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Abstract
The elementary concepts and fundamental laws concerning the science of heat are examined from the point of view of
its development with special attention to its theoretical structure. The development is divided into four periods, each one
characterized by the concept that was attributed to heat. The transition from one to the next period was marked by the
emergence of new concepts and new laws, and by singular events. We point out that thermodynamics, as it emerged, is
founded on the elementary concepts of temperature and adiabatic wall, and on the fundamental laws: Mayer-Joule principle,
or law of conservation of energy; Carnot principle, which leads to the definition of entropy; and the Clausius principle, or
law of increase in entropy.
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1 Introduction

The theory of heat that emerged around the middle of the
nineteenth century became known as thermodynamics. This
theory regards heat as work that can be interconverted into
other types of works, such as mechanical work. The process
involving heat and mechanical work was called a thermo-
dynamic process by Kelvin and the entire discipline was
then called thermodynamics by Rankine in 1859. However,
the investigation on heat did not started with the appearance
of thermodynamics. Before that, a theory prevailed that
considered heat as a material fluid, denominated caloric
by a group of french scientists in 1787. Major steps in
the development of the investigation on heat also occurred
previously, such as the discovery of the specific and
latent heats around the middle of the eighteenth century
and the invention of the thermometer around the middle
of the seventeenth century. This last event marks the
transformation of the concept of heat as a sensation to the
concept of heat as a quality of bodies.

The purpose of this paper is the analysis of the main
events, such as those just mentioned, as well as the
emergence and development of the main concepts and laws
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related to the investigation on heat, with special attention
to the their theoretical aspects. Our analysis starts at the
beginning of the seventeenth century and distinguishes four
periods according to the concept that was attributed to heat,
that is, according to the viewpoint about the nature of heat.
In the first period, that ended around the middle of the
seventeenth century, heat was understood as just a sensation
that could be measured. In the second period, there was one
sole concept related to heat, which was the one measured
by the instrument called thermometer. This period ended
around the middle of the eighteenth century when there
appeared a second concept related to heat in addition to the
one measured by the thermometer. The latter became known
as intensity of heat, or temperature, and the new one became
known as quantity of heat, later associated to material heat.
The next period corresponds to thermodynamics.

Thermodynamics regards heat as a type of work. All
types of work, including the thermal work, are assumed
to be generated by conservative forces1 so that their
interconversion obey the law of conservation of energy.
The conservative forces responsible for the thermal work
are nothing else but those forces acting at the microscopic
level. However, the law of conservation of energy as
formulated when thermodynamics emerged was not derived
from a microscopic law but came from the macroscopic
law advanced independently byMayer and Joule concerning
the interconversion of heat and mechanical work. A

1A conservative force allows us to define potential energy and to
demonstrate the law conservation of energy.
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conservation law also existed in the caloric theory, but it was
associated to caloric. It was taken for granted by Lavoisier
and Laplace in their investigation on heat with the use of
an ice calorimeter, and by Carnot to explain the production
of work by a heat machine. According to Carnot, when
caloric passes from a high to a low temperature, it generates
mechanical work as happens to a body when it descends
from a high to a low level.

The set of concepts and laws associated with each period
is analyzed with the purpose of revealing its theoretical
structure from the perspective of what is meant to be a scien-
tific theory. A scientific theory consists of a set of elementary
concepts and fundamental laws from which we may derive
other concepts and laws, which describe and explain the real
phenomena related to the subject of the theory. In this sense,
past theories may be regarded as scientific theories [1].

2 Scientific Theory

Science is an enterprise that provides us with a rational
understanding of objective reality, known as scientific
knowledge. Such an understanding affords the explanation
of natural phenomena, and the prediction of phenomena in
nature or in the laboratory. Scientific knowledge, as can be
noted, is not a unity, but has a fragmented structure. Each
fragment is a science in itself and is related to a certain
section of objective reality. The existence of several sections
reflects the division of knowledge into areas and sub-areas.
The unification of sciences and the reduction of one science
to another are questions raised by some scientists and
philosophers but cannot be regarded as a necessity.

What we call scientific laws constitutes the essence of
scientific knowledge. However, a set of laws concerning an
area of knowledge does not properly constitute a science.
The laws should be connected directly or indirectly so
as to form an organic whole. An example is Kepler’s
laws, originally disconnected, but which were connected
by Newton by means of his gravitational law. We can say,
therefore, that a science, in addition to be associated with
a section of the objective reality, is also constituted by a
set of laws that form a logically connected set, that we call
scientific theory.

A scientific theory [1–8] consists of an abstract mathe-
matical structure endowed with an interpretation, a corre-
spondence rule between abstract terms and real concepts.
The mathematical framework, with its logical connections,
in association with interpretation, guarantees the rational
description and explanation of the real object. The math-
ematical structure consists of a set of primitive terms and
derived terms, and a set of postulates (or axioms) and
theorems. The primitive terms are those considered unde-
fined, that is to say, devoid of definition. Derived terms

are those defined from the primitive terms. Postulates are
statements or relationships taken to be true without the
requirement of demonstration. Theorems are propositions or
relations obtained from the postulates by means of deductive
argumentation.

In scientific language, primitive terms are called ele-
mentary concepts while derived terms are called derived
concepts. In Newton’s mechanics, “time” and “space” are
elementary concepts but “velocity” and “acceleration” are
derived concepts. Postulates (or axioms) are known as fun-
damental principles or fundamental laws, and theorems are
known simply as laws. In Newton’s formulation of mechan-
ics, the second law, which says that force is proportional to
acceleration, is a fundamental law.

In this paper, we will be concerned with the elementary
concepts of the theory of heat and their interpretations.
As an example drawn from Newton’s mechanics, let us
consider the concept of time. Although abstract time is
undefined, real time, which is its interpretation, can be
grasped when we measure it experimentally, for example
by means of a pendulum. However, this does not mean
that we are giving a definition of time. What the pendulum
marks should not be regarded as the definition of time. The
interpretation of a primitive term cannot be understood as
its definition [8].

In the theory of heat, there are basically two thermal
concepts that should be considered as elementary. One
is temperature, established with the invention of the
thermometer, and interpreted as the physical quantity
measured by the thermometer. The other is heat, which
was established within the caloric theory and interpreted as
the physical quantity measured by the calorimeter such as
the ice calorimeter, described by Lavoisier and Laplace in
their memoir on heat. Within thermodynamics, on the other
hand, heat is identified as work and in this sense, it cannot
be regarded as an elementary concept anymore. However,
heat should be distinguished from other types of work. One
way to do this is to introduce the concept of adiabatic wall
understood as a second elementary concept of the theory.

3 Degrees of Heat

Our body is naturally endowed with several senses that
allow us to perceive the environment. One of these is the
sense of hotness and coldness. This sense is not as accurate
as the other senses but is capable of distinguishing some
degrees of hotness and coldness, as long as we are not
exposed to extreme heat or extreme cold. The sensation of
heat and cold may sometimes be very subjective, resulting
in an imperfect perception, an observation that may have
stimulated the development of an instrument to measure the
degrees of heat and cold. Whatever was the motivation, such
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an instrument began to be developed, in modern times, in
the beginning of the seventeenth century [9, 10].

