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1

Introduction

Set-theoretic approaches in the social sciences

Arguments about set relations are pervasive in the social sciences, but this is 
not always obvious. Take, for example, Brady’s (2010) intriguing deconstruc-
tion of the widely debated claim that, in the 2000 US Presidential Election, 
George W. Bush lost about 10,000 votes because Al Gore had been declared 
the winner before the closure of the polling stations in those western coun-
ties of Florida that are on Central Standard Time (i.e., the Panhandle). !is 
claim is made by Lott (2000), who arrived at this inference by estimating a 
“‘di"erence-in-di"erences’ form of regression analysis, based on data-set 

Easy reading guide

The Introduction presents an overview of the book. We spell out what this book contains, 
what it is good for – and what it is not! Rather than starting with technical details of set-
theoretic methods, we put the content of the book into a broader context of current meth-
odological debates. The Introduction will help the reader to find out whether, in general, 
this book might be interesting and, if so, which chapters in particular are most relevant 
for him/her.

In a first step, we show that notions of sets and their relations are more common in the 
social sciences than might probably be known. Then we describe Qualitative Comparative 
Analysis (QCA) as the most developed form of set-theoretic method. We spell out the defin-
ing features of QCA and how they differentiate it from other set-theoretic methods. In the 
next section, we explain the differences and similarities among the various forms of QCA. 
In the following section, we not only explain the structure of the book, but also provide 
details on how to use the book by addressing some of its features, such as the Easy reading 
guides, At-a-glance boxes, the Glossary, or the online material which contains chapter-by-
chapter “how-to” sections and exercises.

In short, by reading this Introduction, readers should get a better understanding of what 
to expect from this book and how to use it in order to maximize its utility.
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observations” (Brady 2010: 238). Using causal-process observations, Brady 
cogently shows that this inference is “highly implausible” (241) and that, 
instead of 10,000 lost voters, a more adequate estimate would be a maximum 
of 224 or, even more realistically, 28 to 56 voters (NB: total voters, not percent-
age!). Brady successfully frames his debate of Lott as an argument in favor of 
causal-process observations – “diagnostic ‘nuggets’ of data that make a strong 
contribution to causal inference” (Brady 2010: 237).

Brady’s argument is set-theoretic in nature (Goertz and Mahoney 2012). 
In essence, he claims that the set of voters not voting for Bush due to the 
premature announcement of Gore as the winner (Y) can only be very small 
because membership in this set requires simultaneous membership in sev-
eral other sets. Such allegedly lost Bush voters must, of course, also be mem-
bers of the set of registered voters in the Panhandle counties (P), who are also 
members of the set of voters who had not yet voted (V), and the set of voters 
who had received the news through the media (M). Using plausible arguments 
about the rough percentage of voters that tend to vote late and the percent-
age of voters listening to the media, Brady shows that the sets of P, V, and M 
are small and that, as a direct consequence of this, the set of Y must be even 
smaller. !is is because membership in each of the three sets P, V, and M 
is necessary in order to be a member of set Y (Goertz and Mahoney 2012: 
54–56).

!is example illustrates that many arguments in the social sciences can be 
(re-)framed in terms of relations between sets. !e notion of sets is not expli-
citly invoked in Brady’s original analysis, and there is nothing wrong with 
this. We do claim, however, that an explicit framing of arguments in terms 
of set relations is o#en adequate and that, once set relations are invoked, set-
theoretic methods provide a powerful toolkit for such analyses.

Di"erent mathematical sub-disciplines provide the underpinnings for the 
vast majority of social science methods and techniques. Most of the well-
known and commonly applied statistical methods in the social sciences are 
applications of probability calculus or matrix algebra to social science data. 
While most of these mathematical sub-disciplines might be remembered 
from school, set theory is less familiar to most people. Although formal logic, 
a close relative of set theory, is a well-studied system of thought in discip-
lines such as philosophy and mathematics, it currently plays only a marginal 
role in school education and social science methods training in many parts 
of the world. !is is unfortunate, because, as shown, set-theoretic notions 
are invoked in social science research more o#en than is usually recognized. 
!e notion of sets and their relations is almost unavoidably invoked when 
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forming concepts or when verbally formulating (causal) relations between 
social phenomena. !is book is motivated by the belief that the study of set-
theoretic relationships provides an important perspective on social science 
research problems, thus adding to the currently predominant correlational 
approaches.

What are set-theoretic methods? Implicitly or explicitly, they all share three 
features: $rst, they work with membership scores of cases in sets; second, they 
perceive relations between social phenomena as set relations; third, these set 
relations are interpreted in terms of su%ciency and necessity, as well as forms 
of causes that can be derived from them, such as so-called INUS and SUIN 
conditions (section 3.3.2). Let us discuss these three points individually.

First, the data on which set-theoretic methods operate are membership 
scores of cases in sets which represent social science concepts. For instance, 
France is an element of the set of European Countries whereas the USA is 
not. France’s set membership score in this set is therefore 1, while that of 
the USA is 0. When we invoke the notion of sets, it might seem unavoidable 
that we perceive them as dichotomies. !is is not the case, though. Even an 
apparently straightforward dichotomous concept such as the set of European 
Countries might not be clearly dichotomous at all – just think of the case of 
Turkey and the discussion it triggers about where the (geographic, cultural, 
economic, military, etc.) boundaries of Europe are.1 In fact, for many social 
science concepts, it is di%cult to perceive them as clear dichotomies, or crisp 
sets, in which cases can be assigned full (non-)membership scores. Luckily, 
set theory can go beyond crisp sets. In its fuzzy set version, it also allows for 
partial set membership. Cases are not forced to be either full members of the 
set of European countries, or full non-members of it, but can also be partial 
members. A case like Turkey would receive a partial (or fuzzy-set) member-
ship score lower than 1 and higher than 0 in the set European countries. !is 
fuzziness does not derive from imprecise empirical information about the 
case of Turkey – we can gather very detailed information of its geographical 
location, economic structure, etc. Instead, fuzziness stems from non-sharp 
conceptual boundaries inherent in the notion of European country. Virtually 

1 Even concepts which most clearly seem to be dichotomous can be problematic. Just think about EU 
membership, about which we would think that it is clearly dichotomous. However, on closer examin-
ation we see di"erences on some of the aspects that we would use to determine crisp set membership; 
for example, the UK is neither a member of the Schengen Protocol nor uses the euro. As such we might 
want to see the UK as a qualitatively di"erent type of member than say, Luxembourg or Germany. 
Likewise, Switzerland is not a formal member of the EU and yet it adopts a huge share of European 
legislation, frequently word-for-word (Kux and Sverdrup 2000: 251), something which other non-
members (such as India, the Ivory Coast, or Samoa) do not do.
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all social science concepts have fuzzy boundaries, and fuzzy sets are a tool for 
numerically expressing that.

!e second trait shared by all set-theoretic methods in the social sciences 
is that relations between social phenomena are perceived of as set relations. 
Take, for example, the empirical observation that all NATO members are 
democracies. Although it might not be obvious, this is a clear-cut example 
of a set-theoretic statement. !e verbal descriptions “NATO members” and 
“democratic countries” both represent sets in which di"erent cases have dif-
ferent membership scores. If we observe further that all NATO members 
are democracies, but that not all democracies are NATO members (think of 
Sweden or Japan), then the set of NATO members is a subset of the set of 
democratic countries. !is, in turn, implies that the set of democratic coun-
tries is a superset of the set of NATO members.

!is simple recasting of social science phenomena in terms of set relations 
might not seem very inspiring on its own, and it might rather come across as a 
simple play on words. !is rephrasing, however, gains great analytic potential 
once we understand that subset relations are intimately linked to the ideas of 
su%ciency and necessity. !is is the third aspect of set-theoretic methods: set 
relations are usually interpreted in terms of su%cient or necessary conditions, 
or of their more complex modi$cations INUS and SUIN,2 either in a causal or 
a descriptive manner. Applied to our example, we can conclude that being a 
democracy is a necessary condition for being a NATO member, for the latter 
is a subset of the former. Statements about conditions being either necessary 
or su%cient abound in the social sciences. Gary Goertz, one of the pioneers 
in the empirical study of necessary conditions, counts not fewer than 150 
hypotheses about necessary conditions in the $eld of international relations 
alone (Goertz 2003). Hypotheses about su%cient conditions are at least as 
widespread (Ragin 2000). However, o#en we do not recognize these claims 
immediately, since they are frequently hidden in verbal formulations that do 
not explicitly use the terms necessity or su!ciency (Mahoney 2004).

Suppose we claim that “Citizens of small, rural towns in the USA vote for 
the Republican Party.” !is relationship denotes a subset relation. !e set of 
all small-town, rural voters (X) is a subset of all Republican voters (Y). !is 
means that all cases which exhibit X (i.e., voters living in small, rural towns) 
2 INUS stands for Insu%cient but Necessary part of a condition which is itself Unnecessary but 

Su%cient for the result (Mackie 1965: 246). SUIN instead stands for Su%cient but Unnecessary part 
of a factor that is Insu%cient but Necessary for the result (Mahoney, Kimball, and Koivu 2009: 126). 
As we will describe in this book, both forms of causal factors represent advanced forms of causal com-
plexity and refer to components that do not count as necessary or su%cient conditions when taken 
alone, but which play a subtle causal role in intricate combinations with other factors.
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also exhibit Y (they cast their ballot for the Republican Party). !is denotes 
the inner circle (X, Y) in the Venn diagram in Figure 0.1.

As we will learn throughout this book, such a pattern in the data can be 
interpreted to mean that X is su%cient for Y. Note that this statement does 
not tell us anything about the voting behavior of citizens not living in small, 
rural towns in the USA. !ey might be Republican voters (area ~X, Y) or 
they might not (~X, ~Y). Nor does the su%ciency claim entail that all voters 
for the Republican Party are living in small, rural towns. !ere are, of course, 
many non-rural voters of the Republican Party, as indicated by area ~X, Y of 
Figure 0.1. !e point is, however, that such voters are irrelevant when it comes 
to corroborating the claim that living in a rural town is su%cient for voting 
for the Republican Party. !e fact that there are other types of voters for the 
Republican Party simply indicates that there are other su%cient conditions 
for voting for the Republicans.

!e intimate link between subset relations and the notions of necessity 
and su%ciency triggers several analytic consequences. For instance, say-
ing that there is a su%cient (but not necessary) condition generally requires 
the existence of other su%cient conditions for the same outcome. !is, in 
turn, means that by embracing a set-theoretic perspective on social science 
phenomena one unavoidably recognizes the existence of equi"nality, i.e., a 
scenario in which alternative factors can produce the same outcome. Also, 
more o#en than not, in order to $nd perfect set relationships, one might 

Republican
Voters

(Y)

Rural
Inhabitants

(X)

X, Y

~X, Y ~X, ~Y

Figure 0.1 Venn diagram for relation of sufficiency
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need to refer to combinations of various sets, where single conditions do 
not display their e"ect on their own, but only together with other condi-
tions. For instance, it might be that only the set of young male inhabitants 
of rural towns vote Republican. Set theory is therefore also closely linked 
to the notion of conjunctural causation. Further, combining equi$nality and 
conjunctural causation automatically implies the existence, and causal rele-
vance, of the much-discussed INUS and SUIN conditions.

Yet another aspect of set theory consists of the asymmetry of concepts and 
causal relations. A set-theoretic perspective on concepts requires two separ-
ate de$nitions and operationalizations of concepts that in non-set-theoretic 
approaches are o#en not distinguished (Goertz and Mahoney 2012: chs. 
9–13). For instance, an autocracy is not simply the opposite of a democracy. 
Richness is not simply the opposite of poverty. Consider, for instance, college 
students who are usually not “rich,” but their non-membership in the set of 
rich persons does not imply that they are “poor.” From this follows that we 
need two di"erent sets to capture the two qualitatively di"erent states of being 
rich and being poor. In most social science approaches, however, only one 
indicator is used – say, monthly disposable income – and the degree of rich-
ness (high or low, with low values on the richness scale being equal to poor-
ness) inferred from this. !e causal interpretation of asymmetry is that the 
explanation for the non-occurrence of the outcome cannot automatically be 
derived from the explanation for the occurrence of the outcome. For example, 
when trying to explain the conditions for successful democratization, we most 
likely will need to consider quite di"erent conditions than a study that tries to 
understand failed democratization. In set-theoretic methods, there usually is 
no symmetry between the combinations of conditions for the occurrence of 
the outcome and its non-occurrence. !is is a major di"erence from standard 
correlational methods (see also 3.3.3). We thus de$ne set-theoretic methods 
as follows:

Set-theoretic methods are approaches to analyzing social reality in which (a) the data 
consists of set membership scores; (b) relations between social phenomena are modeled 
in terms of set relations; and (c) the results point to su!cient and necessary conditions 
and emphasize causal complexity in terms of INUS und SUIN causes.

Set-theoretic methods o#en come under di"erent labels. !ey are sometimes 
called “Boolean methods” (Caramani 2009) or “logical methods” (Mill 1843). 
Rihoux and Ragin (2009) have coined the term “Con$gurational Comparative 
Methods” (CCM) in an attempt to $nd a name for a group of similar meth-
ods. By choosing the acronym CCM, they emphasize a feature that is shared 
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by all set-theoretic methods: they all understand the world in terms of con-
$gurations of conditions. We prefer the term set-theoretic methods because it 
is more encompassing and emphasizes the core analytic fact that all of them 
model social reality in terms of set-theoretic relations. It is the set-theoretic 
foundation from which all other features of this family of methods derive.

!e use of set theory in the social sciences is not as new as it might seem. 
A closer look reveals that it provides the underlying logic for many, mostly 
qualitative approaches in the social sciences. As Mahoney notes, many com-
parative case-study approaches apply a set-theoretic reasoning in an informal 
and intuitive manner (Mahoney 2007: 135). One example for this is concept 
formation. If, for instance, we de$ne a concept as the simultaneous presence 
of several phenomena – say, the concept of democracy being de$ned as the 
simultaneous presence of free elections and civil liberties – then we make 
use of set-theoretic logic: the set of all democracies is represented by the 
intersection of the set of countries that display free and fair elections with 
the set of countries that display civil liberties. Put di"erently, these are indi-
vidually necessary and jointly su%cient elements of democracy. As Goertz 
(2006a) shows, adopting a set-theoretic perspective on concept de$nitions is 
o#en more in line with the underlying linguistic meaning conveyed by those 
de$nitions and also triggers important consequences for the data aggrega-
tion procedure. Rather than adding or averaging information across di"er-
ent dimensions of a concept, a set-theoretic perspective looks at necessary 
and su%cient components of a concept in order to maintain a strong link 
between the verbal meaning of a concept and its numerical representation. 
Ignoring this can lead to a severe mis$t between the meaning of a concept and 
its operationalization. In our example, averaging the two indicators of free 
elections and civil liberties would mean that a totally illiberal country that 
happens to hold free elections would count as a half-democracy, whereas the 
set-theoretic approach would classify it as a non-democracy.

Set theory also provides a fruitful perspective on the creation of typologies 
(Elman 2005; George and Bennett 2005: ch. 11). Typologies can be seen as 
concepts for which information is not aggregated into a unidimensional scale 
of set membership (e.g., all countries being ranked in a way that represents 
their degree of membership in the concept of democracy), but where cases 
are classi$ed on multiple dimensions. !e example of the welfare state can 
help us to illustrate this point: countries di"er not only in the (unidimen-
sional) degree to which they provide welfare to their citizens but also in the 
(multidimensional) type of welfare state they have developed for this purpose. 
If, for the sake of illustration, we postulate that welfare states vary along two 
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dimensions – labor market protection and transfer payments – then there are 
four di"erent ideal-typical forms of the welfare state: high labor market pro-
tection with high transfer payments; high labor market protection with low 
transfer payments; low labor market protection with high transfer payments; 
and low labor market protection with low transfer payments. As Kvist (2006) 
shows, a set-theoretic approach to forming and arguing about typologies can 
be very helpful, especially if we – as Kvist does – go beyond dichotomous 
(crisp) sets and work with fuzzy sets in which cases can have degrees of mem-
bership in each dimension.

Notions of set theory are also useful for those more ambitious social sci-
ence practices that are designed to give a causal interpretation to patterns 
found in the data. Prominent examples are John Stuart Mill’s methods (see, 
e.g., Mahoney 2003). !e possibility of interpreting them in a set-theoretic 
manner is an aspect that has not received enough attention so far (Mahoney 
2007: 134).

Qualitative Comparative Analysis as a set-theoretic  
approach and technique

Qualitative Comparative Analysis, commonly known under its acronym 
QCA, is the methodological tool that is perhaps most directly associated with 
set theory. QCA distinguishes itself from other set-theoretic approaches by 
the combined presence of the following features. First, it aims at a causal inter-
pretation. !is is not necessarily true for other set-theoretic approaches – just 
think of concept formation or the creation of typologies, which typically do 
not include any reference to an outcome (for two exceptions, Elman 2005 and 
George and Bennett 2005). Second, QCA makes use of so-called truth tables. 

3 All the terms that are further de$ned in the Glossary are printed in bold in the At-a-glance boxes.

At-a-glance: set-theoretic approaches in the social sciences

Set-theoretic methods operate on membership scores of elements in sets; causal relations 
are modeled as subset or superset relations; necessity3 and sufficiency or INUS and SUIN 
conditions are at the center of attention.

The use of set theory focuses attention on unraveling causally complex patterns in terms 
of equifinality, conjunctural causation, and asymmetry.

Set theory can be useful for concept formation, the creation of typologies, and causal 
analysis.
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!is allows researchers to visualize and analyze central features of causal 
complexity, such as equi$nality or conjunctural causation and the presence 
of INUS or SUIN conditions. Other set-theory based methods, such as Mill’s 
methods or set-theory-based historical explanations (Mahoney, Kimball, and 
Koivu 2009), do not employ truth tables. !ird, QCA approaches make use of 
the principles of logical minimization, a process by which the empirical infor-
mation is expressed in a more parsimonious yet logically equivalent manner 
by looking for commonalities and di"erences among cases that share the same 
outcome. With a few exceptions (see Elman 2005), logical minimization does 
not play a role in the set-theoretic literature on typological theories (George 
and Bennett 2005: ch. 11); if it does, it is usually performed in an intuitive 
rather than formalized manner.

Large sections of this book are dedicated to explaining QCA, for it is argu-
ably the most formalized and complete set-theoretic method. It requires more 
of a proper and systematic introduction in basic concepts from formal logic, 
set theory, and Boolean algebra than other set-theoretic methods. In addition, 
QCA can, and should, be performed with the help of specialized computer 
so#ware. Related to this is the fact that most, if not all, other set-theoretic 
approaches can be interpreted as either specializations or extensions of spe-
ci$c elements of QCA. For instance, the use of set theory for classifying cases 
in multidimensional typologies can be interpreted as a specialized QCA with-
out an outcome and thus without any causal interpretation. Yet other set-
theoretic approaches are extensions of QCA. For instance, standard QCA has 
only indirect ways of including time as a causally relevant dimension into the 
analysis. Partially in response to this, Mahoney, Kimball, and Koivu (2009) 
have elaborated the conceptual foundations for combining historical explana-
tions and set-theoretic reasoning. Similarly, Caren and Panofsky (2005) and 
Ragin and Strand (2008) have made speci$c suggestions for extending the 
QCA algorithm by allowing the order of events to matter causally. In short, 
by learning about the principles and practice of QCA, readers will learn about 
set-theoretic methods at large.

Figure 0.2 provides a graphical overview of our understanding of the dif-
ferent set-theoretic approaches in the social sciences and their relation to 
some other empirical comparative approaches. It shows that the umbrella 
term of set-theoretic methods covers several prominent and less prominent 
approaches to studying social reality. And QCA is just one of them.

!e idea of making use of set theory for the interpretation and analysis 
of social science data in QCA has been put forward by the American social 
scientist Charles C. Ragin (1987, 2000, 2008). Interest in QCA has grown in 
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recent years as comparative social science has revived fundamental debates on 
empirical social science methodology (e.g., King, Keohane, and Verba 1994; 
Gerring 2001, 2007; Brady and Collier 2004, 2010; or George and Bennett 
2005; Gerring 2012; Goertz and Mahoney 2012). In this debate, QCA is o#en 
presented as a third way between quantitative statistical techniques and case-
study methodology. By putting so much emphasis on QCA as a hybrid method 
that would, supposedly, combine the best of two worlds, and by focusing on 
the related claim that QCA is a method designed for analyzing mid-sized (that 
is, medium-N) datasets, its distinct characteristic as a set-theoretic method is 
o#en less widely recognized than it should be. As a matter of fact, in the early 
days, QCA’s set-theoretic foundation was downplayed even by its inventor 
itself: Ragin’s 1987 book, widely seen as the foundational work for QCA, does 
not mention set theory at all. All his later books have the term “set” in the title, 
though. Approaching QCA from a set-theoretic perspective has the double 
advantage of being able to explain its analytic features in a succinct manner 
and to unravel the fact that, contrary to widely held beliefs, QCA is not really 
a method invented ex novo, but makes use both of an established sub$eld 
in mathematics and of principles and practices well known in social science 
methodology.

Set-theoretic methods have a close a%nity to case-oriented comparative 
approaches. As such, they cannot be seen only as data analysis techniques. 

EMPIRICAL
COMPARATIVE
APPROACHES

Set-Theoretic
Approaches (STA)

QCA
(crisp, fuzzy,

multi-value, temporal,
two-step)

Mill’s Methods
Sequence Elaboration

Typological Theory

Boolean Logit
simple interactions
contingency tables

(correlation-based
statistical approaches)

Non Set-Theoretic
Approaches mimicking

elements of STA

Figure 0.2 Set-theoretic approaches in the social sciences
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Rather, the process of data gathering and generating is an integral part of set-
theoretic approaches. !is is also true for QCA: it is not only a data analysis 
technique, but also a research approach (Rihoux and Ragin 2009).4 QCA as a 
research approach refers to the processes before and a#er the analysis of the 
data, such as the (re-)collection of data, (re-)de$nition of the case selection 
criteria, or (re-)speci$cation of concepts, o#en based on preliminary insights 
gained through QCA-based data analysis. Ragin (1987) refers to this process 
as the back-and-forth between ideas and evidence (see also Rihoux and Lobe 
2009). In fact, most of the time and energy in good QCA-based research is 
devoted to issues related to QCA as an approach. QCA as a technique – some-
times also labeled the “analytic moment” (Ragin 2000) – is, in contrast, con-
siderably less time-consuming. QCA as a data analysis technique refers to the 
data analysis based on standardized algorithms and the appropriate so#ware. 
In essence, this analysis consists of $nding (combinations of) conditions that 
are subsets or supersets of the outcome and thus to arrive at su%cient and 
necessary (or INUS or SUIN) conditions. In order to $nd such set relations, 
QCA relies on so-called truth tables and straightforward rules of logical 
minimization.

It might sound obvious, perhaps even trivial, to underline that social sci-
ence method competence should mean more than to know which buttons 
on the computer keyboard need to be pressed in order to generate “results.” 
Deeper methodological awareness gains particular importance in the case of 
QCA (and set-theoretic methods in general) not least since these methods, 
by and large, operate outside the statistical template. One consequence of this 
is that measures of uncertainty tend to be less standardized and more closely 
related to judgments by the individual researcher than in statistical methods. 
!e researchers’ insights, and the knowledge they have acquired before and 
a#er the analytic moment, are therefore crucial for making the results of the 
analysis both robust and plausible. Such knowledge is particularly needed if 
the aim consists of drawing causal inferences.

We very much believe in the importance of perceiving QCA as both an 
approach and a technique and highlight this importance throughout the 
book. However, as is almost unavoidable for a textbook, our focus will be 
more on the technical aspects of QCA. It is here where QCA deviates most 
from the predominant practices of analyzing data in the social sciences. In 
contrast to the technical aspects, the requirements for performing QCA as 

4 On the di"erence between the notion of research design and data analysis, see also Gerring (2012: 
78".).
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an approach are less QCA-speci$c, but rather coincide largely with what is 
preached (and practiced) in good case-oriented comparative approaches 
(Mahoney and Rueschemeyer 2003; George and Bennett 2005; Gerring 
2007; Rohl$ng 2012). In Chapter 11 we explicitly deal with issues that arise 
when QCA as a technique meets QCA as an approach, such as the question 
of how to select cases for in-depth case studies a#er a QCA or how to evalu-
ate empirical results obtained with QCA in the light of existing theoretical 
knowledge.

Before moving on to distinguishing between di"erent variants of QCA, we 
wish to address the issue of how researchers should justify the use of QCA. 
In short, we believe that the decision to apply set-theoretic or other meth-
ods should be guided by the goal of achieving a good $t between theories 
and research aims on the one hand, and the method-speci$c assumptions 
on the other. Or, as Hall (2003) puts it, the aim should be to achieve a good 
$t between ontology and methodology. If there are good reasons to believe 
that the phenomenon of interest is best understood in terms of set relations, 
then this represents a strong argument for the use of set-theoretic methods 
such as QCA. If no such reasons exist, non-set-theoretic methods are more 
appropriate. Somewhat surprisingly, however, in applied QCA, researchers 
usually use an empirical argument for justifying the use of QCA by pointing 
out that it is better suited than either standard statistical approaches or com-
parative case studies for datasets with an intermediate number of cases. Such 
a mid-sized N is usually de$ned as being somewhere between 10 and 50 cases 
(Ragin 2000: 25). We certainly acknowledge that the mid-sized N argument 
also has its merits. For one, QCA does work in such settings and popula-
tions of interest with an N between 10 and 50 cases occur very frequently in 
comparative social sciences.5 But the empirical argument must be subordi-
nated to the theoretical argument. Even if researchers are confronted with a 
medium-N dataset, the use of QCA would not be appropriate if there are no 
explicit expectations about set relations. Likewise, the use of QCA would be 
appropriate even if the N is large if, and only if, researchers are interested in 
set relations rather than correlations.

5 !ink, for instance, of the more than 30 OECD member countries, the 50 US states, the 28 NATO 
members, or the 27 EU countries. Even more examples come to mind if we move away from countries 
as units of comparison and think about studies that might compare 12 civil wars, the social science 
departments from 20 universities in the American Midwest, 25 urban grassroots organizations oppos-
ing the Iraq War, 10 European le# parties, 30 local operatives of the Republican Party in Texas, 25 
Chinese villages, 40 members of the British Parliament, and so on.
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Variants of QCA

Ragin’s writings, together with several other book publications (De Meur and 
Rihoux 2002; Goertz and Starr 2003; Rihoux and Grimm 2006, Schneider and 
Wagemann 2007; Rihoux and Ragin 2009), many articles (for a comprehen-
sive list, see www.compasss.org), and other contributions (such as adequate 
so#ware) have contributed to the recognition of QCA as a methodological 
tool with a potential added value.6 However, despite all this, notable confu-
sion still exists as to what QCA exactly is and what it does. For quite a few 
people, this perplexity starts with the name: what does QCA stand for? Most 
users and consumers know that it is the acronym for Qualitative Comparative 
Analysis (though the authors of this book have also more than once encoun-
tered the claim that it stands for Quantitative Comparative Analysis). What is 
less commonly known is that QCA denotes a whole family of techniques, or, 
perhaps more accurately, that QCA entails di"erent versions.

QCA’s two main variants are crisp-set QCA (csQCA) and fuzzy-set QCA 
(fsQCA). !ey di"er in the type of sets on which they operate. csQCA oper-
ates exclusively on conventional sets where cases can either be members 
or non-members in the set. !eir set membership score is either 0 or 1. In 
fsQCA, by contrast, cases are allowed to have gradations of their set mem-
bership. A case does not necessarily have to be a full member or a full non-
member of a set, but can also be a partial member. !e membership scores 
can fall anywhere between the two extremes of full membership value of 1 

6 For a detailed mapping of QCA applications over the past 25 years, see Rihoux et al. (in press).

At-a-glance: Qualitative Comparative Analysis as a set-theoretic 
approach and technique

QCA is both a research approach and a data analysis technique. The plausibility of findings 
from a QCA as a technique much depends on the quality of the work done before and after 
the analysis, i.e., QCA as a research approach.

QCA aims at a causal analysis, operates with truth tables, and makes use of logical mini-
mization procedures. In this way, it can be distinguished from other set-theoretic methods, 
all of which employ some, but never all, defining features of QCA.

The motivation for using QCA should be the researcher’s interest in set relations rather 
than the number of cases under investigation.

QCA can be applied to the analysis of a mid-sized number of cases without violating any 
of its assumptions. It can also be used for analyzing large-N data.
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and full non-membership value of 0. A country can be a partial member of 
the set of democracies as indicated by a fuzzy-set membership score of, say, 
0.8. !is value indicates that this case can be seen as more of a democracy 
than a non-democracy, but that it falls short of ful$lling all the criteria for a 
full-&edged democracy. Such a di"erentiation is useful for many, if not most 
social science concepts.

Fuzzy sets were neither invented by Ragin, nor is their application limited 
to the social sciences. Quite the contrary. Fuzzy sets were introduced by the 
Azerbaijan-born mathematician Lot$ Zadeh in the 1960s (1965, 1968). Since 
then, this system of thought has triggered volumes of literature in disciplines 
as di"erent as mathematics, philosophy, engineering, and computer science 
(see, e.g., Kosko 1993, 1996; Zimmermann 2001; Zadeh 2002; Seising 2007). 
Modern elevators make use of them, as do washing machines. !ere have also 
been early attempts to make them an innovative and fruitful tool for the ana-
lysis of social science data (Smithson 1987). From a marketing point of view, 
labeling this type of sets with the adjective “fuzzy” might not have been the 
most successful strategy, though. It too easily evokes negative connotations, 
and it seems to make people think that fuzzy means imprecise, super$cial, 
unclear, or the like. As will become clear, fuzzy sets are really none of these 
things. Although better names could probably be found, in this book we stick 
to the name fuzzy set because it stems from a broad body of literature and has 
a well-de$ned meaning.

Clearly, the introduction of fuzzy-set QCA (fsQCA) mitigates many of the 
problems and concerns about crisp-set QCA’s (csQCA) insistence on divid-
ing the world into black and non-black. With fuzzy sets, di"erent shades of 
grey can be empirically captured and inform the analysis and interpretation 
of results. !e &exibility of fsQCA becomes greater by the fact that in fsQCA 
both fuzzy sets and crisp sets can be used. An important point to keep in 
mind, though, is that fuzzy sets do maintain a qualitative distinction between 
cases. In other words, fuzzy sets establish di"erences in kind, just as crisp sets 
do, but they add di"erences in degree to this. Indeed, fuzzy sets incorporate 
the insight that many social science concepts are dichotomous in principle, but 
that their empirical manifestations occur in degrees. For example, we might 
have an idea, or de$nition, of what a developed democracy looks like and 
how it di"ers from a non-developed democracy, but cases empirically corres-
pond to this ideal-typical democracy to di"erent degrees. Nevertheless, fuzzy 
sets remain committed to a qualitative di"erentiation between types of cases 
(e.g., democracies vs. non-democracies). Not even interval scales – usually 
considered to represent one of the highest levels of measurement – can help in 
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identifying these qualitative di"erences between types of cases. Many schol-
ars might correctly note that they are not interested in establishing qualitative 
di"erences between cases and prefer to focus on their di"erences in degree. 
!is is perfectly $ne, as long as one is not using interval variables to draw 
conclusions about types of cases. Put di"erently, in order to say, for instance, 
that being a rich country is su%cient for avoiding repugnant inequality, one 
must also indicate where on the variables that measure richness and levels of 
inequality countries begin to count as being rich and as repugnantly unequal, 
respectively. !is, in turn, is nothing other than imposing a threshold – a 
qualitative anchor in the terminology of set-theoretic methods – and thus 
turning a variable like GDP into a set of rich countries in which cases have 
(fuzzy or crisp) membership scores. Unless one transforms raw data into set 
membership scores, it seems di%cult, if not impossible, to formulate state-
ments about the set relations of social phenomena.

It is quite common for fsQCA to be interpreted as an extension of csQCA, 
probably because the latter was introduced prior to the former. We hold, how-
ever, that the opposite perspective is more adequate. A crisp set is nothing else 
than a very special case of a fuzzy set, one that only allows for full member-
ship and full non-membership. !e intimate similarities between csQCA and 
fsQCA will become more apparent once we introduce the operations, algo-
rithms, and principles that guide both versions of QCA. Because of its greater 
generality, we think that one should use fsQCA whenever possible. !is does 
not imply that the use of crisp sets should or needs to be completely avoided. 
If a concept happens to present itself as a pure dichotomy, it can be integrated 
into a fsQCA without any problems.

Because of the shared analytic features between csQCA and fsQCA we also 
deem inaccurate and unproductive another o#en-encountered tendency in 
the literature: the interpretation of csQCA and fuzzy-set analysis as two very 
separate forms of analyzing social science data. !e huge similarities in prin-
ciples and practices between csQCA and fsQCA are also the reason why, in 
this book, we will always treat them together. Most of the methodological 
arguments will be $rst introduced for csQCA and then generalized to fsQCA 
for didactic reasons only, since crisp sets are still more in line with everyday 
thinking than fuzzy sets.

Apart from these two main versions, further variants of QCA exist. In 
multi-value QCA (mvQCA: Cronqvist and Berg-Schlosser 2008), multinomial 
categorical data can be processed. For instance, rather than classifying coun-
tries as either two-party systems (1) or non-two-party system (0), mvQCA 
allows for multiple values in the category of ‘type of party system’, such as, for 
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instance, the one-party system (1); the two-party system (2); the multi-party 
system (3); and the dominant party system (4). With mvQCA, the aim is still 
to make statements of necessity and/or su%ciency, and it is also based on an 
analytic device that resembles a truth table. However, by allowing for multiple 
categories, the set-theoretic grounding of mvQCA is less straightforward, i.e., 
mvQCA does not require the data to represent set membership scores. !is 
triggers several analytic consequences that we discuss in section 10.2.

Another sub-type is temporal-QCA (tQCA: Caren and Panofsky 2005; 
Ragin and Strand 2008). It is $rmly grounded in set theory, operates on sets, 
uses truth tables as an analytic device, and aims at making statements of neces-
sity and/or su%ciency. It can even be applied to both crisp and fuzzy data. It is 
a distinct form of QCA because it allows for speci$c ways of formally incorp-
orating the temporal ordering of conditions as causally relevant information. 
!e reason why we do not treat tQCA in as much detail as csQCA and fsQCA 
is simple: it shares the great majority of its features with these core versions 
of QCA. Hence, in order to understand tQCA, one $rst needs to understand 
QCA in general, and so our main focus is on csQCA and fsQCA. Because of 
this, and because of its degree of recognition, we use the acronym QCA in 
this book when discussing properties of all members of the methodological 
family. Whenever a given argument holds only for a speci$c type of QCA, we 
refer to it as csQCA, fsQCA, mvQCA, or tQCA.

Plan of the book

!e challenge in understanding set-theoretic methods is not so much in grasp-
ing the math that is behind them. In fact, in terms of standard mathematical 

At-a-glance: variants of QCA

In crisp-set QCA (csQCA), only the membership values of 1 and 0, indicating perfect mem-
bership and perfect non-membership in a set (respectively) can be used. In fuzzy-set QCA 
(fsQCA), differentiations between 0 and 1, expressing the degree of presence or absence 
of the concept in a specific case, can be made. Fuzzy sets take into account the fact that 
most social science concepts establish qualitative differences between cases in principle, 
but that cases manifest adherence to these criteria in various degrees.

Multi-value QCA (mvQCA), which deals with multinomial conditions, and temporal QCA 
(tQCA), which aims at including the temporal order in which conditions occur as potentially 
causally relevant, are further types of QCA which, however, share many aspects with the 
two main variants of csQCA and fsQCA.
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operations, not much more is required than simple subtraction and division 
of natural numbers. It is not even required to delve too deeply into the more 
complex intricacies of formal logic and set theory. !e three rather simple 
logical operators (AND, OR, and NOT) and the notion of subsets and super-
sets su%ce for denoting any possible result that can be obtained using QCA. 
Yet understanding and correctly using set-theoretic methods is challenging. 
Our experience from teaching students with a wide range of di"erent dis-
ciplinary and methodological backgrounds has revealed that the biggest 
challenge rests in capturing the far-reaching consequences that are triggered 
when shi#ing the aim of social research to identifying set relations rather 
than correlations.

Our book consists of four main parts, each subdivided in several chapters. 
In Part I, we lay out the basic principles that are needed in order to under-
stand QCA. In Part II, we introduce measures that have to be taken when neat 
formal logical logic meets noisy and o#en lousy social science data. In Part 
III, we provide several critiques at the current standards of good QCA prac-
tice and o"er suggestions for improvement. Part IV is dedicated to extensions 
of the family of QCA and to framing general issues in comparative social 
science methodology in set-theoretic terms, such as robustness tests and case 
selection principles. We proceed, thus, from explaining fundamental prin-
ciples (Part I), to standards of good practice (Part II), then go beyond these 
standards by making suggestions of our own for improved analyses (Part 
III), and applying the notion of sets to more general methodological issues in 
comparative social science (Part IV).

More speci$cally, our chapters deal with the following topics: in Chapter 1, we 
spell out in further detail what sets are and how set membership values can be 
attributed to single cases or, in set-theoretic methods terminology, how mem-
bership scores are calibrated. In Chapter 2, we provide a short introduction to 
set theory, Boolean and fuzzy algebra, and the logic of propositions, respect-
ively. !ese three systems provide the notation, main terminology, and opera-
tions that are needed to perform set-theoretic analyses. In order to understand 
how set-theoretic methods work, it is necessary to get acquainted with these 
basic notions. In Chapter 3, we apply set-theoretic principles to the analysis of 
su%ciency and necessity relations between conditions and an outcome. !is 
will also induce a discussion of causal complexity. In Chapter 4, we develop the 
analysis of su%ciency and necessity further and introduce the notion of a truth 
table, a concept from formal logic that is at the heart of QCA-based research.

