ANALYSIS AND APPLICATIONS:
BINARY PHASE DIAGRAMS

7.1 EUTECTIC SYSTEMS: NO SOLID SOLUBILITY

Computation of thermodynamic properties of solutions from phase diagrams
is now quite common although the complexities of the techniques described
in the literature, particularly ternary systems, do not lend themselves easily to
practical applications. The thermodynamic loop can be readily applied to phase
diagram analysis. The TL is first superimposed directly around the equilib-
rium line of interest on the diagram (personal communication, 1959, R.
Schuhmann, Jr., Department of Metallurgical Engineering, Purdue Univer-
sity, West Lafayette, Indiana). Various solution models are then tested to com-
plete the analysis. In this chapter, the solution models used for analysis are
ideal, regular, and dilute. Examples for eutectic systems with no solid solubil-
ity and terminal solubility are presented in this and subsequent sections. The
chapter concludes with discussion of the Gibbs Phase rule.

As defined in Chapter 6, the parameters associated with H™ and §™ are
independent of temperature. Temperature-composition data obtained directly
from phase diagrams is correlated with thermodynamic expressions for
liquidus, solidus, and solvus curves. Since fusion is incorporated into the analy-
sis, a choice can be made whether or not to assume AC, = 0 for conversion of
standard states from solid to liquid.

Consider the A-B alloy in Figure 7.1 for which the liquidus is thermody-
namically characterized by the TL: 1 52 53 -4 > 1.
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A+B
A Xa —> B
Xa=1 4—)(‘ - Xa=1

Figure 7.1 Temperature-composition eutectic phase diagram for components
A and B with no solid solubility.

/

The following notation is used with reference to Figure 7.1:

Point Phase Designation Gibbs Free Energy
1 A (Iy (Component A in G,
liquid solution)
2 A%(s) (Solid A) G
3 A%s) — A%) Gy - GY*
(Fusion of Solid A)
4 A%l (Liquid A) Gt
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Characterizing the thermodynamic loop:

Process

Reaction

Gibbs Free Energy Change

152

A — A%s)

Gy - G, =0.
Solid A in equilibrium with A in liquid
solution (from the diagram).

25354

A%s) - AYD)

Gyl - GY* = AHY +

T T
jac;ﬂ- AS{ +I(Ac: / T)dT
24 T/

where AH/ and AS/ are heat and entropy of
fusion respectively and ACh = C2 - C2®,

451

A% - A()

T, -G =Tt =Hp -Tp.

Summing about the TL in Figure 7.1,

T T
FAGp=0= AH{ + JAC?dT-T[AS{ +I(Ac; /T)dr}uﬁ;' - 75,
T/ T/

Solving for T, the liquidus is given by

T=

T

"™ + AL +J‘AC:JF

L1d (7-1]

S':"+AS‘{+J‘

" acAar

T/

For the specific case where AC_:,‘ =0,

s }z;"+AH{ _ZaH
Sti+asf  ZAS

(7-2]

In general, temperature is equal to the sum of enthalpy terms divided by the
sum of entropy terms. In order to relate [7-1] or [7-2] to the phase diagram,

solution models are incorporated as follows:
Using [7-2]:
(1) Ideal Solution: substituting [6-27] and [6-28],
re— AHL
—RIn(X,)+AS{

(7-3]
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(2) Dilute Solution; substituting (6-35] and [6-36],

_ h+ AHY, )
S—RIn(X,)+ASk [7-4]
(3) Regular Solution: substituting [6-39] and [642],
- f
_Q(-X,)" +AH] (751

-RIn(X,)+ ASA

Example problems below illustrate the analysis of liquidus curves using trial
and error combinations of [7-3], [7-4], and [7-5].

Example Problem 7-1
Analyze ideal and regular solution models for the Si liquidus of the Al-Si
phase diagram. Plot the results for comparison on Figure E.6 in Appendix E.

Solution

From Table A.2, AHs/ = 50,630 J/mol at TS = 1693 K.* From [4-8] at the
melting point, AG/y, = 0= AHLy, — 1693AS/,,. Hence, ASY,, = 50,630/
1693 = 29.91 J/(mol-K).

Test (1): Ideal Solution Model. Applying [7-3],
50,630
T —_
®) = 5314 In(Xg;) +29.91°

Selecting concentrations from Xg; = 1.0 to Xs; = 0.122 at the eutectic tempera-
ture, the liquidus temperature is calculated and tabulated in Table 7.1:

Table 7.1
Calculated Si Liquidus: Al-Si System—Ideal Solution Model
T(K) = 50,630/[-8.3144In(X,) + 29.91]

Xsi T (K) T(°C)
1.0 1693 1420
09 1645 1372
0.7 1540 1267
0.5 1419 1146
0.3 1268 995

0.122 1068 795

A plot of the data from Table 7.1 onto Figure E.6 reveals increasing deviation
from the experimentally derived liquidus as Xg; decreases. As expected, the
behavior of Si tends to be ideal at concentrations approaching Xg;=1.0.