According to Castelli [11], an instrument to measure the
degrees of heat and cold was developed by Galileo before
1603. The instrument was made up of a glass bottle with
a small spherical body and a very long and narrow neck.
It is set up upside down, with the mouth immersed in a
small recipient with water. In contact with a colder or hotter
body, the water in the neck goes up or down, and a measure
of the degrees of heat and coldness is given by the level
of water in the neck. A similar instrument was used by
Santorio for meteorological and medical purposes at least
from 1612 and it was described by Biancani in 1617, who
called the instrument “thermoscope” (thermoscopium), and
by Santorio himself in 1625 [10]. An instrument of the
type of those associated with the names of Galileo and
Santorio was described by Leurechon in a book published
in 1626 together with another type in which the long
tube had a “J” shape [12]. In this book, he coined the
french word “thermomètre” (which passed into English as
”thermometer”) to mean the instrument for measuring the
degrees of heat or coldness.

The instruments of Galileo and Santorio, and those
described by Leurechon, which we call “air thermoscopes,”
were sensible to variations in atmospheric pressure because
one end of the glass tube of the instruments was open.2

However, this fact could not have been appreciated because
the atmospheric pressure had not yet been discovered [13].
In 1654, Ferdinando II, one of Galileo’s patrons, built a
thermometer, which was free from variations of atmospheric
pressure, by sealing a glass tube containing alcohol [10].
The Ferdinando’s liquid-in-glass thermometer received
further improvements from members of the Accademia del
Cimento, founded in 1657 and dissolved 10 years later [10].

Whether the motivation for sealing the glass tube
was to correct the problems caused by variations of the
atmospheric pressure or just to prevent evaporation, it is
hard to say. However, the first motivation is plausible
because, at the time Ferdinando built his thermometer,
the atmospheric pressure had already been discovered and
Torricelli had already invented, in 1644, an apparatus to
measure it [10]. The variability of the pressure and its
influence on the air thermoscope was mentioned explicitly
by Pascal in 1648 [10].

By the middle of the seventeenth century, the air thermo-
scope may be said to be separated into two distinct instru-
ments, that measured two distinct quantities, corresponding
to two distinct physical concepts. The first was the barome-
ter, which measures the atmospheric pressure, and the other,
the thermometer, which measures the degrees of heat.

2Nowadays, the word “thermoscope” names a thermometer without a
scale [10]. Tisza calls the air thermoscope a “barothermoscope” [13].

The thermometer received the attention of other scientists
who tried to improve the instrument by testing other
thermometric substances and by setting a scale for the
degrees of heat. In the scale used by Newton [14] in his
linseed oil thermometer, the freezing point of water was
taken as zero degree, the blood heat as 12 degrees, and
the boiling point of water as 34 degrees. Fahrenheit, who
invented the mercury thermometer, describes his scale in
1724. He marks 32 degrees for the freezing point of water
and 96 degrees when the thermometer is held in the mouth,
or under the armpit [15].

4 Quantity of Heat

Around the middle of the eighteenth century, investigations
concerning heat led to the emergence of the concept
of quantity of heat. This new concept arose mainly in
connection with the study of mixtures of liquids [16, 17].
In 1732, Boerhaave addressed the problem of explaining
why the degree of heat of a mixture of water and mercury,
initially at different degrees of heat, is closer to that of
the water. To this end, he proposed that the material ”fire
is distributed in the bodies in proportion to their bulk,
or extension” [18]. Between the years 1759 and 1763,
Black developed his ideas about heat [17] leading him to
an explanation that differs from that of Boorhaave. Black
explained that mercury requires a smaller quantity of heat
than water to raise the same number of degrees of heat,
that is, the same quantity of heat will change the degrees
of heat of the mercury by an amount greater than that of
the water. With this explanation, Black was introducing a
new concept related to heat, that of quantity of heat, distinct
from the intensity of heat [17], which is measured by the
thermometer.

In an anonymous account of 1770 concerning Black’s
studies on heat [19, 20], the intensity of heat is also called
”temperature.” The meaning of this term, as the quantity
measured by the thermometer, is a reduction of the more
general meaning, now obsolete, of ”temperature,” which is
the condition of the air and bodies as to heat and cold, moist
and dry, and other qualities, as exemplified by the following
sentences in a publication of 1725 concerning Boyle’s
works: “this liquor perpetually varies its temperature, as to
cold and heat” and “the temperature of the air is neither
considerably moist, nor considerably dry” [21]. Thus, until
the eighteenth century, “temperature” meant the tempering
of the qualities in a substance, and only after that, it acquired
the present precise physical meaning [9], restricted to the
qualities of “cold and heat” only.

The emergence of a second concept related to heat,
namely that of quantity of heat, seems natural to us, but
it was not to someone at the beginning of the eighteenth
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century. To clarify this point, we use an example presented
by McKie and Heathcote [17]. Let us think about the
concept of a color, considered as a quality as much as
heat. Although ”intensity of blue” is meaningful to us, it
is very hard to assign a meaning to “quantity of blue.”
Therefore, around the middle of the eighteenth century, the
concept of heat as a quality, understood as being measured
by the thermometer, changed to mean material heat, later on
known as caloric. The old meaning of heat as quality was
transferred to ”temperature.”

5 Heat Capacity and Latent Heat

The explanation given by Black concerning the mixtures of
liquids resulted in the concept of heat capacity, which is the
quantity of heat necessary to raise the temperature of a body
by a certain amount. The determination of heat capacity by
Black was based on the following rule to be used when two
bodies of equal masses at different temperatures are mixed
[20]. The heat capacity of one body is proportional to the
inverse of the variation of its temperature. Denoting by c1
and c2 the heat capacities, and by θ1 and θ2 the temperatures
of the hotter and colder bodies before the mixing, this rule
may be written in the form

c 1

c 2
= θ − θ2

θ1 − θ
, (1)

where θ is the final temperature. Using this rule, the heat
capacity of the substances could be determined in relation
to that of the water. In addition to the heat capacity, another
fundamental concept discovered by Black was that of latent
heat [20]. Black argued that the total mass of ice did not
melt at once as the temperature of the air reaches that of the
melting point. The entire process of melting takes some time
because a certain quantity of heat is needed to be transferred
to the ice while the temperature remains the same. This
reasoning applies also to the boiling of a mass of water.
Since in both processes the temperature remains invariant,
heat could not be perceived and for this reason Black called
it latent heat. The melting and boiling phenomena showed
unambiguously the distinction between temperature and
quantity of heat.

The idea of latent heat was used by Lavoisier and Laplace
in their study of specific heats of solids and liquids by
means of an ice calorimeter, carried out in 1783 [17], and
reported on their memoir on heat [22]. The measure of
heat developed inside the calorimeter was determined by
the weight of ice melted. In their memoir on heat, Lavoisier
and Laplace discussed two theories regarding the nature
of heat. One of them is the material theory of heat which
assumes that heat is a fluid, a few years later called caloric,
which diffuses and penetrates the bodies by reason of their

temperatures, and their particular disposition to retain it.
The other regards heat as the result of insensible movement
of the molecules of matter. Lavoisier and Laplace did not
decide which hypothesis to use and for this reason they
assumed only principles that were common to both, as is
the case of the conservation law [22]: ”the amount of free
heat always remains the same in the simple mixture of
bodies” (la quantité de chaleur libre reste toujours la même
dans le simple mélange de corps). From this conservation
law, Lavoisier and Laplace immediately derived the rule
expressed by formula (1) [22]. Employing the same notation
used in this formula, the quantity of heat lost by the hotter
body is q1 = c1(θ1 − θ) and that gained by the colder one
is q2 = c2(θ − θ2). But, by the conservation law, q1 = q2,
which leads us to formula (1).

