference, and hence

place a higher penalty on large errors. In the context of stochastic traffic modelling,

penalising small errors is wrong; it might lead to an over-specified model, because

minor fluctuations around the mean are in the nature of traffic phenomena. Using the

squared error is more appropriate, and it is in fact surprising that none of the reviewed
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Table 2 Measures of goodness-of-fit

Name Measure Used by Comments

Percent error
(PE)

xi � yi

yi

Shaaban and Radwan (2005),
Park and Qi (2005), Merritt
(2004)

Applied either to a single pair
of observed-simulated
measurements or to
aggregate networkwide
measures

Squared error
(SE)

XN

i¼1

xi � yið Þ2
Ben-Akiva et al. (2004), Chu

et al. (2004)

Mean error
(ME)

1

N

XN

i¼1

xi � yið Þ
Toledo and Koutsopoulos

(2004)
Indicates the existence of

systematic bias. Useful
when applied separately to
measurements at each
location

Mean
normalized
error (MNE)

1

N

XN

i¼1

xi � yi

yi

Toledo et al. (2003), Toledo
and Koutsopoulos (2004),
Chu et al. (2004)

Indicates the existence of
systematic bias. Useful
when applied separately to
measurements at each
location

Mean absolute
error (MAE)

1

N

XN

i�1

xi � yij j
Ma and Abdulhai (2002) Not particularly sensitive to

large errors

Mean absolute
normalized
error
(MANE)

1

N

XN

i¼1

xi � yij j
yi

Ma and Abdulhai (2002),
Kim and Rilett (2003),
Merritt (2004), Kim et al.
(2005)

Not particularly sensitive to
large errors

Exponential
mean
absolute
normalized
error
(EMANE)

A � exp (-B � MANE)
(A, B are parameters)

Kim and Rilett (2004) Used as a fitness function in a
genetic algorithm

Root mean
squared
error
(RMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

xi � yið Þ2
s Toledo and Koutsopoulos

(2004), Dowling et al.
(2004)

Large errors are heavily
penalised. Sometimes
appears as mean squared
error, without the root sign

Route mean
squared
normalized
error
(RMSNE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

i¼1

xi � yi

yi

� �2
s Hourdakis et al. (2003),

Toledo et al. (2003),
Toledo and Koutsopoulos
(2004), Ma and Abdulhai
(2002)

Large errors are heavily
penalised

GEH statistic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 xi � yið Þ2

xi þ yi

s
Barcelo and Casas (2004),

Chu et al. (2004), Oketch
and Carrick (2005)

Applied to a single pair of
observed-simulated
measurements. GEH \ 5
indicates a good fit

Correlation
coefficient
(r)

1

N � 1
�
XN

i¼1

xi � �xð Þ yi � �yð Þ
rxry

Hourdakis et al. (2003)

Theil’s bias
proportion
(Um)

N �y� �xð Þ2

PN

i¼1

yi � xið Þ2

Hourdakis et al. (2003),
Barcelo and Casas (2004),
Brockfeld et al. (2005)

A high value implies the
existence of systematic
bias. Um = 0 indicates a
perfect fit, Um = 1
indicates the worst fit

Transportation (2008) 35:347–362 355

123



measures uses a power higher than 2. Alternatively, avoiding the effect of small errors

is also possible by examining the probability density function (as in the Kolmogorov-

Smirnov (aka K-S) test) rather than directly examining each individual observation.

Most measures involve summation of errors over a series of pairs of simulated and

observed values. It is not always obvious how to create these pairs; each pattern of pairing

might lead to a different level of fit, but unfortunately, none of the reviewed methods

elaborates on this issue. If a test such as K-S is used, this problem is avoided, since

individual observations are not examined explicitly.