In Chapters 5 and 6, we deal with issues that occur when applying QCA to 
common social science data. !e problems that arise can all be captured in 



Introduction18

terms of incomplete truth tables. In essence, there are two ways a truth table 
can be incomplete. In Chapter 5, we deal with contradictory, or inconsistent, 
truth table rows, i.e., the situation in which it is not clear whether a given truth 
table row is su%cient for the outcome. From this, we derive the parameter of 
consistency, which expresses the degree to which a given condition is a subset 
or superset of the outcome. We show that the consistency measure captures 
only one feature of subset relation and also introduce the coverage meas-
ure, which provides a numeric expression for the empirical importance of a 
given condition (or a combination thereof) for producing an outcome. !ese 
two parameters are also very useful in the analysis of necessary conditions. 
Chapter 6 deals with the second symptom of an incomplete truth table: one in 
which logical remainder rows occur, i.e., rows that exist only as logical com-
binations but which have no empirical manifestations. !is situation occurs 
because the empirical variation in which the social world presents itself tends 
to be highly limited in its diversity. We discuss how logical remainders are 
best handled. Chapter 7 serves as wrap-up of the material learned up to this 
point: we put all the ingredients from Chapters 1–6 together and integrate 
them into the so-called Truth Table algorithm and the Standard Analysis pro-
cedure as the current predominant form of analyzing data in QCA.

In Chapter 8, we show some pitfalls in dealing with limited diversity that are 
not entirely resolved by the Standard Analysis procedure. We provide prac-
tical suggestions for producing what we call the Enhanced Standard Analysis 
procedure. In Chapter 9, we discuss various issues that arise when the analysis 
of necessity and su%ciency are combined. We provide solutions for avoiding 
the appearance of false necessary conditions and the disappearance of true 
necessary conditions. Along these lines, we o"er a new way of identifying so-
called trivial necessary conditions. We also draw attention to the more gen-
eral problem of skewed set membership scores and their impact on drawing 
inferences in set-theoretic methods, such as, for instance, the phenomenon of 
one set being a simultaneous subset of another set and its complement.

Chapter 10 deals with further variants and extensions of QCA. We discuss 
two-step QCA as an approach for better di"erentiating between conditions 
located at di"erent distances from the outcome; mvQCA as an attempt to 
work with multinomial categories; and the integration of the notion of time 
into QCA, with temporal QCA as the most formalized attempt at this. In 
chapter, we address general issues in comparative methodology from a set-
theoretic perspective. We $rst spell out a list of standards of good QCA prac-
tice. Here, we also provide an overview of the currently available so#ware 
packages that can be used for performing QCA. !en, we discuss the meaning 
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of “robustness” in regards to QCA results and what robustness tests should 
look like; spell out the logic of theory evaluation in set-theoretic methods, as 
opposed to hypothesis testing in statistical approaches; and present the prin-
ciples of case selection for within-case studies a#er a QCA.

!e conclusion attempts at a general evaluation of QCA as a social sci-
ence method and o"ers an outlook on further developments in set-theoretic 
methods.

How to use this book

Before we enter the debate, let us give some useful hints on how to read this 
book. We suggest starting at the beginning. While in later chapters we at 
least brie&y reiterate crucial points, it remains the case that issues raised in 
later chapters can best be understood by thoroughly reading the preceding 
chapters.

!is book is explicitly designed to cater to both beginners and very 
advanced readers. In order to allow all readers to better navigate through the 
book and to easily identify the chapters that are most relevant to their cur-
rent needs and interests, we employ several devices. First, each main chapter 
starts with an “Easy reading guide.” !is presents the content and main points 
made in the chapter in question. !e Easy reading guides can help both more 
advanced readers to move directly to speci$c sections and beginners to iden-
tify those sections that are fundamental for understanding the method and 
which ones contain additional arguments and debates. !e second device 
is “At-a-glance” boxes at the end of most sections. !ey summarize the key 
points of the respective section and are directly connected to the “Glossary,” 
our third didactic device. It contains de$nitions of all key terms in set-
 theoretic methods that are used and introduced in the book. Terms printed 
in bold in the At-a-glance boxes are those that are contained in the Glossary. 
Finally, we provide online learning material for each chapter. !e “How to” 
sections contain practical guidance on how to use the currently available so#-
ware packages (fsQCA, 2.5, Tosmana 1.3.2, Stata, and R) in order to perform 
the analytic operations described in the respective chapter. !e exercises and 
solutions are subdivided into conceptual questions, exercises that require cal-
culations by hand, and exercises practicing the use of the so#ware by reana-
lyzing published QCA.

!roughout the book, we make use of published examples of set-theoretic 
analyses. In the early chapters, however, when we need to separate speci$c 
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methodological issues from all the others that usually occur in applied set-
theoretic methods, we o#en revert to hypothetical data in order to clarify our 
point. While there might be a slight bias towards political science in choosing 
our examples (due to the background of both authors), this does not sug-
gest that set-theoretic methods are limited to this social science discipline. 
Set-theoretic methods are also becoming increasingly popular in sociology, 
psychology, anthropology, management studies, and comparative literature, 
to mention just a few (see www.compasss.org for more information).



Part I

Set-theoretic methods: the basics
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1 Sets, set membership, and calibration

Easy reading guide

This book is based on the conviction that the tools of set theory allow for a distinct 
and fruitful perspective on social science data. In order to develop the argument and 
to show how the analysis of empirical data works when focusing on set relations, we 
first clarify how sets refer to concepts (1.1). Then we discuss how set membership 
scores are derived from empirical and conceptual knowledge. This process is called 
calibration (1.2). Through calibration of sets, qualitative – and also quantitative, with 
fuzzy sets – differences between cases are established and expressed by set mem-
bership scores that vary between 0 and 1. The usefulness of set-theoretic methods 
depends on the proper calibration of sets. Beginners should read through the whole 
chapter with careful attention, while more advanced users might wish to skim through 
the text if they feel that they are well aware of the principles and practices of good 
set calibration.

In the Introduction, we have already mentioned that there are two major variants of QCA, 
namely crisp-set QCA (csQCA, where a case is either a member of a set or it is not) and 
fuzzy-set QCA (fsQCA, where differences in the degree of set membership can be cap-
tured). Both these variants share one fundamental feature: they establish qualitative differ-
ences between those cases that are (more) in the set and those that are (more) out of the 
set. Beyond this, both QCA variants have much more in common than is sometimes insinu-
ated in some of the literature. In this book, we therefore emphasize their commonalities. 
They both aim at identifying subset relations, which, in turn, rest on qualitative differences 
between cases. Indeed, a crisp set should be seen as the most restrictive form of fuzzy set, 
one that allows only full membership and full non-membership. Because crisp sets are a 
special case of fuzzy sets, most of the set operations equally apply to both variants. For all 
these reasons, we introduce both variants together. Admittedly, crisp sets correspond more 
to everyday thinking: this is why we introduce all important notions and operations by first 
explaining their meaning based on crisp sets. The main emphasis of this chapter is on fuzzy 
sets, though, because they are less intuitive and therefore require more explanation.
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1.1 The notion of sets

1.1.1 Sets and concepts

!e use of the term “set” is not very broadly di"used in social science method-
ology. However, a good part of our conceptual reasoning, as Mahoney (2010) 
shows, is at least based on an implicit idea of sets. According to Mahoney, 
there are two basic modes of looking at concepts: if we de#ne concepts “as 
a mental representation of an empirical property” (Mahoney 2010: 2), then 
we will measure cases “according to whether or the extent to which they are 
in possession of the represented property” (Mahoney 2010: 2). Measurement 
theory provides us with many useful techniques for doing this. !is ultimately 
results in the use of variables when de#ning a concept (Mahoney 2010: 13). 
If, however, we refer to concepts as sets, de#ned in terms of “boundaries that 
de#ne zones of inclusion and exclusion” (Mahoney 2010: 7), then “[c]ases 
are measured according to their #t within the boundaries of a set” (Mahoney 
2010: 2). Sets work as “data containers” (Sartori 1970: 1039). Although this 
seems to be a subtle and o$en overlooked di"erentiation, these two views 
of concepts are fundamentally di"erent. When we measure a concept by 
means of traditional measurement theory, it represents a property or a group 
of properties. !e set-theoretic view, instead, uses set membership in order 
to de#ne whether a case can be described by a concept or not. !erefore, in 
the framework of set-theoretic methods, issues of concept formation have a 
somewhat di"erent connotation than in traditional measurement theory, by 
focussing on whether a case belongs to a concept (i.e., a set) or not. !is pro-
cess of assigning set membership is also called “calibration” (see section 1.2).

1.1.2 The pros and cons of crisp sets

When QCA was #rst discussed in the 1980s and 1990s, it was limited to crisp 
sets. !is required a decision whether a case is a member of a set or not. 
As such, this also corresponds to how sets are generally perceived, namely 
as boxes into which cases can be sorted or not. However, as argued in the 
Introduction, it is not always easy to make such clear-cut decisions, above 
all when dealing with more #ne-grained social science concepts for which 
detailed and nuanced information is available. Not surprisingly, the need 
for “dichotomization” has triggered some serious criticism of crisp-set QCA 
(Bollen, Entwisle, and Alderson 1993; Goldthorpe 1997; for an overview and 
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a response, see De Meur, Rihoux, and Yamasaki 2009). !is requirement cer-
tainly a"ected the usability and the acceptance of QCA in its early stages. !e 
two major reservations with dichotomies seemed (and still seem) to be that 
(a) they represent a loss of empirical information and (b) they reduce the 
robustness of results due to the sensitivity of QCA #ndings to decisions on 
where to put the threshold for dichotomization, as the latter is o$en subject 
to a relatively large degree of discretion.

At the core of the argument against dichotomization is the belief that the 
world and large parts of social science phenomena simply do not come in a 
binary form. Let us take, for example, the notion of democracy again: if we 
think of cases such as the UK or the USA on the one hand, and North Korea 
or Zimbabwe on the other, then this might at #rst glance suggest that a clear-
cut dichotomy is appropriate. !e former countries are members of the set of 
democracies, whereas the latter two are clearly not. However, cases o$en fall 
in-between these two qualitatively di"erent endpoints. Just think of all the 
so-called “electoral democracies” or any of the numerous “democracies with 
adjectives” (Collier and Levitsky 1997) identi#ed in the literature. A closer 
look at the unquestionably democratic cases in North America and Western 
Europe also reveals the existence of interesting and analytically relevant dif-
ferences – both across time and across countries – that defy a straightforward 
classi#cation as democracies versus non-democracies (for instance, declining 
trust in the political class or the rise of far-right movements might be said to 
undermine democracy). We would probably not want to claim that any of 
these countries has become undemocratic. Despite sometimes even strong 
deviations from perfect democracy, they are still qualitatively di"erent from 
non-democracy. As we shall see, fuzzy sets provide the possibility to take both 
qualitative and quantitative di"erences into account.

!e fact that we emphasize qualitative di"erences and not only quantita-
tive variations is quite important here. In statistics, interval-scale variables 
are usually considered superior to dichotomous (and ordinal) variables, 
since their high level of measurement captures more precise quantitative 
di"erences. However, the previously mentioned limitations of dichotomous 
variables should not lead to the conclusion that interval-scale measurements 
automatically imply a greater level of validity. !is is above all doubtful when 
the underlying concept establishes explicit qualitative distinctions between 
cases, such as, for instance, the concept of “democracy.” !is implies that, 
despite the general concerns about the use of dichotomies, not using them 
at all would go too far. In fact, even in applied quantitative research, where 
most critiques of the use of dichotomies originate, techniques like logistic 
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regression, which requires a dichotomous dependent variable, remain widely 
popular. What is more, the recent shi$ in the statistical literature towards 
the experimental design as the gold standard for causal inference has led to 
a renewed appreciation of dichotomies even among proponents of advanced 
quantitative methodology.1

!e second type of critique aimed at using dichotomous data may seem 
to be a rather technical issue, but it refers back to the critique just men-
tioned. It is o$en argued that the decision on where to put the threshold is 
not only to a considerable extent arbitrary, but also crucially in%uences the 
results obtained. What seems to be true is that in research practice, scholars 
have all too o$en been using unconvincing criteria as to where to put the 
threshold for turning their raw data into crisp-set membership scores. As 
we will explain in section 1.2.2, a very common mistake is to use character-
istics of the data at hand, such as the mean or median, as a guide to where 
to put the threshold.

A central critique says that arbitrariness, or simply a de#nition that is not 
perfectly accurate, could cause a case to be on the “wrong” side of the thresh-
old, and that research results could be signi#cantly altered through di"erent 
case assignments. While true, claims about the manipulability of set- theoretic 
results through purposeful threshold setting (aka cheating) are largely exag-
gerated. First, for each concept there is only a certain, o$en small range where 
the threshold can plausibly be put. Usually, no huge di"erences in the results 
occur due to minor adjustments to the threshold.2 If the criteria for setting the 
thresholds are both transparent and plausible, then hardly any chance exists 
for potential cheating. Finally, the e"ects of di"erent thresholds on the results 
obtained are o$en so intricate that setting thresholds in order to create desired 
results would be a time-consuming and futile exercise for the researcher.

In sum, working with crisp sets does create some issues. At the same time, 
when trying to investigate relations between sets, we must establish qualita-
tive di"erences between cases that are more in a set and those that are more 
out of the set. So what can we do in order to e"ectively work with concepts 
where there is some interesting variation between the qualitative endpoints of 
implicitly dichotomous social phenomena? In these situations, neither inter-
val scale variables nor dichotomous crisp sets are ideal. !e former lack the 
capacity to establish qualitative di"erences, and the latter to make di"erences 
in degree between cases of the same kind. !us, an instrument is needed that 
overcomes the starkly limiting characteristics of dichotomies but which at the 

1 We thank John Gerring for making this point (personal communication, Spring 2010).
2 See section 11.2 on robustness tests in QCA.
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same time continues to possess the potential to show qualitative di"erences. 
To this end, Ragin proposed the use of fuzzy sets (Ragin 2000).

1.1.3 Properties of fuzzy sets

!e term “fuzzy set” goes back to the writings of Lot# Zadeh (1965, 1968). !e 
notion of fuzzy sets has triggered volumes of books in disciplines as diverse as 
mathematics, engineering, and philosophy. Only recently has the tool of fuzzy sets 
been introduced in the social sciences (Smithson 1987, 2005; Ragin 2000, 2008a, 
2008b; Smithson and Verkuilen 2006). !us, fuzzy-set theory was not invented by 
social scientists, and the level of complexity of this theoretical and mathematical 
framework goes well beyond that currently applied in fuzzy-set social sciences.

Because fuzzy-set theory refers to an established body of literature, we stick 
to the use of the term “fuzzy set” despite its potentially misleading interpret-
ation and negative connotation in everyday language. One could perhaps 
come up with a less stigmatized adjective for sets that are not crisp, but the use 
of any other term would contribute to disconnecting the use of fuzzy sets in 
social sciences from their mathematical and epistemological background. As 
the extant literature makes clear, “fuzzy” does not mean “unclear” or “wishy-
washy.” !e statement that a given case has a fuzzy-set membership score of, 
say, 0.8 re%ects precise empirical information about that case. !e fuzziness 
stems from imprecise conceptual boundaries. For instance, when we invoke 
the concept of a “bald person,” we all agree that somebody with no hair at all 
is de#nitely bald. If, however, we took a person with a lot of hair and started 
pulling it out one strand a$er another, it would be di&cult to point to a pre-
cise and quanti#able amount of remaining hair at which this person would 
have to suddenly be considered a member of the set of bald people. At the 
same time, we do see a qualitative di"erence in terms of baldness between 
somebody with a lot of hair and somebody with only few hairs. !e problem 
of identifying where exactly the di"erence is between a bald and a non-bald 
person is not resolved by knowing the precise number of hairs remaining. 
Fuzziness, in other words, is due to conceptual boundaries that are not sharply 
de#ned rather than imprecise empirical measurement.

Fuzzy sets preserve the capability of establishing di"erence-in-kind between 
cases (qualitative di"erence) and add to this the ability to establish di"erence-
in-degree (quantitative di"erence) between qualitatively identical cases. !e 
term fuzzy set implies a di"erent usage of the term “set” than we are used to 
from traditional set theory, which de#nes sets through strict membership cri-
teria (Klir, Clair, and Yuan 1997: 48). Individual members either clearly belong 
to sets, or else they do not. Fuzzy sets, by contrast, allow for cases to have 
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partial membership in the set (Klir et al. 1997: 73".). Cases can be more in 
than out of a set without being full members of the set, and they can be more 
out than in the set without being full non-members of the set. For instance, 
two countries might have a fuzzy-set membership score of 0.7 and 0.8 in the 
fuzzy set of democracies, respectively. !is indicates that both are rather more 
democratic than non-democratic (a qualitative property), but also that one of 
the two countries is slightly more democratic than the other one (a quantita-
tive di"erence). Fuzzy sets are thus characterized by the fact that the boundar-
ies between membership and non-membership are blurred. !is also implies 
that a case – unless it has full (non-)membership in the set – is actually a par-
tial member of both the set and its negation. In our example, each state is not 
only a member to some degree in the fuzzy set of democracies, but also of the 
opposite fuzzy set, that of non-democracies. !e principle of the “excluded 
middle” whereby an element can be only a member of a set or of its comple-
mentary set (a fundamental rule of crisp sets) does not hold for fuzzy sets.

Fuzzy sets allow for degrees of membership, thus di"erentiating between dif-
ferent levels of belonging anchored by two extreme membership scores at 1 and 
0 (Ragin 2000: 154; Ragin 2008b). In addition, a membership score at 0.5 locates 
the so-called point of indi"erence where we do not know whether a case should 
be considered more a member or a non-member of the set (Ragin 2000: 157). It 
constitutes the threshold between membership and non-membership in a set – 
the qualitative distinction that is maintained in fuzzy sets – and represents the 
point of maximum ambiguity with regard to a case’s membership in the concept. 
Fuzzy sets explicitly require that the de#nition of set-membership values is based 
on three qualitative anchors: full set membership (1), full non-membership (0), 
and indi"erence (0.5). In crisp sets, these three anchors are all collapsed into 
one – the distinction between full membership and full non-membership.

De#ning the precise location of the 0.5 qualitative anchor is crucial. 
Assigning cases a 0.5 fuzzy set membership score, however, should be avoided. 
It means that we are unable to say for an individual case whether it is more a 
member of the set or more a non-member. Because we avoid a decision on the 
qualitative status of the case in question, assigning the 0.5 score has import-
ant consequences for the analysis of fuzzy data that we explain in detail in 
Chapters 4 and 7. For all other degrees of membership and non-membership 
so-called fuzzy values are used to quantify the levels of membership of a case 
in a set. As Table 1.1 exempli#es, for each fuzzy value, linguistic quali#ers can 
be assigned (Ragin 2000: 156).

It is not necessary for there to be actual empirical elements corresponding 
to every fuzzy value, i.e., even if a fuzzy set allows for a membership of, say, 
0.8 it might well be that it is not assigned to any empirical case. In particular, 
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this also applies to the membership values of 1 and 0. Also, di"erent intervals 
between the fuzzy-set membership scores are possible: it is perfectly #ne if a 
fuzzy set shows membership scores of, say, 0.1, 0.4, 0.6, and 1, if theoretical 
considerations warrant it.

We can also imagine fuzzy scales that are di"erentiated even further than 
this. However, with increasing levels of di"erentiation it becomes ever more 
di&cult to come up with theory-based and empirically observed distinctions 
between the values, not to mention the need to assign verbal descriptions 
to each value. Any such representation suggests a level of precision that is 
unlikely to be grounded in empirical information or theory. One should 
therefore not over-interpret the substantive meaning of marginal di"erences 
in set-membership scores, such as the di"erence between 0.62 and 0.63. Such 
small di"erences also have only a negligible impact on the analytic results.

Note that frequently some of the variation in the raw data is conceptually 
irrelevant. When translating raw data into corresponding fuzzy-set membership 
scores, this must be taken into account. Imagine that we want to assign member-
ship scores of all countries in the fuzzy set “rich countries.” If we take GDP per 
capita as an indicator for richness, then we #nd a large variation among the four 
countries with the highest GDP per capita (IMF data for 2010): Qatar ($88,500), 
Luxembourg ($81,400), Singapore ($56,500), and Norway ($52,000). Under 
many (if not most) de#nitions of “rich country,” all four would be considered 
rich and would thus receive a membership score of 1 in the set of rich coun-
tries. !e fact that Qatar is quantitatively about 1.7 times richer than Norway is 
deemed qualitatively irrelevant for research purposes (Ragin 2008a: 77".).

Fuzzy scales, with their well-de#ned starting- and end-points, the cross-over 
point, and the combination of both qualitative and quantitative di"erentiations, 
seem to defy standard classi#cations of measurement levels (Ragin 2008b). Both 

Table 1.1 Verbal description of fuzzy-set membership scores

Fuzzy value !e element is …

1 Fully in
0.9 Almost fully in
0.8 Mostly in
0.6 More in than out
0.5 Crossover: neither in nor out
0.4 More out than in
0.2 Mostly out
0.1 Almost fully out
0 Fully out

Adapted from Ragin (2000: 156)
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the idea of seeing them as continuous scales (since every possible grading between 
0 and 1 can be obtained) and seeing them as ordinal scales (since they display an 
ordered list of empirical representations of a given concept) could seem reason-
able. However, the argument against interpreting fuzzy sets as continuous scales is 
that it downplays the establishment of qualitative di"erences between cases above 
and below the 0.5 anchor, which remains the essential principle of fuzzy sets. !e 
step from a fuzzy value of 0.4 to 0.6 is something di"erent from the step from 0.1 
and 0.3. Although the quantitative di"erence in the degree of membership is 0.2 
in both situations, there is a qualitatively di"erent situation: in moving from 0.4 
to 0.6, the qualitative anchor of 0.5 is crossed. While 0.6 indicates that the case 
is more like a member of the set, 0.4 tells us that it is more of a non-member of 
the set. !e fuzzy values 0.1 and 0.3 indicate, instead, that both cases are on the 
same side of the point of indi"erence and thus both indicate non-membership, 
although to di"erent degrees. !is distinction does not, however, also mean that 
a fuzzy set will be reinterpreted as a dichotomy in the analysis: although the quali-
tative di"erence is maintained, the quantitative gradings also count. A fuzzy value 
of 0.3 describes something di"erent from the fuzzy value of 0.1, although both 
values indicate the absence of the concept rather than its presence. Hence, fuzzy 
scales are neither continuous nor ordinal, since their “continuity” and their “rank 
order,” respectively, are interrupted at the point of indi"erence, and since the 
inherent qualitative di"erence is dominant in the de#nition of the values.

Ragin (2008b) points out that this combination of qualitative anchors and 
quantitative gradings, which sits uneasily with mainstream social science 
classi#cations of measurement levels, is standard in disciplines that are usu-
ally regarded as more “scienti#c” than the social sciences, such as physics, 
chemistry, and astronomy. Ragin gives the example of “temperature” and the 
measurement “degrees Celsius.” !ere are senses in which a temperature can 
be qualitatively interpreted. When falling below 0° or rising above 100°, the 
state of water qualitatively changes: it turns into ice and vapor, respectively. 
Hence, a 10-degree change from 95° to 105° implies a qualitative di"erence, 
whereas a change from 30° to 40° does not. Just using temperature at face 
value, without anchors that establish qualitative di"erences, one would miss 
this important information about the state of water. So far, in the social sci-
ences it is rare to use knowledge (“the temperature at which water freezes or 
boils”) that is external to the raw data (“mercury expanding and contracting 
with heat”) to decide how to calibrate a scale.

1.1.4 What fuzzy sets are not

Fuzzy sets express a speci#c kind of uncertainty and take on values between 0 
and 1. It is perhaps because of these two characteristics that fuzzy set membership 
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scores are sometimes interpreted as probabilities (e.g., Altman and Perez-Linan 
2002: 91; Eliason and Stryker 2009). We side with those scholars who reject that 
view, among them Zadeh (1995) himself, whose article’s title captures the essence 
of the argument: “Probability !eory and Fuzzy Logic are Complementary 
Rather than Competitive.” A similar point is made by McNeill and Freiberger 
(1993: 185".), who argue that uncertainty has various aspects and that probabil-
ity and fuzziness capture di"erent forms of uncertainty. !e following example 
helps to illustrate the di"erence between probability and fuzzy values.

Imagine two water glasses, each containing a di"erent liquid, and about 
which the following is known. Glass A contains a liquid that has a 1 percent 
probability (0.01) of being poisonous. Glass B, on the other hand, contains a 
liquid that has a fuzzy-set membership score of 0.01 in the set of poisonous 
liquids. When forced to choose between the two (and assuming that we do 
not have suicidal tendencies), which glass is safer to drink? !e answer is glass 
B. We know exactly what is in this glass – a liquid that is all but fully out of the 
set of poisonous drinks. !is applies, for example, to energy drinks of the kind 
that are popular among college students; they are certainly not poisonous, but 
also not completely free of toxins as is, say, a glass of pure spring water. In 
contrast, we do not know what is in glass A. It is either extremely poisonous 
or completely non-toxic. All we know is that it comes from a population of 
other glasses, of which 1 out of 100 is deadly poisonous. !ere is a 99 percent 
chance that drinking from glass A is completely safe, but a 1 percent chance 
it will turn out to be lethal. In contrast, glass B will cause us to feel, at best, 
slightly bloated and a little twitchy but does not present any risk of dying.

At-a-glance: the notion of sets

The use of set theory in the social sciences requires a different perspective on concepts: 
cases are assessed with regard to their membership in previously defined sets.

Crisp sets are restricted to the membership values 1 (full membership of a case in a 
set) and 0 (full non-membership). This ultimately requires the definition of all concepts as 
dichotomies.

Fuzzy scales possess three qualitative anchors – the complete presence of a concept 
(1), its complete absence (0), and the point of indifference (0.5) – with quantitative gradings 
representing the degree of presence of the concept. Verbal descriptions (“linguistic quali-
fiers”) help to connect the quantitative assessment to natural language.

Crisp sets can be seen as special cases of fuzzy sets. Thus, the rules for fuzzy sets are 
more general and subsume those for crisp sets.

A fuzzy-set membership score does not express the probability of a case’s membership in 
a set. Fuzzy scores and probabilities express different aspects of uncertainty. The uncertainty 
expressed in fuzzy sets stems from conceptual rather than empirical imprecision, which, in 
turn, is inherent to most verbally defined concepts – especially those in the social sciences.
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1.2 The calibration of set membership

Assigning set membership scores to cases is crucial for any set-theoretic 
method. !e process of using empirical information on cases for assigning set 
membership to them is called “calibration.” In order to be analytically fruitful, 
calibration requires the following: (a) a careful de#nition of the relevant popu-
lation of cases; (b) a precise de#nition of the meaning of all concepts (both the 
conditions and the outcome) used in the analysis; (c) a decision on where the 
point of maximum indi"erence about membership versus non-membership 
is located (signi#ed by the 0.5 anchor in fuzzy sets and the threshold in crisp 
sets); (d) a decision on the de#nition of full membership (1) and full non-
membership (0); (e) a decision about the graded membership in between the 
qualitative anchors.

1.2.1 Principles of calibration

!e #rst (and very simple) answer to the question of how to assign set-
 membership values is to base the calibration on the combination of theoretical 
knowledge and empirical evidence (Ragin 2000: 150). It is the responsibil-
ity of the researcher to #nd valid rules for assigning set-membership values 
to cases. !e top priorities of this process are to make the calibration pro-
cess transparent and to make it lead to a set that has high content valid-
ity for the concept of interest. When turning raw data into set- membership 
scores, researchers make use of knowledge that is external to the data at 
hand (Ragin 2008a, 2008b). Such knowledge comes in di"erent forms and 
from di"erent sources. !ere are, for instance, obvious facts. For example, 
it is generally true that completing the twel$h grade in the United States 
leads to receiving a high school diploma. If we are trying to calibrate the 
set “high school- educated citizens,” there is a qualitative di"erence between 
completing the eleventh grade and completing the twel$h grade. !ere are 
also some  generally accepted notions in the social sciences. In addition, there 
is the knowledge of the researcher accumulated in a speci!c !eld of study or 
speci!c cases. !is requires extensive #eldwork and a very careful analysis of 
primary and secondary sources before proceeding to the actual calibration. 
As such, interviews, questionnaires, data obtained with participant observa-
tion or focus groups, and organizational analysis, quantitative and qualita-
tive content analysis, etc., can all provide useful information sources in the 
process of set calibration.
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1.2.2 The use of quantitative scales for calibration

Multiple non-quantitative data sources are o$en used for calibration. 
Sometimes, however, we do have one data source and it is an interval-scale 
measure. For instance, if we want to calibrate the set “rich countries,” then a 
GDP per capita indicator might provide a reasonably good source of informa-
tion.3 When interval-scale data are at hand, researchers have several calibra-
tion options. In this section, we #rst describe what one should not do when 
calibrating sets based on interval scales. We then provide a good example of 
how to combine case knowledge and empirical distribution for meaningful 
set calibration. !en, in a separate section, we describe the direct and indirect 
methods of calibration (Ragin 2008a, 2008b).

When calibrating fuzzy sets, it might be tempting to simply transform the 
GDP per capita scale into the 0–1 interval while preserving each case’s relative 
distances to each other.4 When calibrating a crisp set, we might even simply 
want to use the arithmetic mean or the median and to de#ne all cases above the 
mean or median as “in the set” and the others as “out of the set.” Such purely 
data-driven calibration strategies are fundamentally %awed, though. Measures 
like the mean or median are properties of the data at hand and, as such, void of 
any substantive meaning vis-à-vis the concept that one aims to capture with a 
set. Just dropping or adding a case with an extreme value on the GDP per cap-
ita scale will change the mean. Using parameters such as the mean therefore 
implies that the classi#cation of a case does not only depend on its own absolute 
value, but on its relative value with regard to other cases. Why, however, should 
the presence or absence of speci#c cases in the data in%uence the set-member-
ship score of other cases in the set of rich countries? It should not.

!is is why calibration must also make use of criteria for set membership 
that are external to the data. Certainly this does not mean that the distribu-
tion of cases on our raw data should be disregarded. It is simply another piece 
of evidence, but certainly not the sole guidance when calibrating. Along these 
lines, also consider that depending on the research context, one and the same 
raw data translate into di"erent set-membership scores. !is is so because the 
meaning of concepts, and therefore their respective sets, is highly depend-
ent on the research context (Ragin 2008a: 72".). For example, in research on 
EU member states, a GDP per capita of, say, $19,000 (roughly the value for 

3 Here we sidestep the substantive arguments against using GDP as a proxy for “richness” (see, e.g., 
Dogan 1994).

4 !e easiest method here would be to simply divide the GDP of each state by the highest value of GDP 
in the sample.
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Hungary) would not translate into full membership in the set of rich coun-
tries. In the context of a global study, in contrast, Hungary would be a mem-
ber of the set of rich countries. Set-membership values are intrinsic to the 
research in which they are used. !ey are not universal indicators of a concept 
(Collier 1998: 5), but directly depend on the de#nition of a concept, which in 
turn is closely linked to the research context.

A good example to illustrate the calibration of fuzzy sets based on quantita-
tive data is Emmenegger’s (2011) work on job security regulations in selected 
OECD countries. One of his conditions is the fuzzy set “many institutional 
veto points.” !e raw data consists of an additive index based on Lijphart’s 
(1999) data on federalism and bicameralism (Table 1.2). Emmenegger opts for 
a four-value fuzzy scale (0, 0.33, 0.67, and 1). !e location of the qualitative 

Table 1.2 Calibration of condition “many institutional veto points”

  
  
Country

  
Federalism, 
1945–96

  
Bicameralism, 
1945–96 

  
Combined 
indicator

Fuzzy-set membership 
in “many institutional 
veto points”

Australia 5 4 10.00 1.00
Austria 4.5 2 7.00 0.67
Belgium 3.1 3 6.85 0.67
Canada 5 3 8.75 1.00
Denmark 2 1.3 3.63 0.00
Finland 2 1 3.25 0.00
France 1.2 3 4.95 0.33
Germany 5 4 10.00 1.00
Ireland 1 2 3.50 0.00
Italy 1.3 3 5.05 0.33
Netherlands 3 3 6.75 0.67
New Zealand 1 1.1 2.38 0.00
Norway 2 1.5 3.88 0.00
Portugal 1 1 2.25 0.00
Spain 3 3 6.75 0.67
Sweden 2 2 4.50 0.33
Switzerland 5 4 10.00 1.00
UK 1 2.5 4.13 0.00
USA 5 4 10.00 1.00

Source: Emmenegger (2011)
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anchors – the most important decisions to be made when calibrating sets – is 
derived in the following manner. All countries achieving a score lower than or 
equal to that of the UK (4.13 in Emmenegger’s combined indicator) receive a 
fuzzy membership score of 0 in the set of “many institutional veto points.”

Case knowledge is used in an exemplary manner in order to identify and 
justify meaningful qualitative anchors on the composite index that separates 
cases with full non-membership and partial non-membership. A prominent 
gap in the combined indicator between the raw values of 5.05 and 6.75 is then 
used to establish the point of indi"erence. All countries below that gap, but 
above the UK, are assigned a fuzzy value of 0.33. Finally, another gap in the 
combined indicator between 7.00 and 8.75 is used to de#ne full set member-
ship: countries higher than 8.75 are deemed full members of the set of “many 
institutional veto points.”

While there might be room for debate about speci#c decisions in 
Emmenegger’s strategy (e.g., the choice of the indicators or the way of aggre-
gating them), the level of transparency and the combined use of conceptual 
and case knowledge for imposing qualitative anchors represent a good stand-
ard of calibration practice. It allows readers to follow the reasoning behind 
calibration decisions and to either agree or to disagree and, if the latter, to 
make speci#c suggestions for change in the calibration.

1.2.3 The “direct” and “indirect” methods of calibration

Ragin (2008a: 85–105) proposes the so-called “direct” and “indirect” methods 
of calibration. Both apply only to fuzzy and not crisp sets. Unlike in the pre-
vious calibration example, these two techniques are more formalized and rely 
partially on statistical models. !e direct method uses a logistic function to #t 
the raw data in-between the three qualitative anchors at 1 (full membership), 
0.5 (point of indi"erence), and 0 (full non-membership).5 !e location of 
these qualitative anchors is established by the researcher using criteria exter-
nal to the data at hand. !e “indirect method,” by contrast, requires an initial 
grouping of cases into set-membership scores. !e researcher has to indicate 
which cases could be roughly classi#ed with, say, a 0.8 membership in the set; 
with 0.6; 0.4; and 0.2 and so on. Using a fractional logit model, these prelimin-
ary set-membership scores are then regressed on the raw data. !e predicted 

5 Because a logistic function is used, the actual anchors are at 0.95, 0.5, and 0.05.
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values of this model are then used as the fuzzy-set membership scores. !us, 
if interval-scale data are at hand, the direct and indirect method of calibration 
can be fruitfully applied and represent progress in one of the core issues of set-
theoretic methods: the creating and calibration of sets. !e technical details 
are explained in detail by Ragin (2008a, 2008b). Conceptually, the important 
message is, however, that despite the complexity of the underlying statistical 
model, the calibration and thus set-membership scores of cases is predom-
inantly driven by the location of the qualitative anchors. !ese locations, in 
turn, are determined by the researcher, who uses external knowledge rather 
than properties of the data at hand.

Freitag and Schlicht (2009) provide an example of the direct method 
of calibration. In their comparative work on the di"erences in schooling 
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Figure 1.1 Membership in fuzzy set of Länder with underdeveloped all-day schools plotted against percentage 
of pupils enrolled in all-day schools
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systems in the 16 German Länder, they calibrate the set “Länder with 
underdeveloped all-day school system.” !e raw data for calibration con-
sist of the percentage of pupils enrolled in all-day schools in a Land. !ese 
values vary between 2.4% (Bavaria) and 26.6% (!uringia). Because the 
fuzzy set is labeled underdevelopment, high values in the raw data convert 
into low fuzzy-set membership scores and vice versa. !e 0.5 qualitative 
anchors is located at 8.3%, which is exactly the middle of a notable gap in 
the raw data between 6.8% (Lower Saxony) and 9.8% (Saxony-Anhalt); the 
1 anchor is located at 3% (leaving only Bavaria with full membership); and 
the 0 anchor at 20% (assigning 0 to Berlin, Saxony, and !uringia).

If we plot the fuzzy-set membership scores that result from applying the dir-
ect method of calibration (for details, see Ragin 2008a: 84–94) with the quali-
tative anchors just described against the raw data, we clearly see the logistic 
nature of the transformation (Figure 1.1). We also see that  despite the use of 
a (complex) mathematical procedure in the background, the qualitative dif-
ferences between cases’ set membership is clearly driven by decisions that the 
researcher makes based on theoretical considerations and knowledge that exist 
outside the raw data.