The french word “calorique,” which originated the term
“caloric,” was coined by the authors of Méthode de Nomen-
clature Chimique in 1787 [23] to replace “material heat”, and
the french term “calorimètre,” origin of “calorimeter,” was
coined by Lavoisier in 1789 [24].

The heat capacity of gases was first determined
experimentally by Crawford in 1777 [25]. He believed
that a variation in the volume of a gas would change the
heat capacity but his experiments showed no appreciable
difference in the heat capacity measured when the gas is
allowed to expand and when it is not [25]. A clear distinction
between the two types of specific heat, that measured at
constant pressure and that at constant volume, was made
by Haüy in 1806 [26]. He also explained why the former
is greater than the latter by using Laplace separation of
caloric into two types: the sensible caloric, which affects
the thermometer, and the latent caloric, which does not.
According to Haüy, the difference in the heat capacities
comes from the latent caloric which causes expansion but
does not change the temperature [25].

6 Expansion and Contraction

The use of air pumps in the study of the pneumatic properties
of gases led to the observation that the temperature of
the receiver decreased during exhaustion and increased
during the refilling. The discovery of this phenomenon
is attributed to Cullen, who described it in 1755 [25],
but the phenomenon was also observed independently by
Darwin, who described it in 1788, about 13 years after his
observation [27]. According to him, themechanical expansion
of air attracts the matter of heat from the neighborhood, that
is, the mechanical expansion of air results in its cooling. He
explained the cold air at high altitudes by saying that a mass
of air expands as it rises, resulting in its cooling [27].

When air is mechanically compressed, explained Biot
in 1802, one part of the latent heat becomes sensible
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heat, perceived by an increase in the temperature. In the
expansion, a part of the sensible heat becomes latent,
resulting in a decrease in the temperature. This explanation
appears in a report of Biot concerning the velocity of sound
in the air [28], motivated by Laplace’s opinion in this matter.
Laplace believed, at least by 1802, that the propagation of
sound in air was not a process in which the temperature
remains constant, as was implicit in a calculation due to
Newton of the speed of sound, but could vary due to
compressions and rarefactions [29]. In his explanation, he
assumes that the quantity of heat during the dilatations
and rarefactions remains the same. The process without
the intervention of heat was later on called ”adiabatic” by
Rankine in a publication of 1859 [30].

Haüy in 1806 explained more clearly the mechanical
expansion in terms of the caloric [26]. There are two kinds
of caloric: the free caloric, which affects the thermometer,
and the latent caloric, which does not. In an expansion, a
gas absorbs latent heat by transforming free caloric into
latent. The free caloric may come from inside or outside
the body. If the whole free caloric comes from inside,
there is no exchange of heat with the environment and a
cooling occurs. If it comes from outside, there might be no
change in temperature. Haüy’s reasoning became a common
explanation of the adiabatic expansion [25].

7 Caloric Theory

Around the first decade of the nineteenth century, doubts
about the concept of a material heat have decreased and the
material theory of heat, also known as caloric theory, was
widely accepted [17, 25]. The phenomena related to heat are
due to an imponderable material called caloric, or merely
heat, which is contained in every part of a body and that can
pass from one part to the another part of a body or from one
to another body [31]. Caloric is an elementary concept of the
theory and its quantity is measured by the calorimeter. The
fundamental law of the theory is that caloric is a conserved
quantity [22]. Temperature is another elementary concept
of the theory and is measured by the thermometer. The
temperature θ of a body and the heat q per unit mass
contained in a body are considered as being determined by
the state of the body. In the case of a liquid or a gas, they are
functions of the pressure p and the volume v per unit mass
of the gas, that is, θ(v, p) and q(v, p).

The elastic properties of gases involve not only the
pressure and volume but also the temperature. Boyle had
established that the pressure of air enclosed in a recipient
is inversely proportional to its volume [32]. From the Gay-
Lussac study of dilatation of several gases at constant pres-
sure, it follows that the proportionality constant is linear in
the temperature [33]. Boyle law combined with Gay-Lussac

results allow us to write the relation between the pressure p,
the volume v per unit mass, and temperature θ in the form

pv = R(θ0 + θ), (2)

which we call Boyle-Gay-Lussac equation, where R and
θ0 are constants. In an expansion at constant pressure, the
fraction αp = (1/v)(∂v/∂θ)p of the volume increased
per unit of temperature is αp = 1/(θ0 + θ). Gay-Lussac
measured this quantity at zero degree of the centigrade scale
for several gases and found the same value 1/266.66 per
degree centigrade. But at θ = 0, αp = 1/θ0 which yields
θ0 = 266.66 degrees centigrade [33].

The specific heat is the heat necessary to increase
the temperature of a unit of mass by one degree. If the
volume remains constant during the heating, one defines
the specific heat at constant volume cv = (∂q/∂θ)v . If
the pressure is kept constant, implying a variation in the
volume, one defines the specific heat at constant pressure,
cv = (∂q/∂θ)v . Measurement of specific heats of gases
at constant pressures were conducted by Delaroche and
Bérard in 1812 for several gases [34]. The specific heat by
weight for the air was found to be cp = 0.2669 in units
where that of water is equal to 1. Due to the experimental
difficulties in the measurements of the specific heats at
constant volume, only much later, the direct value of cv was
obtained experimentally [25]. Dulong and Petit carried out
measurement of the specific heat of solids and found that
the product of the specific heat by weight multiplied by the
atomic weight was a constant [35]. From this general result
they conclude the following law: ”the atoms of all simple
substances have exactly the same capacity for heat” (Les
atomes de tous les corps simples ont exactement la même
capacité pour la chaleur).

Let us consider now the process with no exchange of heat
which became relevant in the explanation of the propagation
of sound in gases. The velocity of sound is the square root
of ∂p/∂ρ, the variation of the pressure p with the density
ρ. If the variation is isothermal one finds (∂p/∂ρ)θ = p/ρ

for a gas obeying Boyle-Gay-Lussac equation and recalling
that v = 1/ρ. This gives (p/ρ)1/2 for the velocity of
sound in a gas, which corresponds to the result obtained by
Newton [29]. According to Laplace, the variations should
be considered adiabatic and not isothermal so that the
appropriate quantity is (∂p/∂ρ)q . Using the usual rules for
calculating derivatives, we may write this quantity as

(
∂p

∂ρ

)
q

=
(

∂p

∂ρ

)
θ

+
(

∂p

∂θ

)
ρ

(
∂θ

∂ρ

)
q

=
(

∂p

∂ρ

)
θ

(
1 + αp

αq

)
, (3)

where αp is the fraction of the volume increased per
unit of temperature at constant pressure, defined above,
and αq = −(1/v)(∂v/∂θ)q is the fraction of the volume
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increased adiabatically per unit of temperature. Using the
Boyle-Gay-Lussac equation, one finds(

∂p

∂ρ

)
q

= p

ρ
(1 + k), (4)

where k = 1/(θ0 + θ)αq . From (4), one writes the velocity
of sound in a gas as [p(1 + k)/ρ]1/2. This relation between
the velocity of sound and k and that of k with αq were
obtained by Poisson in 1808 [36] and they correct Newton’s
calculation by a factor (1 + k)1/2. Poisson did not measure
αp but obtained its value indirectly from experimental
values of the speed of sound. He obtained [36] the following
results k = 0.4254 and αq = 1/116 per degree centigrade
at the temperature of six degrees centigrade and by the use
of Gay-Lussac result for θ0.