The reviewed methodologies tend to consider the space of simulation outputs as one-

dimensional, as only one index (denoted i) is used for the series of measurements in all the

measures of fit in Table 2. But in fact the outputs form a multi-dimensional space; in

different studies, the index i is used in different dimensions. The most common dimension

is time (namely, each measurement is taken at a different time interval), as used by Toledo

et al. (2003), Chu et al. (2004), Hourdakis et al. (2003), Kim et al. (2005) and others. But

sometimes the series of measurements consists of values from different locations in the

study network, and in other cases, each element in the series corresponds to a different

vehicle. The fact that in each dimension the measures of fit have a different meaning is

most apparent when examining variations between the measurements. For instance, cali-

brating a TMM by focusing on estimates of variation of the travel speed over different time

Table 2 continued

Name Measure Used by Comments

Theil’s
variance
proportion
(Us)

N ry � rx

� �2

PN

i¼1

yi � xið Þ2

Hourdakis et al. (2003),
Barcelo and Casas (2004),
Brockfeld et al. (2005)

A high value implies that the
distribution of simulated
measurements is
significantly different from
that of the observed data.
Us = 0 indicates a perfect
fit, Us = 1 indicates the
worst fit

Theil’s
covariance
proportion
(Uc)

2ð1� rÞ � N � rxry

PN

i¼1

yi � xið Þ2

Hourdakis et al. (2003),
Barcelo and Casas (2004)

A low value implies the
existence of unsystematic
error. Uc = 1 indicates a
perfect fit, Uc = 0
indicates the worst fit. r is
the correlation coefficient

Theil’s
inequality
coefficient
(U)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

yi � xið Þ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

y2
i

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

x2
i

s

Ma and Abdulhai (2002),
Hourdakis et al. (2003),
Toledo and Koutsopoulos
(2004), Barcelo and Casas
(2004), Brockfeld et al.
(2005)

Combines effects of all 3
Theil’s error proportions
(Um, Us, Uc). U = 0
indicates a perfect fit,
U = 1 indicates the
worst fit

Kolmogorov-
Smirnov test

max Fx � Fy

�� ��� �
Kim et al. (2005) F is the cumulative

probability density
function of x or y

Moses’ test and
Wilcoxon
test

The detailed procedure is described by Kim et al. 2005

xi, simulated measurement; yi, observed measurement; N, number of measurements; �x, �y, sample average;
rx, ry, sample standard deviation

356 Transportation (2008) 35:347–362

123



periods will probably lead to different results from calibration that focuses on speed

variation between vehicles. In addition, it is clearly a mistake to compare observed speed

variation between days to modelled speed variation between vehicles, even if all values

refer to a single location. It is therefore important to choose not only a measure of fit that is

suitable for the particular needs of every application, but also to use it in the appropriate

dimension.

The methodology described by Park and Schneeberger (2003) does not use any of the

measures in Table 2 but proposes an alternative concept, which estimates the model

parameters without explicit calculation of the goodness of fit. This is done by creating a

regression model where the calibration parameters are used as the explanatory variables

and a traffic measure is the dependent variable. Calibration of the TMM is performed

through seeking the parameter values with which the regression-based value of the traffic

measure is the closest possible to the observed value. The procedure presented by Kim

et al. (2005) is the only one where the evaluation of fit uses the family of statistical

techniques known as two-sample tests. These tests are more commonly used for validation

of the calibration results. It should be stressed that two-sample tests are as suitable as the

other measures mentioned above for examining model fit. We return to this issue later.

Repeated runs

Unless the user explicitly disables all randomness features, a TMM will generate different

outputs in every run, and therefore it is insufficient to only examine the results of a single

run. The different calibration methodologies are not equally rigorous in this respect, and

the number of runs per one evaluation of the fit of a single candidate solution varies from 1

to 20. Some of the methodologies use the following formula to determine the required

number of runs (Merritt 2004; Toledo and Koutsopoulos 2004; Chu et al. 2004; Shaaban

and Radwan 2005):

R ¼
s � ta=2

�x � e

� �2

where R, required number of model runs; s, standard deviation of the examined traffic

measure; �x, mean of the traffic measure; e, the required accuracy, specified as a fraction of

�x; ta/2, critical value of Student’s t-test at confidence level a.

When R is calculated with this formula, an estimate of s is necessary as an input; but s is

unknown prior to running the model. This is commonly tackled by sequentially running the

model and re-calculating s and R till the number of runs that has already been performed is

found high enough. If more than one traffic measure is used, a sufficient number of runs

should be verified for each measure separately.