* Use 1693 K for consistency with the equilibnium disgram.
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Test (2): Regular Solution Model. Applying [7-5],
ln_y 2

) = Q'(1- X)) +50,630
~8.3144In(Xg; ) +29.91

The problem becomes one of finding a value for Q! that provides a reasonable

fit to the liquidus curve. If such a value can be found, the solution tends to be

regular. From [7-6],

Q= (T129.91 - 8.3144 In(Xs)] — 50,630} /(1 - Xg)2.
Selecting concentrations, Xg;, and corresponding T from the liquidus, Q! is
calculated and tabulated in Table 7.2. Data from the literature is also included.

[7-6]

Table 7.2
Calculated ¥ and Hg from the Si Liquidus: Al-Si System—
Regular Solution Model
¥ = {T129.91 - 8.3144In(X;)] - 50,630}/(1 - Xg;)?
(9] HS' (J/mol)=
(J! mol) Q’Ave (l'X'Si)2
X T(K) Calculated Calculated®
1.0 1687 —o0 =0®
0.9 1628 -51,038 =(®)
0.7 1513 -9881 -1104
(-1406)
0.5 1333 Q.= -12,311 -3067
(-3598)
03 1103 -12,267 -13,465 -6011
(-6276)
0.122 850 -13,412 -9456

(a) Non-parenthetical values are calculated using Qf\w =-12,267 J/mol.
Parenthetical values are from Kubaschewski and Alcock, 1979, p. 389-90.
The data from Kubaschewski and Alcock includes excess entropy whereas
the regular solution does not. This may explain the difference between calcu-
lated and published values of Hg;.

(b) At approximately Xg; > 0.9, A = 0 since the solution is virtually ideal
with respect to Si(/) in this range. Note that the calculation for Q' is invalid at
Xg = 1.0.

Temperature is calculated as a function of composition from [7-6] using
Q) verage and tabulated in Table 7.3. A plot of the data from this table onto
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Table 7.3
Calculated Si Liquidus: Al-Si System—Regular Solution Model
T(K) = [-12,267(1 - Xg,)? + 50,630)/[-8.3144In(Xg) + 29.91]

Xs; T(K) T®)
(Calculated) (Phase Diagram)

1.0 1693 1687

09 1641 1628

0.7 1506 1513

0.5 1333 1333

03 1118 1103

0.122 869 850

Figure E.6 reveals good correlation with the experimentally derived liquidus
for a regular solution between the eutectic composition and Xg; = 0.9. Devia-
tion from ideality is negative, therefore, mixing is exothermic. From [6-40],
unlike pairs of atoms attract.

Example Problem 7-2

Calculate the equilibrium partial pressure of Ny(g) over a eutectic liquid
solution of Al-Si at the eutectic temperature. Assume Si;N,(s) is a reaction
product insoluble in the liquid solution. What is the limiting Py, below which
SisN,(s) is reduced?

Solution

(1) Set Up.
3Si(y) + 2N, (g) Ao = Si; N, ()

A A A

3Si(1) 2AG, AG,

3Si(s) & 2N, (g) = Siy N, (s)

Note that the fusion of Si must be mcorporated into the loop since Si is
dissolved as a liquid in solution. In addition, G si is defined with respect to
pure liquid Si according to [6-14].
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(2) Sum.
T AGq =0=AGY, +AG, — AGy, —2AG, - 3G3" - 3AGL.

(3) Substitute.
AGgy, =-753,190 + 336.43T from Table A.4. From the Al-Si phase dia-
gram, Figure E.6, the eutectic temperature T, = 850 K, hence

AAG,;’50 =-753,190 + 336.43(850) = - 467,225 J/mol.

AG] = 0

AGysp = 0 (equilibrium).

2AG, = 2(8.3144)(850)In (Ry, ).

Using the data in Example Problem 4-6 and assuming AC, = 0, the Gibbs
free energy of fusion of Si(s) at 850 K is

3AG{ = 3(50,630 — 850(29.91)] = 75,620 J/mol.

From Example Problem 7-1, ' = -12,267 J/mol and at the eutectic tem-
perature T, = 850 K, X; = 0.122. Substituting into [6-43],

3G =3(Hg! - .55 ) =3{Q'(1 - Xg)? - T.[-Rin(Xs;)]}
=3{-12,267(1 - 0.122)" - 850(-8.3144 In(0.122)]}

=-72,972 J/mol.

Substituting into YAGt =0,
0=-467,225 - 2(8.3144)(850)In (Py, ) - (-72,972) - 75,620.

(4) Solve.
Py, = 3.7x107" atm . This is the limiting Py, below which SizNy(s)
tends to be reduced.