Some critiques of the direct and indirect methods of calibration have 
been formulated. First, partly because these calibration techniques can be 
performed by using the relevant so$ware packages (fsQCA 2.5, Stata, or R), 
the temptation might be high to apply them in a mechanistic manner and to 
thus under-appreciate the importance of standards for imposing thresholds 
external to the data. Second, both procedures lead to very #ne-grained fuzzy 
scales, thus suggesting a level of precision that usually goes well beyond the 
available empirical information and the conceptual level of di"erentiation 
that is possible. Put di"erently, these calibration techniques might create an 
impression of false precision. Another issue is the use of the logistic func-
tion for assigning set-membership scores, a choice that is not su&ciently jus-
ti#ed. Calibration procedures using di"erent functional forms are equally 
plausible and, as !iem (2010) shows, do have a measurable impact on the 
set-membership scores. In other words, to some degree, the set membership 
of cases depends on the arbitrary choice of the functional form employed in 
the calibration procedure. We agree that the logistic function is arbitrary and 
that other functions are equally (im)plausible. Yet, as long as the 0.5 anchor 
remains unchanged – and its location should be determined by theoretical 
arguments and never by the functional form – then the e"ect of di"erent 
functional forms on the set-membership scores remains only marginal in 
virtually all scenarios. !e only empirical situation in which di"erences in 
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the functional form of calibration can produce di"erences in set membership 
even if the qualitative anchor remains the same is when set membership is 
highly skewed, i.e., when most cases are located either above or below the 0.5 
qualitative anchor.

1.2.4 Does the choice of calibration strategy matter much?

Both Emmenegger and Freitag and Schlicht have (quasi-)interval-level data 
at hand. Yet, the #rst opts for a qualitative calibration while the latter apply 
the direct method of calibration. Does the choice of calibration strategy 
lead to substantively di"erent membership scores? !e general answer to 
this question is this: as long as the locations of the qualitative anchors are 
carefully chosen and thus not subject to changes in the calibration strat-
egy (theory-guided, direct, indirect, etc.) or the functional form used in 
the semi- automated procedures (logistic, quadratic, linear, etc.), then the 
di"erences in set-membership scores will not be of major substantive 
importance.

In order to illustrate this, let us compare Emmenegger’s qualitative cali-
bration of the set of many institutional veto points with the fuzzy scores that 
result from applying the direct calibration method to the same data. In both 
procedures, we use the same qualitative anchors for full non-membership 
(values below 4.13) and full membership (values above 8.75). For the quali-
tative anchor at 0.5, it is impossible to choose the same value, though. In the 
qualitative calibration, Emmenegger locates it anywhere between the values 
of 5.05 and 6.75. !e direct method of calibration, however, requires a pre-
cise location for the 0.5 cut-o". Here we encounter a major di"erence in cali-
bration strategies: while in qualitative calibration no precise location for the 
0.5 anchor is required, in the direct method a precise value is required. What 
is perhaps even more problematic is that di"erent choices about that precise 
location in%uence the set membership scores of all cases, even those far above 
and below the point of indi"erence. Graphically speaking, the exact shape of 
the S-curve as shown in Figure 1.1 crucially depends on the location of the 0.5 
anchor. Because some discretion is o$en exercised on the exact location of this 
anchor, this introduces at least some level of arbitrariness that is not found in 
the qualitative calibration strategy.

Table 1.3 compares Emmenegger’s original fuzzy set scores with the ones 
obtained by such a use of the direct method of calibration. As the values in 
the last column indicate, the majority of cases display identical membership 
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scores. !is is true for those located at the two extreme ends of the fuzzy scale. 
In addition, no case crosses the crucial qualitative anchor at 0.5 from one cali-
bration strategy to the other. Only the cases with fuzzy set membership scores 
of 0.33 or 0.67 in Emmenegger’s original calibration see a change in mem-
bership score when using the direct calibration approach. However, the di"e-
rence in membership is usually too small to warrant a meaningful substantive 
distinction. !e biggest di"erence occurs for Sweden, which according to the 
direct method of calibration is almost fully out of the set of “many institu-
tional veto points,” whereas the qualitative calibration assigns it a fuzzy value 
of 0.33. !e reason for this is simple: Sweden’s value in the raw data is just 
slightly higher than the UK’s. !is results in a marginal di"erence using the 

Table 1.3 QUALITATIVE versus direct method of calibration for set “many institutional veto points”

Membership in set “many institutional  
veto points”

    
Raw data

Qualitative  
calibration

Direct method  
of calibration

  
Di"erence

Australia 10 1 1 0
Austria 7 0.67 0.76 −0.09
Belgium 6.85 0.67 0.73 −0.06
Canada 8.75 1 1 0
Denmark 3.63 0 0 0
Finland 3.25 0 0 0
France 4.95 0.33 0.17 0.16
Germany 10 1 1 0
Ireland 3.5 0 0 0
Italy 5.05 0.33 0.19 0.14
Netherlands 6.75 0.67 −0.04
New Zealand 2.38 0 0 0
Norway 3.88 0 0 0
Portugal 2.25 0 0 0
Spain 6.75 0.67 0.71 −0.04
Sweden 4.5 0.33 0.09 0.24
Switzerland 10 1 1 0
UK 4.13 0 0 0
USA 10 1 1 0

Adapted from Emmenegger (2011)
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direct method. However, if we just use four categories, such as Emmenegger 
does, then Sweden is part of the next higher category, which is described by 
the fuzzy value of 0.33.

When discussing the usefulness of a purely qualitative approach and of 
semi-automatic procedures such as the direct method, we should not forget 
that Emmenegger’s original data (i.e., Lijphart’s raw data) are not perfectly 
quantitative, whereas Freitag and Schlicht, for example, work with empirical 
quantities. Emmenegger’s values are close to qualitative assessments them-
selves so that a complicated mathematical transformation, such as a logit 
function, might be a less appropriate way of re%ecting the (partial) presence 
of a concept in given cases.

1.2.5 Assessing calibration

We have presented different ways of data calibration: starting off from 
theory-based, or qualitative, calibration strategies, we discussed the use 
of quantitative underlying scales, arriving finally at the semi- automatic 
direct and indirect methods. Of course, we might feel tempted to auto-
matically resort to the latter strategies as soon as underlying quantitative 
measures exist. The hope of higher reliability and validity might motiv-
ate such a choice. By contrast, qualitative forms of calibration are often 
disregarded as being less transparent and less “scientific.” However, this 
criticism is put in a different light if we consider that comparative research 
often relies on indicators generated from quantitative data of questionable 
quality due to issues such as low intercoder reliability; opaque aggrega-
tion strategies; or unclear content validity. For illustration, just think of 
the Freedom House Index as one of the most frequently used indicators of 
democracy used in research (see Munck and Verkuilen 2002 for a detailed 
critique).

Yet another reason why the critique against more theory-guided methods of 
calibration is somewhat misleading lies in the fact that, in practice, analytical 
results derived from QCA are generally robust to slight changes in the calibra-
tion method. !at is to say, most results rarely vary in important ways if a case’s 
membership value is altered slightly. We will come back to this in Chapter 11 
(section 2).

In sum, it is not the principles underlying the assignment of fuzzy values 
which are problematic, but rather it is the temptation to disregard the central 
principles of calibration that causes trouble.
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At-a-glance: the calibration of set membership

The calibration of fuzzy-set membership scores has to be based on theoretical know-
ledge and empirical evidence. Obvious facts, accepted social scientific knowledge, and the 
researchers’ own data collection process all inform the calibration process.

Statistical distributions and parameters of underlying quantitative data can provide use-
ful information for calibration. However, an automatic transformation of quantitative scales 
or the default use of statistical parameters in the calibration process is strongly discour-
aged, as this does not fulfill the requirement of using calibration criteria that are external 
to the data and is thus unlikely to lead to set-membership scores that reflect the meaning 
of the concept that is meant to be captured. A number of mathematical problems further 
discourage such procedures.

The direct and indirect methods of calibration can be applied when interval-scale 
data are at hand and when fuzzy sets (as opposed to crisp sets) are calibrated. These 
semi-automatic ways of transposing quantitative data into set-membership values are a 
valuable addition to the set-theoretic method toolset. Set-membership scores hinge upon 
the definition of the precise location of the qualitative anchors, which, in turn, are deter-
mined based on knowledge outside of the data. Thus, conceptual and theoretical knowledge 
remains the most important feature in these semi-automated calibration techniques.
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2 Notions and operations in set theory

2.1 Conjunctions, Boolean and fuzzy multiplication,  
intersection, logical AND

For the purpose of demonstration, we use a hypothetical example in which a 
researcher is interested in two features of a country: federalism and democracy. 

Easy reading guide

Although QCA stands for Qualitative Comparative Analysis, it would be wrong to believe 
that numbers and mathematical principles do not matter. Set-theoretic methods, in gen-
eral, and QCA, in particular, employ set theory, the logic of propositions, and Boolean and 
fuzzy algebra. While these approaches overlap quite extensively, they provide different per-
spectives on QCA and the kinds of questions that can be tackled with them. A fruitful appli-
cation of set-theoretic methods requires knowledge of these mathematical principles. We 
introduce them in this chapter, because they tend to be less well known than, for instance, 
linear algebra or calculus – the mathematics behind standard statistical approaches. By 
introducing the basics of formal logic and set theory, we also aim at avoiding confusion 
and misinterpretation of set-theoretic methods, which is likely to occur due to superficial 
resemblances in notation and operations to better-known fields in mathematics.

In this chapter, we introduce the three basic operations logical AND (2.1), logical OR 
(2.2), and logical NOT (2.3), and show how they form complex sets in combination (2.4). 
In section 2.5, we explain the principles of those operators that denote relations between 
sets and discuss each of them from the perspective of set theory, logic of propositions, and 
Boolean/fuzzy algebra. A final section (2.6) summarizes the main knowledge which should 
be gained in this chapter.

Readers already familiar with these mathematical sub-disciplines might want to directly 
advance to the At-a-glance boxes in order to find out whether their knowledge is at the 
level of what is taught in this chapter and, if so, they can decide to skip this chapter. Those 
readers who feel that they are not one hundred percent sure what the logical AND operator 
is, for instance, or how to calculate the membership of a case in a complex set, should read 
the chapter from the beginning to the end.
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With crisp sets – and, as we shall see, with fuzzy sets also – four types of coun-
tries are logically possible: federal democracies, non-federal democracies, 
federal non-democracies, and non-federal non-democracies. !ese types are 
represented in rows 1 to 4 in Table 2.1. !e 1-values indicate that a given case 
is a member of the set, the 0-values that it is not a member thereof.

When dealing with fuzzy sets, many more combinations are possible. Rows 
5 to 10 provide some examples for some of them. Note, however, that rows 8, 
9, and 10 all describe similar countries. All of them display fuzzy-set mem-
bership scores below the 0.5 anchor and can thus be described as rather non-
democratic and rather non-federal countries, although to varying degrees. 
!ey are, therefore, fuzzi"ed versions of the cases described in row 4. Equally, 
rows 1 and 6 describe countries that are similar in kind, but di#erent in degree. 
!e same holds for cases in row 7 (similar to row 2), and row 5 (similar to 
row 3). In short, even with fuzzy sets, with their potentially in"nite number 
of combinations of membership scores in D and F, only the four qualitatively 
di#erent types of cases are possible.

If we want to create the set of “federal democracies,” we require both elem-
ents (D and F) to be present. If a country is not federal, then it cannot qualify 
as a federal democracy. Likewise, if a country is not a democracy, it cannot be 
a federal democracy. Only countries which are both federal and democratic 

Table 2.1 Important operations in set-theoretic methods

Sets Operations

  
  
Row

  
  
D

  
  
F

Logical AND/Boolean 
multiplication/ 
intersection/conjunction

Logical OR/Boolean 
addition/union/
disjunction

  
Negation/ 
complement

D * F D + F ~D ~F
1 1 1 1 1 0 0
2 1 0 0 1 0 1
3 0 1 0 1 1 0
4 0 0 0 0 1 1
5 0.1 0.9 0.1 0.9 0.9 0.1
6 0.8 0.7 0.7 0.8 0.2 0.3
7 0.8 0.3 0.3 0.8 0.2 0.7
8 0.4 0.3 0.3 0.4 0.6 0.7
9 0.2 0.1 0.1 0.2 0.8 0.9

10 0.1 0 0 0.1 0.9 1
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can be federal democracies. !e general insight is this: for a speci"c com-
bination of sets to be present, the presence of all its constituent components 
is required. In the other three potential types of countries, at least one com-
ponent is missing and thus the combined set “democratic and federal” is not 
present.

!e logic of propositions uses the operator “AND” in order to denote such 
a combination. If we use a D for “democracy” and an F for “federalism,” then 
the combination of D and F would be called “D AND F,” formally written as 
“D ∧ F.” !is is also called a conjunction, or a logical AND conjunction.

Combination through logical AND is also known in Boolean and fuzzy 
algebra, where it is called a Boolean, or fuzzy, multiplication. In the literature, 
a star (*) is o$en used as the symbol denoting this operation. !is combin-
ation thus reads: D*F. Alternatively, we can "nd a dot (·), reading D·F, or, even 
more commonly, the letters denoting the conditions are just reported without 
any operator (DF).

Finally, in set theory, the combination of elements is called an intersection. 
!e two components of the combination are understood as sets in which coun-
tries can be members or not. Set D contains all democracies and excludes all 
non-democracies, while set F contains all federal countries and excludes all 
non-federal countries. !e area where sets D and F overlap – the intersection 
of D and F – is where all those countries are located that are both democratic 
and federal and ful"ll the joint requirement. !is intersection is denoted as 
D ∩ F.

!e way to calculate a case’s membership score in a conjunction is to take 
the minimum value of the case’s membership across the sets that are com-
bined. !is is rather intuitive when using crisp sets (rows 1 to 4 in Table 2.1): 
when both elements are present, the case scores a value of 1 for both elements 
and thus receives a score of 1 in the AND combination, as 1 is the minimum 
across these scores. If only one of the two elements is present, a case receives a 
0 score in one element (1 in the other one) and thus also a 0 score in the con-
junction, since 0 is the minimum value across the elements that are combined 
by logical AND. Consequently, when both elements are absent (scoring 0), a 
case’s score for the conjunction is also 0.

!e same minimum rule is also used when dealing with fuzzy sets. !e 
membership of case 5 in the intersection of D and F (i.e., its membership in 
the set of federal democracies) is 0.1 (the minimum of 0.1 and 0.9). Similarly, 
case 6 has a membership of 0.7 (the minimum of 0.7 and 0.8), etc. Just as 
in crisp sets, in fuzzy sets the so-called principle of the “weakest link in the 
chain” is used for the logical AND operator.
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Notice that the minimum aggregation principle runs counter to the pre-
dominant practice of data aggregation in most social science disciplines, 
where the arithmetic average is o$en used (Goertz 2006b). For instance, a 
case in row 7, with membership in D of 0.8 and in F of 0.3, would receive a 
score of 0.65 using the average, whereas the minimum rule, as dictated by for-
mal logic and set theory, yields a membership score of 0.3. Using the average 
as an aggregation strategy yields higher scores because higher values coun-
terbalance lower ones. When using the logical AND operator, instead, both 
constitutive sets are seen as indispensable for the overarching concept. For 
cases like those in row 7, this leads to quite important di#erences from a set-
theoretic perspective. Using the average, these cases are classi"ed as more in 
than out of the set of federal democracies. !e minimum aggregation rule, 
instead, classi"es them as more out than in. Hence, di#erent aggregation rules 
can lead to qualitatively di#erent membership scores. Whether the average or 
the minimum (or other possible) aggregation rule makes more conceptual 
sense depends on the de"nition of the concept to be measured (Goertz and 
Dixon 2006).

2.2 Disjunctions, Boolean and fuzzy addition, union, logical OR

Another operator crucial for set-theoretic approaches describes logical alter-
natives. Such an alternative is realized if at least one of the components of a 
combination is present. Applied to our example, we are now interested in 
countries that are democratic or federal, i.e., they satisfy at least one of the 
requirements.

For this operation, the logic of propositions uses “OR” (“D OR F”). !is 
logical statement is “TRUE” when one of the components can be observed. 
Logical OR describes a disjunction and is denoted as D ∨ F. !e symbol “∨” is 
derived from the Latin word “vel,” which is one of the two Latin terms for “or,” 
the other being “aut.” In English there is just one word (“or”) making it more 
di%cult to distinguish between an inclusive “or” (Latin: vel) and an exclusive 
“or” (Latin: aut). An inclusive “or” indicates that a logical OR connection is 
present if at least one of the elements connected through this operator is pre-
sent. So, the disjunction D ∨ F is true if the country under study is either D or 
F, or if it is both, since the presence of just one of the two elements is su%cient 
to render the disjunction present. As column 5 in Table 2.1 shows, this is true 
for all but one possible type of case. If, instead, the exclusive OR (denoted as 
XOR or ExOR) which allows for only one element to be present (but not for 
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both) had been used, then the type of case in row 1 of Table 2.1 would not 
be an instance of D XOR F. Note that set-theoretic methods use the inclusive 
OR.

Boolean and fuzzy algebra denote the logical OR by using a “plus” sign 
(“+”), and this is called a Boolean OR in the former and a fuzzy addition 
in the latter.1 !is might lead to confusion for two reasons. First, most 
languages read the “+” sign with the word “and.” As we have just learned, 
though, the equivalent for logical AND in the use of the logic of propos-
itions is the multiplication (*) rather than the addition. !is means that 
users must not read the Boolean “+” as an “and” in the conventional sense. 
!e second potential confusion is that an addition can lead to di#erent 
results in conventional linear algebra and Boolean algebra. In both algebras 
the following holds:

0 + 0 = 0; 1 + 0 = 1; and 0 + 1 = 1.
!e di#erence is that in linear algebra

1 + 1 = 2,
whereas, in Boolean algebra, it is

1 + 1 = 1.2

In Boolean and fuzzy algebra, a case’s score for a logical OR expression is 
calculated through the maximum value across the single components. !is 
is straightforward with crisp sets: if both conditions democracy and federal-
ism are absent in a case (D = 0; F = 0), then a case’s score in the disjunction 
democracy OR federal (D + F) is 0, i.e., the maximum score across the single 
values 0 and 0. If either D or F or both are present, the score for D + F is 1, 
again the maximum score across all conditions. !e maximum scoring rule 
for the logical OR also holds in fuzzy sets. For example, the case in row 5 of 
Table 2.1 has a membership of 0.9 in D + F, i.e., the maximum of 0.1 and 0.9.

Just like the minimum value, the use of the maximum value runs counter 
to predominant practices of data aggregation, yet o$en seems to be the more 
adequate mathematical translation of concepts whose meanings are verbally 
de"ned (Goertz and Dixon 2006). !is application of the maximum rule to 
fuzzy sets also shows well why the “+” sign means two di#erent things in the 
various algebras and that the application of linear algebra is o$en inappropriate 

1 !e exclusive OR is denoted by a ⊕ sign.
2 Both elements are present. Consequently, (at least) one of the alternatives is present. More than presence 

(= values above 1) cannot occur in Boolean algebra, nor can they in the logic of propositions or in set-
theory. An element cannot have greater than full membership in a set.
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when dealing with sets. Consider cases in row 6 of Table 2.1: simply adding 
up the membership scores in D and F, we would obtain a value of 1.5. !is is, 
of course, meaningless from a set-theoretic and logical point of view, as cases 
cannot be more than full members of a set. Set membership has its absolute 
maximum at 1.

In set theory, the logical OR is called a union and is denoted as D ∪ F. It 
describes the set of cases that are a member in at least one participating set.

2.3 Negations, complements, logical NOT

!e third crucial operator for performing set-theoretic methods is the neg-
ation (or the complement) of a statement. In order to denote the group of all 
non-democracies, propositional logic uses ¬D (the logical NOT), Boolean 
algebra “1−D,” and set theory D !. Calculating a case’s score in the negation of 
a set is straightforward: simply subtract a case’s score for the presence of the 
element from 1. A case with D = 1 has a score for ¬D of 1 − 1 = 0, a case with 
D = 0 has in ¬D a membership of 1 − 0 = 1. !e same rule also applies to fuzzy 
sets. A case such as the one in row 5 of Table 2.1 with D = 0.1 has a value of ¬D 
= 1 − 0.1 = 0.9. In the set theory-based literature, the notations “~D” or “d” 
(lower case) are also frequently used to denote a logical negation.

It is important to understand that the complement of a set does not auto-
matically denote the conceptual counterpart. For instance, the set of all not-
rich persons is not automatically identical to the set of poor persons. Many of 
our readers would not identify themselves as rich (and are thus not members 
of the set of all rich persons). At the same time, most of the readers would also 
not qualify as being poor. More generally speaking, the complement of sets 
o$en comprises many di#erent cases. For instance, the set of non-democra-
cies comprises very di#erent types of political regimes, ranging from totalitar-
ian to sultanistic, one-party, military, or theocratic regimes. It is particularly 
important to take stock of this diversity when trying to attribute some causal 
role to the negation of a set (see section 4.3.3).

2.4 Operations on complex expressions

Each of the three operators taken alone is relatively simple and straightfor-
ward to apply. !eir usefulness for social science data analysis unfolds when 
they are combined in order to create (sometimes quite complex) logical 
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expressions. In the following, we introduce commutativity, associativity, and 
distributivity and explain the Role of Excluded Middle and DeMorgan’s law. 
Finally, we show how the three basic logical operators are used in order to 
produce complex sets and how the membership of cases in complex sets is 
calculated.

2.4.1 Rules for combining logical operators

A number of mathematical rules govern the three crucial operators intro-
duced above (see for example Klir et al. 1997: 37). Commutativity means that 
the order in which two or more elements are connected through AND and 
OR is irrelevant. Instead of A * B, we could write B * A; similarly, A + B is 
equivalent to B + A. Note that this does not hold for the complement, though: 
1 − A is not the same as A − 1.

Associativity means that, with the same operators, the sequence in which 
single elements are combined is unimportant. If, for instance, we want to cre-
ate the conjunction of the three elements A, B, and C, then it does not matter 
if we "rst create a conjunction of A and B (A * B) and then combine the result 
with C – the formula for this would be (A * B) * C – or if we "rst combine B 
and C and then combine this (B * C) with the remaining factor A, that is to 
say, A * (B * C). Put in more formal terms:

(A * B) * C = A * (B * C) = (A * C) * B.
!e same rule holds for the disjunction:

(A + B) + C = A + (B + C) = (A + C) + B.
Distributivity refers to the fact that, when both AND and OR operators are 
used in the same logical expression, elements which are shared by the various 
components can be factored out:

A * B + A * C = A * (B + C) or, using simpler notation: AB + AC = A (B + C).
!ere are two further operations which merit special attention. If we cre-
ate the union of a set with its complement – in other words, if we combine 
into one single set all the elements which are members in the set and all 
the elements which are not in the set – then the universal set will result. 
!is universal set includes all possible elements and is denoted as follows: 
A ∪ ~A = U. If, instead, we intersect a set with its complement, then the 
“empty set” will result: A ∩ ~A = Ø. !ere is no single element that a set 
and its complement have in common. !is is a direct consequence of the 
de"nition of the complement: it excludes all members of the original set 
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and includes all non-members of the original set. While this second pat-
tern may seem rather straightforward, it is not an unimportant insight, 
since it tells us that an element cannot be at the same time a member of a 
set and of the complementary set. However, it is important to underline 
that this fundamental principle, also known as the “Rule of the Excluded 
Middle,” does not apply to fuzzy sets. With fuzzy sets, one particular case 
can have partial membership in both the original set and its complement. 
It should be pointed out, though, that even in fuzzy sets it is impossible for 
the same case to be simultaneously more in than out of both a set and its 
complement. In other words, a case can only have a set membership score 
above the qualitative anchor of 0.5 in either a set or its complement, but not 
in both. !is is an important feature because fuzzy sets "rst and foremost 
establish qualitative di#erences between cases that are above and below the 
0.5 qualitative anchor.

2.4.2 Negation, intersection, and union of complex sets

When applying set theory, the three main logical operators are not only applied 
to single sets but also to more complex logical expressions. For instance, and 
as extensively discussed in section 11.3, researchers sometimes formulate the 
existing theoretical literature on a given topic in the form of a Boolean expres-
sion T. Let T stand for the expression F + G*(~H + ~I). !e empirical analysis 
of the same researcher might then lead to a following solution term S. Let 
S stand for ~FG + G~H. Using Boolean algebra, we can now calculate the 
negation of T or of S, respectively, the intersection between T and S, and the 
union of T and S (see 11.3).

!e negation of (complex) logical statements is governed by DeMorgan’s 
law. !is law is based on two rules: "rst, if a statement is negated, then all 
the single elements which have been present before become absent, and vice 
versa. If we want to negate, for example, the very simple statement A + B, then 
we have to write ~A instead of A and ~B instead of B. !e second rule is that 
the logical operators also have to be inverted: the OR operator (+) becomes 
the AND operator (*) and vice versa. Applying these two rules, the negation 
of an expression such as A + B becomes ~A*~B. Based on DeMorgan’s law, we 
can therefore write:

~(A + B) = ~A*~B.

Let us apply DeMorgan’s law to the expression of T = F + G*(~H + ~I) to 
"nd its negation. For reasons of clarity, let us add one more (super'uous) 
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pair of parentheses which makes the structure clearer: F + [G*(~H + ~I)].3 
Following DeMorgan’s law, the components F, G, ~H, and ~I are converted 
into ~F, ~G, H, and I. !e previously "rst-level addition becomes a multipli-
cation (“*”): ~F * […]. !e second factor of this multiplication is converted 
from a second-level multiplication into a second-level addition: ~F * [~G + 
(…)]. Finally, the third-level addition becomes a third-level multiplication 
and thus: ~F * [~G + (H*I)]. If we now apply the distributivity rule, ~F*~G + 
~F*H*I results. !us, following DeMorgan we write:

~[F + G(~H + ~I)] = ~F~G + ~FHI.
!e intersection between T and S (T * S) is calculated in the following way:

(F + G*(~H + ~I)) * (~FG + G~H).
Following the distributivity rule, G is multiplied with both ~H and ~I and the 
inner parentheses of T are thus eliminated. !e intermediate result is:

(F + G~H + G~I) * (~FG + G~H).
Now, every summand of the expression for T is multiplied with every sum-
mand of the expression for S:

F~FG + FG~H + G~H~FG + G~HG~H + G~I~FG + G~IG~H.
Since the intersection of G and G is G and of ~H and ~H is ~H, some expres-
sions can be shortened, and, following the commutativity rule, the letters 
denoting the sets can be put in alphabetical order for the sake of clarity:

F~FG + FG~H + ~FG~H + G~H + ~FG~I + G~H~I.
!e "rst expression F~FG represents an empty set, since it includes an inter-
section of F and its complement ~F. F and ~F do not have any elements in 
common, so that the intersection and thus the expression represent an empty 
set. Furthermore, the expressions FG~H, ~FG~H, and G~H~I are all subsets 
of the expression G~H. Since these four expressions are linked with a logical 
OR, it is su%cient to keep G~H and to eliminate the subsets FG~H, ~FG~H, 
and G~H~I: if we create the union between a set and its subset, then this cor-
responds to the original set. !us, the term can be reduced to:

G~H + ~FG~I.
Following the distributivity rule, this can be further simpli"ed and the inter-
section T * S be written as:

3 !e logical expression describes a ("rst-level) addition whose second summand G*(~H + ~I) is itself a 
(second-level) multiplication whose second factor (~H + ~I) is a (third-level) addition.
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G(~H + ~F~I).
!e union of T and S is calculated in the following manner:

T + S = (F + G*(~H + ~I)) + (~FG +G~H).
Again, with the help of the distributivity rule, G is multiplied with both ~H 
and ~I and the inner parentheses of T are eliminated:

(F + G~H + G~I) + (~FG + G~H).
Since this term represents a Boolean addition (see the central +) of two 
Boolean additions, we can omit the parentheses and write:

F + G~H + G~I + ~FG + G~H.
G~H is mentioned twice and G~H + G~H = G~H. If we then apply the dis-
tributivity rule, the union T + S is:

F + G(~H + ~I + ~F).4

2.4.3 Calculating membership in complex sets

No matter how complex logical expressions are, the membership of each case 
boils down to one number. In order to show this, take the four cases displayed 
in Table 2.2. For all of them, we know the set membership scores in the single 
conditions F, G, H, and I. Based on this, and using the logical operators intro-
duced above, we can calculate the membership for each case in the complex 
expression F + G(~H + ~I).

Let us explain how we proceed for case 3, using the example of the expres-
sion F + G(~H + ~I). As in conventional linear algebra, we have to start our 
calculation with the inner parenthesis, which is ~H + ~I. Because of the 
logical OR, we need to identify the maximum membership score. H is 0.9 and 
thus ~H is 0.1. I is 0.4 and ~I 0.6. !e maximum of 0.1 and 0.6 is 0.6. In order 
to get now the value for the multiplication G(~H + ~I), we have to choose the 
minimum (because of the logical AND) of G (0.2) and (~H+ ~I), which we 
have just calculated as 0.6. !is minimum is 0.2. !e "nal OR requires us to 
take the maximum of this 0.2 and the value for F, 0.7. !is is 0.7. Hence, the 
membership score of case number 3 of Table 2.2 in the complex expression 
is 0.7.

Determining membership in complex sets is important in set-theoretic 
methods, and more o$en than not it is necessary to perform this type of 
4 In the online How-to section for this chapter, we explain how to use the Tosmana 1.3.2. so$ware in order 

to apply DeMorgan’s law.
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operation. As we will see throughout this book, empirical results in set 
theory, so-called solution terms, o$en look like the complex expression in 
Table 2.2 and we will want to know the membership of our cases in such a 
solution. Also, there are good reasons to "nd the intersection between our 
theory-driven expectations, on the one hand, and the empirical solutions 
derived from our data, on the other hand, a process we describe in sec-
tion 11.3 under the label theory evaluation in set-theoretic methods.

2.5 Relations between sets

All operators presented so far are used to produce new sets from exist-
ing sets. In set-theoretic methods, in general, and in QCA, in particular, 
the aim is to go beyond this and to investigate the relationship between 
(complex) sets. Whenever such relationships are interpreted in a causal 
manner, the terminology of “conditions” and “outcome” sets is applied. 
As an example, imagine a researcher is interested in why some countries 
are democratic (D). Suppose also that the claim is that being democratic 
depends on whether a country is located in Western Europe (W). !e out-
come set is the set of democracies. Some countries are members of this set; 
others are not. !e condition set is the set of Western European countries. 
Again, some countries are members of this set while other are not. !e goal 
now is to "nd out how these two characteristics of countries relate to each 
other.

From a set-theoretic perspective, conditions and outcomes are either sub-
sets, supersets, or equivalent sets of each other. In this example, the set of all 
Western European countries is a subset of the set of all democracies. Every 
country that quali"es as Western European is also a democracy. At the same 

Table 2.2 Determining membership in complex sets

Single sets Complex expression

Case F G H I F + G(~H + ~I)

1 1 0 1 0 1
2 0 0 1 1 0
3 0.7 0.2 0.9 0.4 0.7
4 0.1 0.2 0.8 0.7 0.2
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time, however, not every democracy is located in Western Europe – just 
think of the USA, Canada, Australia, etc. Formally, this  subset relation is 
denoted as W ⊂ D. !is is equivalent to saying that the set of all democra-
cies is a superset of the set of all Western European countries, denoted as D 
⊃ W. Every element of W is also an element of set D. Or, whenever we see an 
element with characteristic W, we also see that it has characteristic D.

!e commutativity rule does not apply to set relations. If W is a subset of 
D, then D is not a subset of W; thus

W ⊂ D ≠ D ⊂ W.
To use more straightforward language: while all elements in W also show 
property D (being democratic), not all elements in D also display W (being 
Western European), i.e., there are cases that display D without displaying W 
(the aforementioned non-Western European democracies). When set rela-
tions are interpreted in a causal manner, as is o$en done in set-theoretic 
methods, we are then confronted with an asymmetric causal relationship: 
these relations only work in a unidirectional mode, and cannot be inverted. 
In section 3.3.3, we elaborate further on asymmetry as a central feature of set-
theoretic thinking.

!e logic of propositions formulates this relation as an “if … then …” state-
ment: if a country is Western European, then it is a democracy. Formally, we 
write W ⇒ D and call this an “implication.” In the literature, we o$en "nd a 
single arrow denoting this relationship: W → D. In line with most other QCA 
publications, we also opt for this single arrow. In other words, one property 
(W) implies the other (D). Equivalent to the set-theoretic perspective, the 
following holds: W → D ≠ D → W: an “if … then …” statement cannot be 
inverted.

One important property of these inclusion relations (Smithson and 
Verkuilen 2006) is that they are directly related to the important notions of 
“su%ciency” and “necessity.” !ese concepts, in turn, are at the core of set-the-
oretic methods. It is therefore fair to say that whenever set-theoretic methods 
are employed in order to investigate potentially causal relations between a set 
of conditions and an outcome set – as is done in QCA – then the aim essen-
tially consists in unraveling necessary and su%cient conditions and combin-
ations of these two types of causes, such as INUS (Mackie 1965) and SUIN 
(Mahoney et al. 2009) conditions. Understanding that these types of causes 
denote subset relations, and that, in turn, these set relations are asymmetric 
in nature, is crucial for grasping various methodological intricacies that one 
encounters when applying set-theoretic methods to social science problems. 
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Since asymmetry and other issues, such as equi"nality and conjunctural caus-
ation, are also directly related and equally constitutive of set-theoretic meth-
ods, we dedicate the whole of section 3.3 to this topic.

2.6 Notational systems in set-theoretic methods

We have explained most logical operators from three “perspectives”: prop-
ositional logic, Boolean algebra, and set theory. However, note that the dif-
ferences between them are not clear-cut. !e fact that they o$en get blurred 
in applied QCA does not do any harm other than confusing readers about 
notational systems. !is chapter has aimed at mitigating this confusion about 
terminology and symbols and at enabling users to apply a consistent use of 
symbols and terminology in their QCA-based research. Table 2.3 summarizes 
the symbols and their meaning.

It is not important which system of reference is used. As such, symbols 
are neither right nor wrong. What matters is that in any given context their 
meaning is clear and their usage consistent. In this book, we use the follow-
ing symbols: We denote the logical AND (conjunction, intersection) with 
the symbol “*” or leave it out where appropriate; the logical OR (disjunction, 
union) with “+”; and the negation with “~”.5 One major reason that we choose 
these symbols here is simply that they are all easily available on everybody’s 

5 !e use of lower-case characters in order to indicate a negation is not recommended (Goertz and 
Mahoney 2010, 2012) as, for many letters, it is o$en di%cult to distinguish capital from lower-case letters 
(just think of P/p, L/l, I/i, M/m, etc.)

Table 2.3 Basic operations and notations in set-theoretic approaches

Operator Logic of propositions Boolean algebra Set theory

AND Conjunction
∧

Multiplication
*, (·)

Intersection
∩

OR Disjunction
∨

Addition
+

Union
∪

NOT Complement
¬, ~

Negation
1−D

Negative Set

Inclusion  If–then relation
→, ⇒

  Subset
⊂
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keyboards and thus do not require the use of formula editors or speci"c text-
processing packages.

Regarding terminology, we shall use “condition” and “outcome” for what 
in other research contexts are o$en referred to as “independent variable” and 
“dependent variable.” Where appropriate, a condition is called a necessary or 
a su%cient condition. If a condition consists of several conditions connected 
by the logical AND operator, we may refer to this as a path, a conjunction, or 
a term. Furthermore, if several of those paths are combined by logical OR, we 
refer to this as a solution term, a solution formula, or simply a solution. !e 
term “equation” should be avoided because set relations are asymmetric in 
nature, i.e. set-theoretic results simply do not denote relations of equality but 
of inequality.6 Accordingly, we use the symbols → (for su%ciency) or ← (for 
necessity) rather than the “=” sign.

We now embark on a detailed discussion of the concepts of necessity and 
su%ciency (Chapter 3), and then we turn to the concept of truth tables and 
their logical minimization as a powerful way of identifying necessary and suf-
"cient conditions (Chapter 4).

At-a-glance: notions and operations in set theory

Set theory is closely related to the logic of propositions and Boolean algebra.
In all three mathematical sub-disciplines, it is possible to formulate set relations and 

basic operations. In set theory, these are called “intersection,” if they are based on the 
logical AND; “union” in case of the logical OR; a “complementary set” (or, more simply, 
a “complement”) if the opposite of a set is expressed; and a “subset” if one set fully 
includes another one.

The membership value of a case in an intersection of sets is determined by the min-
imum of all its memberships values in the components (Boolean or fuzzy multiplication). 
The membership value of a case in a union of sets is determined by the maximum of all 
its membership values in the components (Boolean or fuzzy addition). The membership 
value of a case in the complement of a set can be calculated by subtracting the original 
membership value from 1. The latter implies that the Rule of the Excluded Middle does 
not hold for fuzzy sets.

All the operations can also be combined with one another. As in linear algebra, multipli-
cation prevails over addition.

For the logical AND and the logical OR, the commutativity, associativity, and distribu-
tivity rules hold.

Subset and superset relations help us to analyze necessary and sufficient conditions.

6 !e only exception is when two sets perfectly overlap. As the subsequent chapters clearly show, this situ-
ation is very rarely encountered in applied set-theoretic methods.
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3 Set relations

Easy reading guide

In the previous chapters, we have presented basic information on sets and set theory. These 
are important prerequisites for grasping what is the fundamental interest when applying 
set-theoretic methods: unraveling patterns of necessary and sufficient conditions.

We start this chapter with a presentation of sufficient conditions (3.1), before dealing 
with necessary conditions (3.2). For both sufficient and necessary conditions, we start 
by introducing general principles based on crisp sets and then move on to fuzzy sets. As 
before, this is done for didactic reasons, since crisp sets conform more to our everyday 
thinking, and it is thus easier to grasp the concepts of sufficiency and necessity based on 
crisp sets before extending them to fuzzy sets.

Since the notions of sufficiency and necessity are such a central building block of set-
theoretic methods, it is worthwhile to discuss their logic from different angles. We do so 
by using a stylized data matrix, a two-by-two table, a Venn diagram, and an XY plot. In 
Chapter 4, we add a truth table perspective to this.

After discussing the principles and notions of sufficiency and necessity, we spell out 
what type of results are produced by QCA. The key concept in section 3.3 is that of causal 
complexity, a term that we define in detail and thus differentiate from the sort of results 
generated by other common research methods in comparative social sciences.