Note that the abovementioned formula only determines the number of runs that is

required to achieve a certain level of confidence about the mean value of the estimated

traffic measure. We are not aware of studies that seek the required number of runs for

estimating other statistics but the mean, such as the variance; we discuss this in greater

detail in a separate article (see Hollander and Liu 2008). If the modeller wishes to analyse

other statistics but the mean, we recommend preceding the main estimation with an

experiment that checks how many runs are needed in practice for the estimate of interest to

converge to a stable value, and then use the higher between this empirical value and the

value based on the formula given above.
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Validation of the chosen parameter set

The validation stage is meant to confirm the predictive power of the calibrated model,

using an independent set of data. The idea that validation must follow the calibration

process is agreed by all, but a variety of techniques are used to implement it:

1. Visual validation (mentioned by Park and Qi 2005; Oketch and Carrick 2005; Toledo

and Koutsopoulos 2004; and many others). This is done by inspecting the graphical

presentation of the modelled network as the model runs, trying to spot any unusual

behaviour. Most authors agree that visualisation is an efficient way to detect significant

errors but cannot replace a more quantitative validation.

2. Validation using measures of fit, like those presented in Table 2. Toledo and

Koutsopoulos (2004) point out that these measures are sometimes used for validation,

but in practice we found very few studies that do this.

3. Statistical validation by arranging the simulated and observed measurements as two

time series and then comparing these two series (Barcelo and Casas 2004).

4. Statistical validation using two-sample tests (Toledo and Koutsopoulos 2004; Barcelo

and Casas 2004; Park and Qi 2005; Park and Schneeberger 2004). These are tools that

examine the level of confidence about the hypothesis that the simulated and observed

data have the same statistical properties. The most popular is the two-sample t-test, but

many others are available (see Maisel and Gnugnoli 1972; and Kleijnen 1995). Some

tests are parametric, i.e. designed for cases where we know the distribution of the

measurements in the compared datasets. Nonparameteric tests do not rely on such

information but are less powerful, namely they require more data for a certain level of

confidence. Although we normally do not know what distribution describes the TMM

outputs best, Kleijnen (1995) and others point out that it is common to make some

distributional assumption in order to be able to use a parametric test.

5. Indirect statistical validation, by testing whether some product of the simulation

outputs resembles the respective product of the field data. Toledo and Koutsopoulos

(2004) build meta-models that capture relations between various traffic measures, such

as the speed-flow relationship or the time evolution of flows; meta-models are

estimated independently based on the simulated and the observed measurements, and

it is then tested whether the two models are identical. Earlier versions of this approach

were proposed by Kleijnen (1995) and Rao et al. (1998). A key drawback of this

approach is that the estimation of the meta-model is in itself a potential source of error

or bias.

The review of measures of fit, earlier in the paper, shows that the different measures used

during the calibration process do not use any uniform scale or a consistent criterion to

indicate good fit. In contrast, in the validation stage most authors use more statistically

rigorous tests, which state well-defined levels of confidence. We find this unnecessary,

because the uncertainty about the input data (e.g. travel demand) is very high, and the level

of accuracy of the outputs is unknown. Validation is neither more nor less rigorous than

calibration, and every test used in the calibration process can be also used for validation (or

vice versa). The strengths and weaknesses of the various tests apply similarly to validation

and calibration.

Nevertheless, it is important to ensure that the validation test does not simply repeat

what has already been tested in the calibration process. The basic requirement, which every

calibrated TMM must meet, is that it can be successfully validated with a new set of data of

the same type. For example, a model that has been calibrated with queue length data from
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Table 3 Guidelines for TMM calibration

Stage Action

Pre-calibration Consider improving the behavioural explanatory power of the TMM itself,
independent of the calibration methodology.

Determining scope of
problem

If the modeller intends to use the available dataset to solve various problems,
doing this simultaneously is preferable.

Decomposing the calibration problem into sub-problems is recommended if
some parameters are of a local nature, or if different traffic measures are
more appropriate for calibrating different parameters (the latter is very
common but is subject to data availability).

If the sub-problems are independent, the decomposed problem can replace the
full calibration problem. Otherwise, it should be followed by simultaneous
calibration.