Example Problem 7-3

The solubility of iron in liquid lithium is 0.35 w/o at 1200°C and 0.004 w/
0 at 400°C. Given this information, (a) Estimate the maximum purity of liquid
lithium with respect to iron that can be obtained by slowly cooling a high Li-
Fe liquid solution. The eutectic temperature is only a fraction of a degree
lower than the melting point of pure lithium; thus, the problem involves the
calculation of the solubility of iron at the lowest temperature at which the
solution is a liquid. For practical purposes, this temperature is the melting
point of lithium. (b) Estimate the eutectic temperature and composition of the
high Li-Fe liquid solution.

Solution
(a) Atlow concentration (< approximately 1 a/o solute) the solution is dilute

135



THERMODYNAMIC LOOP APPLICATIONS IN MATERIALS SYSTEMS

with respect to iron solute, hence the solution model is characterized by
[74]. A phase dia is sketched in Figure 7.2 to illustrate the problem.
Substituting AH/, and AS{, from Table A.2 into [7-4],

Rk +13,770
=70 = 1 (7-7
Spe — RIN(XE, )+ 7.6119
Since X, =(a/0)/100, the solubility must be converted from w/o to atomic
fraction. From [6-5a],

w/o|g, /55.85
(wlo|g, /55.85)+(wlo|y; /6.94)

Xre

Fe-Li Liquidus

1,200 4— — —=\— —
Li-Fe Liquidus

e

Fe \ 0.35

«— w/oFe
Figure 7.2 Partial temperature-composition phase diagram (not to scale): high
lithium-iron eutectic, no solid solubility.

From the given data:

Xpo=4.36 x 10 at 0.35 w/o Fe and 1473 K;

Xg. =4.97 x 1076 at 0.004 w/o Fe and 673 K.

Substituting and solving [7-7] simultaneously for two unknowns:

1
1473 = — hke + 13,7704 :
Sk —8.31441n(4.36 X107 ) + 7.6119
hf, +13,770
673 = T 83144In(4.97x105) + 7.6119
hence, h, = 32,331 J/mol;

Sge =—40.65 J/(mol-K).

136



ANALYSIS AND APPLICATIONS: BINARY PHASE DIAGRAMS

Inserting these values into [7-7] and collecting terms:
" 46,101
-33.038-8.3144 In(Xg, )

The minimum iron content in lithium at the melting point of lithium (453
K) is estimated to be

(7-8]

, . 46,101+33.038T
In(¥ee) = ——g 31aar
_ 46,101+ 33.038(453)
T -8.3144(453)
or
From [6-5b], L, =9.089x 10 ~ 0.7 ppm,

(b) In Example Problem 6-8, it was shown if the solute is dilute, the solvent is
ideal. Substituting AH{; =2929 J/mol and AT/, =453 K into [7-3],
T= 2929
—8.3144In( X;; ) +2929/453
Solving [7-8] and [7-9] simultaneously for T, (eutectic temperature) and X,
(eutectic composition):

[7-9]

~ 46,101 _
~ -33.038-8.31441n(x,)’

_ 2929
~ -831441n(1- X, )+ 6.466

T.

where
X.=Xpeand 1 - X, =X;

hence, X.=9.083x107%
T.,= 4529K(179.9°C).

Example Problem 7-4

The solubility of carbon in liquid aluminum is 6 ppm at 960°C and 12.5
ppm at 1000°C.* Predict the solubility at the melting point of Al, 660°C. As-
sume dilute behavior.

Solution
Since carbon as graphite does not have a known fusion temperature, use pure

* According to Simensen (1989, p. 191), Al-C melts are saturated with carbon and also contain traces of
carbides (A1,C,).
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solid C as the standard state. As a result, fusion terms in [7-4], are dropped
and
T= —h (7-10]
s—RIn(Xc)

Converting solubility data to atomic fraction,

_ 6/12
€ 6/12+~105/26.984

=13.49 x 10~¢ = 6 ppm.

At 960°C:

12.5/12
XC = 3
12.5/12+ =10/ 26.984
=28.11x 104~ 12,5 ppm.

At 1000°C:

Substituting into [7-10],
1233 = he/[s - 8.3144In(13.49 x 10-9));
1273 = he/[s - 8.3144In(28.11 x 10-6)).

Solving simultaneously,
he = 239,490 J/mol;
sc = 101 J/(mol-K).

Substituting Ac, s¢. and T = 660°C (993 K) into {7-10} and solving for X¢, -
From [6-5b], Xc=7.38x10-° =3 ppb .
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7.2 EUTECTIC SYSTEMS: TERMINAL SOLID SOLUBILITY
Consider the A-B alloy in Figure 7.3 for which the liquidus and solidus are
thermodynamically characterized by the TL: 1 52 53 54 55> 1.

a+p
A Xsg —> B
Xa=1 < Xa Xa=1

Figure 7.3 Temperature-composition eutectic phase diagram for components
A and B with terminal solid solubility.