Next, we show another relationship involving (∂p/∂ρ)q .
Using again the usual rules for calculating derivatives, we
may write
(

∂p

∂ρ

)
q

= − (∂q/∂ρ)p

(∂q/∂p)ρ
= −γ

(∂θ/∂ρ)p

(∂θ/∂p)ρ
= γ

(
∂p

∂ρ

)
θ

,

(5)

where γ = cp/cv is the ratio between the specific heat at
constant pressure and constant volume. Using the Boyle-
Gay-Lussac equation, we find(

∂p

∂ρ

)
q

= γ
p

ρ
, (6)

which leads to the result that the velocity of sound in a gas
is (γp/ρ)1/2, a result announced by Laplace in 1816 [37]
and derived explicitly by him in a publication of 1822 [38].
Laplace’s result corrects Newton’s calculation by a factor
γ 1/2. Gay-Lussac and Welter obtained experimentally the
value γ = 1.3748 for the air, a result reported by Laplace in a
note on the velocity of sound [39]. In 1829, Dulong reported
his experimental values of γ for several gases including
the atmospheric air for which he found γ = 1.421 [40].

If the ratio γ of the specific heats can be considered
constant along a certain range of ρ, (6) can be integrated,
with the solution p ∼ ρ γ , equivalent to p ∼ v−γ , a
result found by Poisson [41] and valid along the adiabatic
curve. Using the relation p ∼ v−γ , we immediately obtain
a relationship between αq and γ , namely, αq = 1/(θ0 +
θ)(γ − 1), where we used Boyle-Gay-Lussac equation.
Carnot used this result in combination with Gay-Lussac
result 1/θ0 = 1/267 per degree centigrade and Poisson
result αq = 1/116 per degree centigrade to find γ =
(267 + 116)/267 = 1.44 [42]. It also follows from the
relation between αq and γ that the quantity k that appears in
(4) is related to the ratio of the specific heats by γ = 1 + k.

Motivated to understand how the heat machines produce
motive power (puissance motrice), that is, mechanical work,
Carnot carried out investigations on heat that were published

in 1824 [42]. Ten years later, in 1834, Clapeyron published
a memoir [43] in which he presented Carnot results and
propositions in an analytical form. He also made use of a
pressure versus volume diagram, which revealed to be most
convenient because mechanical work is represented as an
area in this diagram. Clapeyron used the terms ”quantity
of mechanical action” (quantité d’action mechanique) to
mean ”mechanical work,” although Coriolis had already
introduced the term ”work” (travail) in 1829 [44]. In his
paper, Clapeyron introduces also the relation which was
later called Clausius-Clapeyron equation. Both publications
received little attention but were eventually acknowledged
by Kelvin in 1848 [45] and by Clausius in 1850 [46] in their
papers on heat.

The studies carried out by Carnot led him to a remarkable
law that links work to heat. After saying that a heat
engine operates in a cycle, Carnot introduces the cycle,
that now bears his name, composed by two isothermal
and two adiabatic processes. A body that undergoes this
cycle receives a quantity of heat at higher temperatures and
gives the same quantity of heat at lower temperature. To
obtain a relation between work and heat, Carnot uses an
analogy with a mechanical system. When a body descends
from a certain height to another height, it performs a work
proportional to the product of the mass of the body and
the difference of heights, and the work does not depend
on the substance of the body. Thus, Carnot assumes that
the heat machine undergoing his cycle, performs a work
w proportional to q�θ , where �θ is the difference in
the temperatures of the isotherms and q is the heat that
”descends” from the higher to the lower temperature. This
assumption is written as

w

q
= �θ

C
. (7)

A second and most important assumption of Carnot is
that the work does not depend of the substance of the body
undergoing the cycle and depends only on the temperatures
of the isotherms. This means to say that C depends only on
θ1 and θ2, the temperatures of the two isotherms. Setting
θ1 = θ + �θ and θ2 = θ , then for small difference in
temperatures, C(θ) will depend only on θ [43]. Following
Clapeyron [43], we consider a small cycle. Since the work
is the area of the cycle in the plane p -v, then w = �p�v

because �p and �v are small. For small heat absorbed, we
may replace q by dq in (7) to get

1

C
dqdθ = dpdv. (8)

From (8), it follows that the Jacobian ∂(θ, q)/∂(p, v) =
C, that is,

∂θ

∂p

∂q

∂v
− ∂q

∂p

∂θ

∂v
= C. (9)
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Once the function C(θ) is known, (9) gives a relation
between temperature and heat. In the case of a gas obeying
the Boyle-Gay-Lussac equation, it follows from (9) that

v
∂q

∂v
− p

∂q

∂p
= RC. (10)

The solution of this equation is q = RC ln v + A where
A is a function of the product pv. From this equation, it is
possible to determine cp and cv and to show that cp−cv ≥ 0.

Let us now consider the boiling of a liquid. If the pressure
is kept constant, the temperature remains invariant as long
as there is liquid to be boiled. In this case, ∂θ/∂v vanishes.
But ∂q/∂v equals the ratio �/�v, where � is the latent heat
per unit mass, and �v is the difference between the volume
per unit mass of the vapor and the liquid, so that (9) becomes

∂p

∂θ
= �

C�v
, (11)

which is the equation that relates the slope of the transition
from the liquid to vapor in the p-θ plane with the latent heat,
and known as Clausius-Clapeyron equation.

As we have seen, the caloric theory considers two types
of caloric: the sensible, which affects the thermometer,
and the latent, which does not. The existence of latent
caloric explained melting and boiling of a substance and
also the compression of gases. In this case, the decrease
in volume induces the conversion of part of latent caloric
into sensible caloric causing an increase in temperature.
This conversion is manifest, for example, in hammering a
piece of metal, which causes an increase of temperature.
However, the existence of two types of caloric and the
conversion of one into another was criticized by Dulong
and Petit, due to the lack of evidence, and by Berzelius,
due to absence of decrease in volume in certain exothermic
reactions [25]. In spite of the criticisms, the caloric theory
survived until around 1850, as is apparent in the work of
Kelvin of 1849, who calls the conservation of caloric as
Carnot’s fundamental principle [47].

8Mayer-Joule Principle

In an account of his theory concerning heat, published
in 1842 [48], Mayer makes a connection between heat,
work (Fallkraft) and motion. However, according to Mayer,
heat is not motion nor work but they can be transformed
into each other. Thus, heat can be generated from the
disappearance of motion, for example, by friction, and heat
can be transformed into motion, for instance, in a steam
engine. Mayer believed in the materiality of heat [25], but
not in its conservation as happens to caloric. He further
assumes that there is a fixed relation between work and heat
production and found that the amount of heat necessary to
warm a certain quantity of water by one degree centigrade

is equivalent to the fall of the same quantity of water by a
height of 365 meters [48].

Three years later, in a publication of 1845 [49], Mayer
explains his method by considering a gas enclosed in a
vessel of volume V and pressure p. The work w performed
by heating the gas at constant pressure starting at 0 ◦C is
w = p�V = pV �θ/θ0. During the heating at constant
pressure the gas absorbs a quantity of heat equal to mcp�θ

where m is the mass of the gas. If the gas were heated
at constant volume, the heat absorbed would be mcv�θ .
Mayer argues that the difference q = m(cp − cv)�θ is
the heat that is transformed into work. The mechanical
equivalence of heat is given by the ratio w/q = p/[ρ(cp −
cv)θ0], where ρ is the density of the gas. Mayer applies
this result for the atmospheric air by using the value of the
specific heat cp obtained experimentally by Delaroche and
Bérard and the experimental value of γ obtained by Dulong
and Petit to find cv = cp/γ .