Both the technical and epistemological parts of this chapter are absolutely central for 
the understanding of the book. Our experience in teaching set-theoretic methods tells us 
that some problems of understanding at more advanced levels have their roots in a flawed 
notion of the basics of sufficiency and necessity and the general epistemology of QCA. 
Therefore, we strongly suggest an intensive reading of this chapter, even to those read-
ers who think themselves familiar with the argument – a refresher never hurts, especially 
when more complicated accounts of these topics are ahead.
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3.1 Sufficient conditions

3.1.1 Crisp sets

3.1.1.1 Basic logic of su!ciency
Given some plausible theoretical arguments, a condition can be considered 
su!cient if, whenever it is present across cases, the outcome is also present 
in these cases. In other words, there should not be a single case that shows 
the condition but not the outcome. Say, for example, we claim that being a 
Western European country (X) is a su!cient condition for being a democracy 
(the outcome Y). If this claim is true, all countries in Western Europe would 
also have to be democracies; no Western European country can be a non-
democracy. As shown in section 2.5, this can be expressed as follows:

X → Y.
"is statement should be read: “if X, then Y,” or “X implies Y,” or “X is a subset 
of Y.” Based on this statement, what do we know about the value of Y in cases 
that do not show a positive value for X? Asked another way, what expecta-
tions about the outcome value do we have for countries that are not located in 
Western Europe (~X)? Does our claim that X is su!cient for Y automatically 
mean that ~X implies ~Y? "e answer is no! But why?

"e statement that X is su!cient for Y generates expectations on the value 
of Y only for cases that display X. All cases that are not members of X are not 
relevant for the statement of su!ciency. "at is to say, they neither help to 
verify nor falsify our claim, independently of whatever value of Y these cases 
might display. While counterintuitive at #rst sight – especially for anybody 
with thorough training in correlational methods – the statement “if X, then 
Y” creates expectations for values on Y only when X is present. It does not 
generate any such expectation, or any expectation at all, in cases where ~X is 
present. It follows that countries in places other than Western Europe (~X) 
can be stable democracies (Y) or not stable democracies (~Y) – and indeed 
there are plenty of both types – neither of which con#rms or contradicts the 
statement that X is su!cient for Y.

Cases with ~X are logically irrelevant for statements of su!ciency of X 
because set relations are asymmetric. X and ~X denote two qualitatively dif-
ferent phenomena with potentially very di$erent roles in bringing about 
the outcome. If we con#rm su!ciency of X for Y (X → Y), then we cannot 
automatically deduce that ~X would imply ~Y. "is would only work if suf-
#ciency denoted a symmetric relation between X and Y, which it does not. 
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As a consequence, this also means that, if we have con#rmed the su!ciency 
of X for Y, we have still learned close to nothing about the causes of outcome 
~Y – apart from the fact that there will certainly be no case with a simultan-
eous occurrence of X and ~Y. "is means that, with a hypothesis claiming 
su!ciency of X for Y, we cannot say anything about the su!ciency of ~X 
for Y or for ~Y, nor can we account well for ~Y. We elaborate further on this 
asymmetrical causality in section 3.3.3.

In short, when we hypothesize that X is su!cient for Y, then the following 
patterns in the data will con#rm our hunch: #rst, we expect to see cases with 
both X and Y. Second, we expect no case with X and ~Y. "ird, we do not have 
any expectations about the value of Y for cases with ~X. Hence, our claim X 
→ Y is falsi#ed if and only if we #nd cases that are simultaneously members 
of both X and ~Y.

Table 3.1 shows a stylized data matrix with four cases. “0” indicates that the 
condition or outcome is not present, and “1” indicates that the outcome or 
condition is present. With one crisp-set condition and one crisp-set outcome, 
four cases are logically possible. For the test of su!ciency, only those with X 
= 1 are of interest. If there are cases with X = 1 and Y = 1 and no cases with 
X = 1 and Y = 0, then we have empirical evidence supporting the claim that 
X is su!cient for Y. Of course, whether this empirical evidence is enough to 
warrant an interpretation of su!ciency ultimately depends on whether there 
are also convincing theoretical arguments supporting this claim.

Figure 3.1 illustrates the same claim of su!ciency in a simple two-by-two 
table. Again, only cases with X are relevant (column X = 1). If cell b contains 
cases while cell d is devoid of cases, then we have empirical support for our 
claim that X is su!cient for Y, regardless of how many cases might be found 
in cells a and c.

Another way of presenting su!ciency is through a so-called Venn diagram.1 
"e diagram visualizes the relationship between sets by using overlapping cir-
cles or other shapes located within a rectangular frame. Each circle contains 
those cases that are members of the set that the circle represents. If, for example, 
we are interested in Western European countries, all cases that adhere to this 
criterion fall within the same circle. All other cases that are not members of the 
set fall outside the circle. "e rectangle around the circles denotes the universal 
set. In social science research, this delimits the set of all cases that are relevant 
to the research question, i.e., that fall within the scope conditions (Walker and 
Cohen 1985) of the study. Venn diagrams are a powerful tool for displaying 

1 "is type of chart is named a%er John Venn, who – like George Boole, the father of Boolean algebra – 
was a nineteenth-century English mathematician.
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relations between sets. If, in addition to Western countries (X), we are also 
interested in stable democracies (Y), we draw a second circle that contains all 
cases with stable democracies, while all non-stable democracies are located 
outside this circle. Depending on if and how these two circles overlap, di$erent 
set relations between X and Y can be a!rmed.

If X is su!cient for Y, then the circle for set X is fully contained in the circle for 
set Y. X is called a subset of Y. Figure 3.2 represents such a relation of su!ciency. 
As we can see, set Y is larger than set X. Y contains more elements than X. "e 
central area where both X and Y are present (X, Y) corresponds to the #rst row 
in Table 3.1 and cell b in Figure 3.1; the area outside X but inside Y (~X, Y) cor-
responds to the third row and cell a; and the area outside X and outside Y (~X, 
~Y) corresponds to row 4 and cell c. One might wonder where row 2 from Table 
3.1 or cell d from Figure 3.1 can be found in this Venn diagram. Remember that 
if X is su!cient for Y, then the combination (X, ~Y) must not occur, i.e., it must 
be empty of cases. Consequently, there is no such area in this Venn diagram.2

Table 3.1 Sufficiency: stylized data matrix

Case Condition (X) Outcome (Y) With respect to the su!ciency of X for Y …

A 1 1 allowed
B 1 0 not allowed
C 0 1 allowed (but irrelevant)
D 0 0 allowed (but irrelevant)

Y 

X 

1 

d

not allowed

c
allowed

(but not relevant)
0 

0 1 

b

allowed

a

allowed
(but not relevant)

Figure 3.1 Two-by-two table – sufficiency

2 Of course, in empirical social research, it is common that the sets X and Y only partially overlap, 
i.e., that there are also some cases that are members of X but not of Y (X, ~Y). From Chapter 5 
onwards, we discuss this issue and spell out what needs to be done when neat set theory and formal 
logic meet noisy social science data.
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As the #gure suggests, the circle for X does not #ll the circle for Y completely. 
"erefore, X does not account for all cases that are members of Y. If it did, X 
would be both su!cient and necessary for Y. "is implies that in addition to X, 
there must be other subsets of Y which all represent other su!cient conditions 
of Y. In section 3.3, we address this issue under the label equi#nality, which itself 
is one constitutive element of set-theoretic causal complexity. "e smaller the 
area covered by X is, the smaller is its empirical importance as a su!cient con-
dition, an issue we discuss in detail in section 5.3 under the label coverage.

3.1.1.2 A formal analysis of su!ciency in csQCA
Let us use a hypothetical example (Table 3.2) to apply our knowledge about 
su!cient (and later necessary) conditions. Each column denotes a di$erent 
condition or the outcome, and each row a di$erent case. "e case labels are 
indicated in the “Cases” column.

We are interested in the conditions for a stable democracy (Y) in selected 
Latin American countries. We suspect membership in three sets to play a role: 
violent upheavals in the past (A); an ethnically homogeneous population (B); 
and a pluralistic party system (C). All conditions and the outcome are de#ned 
as crisp sets: a country is either a full member of it or a full non-member.

We start by asking which individual conditions (A, B, and/or C, respect-
ively) are su!cient for outcome Y. Beginning with condition A, we ask: “Is a 
violent upheaval (A) su!cient for the stabilization of a democracy (Y)?” If A 
is su!cient for Y, then, wherever A occurs, Y should also occur. Furthermore, 
no case with condition A may be linked to ~Y. Since we are trying to explore 
a claim of su!ciency, only those cases that contain the condition of interest, 
i.e., those where A takes on the value of 1, are relevant. In Table 3.2, A has a 

Set Y

Set X

X, Y ~X, Y ~X, ~Y

Figure 3.2 Venn diagram – sufficiency
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value of 1 for Argentina, Peru, Bolivia, Ecuador, Uruguay, and Venezuela. We 
can see that A is linked to ~Y in the case that we begin with, Argentina. "is 
is enough by itself to show that A is not a su!cient condition for Y, regardless 
of what happens in the other cases.3

Condition B (ethnic homogeneity) is present in Argentina, Bolivia, 
Chile, Brazil, and Venezuela. Were B to be a su!cient condition for Y, the 
Y value would have to be 1 for all these countries. We can see that this 
is also an incorrect statement. Argentina, Bolivia, and Venezuela are not 
members of the set of stable democracies (~Y), and it thus follows that eth-
nic homogeneity cannot be considered a su!cient condition for a stable 
democracy.

Condition C (a pluralistic party system) is present in Argentina, Brazil, 
Uruguay, Paraguay, and Venezuela. If C were su!cient for Y, there would also 
have to be a stable democracy in these same rows. "is holds true for Brazil, 
Uruguay, and Paraguay, but not for Argentina or Venezuela. We therefore also 
conclude that C is not su!cient for Y.

Table 3.2 Hypothetical data matrix with ten cases and set-membership 
scores in three conditions and the outcome

Conditions Outcome

Row Cases A B C Y

1 ARG 1 1 1 0
2 PER 1 0 0 0
3 BOL 1 1 0 0
4 CHI 0 1 0 1
5 ECU 1 0 0 0
6 BRZ 0 1 1 1
7 URU 1 0 1 1
8 PAR 0 0 1 1
9 COL 0 0 0 1

10 VEN 1 1 1 0

Y = set of countries with stable democracies
A = set of countries with violent upheavals in the past
B = set of countries with ethnically homogeneous population
C = set of countries with pluralistic party system

3 From Chapter 5 onwards, we present strategies for handling less than perfect set relations.
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"us, neither condition A nor B nor C is su!cient for Y on its own. Does 
this mean that the empirical data displayed in Table 3.2 do not demonstrate 
any conditions su!cient for Y? Not really, as we have not completed all pos-
sible analyses.

So far, we have tested only the su!ciency of conditions in cases where 
they were present. Remember, though, that the data denote set-membership 
scores. Conditions can therefore take on two qualitatively di$erent states: 
they can be either present (1) or absent (0). Because conditions and their 
complements denote two qualitatively distinct properties, they also need 
to be analyzed independently. A next step in the analysis of su!ciency is 
therefore a su!ciency test for the complements of A, B, and C, i.e., ~A, ~B, 
and ~C.

Table 3.3 facilitates this task by including the three complements to the data 
matrix displayed in Table 3.2, ~A (no violent upheavals in the past), ~B (an 
ethnically non-homogeneous society), and ~C (no pluralistic party system). 
Note that both data matrices contain exactly the same information; Table 3.3 
just expands the presentation of information.

Is ~A a su!cient condition for Y? As we see, ~A is present in Chile, Brazil, 
Paraguay, and Colombia, so only those cases are relevant for the analysis of 
su!ciency. Just as before, if ~A is a su!cient condition, Y needs to be pre-
sent in all of the same cases. "is is indeed the case, so we can interpret the 
absence of violent upheavals as a su!cient condition for a stable democracy. 
Applying the same logic of analysis to conditions ~B and ~C reveals that nei-
ther quali#es as a su!cient condition for Y. Bolivia (for condition ~C) and 
Peru and Ecuador (both for ~B and ~C) provide evidence against these con-
ditions having su!ciency. Our analysis of the complements thus reveals that 
the absence of a violent upheaval (~A) is a su!cient condition for a stable 
democracy (Y).

Does this fully answer the question of which conditions – according to 
the information contained in Table 3.2 (and Table 3.3) – are su!cient for Y? 
Actually, it does not. Take a look at Uruguay. It does not demonstrate condi-
tion ~A (it does not have a lack of violent upheavals), yet it displays the occur-
rence of Y. It achieves a stable democracy (Y) without the su!cient condition 
~A. "is means that there are alternative routes to achieving Y, and that Y can 
even occur in the presence of violent upheavals (A). "is is, as explained, not 
evidence against the claim that ~A is su!cient for Y. It raises the question, 
though, of which su!cient conditions account for those instances of Y that 
are not explained, or covered, by ~A.
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Since the explanation (or coverage, as we will call it from section 5.3 
onwards) of Y is not yet complete, our search for su!cient conditions 
continues. A%er examining all conditions A, B, and C and also their com-
plements (~A, ~B, and ~C) we now turn to the investigation of the com-
binations of conditions. If A and B on their own fail the test of su!ciency, 
it is still possible that their simultaneous occurrence (i.e., the conjunction 
A*B) is su!cient for Y. Perhaps countries that are simultaneously character-
ized by a violent past upheaval and a homogeneous society are also stable 
democracies.

In order to #nd out whether logical AND conjunctions of single conditions 
qualify as su!cient conditions for the outcome, we add some further columns 
to our original data matrix (Table 3.4). Again, these additional columns do not 
alter the original empirical information displayed in Table 3.2 but simply serve 
as a better illustration. For reasons of presentation, we include only three con-
junctions: A*B, A*C, and B*C. "e logical values in their respective columns 
indicate whether the speci#c combination is present in a given case (1) or is not 
(0). For example, combination A*B (ethnically homogenous countries with a 
violent upheaval in the past) is only present in those cases where both A and B 
are present. Cases that are neither members of A nor of B, in addition to those 
that are non-members in both, must also not be members of conjunction A*B.

Table 3.3 Hypothetical data matrix with complements of three conditions

Conditions Outcome

Row Cases A B C ~A ~B ~C Y

1 ARG 1 1 1 0 0 0 0
2 PER 1 0 0 0 1 1 0
3 BOL 1 1 0 0 0 1 0
4 CHI 0 1 0 1 0 1 1
5 ECU 1 0 0 0 1 1 0
6 BRZ 0 1 1 1 0 0 1
7 URU 1 0 1 0 1 0 1
8 PAR 0 0 1 1 1 0 1
9 COL 0 0 0 1 1 1 1

10 VEN 1 1 1 0 0 0 0

See Table 3.2
~A = set of countries with no violent upheavals in the past
~B = set of countries with no ethnically homogeneous population
~C = set of countries with no pluralistic party system
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As can be seen in Table 3.4, only a few countries are members of conjunc-
tions. "is is a direct consequence of the minimum value rule dictated by 
the logical AND. Notice that the predominance of zeros for conjunctions 
is, in fact, conducive to #nding a su!cient condition: fewer rows are rele-
vant for the test of su!ciency. Put in graphical terms, the set of, say, A*B 
is much smaller than the set of Y, which, in turn, makes it more likely that 
A*B is contained in, or is a subset of, Y. Put in common-sense terms, the 
more we re#ne country characteristics (by combining more sets through 
logical AND), the fewer cases display these features and the more likely it 
is that those that do ful#ll the criteria are also members of the outcome set 
“stable democracy.” For instance, hypothesizing that in order to be a stable 
democracy (Y), it is su!cient to be a small country AND rich AND located 
in the heart of Europe AND with a long tradition of democratic practices 
AND be called Switzerland is a safe bet. However, if we do this, many fewer 
cases will exhibit our composite set. "is might make it easier to con#rm 
the su!ciency of a combined set. But precisely because it singles out fewer 

Table 3.4 Hypothetical data matrix with some conjunctions

Conditions Outcome

Row Cases A B C A*B A*C B*C ~B*C Y

1 ARG 1 1 1 1 1 1 0 0
2 PER 1 0 0 0 0 0 0 0
3 BOL 1 1 0 1 0 0 0 0
4 CHI 0 1 0 0 0 0 0 1
5 ECU 1 0 0 0 0 0 0 0
6 BRZ 0 1 1 0 0 1 0 1
7 URU 1 0 1 0 1 0 1 1
8 PAR 0 0 1 0 0 0 1 1
9 COL 0 0 0 0 0 0 0 1

10 VEN 1 1 1 1 1 1 0 0

See Table 3.3
A*B = set of countries with violent upheaval in the past AND ethnically homogeneous 
population
A*C = set of countries with violent upheaval in the past AND a pluralistic party system
B*C = set of countries with ethnically homogeneous population AND a pluralistic party 
system
~B*C = set of countries without ethnically homogeneous population AND with a pluralistic 
party system
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observable cases, the condition becomes empirically, and probably also the-
oretically, less important.

Despite all this, we see that none of the AND conjunctions A*B, A*C, and 
B*C ful#lls the criterion of su!ciency. Of course, many more combinations 
between the three conditions and their complements can be formed. "ese 
three conjunctions combine just two conditions in their presence. Other pos-
sible combinations would include the conditions in their complement and 
would also allow AND combinations involving three conditions. Displaying 
all possible combinations would expand the data matrix beyond what can #t 
on this page, and screening it for the presence of su!ciency would get quite 
cumbersome. We therefore skip this step and instead, as an illustration, insert 
only one more column displaying the conjunction ~B*C, which happens to 
be su!cient for Y.

Conjunction ~B*C is present in Uruguay and Paraguay, where Y is also 
present. It follows that ~B*C is a su!cient condition for Y. Above we saw that 
su!cient condition ~A explained, or covered, the occurrence of outcome Y 
in Chile, Brazil, Paraguay, and Colombia. Su!cient condition ~B*C covers 
Uruguay and Paraguay. All cases that are members of Y are therefore covered 
by at least one of the two su!cient conditions. Paraguay is covered both by 
condition ~A and by combination ~B*C, a phenomenon we discuss in further 
detail in Chapter 5.

One powerful, succinct way of summing up our #ndings from the analysis 
of the information contained in the data matrix is to express it in the form of 
a solution formula. For our example, it looks as follows:

~A + ~B*C → Y.
"e formula should be read in the following way: the absence of a violent 

revolution or the combination of an absence of an ethnically homogeneous 
population and the presence of a plural party system is su!cient for a stable 
democracy. We remind the reader that the logical operator OR is an inclusive 
(and not an exclusive) “or” and allows for both alternatives to be present at the 
same time. "is, as shown, indeed applies to Paraguay.

3.1.2 Fuzzy sets

3.1.2.1 Basic logic of su!ciency
With crisp sets, the statement that X is su!cient for Y requires the non-exist-
ence of cases where X = 1 and Y = 0. In a two-by-two table, the respective 
cell needs to be devoid of cases. What, however, happens once we move from 
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crisp to fuzzy sets? Since the latter allow for graded membership, none of the 
three presentational forms discussed so far can be used.

"e conceptual equivalent to a two-by-two table in fuzzy sets is a so-
called XY plot (Ragin 2000). Its axes display the fuzzy-set membership 
scores of cases in the set of condition X and outcome Y. With crisp sets, 
cases can only be located exactly in the four corners of an XY plot. With 
fuzzy sets, however, cases can be anywhere in the area of this plot, includ-
ing the corners.

In case of crisp sets, if the condition is su!cient, then cases may exist only 
in three out of the four corners of this plot: the top le% (X fully absent, Y fully 
present), the bottom le% (X and Y fully absent), and the top right (X and Y 
fully present). Only the bottom right corner cannot contain any cases; if it 
does, then the condition is not considered su!cient. We can represent this as 
shown in Figure 3.3.4

With fuzzy sets, if X is su!cient for Y, which areas of the XY plot must be 
empty of cases? In other words, which geometric #gure divides the XY plot in 
such a way that if one of the areas does not contain cases, then X is a subset 
of Y?

Recall that with crisp sets the subset relation of su!ciency requires that 
each case’s membership in X is equal to or smaller than its membership in Y. 
In a two-by-two table, this implies that the cell with X = 1 and Y = 0 is void of 
4 X can stand for single condition or complex expressions. See section 2.4 for how to calculate the set-

membership score of cases in complex expressions.
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Figure 3.3 XY plots in crisp-set analysis – distribution of cases for sufficient conditions
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cases. "e very same requirement applies to fuzzy sets. For su!ciency, each 
case’s fuzzy-set membership score in X must be equal to or smaller than its 
fuzzy-set membership in Y (Ragin 2000: 237).

"is subset relation can be clearly visualized in an XY plot. "e main diag-
onal – the line that runs from the bottom le% (0,0) corner to the top right 
(1,1) corner – divides the area into two regions. "e main diagonal itself 
describes cases where membership in X and Y are identical (X = Y). "e area 
above the main diagonal contains cases with a membership in X smaller than 
in Y (X < Y), while the area below the main diagonal contains cases with a 
membership in X greater than in Y (X > Y). It follows that in fuzzy sets, X is 
a subset of Y if all cases fall above the main diagonal (Figure 3.4).

3.1.2.2 A formal analysis of su!ciency in fsQCA
As with crisp sets, an analysis of su!ciency can be performed for every single 
condition, its complement, or every combination of conditions and comple-
ments. We continue with the example from above and assign fuzzy-set mem-
bership scores for each case in each condition (these fuzzy values are chosen 
as examples and are not based on substantive evidence). In order to main-
tain better comparability, crisp-set membership scores of 0 are translated 
into fuzzy-set membership scores smaller than 0.5 and crisp-set membership 
scores of 1 into fuzzy-set membership scores higher than 0.5.

Since the basic requirements for su!ciency are the same in crisp and fuzzy 
sets, the search for su!ciency looks identical. But because the underlying 
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empirical information is not identical, the analysis does not necessarily have 
to yield the same solution formula. For a condition to be su!cient for Y, each 
case’s membership in the condition must be equal to or smaller than its mem-
bership in Y. "is means that all cases with non-zero membership in the con-
dition are relevant for the test of su!ciency, regardless of whether they are 
above or below the qualitative anchor at 0.5.

We perform the analysis of su!ciency only for the two conditions that 
in the crisp-set analysis turned out to be su!cient (~A and ~BC) and for 
one more conjunction, AB. Argentina, Bolivia, and Venezuela contradict the 
statement that condition AB is su!cient for Y. Conjunction ~BC, instead, 
ful#lls this criterion: the fuzzy value of ~BC is always less than or equal to the 
fuzzy value of the outcome. ~A, however, which we identi#ed in the crisp-set 
example as a su!cient condition, does not pass the test based on fuzzy sets: 
Argentina, Peru, Bolivia, Chile, and Brazil all have higher membership scores 
in ~A than in Y. "us, the result of the analysis of su!cient conditions is:

~BC → Y.
"e XY plot in Figure 3.5 graphically displays our #nding. All cases are above 
or on the main diagonal.

Table 3.5 Hypothetical data matrix with fuzzy-set membership scores

Conditions Outcome

Row Cases A B C ~A AB ~BC Y ~Y

1 ARG 0.8 0.9 1 0.2 0.8 0.1 0.1 0.9
2 PER 0.7 0 0 0.3 0 0 0.2 0.8
3 BOL 0.6 1 0.1 0.4 0.6 0 0.3 0.7
4 CHI 0.3 0.9 0.2 0.7 0.3 0.1 0.6 0.4
5 ECU 0.9 0.1 0.3 0.1 0.1 0.3 0.4 0.6
6 BRZ 0.2 0.8 0.9 0.8 0.2 0.2 0.7 0.3
7 URU 0.9 0.2 0.8 0.1 0.2 0.8 0.8 0.2
8 PAR 0.2 0.3 0.7 0.8 0.2 0.7 0.9 0.1
9 COL 0.2 0.4 0.4 0.8 0.2 0.4 1 0

10 VEN 0.9 0.7 0.6 0.1 0.7 0.3 0.3 0.7

Y = set of countries with stable democracies
~Y = set of countries with non-stable democracies
A = set of countries with violent upheavals in the past
B = set of countries with ethnically homogeneous population
C = set of countries with pluralistic party system
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In sum, it is usually more di!cult to #nd perfect subset relations for fuzzy 
sets than for crisp sets (Ragin 2009: 114f.). "is means that some more &exi-
bility is needed and perfect su!ciency cannot be the only goal of such an ana-
lysis. We discuss this issue of deviance from perfect set relations in Chapter 5.

3.2 Necessary conditions

3.2.1 Crisp sets

3.2.1.1  Basic logic of necessity
As we will see, the logic behind a necessary condition follows a pattern that 
can be viewed as the mirror image of that for a su!cient condition. Since 
much of what we have learned when introducing su!ciency is directly rele-
vant for the analysis of necessity, our discussion of necessity can be shorter. 
We start with crisp sets and then continue on to fuzzy sets.

Generally speaking, a condition X is necessary if, whenever the outcome Y 
is present, the condition is also present. In other words, Y cannot be achieved 
without X; no case with Y displays ~X; on the presence of ~X, Y is impos-
sible. As an example, we hypothesize that a peaceful regime transition (X) 
is a necessary condition for a stable democracy (Y). Based on this claim, we 
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expect to #nd only cases of peaceful transitions among stable democracies. At 
the same time, we have no expectations about cases that are not democracies 
(~Y) and whether they experienced a peaceful transition (X) or not (~X). A 
relation of necessity can be written as follows. We do have, however, expecta-
tions about cases with ~X, namely, they should also display ~Y.

X ← Y (read: “if Y, then X,” or “Y implies X,” or “Y is a subset of X”).

"e fact that the arrow now points from the outcome to the conditions does 
not, of course, mean that Y causes X. "e statement “if Y, then X” entailed in 
the arrow only refers to the logical, or set-theoretical, relationship between 
two sets, not to a causal relationship. It might be better formulated as “Y logic-
ally implies X” or, in set-theoretic terms, “Y is a subset of X.”

Just as with su!ciency, with necessity only some types of cases are rele-
vant for corroborating this claim. While with su!ciency only those cases that 
are members of condition X matter, with necessity only those cases that are 
members of outcome Y matter. We have an expectation about the value of X 
only for cases with Y: we expect all cases with Y to also display X. Cases with 
~Y are not covered by the claim that X is necessary for Y, and we are therefore 
not interested in the value of X in those cases.

In essence, case selection for claims of necessity comes down to this: when 
investigating a statement of necessity, one has to focus on cases for which the 
outcome is known to be present. In other words, when analyzing a neces-
sary condition, one should select on the dependent variable and make sure 
that values in the outcome are constant. In&uential writings on social science 
methodology have identi#ed both practices as two of the biggest mistakes 
in comparative social science research designs and have claimed that noth-
ing can be learned from such designs (King et al. 1994: 129$.; Geddes 2003). 
Clearly, this view must be quali#ed (see also Munck 1998; Dion 2003; Brady, 
Collier, and Seawright 2004; Ragin 2004: 129). "e asymmetric nature of set 
theory clearly tells us that the analysis of necessity makes it a more than plaus-
ible strategy to focus on cases where the outcome is present. Cases that do 
not display membership in the outcome are of much less interest. Of course, 
most set theory-based applications are not exclusively interested in necessity 
but also in su!ciency, and most of these applications need to handle devia-
tions from perfect set relations (see Chapter 5). In both scenarios, taking into 
account cases of ~Y is wise advice.

Table 3.6 displays the four logically possible cases that can empirically occur 
when focusing on one condition and one outcome. "e last column indicates 
which of them are allowed and which are not if X is, indeed, necessary for Y. 
Identical to the assessment of su!ciency, cases with (X, Y) are allowed and 
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cases with (~X, ~Y) are irrelevant. Di$erences exist with respect to rows 2 and 
3. If X is necessary for Y, then cases with (X, ~Y) are irrelevant, while cases 
with (~X, Y) should not be observed.

"e logic of necessary conditions can also be expressed in a two-by-two 
table. Only cells a and b are relevant for the test of necessity, for only they con-
tain cases that exhibit the outcome of interest (Y = 1). Cell b, which corres-
ponds to row 1 in Table 3.6, is allowed to contain cases, whereas cell a, which 
corresponds to row 3, must be empty.

Finally, Figure 3.7 shows a Venn diagram where X is necessary for Y. "e area 
representing the set of all cases with Y is fully included within the set of all cases 
exhibiting X. Y is a subset of X. "ere are more elements in X than in Y, and – 
visually speaking – the set of X is larger than the set of Y. At the same time, as 
the area outside Y but within X shows, there are cases with X but without Y. "is 
does not contradict the statement of necessity. It simply shows that X is only 
necessary, but not also su!cient for Y. Finally, Figure 3.7 does not display any 
area with cases that display Y but not X, as required by the logic of necessity.

3.2.1.2 A formal analysis of necessity in csQCA
"e procedure for identifying necessary conditions is similar to that for test-
ing su!cient conditions, with a di$erent group of cases now being relevant. 

Table 3.6 Data matrix – necessity

Case Condition (X) Outcome (Y) With respect to the necessity of X for Y …

1 1 1 allowed
2 1 0 allowed (but not relevant)
3 0 1 not allowed
4 0 0 allowed (but not relevant)

1 

1 

0 

0 

X 

Y 

not allowed
a

c
allowed

(but not relevant)

d
allowed

(but not relevant)

b
allowed

Figure 3.6 Two-by-two table – necessity
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"e logic of a necessary condition dictates that whenever the outcome is pre-
sent, the necessary condition is also present. "is implies that, for tests of 
necessity, only those cases where the outcome is present have to be checked.

We continue with our example of the conditions for stable democracies, 
now also including the complements of the three conditions A, B, and C, and 
the logical OR combination ~A+C (Table 3.7). Outcome Y is present in Chile, 
Brazil, Uruguay, Paraguay, and Colombia. Testing for necessity consists of 
#nding out, which, if any, of the conditions is present in all these cases. Let us 
start with condition A. It fails this test when we come to Chile, since Y is pre-
sent, while A is not. Other cases cause us to arrive at the same conclusion for 
conditions B and C. Hence, neither A, B, or C is necessary for Y.

We now turn to the complements ~A, ~B, and ~C. Condition ~A (absence 
of a violent upheaval) is present in Chile, Brazil, Paraguay, and Colombia, as 
is outcome Y. However, outcome Y is also present in Uruguay, while ~A is 
absent. "is contradicts the statement that ~A is necessary for Y, and ~A is 
therefore not a necessary condition for Y. Likewise, the necessity tests for con-
ditions ~B and ~C reveal that these also fail to meet the criteria for a neces-
sary condition. From this we can conclude that none of the three conditions 
or their complements is necessary for Y on their own.

Remember that in the analysis of su!ciency, our strategy included test-
ing whether any logical AND combinations of single conditions passed the 
su!ciency criterion. In looking at necessity, however, this strategy does not 
make any sense. "e reason for this is as follows. "e logical AND operator 
requires taking the minimum value across the conditions. "is reduces the 
chances that the conjunction passes the necessity test, as necessity requires 

Set X

Set Y

X, Y X, ~Y ~X, ~Y

Figure 3.7 Venn diagram – necessity

 



Set relations73

that membership in the condition is equal to or higher than in the outcome. 
Pure formal logic dictates that no AND combination can pass the test of 
necessity unless it is exclusively formed by single conditions that pass the test 
of necessity on their own. Non-necessary conditions cannot form a conjunc-
tion that is necessary. One important practical research insight derives from 
this: the analysis of necessity should start by investigating single conditions. 
Only if two or more single conditions pass the necessity test does it make 
sense to investigate whether a logical AND combination between these indi-
vidually necessary conditions also quali#es as a necessary condition. In some 
circumstances there will be such a combination and in others there will not.

An example might be helpful here to clarify this point. Let Z stand for the 
set of good exam grades, S for studying hard, and G for being in a good mood. 
Furthermore, let the conjunction S*G be necessary for Z. "at is, the only 
students who receive good grades (Z) are those who studied hard AND are 
also in a good mood on the exam day. In order for this statement to be true, 
every student with a good exam grade must have studied hard. Likewise, all 
students with good grades must also be in a good mood. In set-theoretic ter-
minology: if the intersection between sets S and G fully contains the set of Y 
as a subset (i.e., if the area S*G is a superset of Z), then the areas for set S alone 
and for set G alone must also be supersets of Z.

Now that it is clear that the use of AND conjunctions is of no help in cre-
ating necessary conditions, we could simply conclude that our hypothetical 

Table 3.7 Hypothetical data matrix with all complements of single conditions and conjunction ~A + C

Conditions Outcome

Row Cases A B C ~A ~B ~C ~A + C Y

1 ARG 1 1 1 0 0 0 1 0
2 PER 1 0 0 0 1 1 0 0
3 BOL 1 1 0 0 0 1 0 0
4 CHI 0 1 0 1 0 1 1 1
5 ECU 1 0 0 0 1 1 0 0
6 BRZ 0 1 1 1 0 0 1 1
7 URU 1 0 1 0 1 0 1 1
8 PAR 0 0 1 1 1 0 1 1
9 COL 0 0 0 1 1 1 1 1

10 VEN 1 1 1 0 0 0 1 0

See Table 3.5
~A + C = set of countries with no violent upheavals in the past or with pluralistic party 
system
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data matrix in Table 3.7 does not contain any necessary conditions. "is is a 
perfectly legitimate result and is a frequent conclusion in applications of set-
theoretic methods to observational social science data. A given social phe-
nomenon does not need to have any necessary conditions.

Assume for a moment that we are not happy with the #nding that there is 
no necessary condition for our outcome (stable democracy). How could we 
still produce such a condition solely on the basis of the information available 
in our sample data? "e key to this can be found in the observation that it did 
not make sense to use AND combinations because their value is determined 
by the minimum of the components. "erefore, making use of the logical OR 
operator could be more fruitful for an analysis of necessity, since this operator 
follows the maximum value scoring rule: the highest value across the condi-
tions which are part of a logical OR expression determines the membership 
of cases in that union. "us, using the logical OR for combining single condi-
tions creates a new set in which more cases tend to be members, i.e., the size 
of the set increases. "is, in turn, makes it more likely that such an OR com-
bination is a superset of – and thus potentially necessary for – the outcome.

For example, based on conditions ~A and C we could form the union 
~A+C. It describes the set of cases that have no violent upheaval or do have 
a pluralistic party system. Column ~A+C in Table 3.7 indicates the cases in 
which this speci#c union is present. As the values in this column show, the 
logical OR operator leads to many 1 values. And, indeed, condition ~A+C is 
present wherever Y is present and thus passes the criterion for being a neces-
sary condition for Y.

"e more general insight is this: by combining conditions via logical OR, 
unions of conditions can be created that can pass the test of necessity even 
if none of the single conditions are necessary for the outcome on their own. 
"is strategy ought to be used with care, though, because creating necessary 
conditions by forming unions of sets is very easy. "erefore, the important 
caveat is that this strategy only makes sense if there are strong and plaus-
ible theoretical or substantive arguments to support the claim that the condi-
tions combined by logical OR operate as functional equivalents (Adcock and 
Collier 2001) of some higher-order concept. Applied to our example, claim-
ing that ~A+C is a necessary condition only makes sense if we can plausibly 
argue that there is a common concept that manifests itself empirically either 
through the absence of a violent upheaval (~A) or a pluralistic party system 
(C), or through both. In our hypothetical example, no such plausible higher-
order concept comes to mind. We would therefore advise against interpreting 
~A+C as a necessary condition for Y.
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In the literature, the practice of using functional equivalents in order to 
develop statements of necessity is more common than seems to be acknowl-
edged. For instance, Emmenegger (2011) argues and empirically demonstrates 
that both stable state–society relations and non-market coordination are indi-
vidually neither necessary nor su!cient for strong job-security regulations. 
Likewise, Mahoney et al. (2009: 126) refer to the democratic peace literature 
as a prominent example for functionally equivalent necessary conditions. For 
instance, if a non-democratic dyad (X) is necessary for war (Y) and X is indi-
cated by di$erent characteristics of a political system (absence of elections, 
absence of rule of law, etc.), then none of these characteristics is necessary for 
Y, but each of them is su!cient for X.5

In order to demonstrate a more straightforward example of identifying a 
necessary condition, we use the empirical information in Table 3.7 and choose 
non-stable democracies (~Y) as the outcome of interest. Are there any con-
ditions that are shared by all members of the outcome set ~Y (cases in rows 
1–3, 5, and 10)? It turns out that condition A is, in fact, present in all cases of 
~Y. We therefore have empirical support for the claim that a violent upheaval 
(A) could be interpreted as a necessary condition for non-stable democracies 
(~Y). "is #nding can be expressed in the following formula:

A ← ~Y.

3.2.2 Fuzzy sets

3.2.2.1 Basic logic of necessity
In the case of necessary conditions, the logic of transferring the insights from 
a two-by-two table to an XY plot is similar to those for su!ciency. "e empir-
ical distribution of cases that is allowed if X is necessary for Y is displayed in 
Figure 3.8. Parallel to su!ciency relations, for necessity, each case’s fuzzy-set 
membership score in X must be equal to or greater than its fuzzy-set mem-
bership in outcome Y. X is a superset of Y, and, graphically, all cases fall on or 
below the main diagonal.

3.2.2.2 A formal analysis of necessity in fsQCA
We perform the analysis of necessity using ~Y as our outcome of interest 
(Table 3.5). All cases with non-zero membership in outcome ~Y are relevant 
for the analysis of necessity. "is means only Colombia is not considered at 
all. While with crisp sets, condition A was a perfect superset of ~Y, the same 

5 Such conditions are SUIN conditions (see note 2 above and section 3.3.2).
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does not hold true with our fuzzy-set data. Argentina, Peru, Bolivia, Chile, 
and Brazil all display a membership in set Y that exceeds their membership in 
set A, thus contradicting the statement of necessity.