The following notation is used with reference to Figure 7.3:

Point Phase Designation Gibbs Free Energy
1 A(!) (Component A in G!

liquid solution)
2 A(a) (Component A in Gy

o, solid solution)

A%(s) (Solid A) Gy’
4 A%(s) — A%()) GY - g

(Fusion of Solid A)

5 A%()) (Liquid A) GY¥
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Characterizing the thermodynamic loop:

Process Reaction Gibbs Free Energy Change
152 A(l)> A(@) Gg-C.=0
253 A(a)— A%s) G - G =T

where -G = -H* + TS,™
35455 A%(s) — A%l Gy - GY* = AH] - TAS]
5-1 AYD - A(D) G, -Gy =g

where T = A - TS

Summing about the TL in Figure 7.3,
SAGn=0=0 -H* + 15% + AH{ - TAS{ + A - T8
Solving for T and assuming AC} =CA® -CA® =0, the equation for the

liquidus® is:
_HX -H + AH]
STT 30" +aS]

As before, expressions for specific solution models are substituted into [7-
11], resulting in the following liquidus equations:

[7-11]

(1) Ideal Solution: substituting [6-27] and [6-28],
AH{

T= 7-12
-RIn(X})+RIn(XT)+AS] kesied
(2) Regular Solution: substituting [6-39] and [6-42],
lrn_wiy2 _ 0%1_ v&y2 f
_Q'a-Xx,)’-0%1-Xg)* + AH{ (.13

—-RIn(X} )+ RIn(XZ)+ AS]

Example Problem 7-5

Assuming Ag-Cu solid and liquid solutions are regular, calculate the pa-
rameters Q' and Q¢ from analysis of the Ag-Cu phase diagram in Appendix E,
Figure E.7.

Solution
From Figure E.7, two sets of data points are tabulated as follows:

T=1201K, X;, =0.78, X& =0.96;

* An expression similar to [7-1] can be derived assuming AC;-O.
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T=1052K, X{, ~0.40, X&, ~0.94.

Substituting these values and AHZ, = 12,972 J/mol from Table A.2 into [7-

13], simultaneous equations are solved for Q' and Q%

Q'(1-0.78)> - Q*(1-0.96)* +12,972 |
8.31441n(0.96/0.78) +9.566 '

Q'(1-0.40)2 - Q%(1-0.94) +12,972
8.3144 In(0.94 / 0.40) + 9.566

Hence, Q' =12,889 J/mol, %' =12,889(1- X§,)%;

Q% =21,111 J/mol, AZ® =21,111(1- X&,)%.

As mentioned in Section 6.4, the regular solution model is ideal with re-
spect to entropy, hence from Section 6.5, 3’3‘3: 0. Q is independent of tem-
perature and composition. A comparison of A2/ computed above with data
from the literature is given in Table 7.4. Considering the errors inherent in
parameters calculated from phase diagrams (Kubaschewski and Alcock, 1979,
p- 50-52) and the assumptions listed above, the results are comparable. In
addition, the same authors report an excess entropy contribution which sug-
gests that the solution is not strictly regular.

1201 =

1052 =

Table 7.4
Calculated HX' Versus Published H '
Ag-Cu Phase Diagram

Source™® X, =05 Xb, =07  X{, =09
K &A: HZ' G/mol) 3766 1435 159
(1423 K)

Calculated: A Gfmol) 3222 1160 129
(1050-1200 K)

* K & A: Kubaschewski and Alcock, 1979, p. 387.

Example Problem 7-6

During gas-carburizing, steel parts are placed in a furnace with an atmo-
sphere containing hydrocarbon gases such as methane (CH,) (Smith 1986, p.
153-158). Carbon diffuses into the surface of the steel and subsequent heat
treatment results in a product with a wear-resistant high-carbon case.

Suppose a low carbon steel is carburized at 900°C in a hydrogen-methane
mixture. The surface carbon content required is eutectoid in composition or
approximately 0.8 w/o.
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(@) Calculate the carburizing potential PCH / PH required to develop the
necessary surface carbon. Note: C(s) is ‘carbon dissolved in austenite.

Solution

(1) Set Up.

- AGyiz

C(s) + 2H,(q) = CH, (g)
Gy 2AG, AG,

AG?
Cls) + 2H,(g) > CH,(9)
(2) Sum.

EAGTL = 0 = AGlol73 + AG] = AG]ITS = 2AG2 - C-C"‘"

(3) Substitute. From Table A .4,

AG) 7, = 69,126 + 51.26T log(T) - 65.36T
=-69,126 + 51.26(1173)log(1173) — 65.36(1173)
= 38,757 J/mol.
AG; =RTIn(Pey, ) and 2AG, = 2RTIn(Py, ) = RTIn(F3, ).
AG1,73 = 0 (equilibrium).