In 1843, Joule published a paper on production of heat
by magneto-electric devices [50]. If heat is not a substance,
writes Joule in this paper, but is understood as a state of
vibration, there is no reason why it could not be produced by
mechanical or magneto-electric means. He begins to doubt
whether the heat was indeed generated in these processes
and not simply transferred. However, his experimental work
led him to assert that heat is indeed generated and is not
a conserved quantity like caloric. Joule went on further by
asserting that heat produced is proportional to the work
consumed in the operation. To increase by one degree
Fahrenheit one pound of water, he finds it is necessary to
raise a body of 838 pounds by one foot [50]. Later in 1850
[51], by using a paddle-wheel apparatus, he finds the value
of 772 pounds raised by one foot.

In spite of the distinct viewpoints concerning the nature
of heat, Mayer and Joule had the same idea about the
conversion of work into heat, that is, the heat generated q

in a certain process is proportional to the work dissipated
w, that is q = aw, and the proportionality constant a is
universal. This is to be understood as a fundamental law
and for brevity, we call it Mayer-Joule law or Mayer-Joule
principle. This law should also be understood as embracing
the conversion of heat into work as occurs in a heat machine.

9 Carnot Principle

The Mayer-Joule law was manifestly in conflict with the
conservation of caloric, a principle that was used by Carnot
to explain the production of work by a heat machine. This
was the viewpoint of Joule who suggests the abandoning of
Carnot’s fundamental principle [52]. Kelvin, on the other
hand, held the opinion that the renunciation of Carnot’s
principle would produce enormous difficulties that could
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only be overcome by further experimental investigations
and an entire reconstruction of the theory of heat [47]. This
conflict was finally resolved by Clausius, who reported his
solution in a publication of 1850 [46].

Clausius reasoning was as follows. Carnot, in his book
on the relation between work and heat, introduces his cycle
and a fundamental principle, which we split into two parts.
(1) The work performed by the substance undergoing the
cycle is proportional to the heat absorbed at the higher
temperature and depends only on the two temperatures of
the cycle, and not on the nature of the substance. (2) The
heat delivered at the lower temperature is equal to the heat
absorbed, in accordance with the conservation of caloric.
Clausius perceived that this second part could be removed
and replaced by the Mayer-Joule law without affecting the
first part. Thus, according to Clausius, the heat delivered
is smaller than the heat absorbed and the difference is
converted into a certain quantity of work, in accordance with
Mayer-Joule law. Denoting by q1 and q2 the heats absorbed
and delivered, respectively, the heat consumed, q1−q2, will
be proportional to the work w, that is,

q1 − q2 = aw. (12)

The first part of the Carnot’s fundamental principle
amounts to say that w/q1 depends only on the two
temperatures θ1 and θ2 of the two isotherms of the Carnot
cycle, which can be represented by (7), with q1 replacing
q. This part is not in contradiction with Mayer-Joule law
but there is an overlap with Mayer-Joule law because it also
deals with the conversion of heat into work. However, it is
possible to get rid of the overlap to reach an independent
proposition. Writing (12) in the form q2/q1 = 1 − aw/q1,
we see that the ratio q2/q1 must have the same properties
as w/q1, that is, it depends only on the two temperatures θ1
and θ2, which allows to write

q2

q1
= T (θ2)

T (θ1)
, (13)

where T (θ) is a yet unknown function of temperature θ ,
which does not depend on the nature of the substance
undergoing the cycle. This proposition is to be understood
as a fundamental law, which for brevity we call Carnot law
or Carnot principle, and to be understood as independent of
the Mayer-Joule law.

10 Clausius Theory

To develop his theory of heat, Clausius used the Mayer-
Joule law, which relates heat to work, and the Carnot law,
which relates heat to temperature. The main results of his
theory are contained in two papers published in 1850 [46]
and 1854[53]. In this section, we derive from the two

laws the main results found in these two papers but we
follow a mathematical approach slightly distinct from that
of Clausius, but similar to that of Clapeyron which we used
in Section 7.

Setting θ1 = θ +�θ and θ2 = θ , then for small values of
the difference in temperatures, expression (13) of the Carnot
law can be written as

q1 − q2

q1
= T ′(θ)

T (θ)
�θ . (14)

To determine the unknown function T (θ), Clausius uses the
Boyle-Gay-Lussac equation and the subsidiary condition
that, in an isothermal expansion of a gas, all the heat
absorbed is converted into work, which according to
Clausius is experimentally verified as much as the Boyle-
Gay-Lussac equation [46]. If q is the heat absorbed at
constant θ , then for small values of volume increment
�v, this subsidiary condition gives q = ap�v =
aR(θ0+θ)�v/v where we have used the Boyle-Gay-Lussac
equation. Since q1 and q2 are the heats absorbed at constant
temperatures θ1 = θ + �θ and θ2 = θ , then

q1 − q2

q1
= �θ

θ0 + θ
, (15)

valid for small values of �θ . Comparing with (14), one
reaches the result

T = θ0 + θ . (16)

We may call T temperature because it differs from θ just by
a constant. A scale for T was devised by Kelvin [54] based
on the relation (13), that is,

q1

q2
= T1

T2
, (17)

valid for a Carnot cycle.
In the paper of 1854 [53], Clausius undertakes a major

step in the development of the theory by showing that dq/T

is an exact differential. To reach this result, Clausius writes
relation (17) in the form q1/T1 + q2/T2 = 0 where, here,
he uses the convention that heat absorbed is positive and
heat delivered is negative. From the generalization of this
equation to several Carnot cycles, he finds that in any cyclic
process∮

dq

T
= 0, (18)

which means that dq/T is an exact differential. From this
result, it follows that there exists a state function s whose
differential ds is this exact differential, that is,

ds = 1

T
dq. (19)

Using the result T = θ0 + θ into (14), it can be written
as (q1 − q2)/q1 = �T/T , or yet as aw/q1 = �T/T if
we use the Mayer-Joule law, given by (12). Since we are
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considering a small Carnot cycle, we may replace q1 by dq

and use dpdv for the work w, to find

1

T
dqdT = a dpdv, (20)

which becomes identical to (8), if we set C = a T . But,
contrary to what happens in the caloric theory, used by
Clapeyron, here, dq is not an exact differential. Using (19),
we find

ds dT = adp dv. (21)

Taking into account that s and T may be considered
functions of p and v, because both ds and dT are
exact differentials, it follows immediately that the Jacobian
∂(T , s)/∂(p, v) = a, that is(

∂T

∂p

)
v

(
∂s

∂v

)
p

−
(

∂s

∂p

)
v

(
∂T

∂v

)
p

= a. (22)

From (22), the following relation can be derived(
∂T

∂v

)
s

= −a

(
∂p

∂s

)
v

. (23)

The derivation uses by the following identities(
∂T

∂v

)
s

=
(

∂T

∂v

)
p

+
(

∂T

∂p

)
v

(
∂p

∂v

)
s

=
(

∂T

∂v

)
p

−
(

∂T

∂p

)
v

(
∂s

∂v

)
p

(
∂p

∂s

)
v

. (24)

Replacing (22) in this equation, one gets relation (23). If we
now define the differential du by

du = T ds − a pdv, (25)

then, relation (23) says that du is an exact differential, which
was obtained by Clausius in 1850 [46]. As we shall see, only
later on, in 1854 [53], that Clausius realized that (25) could
be understood as the equation for conservation of energy
and that u could be identified as the energy of a body.