"e fact that A is not a superset of ~Y is neatly captured in the XY plot 
displayed in Figure 3.9. If A were necessary for ~Y, the area above the main 
diagonal would need to be empty of cases. In Chapter 5, under the label of 
parameters of #t, we extensively discuss strategies for handling less-than-
 perfect set relations.

3.3 Causal complexity in set-theoretic methods

When justifying the choice of QCA, researchers o%en refer to the mid-sized 
N argument (Ragin 2000: 25; see also the section on QCA as a set-theoretic 

At-a-glance: sufficient and necessary conditions

In crisp-set logic and in everyday thinking, a condition is sufficient if, whenever the con-
dition is present, the outcome is also present. Formally, a condition is sufficient, if X ≤ Y for 
all cases. This denotes an asymmetrical relationship. In the representational form of Venn 
diagrams, X is a subset of Y. In an XY plot, all cases fall above or onto the main diagonal.

A condition is necessary, if, whenever the outcome is present, the condition is also pre-
sent. Formally, a condition is necessary, if X ≥ Y for all cases. This also denotes an asym-
metrical relationship. In a Venn diagram, Y is a subset of X. In an XY plot, all cases fall 
below or onto the main diagonal.
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Figure 3.8 XY plot – distribution of cases for necessary condition X
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approach in the Introduction). Where the number of cases is too big for con-
ventional small-N comparative approaches and too small to allow for the full 
power of (advanced) statistical techniques, so the argument goes, QCA has 
a distinct advantage. We believe that QCA is indeed able to #ll a methodo-
logical gap in those rather common scenarios where between 10 and 50 cases 
(or so) are compared. However, we think that the central argument in favor 
of using QCA should not be the number of cases to be investigated. First, 
QCA can also be fruitfully applied to hundreds or thousands of cases (e.g., 
Ragin and Fiss 2008; Cooper and Glaesser 2011b; Fiss 2011). More import-
antly, the choice of method should be driven by the theories and expectations 
about the underlying causal processes at hand. If a researcher is interested in 
linear additive e$ects of single variables independent of any other causal fac-
tor, there are sophisticated and powerful statistical data analysis techniques 
available. QCA would be an inadequate methodological choice, regardless of 
the number of cases at hand. If, however, there are good reasons to believe 
that the phenomenon to be explained is the result of a speci#c kind of causal 
complexity, QCA is an adequate methodological choice, again, regardless of 
the number of cases at hand.

In the following, we de#ne the type of causal complexity produced by set-
theoretic methods, explain the logic of INUS and SUIN conditions, then spell 
out the meaning and implication of asymmetric causal relations, and #nish 
with a discussion on the di$erences between set relations and correlation 
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and, by virtue of this, between set-theoretic methods and regression-based 
approaches.

3.3.1 Defining causal complexity

If the key to a fruitful application of set-theoretic methods is the match 
between the type of causal complexity derived from theory-guided hunches 
on the one hand, and assumptions built in by default into set-theoretic 
methods on the other, then it is crucial to understand just what kind of 
causal complexity set-theoretic methods are good at unraveling. "is type 
of causality is de#ned by three characteristics: equi#nality, conjunctural 
causation, and causal asymmetry (Lieberson 1985; ch. 9, Ragin 1987, 2000, 
2008a; Mahoney 2008).

"e assumption of equi!nality allows for di$erent, mutually non-exclusive 
explanations of the same phenomenon. "e assumption of conjunctural caus-
ation foresees the e$ect of a single condition unfolding only in combination 
with other, precisely speci#ed conditions. "e assumption of causal asym-
metry has several components. It implies that (a) a causal role attributed to a 
condition always refers to only one of the two qualitative states – presence or 
absence – in which this condition can potentially be found and (b) any solu-
tion term always refers to only one of the two qualitative states – presence or 
absence – in which an outcome can be found (for more on asymmetry, see 
section 3.3.3).

Clearly, all three features of causal complexity are intrinsically interlinked 
and directly derived from the notions of necessity and su!ciency. "e exist-
ence of a su!cient but non-necessary condition automatically implies equi-
#nality, as this means that there are cases in the data that achieve the outcome 
without the su!cient condition. "us, at least one other su!cient condition 
must exist. "is is a direct consequence of asymmetric causality. "e exist-
ence of a necessary but non-su!cient condition automatically implies con-
junctural causation, since this necessary condition must be combined with 
another condition (or the union thereof) in order to imply the outcome.

QCA produces results that reveal these aspects of causal complexity. In 
order to illustrate this, let us have a look at typical QCA solution formulas for 
su!ciency, one for the outcome Y and one for its non-occurrence ~Y:

A*B + ~B*C + D*~F → Y

~A*F + B*C*~D → ~Y.
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Such a result displays all three aspects of causal complexity. It is equi#nal, 
as indicated by logical OR operators. More than one path can lead to the same 
outcome. It is conjunctural, as indicated by the presence of logical AND oper-
ators. Single conditions play a causal role only in the context of other factors. 
And it is asymmetric because the solution formulas for Y and ~Y are neither 
identical nor logical mirror images of one another.

3.3.2 INUS and SUIN conditions

"e focus on equi#nality and conjunctural causality, inspired through asym-
metry, makes it possible to handle types of causes that are prominent in quali-
tative research and which are notoriously di!cult to handle in quantitative 
research. "ese are conditions that alone are neither necessary nor su!cient 
yet play a crucial role in bringing about the outcome. "ese are so-called 
INUS and SUIN conditions and set-theoretic methods are particularly well 
equipped to capture their role (Western 2001: 357).

INUS stands for a condition that is an “insu!cient but necessary part of 
a condition which is itself unnecessary but su!cient for the result” (Mackie 
1974: 62; Goertz 2003: 68; Mahoney 2008). QCA solution formulas are full of 
INUS conditions. Consider condition A in the following solution term:

A*B + ~B*C + D*~F → Y.
Condition A exerts its e$ect on Y only in combination with condition B. 

It is therefore insu!cient on its own but needed (i.e., necessary) to form a 
su!cient conjunction together with B. "e su!cient conjunction A*B, in 
turn, is not the only path to the outcome, i.e., it is unnecessary. "us, condi-
tion A alone is, as the de#nition goes, insu!cient, but it is a necessary part 
of a conjunctural condition which is itself unnecessary but su!cient for the 
result. It can be seen that INUS conditions are closely tied to the equi#nal 
and conjunctural character of causal complexity. Equi#nality shows that 
there are alternatives to su!cient conditions. "erefore, equi#nal causal 
relations are mirrored in the “condition which is itself unnecessary but suf-
#cient for the result” from the INUS de#nition. "e notion of conjunctural 
causation refers to that part of the de#nition which described INUS condi-
tions as “insu!cient but necessary parts of a condition.” In other words, 
single conditions are o%en not su!cient on their own, but need to be com-
bined with others.

SUIN stands for a “su!cient, but unnecessary part of a factor that is 
insu!cient, but necessary for the result” (Mahoney et al. 2009: 126). "e 
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concept of SUIN conditions is more related to the analysis of necessity. In 
section 3.2.1.2, we discussed the issue of necessary conditions that are cre-
ated by using the logical OR operator and interpreted these OR-combined 
conditions as functional equivalents of a higher-order necessary condi-
tion. SUIN conditions are the constitutive parts of such higher-order con-
structs. An example of SUIN conditions is shown by the following solution 
formula:

(A+B) * (C+~D) ← Y.
"ere are two necessary conditions: the unions A+B and C+~D. Each 

union taken alone is insu!cient for producing Y. Both single components 
of the union – that is, A and B for the #rst parenthesis and C and ~D for 
the second – are themselves not necessary parts, but mutually substitutable 
(and therefore su!cient) elements of necessary conditions for Y. Condition 
A is an alternative necessary condition to B, B to A, C to ~D and ~D to C. 
Neither condition is indispensable, but they ful#ll alternatively the require-
ments for necessity. Just like the su!ciency solution term above, this also is 
a causally complex statement: due to the inherent asymmetric nature of the 
necessity relation described by SUIN conditions, both an equi#nal element 
(“su!cient, but unnecessary part of a factor”) and a conjunctural element (“a 
factor that is – taken alone – insu!cient, but necessary for the result”) can 
be seen.

It is important to point out, though, that the way we de#ne causal com-
plexity here is only one possible de#nition. Other views exist and not all of 
them coincide with the type of results produced by QCA.6 Most importantly, 
there are de#nitions of causal complexity that put emphasis on the unfolding 
of factors over time. Aspects such as time, timing, sequencing, or feedback 
loops (Abbott 2001; Pierson 2004; Grzymala-Busse 2010) are commonly dealt 
with in intensive analyses of few cases, o%en under the label process tracing 
(George and Bennett 2005; Hall 2006; Collier 2011). Unless special provi-
sions are made, such as conceptualizing and measuring conditions in a way 
that they re&ect temporal aspects or by measuring cases at di$erent points in 
time, QCA produces results that are static in nature. In section 10.3, we dis-
cuss in further detail di$erent strategies of making set-theoretic approaches 
more sensitive to time.

6 For discussions on causal complexity, see Cio!-Revilla (1981); Ragin (1987, 2000, 2008a); Braumoeller 
(1999, 2003); Braumoeller and Goertz (2000, 2002); Dion (2003); George and Bennett (2005); Political 
Analysis (2006).
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3.3.3 The notion of asymmetry

Among the three de#ning characteristics of causal complexity in set-theoretic 
methods, perhaps the most counterintuitive is asymmetry. We #rst distin-
guish between a static and a dynamic notion of asymmetry, and we then con-
trast it with symmetric notions of association and argue that DeMorgan’s law 
is not an instance of causal symmetry.

Asymmetry as understood in QCA is a static notion. Asymmetric set rela-
tions can be detected based on cross-sectional data without any informa-
tion of changes over time. Lieberson (1985), in contrast, de#nes asymmetry 
through the complete or partial irreversibility of causal processes. In his view, 
a causal relation is asymmetric if the outcome, when deprived of a cause at 
time t1, does not take on its original value at t0. For example, a policy measure 
(X), such as a job-market program, results in high job-market possibilities (Y) 
at t0. In a second step at t1, this job-market program is suspended, but the job-
market possibilities remain high. Despite a dynamic character that requires at 
least two points in time in order to de#ne asymmetry, Lieberson’s notion has 
much in common with asymmetry as seen in QCA. Both share the idea that 
knowledge of the causal role of X for Y does not contain information on the 
causal role of ~X for Y. Both in Lieberson’s dynamic and QCA’s static notion 
of asymmetry, depriving an e$ect (Y) of its cause (X) does not necessarily 
mean that the e$ect will disappear.

Asymmetry, thus, describes the fact that insights on the causal role of a con-
dition are of only limited use for the causal role of its absence, and the explan-
ation of the occurrence of an outcome does not necessarily help us much in 
explaining its non-occurrence. "is is di$erent from symmetric notions, which 
are predominant in quantitative approaches. If we are able to explain positive 
or high values of a dependent variable, then we are also able to explain negative 
or low values of the dependent variable. "ere is no need for a separate analysis 
of high and low values in the outcome Y, since our equation is valid for – or 
better, is derived from – the whole range of values of Y. "e explanation of Y 
automatically implies the explanation of ~Y and vice versa. "e occurrence and 
the non-occurrence of phenomena, such as democracy/non-democracy, war/
peace, wealth/poverty, etc., are each explained by the same equation. Likewise, 
if we know the way in which variable X contributes to the explanation, then we 
also know that ~X takes on the precise inverse role. In symmetric approaches 
it therefore makes little sense to di$erentiate the causal role of high versus low 
values of a condition, nor does it make sense to analyze Y and ~Y in separate 
analyses. For illustration, just consider the fact that the results of a multivariate 
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regression remain substantively una$ected if one inverts the scale of a depend-
ent variable by multiplying it by −1. "e coe!cients of the variables remain the 
same; only their sign switches.

"e only occasion when results produced by set-theoretic methods are 
symmetric is the very rare instance in which the outcome and the solution set 
perfectly coincide.7 If, furthermore, the truth table is fully speci#ed – that is, 
there are no logical contradictions in the data (section 5.1) – and every the-
oretically possible combination of conditions is represented with empirical 
cases (section 6.1), then DeMorgan’s law (section 2.4.2) can be used to negate 
not only sets, but also, in a subsequent step, their relations. Remember that, 
following DeMorgan, the negation of a logical statement requires us to (a) 
invert all conditions and complements and (b) exchange the logical opera-
tors. For example, the negation of the statement A + B is ~A*~B. Now, if the 
expression A + B is identical to Y (i.e., both sets completely overlap rather 
than A + B being a subset of Y), then A and B are not only individually su!-
cient for Y, but their OR union is also necessary for Y. "is means that we can 
put an equals sign instead of an arrow:

A + B = Y.
Dealing with an equation, it is possible to negate both sides without alter-

ing the truth value of the statement and write:

~A~B = ~Y.
"is new equation can now be interpreted to mean that ~A and ~B are 

two necessary conditions for Y which, as an intersection, are also su!cient 
for Y. "is indicates that, in case of a fully speci#ed truth table, if the union 
of su!cient conditions is necessary for the outcome (or, parallel, if the inter-
section of necessary conditions is su!cient), we can interpret DeMorgan’s 
law in terms of su!ciency and necessity: if we #nd a su!cient condition 
for the outcome, this also means that the complement of that condition is 
a necessary condition for the complement of the outcome, and vice versa. 
Formally:

X → Y => ~X ← ~Y, and

X ← Y => ~X → ~Y.
Let us illustrate this with two simple examples. If we identify having a pass-

port as a necessary condition (X) for being allowed onto an airplane (Y), then 

7 Yet, as we show in section 3.3.4.1, even then it is important to realize that there are crucial di$erences 
between a (perfect) set coincidence and a (perfect) correlation.
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not having a passport (~X) is su!cient for not being admitted onto a &ight 
(~Y). Likewise, if being a West European country (X) is su!cient for being a 
democracy (Y), then not being a West European country (~X) is a necessary 
condition for not being a democracy (~Y).

Two important points need to be raised. First, the formal logical symmetry 
revealed by DeMorgan between the solution terms for outcome Y and its neg-
ation ~Y is a far cry from the symmetry contained in equations obtained based 
on correlational statistical techniques (see 3.3.4). Despite being logical mirror 
images, the solution terms for Y and ~Y do look quite di$erent while in multivari-
ate regression models they do not. Second, we emphasize again that DeMorgan’s 
law can only be applied under very peculiar situations that are rarely, if ever, 
encountered in empirical social research. "e data must be free from logical con-
tradictions (section 5.1) and from logical remainders (section 6.1).

3.3.4 Set-theoretic methods and standard quantitative approaches

When applying set-theoretic methods, researchers almost unavoidably create 
causally complex results. When applying standard regression-based methods, 
such types of results cannot be achieved. "is may not be particularly import-
ant as many researchers might not be interested in equi#nality, INUS condi-
tions, and the like. It is important, however, that regression-based results not 
be interpreted as if they revealed set relations. In the following, we brie&y aim 
at demonstrating that set relations are not correlations and that therefore any 
correlation-based technique is less well equipped for unraveling set relations 
and the form of causal complexity that comes with it. "is comparison should 
contribute to understanding exactly what set-theoretic methods are, as well as 
what they are not.

3.3.4.1 Set relations are not correlations
In statistical techniques based on symmetric measures of association, the 
strength of a (positive) covariation between variables X and Y is determined 
by how many cases fall into the two cells in the o$-diagonal in a two-by-two 
table. Cramer’s v and the ϕ coe!cients (both standardizations of the more 
general χ2 measure), but also various parameters which make di$erent use of 
the numbers of cells and possibly existing ties (such as τ, γ, or Y) are typical 
for assessing associations.8 Importantly, when assessing a correlation all cells 

8 A perfect correlation between the variables X and Y requires all cases to be in cells b and c (the main 
diagonal) and the two o$-diagonal cells a and d to be empty. A similarly perfect (but negative) correlation 
would be produced by all cases being in cells a and d, with b and c being empty. In either case, the strength 
of a correlation is determined by the ratio of cases on the diagonal vis-à-vis those in cells o$ the diagonal.
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are taken into account, and, therefore, the correlation is a symmetric measure. 
In contrast, set-theoretic relations, such as su!ciency and necessity, instead 
require only that one o$-diagonal cell is empty. In addition, the 0,0 cell (cell 
c in Figure 3.10) does not play any role. Likewise, when using continuous 
data, symmetric approaches like a regression require cases to be distributed 
symmetrically around the regression line in a scatter plot.9 Instead, with fuzzy 
sets, asymmetric set relations are indicated in an XY plot by triangular data 
patterns in which either the area above or the area below the main diagonal 
is devoid of cases.

In short, the data pattern of a correlation looks quite di$erent from that 
of a set relation. "is means that it is absolutely possible for a researcher to 
#nd a perfect set relation (either necessity or su!ciency) but fail to detect any 
strong correlation between two variables.

In order to further highlight the di$erence between set relations and cor-
relations, let us look at the extreme scenario of a condition X being simul-
taneously necessary and su!cient. In formal terms, such a condition can be 
written as follows:

X ↔ Y (read: if X, then and only then Y, or sets X and Y fully overlap).

A Venn diagram of a necessary and su!cient condition would display only 
one circle, which represents both condition X and outcome Y, indicating the 
perfect overlap of X and Y. Figure 3.10 presents the same argument in a two-
by-two table. No cases are allowed in the o$-diagonal.

A perfect correlation and a perfect set coincidence (i.e., simultaneous 
necessity and su!ciency) seem to be the same, since they require the same 
two cells (a and d) to be empty. "ere remains an important di$erence, 

1 

1 

0 

0 

X 

Y 
c

allowed
(but not relevant)

d

not allowed

b
allowednot allowed

a

Figure 3.10 Two-by-two table – necessity and sufficiency

9 "e principles of ordinary least squares, in which the sum of the square roots of the distances between 
the dots and the regression line are minimized, is a direct expression of this symmetric thinking in stat-
istical analysis.
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though. While in a correlational analysis both cells on the main diagonal 
(b and c) have equal analytic relevance, in set-theoretic analyses only cell 
b is relevant, not cell c. "e question of whether cases that show neither 
the condition nor the outcome (~X, ~Y) contribute any information about 
the necessity and su!ciency of X for Y is hotly debated. In philosophy 
this debate is o%en conducted under the label the “black raven paradox.” 
"e German philosopher Carl Gustav Hempel brought up the question of 
whether a green apple could be useful to prove the proposition “All ravens 
are black,” that is, whether an object which shows neither the condition (it is 
an apple, not a raven, therefore ~X) nor the outcome (it is green, not black, 
therefore ~Y) can prove the positive relation between the condition and the 
outcome. In the social sciences, there is disagreement about whether cases 
without the condition and the outcome are informative. "ere are scholars 
who argue that all cases should count (Seawright 2002a, 2002b; Yamamoto 
2012) and others who see only a subset of cases as relevant for particular 
set-theoretic claims and say that, in principle, no set-theoretic claim about 
the relation between ~X and ~Y implies anything about cases of X and Y 
(Braumoeller and Goertz 2002; Clarke 2002; Mahoney and Goertz 2006; 
Goertz and Mahoney 2010).

Despite these ontological disputes, with dichotomous or crisp-set data it 
empirically holds that a perfect correlation is automatically also a perfect set 
coincidence and vice versa. "e same, however, is not true when moving from 
crisp to fuzzy sets. Here, a perfect correlation does not automatically indicate 
the presence of a condition that is simultaneously necessary and su!cient. 
Figure 3.11 provides a straightforward visualization of this argument. "e 
three di$erent lines all represent a perfect correlation between X and Y. If we 
interpret them as regression lines, they di$er only in their slope and intercept. 
However, only one of these lines indicates a perfect set coincidence. It is the 
line on the main diagonal, i.e., the line on which all cases have identical set-
membership scores in X and Y.

In sum, as Ragin (2008a: 59, n. 3) points out, not all (close-to-)perfect cor-
relations are a sign of a (close-to-)perfect set coincidence. Among the many 
regression lines that indicate a perfect correlation between X and Y, only one 
is identical to perfect set coincidence: it is the regression line with a slope of 
1 and an intercept of 0. From this it follows that standard measures of asso-
ciations that are applied in quantitative social research are not adequate for 
unraveling subset relations. Standard tools provided by statistical approaches 
to the analysis of social science data that use symmetric correlational meas-
ures, such as regression analysis, are not well suited to analyzing necessary 
and su!cient conditions separately.
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3.3.4.2 Set theory and regression models
A slightly di$erent way of showing that set-theoretic methods are an adequate 
choice if (and only if) researchers are interested in the type of causal complex-
ity induced by set relations is by discussing whether regression equations can 
be interpreted in the light of equi#nality.

When performing a statistical analysis, the aim is usually to identify the 
most powerful predictor for explaining variance in the dependent variable 
net of the explanatory power of other variables and to make probability state-
ments for the generalization (“signi#cance tests”) from (a hopefully represen-
tative) sample to a (hopefully well-de#ned) underlying population. All of this 
makes standard statistical techniques a powerful set of tools for summarizing 
complex data into parsimonious equations and in extracting the “net-e$ect” 
(Ragin 2008b) of independent variables. But these techniques rest on the 
starting assumption that social phenomena are driven by uni#nality, addi-
tivity, and symmetry. A typical example of a linear regression model, until 
recently the workhorse in applied social science,10 looks as follows:

10 "ere is growing consensus between both qualitative and advanced quantitative scholars that standard 
regression models on observational data are in violation of too many assumptions to be able to yield 
valid results. For a comprehensive debate on this issue see, for instance, Goertz (2003).
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y b x b x b xy by b x bx b x bx by bay by by bay by b1 1x b1 1x b2 2x b2 2x b2 2x bx b2 2x bx b3 3x3 3x .

! is equation shows misleading similarities to our QCA solution formula. 

tion that produces the dependent variable Y. However, the addition signs in 
the regression equation tell us that di"erent partial e"ects are added together 
to a total e"ect. ! is leads to a uni#nal and not an equi#nal result, as in QCA. 
One path alone (a + b1x1 + b2x2 + b3x3 + ε
ables in a regression formula are not alternatives to each other. If they were, 
then they would cancel each other out.

preted in equi#nal terms as there are, in fact, innumerable combinations 
of values in the independent variables that produce the same value in the 
dependent variable. However, such an interpretation of regression equations 
is rather rare in the literature, perhaps simply because not much is learned 
by pointing out that there is a potentially in#nite number of paths toward 
the outcome without providing any information on which of these paths do 
occur empirically, let alone which of them are empirically more important 
than others.

sity using a standard regression approach. Clark, Gilligan, and Golder (2006) 
suggest “a simple multivariate test for asymmetric hypotheses” such as those 
of necessity and su$ ciency by specifying interaction terms in a regression 
analysis. Core to their argument is the formal logical rule that if X is su$ cient 
for Y, then ~X is also necessary for ~Y. As already mentioned and as further 
elaborated in Chapters 5 and 6, this logical rule makes sense only in empirical 
situations in which the data are void of logical contradictions and empirical 
information is at hand for all logically possible combinations of independent 
variables or in which, at least, the highly implausible argument can be made 
that all the missing information is substantively irrelevant. Such a “simple 
multivariate test for asymmetric hypotheses” might therefore work in theory, 
but not in research practice.

Two further arguments against the use of interaction terms for mimicking 
interaction of interval or met

ric scale variables is not the same as an intersection of fuzzy sets (Grofman 
and Schneider 2009). ! e former is an algebraic multiplication whereas the 

 theoretic results o%en involve three or more single conditions. Yet, regression 
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even higher-order terms are virtually absent from the literature – with good 
reason, as the speci#cation of such models puts high demands on both the 
data and the substantive interpretation skills of the researcher (Brambor, 
Clark, and Golder 2006; Kam and Franzese 2007).

"e fact that causal complexity is di!cult to reach through standard statis-
tical techniques does not mean that it is entirely impossible. Attempts at mim-
icking set-theoretic approaches within the framework of statistical tools exist 
(Braumoeller 1999, 2003, 2004; Braumoeller and Goertz 2003; Yamamoto 
2012). All of these attempts either deal with a large number of cases or handle 
just some aspects of causal complexity, or both.

QCA starts out by assuming a maximum level of causal complexity and 
then tries to simplify this complexity as much as the empirical evidence allows. 
In standard statistics, the most common approach is to start out with a sim-
ple model and then incorporate aspects of causal complexity in the form of 
interaction terms, lagged variables, multiple equation models, etc. However, 
methods that rely on symmetric contingency coe!cient are not well suited for 
adequately capturing set relations in terms of necessary and su!cient condi-
tions and all aspects of causal complexity that derive from it (Fiss 2007: 1190). 
Or, as Braumoeller puts it: “[a]dditive linear models are an inherently inad-
equate way of modeling multiple causal path processes” (Braumoeller 1999: 7), 
and using non-additive speci#cations (i.e., interaction terms) simply o$ers no 
practical solution to the problem, especially when the N is medium to low, as is 
o%en the case in macro-comparative social research (Braumoeller 1999: 9f.).

As such, neither the assumption of causal simplicity nor that of complex-
ity can claim general superiority. Each has its strengths and weaknesses. 
Assuming simplicity allows for deriving parsimonious models from rather 
complex data, while the assumption of complexity usually enables the 
researcher to pay more tribute to di$erent classes of cases within their popu-
lation – both of which are valuable aims of social inquiry (Brady and Collier 
2004). On the downside, the methodologically induced assumption of sim-
plicity runs the risk of generating oversimpli#ed representations that are 
not only very much detached from the cases and data patterns that under-
lie the analysis, but which also o%en present mere caricatures of the much 
more re#ned theories they claim to test (Munck 1998). "e results of these 
procedures are o%en easier to interpret and are considered more “aesthetic” 
(Somers 1998: 761) but sometimes no longer even try to speak to the com-
plexity of the social world. "is discrepancy between method-induced sim-
plifying assumptions on the one hand, and our hunches about the world’s 
complexity on the other, requires us to bring our epistemological way of 
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thinking in closer union with our prevailing ontological view of the world 
(Hall 2003). In turn, the starting assumption of complexity, as implemented 
in set-theoretic methods, runs the risk of individualizing each and every 
single case without much progress towards generalization and with signi#-
cant di!culties in theorizing (even ex post facto) this empirical complexity.

Neither the preference for causal complexity nor for simplicity should be 
seen as superior per se. It depends on what one expects to be an adequate 
account of the phenomenon being studied (Przeworski and Teune 1970: 
211). Unfortunately, it is for methodological rather than for substantive 
reasons that scholars o%en succumb to a “general linear reality” (Andrew 
Abbott, cited in McKeown 1999) in situations where it is not appropriate 
(Shalev 2007). It is the increasingly strongly argued opinion in the methods-
 sensitive literature that the burden of proof should be on the shoulders of 
those researchers who believe that the world can be explained through par-
simonious and elegant models, and not, as has been long asserted, on those 
who view a large number of social phenomena as the result of equi#nal 
and combinatorial processes (Braumoeller 2003). On the other hand, it is 
of course equally wrong to assume, by default, causal complexity and to 
always apply set-theoretic methods without proper justi#cation within a 
given research context.

In sum, set relations are not correlations. For an adequate choice of the 
appropriate method it is therefore essential to be clear about whether one is 
looking for necessary and su!cient causes or some other form of relation-
ship between social phenomena not rooted in set theory. "e application of 
set-theoretic methods makes sense only if there are good reasons to believe 
that the phenomenon under investigation is best understood in terms of set 
relations. QCA and other set-theoretic methods are ill equipped for detecting 
correlations. At the same time, the majority of standard statistical techniques 
are not well suited for detecting subset relations of necessity and su!ciency.

At-a-glance: causal complexity in set-theoretic methods

Three elements render the specific form of causality in QCA particularly relevant: equi-
finality refers to the characteristic that various (combinations of) conditions imply the 
same outcome; conjunctural causation draws our attention to the fact that conditions do 
not necessarily exert their impact on the outcome in isolation from one another, but some-
times have to be combined in order to reveal causal patterns; asymmetrical causation 
implies that both the occurrence and the non-occurrence of social phenomena require 
separate analysis and that the presence and absence of conditions might play crucially 
different roles in bringing about the outcome.

 



Set-theoretic methods: the basics90

Note that, in this chapter, we have only labeled those conditions as suf-
#cient or necessary for which all empirical evidence was in line with these 
respective set relations. However, some of the examples have already alluded 
to the fact that there can be di$erent degrees of deviation from perfect sub-
set relations. In fact, when applying set-theoretic methods to social science 
data, such observations are the norm. We will discuss this in more detail in 
Chapter 5.

These aspects also enable us to analyze INUS and SUIN conditions with the help of 
QCA. INUS conditions are defined as insufficient but necessary parts of a condition which 
is itself unnecessary but sufficient for the result; SUIN conditions refer to sufficient, but 
unnecessary, parts of a factor that by itself is insufficient, but necessary, for the result.

Causally complex results produced by set-theoretic methods differ from those produced 
by standard statistical (regression-based) approaches. While more advanced quantitative 
techniques can mimic some aspects of causal complexity, achieving all of them simultan-
eously is a challenging and still unresolved task. However, no form of causality induced 
by the choice of method can be considered superior per se. Instead, researchers should 
choose the method that rests on assumptions which are most in line with their research 
question. If hunches about necessary and sufficient conditions exist (and there are many 
research fields for which this is the case, as Goertz and Starr 2003 and Seawright 2002b: 
180f., show), then set-theoretic methods are a plausible choice.
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4 Truth tables

Easy reading guide

In this chapter, we introduce a concept that is at the core of QCA, both in the understanding 
of it as an approach and as a technique: truth tables. QCA understood as an approach can 
be perceived as a research phase that aims to construct a truth table. Truth tables contain 
the empirical information gathered by the researcher, often through years of painstak-
ing work. QCA as a technique, then, consists of the formal analysis of truth tables – the 
 so-called logical minimization – with the aim of identifying sufficient (and necessary) con-
ditions. As such, truth tables become the indispensable tool for any QCA, no matter whether 
we are working with crisp or fuzzy sets. This is one of the primary bases for the argument 
that crisp-set QCA and fuzzy-set QCA are not fundamentally that different. It also means 
that most of what we say in this book about truth tables, and their analysis, applies both 
to csQCA and to fsQCA.1

We deem it important to reiterate that, in this and other chapters, we mostly focus on 
issues related to QCA as a technique for pedagogical reasons, and we therefore take for 
granted the existence of empirical information upon which the truth table is constructed. 
However, one integral part of set-theoretic approaches – and the key to their success – 
consists precisely in the process of collecting this information and constructing truth tables 
in an iterative process, a process sometimes described as the “back and forth between 
ideas and evidence” (Ragin 1987). The analysis of the truth table only represents a short 
“analytic moment” (Ragin 2000) in the process of performing set-theoretic analysis.

In Chapter 3, we engaged in the analysis of necessity and sufficiency without making 
use of truth tables. One might therefore wonder why we would need truth tables if neces-
sity and sufficiency can also be analyzed simply by screening a standard data matrix. 
As this chapter will show, truth tables are a much more adequate device for detecting 
set relations, mainly because they shift the focus from empirical cases to configurations 
of conditions. This leads to a radically different – and more efficient – approach to the 
analysis of sufficiency. The analysis of sufficiency based on a data matrix proceeds in a 

1 !ere are only a few analytically relevant di"erences in the analysis of a truth table that follow from 
the di"erence between crisp and fuzzy sets, such as, for instance, the possibility in fuzzy sets that a 
given truth table row is a subset of outcome Y but also of its complement ~Y. We will discuss this in 
section 9.2.2.
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4.1 What is a truth table?

!e concept of a truth table originates in formal logic. At #rst glance it might 
look a lot like a standard data matrix. Just like conventional data matrices, 
each truth table column denotes a di"erent variable or, better, set. !e di"e-
rence consists in the meaning of rows. In a standard data matrix, each row 
denotes a di"erent case (or unit of observation). In a truth table, each row 
instead represents one of the logically possible AND combinations between 
the conditions. Since each single condition can occur either in its presence or 
its absence, the total number of truth table rows is calculated by the expres-
sion 2k. !e letter k represents the number of conditions used and the number 
2 the two di"erent states (presence or absence) in which these conditions can 
occur. Each row denotes a qualitatively di!erent combination of conditions, 
i.e., the di"erence between cases in di"erent rows is a di"erence in kind rather 
than a di"erence in degree.

!e formula 2k yields the number of logically possible combinations or 
truth table rows or, slightly misleadingly, logically possible cases. !e num-
ber of truth table rows increases exponentially with the number of condi-
tions. With three conditions, we end up with eight con#gurations. With 4 
conditions, we already have 16 con#gurations, with 5 we have 32, and with 

bottom-up manner by first focusing on simple sets and then proceeding to more complex 
sets. In contrast, the analysis of sufficiency based on a truth table proceeds top-down, by 
first screening all logically possible combinations of conditions and then logically minimiz-
ing those conjunctions that have passed the test of sufficiency. Notice, however, that while 
for sufficiency the truth table approach is (and should be) the dominant strategy, for the 
analysis of necessity, the bottom-up approach is instead clearly preferable and the top-
down approach is meaningless. The reason is simple: a logical AND conjunction of two or 
more conditions can only be necessary for Y if, and only if, all single conditions involved in 
the conjunction are necessary on their own.

The organization of this chapter is straightforward: after clarifying what a truth table 
is (4.1), we show how truth tables are constructed based on empirical information about 
cases (4.2). In section 4.3 we explain, step by step, how truth tables are analyzed with the 
help of Boolean algebra. Clearly, this chapter is central to the whole book, simply because 
truth tables are the sine qua non technique for QCA. The chapter should be read in detail 
and with care. This chapter also provides important information which will supply the main 
ingredients for the Truth Table Algorithm, the currently accepted minimum standard for a 
QCA, as it will be introduced in Chapter 7.
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10 we have no fewer than 1,024 logically possible cases. In social reality and 
therefore also in social science research practice, not all of these potential 
cases materialize empirically. !e whole of Chapter 6 is dedicated to the 
phenomenon of limited diversity and provides strategies on how to handle 
logical remainders (Ragin 1987: 104".). For the time being, and in order to 
properly introduce the meaning and analysis of truth tables, in the current 
chapter we only deal with truth table rows that do not show any such logical 
remainders.

Venn diagrams are another way to intuitively visualize that k number of 
conditions produce 2k logically possible combinations. Figure 4.1 displays 
three conditions (A, B, C). !ey all overlap in various ways, creating eight 
di"erent areas. Each area in the Venn diagram corresponds to one row in a 
truth table, and each area can be described in the form of a Boolean expres-
sion. For example, the area in the middle of the diagram where A, B, and C 
overlap is the one that contains all the cases where A, B, and C are present. 
!is can be written as A*B*C, or simply ABC (Chapter 2). !e upper area of 
set A is where condition A can be observed (A = 1) and B and C cannot (B = 
0, C = 0). !is area thus denotes the set A*~B*~C or simply A~B~C. !e area 
outside all three of the circles, but within the rectangle, denotes cases where 
none of the three conditions is present and can be written as ~A*~B*~C or 
~A~B~C, and so on.

While Venn diagrams are generally a very useful tool for the graphical 
representation of set-theoretic statements, two caveats need to be made. First, 
as the number of conditions grows beyond four or #ve, it becomes di$cult 
to draw and interpret Venn diagrams. Second, note that Venn diagrams such 
as the one displayed in Figure 4.1 display only sets and their intersections. 
In Chapter 3, however, we used Venn diagrams to visualize subset relations 
of su$ciency and necessity between conditions and an outcome. Of course, 
Venn diagrams can do both simultaneously, i.e., show the subset relation of an 
intersection of conditions and an outcome.

4.2 How to get from a data matrix to a truth table

4.2.1 Crisp sets

In order to show how to construct a truth table based on information on cases 
stored in a data matrix, let us go back to our data matrix from section 3.1.1.2. 
How do we get from here to a truth table? While most of the relevant so%ware 
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packages are able to produce a truth table based on a data matrix representing 
set-membership scores, it is worth spelling out the three simple steps that are 
needed.

First, we write down all 2k logically possible combinations of the k condi-
tions, leaving the column for the outcome value empty. Second, we assign 
each case from our data matrix to the truth table row that corresponds with 
its values in the k conditions. Each case can belong to only one truth table 
row, but individual truth table rows might contain more than one case. In our 
example, we observe that Argentina and Venezuela display identical values on 
all three conditions – they had a violent upheaval, have an ethnically homo-
geneous population and a pluralistic party system. !ey therefore belong to 
the same truth table row labeled A*B*C. !e same holds true for Peru and 
Ecuador, which are both assigned to the truth table row A*~B*~C (violent 
upheaval, no ethnically homogeneous population, no pluralistic party sys-
tem). In this way, we assign each case to one of the eight logically possible 
truth table rows.

!ird, an outcome value has to be attributed to every truth table row. It 
is determined by the outcome values of the empirical cases that fall into the 
respective row. For instance, Colombia falls into row ~A*~B*~C and shows 
outcome Y. No other case falls into this row. Hence, the outcome value of row 
~A*~B*~C is Y = 1. Likewise, neither Argentina nor Venezuela shows a stable 
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Figure 4.1 Venn diagram with three conditions
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democracy, and the outcome value of truth table row A*B*C is Y = 0.2 Based 
on this procedure, the data matrix in Table 3.2 yields the truth table displayed 
in Table 4.2.