GZ+*is obtained from Appendix A, Table A.6. The activity of carbon rela-
tive to graphite is expressed by the constant temperature conversion a,
(graphite) = a. (w/o C in austenite)/a. (w/o C in austenite at saturation).
Hence, a. (0.80 w/o in steel)= 0.048 at 900°C. From the Fe-C phase dia-
gram, the carbon content of saturated austenite at 900°C is 1.18 w/o C. By
interpolation between 1.1 and 1.2 w/o C, a, = 0.0803 at 1.18 w/o C.

From [6-14], G*=8.3144(1173)In(0.0480/0.0803). Substituting the above
data into ZAGT!_ = 0, 0 = 38,757 + 8.3144(1173) In(Fcy,) -
8.3144(1173) In(Ag, ) - 8.3144(1173)In(0.0480/0.0803).

(4) Solve.
Pey, /B3, =0.011

(b) Assuming Feu,+ Py, = 1 atm, calculate the partial pressure of each
gas.
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Solution
Solving simultaneously:
From (a) Fey, / Pi =0.011;
From (b) Py, + Py, = 1 atm.
Hence,
R}, +90.909 By, - 90.909 =0,
Py, = {-90.909 + [(90.909) - 4(- 90.909)1'2}/2  or

Py, =0.989 atm; Py, =1-0.989 = 0.011atm.

Note that excess CHy (Pcu. > 0.011 atm) drives the reaction from right to
left, hence CH, is a carburizing gas. Conversely, excess H, (A, > 0.989
atm) drives the reaction from left to right, hence H, is a decarburizing gas.

7.3 CHEMICAL POTENTIAL: PHASES AT EQUILIBRIUM
Referring to Figure 7.4, the ends of the tie-line through point X connect co-
existing terminal solid solution phases & and B. The total Gibbs free energy
change of the system can be found by substituting [4-25], [4-26], and [6-66]
into [6-64]:

T A
L
B+L
o+l B
a
a+p
e @& >
X
A Xg —P B
Xa=1 -— X, Xa=1

Figure 7.4 Temperature-composition eutectic phase diagram for components
A and B with terminal solid solubility. Point X is a composition in the two
phase o + f field.
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dG’ = dG}, + dGj,
= —SdT +VdP + pgdng + pgdng — SpdT +VydP + pfdnf + pfdnf

where 4 and dnf are the chemical potential of component A in ¢ phase and
the differential of the number of moles of A in o respectively. Definitions
with respect to B phase are identical. If @ and f are in equilibrium at constant
temperature and pressure, dG” = 0, hence:

Updny + pgdng + 1 a’nA+,ugdnﬁ 0 [7-14]
From a mass balance on A

B _
ng+ny =n,.

Since the total number of moles of A is constant, dn§ + dnf = dn, = 0. Hence,
for equilibrium to exist between phases a and 3,
dn = —dnf .
Similarly, dn = —dnb.
Substituting these equalities into [7-14],
py (- dnA) + lig (—dnﬁ) + ,ufdnA +- ,u,,dnn
or
(uf — uf)dnf + (uf - pf)dnf} =
Regardless of the change in the number of moles in each phase, if equilibrium
is to be satisfied,
us =pb [7-15]
=uf [7-16]
[7-15] and [7-16] may be extended to any number of phases (solid, liquid, or
gas) at equilibrium.

Example Problem 7-7
Determine the activity coefficient, ygn , in a high Ag-Cu alloy at 500°C.

Solution

Examination of the Ag-Cu alloy phase diagram in Figure E.7 reveals that equi-
librium mvolvcs two solvus transformations, o and f, at S00°C. At equilib-
rium, pd = #c.; Assume: (1) Cu behaves ideally in & phase and Henrian in
B phase and (2) the standard state for Cu is pure solid copper. Substituting [6-
67] into [7-15], G& = G&,. Subtracting GQ,, Ga, — G2, = G2, — G2, . Sub-
stituting G for V in [6-7):

G = TP,
From [6-14], RTIn(ad) = RTIn(al)),
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ag, =ab,;
Xgs = V6uXbs:
From the phase diagram at 500°C, the terminal solubility of Ag in o is = 2 w/o
and the terminal solubility of Ag in B is = 98 w/o. Converting to a/o:
2w/oAg=1.19 a/oAg=98.81a/o Cuin a;
98 w/o Ag = 95.65 afo Ag =3.35a/o Cuinf.

Hence, x& =yB x5 = 09881=y5 (0.0335)

or 78, =295

As in previous problems, oxidation, sulfidizing, or chloridizing potential
(gas composition ratios) can be determined for alloyed components if activi-
ties in the alloy are obtained from the literature or calculated by first deter-
mining ¥ as described above.

Example Problem 7-8
Develop an expression relating temperature to composition in the two phase
a + f field of the Ag-Cu system.

Solution
At a temperature slightly below the eutectic, solid compositions are defined
by e and f3 solvus boundaries as shown in Figure 7.5.

1,000
900 - L
® 800 «a 780 B
- 7.9 719 912
700 — @sp
600
o 1 | | 1 | | | I
CU o 20 30 4 5 6 70 s 9 "9
wio Ag —P>

Figure 7.5 Partial Ag-Cu phase diagram at and below the eutectic tempera-
ture.