By the use of the equations just obtained, some results
can be found. For instance, using (22) for the case of a
gas obeying the Boyle-Gay-Lussac equation, which we may
write as pv = RT ,we get

v
∂s

∂v
− p

∂s

∂p
= aR, (26)

whose solution is s = aR ln v + B where B is a function
of pv and thus a function of T only. From the solution,
we may determine cp and cv and show that they depend on
temperature only and that their difference cp − cv = aR is
a constant.

Some results obtained from the caloric theory are found
to be in accordance with the heat theory of Clausius. In
adiabatic processes, for instance, there is no exchange of
heat so that the process looks like there is a conservation
of heat. Equation (5) and those that follow from it in

connection to the Boyle-Gay-Lussac equation, for instance,
remain valid. Also, (11), related to the process of boiling
of a liquid, remains valid because in the course of deriving
this equation we have considered a Carnot cycle such that
the difference in the heat absorbed and the heat delivered
become negligible, and again, this process works like one in
which heat is conserved. Since in the process of boiling the
pressure and temperature remain invariant while the volume
varies, it follows that (∂T /∂v) = 0 and (22) becomes
(∂T /∂p)(∂s/∂v) = a. But (∂s/∂v) equals �/T �v, where
� is the latent heat per unit mass and �v is the difference
between the volume per unit mass of the vapor and the
liquid, so that

∂p

∂T
= �

aT �v
, (27)

which is the Clausius-Clapeyron equation. It becomes
identical to (11), obtained by Clapeyron, if we set C = a T .

The elementary concepts and fundamental principles of
Clausius theory of heat are as follows. Heat and temperature
are considered to be elementary concepts. Temperature is
measured by the thermometer and heat by the calorimeter.
The theory is based in two fundamental principles that
Clausius calls the first and second fundamental theorems.
The first we have called Mayer-Joule principle, and the
second, Carnot principle. From these two principles, it
follows that the differentials ds and du given by (19) and
(25) are exact differentials, which means to say that s and
u are state functions just as T , but not as q, which is not.
In the case of a gas, they may be considered as functions of
pressure p and volume v.

11 Conservation of Energy

The view that heat is a mode of motion was a speculation
raised by some authors, even during the period dominated
by the caloric theory, in particular from those who criticized
the materiality of heat, such as Davy and Dulong [25].
Lavoisier and Laplace, in their memoir on heat [22],
mentioned that some authors treat heat as being the result of
insensible motion of molecules. What type of motion was it
was not clear and what laws could be drawn from it were
not given. The situation began to change with the works
of Mayer and Joule because the law that they discovered
independently could be interpreted as the conservation
of energy. Between 1842 and 1847, this law was also
announced by Colding and Helmholtz [55].

In his studies concerning the conservation of energy
(Kraft), reported in a publication of 1847 [56], Helmholtz
considers a system of material points that move under the
action of their mutual forces, which are assumed to be
central forces. For such a system, Helmholtz shows that the
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sum of the potential energy (Spannkraft) and the kinetic
energy (lebendige Kraft) is constant, which constitutes
the principle of conservation of energy. Considering that,
according to Joule, mechanical work can be converted into
heat, Helmholtz raised the possibility that the quantity of
heat would be the expression of the kinetic energy and the
potential energy of the atoms. The former would correspond
to the free heat and the latter to the latent heat. It should
be remarked that, by considering central forces, Helmholtz
was in fact assuming that at the microscopic level the forces
are conservative, from which follows the conservation of
energy. The general conservation of energy at microscopic
level laid down by Helmholtz supported the Mayer-Joule
law, but no one at that time had derived the latter from the
former.3

In his first paper on heat of 1850, Clausius assumed,
independently of Helmholtz, that heat consists in the motion
of particles that is supposed to exist within a body and that
the quantity of heat is a measure of their kinetic energy
(lebendige Kraft), so that the general mechanical principle
of equivalence between kinetic energy and work could be
applied to heat [46]. In the paper of 1854 [53], he writes the
expression of the conservation of energy in the form

�U = Q − W, (28)

where Q is the quantity of heat imparted to a body during
the passage from one state to another, W is the external
work performed by the body, and �U is the variation of
the quantity U . Later on, Clausius adopts the terminology
employed by Kelvin [57] and callsU the energy of the body.
Equation (28) is an expression of conservation of energy
only if �U does not depend on the path used to go from one
to the other state, which is equivalent to say that U is a state
function. Equation (28) can be written in the differential
form

dU = dQ − dW, (29)

which together with the understanding that dU is an exact
differential, which means that U is a state function, is
the expression of the conservation of energy in differential
form. Notice that the differentials dQ and dW are not exact,
and for a fluid dW = pdV where p is the pressure and V

the volume.
In his paper of 1850 [46], based on the Mayer-Joule

and Carnot laws, Clausius demonstrated that dU in (29) is
indeed an exact differential. In Section 10, we presented
this demonstration, which ended in (25), following a path
slightly distinct from that of Clausius. The demonstration

3In fact, the derivation of macroscopic laws from microscopic laws
was the aim of the kinetic theory advanced by Clausius, Maxwell, and
others.

presented two crucial steps. The first is to show from the
Carnot law that

dS = dQ

T
(30)

is an exact differential, where T is the temperature. The
second step is to show from the Mayer-Joule and Carnot
laws that

dT dS = dp dV . (31)

However, further developments of the theory were carried
out in a way in which the conservation of energy in the form
given by (29) was assumed to be a fundamental law and
not as a derived law. Thus, according to this scheme, (31)
becomes an equation derived from (29) and (30) as can be
readily verified.

12 Clausius Principle

In the development of the theory, it became clear to Clausius
that the ratio Q/T between heat and temperature plays
a relevant role. As we have seen, this ratio has the same
value for the two isothermal processes of the Carnot cycle,
a result that led Clausius to show that dS = dQ/T is an
exact differential as we have demonstrated above. Clausius
called the ratio Q/T the value of a transformation, and thus,
the quantity S could be called the transformation content
(Verwandlungsinhalt) but in 1865 Clausius proposed to call
S the ”entropy” from the Greek words ὴ τρoπὴ meaning
”the transformation” [58].

The next major step in the development of the theory
was the establishment by Clausius, in 1865, of the following
equality concerning the variation of entropy of a system in
contact with the environment [58],

S − S0 =
∫

dQ

T
+ N, (32)

where S and S0 are the entropy of the final and initial
states of the system. The temperature T on the right-
hand side of this equation is to be understood as the
temperature of the environment and dQ the infinitesimal
heat exchanged with the environment, being positive when
heat is absorbed by the system. The quantity N , which
was called by Clausius the uncompensated transformation
(unkompensierte Verwandlung) [58], is never negative so
that we may write

S − S0 ≥
∫

dQ

T
. (33)

This inequality, established by Clausius, is a direct
consequence of a fundamental principle which in the
simplest form is stated by Clausius as follows [59]: ”heat
cannot by itself pass from a colder to a hotter body”
(die Wärme nicht von selbst aus einem kälteren in einem
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wärmeren Körper übergehen kann). Here, we derive the
inequality from this principle, which we call Clausius
principle, by the use of a reasoning slightly different from
that of Clausius.

We consider two bodies A and B that suffer a process
such that the heat delivered by one body is absorbed by
the other. This restriction is written as Q + Q ′ = 0,
where the unprimed and primed quantities refer to A and
B, respectively. In addition, the total energy and the total
volume are invariant, restrictions that we write as �U +
�U ′ = 0 and �V + �V ′ = 0. In this case, according to
the fundamental principle, heat passes from the hotter body
to the colder body because the restriction ”by itself,” which
means that no other effect should occur, is fulfilled because
there is no work or heat exchanged with the environment.