!e truth table consists of 23 = 8 rows. Strictly speaking, the columns “Row,” 
“~Y,” and “Cases” do not belong to the truth table but are included for illus-
trative purposes. It is important to understand the information contained in 
the “Outcome” column. From a case perspective, the value of 1 indicates that 
cases with the given characteristics also show the outcome of interest. For 
instance, from row 1 in Table 4.2 we learn that cases that did not have a vio-
lent upheaval and have no ethnically homogeneous population and have no 
pluralistic party system are stable democracies. If we shi% perspective from 
cases to con#gurations, we can say that conjunction ~A~B~C (row 1) is suf-
#cient for Y. A truth table row with outcome Y = 1 is explicitly linked (Ragin 
and Rihoux 2004) to this outcome. In essence, each truth table row is a state-
ment of su$ciency (Ragin 2008a).

Table 4.1 Data matrix with ten cases, three conditions, and outcome

Conditions Outcome

Row Cases A B C Y

1 ARG 1 1 1 0
2 PER 1 0 0 0
3 BOL 1 1 0 0
4 CHI 0 1 0 1
5 ECU 1 0 0 0
6 BRZ 0 1 1 1
7 URU 1 0 1 1
8 PAR 0 0 1 1
9 COL 0 0 0 1

10 VEN 1 1 1 0

Y = set of countries with stable democracies
A = set of countries with violent upheavals in the past
B = set of countries with ethnically homogeneous population
C = set of countries with pluralistic party system

2 Of course, when applied to real data, it is common that cases attributed to the same truth table row 
display di"erent membership scores in the outcome. Such rows are called contradictory rows (Ragin 
2000). Chapter 5 is dedicated to discussing this crucially important issue. For the time being, in order 
to present the logic of truth tables and their analysis, we present examples of truth tables that are 
contradiction-free.
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4.2.2 Fuzzy sets

!e three steps for converting a data matrix into a truth table also apply when 
the underlying data are not crisp but fuzzy sets. We #rst create the truth 
table, then assign each case to one of these rows, and then determine the out-
come value for each row. Since fuzzy sets allow for any set-membership score 
between 0 and 1, whereas truth tables consists of only 0s and 1s, this might 
seem puzzling.

!e creation of the truth table is the least problematic step. Just as with 
crisp sets, the number of truth table rows based on fuzzy sets is given by the 
formula 2k. !is is because, just like crisp sets, fuzzy sets establish a qualitative 
di"erence between cases above the 0.5 qualitative anchor (more in than out 
of the set) vis-à-vis cases below that anchor (more out than in). !is is why k 
fuzzy-set conditions yield 2k truth table rows.3

!e attribution of cases to speci#c truth table rows, a rather straightfor-
ward exercise based on crisp sets, requires more explanation when dealing 
with fuzzy sets. With crisp sets, in order to identify the truth table row to 
which a case belongs, we simply need to #nd the exact match between the 
case’s crisp-set membership scores and the truth table rows. With fuzzy sets, 
however, cases with fuzzy-set membership scores in the k conditions do not 

Table 4.2 Hypothetical truth table with three conditions

Conditions Outcome

Row A B C Y ~Y Cases

1 0 0 0 1 0 COL
2 0 0 1 1 0 PAR
3 0 1 0 1 0 CHI
4 0 1 1 1 0 BRZ
5 1 0 0 0 1 PER, EC
6 1 0 1 1 0 URU
7 1 1 0 0 1 BOL
8 1 1 1 0 1 AR, VEN

See Table 3.2
~Y = set of countries with non-stable democracies

3 !e situation is di"erent in multi-value QCA (mvQCA). In section 10.2, we discuss the conse-
quences of the fact that with k-number of multi-value “sets,” the number of truth table rows is 
(much) higher than 2k.
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exactly match any of the truth table rows. For instance, to which truth table 
row does Chile in row 4 of Table 4.3 belong, with its set membership scores of 
A = 0.3, B = 0.9, and C = 0.2?

In order to shed light on this, Ragin (2008a: ch. 7) refers to the concept 
of a property space, going back to Paul Lazarsfeld’s (1937) initial ideas. Each 
set constitutes one dimension of the property space (Barton 1955). !e three 
fuzzy-set conditions in our example thus yield a three-dimensional space as 
displayed in Figure 4.2. !ere are several important features of this property 
space.

First, regardless of a case’s membership in conditions A, B, and C, it falls, 
by de#nition, inside the property space. !is is because both set membership 
and the dimensions of the property space have their minimum at 0 and their 
maximum at 1. Second, based on the set membership in A, B, and C, each 
case has one precise location inside the cube. !ird, each corner of the prop-
erty space directly corresponds to a speci#c combination of values in A, B, 
and C. More precisely, each corner represents one speci#c combination of the 
two extreme values that are possible in fuzzy sets – full membership (1) and 
full non-membership (0). For example, the corner in the bottom le% front of 
Figure 4.2 denotes the situation in which all three fuzzy sets take on the value 
of 0. !is corner can therefore be labeled the “0,0,0” or the ~A~B~C corner. 
Following this logic, we can describe the lower right corner in the front as 
“1,0,0,” the top right rear corner as “1,1,1,” and so on. Fourth, because each 

Table 4.3 Hypothetical data matrix with fuzzy-set membership scores

Row Cases A B C

1 ARG 0.8 0.9 1
2 PER 0.7 0 0
3 BOL 0.6 1 0.1
4 CHI 0.3 0.9 0.2
5 ECU 0.9 0.1 0.3
6 BRZ 0.2 0.8 0.9
7 URU 0.9 0.2 0.8
8 PAR 0.2 0.3 0.7
9 COL 0.2 0.4 0.4

10 VEN 0.9 0.7 0.6

A = set of countries with violent upheavals in the past
B = set of countries with ethnically homogeneous population
C = set of countries with pluralistic party system
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corner denotes a speci#c combination of extreme membership scores in the 
conditions, we can perceive of these corners as ideal-typical situations (Weber 
1906). Cases that fall exactly in one of the corners are empirical instances of the 
ideal type denoted by that corner. Unless a case has full (non-)membership in 
all conditions that constitute the property space, in other words, unless a case 
exclusively displays crisp-set membership scores, it will not be located directly 
in one of the corners. !us, most of the time in fuzzy-set analyses, many, if not 
all, cases get close to these ideal types only to some (varying) degree. Below, we 
will explain how the distance to the ideal types can be calculated.

Fi%h, a property space with three dimensions has eight corners. !is num-
ber should ring a bell. A truth table based on three conditions has eight rows. 
!is is no coincidence, but directly follows from the fact that the corners of 
a property space, spanned by fuzzy sets, are equivalent to the rows of a truth 
table.4 !is equivalence exists because the corners of a property space de#ned 
by fuzzy sets denote the situation where the values of these fuzzy conditions 
take on the extreme values 0 or 1. In other words, the corners are where the 
fuzzy sets show crisp-set membership scores.
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Figure 4.2 Three-dimensional property space

4 !e metaphor of the cube only works for three conditions. Other geometrical objects would be needed 
for the representation of other numbers of conditions. However, the basic principle remains the same.
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We can summarize the insights gained so far in the following manner. With 
k number of conditions, we create a property space with 2k corners and these 
corners correspond to one of the 2k (a) ideal types; (b) truth table rows; (c) 
logical AND conjunctions between the k conditions.

As mentioned, with fuzzy sets cases usually have membership values 
between 0 and 1. Consequently, they can be located anywhere in the property 
space, as Figure 4.2 indicates. Some might be closer to one of the corners than 
to the others. We therefore have to #nd a way to establish two things: #rst, to 
which corner a given case most belongs, and second, how far this case is a 
member of this ideal type (aka truth table row).

In order to explain the principle by which the membership of cases in each 
corner is calculated, let us focus on two cases from Table 4.3, Venezuela and 
Ecuador, reproduced in Table 4.4.5

Looking at Venezuela, we see that its membership in all three conditions is 
above the qualitative anchor 0.5. If asked which of the 2k ideal types this coun-
try resembles most, it is plausible to say that this country is more of an ethnic-
ally relatively homogenous state with a pluralistic party system that experienced 
a violent upheaval than any other logically possible type. In other words, 
intuitively, we would locate Venezuela closest to the ABC row of a truth table 
or the “1,1,1” corner of a property space, an intuition visually supported by 
Venezuela’s location in Figure 4.2. !e same logic of locating a case applies to 
Ecuador. It is more in than out of set A and more out than in sets B and C, 
respectively. !is makes Ecuador closer to the “1,0,0” corner than any other 
and an instance of an ethnically heterogeneous population without a pluralistic 
party system and without a violent upheaval (row A~B~C).

Beyond this intuitive attribution of cases to property space corners, aka 
ideal types, is there a standardized way to precisely de#ne the membership of 
cases in truth table rows? Yes, there is. Remember that each of the 2k corners 
corresponds to one of the 2k logically possible AND combination of condi-
tions. Remember also (see section 2.1) that the membership of cases in an 
intersection is determined by their minimum set membership across the sin-
gle conditions. It is therefore easy to calculate a case’s membership in all logic-
ally possible combinations of conditions, aka corners of the property space. 
Table 4.5 contains this information for our two cases displayed in Table 4.4.

Venezuela has a fuzzy-set membership of 0.6 in ideal type ABC. !is is 
the minimum across conditions A (0.9), B (0.7), and C (0.6). Ecuador has 

5 We do not report each case’s membership in outcome Y, because it is irrelevant for identifying the truth 
table row a case belongs to. When performing the three steps of converting a data matrix into a truth 
table, the outcome is added only in the third step.
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a membership value of 0.7 in the ideal type A~B~C, which is the minimum 
across A (0.9), ~B (0.9), and ~C (0.7). Both cases are not full instances of their 
respective ideal types, as indicated by their membership score of less than 1.

As Table 4.5 also shows, each case has a partial membership not only in 
its own ideal type, but also in all of the other corners of the property space. 
!ese membership scores are, however, quite low, a direct consequence of the 
minimum scoring rule that governs the calculation of set membership scores 
for conjunctions (section 2.1). !e crucial point is that, while each case has a 
partial membership in all rows, there is only one row in which its member-
ship exceeds the qualitative anchor of 0.5. !is is a golden rule for fuzzy sets: 
no matter how many fuzzy sets are combined, any given case has a mem-
bership of higher than 0.5 in one and only one of the 2k logically possible 
combinations.

!is important mathematical property of fuzzy sets is crucial for our task 
at hand – identifying the truth table row to which a case best belongs, which 
turns out to be that truth table row in which its partial set membership is 
higher than 0.5.

!ere is one exception to the rule that each case is more in than out of one 
and only one logically possible combination. Whenever a case holds a mem-
bership of exactly 0.5 in one or more of the constitutive conditions, then its 
membership will not exceed 0.5 in any of the truth table rows. To demon-
strate this, we add a third hypothetical case to our data matrix, which has a 
set membership of 0.5 in condition C. Since both C and ~C take on the value 
of 0.5, no single ideal type out of the eight possibilities can arrive at a value 
of greater than 0.5. No minimum from the three single conditions and their 
complements can be greater than 0.5. Furthermore, there are two ideal types 
for which the minimum is exactly 0.5. !e 0.5 anchor is sometimes referred to 
as the point of maximum ambiguity (Ragin 2000). It expresses the fact that a 
case’s empirical attributes are such that it cannot be decided whether the case 

Table 4.4 Fuzzy-set data matrix with two cases

Conditions

Case A B C

VEN 0.9 0.7 0.6
ECU 0.9 0.1 0.3

See Table 4.3
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is more a member of the set being studied or more a member of the comple-
ment of that set. It is because of this ambiguous status that such a case cannot 
be attributed to any of the 2k logically possible ideal types that involve this set 
or its complement.

One practical lesson from this is to be careful about assigning the fuzzy-set 
membership score of 0.5 to cases. Doing so not only prevents the attribution 
of such a case to any of the truth table rows, but also represents the weakest 
possible conceptual statement about that case.

Getting back to our task of representing fuzzy-set data in a truth table, we 
now know that such a truth table has 2k rows and that each case is more in 
than out of one, and only one, of these rows while holding partial member-
ship scores in most, if not all, other rows as well. What remains to be resolved 
is to determine the outcome value with which each of the 2k rows is con-
nected. In order to answer this question, remember that each truth table row 
is a statement of su$ciency. !is means that each truth table row should be 
considered a su$cient conjunction for the outcome if each case’s membership 
in this row is smaller than or equal to its membership in the outcome (see 
section 3.1.2.1).

Table 4.5 Fuzzy-set membership in ideal types for hypothetical data matrix

Case

  
Conditions

Property space corners/Ideal types/Truth table rows  
(logically possible combinations of conditions)

A B C ABC AB~C A~BC A~B~C ~ABC ~AB~C ~A~BC ~A~B~C

VEN 0.9 0.7 0.6 0.6 0.4 0.3 0.3 0.1 0.1 0.1 0.1
ECU 0.9 0.1 0.3 0.1 0.1 0.3 0.7 0.1 0.1 0.1 0.1

Table 4.6 Fuzzy-set ideal types for hypothetical data matrix

Case

  
Conditions

Property space corners/Ideal types/Truth table rows  
(logically possible combinations of conditions)

A B C ABC AB~C A~BC A~B~C ~ABC ~AB~C ~A~BC ~A~B~C

VEN 0.9 0.7 0.6 0.6 0.4 0.3 0.3 0.1 0.1 0.1 0.1
ECU 0.9 0.1 0.3 0.1 0.1 0.3 0.7 0.1 0.1 0.1 0.1
HYP 0.8 0.1 0.5 0.1 0.1 0.5 0.5 0.1 0.1 0.2 0.2
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Table 4.7 displays the fuzzy-set membership scores of our ten hypothet-
ical cases in the three conditions, the eight truth table rows, and the outcome 
stable democracy (Y). For each truth table row, we asses whether each case’s 
membership in it is smaller than or equal to its membership in Y. If so, the 
respective row is a subset of the outcome, thus ful#lls the criterion of a su$-
cient condition and therefore receives a score of 1. If, however, one or more 
case’s membership in the row exceeds that in the outcome, then the respect-
ive row is not a perfect subset of Y and receives a score of 0. As the last row 
of Table 4.7 shows, three conjunctions – A~BC, ~A~BC, and ~A~B~C – are 
perfect subsets of Y. For all other truth table rows, one or more cases deviate 
from the subset pattern of su$ciency and these rows are therefore not con-
sidered as su$cient for Y.6

We now have all the relevant information at hand to represent a fuzzy-set 
data matrix in a standard crisp truth table format. For each row, we know 
which cases belong to it and whether it is a subset of the outcome. !e truth 
table that results from our hypothetical fuzzy-set data is shown in Table 4.8.

Before we continue and explain how a truth table is analyzed using the 
tools of formal logic, several important points should be underlined. First, 
regardless of whether crisp or fuzzy sets are used, a truth table is at the core 

6 As mentioned, in Chapter 5 we will deal with the question of how much deviation one can or should 
allow for before dismissing a subset relation.

Table 4.7 Fuzzy-set membership in rows and outcome

Conditions Truth table rows Outcome

Cases A B C ABC AB~C A~BC A~B~C ~ABC ~AB~C ~A~BC ~A~B~C Y

ARG 0.8 0.9 1 0.8 0 0.1 0 0.2 0 0.1 0 0.1
PER 0.7 0 0 0 0 0 0.7 0 0 0 0.3 0.4
BOL 0.6 1 0.1 0.1 0.6 0 0 0.1 0.4 0 0 0.3
CHI 0.3 0.9 0.2 0.2 0.3 0.1 0.1 0.2 0.7 0.1 0.1 0.6
ECU 0.9 0.1 0.3 0.1 0.1 0.3 0.7 0.1 0.1 0.1 0.1 0.4
BRZ 0.2 0.8 0.9 0.2 0.1 0.2 0.1 0.8 0.1 0.2 0.1 0.7
URU 0.9 0.2 0.8 0.2 0.2 0.8 0.2 0.1 0.1 0.1 0.1 0.8
PAR 0.2 0.3 0.7 0.2 0.2 0.2 0.2 0.3 0.3 0.7 0.3 0.9
COL 0.2 0.4 0.4 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.6 1
VEN 0.9 0.7 0.6 0.6 0.4 0.3 0.3 0.1 0.1 0.1 0.1 0.3
Membership in row ≤ 
Membership in Y

0  0  1  0  0  0  1  1    
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of QCA. Second, when representing fuzzy sets in a crisp truth table, the more 
#ne-grained information contained in fuzzy sets is crucial and remains avail-
able at all times. In other words, the procedure that leads to a truth table like 
that in Table 4.8 does not involve any conversion of fuzzy sets into crisp sets. 
!e information conveyed by fuzzy-set membership scores is used both when 
assigning cases to rows and when assessing whether a row is a subset of the 
outcome. !ird, when producing a truth table based on fuzzy sets, the value 
(1 or 0) in the outcome column does not mean that all cases in that row have a 
membership of 1 or 0, respectively, in the outcome. Instead, the outcome col-
umn values express that the row can be considered a su$cient condition for 
the outcome. !is is why in Table 4.8 we label the outcome column “Su$cient 
for Y.” Fourth, when assessing the subset relation between a row and the out-
come set, all cases are taken into account, not just those that are good instances 
of the particular row (i.e., those with a membership score above 0.5). !e 0.5 
qualitative anchor is thus crucial for attributing a case to a row but inconse-
quential when assessing the subset relation between two fuzzy sets.7

7 In section 5.2, we qualify this statement and argue that researchers should pay attention to whether the 
cases that contradict the statement of su$ciency (or necessity) are located on di"erent sides of the 0.5 
qualitative anchor in the condition and the outcome, respectively. We will label these cases “logically 
contradictory cases.”

At-a-glance: what is a truth table? How to get from a data matrix to 
a truth table

Truth tables are an important tool in QCA. Although they look similar to crisp-set data 
matrices, they express a different type of information. While the single rows in data matri-
ces correspond to actual cases (or units of observation), in truth tables, single rows denote 
logically possible configurations of conditions.

Three steps are needed in order to construct a truth table: First, all 2k logically possible 
AND combinations of conditions are written down, with k being the number of conditions. 
Second, each case is assigned to the truth table row in which it has the highest member-
ship. This is straightforward in crisp-set QCA because each case is a full member of one 
row and a full non-member of all the other rows. In fuzzy-set QCA, cases usually have 
partial membership in all rows but they can have a membership of higher than 0.5 in only 
one row. Cases are therefore attributed to this one row to which they fit best. (Exception: 
if one or more conditions are given a fuzzy value of 0.5, then the case will not have a 
membership value of greater than 0.5 in any ideal type.) Third, for each row the outcome 
value has to be defined. It is 1 for all rows that are a subset of, and thus sufficient for, the 
outcome and 0 otherwise.

These three steps yield a truth table that can be subjected to analysis, regardless of 
whether the underlying data consist of crisp or fuzzy sets.
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4.3 Analyzing truth tables

Truth tables can be created from both crisp-set data and from fuzzy-set data. 
!e outcome column indicates whether the speci#c truth table row, or conjunc-
tion of conditions, is su$cient for the outcome of interest. If so, this is indicated 
by the value of 1 in the outcome column.8 Hence, if we started our research 
asking which conditions are su$cient for our outcome of interest, the truth 
table provides a #rst answer: all rows that are linked to the outcome value of 
1 are the su$cient conditions. !is answer, however, is o%en not very inform-
ative and di$cult to handle, simply because there might be many such rows 
in a truth table. Almost always, we would like to obtain a more succinct and 
parsimonious answer. For this, in QCA we apply the rules of Boolean algebra. 
!e so-called Quine–McCluskey algorithm is used for logically minimizing the 
various su$ciency statements contained in a truth table (Klir et al. 1997: 61). It 
is important to point out that this form of truth table analysis is applicable only 
to the analysis of su$ciency. For the analysis of necessity, the bottom-up pro-
cedure presented in sections 3.2.1.2 and 3.2.2.2 has to be used. In fact, in sec-
tion 9.1 we show that any inference about the presence or absence of necessary 

Table 4.8 Truth table derived from hypothetical fuzzy-set data

Conditions Su$cient for Cases with

Row A B C Y membership ≤ 0.5 in row*

1 0 0 0 1 COL (0.6)
2 0 0 1 1 PAR (0.7)
3 0 1 0 0 CHI (0.7)
4 0 1 1 0 BRZ (0.8)
5 1 0 0 0 PER (0.7), ECU (0.7)
6 1 0 1 1 URU (0.8)
7 1 1 0 0 BOL (0.6)
8 1 1 1 0 AR (0.8), VEN (0.6)

* Numbers in parentheses = fuzzy-set membership of case in row

8 Only in csQCA and only if there are no contradictory truth table rows (see Chapter 5), does the value 
of 1 in the outcome column indicate that all cases in that row are, in fact, members of the outcome. 
In all other scenarios – i.e., in fsQCA and/or when there are contradictory rows – a value of 1 in the 
outcome column of a truth table does not necessarily mean that all cases in that row are members of 
the outcome of interest.
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conditions based on the top-down logical minimization of truth tables is prone 
to produce 'awed results. A truth table, thus, does not play an important role in 
the analysis of necessity. In the following, we present the steps involved in the 
Quine–McCluskey algorithm (see also Ragin 1987: ch. 6).

4.3.1 Matching similar conjunctions

We return to the truth table already used in the section on crisp sets (4.2.1). 
Note that such a truth table could also be the result of converting a fuzzy-set 
data matrix into a truth table. !erefore, although we are now working with 
the example derived from the demonstration for crisp sets, truth table ana-
lysis is identical regardless of whether the underlying data consists of crisp or 
fuzzy sets.

!e #rst step is to create a Boolean expression of all those truth table rows 
that are connected to the outcome to be explained. In our case, these are the 
rows with Y = 1 (rows 1, 2, 3, 4, and 6). Row 1 can be written as ~A~B~C, 
row 2 as ~A~BC, and so on. Conjunctions representing a truth table row are 
also called primitive expressions. !e information contained in Table 4.9 can 
be expressed as follows:

row 1 + row 2 + row 3 + row 4 + row 6
~A~B~C + ~A~BC + ~AB~C + ~ABC + A~BC → Y.

Each of these #ve primitive expressions has been de#ned as a su$cient con-
dition for Y in the process of creating the truth table. !is formula is the 
most complex way in which we can express the information about su$ciency 
contained in the truth table. !e task now consists in reformulating the same 
logical truth in a less complex manner.

!is process is called logical minimization. It is guided by the following 
#rst principle of logical minimization: if two truth table rows, which are both 
linked to the outcome, di"er in only one condition – with that condition 
being present in one row and absent in the other – then this condition can be 
considered logically redundant and irrelevant for producing the outcome in 
the presence of the remaining conditions involved in these rows. !e logically 
redundant condition can be omitted, and the two rows can be merged into a 
simpler su$cient conjunction of conditions.

Let us apply this principle to our example. Row 1 (~A~B~C) and row 2 
(~A~BC) are identical except for the value condition C takes on: it is absent in 
row 1 and present in row 2. !us, this information can be summarized in the 
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logically identical expression ~A~B. In other words, we can write the infor-
mation about su$ciency in Table 4.9 like this:

rows 1 and 2 + row 3 + row 4 + row 6
~A~B + ~AB~C + ~ABC + A~BC → Y.
With reference to our example, this means that the absence of a violent 
upheaval in the past combined with an ethnically non-homogenous soci-
ety (~A~B) is a su$cient condition for a stable democracy (Y), regardless of 
whether a pluralistic party system is in place (C) or not (~C).

Let us apply the same logical minimization principle to the primitive 
expressions ~AB~C (row 3) and ~ABC (row 4). !ey di"er only with regard 
to the value of condition C, which therefore can be dropped with the two rows 
rewritten as ~AB. Together with the previous minimization of rows 1 and 2, 
we can now write:

rows 1 and 2 + rows 3 and 4 + row 6
~A~B + ~AB +A~BC → Y.
!e same principle of logical minimization, matching a pair of primitive 
expressions that di"er in the value of only one condition, can be equally applied 
to any two conjunctions that lead to the same outcome. In our example, con-
junctions ~A~B and ~AB di"er only in the value of condition B, which can 
be dropped, and the two expressions can be simpli#ed to ~A. !is means that 
condition ~A is su$cient for Y regardless of the values conditions B or C take. 
Our simpli#ed solution formula now looks like this:

Table 4.9 Example of hypothetical truth table

Conditions Outcome

Row A B C Y

1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 0

See Table 4.2
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rows 1 to 4 + row 6
~A + A~BC → Y.
!is formula is logically equivalent to the most complex formula and to all 
intermediate formulas.

Since it is based on the same data as our example in section 3.1.1.2, we 
note a di"erence in the solution term. In section 3.1.1.2, the very same data 
resulted in the solution:

~A + ~BC → Y.
!e di"erence consists of the role attributed to condition A when it is com-
bined with ~BC. !e question is whether the inclusion of condition A is 
required when our aim is to #nd the most parsimonious solution term for 
the information contained in Table 4.9. !e answer is that it is not required. 
Why? Conjunction ~BC includes both primitive expressions A~BC (row 6) 
and ~A~BC (row 2), i.e., by saying that ~BC is su$cient for Y, we also say that 
both A~BC and ~A~BC are su$cient for Y. Since these two primitive expres-
sions di"er only in the value of A, condition A can be dropped. Notice that the 
process of logical minimization allows for using the same primitive expression 
for more than one logical minimization. In our example, the primitive expres-
sion ~A~BC in row 2 can be matched with both the primitive expression in 
row 1 (~A~B~C, leading to ~A~B) and the one in row 6 (A~BC, leading to 
~BC). !is simply means that this primitive expression of row 2 is covered by 
more than one prime implicant, an issue that we address in more detail in sec-
tion 4.3.2. For the moment, we can con#rm the solution term:

~A + ~BC → Y.
We reiterate that this formula is one of several ways of summarizing the infor-
mation on su$ciency contained in Table 4.9. All of the di"erent solution for-
mulas that we have reported here, as well as the intermediate steps of the 
minimization process, (a) are logically equivalent; (b) express the same infor-
mation contained in the truth table; (c) do not contradict each other, nor 
do they contradict the information contained in the truth table; and (d) are 
acceptable summaries of the empirical information at hand.

!e principle that more than one solution term is an acceptable and logic-
ally correct representation of the data in the truth table is a general feature 
of QCA. !e decision on which solution formula to choose as the basis for 
the substantive interpretation of the available information depends on many 
research-speci#c issues that have nothing to do with formal logic. !ere are 
several potential reasons that we might prefer the formula
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~A + A~BC → Y
over

~A + ~BC → Y.
Imagine, for instance, that the literature on the emergence of stable democra-
cies (Y) makes a strong point that a democracy cannot stabilize in the pres-
ence of violent upheavals (A). However, as solution term A~BC (i.e., row 6 in 
Table 4.9) demonstrates, there is empirical evidence that warrants a quali#ca-
tion of this claim: if combined with ~BC, A can indeed be a causally relevant 
INUS condition for Y. Following our hypothetical example, and contrary to 
the hypothetical claim in the literature, stable democracies occur in the pres-
ence of violent upheavals – but only when these countries additionally have 
an ethnically non-homogeneous population (~B) and a pluralistic party sys-
tem (C).9 While it is true that the formula

~A + ~BC → Y
also contains this information, the role of condition A remains less visible. 
!e formula that includes the term A~BC is simply more helpful in connect-
ing the empirical #ndings with pre-existing theoretical knowledge and expec-
tations on this particular topic.

A related argument to this is that more complex solution formulas help to 
direct attention to hitherto unexplained cases. Imagine that the literature on 
the stability of democracy has thus far failed to #nd an explanation for why a 
certain country, which we will call X, is a stable democracy. Further assume 
that country X can best be described by conjunction A~BC. By preferring 
the solution term that explicitly includes this conjunction as a su$cient path 
towards Y, we are able to demonstrate why country X displays a stable dem-
ocracy in a more straightforward manner than with the more parsimonious 
solution term.

4.3.2 Logically redundant prime implicants

!e Quine–McCluskey algorithm consists of more than the elimination of 
single conditions from a pairwise matching of similar conjunctions. !ere 
are situations in which this procedure yields a solution formula that can be 

9 Caution: this should be read to mean that an upheaval can be violent in such circumstances but does 
not necessarily have to be. Remember that the component ~A~BC is also implicitly contained in the 
solution. In the scenario of a heterogeneous society with a pluralistic party system, this allows for the 
absence of a violent upheaval.
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further minimized, but not by using the rule we have used so far. Another 
minimization principle is therefore needed (Ragin 1987: 95–98).

Logical equivalence can o%en be detected quite easily, such as in one 
example presented in section 4.3.1, where we show that ~A + ~BC → Y ≙ ~A 
+ A~BC → Y. However, logical equivalence is not always so easy to detect. For 
this reason, we introduce a more general procedure for arriving at solution 
formulas that cannot be further minimized.

In order to understand this further step in the minimization proced-
ure, we introduce the notion of prime implicants. Prime implicants can be 
de#ned as the end products of the logical minimization process through 
pairwise comparisons of conjunctions introduced in section 4.3.1. In other 
words, the solution term that we achieve through the pairwise comparison 
of conjunctions consists of prime implicants that are combined through 
logical OR. Under certain circumstances, though, it happens that one 
or more of those prime implicants are logically redundant. !ey can be 
dropped from the solution term in order to obtain the most parsimonious 
formula.

How can we identify logically redundant prime implicants? In order to 
answer this, we introduce some new hypothetical data. Suppose that the out-
come to be explained is the presence of a consolidated democracy (C). As 
potential conditions, we choose whether a country is rich (R), is ethnically 
homogeneous (E), and has a parliamentary government (P). Suppose the 
empirical information contained in a truth table can be written using the fol-
lowing primitive expressions, aka truth table rows:

REP + RE~P + ~REP + ~R~EP → C.
Figure 4.3 shows the prime implicants obtained by applying the minimization 
strategy just introduced.

!e complexity of the logical statement has been reduced from four paths 
(each composed of three individual conditions) to three paths (each com-
posed of two individual conditions). !ese three new paths (RE, EP, and ~RP) 
are the prime implicants. !ey logically contain all the primitive expressions 
and cannot be further minimized with the minimization procedure we have 
described up to now.

It is nevertheless possible that this solution term contains logically redun-
dant prime implicants. !erefore, we introduce a second rule for the mini-
mization of solution formula: a prime implicant is logically redundant if 
all of the primitive expressions are covered without it being included in the 
solution formula. Hence, a solution formula without such a prime implicant 
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does not violate the truth value of the information contained in the truth 
table. Remember, the guiding principle of logical minimization is to express 
the same logical statement in a more parsimonious manner. !e overarching 
requirement is that the truth value contained in the original truth table is 
not violated. !e same logical statement can be expressed without the prime 
implicant in question and still adhere to this requirement.

We present the identi#cation of logically redundant prime implicants in 
two di"erent ways. First, we use the tool of a prime implicant chart, and 
then we use a Venn diagram. A prime implicant chart displays the primitive 
expressions in the columns and the prime implicants in the rows. Table 4.10 
displays the prime implicant chart for our example on consolidated democ-
racies (C). Crosses in the cells indicate which primitive expression is covered 
by which prime implicant(s). Each prime implicant covers at least one, but 
usually more, primitive expressions. In order to preserve the truth value con-
tained in the truth table, each primitive expression must be covered by at least 
one prime implicant. Sometimes, there are primitive expressions that are cov-
ered by more than one prime implicant. It is here where the key to logically 
redundant prime implicant lies: a prime implicant is logically redundant if, 
and only if, all primitive expressions are covered even without it.

Take the situation displayed in Table 4.10. !is table can be read as follows: 
the prime implicant RE covers the primitive expressions REP and RE~P, since 
RE is the result of the logical minimization of REP and RE~P by dropping 
condition P. !is is indicated by the two crosses in the row for RE. !e other 
two prime implicants, EP and ~RP, also both cover two prime implicants 
each, as can be seen by the two Xs in their rows.

For the truth value to be preserved, there must be at least one X per column 
in a prime implicant chart like that in Table 4.10. RE cannot be dropped, for it 
would leave primitive expression RE~P uncovered. It is therefore not logically 
redundant. ~RP cannot be dropped and is thus not logically redundant either, 
for it would leave primitive expression ~R~EP uncovered. Prime implicant 
EP, however, is logically redundant. It can be removed from the table without 

Primitive expressions:

Prime implicants:

REP

RE EP

RE~P ~REP

~RP

~R~EP C

C

+ +

+ +

+

Figure 4.3 Logical minimization of primitive expressions to prime implicants
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any of the four primitive expressions remaining uncovered. REP is already 
covered by the prime implicant RE and ~REP by ~RP. !erefore, we can min-
imize our solution to:

RE + ~RP → C.
!e notion of logically redundant prime implicants can also be explained by 

invoking the notion of intersecting sets displayed in a Venn diagram. Figure 
4.4 displays the Venn diagram of our hypothetical example. In addition to 
the eight (23) di"erent areas, which correspond to the logically possible com-
binations (aka truth table rows) between R, E, and P, the Venn diagram also 
indicates the location of the prime implicants (RE, RP, ~RP).

What Figure 4.4 demonstrates is this: the two prime implicants RE and ~RP 
jointly cover the entire area that is also covered by the third prime implicant 
EP (highlighted by the dark-gray area). Put di"erently, EP is logically implied, 
or is a subset of, the expression RE + ~RP. For this reason, EP is logically 
redundant and can be removed from the solution term. We say that it can 
be removed, because logically redundant prime implicants might well be of 
substantive interest. If so, they can and should be le% in the solution formula. 
In these circumstances, such a formula is simply not the most parsimonious 
expression of the empirical information at hand.

Note that in the above example, there is only one logically redundant prime 
implicant (EP). !is leaves no discretion to the researcher as to which prime 
implicant needs to be dropped in order to produce the most parsimoni-
ous solution. Very o%en in applied QCA, though, there are several logically 
redundant prime implicants and some of them are tied. Two logically redun-
dant prime implicants are tied if either one or the other, but not both, can be 
dropped without violating the truth value of the solution term. !is implies 
that in the presence of tied logically redundant prime implicants, there can be 
more than one most parsimonious solution term.

Table 4.10 Prime implicant chart

Primitive expressions/Truth table rows

Prime implicants REP RE~P ~REP ~R~EP

RE X X
~RP X X
EP X  X  
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4.3.3 Issues related to the analysis of the non-occurrence of the outcome

Set relations are asymmetric (see section 3.3.3). One implication of this 
asymmetry is that the occurrence and the non-occurrence of an outcome of 
interest require separate analyses. All the analytic steps described so far that 
lead from a data matrix to a truth table and the logical minimization of the 
latter equally apply when the non-occurrence of the outcome is analyzed. 
!us, continuing from our example displayed in Table 4.2 above, we now 
select ~Y (the set of countries with non-stable democracies) as the outcome 
of interest.

Starting with the analysis of necessity, we see that whenever ~Y is present, 
A is also present (see also section 3.2.1.2):

A ← ~Y.
Having experienced a violent upheaval in the past turns out to be a necessary 
condition for having an unstable democratic system.

For the analysis of su$ciency, we apply the Quine–McCluskey algorithm 
based on all rows with ~Y = 1. !is yields the following result:

A~C + AB → ~Y.
!is can be rewritten by factoring out condition A (section 2.4.1) as:

A (B + ~C) → ~Y.
Non-stable democracies occur in societies that have experienced a violent 
upheaval in the past and, at the same time, have an ethnically homogeneous 

R

E EP P

~RP

RE

Figure 4.4 Venn diagram with logically redundant prime implicant
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population and/or do not have a pluralistic party system. Again, this account 
of outcome ~Y is di"erent from that for Y.

!ree important remarks need to be made. One is of a general nature 
and the second and third stem from the particular simplicity of the example 
we have chosen. First, if, indeed, as we claim, the occurrence and the non-
occurrence of a phenomenon, such as the stability of democracy and the 
non-stability, constitute two qualitatively di"erent events that warrant separ-
ate explanations, then it o%en makes sense to resort to di"erent theories and 
hypotheses to explain those outcomes. In other words, rather than just chan-
ging the outcome value from Y to ~Y in the same truth table, one might have 
to choose di"erent conditions and thus construct an entirely new truth table. 
!is directly follows from conceptual asymmetry, i.e., the fact that the neg-
ation of a concept o%en contains various qualitatively di"erent notions. For 
instance, the set of non-democracies denotes military regimes, theocracies, 
and one-party regimes, to mention just a few. Likewise, for example, the set 
of non-married people comprises singles, widows, etc. In short, asymmetry 
might not only require di"erent conditions for explaining Y and ~Y respect-
ively. It also might require di"erent conditions for the qualitatively di"erent 
outcomes captured within ~Y.

!e second and third caveats need to be made because our simple example 
produces two features in the solution term that usually do not hold when set-
theoretic methods are applied to observational data. Discussing these features 
generates some general insights, though, and should help to avoid two mis-
takes o%en found in the applied QCA literature.

!e second caveat is the following: in the analysis of necessity, we have 
identi#ed condition A as necessary. At the same time, the analysis of su$-
ciency has revealed two paths, both of which involve condition A. It therefore 
seems that whenever a single condition is part of all su$cient paths, then 
this condition must be necessary for the outcome. Likewise, it might seem 
that that if no single condition appears in all su$cient paths, then there is 
no necessary condition. Both conclusions are likely to be wrong in applied 
QCA. !ey hold only if the su$ciency analysis is performed on a fully spe-
ci#ed truth table, i.e., a truth table in which the outcome value for each of 
the 2k logically possible combinations of conditions is either 1 or 0.10 As we 
show in detail in sections 5.1, 6.1, and 6.2, this is hardly ever the case when 
formal logic meets noisy social science data. In applied QCA, truth tables 

10 In fsQCA, even then the conclusions about necessary conditions might be erroneous for reasons that 
we discuss in detail in section 9.1.
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almost invariably contain rows that are contradictory or logical remainders. 
Whenever these types of rows are present, the su$ciency analysis of a truth 
table runs the risk of not correctly revealing the presence or absence of neces-
sary conditions. In Chapter 9, we spell out the detailed circumstances under 
which false necessary conditions appear and when true necessary conditions 
disappear. For the time being, it su$ces to state that it is always recommended 
that analyses of necessity and su$ciency be kept separate and that statements 
of necessity and su$ciency, respectively, be based only on analyses of neces-
sity and su$ciency, respectively.