At equilibrium in the two phase field, assuming a standard state of pure solid
copper,
C® =GP where GZ = uZ and G2 = ub,
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Hence,
HZo - 1550 = of _152f
Solving for T,
gme _gmb
s [7-17]
SCu - SCu‘

In Example Problem 7-7, it was assumed that Cu is ideal in o phase and
Henrian in f phase at 500°C. If it is assumed, rather, that both solutions are
regular with respect to Cu at higher concentrations near 780°C, [7-17] be-
comes

_0°a-x&)*-0”a-x4,)
RIn(X&, /X&) '

Since Q2 = 21,111 J/mol from Example Problem 7-5, the solution becomes
one of finding QP and substituting it back into the above equation. At the
eutectic temperature,

21,111(1-0.952)* - QA (1-0.141)
8.31441n(0.141/0.952)
Hence, QP = 22,720 J/mol. The expression for T becomes:
_2L1110- X&, )? -22,720(1- X5, )2
RIn(x8 /X&)

An alternate method of finding QF would be analysis of the Ag liquidus/solidus
as is done for the Cu liquidus/solidus in Example Problem 7-5.

1053 =

7.4 UNIVARIANT EQUILIBRIUM: CLAPEYRON
EQUATION
The functional dependence between pressure and temperature for univariant
equilibrium can be expressed in terms of the Clapeyron equation derived be-
low. For example, consider the liquid-vapor transformation for pure compo-
nent A:
A(I) — A(g) AG = GA(S) e GA(O‘

dGA(f) = VA(I)dP - SA(D‘ﬂ‘;
Gag = VagrP ~Sagdl.
At equilibrium, dGa =dGyy hence,

Va@dP = Sa@dl = Va@dP —Saqdl’
[Sa) — SapldT = [Vag — VapldP

From [4-14],

or

S -5
dP = [MJJT [7-18]
Vawy —Vam
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Since the reaction proceeds at constant temperature and pressure, [3-9] sub-
stituted into [7-18] gives

- [H“(" = H"(’)]ﬂ [‘H A —H w,]dl‘
“ [Vaw =Vann] T TVag [7-19]

where VA(g) >> VA(;); VA(‘) - VA(I) = VA('). [7-19] is one form of the Clapeyron
equation. Assuming ideal gas behavior, [1-1] substituted into [7-19] results in
an alternate form of the Clapeyron equation sometimes referred to as the
Clausius-Clapeyron equation:

apr _ [Haw - HAU)]dT

P RT?
or
dP AH'dT
PRI S

where AH" is the molar heat of vaporization. For a solid-vapor transforma-
tion, “/”” for liquid in [7-18] and [7-19] is replaced by “s” for solid, and AH" in
[7-20] is replaced by AH* for molar heat of sublimation.

For a liquid-solid or solid-solid (o-f) transformation,

A(a) - AB);
[HA(m _HA(a)]dT AH™dT
[VMB) = A(a)]T Ta¥ el

where AH™® and AV denote the molar enthalpy and volume of transformation
respectively. AH™ and AV may be assumed constant over small temperature
intervals to simplify integration of [7-21].

7.5 PRESSURE EFFECT ON PHASE BOUNDARIES
Consider a simple eutectic system with no solid solubility. The effect of
pressure on the liquidus will now be estimated. From [4-32] at constant tem-
perature,

dH = V(1 - aldP [7-22]
Substituting [1-2] into [4-23],
dS = -aVdP [7-23]
where (@V/dNp=aV.

Since a is a thermodynamic property, &7 is defined as a partial molar mix-
ing property. Substituting the pressure correcuon terms a%!, v, ard, Vs,
[7-22], and [7-23] into [7-2] ,
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[} Py
b +JVA"“‘ (-aMTVdP + AHL + | VR (1-a'T)apP
- A P 24
T= T —5! [7-24a]
g —JVA"‘-‘EK“’dP+ AS] —J.Vf-’aﬂ-'dP
A P
The above equation is simplified in the numerator by neg-
lecting aT terms since @™7T =al'T<< 1. In the denominator,
Vet =vXaf! << SR+ as)). Assuming U} =V and v/ is indepen-
dent of pressure, the above equation reduces o
_HM VIR -P)+ AH{
S +As]

T

[7-24b]

Example Problem 7-9
Predict the liquidus temperature shift caused by increasing the hydrostatic
pressure from 1 to 1000 atm over a 60 a/o Si-Al alloy.