Let us imagine that bodies A and B undergo isothermal
process at temperature T and T ′, respectively, and that the
body A absorbs a certain quantity of heat Q > 0 from B.
In this case, the only possibility allowed by the fundamental
principle is that T ≤ T ′, which can be translated into
the inequality Q

[
f (T ) − f (T ′)

] ≥ 0 for any monotonic
decreasing function f (T ) of the temperature. The same
inequality holds true if the body A gives heat to the body
B because in this case Q < 0 and, in accordance with the
fundamental principle, T ≥ T ′.

Next, we let the body A undergo a process in which the
temperature T may vary. The inequality now reads∫

dQ
[
f (T ) − f (T ′)

] ≥ 0, (34)

where the integral is performed along the process undergone
by the body A and T ′ is assumed to be a known function of
the state of the body A. This equation can be written in the
form∫

dQf (T ) +
∫

dQ ′f (T ′) ≥ 0, (35)

where the second integral is performed along a process
which is connect with the process undergone by the body A,
in such a way that the heat absorbed by A equals the heat
delivered by B, that is, dQ + dQ ′ = 0.

If we choose f (T ) = 1/T , (35) reads∫
dQ

T
+

∫
dQ ′

T ′ ≥ 0. (36)

In this form, each of the integrals equals the variation in
entropy and thus, we may interpret the inequality as also
valid when the integrals are performed for any process,
without the need of any connection between the process
undergone by A and the process undergone by B, and
without the restriction Q + Q′ = 0. Within this new
interpretation, only the restrictions �U + �U ′ = 0 and
�V +�V ′ = 0 must be enforced. If we set one the integrals
as S − S0, we reach the Clausius inequality (33).

Combining (29) and (30), we may write for a mechanical
system

dU = T dS − pdV, (37)

where dU , dS, and dV are exact differentials. This equation
was interpreted geometrically by Gibbs as describing
a thermodynamic surface in the space (U, S, V ) [60].
Temperature and pressure were interpreted geometrically
as being related to the inclination of the tangent plane at
any point of the thermodynamic surface. The coexistence
of two thermodynamic phases is represented by a straight
line segment whereas the coexistence of three phases
is represented by a plane triangle. The invariance of
the temperature when the pressure is kept constant at
coexistence of two phases becomes a direct consequence
of the geometric property that all points of a straight line
segment correspond to the same temperature and pressure.

According to Gibbs, the stability of thermodynamic
equilibrium is represented by the following property of the
thermodynamic surface. Let us consider a tangent plane to a
given point of the thermodynamic surface. Any other point
of the surface will lie above the tangent plane considering
that the axis of energy is the vertical one. This property is
translated by the inequality

(U − U0) − T0(S − S0) + p0(V − V0) ≥ 0, (38)

where (U0, S0, V0) is a given point of the surface and T0
and p0 are the temperature and pressure at that point. This
property is equivalent to say that thermodynamic surface has
the property of convexity.

The convexity property of the Gibbs thermodynamic
surface, given by (38), is a consequence of the Clausius
inequality. To show this result, we start by writing (36) in
the form

S0 − S + Q ′

T0
≥ 0, (39)

where we assuming that the body B undergoes a process
at a constant temperature T0 and constant pressure p0 and
that the body A undergoes a processes such that the final
temperatures is T0. But Q ′ = �U ′ + p0�V ′ = −�U −
p0�V , which replaced in (39) gives

(S − S0) − 1

T0
(U − U0) − p0

T0
(V − V0) ≤ 0, (40)

which is equivalent to inequality (38).

13 Thermodynamics

The theory of heat was called by Clausius the ”mechanical
heat theory” (mechanischen Wärmetheorie) [53]. Kelvin,
in his first papers on the subject, used the terms
”dynamical theory of heat” to name the theory of heat
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and called the process involving heat and mechanical work
a thermo-dynamic process [54]. In 1859, Rankine named
”thermodynamics” the theory describing the conversion of
heat into mechanical energy and conversely [61].

13.1 Elementary Concepts

In the Clausius theory of heat, analyzed in Section 10,
temperature and heat were regarded as elementary concepts.
But, taking into account the connection between heat and
energy and that energy is a derived concept, heat may also
be understood as a derived concept. Indeed, it is possible to
define heat by the use of the concept of adiabatic wall, and
this is the scheme adopt by many authors [62–68]. In this
case, of course, adiabatic wall could not be defined as wall
impermeable to heat because we would be facing a circular
reasoning. Some authors avoid the circularity by assuming
a definition of adiabatic walls that does not refer to heat. We
avoid the circularity by adopting the concept of adiabatic
wall as being an elementary concept of the theory. Thus, we
adopt two elementary thermal concepts:

1 Temperature, which is measured by a thermometer,
whose scale can be built according to a method devised
by Kelvin, which uses (13).

2 Adiabatic wall.

Using adiabatic walls, we may determine the quantity
of heat that is exchanged with the system in a certain
thermodynamic process. To this end, we define an adiabatic
process as the one for which the walls enclosing the
system are adiabatic. By moving the adiabatic walls, an
adiabatic work is performed on the system. We also define
a thermal process as the one for which the walls are kept
immobile. A thermal work is performed on the system
by the use of a paddle-wheel apparatus, or similar, while
the system is enclosed by adiabatic walls. Let us consider
a thermodynamic process from an initial state to a final
state and let us approximate the process by a succession of
pairs of small adiabatic and thermal processes. The work
performed W in the process is the sum of the adiabatic
works of each small adiabatic process. The heat exchanged
Q in the process is the sum of the thermal works performed
in each one of the small thermal processes. According to
this definition of heat, an adiabatic wall does not allow the
passage of heat.

It should be noticed that the adiabatic work is indepen-
dent of the path and depends only on the initial and final
states. This result allows a distinct but equivalent way of
introducing the concept of adiabatic wall as did Fermi.
According to him, ”there exists certain substances called
thermal insulators [adiabatic walls] having the following
properties: when a system is completely enclosed in a ther-
mal insulator” the work depends only on the initial and final

states [64]. Born introduces adiabatic wall as follows [63].
The equilibrium of a system enclosed by rigid adiabatic
walls cannot be disturbed by any external process. Accord-
ing yet to Born, this form of introducing adiabatic wall does
not use the notion of heat. According to the proposal of
adiabatic wall being an elementary concept, the existing def-
initions of adiabatic wall should in fact be understood as
real interpretation of the theoretical elementary concept of
adiabatic wall.

13.2 Fundamental Laws

The theory developed by Clausius [46, 53, 58], as we
have described above, can be understood as based on the
following fundamental laws:

1 Conservation of energy, expressed by (29). More pre-
cisely, by saying that dU given by (29) is an exact differ-
ential. It is a consequence of the Mayer-Joule principle.

2.1 Heat and temperature relation expressed by (30), or
more precisely, by saying that dS given by (30) is
an exact differential. This law allows the definition of
entropy and is a consequence of the Carnot principle.