!e third caveat has similar roots to the second. Due to the simplicity of 
our example, it provides an exceptional instance in which it would be possible 
to derive the su$ciency solution formula for ~Y based on the formula for Y, 
without performing a separate analysis. Making use of DeMorgan’s law11 we 
can convert the su$ciency solution term for Y

~A + ~B*C → Y
into

A * (B + ~C) → ~Y.
!is is identical to the formula derived through empirical analysis of outcome 
~Y based on Table 4.2.

However, as mentioned, in social science research practice this procedure 
is problematic. It works properly only in a fully speci#ed truth table, i.e., when 
there are no contradictions (section 5.1) or logical remainders (sections 6.1 
and 6.2). Otherwise, the results produced by an application of DeMorgan’s 
law imply claims about some truth table rows that either go unnoticed or are 
untenable, or both (Chapter 8 and section 9.1). Since fully speci#ed truth 
tables are rare in practice, the meaningful use of the procedure described here 
and thus of DeMorgan’s law is very limited.

For all these reasons, the standard of good practice (section 11.1) should 
be to always perform separate analyses of the occurrence and the non-occur-
rence of the outcome and to always analyze necessity and su$ciency in sep-
arate steps, not the least, since causal asymmetry also refers to the fact that 
substantial reasons might require us to use di"erent causal factors for the 
explanation of the occurrence and the di"erent types of non-occurrence of 
an outcome, respectively.
11 In section 3.3.3, we have described how, if we have fully speci#ed truth tables (as in the case under 

examination), the arrow in the statement of su$ciency can be replaced by an equals sign (=). 
Consequently, it is possible to negate (e.g., through the application of DeMorgan’s law, see section 2.3) 
both sides of the equation without altering the truth value of the statement.
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At-a-glance: analyzing truth tables

The Quine–McCluskey algorithm uses the simplification rules of Boolean expressions 
on the truth table. It starts out by listing all configurations of conditions for which suf-
ficiency has been confirmed. Subsequently, the logical expression is minimized, with the 
help of the rules of Boolean algebra. Examining prime implicants often makes possible 
further simplifications that are not apparent at a first glance.

Factoring out those INUS conditions that appear in all sufficient paths does not show 
that a condition is necessary for the outcome. Because of this, necessary and sufficient 
conditions must be examined separately. It is recommended that analyses of necessary 
conditions be performed before analyses of sufficient conditions.

The non-occurrence of the outcome has to be analyzed separately. Only when there 
are neither configurations lacking any empirical cases nor contradictory truth table rows 
can DeMorgan’s law be applied.

Note that the information contained in any given truth table can be expressed through 
different solution terms. The principles of logical minimization ensure that these formu-
las are logically equivalent and differ only in the degree of complexity. The decision about 
which of these solution terms to put at the center of the substantive interpretation needs to 
be guided by theoretical and substantive considerations.
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5 Parameters of fit

Easy reading guide

In Chapter 4, we introduced the use of truth tables in the analysis of sufficient conditions. A 
central point of our previous chapter was to assess for every single truth table row whether 
it represents a sufficient condition for the outcome. If yes, then such a row has been 
included in the logical minimization. If not, then it has not been included.

So far, we have assumed an ideal world that presents itself in clear and neat patterns. 
In reality, social science research based on observational data is characterized by noisy 
data. The coming chapters deal with issues that derive from this fact and describe strat-
egies for how set-theoretic methods need to react to this. One fruitful way of looking at 
the discrepancy between neat set theory and the underlying empirical evidence is to frame 
this in terms of incomplete truth tables. A truth table is incomplete if it shows one or both 
of the following features. First, it might consist of rows that contain cases whose mem-
bership scores in that row and the outcome contradict the statement of sufficiency. These 
are contradictory or inconsistent rows. Second, a truth table might contain rows for which 
no (or, at least, not enough) empirical evidence is available. These rows are called logical 
remainders, and the presence of such rows is referred to as the phenomenon of limited 
diversity. The analytic problem caused by both forms of incomplete truth tables is that it 
becomes impossible to decide whether certain truth table rows represent sufficient condi-
tions for a given outcome. This means that for some truth table rows it is not a straightfor-
ward business to establish whether they are sufficient for the outcome. Put differently, it is 
difficult to decide whether to include a given row in the Boolean minimization process. This 
represents an analytic problem, since the solution formula greatly depends on the decision 
of which rows are included in the minimization.

This chapter discusses the phenomenon of less-than-perfect subset relations, while 
Chapter 6 will deal with limited diversity. We start by introducing the notion of logically 
contradictory truth table rows and outline strategies of dealing with them (5.1). We intro-
duce the consistency measure as one important strategy, and one which exists both for 
sufficient and for necessary conditions. After this, we also introduce the parameter of cover-
age, which expresses the empirical importance (sufficiency) and relevance (necessity) of 
a condition. We first introduce consistency and coverage formulas for sufficient conditions 
(5.2 and 5.3, respectively) and then for necessary conditions (5.4 and 5.5, respectively). As 
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5.1 Defining and dealing with contradictory truth table rows

!e notion of a contradictory truth table row is easier to understand with 
crisp sets. It describes a situation in which those cases that are members in a 
truth table row do not share the same membership in the outcome. Put di"er-
ently, the same row leads to both the occurrence and the non-occurrence of 
the outcome. Since truth table rows are, in essence, statements of su#ciency, 
such an empirical situation suggests a logical contradiction, for it would mean 
that the very same combination of conditions (aka truth table row) produces 
both Y and ~Y. !e analytic problem is that, based on the empirical evidence, 
it is not straightforward to decide whether this row is su#cient for Y, ~Y, 
or neither and, consequently, whether it should be included in the logical 
minimization for outcome Y, outcome ~Y, or neither. It cannot, however, be 
included in both minimization procedures.

!ere are several, mutually non-exclusive strategies for dissolving logic-
ally contradictory truth table rows in either csQCA or fsQCA prior to the 
logical minimization, and there is another set of strategies for handling such 
contradictory rows during the minimization procedure (Ragin 1987: 113–18; 
Rihoux and De Meur 2009). Let us $rst turn to the strategies for dissolving 
the contradiction.

!e $rst strategy consists in adding a condition to the truth table. If those 
cases in the contradictory row that display qualitatively di"erent outcome 
membership scores also show qualitatively di"erent membership scores in 
the new condition, then the contradiction is resolved. !is is because by add-
ing a new condition, the contradictory row is split in two rows, separating the 
cases with di"erent outcome membership scores in these two new rows. Of 
course, the downside of this strategy is that not only the contradictory row, 
but also all the other rows are split in two, thus doubling the number of truth 
table rows. Remember, the number of truth table rows is a direct function 

in previous chapters, we introduce each argument by starting from crisp sets and by then 
extending it to fuzzy sets.

The notion of consistency is indispensable for understanding the logic of the Truth Table 
Algorithm (Chapter 7), which is at the core of QCA. A solid knowledge of the meaning and 
measure of the parameters of fit is therefore indispensable. More advanced readers might 
want to consult the At-a-glance boxes in order to assess whether they are familiar enough 
with these issues and, if so, simply skim through this chapter.
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of the number of conditions (k), as expressed in the formula 2k (Chapter 4). 
!is, in turn, increases the problem of limited diversity (Chapter 6).

A second strategy is to respecify the de!nition of the population of interest. By 
virtue of this, some cases might be excluded and/or new ones included. Such 
a change of the set of cases via a rede$nition of the scope conditions (Walker 
and Cohen 1985) must be based in theoretical arguments. Cases cannot be 
excluded in an ad hoc manner simply because they contradict a statement 
of su#ciency. Instead, theoretical and substantive arguments must be expli-
citly brought forward as to why such cases are of a qualitatively di"erent kind 
and therefore fall outside the scope of the analysis (Ragin and Becker 1992). 
!e di#culty of this strategy might consist in the lack of plausible theoretical 
arguments. Even if these do exist, such a rede$nition of the scope conditions 
might have to be accompanied by a change in the relevant theories. !is, in 
turn, would have to have an in%uence on the choice of conditions and the 
outcome and their respective calibration functions, which could create new 
contradictory rows.

!ird, one can respecify the de!nition, conceptualization, and/or meas-
urement of the outcome or condition(s). A closer look at the similarities and 
di"erences in the contradictory cases in a given row might reveal that the 
speci$cation of the outcome or a condition was too vague, imprecise, or just 
plain wrong. If so, a respeci$cation may contribute to solving inconsistencies. 
Just as in the case of rede$ning the scope conditions, a change of the meaning 
and thus calibration of concepts must also be based on theoretical arguments, 
without which such a recalibration strategy would degenerate into a blunt 
data-$tting exercise.

Any of these approaches can help solving contradictions. !ese strategies 
belong to the standards of good QCA practice and they represent part of 
what is meant by the phrase “going back and forth between ideas and evi-
dence” (Ragin 2000), i.e., the process of updating theoretical, conceptual, 
and research design decisions based on preliminary empirical insights. At 
the same time, all strategies come at a cost and none can promise to always 
solve every logical contradiction. !us, in applied QCA, it usually happens 
that researchers enter the process of logical minimization with truth tables 
that contain some logically contradictory truth table rows. !ere are several, 
mutually exclusive treatments of logically contradictory rows during the pro-
cess of logical minimization.

First, one can exclude all contradictory rows from the logical minimiza-
tion process. By doing this, one allows only perfect subset relations to qual-
ify as su#cient conditions. As a consequence, any case that is a member of 
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the outcome but which falls into a contradictory truth table row will not 
be explained, or covered, by the solution term obtained with this strategy. 
Second, one can include all contradictory rows in the logical minimization 
process. !is strategy is based on the argument that a contradictory row at 
least makes the occurrence of the outcome possible. !e solution formula 
obtained thus represents the conjunctions of conditions that make the out-
come possible. All cases that are members of the outcome will be explained, 
or covered, by that solution term. !e downside, however, is that the solution 
term will also cover some cases that are not members of the outcome. !ird, 
one can make all inconsistent rows available for computer-generated assump-
tions about their outcome value. It is then up to the computer to decide which 
of the contradictory rows to include in the process of logical minimization 
and which ones not to include. !e only rationale for selecting some contra-
dictory rows is whether their inclusion makes the resulting solution term 
more parsimonious. Although all three strategies for handling contradictory 
rows come at a price, the third strategy is usually least justi$able and is hardly 
ever encountered in applied QCA.

In the remainder of this chapter and, in fact, throughout the book, we 
advocate yet another way of dealing with contradictory rows and inconsistent 
truth table rows and set relations. !is strategy takes into account how much, 
or to what degree, a given row deviates from a perfect set relation. Consider, 
for example, the following two scenarios. In one truth table row, nine out of 
ten cases share the same qualitative membership score in the outcome. Hence, 
one case deviates from the general pattern, or 90 percent of the evidence is 
in line with a subset relation. In another truth table row, six out of ten cases 
agree on their membership score in the outcome. Hence, only 60 percent of 
the empirical evidence is in line with the subset relation of su#ciency. !is 
type of percentage can be seen as an important measure of how consistent a 
particular con$guration is with the assertion that it is a su#cient condition 
for the outcome. We introduce this parameter as the consistency value in the 
remainder of the book.

In sum, strategies that aim at dissolving contradictions directly stem from 
the anchoring of set-theoretic approaches in qualitative methods. !ey remind 
us of the important fact that set-theoretic methods, in general, and QCA, in 
particular, are not only data analysis techniques but also research approaches 
with speci$c requirements for the research process before and a&er the actual 
data analysis. !ey re%ect, in other words, the double nature of QCA as both 
a research approach and a data analysis technique (see the Introduction, sec-
tion on QCA as a set-theoretic approach) (Berg-Schlosser, De Meur, Rihoux, 
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and Ragin 2008; Wagemann and Schneider 2010). Only if inconsistent rows 
still exist a&er these time- and energy-consuming countermeasures should 
one resort to those strategies that handle such rows during the process of 
logical minimization. Here, of greatest importance for applied QCA is the use 
of the consistency measure as a yardstick for guiding the decision on whether 
or not to include a truth table row into the logical minimization procedure.

5.2 Consistency of sufficient conditions

Starting o" with csQCA, perhaps the most intuitive way of graphically dis-
playing the notion of consistency of a su#cient condition is by means of a 
Venn diagram (Ragin 2006). Figure 5.1 displays Venn diagrams for three dif-
ferent conditions (X1, X2, X3) and an outcome Y. In all three scenarios, the 
size of sets X and Y remains identical; only their relative location changes. 
Condition X1 (Venn diagram on the le&) is a perfect subset of outcome set Y, 
whereas both conditions X2 and X3 are not. Conditions X2 and X3 di"er in the 
degree to which they violate the subset relation with Y. !e share of set X3 that 
is outside Y (area d) in relation to the overall size of X3 (areas b and d) is larger 
than for condition X2. !erefore, X2 is more consistent than X3 as a su#cient 
condition for Y.

While Venn diagrams are good for grasping the basic notion of set-the-
oretic consistency, two-by-two tables are more powerful when trying to 
explain how to calculate this parameter of $t. Table 5.1 displays the same 
three conditions and outcome as Figure 5.1, and the cells (a–d) correspond 
to the areas (a–d) in the Venn diagrams. !e numbers in the cells indicate 
the number of cases that show the respective membership scores in the con-
dition and outcome.

At-a-glance: defining and dealing with contradictory truth table 
rows

In dealing with contradictory truth table rows, a decision must be made before any 
logical minimization of the truth table is undertaken on how to approach these contra-
dictory rows. Some of the strategies for resolving contradictions include approaches that 
better specify the conditions in the explanatory model or the case selection with regard to 
the reference population.

Consistency measures will be of additional help in making decisions about contradict-
ory rows. Consistency scores should not replace, but rather complement, the qualitative 
strategies for dissolving contradictions.
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As we can see, the di!erence between condition X1, on the one hand, and 
X2 and X3, on the other, is that with the fully consistent condition X1

bers of X1 are located in cell b and none in cell d. " is is why there is no area d 
in the #rst Venn diagram in Figure 5.1. Some cases in X2 and many cases in X3 
fall into cell d rather than cell b. Recall from Chapter 3 that for statements of 
su$ ciency, only those cases matter that are members of the alleged su$ cient 
conditions (X = 1). Perfectly consistent su$ ciency requires that all cases with 
X = 1 are also members of outcome (Y = 1). " erefore, no case should be in 
cell d. " e more cases fall into cell d, the more consistency decreases.

Ragin (2006) suggests that the consistency of a su$ cient condition X for 
outcome Y be mathematically expressed by dividing the number of cases in 
cell b by all the cases that matter to measure su$ ciency, i.e., the number of 
cases in cells b and d. In csQCA, the consistency of X as a su$ cient condition 
for Y can therefore be calculated as follows:

Consistency oncy onc f Xy of Xy o as a
suffisuffisu cient condition for Y

Number of casecaseca s where X and Y
Number of casecaseca s where X

1 1an1 1and Y1 1d Y1 1anan1 1anand Yd Y1 1d Yd Y
1

table:

a a a
Y Y Y

b

b
b

c c c

d
dX1

X2
X3

Figure 5.1 Venn diagrams – consistent and inconsistent sufficient conditions

Table 5.1  – consistent and inconsistent sufficient conditions

Outcome Y

1
80

a

100

b

80

a

90

b

80

a

8

b

0
15

c

0

d

15

c

10

d

15

c

92

d

0 1 0 1 0 1
X1 X2 X3
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Consistency oncy onc f Xy of Xy o as a
suffisuffisu cient condition for Y

Number of casecaseca s cell b
Number of casecaseca s cells b db d+b d

" e consistency value is 1 if a condition is fully consistent and decreases as 
inconsistency becomes stronger. Applied to our example in Table 5.1
sistency values are as follows:

X1 = 100 / 100 = 1
X2 = 90 / 100 = 0.9
X3 = 8 / 100 = 0.08.

When shi%ing to fuzzy sets, the notion of subset relations is graphically best rep
resented in the form of XY plots (section 3.1.2.1). Figure 5.2 shows three such XY 
plots, which, along the lines of Figure 5.1 and Table 5.1, display three di!erent 
su$ cient conditions with increasing inconsistency from le% (X1) to right (X3).

When trying to calculate consistency, one approach could be to proceed 
analogously to the calculation in crisp sets by simply counting the number 
of cases that are in line with the statement of su$ ciency (i.e., those above or 
on the main diagonal) and then dividing this number by the number of cases 
that are relevant for the test (i.e., those with membership in X of higher than 
0). " e plot for X1 shows no case below the main diagonal. Hence, consistency 
would be 1. For X2 there are 10 out of 195 cases with X > 0 below the main 
diagonal. Hence, consistency for X2 would be 185/195 = 0.95. For X3, consist
ency would be 145/195 = 0.74.

" is crisp approach to calculating consistency is de#cient, though. Notice 

ible. " e distance between cases and the diagonal is clearly of interest because 
cases that are far below the main diagonal obviously deviate more strongly 
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Figure 5.2  – consistent and inconsistent sufficient conditions
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from the alleged subset relation. For instance, case A in Figure 5.2 has a high 

tively low value of Y. It therefore contradicts the su$ ciency statement more 
than cases that fall only slightly below the main diagonal and/or have only 
weak membership in condition X and outcome Y.

lating consistency (and coverage, see 5.3). " is is precisely what Ragin (2006; 
2008a
cient condition. For each case, the minimum values across the membership 
scores in X and Y are added up and then divided by the sum of the member
ship values in X across all cases.

Consistencytencytenc ufficieS nufficieS nufficie t Conditions X

i
i

I

i

i
i

i i

X YiX Yi

X
( )s X( )s X Y( )Yi i( )i iYi iY( )Yi iY

min( , )i, )iX Y, )X YiX Yi, )iX Yi

( )( )i i( )i ii i( )i i

1

11

I .

If all cases have smaller or equal membership in X than in Y (as is required 
for fully consistent su$ ciency), then the numerator simply becomes the sum 
of all Xi

onal, their membership in Y provides the minimum. " e farther they fall 
below the diagonal, the bigger the di!erence between their membership in 
X and Y and the smaller the sum in the numerator becomes in relation to 
the sum of Xi in the denominator. " us, this consistency measure takes into 
account how far a case falls below the main diagonal, or how far the member
ship in X exceeds that in Y.

ency formulas above and yields identical consistency values to them (Ragin 
2008b: 108n. 5). In case of crisp sets, the Xi in the denominator can only be 0 
or 1. " erefore, the sum of all Xi is equal to the number of cases where X = 1. In 

two table (Table 5.1). " is is the only cell where the minimum across Xi and Yi 
is 1, since both the X and Y values are 1. In all other cells, the minimum of Xi 
and Yi is 0, and the cases contained therein are not added to the numerator.

set relation, the consistency formula has one particular shortcoming when 
applied to fuzzy sets. It does not take into account whether an inconsistent 
case is above or below the qualitative anchor of 0.5 in X and/or Y. Take, for 
instance, cases A, B, and C in the XY plot for X2. " eir distances to the main 
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diagonal are identical. !us, they equally contribute to the inconsistency of 
X2 as a su#cient condition for Y. !ere is, however, a qualitative di"erence 
between cases B and C, on the one hand, and case A, on the other, which is 
important for evaluating whether X2 can be interpreted as a su#cient condi-
tion for Y. !e former two cases display set membership scores in X and Y 
that are on the same side of the 0.5 qualitative anchor – they are either more 
in than out of both X and Y (case C) or more out than in of both X and Y (case 
B). Case A, in contrast, has qualitatively di"erent membership scores in X 
and Y. Its membership in X2 is above 0.5, making it a good empirical instance 
of this condition. Yet, its membership in Y is below 0.5. Hence, case A is a 
true logically contradictory case while cases B and C are simply inconsist-
ent cases. To summarize this shortcoming, contradictory truth table rows can 
and do occur both in csQCA and fsQCA and they are, by de$nition, incon-
sistent rows. With fuzzy sets, however, not all inconsistent rows are automat-
ically truly logically contradictory.1 Analytically, inconsistent subset relations 
that also contain a true logical contradiction are less in line with a statement 
of su#ciency than simply inconsistent subset relations. !ey warrant more 
actions by researchers in terms of the strategies for $xing contradictory rows 
outlined in section 5.1 before proceeding with the logical minimization.

Which consistency level should researchers impose when identifying sin-
gle truth table rows as su#cient conditions? For obvious reasons, consistency 
values close to, or even below, 0.5 should be ruled out, as this indicates that 
(almost) half of the empirical evidence contradicts the subset relational state-
ment of su#ciency. Even values below 0.75 are o&en problematic as they have 
consequences for the subsequent analysis, which we spell out in various places 
in the remainder of this book (e.g., sections 5.6 and 9.1). As mentioned, with 
fuzzy sets, not only the consistency score, but also the presence or absence of 
true logically contradictory cases should be taken into account.2 In the pres-
ence of such cases, researchers should be more reluctant to declare that row as 
a su#cient condition, independently of its consistency value.

Beyond these rough indications, we would like to make a strong plea for the 
notion that the exact location of the consistency threshold is heavily depend-
ent on the speci$c research context. In other words, researchers should not 
justify their choice of the consistency threshold by making reference to some 

1 !e notion of a true logical contradiction also extends to statements of necessity (see section 5.4). 
Here, a true logically contradictory case is one with X < Y and X < 0.5 and Y > 0.5.

2 Perhaps the easiest way to do so is by producing an XY plot and checking whether the lower right area 
contains cases.
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sort of universally accepted consistency threshold, akin to the (largely non-
re%ected) use of the 95 percent con$dence interval in inferential statistics. 
Instead, researchers should guide their decision by making reference to vari-
ous research-speci$c features.

!e following guidelines should be used as some rough yardsticks. !e 
more precise and strong the theoretical expectations that can be derived from 
the literature, the higher the consistency that should be used. !e higher the 
con$dence in the precision and validity of the calibration procedure for the 
conditions and the outcome, the higher the consistency. !e lower the num-
ber of cases under investigation, the higher the consistency. !e more logic-
ally contradictory cases, the higher the consistency.3 In addition, in applied 
QCA a gap o&en exists between rows with relatively high and low consistency 
values that can guide the decision of where to put the consistency threshold. 
A less o&en used strategy is to employ the tools of probability theory. Ragin 
(2000: 109–16) suggests a binomial probability test simple for smaller N (30 
or below) and a z test when the N is larger than that. Other authors also com-
bine the assessment of set relations with tools from probability theory.4 By 
now, several of the so&ware packages (R and Stata) available for set-theoretic 
analyses allow for easy use of statistical tests not only of consistency, but also 
of coverage (see 5.3). Clearly, no precise, universal consistency value can be 
derived from these guidelines, o&en not even within a speci$c project. It is 
therefore strongly recommended that separate analyses with di"erent thresh-
olds of consistency be run in order to $nd out how sensitive the results are 
to the choice of the consistency level. We discuss this issue in further detail 
under the heading of robustness in section 11.2.

In sum, the consistency formula indicates the degree to which the state-
ment of su#ciency is in line with the empirical evidence at hand. !e more 
cases that deviate from the subset pattern and the stronger their deviation, 
the lower the consistency value. Of course, consistency can be calculated 
for any statement of su#ciency of arbitrary complexity. Put di"erently, X in 
the consistency formula is simply a placeholder for a set that might consist 
of the logical AND and OR combination of several sets. Regardless of how 
3 As explained, with fuzzy sets cases can be inconsistent with a postulated subset relation without, how-

ever, being logical contradictory cases. A further guideline for choosing the consistency threshold for X 
as a su#cient condition for Y applies in fuzzy sets: with fuzzy sets, X can be a subset of both Y and ~Y. 
Since declaring X as su#cient for both Y and ~Y amounts to a logical contradiction, only those rows 
should be declared as su#cient for Y that display high consistency as su#cient conditions for Y and low 
values for ~Y. We return in greater detail to the more general issue of simultaneous subset relations in 
section 9.2.

4 See, for instance, Braumoeller and Goertz (2003); Dion (2003); Caramani (2009); Eliason and Stryker 
(2009).
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many sets are combined with di"erent logical operators, each case has only 
one set membership score in that complex set. !is implies that consist-
ency values can be calculated for single truth table rows; single paths which 
have been identi$ed as su#cient; or even an entire solution formula. When 
the consistency statement is on truth table rows, it is called “raw consist-
ency,” while the consistency value for the entire solution is called “solution 
consistency.”

5.3 Coverage of sufficient conditions

Once a subset relation has been established via the use of the consistency par-
ameter, another question can be asked: what is the relation in size between the 
subset (X) and the superset (Y)? !e answer to this question expresses how 
much of outcome Y is covered by condition X, thus expressing the empirical 
importance of X for explaining Y.

Consider the three situations depicted in Figure 5.3. It displays three dif-
ferent conditions (X1 to X3) for the same outcome Y. All three conditions are 
identical with regard to their slight inconsistency as su#cient conditions (the 
ratio of area d over areas b and d is equal in all three Venn diagrams). What 
di"ers between the three is the size of the set of X in relation to the set of Y. 
Condition X1 is larger than condition X2 is larger than X3. Since the set of Y is 
constant and the ratio between areas b and d remains the same, the varying 

At-a-glance: consistency of sufficient conditions

Consistency provides a numerical expression for the degree to which the empirical infor-
mation deviates from a perfect subset relation. This information plays a crucial role when 
deciding which truth table rows can be interpreted as sufficient conditions and can thus 
be included in the logical minimization process.

With crisp sets, inconsistency by default stems from logically contradictory cases. 
With fuzzy sets, it does not have to. Therefore, researchers are advised to check for the 
presence of true logically contradictory cases, in addition to the consistency value, before 
attributing the status of a sufficient condition to a truth table row.

Consistency can be calculated for single conditions as well as for more complex 
statements.

Researchers should justify their consistency threshold by making reference to research-
specific features, such as the strengths of theoretical expectation and the quality of the 
data. The consistency value for sufficient conditions should preferably be higher than 
0.75.
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size of the set of X means a variation in the amount of cases with Y = 1 that 
are covered by X1, X2, and X3, respectively. In other words: X1, X2, and X3 have 
di!erent coverages. " e coverage measure expresses the degree to which the 
consistent part of su$ cient condition X overlaps with outcome Y.

For illustration, let Y be the set of pupils with high test scores, X1 be the set 
of students who study hard, X2 be the set of students who study hard and are 
talented, and X3 be the set of students who study hard, are talented, and cheat. 
Of course, membership in X3 is more di$ cult to obtain because we require 
the joint presence of various characteristics of pupils. " is is why less X3 is 
smaller than X2 and X1. " is also implies that fewer members of outcome Y 
share the features denoted by set X3.

Table 5.2 represents the same empirical information as the Venn diagrams 
in Figure 5.3. In each of the three scenarios, the number of cases that are 
members of the outcome (Y = 1) remains the same (210) and the consistency 
scores are identical.5

tion X1 to X2, and then further to X3, the number of cases that have member
ship in the respective condition X decreases. At the same time, the number of 

tables, this means that, as more cases move from cell b into cell a, the ratio of 
the consistent part of X over the total number of cases with Y decreases. " e 
consistent part of X accounts for an increasingly smaller portion of Y. " e 
formula for calculating the coverage of X for Y can then be written as follows 
(Ragin 2006, 2008a: 44–68).

Coverage of X as a
sufficisufficisu ent condition for Y

Number of cases where X 1 1
1

an1 1an1 1d Y1 1d Y1 1
Number of cases where Y

1 11 1
.

a a a

c c c

Y Y Y

b b bd
d d

X1
X2 X3

Figure 5.3 Venn diagrams 

5 X1 = 200 / 208 = 0.96; X2 = 120 / 125 = 0.96; X3 = 24 / 25 = 0.96.
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Coverage of X as a
sufficisufficisu ent condition for Y

Number of cases cell b
Number of cases cells a ba ba b

.

tions are as follows:

X1 = 200 / 210 = 0.95
X2 = 120 / 210 = 0.57
X3 = 24 / 210 = 0.11.

" e graphical intuition gained by looking at the Venn diagrams in Figure 5.3 
is corroborated by these coverage values: the coverage of X1 is higher than that 
of X2 is higher than that of X3. With crisp sets, full coverage is achieved when 
cell a is empty of cases.

With fuzzy sets, we have to use XY plots. Figure 5.4
tions, all with identical consistency values (0.91), but di!erent coverage. As 
we go from X1 to X2 and further to X3, we see that cases tend to fall closer and 

 
tables above.

tions suggested by Ragin (2006, 2008a
grained information contained in fuzzy sets looks as follows:

Coverage
X Y

Y
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iX YiX Y
i

I

i

iYiY
i

Ii i( )X Y( )X Yi i( )i iX Yi iX Y( )X Yi iX Y
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b
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Applied to our three XY plots in Figure 5.3, the following coverage values are 
obtained:

X1 = 0.81; X2 = 0.6; X3 = 0.19,

con$rming our visual impression of X1 being empirically more important 
than X2, which, in turn, is empirically more important than X3.

!e more cases that are located in the upper le& corner, and the farther 
away from the main diagonal these cases are, the lower the coverage. !ose 
cases are good empirical instances of the outcome (high membership in Y) 
for which we lack, however, an adequate explanation because they are weak 
empirical instances of the su#cient condition (low membership in X).6 !e 
coverage formula takes into account how far above the main diagonal cases 
are located and, hence, how much of their fuzzy-set membership in Y is not 
covered by their membership in X. Cases in the upper le& corner contribute 
little to the sum in the numerator (only their small X value) and much to the 
denominator (their high Y value).

As can be seen, with fuzzy sets, the calculation of coverage also takes into 
account that part of each inconsistent case’s membership in Y that is covered 
by X.7 As a consequence, coverage also increases due to cases that are incon-
sistent with the statement of su#ciency. !is is an unfortunate property of the 
coverage parameter. It can be argued, though, that its e"ect is bound to be mar-
ginal and usually does not trigger substantive changes in the interpretation of 

6 !e upper le& corner corresponds to cell a of our Venn diagram (Figure 5.3) and our two-by-two table 
(Table 5.2).

7 !e problem does not a"ect csQCA because each inconsistent case has a membership value of 0 in Y. 
!us, for each inconsistent case 0 is added to both the numerator and the denominator in the coverage 
formula.
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Figure 5.4 XY plot – different levels of coverage sufficiency
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the results.8 Several features reduce the e"ect. First, it is not the entire incon-
sistent case that is counted into the coverage formula but only that part of its 
membership in Y that is actually covered by X. Second, coverage is only calcu-
lated for conditions that have passed a threshold of consistency. !is ensures 
that the number of cases (far) below the main diagonal is small and therefore 
their distorting e"ect on the coverage formula low. !is, incidentally, provides 
another argument against choosing too low levels of consistency, for it would 
unduly boost the coverage values of (too inconsistent) su#cient conditions. 
From all this follows a clear rule of thumb: the consistency of a su#cient con-
dition must always be calculated before its degree of coverage, and coverage 
should only be calculated for conditions that passed the test of consistency 
(Ragin 2006).9 It makes no sense to calculate and interpret the coverage of a 
condition that is not su#cient.

Recall that equi$nality is an important part of the epistemological foun-
dation of set-theoretic methods, in general, and QCA, in particular (section 
3.3). Di"erent conditions (or combinations thereof) can lead to the same out-
come. As a consequence of this, we can and should calculate the coverage of 
these di"erent parts separately (Ragin 2006, 2008a: 54–68). It should be estab-
lished how much of the outcome is covered by each of these paths. !is is 
called raw coverage. We also might want to know how much of the outcome is 
covered only by a speci$c path – the unique coverage. !e distinction between 
raw and unique coverage is important because di"erent su#cient paths can 
overlap, i.e., the same case can follow multiple paths toward the outcome.10 
In these cases, the outcome occurs for more than one reason. Note that if no 
logically redundant path (section 4.3.2) is included in the solution, then all 
paths have a unique coverage higher than 0. We are also interested in $nding 
out how much of the outcome is covered by the entire solution term – the so-
called solution coverage. For instance, consider the equi$nal and conjunctural 
solution term ~A~C + ~BC + F~D → Y. We can calculate the raw coverage 
and the unique coverage of su#cient paths ~A~C, ~BC, and F~D, respect-
ively. In addition, we can calculate the solution coverage of the term ~A~C + 
~BC + F~D.

 8 In section 9.2.1, we demonstrate under which circumstances this feature of the coverage formula 
produces misleading results and suggest alternative coverage formulas.

 9 !is is analogous to that in multivariate regression, where beta-coe#cients should be interpreted only 
for signi$cant variables.

10 Recall from section 2.2 that the logical OR operator used in QCA solution formulas is a non-
exclusionary logical OR. One and the same case is allowed to be a member of more than just one 
su#cient condition or path.
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For all three types of coverage, the coverage formula for su#ciency reported 
above directly applies. All that needs to be changed is what the placeholder 
X in this formula stands for: each case’s membership in the path of interest, 
e.g., in the term ~A~C (raw coverage) or in the entire solution term (solution 
coverage). Unique coverage is calculated by subtracting from the solution 
coverage the amount of coverage that is obtained by all paths except the one 
whose unique coverage we are interested in. For instance, the unique cover-
age of path ~A~C would be calculated in the following way:

Unique coverage ~A~C = solution coverage − coverage (~BC + F~D).

A Venn diagram might help convey an intuitive representation of the di"erent 
types of coverage. Figure 5.5 displays a Venn diagram for the solution term:

X1 + X2 + X3 → Y.
!e rectangular box denotes all cases in the study. !e largest set is out-

come Y and each circle represents one of the three su#cient paths X1–X3. 
Needless to stay, X can stand for a conjunction of conditions. Furthermore, 
since the circles for X1–X3 are fully contained within the set of Y, we know that 
each single path and the entire solution term are fully consistent as su#cient 
conditions. What varies between paths is their raw and unique coverage.

!e raw coverage of a single path is represented by the size of its set in rela-
tion to the size of set Y. We see that the raw coverage of X2 is higher than that 
of X1, which is higher than that of X3, simply because area (IV) is bigger than 
areas (I) and (II), which are bigger than areas (II) and (III). !e unique cover-
age is that area of a condition that does not overlap with another su#cient 
condition. As Figure 5.5 shows, paths X1 and X3 partially overlap. !erefore, 
the unique coverage of X1 is equal to area (I) whereas that of X3 is equal to 
area (III). Since condition X2 does not overlap with any of the other paths, its 
unique coverage is the same as its raw coverage. Finally, the solution coverage 
of the term X1 + X2 + X3 → Y is the sum of the areas (I)–(IV) in relation to the 
area of Y. Since the three paths jointly do not $ll the entire circle for outcome 
Y, we can also see that the solution coverage is lower than 1.

Computationally, the calculation of coverage (and also of consistency) is 
not very demanding. Although all relevant so&ware packages except Tosmana 
1.3.2 automatically provide these parameters of $t, it might be helpful to 
demonstrate how coverage (and consistency) are calculated by hand. We do 
this with an example from Vis (2009),11 who aims at explaining why some 

11 In the remainder of the book, we repeatedly refer to data from this and other published examples, and 
we will introduce the study in further detail below (section 8.2).
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governments in Western Europe engage in unpopular reforms (U). She $nds 
that a weak political position of the governments (P) combined with a weak 
socio-economic situation (S) or a right-wing government (R) combined with 
a weak socio-economic situation (S) are the su#cient conditions for unpopu-
lar reform. Formally:

P*S + R*S → U.
Table 5.3 contains the membership scores for the 25 cases, in both the solu-
tion and the outcome. In addition, the last column indicates for each case the 
minimum membership score across the solution and the outcome. !is is a 
crucial quantity as it is used in the numerator for calculating both consistency 
and coverage. Calculating the solution coverage is straightforward. We simply 
add up the values in column “min(PS+RS,U)” and divide it by the sum of the 
membership scores in the column for outcome U. !is yields a coverage for 
PS+RS of

Solution Coverage (PS+RS) = 10.96 / 12.74 = 0.86.

Each case with a higher membership in U than in PS+RS contributes to 
less-than-perfect coverage. Among them, cases like Kok I or N. Rasmussen 
IV are particularly striking, for they are more in than out of the outcome set 
U but more out than in both su#cient paths and thus remain uncovered and 
therefore unexplained by solution term PS+SR.

Y

X1

X3

X2

(I)
(II)

(IV)

(III)

Figure 5.5 Venn diagram – equifinal solution term and types of coverage
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As a matter of fact, the calculation of consistency for the solution PS+RS 
is equally straightforward. Simply add up the scores in the last column once 
again, but this time divide it by the sum of scores in the path PS+RS:

Solution Consistency = 10.96 / 12.12 = 0.90.

Less-than-perfect consistency is caused by cases whose membership in 
PS+RS exceeds their membership in U such as, for instance, Kok II, Schröder 
I, Schlüter IV and V.