Solution
From Example Problem 7-1, AH{ = 50,630 J/mol, H&'= -12,267(1 - X5)?
and ASJ = 50,630/1693 = 29.91 J/(mol-K). From Table B.1, Vg'= Mg, / pg,
=28.09/2.57 = 10.93 cm?/mol. Substituting into [7-24b],
- Z122670 - 0.6)* +(10.93)(999)(0.101) + 50,630
—8.3144 In(0.6)+29.91

_49.770 —1457 K.
34.16

Since the liquidus temperature is =1424 K at Xg; = 0.6 and 1 atm, the liquidus
shifts upward by approximately 33 K. In a high Al-Si solution, Wu (1992, p.
1-5) predicted an upward shift of =50 K for an increase in pressure from 1 to
6800 atm. The above assumptions become less valid at higher pressures.

Example Problem 7-10
Develop an expression that predicts the effect of pressure on solvus bound-
aries in the o + f region of Figure 7.3.

Solution
Starting with [7-17], incorporate pressure correction terms corresponding to
those used to develop [7-24a]:

P Py
b2 Gl J vre-apeT)dP - AP - J Pa-arfrde
T= A A (7-25a]

P P
ol J vroanedp -3 + J vrbaytdp
A A
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Assuming @p°T =@pnPT <<1, e ape < VA grhec (pe - 3MP), and
that V¢ and V2 are independent of pressure,

A+ @2 -Vixp -P)-HP
A +(VASA"-"A—)(S'E- . Uil [7-25b]

T=

7.6 GIBBS PHASE RULE

A discussion of phase equilibrium is not complete unless the concept of the
Gibbs phase rule is introduced. A simple way to visualize the concept is to
consider it analogous to the simultaneous solution of a set of mathematical
equations. A three variable set, for example, requires three equations if the
values of the three variables are to be determined. If only two equations or
relationships are known between the three variables, the set can be solved by
fixing one of the variables. Simultaneous solution of a two variable-two equa-
tion set can then be accomplished. The choice or arbitrary selection of one of
the variables, in terms of the phase rule concept, means that there is one de-
gree of freedom or variance, F. The concept is formalized by

F = [Number of variables] — [Number of equations] [7-26]
For two equations in a three variable set, F = 3 — 2 = 1 degree of freedom.

The concept can now be applied to point X in the a+ B region of Figure 7.4.
At constant l.emperamrc X3 is known thus X§ is fixed. Likewise, X} B is
known thus XB is fixed. Asa rcsult. there are two composition vanablcs. one
for each phase. A generalized expression for the number of composition vari-
ables is

[Number of composition variables] = ¢(I" - 1) [7-27]
where ¢ is the number of phases and I' is the number of components in the
system. Using [7-27], [Number of composition variables] = 2(2 ~ 1) =2, which
is in agreement with the above at point X,

The number of equations that prevail must now be established. From [7-15]
and [7-16], the chemical potential of each component is the same in each
phase at equilibrium. This leads to two equations. A generalized expression
for the number of equations is therefore

[Number of equations] = I'(¢ - 1) [7-28]

Using [7-28], [Number of equations] = 2(2 — 1) = 2. Substituting [7-27] and
[7-28] into [7-26],

F=¢'-1)-T(¢p-1)=T-¢ [7-29]

Since pressure and temperature are additional variables, a general form of the
Gibbs phase rule is

F=T-¢+2 [7-30]

Since phase diagrams are normally obtained experimentally at 1 atm pres-

sure, the more common form of [7-30] is
F = I'(Components) — ¢(Phases) + 1 [7-31]
For point X in Figure 7.4, F =2 -2 + 1 = 1 degree of freedom. This means if

149



THERMODYNAMIC LOOP APPLICATIONS IN MATERIALS SYSTEMS

one variable is fixed (tlemperature), the other variable (composition of both
phases) is detérmined by the diagram. While the example in this discussion
applies to a two component system, [7-31] applies in general to multicompo-
nent systems.

7.7 DISCUSSION QUESTIONS

(7.1) Rewrite [7-11] for the case where AC, # 0.

(7.2) What is the basis for determining boundaries on phase diagrams by
TL analysis? Briefly discuss and illustrate with a sketch.

(7.3) Two phases in equilibrium contain the same chemical component i.
Is the concentration of i in each phase the same? Explain.

(7.4) Two Fe-Mg silicate minerals, garnet and pyroxene, are determined to
be in chemical equilibrium. What information is needed to relate the
Fe and Mg activity coefficients and concentrations in each mineral?

(7.5) Consider Figure 7.3. Does Q' = Q@ = QP? Discuss.

(7.6) Based on [7-25b], what condition exists if temperature is independent
of pressure?

7.8 EXERCISE PROBLEMS

[7.1] Using the Bi-Pb phase diagram in Appendix E, Figure E.8, calculate
the activity of Bi in an equimolar liquid solution of Bi and Pb at 625
K. Assume regular solution behavior.

Ans: ag; = 0.38.

[7.2]1 Using the results from Exercise Problem [7.1], calculate the equilib-
rium Fg, ) over an equimolar Bi-Pb liquid solution at 625 K. The
Gibbs free energy of formation of dibismuth trioxide, Bi;O,, is
AG&{O =-407,250 J/mol at 625 K (Wicks and Block, 1963, p. 21).