2.2 Increase of entropy, expressed by the inequality (33).
It is a consequence of the Clausius principle.

Treatises on thermodynamics usually ground the theory
on two fundamental principles called first law and second
law of thermodynamics [64, 65, 69–72]. The first law is the
principle of conservation of energy, which is the law 1. The
second law is stated in several different forms, supposedly
leading to both the laws 2.1 and 2.2. Sommerfeld calls the
laws 2.1 and 2.2, respectively, the first and second part
of the second law [72] whereas for Pauli the law 2.1 is
the mathematical statement of the second law [71]. Some
statements of the second law, such that of Planck [69],
are declarations about the increase of entropy in isolated
systems and, in this sense, they are equivalent to law 2.2 alone.

The statement of the second law by Carathéodory [62],
which was supported by Born [63], is explicitly based on
the concept of adiabatic walls as an elementary concept.
According to Carathéodory, given two states, it is not always
possible to connect them by an adiabatic process. From
this axiom, Carathéodory shows the existence of integrating
factor for the differential dU + dW , which allows the
definition of entropy. Thus, Carathéodory statement leads
to the law 2.1, with the integrating factor understood as the
inverse of temperature, but it does not seem to lead to a law
of increase in entropy in the sense of law 2.2.

Next, we analyze the original statement of the second law
by Clausius, considered to be equivalent to other statements,
such as that of Kelvin about the impossibility of producing
work by cooling a body below the coldest of the surrounding
objects [54]. The laws 2.1 and 2.2 are supposed to be
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logical consequences of these statements. The law 2.2 can
indeed be derived from the Clausius statement with the help
of the law 2.1, as we have shown above. However, law
2.1 does not seem to be necessarily a logical consequence
of the second law. Usually, the reasoning [72] leading
to law 2.1 from Clausius statement is based on the use
of two Carnot cycles, one being driven clockwise and
the other anticlockwise, from which one obtains (13) and
consequently the law 2.1. However, by a similar reasoning,
it is possible to draw the same conclusion if we use a
statement that contradicts that of Clausius. The paradox is
solved if we recognize that the derivation is based on some
premises that might not be contained in the second law.
For instance, the derivation implicitly assumes that the heat
absorbed during the isothermal expansion equals the heat
released along the isothermal contraction. Thus, the law
expressed by (13), which leads to the law 2.1, might not be
a logical consequence of Clausius statement but could stand
as an independent fundamental law.

13.3 Irreversibility

Our account of the theory of heat up to this point does
not seem to involve time. However, this is not so. Our
presentation of the laws is usually made in terms of
processes, which are time evolutions of states. When we
say that heat spontaneously passes from a hotter to a colder
body, it means that the process of heat transfer begins at a
certain instant of time t and ends at a later time t ′, where
t ′ > t due to the tacit convention that time increases as time
goes by. This is an irreversible process because the inverse
process does not occur, that is, spontaneously heat does not
pass from a colder to a hot body.

Let us consider the law 2.2. If both sides of Clausius
inequality (33) is divided by the increase in time �t > 0,
and after taking the limit �t → 0, we find

dS

dt
≥ �

T ′ (41)

where � = −dQ ′/dt is the flux of heat to the system, that
is, the heat transferred to the system per unit of time, and
T ′ is the temperature of the environment. The following
restrictions should be fulfilled: dU + dU ′ = 0 and dV +
dV ′ = 0 where the prime and unprimed quantities refer
to the environment and system, respectively. If the system
is isolated, dU = 0, dV = 0, the heat flux vanishes and
dS/dt ≥ 0, that is, the entropy of an isolated systems does
not decrease.

Let us suppose that the environment is a heat reservoir,
whose temperature is kept constant. In this case, dV = 0
and dU = −dU ′ = dQ ′ and inequality becomes

dU

dt
− T ′ dS

dt
≤ 0 (42)

and F = U − T ′S decreases with time. For long times, that
is, in thermodynamic equilibrium, dU − T ′dS = 0 and T ′
equals the temperature of the system.

With the purpose of involving time, explicitly, we rewrite
law 2.2 as

2.2 Increase of entropy, expressed by the inequality (41).

14 Discussion and Conclusion

We have analyzed the historical development of the
investigation on heat with the purpose of pointing out the
main concepts and laws, with emphasis on the elementary
concepts and fundamental laws. Our analysis shows that
the development passed through four periods, each one
characterized by the concept that was attributed to heat.
The transition from one period to the next is marked by the
emergence of new concepts and new laws, which formed a
new conceptual framework. The causes for the emergence
of a new conceptual framework may be related to the desire
to solve the problem raised by conflicting situations or
may just be a singular event that triggered new ways of
perceiving and studying the real phenomena. The transition
from the first to the second period may be attributed to the
invention of the thermometer. From the second to the third,
it may be caused by the discovery of specific and latent
heats. From the third to the fourth, the transition may be
caused by the contradiction between the law of conservation
of caloric and the equivalence of heat and work discovered
by Mayer and Joule.

Our analysis has shown that thermodynamics is based on
two elementary thermal concepts: temperature and adiabatic
wall. The use of adiabatic wall allows the introduction of
adiabatic process from which we may distinguish work
and heat. According to our analysis, thermodynamics is
founded on the three laws: (1) law of conservation of
energy, which is the first law of thermodynamics, (2.1)
the Carnot law, and (2.2) law of increase of entropy. In
many treatises on thermodynamics, these two last laws
are understood as a logical consequence of a single law,
the second law of thermodynamics. However, we believe
that it is conceptually more appropriate that law 2.1 and
2.2 be considered as two independent fundamental laws.
This conceptualization is in accordance with the point of
view advanced by Ehrenfest-Afanassjewa [73] according
to which we might say that laws 2.1 and 2.2 should be
understood as logically independent axioms, one refering
to reversible processes or to bodies in equilibrium or near
equilibrium, and the other associated to irreversibility. The
misleading derivation of law 2.1 from the the second law,
presented in most textbooks, gives the impression that
law 2.1 comes from irreversibility. In fact, for irreversible
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processes, law 2.1 does not apply although law 2.2 together
with law 1 remain valid.

Some treatises on equilibrium thermodynamics such
as those of Gibbs [60, 74], Callen [66], and Tisza [75]
are based on the laws 1 and 2.2 as fundamental laws,
and entropy is considered to be an elementary concept,
but not temperature. In this case, law 2.1 becomes a
definition of temperature. An important feature of these
approaches is that they are centered on equilibrium states
rather than processes [13]. In Gibbs thermodynamics, law 2.2
is identified as the condition for stability of a thermodynamic
system which is translated into the property of convexity
of the equilibrium surface in the space spanned by energy,
entropy and volume. Gibbs’ approach based on convexity
was praised byMaxwell to the point that he wrote several new
sections about it in the fourth edition of his book on the theory
of heat [76]. The same can be said about Gibbs in relation
to Clausius. In his paper on the equilibrium of heterogeneous
substances, Gibbs [74] quoted the two final sentences of
Clausius’ paper of 1865 [58]: “Die Energie der Welt ist
constant. Die Entropie der Welt strebt einemMaximum zu.”

Our historic account ends with Gibbs equilibrium thermo-
dynamics but the theory of heat continued to be developed
in several directions, accompanied by the emergence of
new concepts, such as the thermodynamic potentials and
Legendre transformation, as well as the development of
thermodynamics of phase equilibria and the concept of
chemical potential by Gibbs [74]. A major step in the devel-
opment of thermodynamics occurred during the first decade
of the twentieth century with the emergence of the Nernst
principle on the existence of lower bound for the entropy
[77]. We should finally mention also the development of a
thermodynamics for nonequilibrium systems and the emer-
gence of the concept of entropy production, incorporated in
the approaches of Onsager [78] and Prigogine [79].
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