Choosing calibration
parameters

Do not calibrate:

• parameters whose values can be determined directly by observation of
measurement;

• parameters whose values can be taken from previous studies that are
applicable to the time and place being modelled;

• parameters whose influence on TMM outputs can be considered negligible;

• parameters that do not have effect on the observed measurements in the
available dataset.

Attempt to calibrate all remaining parameters.

Choosing measure of
goodness-of-fit

Do not use measures that let errors with a similar size but a different sign to
balance each other (e.g. PE, ME, MNE) unless there is only interest in
detecting systematic bias.

Prefer measures in which the simulation error is squared (e.g. SE, RMSE,
RMSNE), or raised to a higher power, to measures that give small errors
equal weights (e.g. MAE, MANE). Use a consistent method for pairing
simulated and observed values.

Alternatively, compare the distribution of measurements (e.g. K-S test or other
two-sample tests) and thus avoid the need for pairing and the unwanted
effect of small errors.

Use measures with sensitivity to the distribution of model outputs if the model
is to be used for analysis of variation.

Make sure that the dimension in which the observed measurements form a
series is the same dimension from which the simulated outputs are taken.

Specifying constraints Define carefully the feasible range of each parameter

Specify calibration
procedure

Manual calibration is advantageous for a small number of parameters (say, up
to 5) but is not practical in other cases.

If an automated process is undertaken, a preferable solution procedure should
be:

• suitable for a multidimensional problem;

• one that does not use derivatives;

• one that requires few evaluations of the objective function per iteration.

Consider reviewing recent developments of optimisation methods.
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one set of intersections must pass the validation test using queue length data from another

set of intersections. A higher standard of validation is reached if it can be confirmed that

the model calibrated with queue length data can also give good estimates of times or flows.

But in practice the relations between the different dimensions in the TMM itself are not

always reliable enough to achieve such standard. It should therefore be mainly stressed that

if validation is undertaken in the same dimension that has been examined during cali-

bration, the TMM can be later used reliably as a tool for prediction only in this dimension.

Conclusions

We have presented a review of methodologies for calibration of traffic microsimulation

models, discussed similarities and differences between them, and made some recom-

mendations. The reviewed methodologies differ from each other both in principle issues,

such as their objective and their scope, and in technical issues, such as their formulation

and solution approach.

We find that many calibration methodologies are not rigorous enough in terms of the

number of repetitions of the model used throughout the calibration procedure. Despite their

high time consumption, repeated runs are essential because the output of a single TMM run

is a very small sample from an unknown distribution. We also find that most authors

mainly use traffic microsimulation for estimating mean values of various traffic measures,

despite the fact that the stochastic nature of microsimulation creates an excellent oppor-

tunity for examining their variation1. Another finding is that modellers tend to use a

different type of statistical tools for calibration and validation, while in fact the tools

commonly used for calibration can be efficiently used for validation and vice versa.

Table 3 continued

Stage Action

Determining required
number of runs

To calculate mean values, use the formula given above.

To analyse other statistics, either seek theoretical guidance on required number
of runs, or find the number of runs that are needed for the statistic of interest
to converge to a stable value empirically.

Statistical validation Good fit must be shown when outputs of the calibrated model are compared to
a new set of data of a similar type to the data used for calibration. A higher
standard of validation is reached if it can be shown that good fit is found
with other types of data, but this cannot be taken for granted.

Additional validation Search for irregularities by inspecting the graphical display as the model runs.

Compare parameter values to other sources.

Implementation Use the calibrated model in similar settings to those used for calibration:
geographical scope, road/intersection types included, traffic measures
calculated, the level of sensitivity to other statistics apart from the mean,
and the dimension in which variation is measured. Your calibrated model is
not a credible tool in other settings.

1 We dedicate a separate discussion to the use of traffic microsimulation for the estimation of other statistics
but the mean. See Hollander and Liu 2008
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Our main recommendations for microsimulation modellers who embark on a calibration

process are listed in Table 3. Note that the table does not attempt to prescribe a full

calibration procedure, since as we have illustrated, various approaches are available, and

which approach is used depends on the particular application.
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