Ans: Fy, (o) =74 % 10-3 atm.

[7.3] From Kubaschewskl and Alcock (1979), solution data for a 70 a/o Bi-
Pb solution (Excrcxse Problem [7.1]) are: HJM'= -70 x 4,184 = -
292.9 J/mol and S =0.03 x 4.184 = 0.1255 J/(mol-K). Using this
data, estimate the heat of fusion of Bi.

Ans: AH}. =9507 J/mol or a 13% error—attributed to reading
error from the diagram and the assumption that AC, = 0.

[7.4] Repeat Exercise Problem [6.9] using the following solubility data es-
timated from the Pb-Sb phase diagram in Appendix E, Figure E.9: X,
=0.3 at T=598 K and X, = 0.2 at T = 533 K. Note that the solubility
data is given at a much lower temperature than the refining tempera-
ture. Assume:

(1) Calculated solution parameters hold at the higher temperature,
(2) The process involves the reaction
25D+ 3PbO(s) — 3Pb + Sb,0,(s);
(3) Sb behaves as a dilute solution component at these concentrations.
Ans: Xg, = 0.011 or = 6500 ppm Sb. Note: assuming Sb be-
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haves ideally (Exercise Problem [6.9]—Method 2) yields a
result 23% higher.
[7.5] For dilute solutions of carbon (graphite) in liquid sodium, solubility
data was used to determine the partial molar free energy of solution as
a function of temperature according to Johnson (1964, p. 23) as fol-
lows:
Gt — G25 = 5272 + 68.62T + 8.3144T In(X,).
(a) Deterniing 37"5 and 5X°.
Ans: B = he= 5372 J/mol; 35 = sc = -68.62 J/(mol-K).
(b) The punﬁcauon of liquid sodium with respect to carbon can be
accomplished by gettering carbon with calcium at 920°C. Predict
the carbon content of the liquid after addition of excess calcium.
The solubility of Ca in Na is low, hence, it has no effect on the
performance of sodium as a heat transfer medium.
Ans: Xc=1.5x10-% or =0.8 ppm C.
[7.6] Using the following data from Kubaschewski and Alcock (1979, p.
386-389) for Cu in a Ag-Cu liquid alloy at 1423 K:

Xeu 0.0 0.1 0.3 0.5 07 | 09
H&"' (J/mol) | 23,014 | 15,692 | 7482 | 3766 | 1435 | 159
Sew
[J/(mol-K)] 5.980 3.084 | 0.456 | 0.100 | 0.084 | 0.004

(a) Calculate GZ°.

Ans:
Xe, | 00 | 01 | 03 | 05 |07 | 09
G& | 14,504 | 11,303 | 6833 | 3624 [1315 | 1533
(J/mol)
(b) Calculate GC XS from the results in Example Problem 7-5 and com-
pare with part (a).
Ans:
X, | 00 [ 01 | 03 |05 | 07 |09
X5 112,889 | 10,440 6316‘3222 1160 | 129
(J/mol)

These results differ from those of part (a) by 11-16%. See Ex-
ample Problem 7-5 for further discussion.

[7.7]1 Using the data from Example Problem 7-8 and Appendix B, Table
B.1, predict the eutectic temperature shift resulting from a pressure
increase from 1 to 1000 atm.

Ans: From Appendix E, Figure E.7, T, = 1053 K. The eutectic
temperature shift is a maximum of + 20 K. In reality, the shift
is less—depending upon the actual value of V2.
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[7.8]

[7.9]

[7.10]

[7.11]
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Refer to the eutectic phase diagram shown in Appendix E, Figure E.10.
(a) Identify the components that constitute this system.

Ans: NaAlSi;Og and SiO,.
(b) Is the system isobaric or isothermal?

Ans: Isobaric.

(c) Give the phase rule expression that is applicable to this diagram.

Ans: F=T — ¢+ 1, pressure is constant.

(d) Label the diagram at phase assemblages which are: invariant (F =
0), univariant (F = 1), and divariant (F = 2).

(e) What is the equation (temperature) of the horizontal line through
the eutectic point?

Ans: T = 1060°C.

(f) Whatis the equation (temperature) of the phase boundary between
tridymite and cristobalite?

Ans: T = 1470°C.

Using Figure E.11 in Appendix E, develop a temperature-dependent
expression for the diamond-graphite phase boundary between 45-105
kbar. Is this boundary invariant, univariant, or divariant? See Exercise
Problem [7.8].

Ans: P(kbar) = 0.029 x T(K) + 7, univariant (F = 1).
Estimate the equilibrium vapor pressure of SO,(g) over SO,(/) at 265
K. State assumptions.

Ans: Fyo, () = 1.09 atm, AH™ is assumed constant.

Estimate the solid-liquid isothermal transformation temperature of Au
at 75 atm. State assumptions.

Ans: Ty = 1337 K, AH™ and AV™ are assumed constant.