Table 5.3 Fuzzy-set membership in solution and outcome (Vis 2009)

Solution Outcome

Government PS + RS U min(PS+RS,U)

Lubbers I 0.83 0.83 0.83
Lubbers II 0.33 0.33 0.33
Lubbers III 0.60 0.67 0.60
Kok I 0.40 0.67 0.40
Kok II 0.33 0.17 0.17
Balkenende II 0.67 0.83 0.67
Kohl I 0.33 0.33 0.33
Kohl II 0.17 0.17 0.17
Kohl III 0.33 0.33 0.33
Kohl IV 0.67 0.67 0.67
Schröder I 0.33 0.17 0.17
Schröder II 0.83 0.83 0.83
Schlüter I 0.33 0.33 0.33
Schlüter II 0.60 0.67 0.60
Schlüter IV 0.67 0.17 0.17
Schlüter V 0.67 0.33 0.33
N. Rasmussen I 0.17 0.17 0.17
N. Rasmussen II (& III) 0.60 0.83 0.60
N. Rasmussen IV 0.33 0.67 0.33
!atcher I 0.83 0.83 0.83
!atcher II 0.33 0.67 0.33
!atcher III 0.67 0.67 0.67
Major I 0.60 0.67 0.60
Blair I 0.17 0.40 0.17
Blair II 0.33 0.33 0.33
SUM fuzzy membership (a) 12.12 (b) 12.74 (c) 10.96
Coverage su!ciency (c/b) 0.86
Consistency su!ciency (c/a)  0.90  
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!e calculation of raw and unique coverage is equally simple. We demon-
strate it for path PS. Table 5.4 displays each case’s fuzzy set membership scores 
in path PS, outcome U, and the minimum score across these two sets.

By adding up the scores in the last column and dividing the total by the 
sum of column PS, we obtain a consistency value of 7.94 / 8.69 = 0.91. !e raw 
coverage of PS is 7.94 / 12.74 = 0.62.

In order to calculate the unique coverage of path PS, we need to subtract 
from the solution coverage all of what can be covered by any other path in the 
solution except PS. Since, in our example, there is only one other path (RS),12 
we have to calculate the coverage of RS (0.71) and then subtract it from the 
solution coverage (0.86) in order to obtain the unique coverage of path PS:

Unique coverage PS: 0.86 − 0.71 = 0.15.

!e calculation of the unique coverage of path RS (not displayed in Table 
5.4) is equally simple. From the solution coverage we subtract the raw cover-
age of path PS:

Unique coverage RS: 0.86 − 0.62 = 0.24.

!e unique coverage scores reveal that each path has some unique contribu-
tions to covering the outcome. In general, marginal di"erences in the cover-
age level should not be over-interpreted. Of equal, if not more, interest should 
be the cases that are uniquely covered. A case is uniquely covered if it holds a 
membership value higher than 0.5 in only one su#cient path (Schneider and 
Rohl$ng in press and section 11.4, below). In our example, it turns out that 
out of the $ve cases that are more in than out of path PS, only two – Schröder 
II and Rasmussen II (&III) – are uniquely covered. !e other three also have 
a membership greater than 0.5 in path RS. Path RS, in turn, has ten cases with 
membership greater than 0.5, and seven of them are uniquely covered by that 
path. Path RS is therefore empirically more important than path PS to an 
extent beyond what is re%ected by comparing only their unique coverage for-
mulas. !e practical suggestion is that researchers should not only calculate, 
report, and interpret the raw and unique coverage scores, but also should go 
back to the cases and identify the uniquely covered cases.

Notice that for consistency, we argued that a lower threshold exists in 
principle, even if its precise location is subject to judgment (section 5.2). For 

12 If the solution term consists of more than two paths, then we must calculate the joint coverage of all 
paths except the one we are interested in. It is not correct to simply add up the raw coverage of all these 
paths, because paths might partially overlap.
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coverage, no lower threshold exists. !e reason for this is that consistency 
establishes whether a subset relation exists, whereas coverage expresses how 
empirically important a subset relation is. Conditions with low coverage cover 
only a little of the outcome of interest, but that little might be of huge theoret-
ical or substantive importance. Of course, conditions with zero unique cover-
age should be either disregarded or interpreted with care. Such zero coverage 
will always happen when logically redundant prime implicants (section 4.3.2) 
are included in the solution term.

Table 5.4 Fuzzy-set membership in path PS and outcome (Vis 2009)

Path Outcome

Government PS U min(PS,U)

Lubbers I 0.33 0.83 0.33
Lubbers II 0.17 0.33 0.17
Lubbers III 0.33 0.67 0.33
Kok I 0.17 0.67 0.17
Kok II 0.33 0.17 0.17
Balkenende II 0.67 0.83 0.67
Kohl I 0.17 0.33 0.17
Kohl II 0.17 0.17 0.17
Kohl III 0.17 0.33 0.17
Kohl IV 0.67 0.67 0.67
Schröder I 0.33 0.17 0.17
Schröder II 0.83 0.83 0.83
Schlüter I 0.33 0.33 0.33
Schlüter II 0.33 0.67 0.33
Schlüter IV 0.33 0.17 0.17
Schlüter V 0.6 0.33 0.33
N. Rasmussen I 0.17 0.17 0.17
N. RasmussenII (& III) 0.6 0.83 0.6
N. Rasmussen IV 0.33 0.67 0.33
!atcher I 0.17 0.83 0.17
!atcher II 0.33 0.67 0.33
!atcher III 0.33 0.67 0.33
Major I 0.33 0.67 0.33
Blair I 0.17 0.4 0.17
Blair II 0.33 0.33 0.33
SUM fuzzy membership (a) 8.69 (b) 12.74 (c) 7.94
Coverage su!ciency (c/b) 0.62
Consistency su!ciency (c/a)  0.91  
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5.4 Consistency of necessary conditions

!e notions of consistency and, with some quali$cation, coverage can be 
applied to necessary conditions. If X is necessary for Y, then X is a superset 
of Y, whereas if X is su#cient for Y, then it is a subset of Y (Chapter 3). One 
consequence of this mirror-image relation between necessity and su#ciency 
is that the formulas for the parameter of $t are closely related. As a matter of 
fact, as we will see now, the formula for consistency su#ciency is mathematic-
ally identical to the standard formula for coverage necessity, and the formula 
for coverage su#ciency is mathematically identical to that for consistency 
necessity. In the following, we explain the rationale for these formulas.

Let us start by having a look at the following three two-by-two tables. Each 
of them displays the same outcome Y but three di"erent conditions (X4, X5, 
and X6). !e numbers in the cells indicate the number of cases.

If a condition is necessary for the outcome, then no case may show the out-
come without the condition. !is means that cell a of our two-by-two table 
must be empty. When making a statement of necessity for outcome Y, then, 
cases that do not show the outcome are irrelevant (section 3.2.1.1). In two-
by-two tables, this means that cells c and d are irrelevant for the assessment 
of necessity. !e degree to which a condition is consistent with the statement 
of necessity thus depends on the ratio of cases in cells a and b. If all of these 
cases are located in cell b, the condition is fully consistent. !e more of these 
cases fall into cell a, the lower consistency becomes.

At-a-glance: coverage of sufficient conditions

Coverage sufficiency expresses how much of the outcome is covered (explained) by the 
condition in question. The formula sums all minima of X and Y in the numerator and divides 
it by the sum of all Y values.

Raw coverage indicates how much of the membership in the outcome is covered by 
the membership in a single path; the unique coverage instead indicates how much a 
single path uniquely covers. The solution coverage expresses how much is covered by 
the entire solution term.

The empirical importance expressed by coverage is not the same as the theoretical or 
substantive relevance of a sufficient condition. Thus, low-coverage paths might still be of 
great substantive interest.

Uniquely covered cases are those that hold a membership value higher than 0.5 in only 
one sufficient path. When substantively interpreting sufficient paths and assessing their 
importance, researchers should make reference to these uniquely covered cases.

Unlike the case with consistency, there is no lower threshold for coverage.
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For condition X4, cell a in Table 5.5
ent necessary condition for Y. What about conditions X5 and X6? For both 
conditions, cell a contains cases. Certainly, X5 and X6 are not fully consistent 
necessary conditions for Y. X6 is less consistent with the statement of necessity 
than X5, because of those cases that matter (cells a and b) more cases (50) are 
located in the forbidden cell than for X5 (10). Ragin (2006
lowing formula for calculating consistency of a necessary condition:

Consistency otency otenc f Xy of Xy o as a
necessary cnecessary cnecessar ondition for Y

Number of cases where X and Y
Number of cases where Y

X aX a1 1X a1 1X and1 1nd Y1 1Y1 1X aX a1 1X aX andnd1 1ndnd YY1 1YY
1

.

In the numerator we add up all cases that are members of both the outcome 
and the necessary condition and in the denominator we add up all cases that 
are members of the outcome. Applied to Table 5.5
ten as:

Number oNumber oNumber f of o cases cell b
Number oNumber oNumber f of o cases cells a + b .

Plugging in the values for the conditions X4, X5, and X6

ing consistency scores as necessary conditions:

X4 = 100/(0 + 100) = 1
X5 = 90/(10 + 90) = 0.9
X6 = 20/(20 + 80) = 0.2.
When discussing consistency and coverage for su$ ciency, we have already 

Table 5.5  
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when dealing with necessity. With fuzzy sets, the consistency of a necessary 
condition is given by the degree to which each case’s membership in X is 
equal to or greater than their membership in Y. When calculating consistency 
necessity, we therefore relate each case’s membership in X that is consistent 
with the statement of necessity to the sum of each case’s membership in Y. 
" is logic can be expressed by the following formula (Ragin 2006):

Consistencytencytenc
X Y

Y
Necessary Conditions

iX YiX Y
i

I

i

iYiY
i

i i( )X Y( )X Yi i( )i iX Yi iX Y( )X Yi iX Y

min( , )X Y, )X Yi, )iX YiX Y, )X YiX Y
X Y( )X YX Y( )X YX Yi iX Y( )X Yi iX YX Yi iX Y( )X Yi iX Y

1

1

II .

If for all cases the X values are equal to or greater than their Y values, then 

sistency value of 1, since the minimum of X and Y is in all cases the Y value. 
" e more cases that display a membership in Y that exceeds their member
ship in X (and the greater the amount by which Y exceeds X in these cases), 
the more cases lie above the diagonal (and the farther above the diagonal they 

ates ever more from a value of 1, since smaller values go into the numerator 
than into the denominator.

Let us brie&y demonstrate this formula with an example. Schneider, 
2010) are interested in, among other things, 

portion to all exports (EXPORT) in 19 OECD countries from 1990 to 2003 
(N = 76). " ey identify high unemployment protection (EMP); high coverage 

of stock market capitalized indigenous #rms (STOCK); and high share of 

(MA).13

plements, ordered by consistency values, are shown in Table 5.6.14

ers might see good reasons to interpret it as a necessary condition. However, 
an inspection of the XY plot (Figure 5.6) reveals that this is not so clear, in 
the end. First, a considerable number of cases fall above the diagonal. Second, 

13 
14 Chapter 5 on using the so%ware packages for calculating the 
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among the inconsistent cases there are two true logical contradictory cases 
(section 5.2; see footnote 1, above): France in 1995 (STOCK = 0.41; EXPORT 
= 0.62), and Germany in 2003 (STOCK = 0.49; EXPORT = 0.69). Both cases 
are more out of than in the alleged necessary condition while being more in 
than out of the outcome. !erefore, interpreting STOCK as a necessary con-
dition for EXPORT does not seem warranted.

Table 5.6 Analysis necessity, single conditions 
(Schneider et al. 2010: 255)

Condition Consistency

STOCK 0.89
UNI 0.81
MA 0.72
~OCCUP 0.71
BARGAIN 0.68
~EMP 0.64
OCCUP 0.58
~BARGAIN 0.50
~MA 0.50
~UNI 0.31
~STOCK 0.24
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Figure 5.6 XY plot – condition STOCK, outcome EXPORT
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More generally, just as with the assessment of su#ciency, so also with 
necessity it is important that researchers not only use the consistency level, 
but also check if true logical contradictory cases exist. For necessary condi-
tions, a consistency threshold of at least 0.9 seems advisable (Ragin 2006). 
One obvious rationale behind this is that higher consistency values reduce 
the likelihood of true logical contradictions. In section 9.1 we provide further 
reasons for high consistency levels for necessary conditions.15

!e formula for the consistency of a necessary condition should look 
familiar to the reader. In fact, it is mathematically identical to the formula 
for calculating the coverage of a su#cient condition. However, the two have 
very di"erent substantive interpretations. !e point of a consistency test for 
a necessary condition is to determine the degree to which an outcome Y is 
a subset of a condition X. We expect from the very beginning that many, 
if not most, cases display membership values in Y that are smaller than 
their respective membership in X. In contrast, the purpose of a test for the 
coverage of a su#cient condition is to $nd out the portion of an outcome 
Y that is covered by a consistent su#cient condition X. !is means that we 
will already know that Y is a consistent (enough) superset of X, such that 
the majority of cases will have larger Y values than X values. One practical 
implication for research is that the calculation of consistency must always 
precede that of coverage. To start with, is it meaningless to interpret the 
coverage of a non-consistent necessary or su#cient condition. Moreover, 
this procedure avoids confusion when interpreting the results obtained 
from the consistency and coverage formulas for necessity and su#ciency 
(Ragin 2008a: 63).

15 To anticipate the arguments: high consistency thresholds are also conducive to avoiding the pitfalls of 
(a) necessary conditions disappearing from su#ciency solution terms (hidden necessary conditions) 
and (b) false necessary conditions appearing in su#ciency solutions (false necessary conditions).

At-a-glance: consistency of necessary conditions

The consistency measure for necessary conditions assesses the degree to which the 
empirical information at hand is in line with the statement of necessity, i.e., how far the 
outcome can be considered a subset of the condition. As in the case of sufficiency, with 
fuzzy sets, the parameter takes into account both how many cases deviate from the pat-
tern of necessity and how strongly they deviate.

The formulas for consistency of necessity, on the one hand, and coverage of sufficiency, 
on the other, are mathematically identical but have different substantive interpretations.
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5.5 Coverage of necessary conditions

" e reader might already suspect that the mutual, formal equivalence of 
coverage and consistency between necessary and su$ cient conditions might 
also be extended to the coverage
soning, the formula for the coverage of necessary conditions should be equal 

fore read for crisp sets:

Coverage of X as a
necessary cnecessary cnecessar ondition for Y

Number of cases where X 1 and Y
Number of cases where X

1
1

Coverage of X as anecessary cnecessary cnecessar ondition for Y
Number of cases cell b

Number ofr ofr o cases cells b db db d

and, for both fuzzy and crisp sets:

Coverage of X as a necessary cnecessary cnecessar ondition for Y
X Y

X

iX YiX Y
i

I

i

i
i

I

min( , )X Y, )X Yi, )iX YiX Y, )X YiX Y
1

1

.

And, indeed, these are the formulas for the coverage of a necessary condition 
as suggested by Ragin (2006a, 2008a: 61) and currently implemented in the 
relevant so%ware.

" e formula for the coverage of a necessary condition expresses how much 
smaller the outcome set Y is in relation to set X. According to this formula, if 

tion is high. Put di!erently, the more the size of X exceeds that of Y, the lower 
the coverage of X as a necessary condition.

" e label coverage is misleading, though. If X has passed our consistency 
test as a necessary condition, then, by de#nition, X is a superset of Y and 
thus X fully covers Y. In other words, by virtue of being necessary, X always 
fully covers all cases of membership in Y. Ragin (2008a: 60–63) and Goertz 
(2006a) therefore point out that, next to consistency, the issue at stake when 
dealing with necessary conditions, is that of relevance (Ragin) or trivialness 
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(Goertz). !us, despite all symmetry in these parameters, the interpretation 
of the coverage value for necessity and that for su#ciency are fundamentally 
di"erent.

In order to understand what is meant with relevance and trivialness, con-
sider the two Venn diagrams in Figure 5.7. Let Y be the set of speeches in a 
country’s parliament during which parliamentarians curse. X1 is the set of 
male members of parliament and X2 the set of parliamentarians born in that 
country. Clearly, both conditions are fully consistent supersets of the outcome 
and thus pass the formal requirement as necessary conditions. !e relation in 
size of sets X1 and Y is more in proportion than that between X2 and Y. Hence, 
if we applied the coverage formula to these two empirical scenarios, X1 (male 
persons) would receive a higher score and thus be deemed more relevant as 
a necessary condition for cursing than X2 (being born in the country). X2 is 
a trivially necessary condition for Y, simply because so many more members 
in parliament are born in the country (X2) than curse during parliamentary 
debate (Y). !e coverage formula suggested by Ragin (2006) and described 
here adequately captures this form of trivialness.

Let us apply Ragin’s coverage formula to the example by Schneider et al. 
(2010). Calculating coverage only makes sense for those conditions that have 
passed the consistency threshold. Schneider et al. (2010: 255) convincingly 
argue that condition MA can be interpreted as a functional equivalent (see 
section 3.2.1.2) to condition STOCK. As Table 5.7 shows, the consistency 
value of the term MA+STOCK is above the 0.9 threshold.

X1 X2

Y Y

Figure 5.7 Venn diagrams – trivial and non-trivial necessary conditions
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!e coverage value for the disjunction is 0.68. !is is lower than the value 
of STOCK alone.16 !is suggests that the size of the logical OR set, compared 
to the outcome set, has increased, which should come as no surprise, because 
combining sets with the logical OR requires taking the maximum value of 
each case across the combined sets (see section 2.4). Since membership in 
outcome Y remains the same, the relation in size between sets Y and STOCK, 
on the one hand, and Y and MA+STOCK, on the other, increases. In an XY 
plot, this is graphically displayed by more cases falling further to the right-
hand side of the plot. Just compare the XY plots in Figure 5.6 and Figure 5.8.

Two points are worth mentioning about the coverage formula. First, values 
for coverage necessity tend to be rather high. Unlike coverage su#ciency, in 
research practice, values far below 0.5 are rare and those close to 0 hardly ever 
seen. !is suggests that when assessing the trivialness of necessary condi-
tions, researchers should not be misled by seemingly high coverage values. 
In addition, the XY plot should always be carefully examined to ascertain 
whether most cases are clustering close to the vertical right axis thus suggest-
ing trivialness.

!e second issue related to the correct interpretation of the coverage for-
mula for assessing trivialness is this: a condition X can be trivially necessary 
even when it is of roughly equal size to outcome Y. !is happens when not 
only X, but also Y are very big in size and thus close to being constants (Goertz 
2006a). In such a scenario, the formula for coverage necessity will yield a high 
value and researchers might be inclined to interpret X as a relevant neces-
sary condition. !is seems odd, though. Because of their size, both X and Y 
cover almost all cases and come thus very close to the universal set. Indeed, 
there are two sources of trivialness of a necessary condition: $rst, X is much 
bigger than Y; second, X and Y are close to being constants. Both sources 
of trivialness need to be taken into account and no condition interpreted as 
necessary in either of the two situations. !e currently predominant formula 

Table 5.7 Analysis necessity, functional equivalents (Schneider et al. 2010: 255)

Condition Consistency Coverage

STOCK 0.89 0.72
MA+STOCK 0.92 0.68

16 However, in both analyses, the same two true logical contradictory cases occur (France in 1995 and 
Germany in 2003), thus providing further illustration that high consistency values alone are o&en not 
enough for a de$nite statement on a set relation.
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for coverage necessity, however, which we have presented here handles only 
the $rst source of trivialness well. In section 9.2.1, we provide a detailed dis-
cussion of this issue and suggest an alternative formula for calculating the 
relevance of a necessary condition which also takes into account the second 
source of trivialness.
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Figure 5.8 XY plot – condition MA+STOCK, outcome EXPORT

At-a-glance: coverage of necessary conditions

The standard coverage measure for necessary conditions is better interpreted as a 
measure of the relevance of a necessary condition.

High values indicate relevance, whereas low values indicate trivialness.
Conditions that pass the consistency test as a necessary condition should not be 

deemed to be relevant necessary conditions unless they also obtain a high value in the 
relevance measure.

The coverage measure for necessity captures only one source of trivialness, though. It 
detects whether the outcome set is much smaller than the condition set but is not capable 
of capturing whether both the condition and the outcome are (close to) universal sets.
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5.6 Issues related to consistency and coverage

!e concepts of consistency and coverage contribute in important ways to 
making set-theoretic methods, in general, and QCA, in particular, a more 
adequate and useful tool for analyzing social science questions. !ey allow for 
the use of set theory and formal logic to $nd patterns in noisy social science 
data. Despite – or perhaps precisely because of – their usefulness research-
ers employing QCA should resist the temptation to reduce this method to a 
simple hunt for high values of consistency and coverage. !is would clearly 
be against the spirit of set-theoretic methods and would deprive them of 
their main strength: being grounded in the qualitative research practices of 
engaging in an iterative dialogue between ideas and evidence. Consistency 
and coverage are better thought of as numerical summaries that describe the 
data patterns in the underlying dataset. QCA is above all a qualitative data 
technique, and its primary purpose consists in interpreting and understand-
ing the cases under study. Neither should speci$c consistency values obtain 
the status of universally applicable thresholds. Nor should individual cases 
disappear behind, or be hidden by, consistency and coverage values. Instead, 
researchers must carefully judge and then explicitly argue which consistency 
threshold is adequate for their speci$c research and then also perform several 
analyses with consistency values that vary within a reasonable range. When 
using fuzzy sets, we also advise paying close attention to which cases are true 
logical contradictions (consistency), uniquely covered, and which ones are 
not covered at all.

Consistency is the parameter which should always be assessed $rst. !e rea-
son is straightforward. It only makes sense to calculate the coverage of a su#-
cient (or necessary) condition if that condition has already been identi$ed as 
being consistently su#cient (or necessary). If the consistency value is too low 
for the condition to be considered su#cient (or necessary), the calculation of 
coverage is meaningless. Along these lines, while there are consistency levels 
below which a condition cannot be considered as su#cient (or necessary), 
such lower-bound thresholds do not exist for coverage. With su#ciency, very 
low coverage values indicate that only a small portion of the outcome of inter-
est is explained by that condition. However, that little bit might still be of great 
theoretical and substantive importance. With necessity, low levels of coverage 
indicate trivialness whereas high levels might or might not indicate relevant 
conditions, an issue we come back to in section 9.2.1.
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Also note that, in research practice, higher consistency values o&en come 
at the price of lower coverage values. In the analysis of su#ciency, this works 
the following way. We can increase consistency by adding single conditions 
through logical AND. For instance, we might enlarge conjunction A*B*C to 
conjunction A*B*C*D*E. !e more conditions that are combined, the more 
di#cult membership in it becomes (section 2.1). !is makes the set ever 
smaller, and thus makes it more likely to be a consistent subset of the out-
come. At the same time, however, and precisely because membership becomes 
more and more di#cult, long conjunctions cover less and less of the outcome 
simply because so few cases are members of this conjunction. A similar logic 
applies to the analysis of necessity. Here we increase consistency by adding 
conditions through logical OR. For instance, we extend expression A+B+C to 
A+B+C+D+E. !e more conditions that are added, the easier membership in 
it becomes. !is makes the set ever bigger and thus more likely to be a consist-
ent superset of the outcome. But at the same time, and as with the process just 
described for conjunctions, long OR expressions cover more and more cases 
of the entire set of cases under study since membership becomes ever easier, 
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Figure 5.9 XY plot – the tension between consistency and coverage of sufficient conditions
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and they thus risk becoming trivial necessary conditions (section 9.2.1). !e 
inherent tradeo" between consistency and coverage is graphically depicted in 
the XY plot in Figure 5.9 for an analysis of su#ciency, but works in the same 
way in the analysis of necessity.

At-a-glance: issues related to consistency and coverage

Consistency is the central measure for the assessment of set relations. Only if consistency 
is satisfactory should coverage be calculated.

Often it is not possible to achieve high values for the consistency and coverage meas-
ures at the same time. Indeed, there is a tradeoff between the two: to increase consistency 
often means to decrease coverage and vice versa.

Parameters of fit are not an end in themselves. The main focus should always be on the 
cases under study. Researchers should identify the cases that contribute to inconsistency 
and to low coverage.
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6 Limited diversity and logical remainders

Easy reading guide

As seen in Chapter 4, the analysis of truth tables is at the core of QCA. In Chapter 5 we pre-
sented, among other things, the consistency value as a parameter for assessing whether a 
given truth table row could be considered a subset of, and thus sufficient for, the outcome. 
What if, however, there is not enough empirical evidence for a given row in order to assess 
whether it is sufficient? In other words, what if a row consists of a conjunction of proper-
ties that is logically possible but not empirically observed? Treating these so-called logical 
remainder rows in a conscious manner is both crucial for, and an asset of, set-theoretic 
methods. As this chapter shows, assumptions about remainders do have a direct impact on 
the results obtained and some assumptions are more plausible than others.

The presence of logical remainders is called limited diversity. This can be defined as the 
set of all logically possible combinations of conditions for which either no or not enough 
empirical evidence is at hand. It is a universal phenomenon in comparative social sci-
ence research. The effect that these logically possible, yet empirically unobserved, “cases” 
have upon the possibilities for drawing evidence-based inferences is perhaps among the 
most understudied topics in social science research methodology. This is why we dedicate 
extensive space here to the different strategies that researchers facing limited diversity 
should be aware of. In Chapter 8, we add further strategies that go beyond the current best 
practice approach.

In this chapter, we first explain how to detect logical remainders (6.1). Second, we dis-
cuss why virtually all social science data is limited in its diversity. We do so by differentiat-
ing between different sources, and thus different types, of logical remainders (6.2). Since 
limited diversity afflicts the capacity for drawing inference, regardless of which specific 
method is applied, be it statistical or not, we then delimit in section 6.3 the phenomenon of 
logical remainders from other seemingly related notions in the social science methodology 
literature (such as missing values). In the final, main section of this chapter, we spell out the 
principles of the so-called Standard Analysis (Ragin 2008b) as the currently predominant 
procedure in applied QCA for making plausible assumptions about logical remainders (6.4). 
The aim of this chapter is to formulate set-theoretic strategies that help to keep the impact 
of logical remainders on inferences under the conscious control of the researcher.

The proper handling of logical remainders is of central importance for QCA. This chapter 
is certainly a must-read for beginners. Even experienced users will profit from studying 
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6.1 Limited diversity in set-theoretic methods: how to see  
it when it is there

Logical remainders are truth table rows that lack enough empirical evidence 
to be subjected to a test of su!ciency. "is raises two questions. First, what do 
we mean by empirical evidence? Second, how much is enough?

"e answer to the #rst question is straightforward when using crisp sets. As 
explained in section 4.2.1, with crisp sets, each case is a full member of one, 
and only one, of the 2k rows of a truth table. In csQCA, empirical evidence 
thus refers to the number of cases in a particular truth table row. "erefore, 
logical remainders are simply those rows without enough cases in them.

"e question of where to #nd logical remainders is somewhat more intri-
cate with fuzzy sets. As shown in section 4.2.2, most cases have partial mem-
bership in most rows and hardly ever have full membership in any of the 
rows. From this, two opposing claims could be made. On the one hand, one 
could argue that limited diversity does not exist with fuzzy sets, for each row 
contains at least the partial membership of some cases. On the other hand, 
one could claim that limited diversity is everywhere, because with fuzzy sets 
hardly any row ever contains a single case with full membership. Both of these 
answers to the question of how to conceptualize limited diversity in fsQCA 
are problematic.

Ragin (2008a) therefore proposes an alternative. Recall two things from sec-
tion 4.2.2. First, k fuzzy sets create a k-dimensional property space and the 2k 
corners of this property space directly correspond to the 2k truth table rows. 
Second, any given case is more in than out of one and only one of these rows. 
With fuzzy sets, then, a logical remainder is de#ned as a truth table row that 
does not contain enough cases with a fuzzy-set membership score higher than 
0.5. "is conceptualization of logical remainders crucially rests on the insight 
that the 0.5 qualitative anchor establishes a qualitative di$erence between 
cases, and it avoids the pitfalls of the other approaches outlined above.

the procedures and pitfalls connected to this topic in further detail. The example of how 
to use directional expectations (6.4.3.2) is quite complex. It can be skipped without losing 
the understanding of what directional expectations are. In general, a good command of 
the material provided in this chapter is indispensable for successfully mastering the more 
advanced issues raised in Chapter 8. The current chapter contributes the last ingredients 
to the Truth Table Algorithm, which we then present in Chapter 7.
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For the second question – how much empirical evidence is enough? – 
no distinction between csQCA and fsQCA exists. Instead, the question on 
how many cases must be more in than out of a row before we cease to call 
it a logical remainder is largely a function of the overall number of cases in 
the study. For small- to medium-sized N studies (roughly 10–100 cases), 
the frequency threshold per row is usually set to at least one case. With 
larger Ns, it is often reasonable to require not just one case, but rather 
a certain percentage of the overall number of cases to be a member of a 
specific row in order not to declare it a logical remainder (e.g., Ragin and 
Fiss 2008).

6.2 Sources of limited diversity

Limited diversity occurs in social science observational data for various rea-
sons. While logical remainders always make causal inference more di!cult, 
the possibility of employing them for counterfactual arguments (see section 
6.4) does depend on the source of the remainder. In the following, we dis-
tinguish between three, mutually non-exclusive, sources. "e #rst possible 
source is that the number of truth table rows simply outnumbers the cases at 
hand (arithmetic remainders). Second, the social reality we come to observe 
tends to be pre-structured by multiple social, political, historical, and other 
processes, thus ruling out the occurrence of some truth table rows (clustered 
remainders). And, third, some of the conditions in a study could create com-
binations that not only do not exist in the world as we know it (clustered 
remainders), but also cannot exist in a world that we are able to imagine in 
either the past or the future (impossible remainders). In the following, we 
describe each source of limited diversity in further detail.

At-a-glance: limited diversity in set-theoretic methods: how to see it 
when it is there

Logical remainders are truth table rows without enough cases in them that have a 
membership of higher than 0.5 in that row. The decision of how many cases with high 
membership a row must have depends on the characteristics of the research project, 
and mostly on the overall number of cases. Since QCA is largely applied to a medium-
sized number of cases, the most often used frequency threshold is a minimum of one 
case per row.

 

 

 



Neat formal logic meets noisy social science data154

6.2.1 Arithmetic remainders

One common reason that logical remainders occur is simply that the num-
ber of logically possible combinations of conditions outnumbers the cases under 
study. In the absence of a better term, we label them arithmetic remainders. 
Imagine, for instance, a study of the 27 EU member states, and that this study 
includes 5 conditions. "e truth table will consist of 32 rows, but there are 
only 27 available cases. "is means that there must be at least #ve logical 
remainders, none of which necessarily has to be an impossible remainder of 
the sort described above and below. We say “at least #ve,” for the actual num-
ber of logical remainders depends on the characteristics of the data. Most 
likely, the number of logical remainders is signi#cantly higher because social 
phenomena tend to occur in clusters (see 6.2.2). Several cases will therefore 
probably be analytically similar, i.e., they will fall into the same truth table 
row. "e more that cases cluster in a few truth table rows, the higher the num-
ber of logical remainders.

6.2.2 Clustered remainders

Another reason for the presence of a logical remainder is that a type of case 
does not exist in social reality as we know it, for this reality is structured by his-
torical, social, cultural, and other processes. As an example, consider Ragin’s 
(2000) discussion of two conditions of a strong welfare state (Y): the exist-
ence of a strong le%-wing party (L) and of a strong trade union (U) (see also 
Grofman and Schneider 2009). In his data, there is not a single country that 
has a strong trade union but no strong le%-wing party. Hence, any truth table 
row implying the combination ~L*U is a logical remainder. "ere are good 
reasons to suspect that this is no coincidence. "e current literature on the 
historical development of trade unions tells us that the presence of a strong 
le% parties (L) is crucial for the existence of a strong union (U). Hence, in the 
absence of L, U usually does not occur. Put in set-theoretic terms: the set of 
countries with le% parties (L) is an almost completely consistent superset of the 
set of countries with trade unions (U). "us, L might be interpreted as being a 
necessary condition for U.1 In short, ~L*U is a clustered remainder because L 

1 Baumgartner (2008, 2009) points out that the Quine–McCluskey algorithm – the common procedure 
for logical minimization of truth tables in set-theoretic methods (see section 4.3) – produces results 
that overlook such causal dependence between conditions and are thus misleading. He develops his 
own minimization algorithm that promises to take this complexity into account.
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is, by and large, necessary for U. In short, clustered remainders occur because 
of a causal relationship between two (or more) of the conditions.

Sometimes, the set-theoretic, or causal, relationship between conditions 
that produces clustered remainders changes over time. For illustration con-
sider the following example. For decades, both the set of “Caucasians” and that 
of males used to be supersets, and thus necessary, for the set of US presidents. 
Any study that attempted to discern the role played by the ethnicity and gen-
der of US presidents on their actions (e.g., social expenditure, #scal discipline, 
or war-proneness) was hampered by the severe presence of logical remainders 
as there simply were no non-white (male or female) or white female US presi-
dents. As the election of Barack Obama in 2008 has shown, the causal inter-
dependence between ethnicity and being US president has changed, though. 
"e hitherto logical remainder of a non-white male US president has become 
an empirically observed case. Still, diversity continues to be limited, as there 
has not yet been any female US president. While in practice it might still take 
another while before a woman becomes US president, in principle this is no 
longer a far-fetched scenario.

6.2.3 Impossible remainders

A third source for limited diversity is that a particular con!guration is impos-
sible in the light of what we know about the world. Let us call this type of 
remainder an impossible remainder (Elman 2005). As an example, imagine a 
study that aims at explaining why some individuals are good car drivers (Y). 
Among the six conditions are the following two sets: the set of females and 
the set of pregnant persons. "e truth table of this analysis will consist of 26 
= 64 truth table rows, 16 of which will describe “cases” of non-female AND 
pregnant persons. For obvious reasons, any such row will be void of empirical 
instances, no matter how large-N the study is.

"e proverbial pregnant man might seem too obvious an example, and 
might thus suggest that impossible remainders are not a serious issue in 
social science research practice. "is impression is wrong, though. Especially 
in micro-level studies it is common to include a very long list of individual 
characteristics, mostly as control variables. More o%en than is perhaps rec-
ognized and realized, such models contain variables with values that cannot 
jointly occur. "e same can happen at the macro-level as well. Consider, for 
example, the study by Ragin, Shulman, Weinberg, and Gran (2003), who aim 
at identifying the su!cient conjunctions for collective action in 41 villages 
in India. Among their crisp-set conditions, we #nd the set of villages located 

  



Neat formal logic meets noisy social science data156

on channel MN (M), the set of villages located on channel V (V), and the set 
of villages that are irrigated (I). By default, their truth table contains several 
rows denoting villages that would be located on the MN (or V or both) chan-
nel that are not irrigated. "ese combinations are empirically impossible, as 
the authors themselves correctly point out, simply because being located on a 
channel logically always implies being irrigated (Ragin et al. 2003: 331).

As a matter of fact, any study – whether on the micro- or macro-level – that 
includes conditions that go back to the transformation of single variables into 
two or more mutually exclusive conditions produces impossible remainders 
by default. For instance, consider the interval-scale variable GDP. For some 
justi#able reason, the researcher is interested both in the set of rich countries 
(R) and in the set of poor countries (P) but not in middle-income countries. 
Cases with a GDP higher than 75 percent of the GDP scale are members of 
R and those with GDP of lower than, say, 25 percent of that scale are mem-
bers of P. Any truth table based on, among others, the conditions R and P 
will contain rows that imply countries that are simultaneously rich and poor 
(R*P). Such truth table rows must be logical remainders, for rich-poor coun-
tries simply cannot exist.2

In sum, impossible remainders are remainders that cannot exist in social 
reality as we know it. "ey run counter to fundamental truisms in biology 
(pregnant man), geography (tropical village in the Himalayas), or similar 
#elds that are certain to remain in place in any foreseeable future. Slightly dif-
ferent forms of impossible remainders are those that result from transforming 
multinomial, ordinal, or interval variables into mutually exclusive categories. 
"ese impossible remainders will remain impossible, regardless of any future 
development, and their impossibility is uncontested by social scientists and 
laypersons alike.

"e crucial di$erence between impossible remainders, on the one hand, 
and clustered remainders, on the other, is that the latter could theoretically 
exist, whereas the former cannot unless the entire world we live in radically 
changes.3 "is makes clustered remainders accessible for thought experi-
ments, or counterfactual claims, whereas impossible remainders should not 
be the objects of such speculations. It makes sense, for instance, to make coun-
terfactual speculations about, say, the policy pro#le of a hypothetical white 
2 Notice that there will also be rows that contain the combination ~R*~P, i.e., countries that are neither 

rich nor poor. "is is not an impossible remainder, but instead simply de#nes the set of non-rich and 
non-poor (aka middle-income) countries.

3 Rather than a clear-cut dichotomy, this distinction is better perceived of as a continuum, for some 
clustered remainders are more likely to occur than others and some impossible remainders are more 
absurd than others.
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female US president (or even a non-white female US president). "ese logical 
remainders can be imagined to exist in the not-so-distant future. In contrast, 
speculating on the driving skills of pregnant men is questionable. A world in 
which pregnant men can exist requires imagining a world that looks com-
pletely di$erent (Emmenegger 2011). In section 8.1, we will therefore label 
counterfactuals of impossible remainders implausible assumptions, which are 
one type of untenable assumptions.

6.3 What limited diversity is not

Generally speaking, limited diversity is an understudied problem in social 
science methodology. "is is surprising, for not only are logical remainders 
omnipresent in empirical social science research based on observational (and, 
to some degree, also experimental) data, but also their presence has serious 
implications for our capacity of drawing (causal) inferences. For example, 
Mill’s methods, still quite popular among many qualitative scholars, prod-
uce logical remainders by their very design and force the researcher to make 
assumptions about them.4 In large-N, statistical approaches, limited diversity 
is the almost unavoidable consequence of the “curse of dimensionality” (Ho, 
Imai, King, and Stuart 2007: 209), i.e., the simple fact that the number of 
potential “cases” grows exponentially with the number of conditions speci#ed 
in an analysis – similar to what happens in QCA. "is relation between the 
number of variables and the dimensionality of the property space is one rea-
son why even a highly skilled quantitative researcher like Christopher Achen 
(2005) deems it di!cult to really understand what is going on in the data once 

4 In the online appendix (www.cambridge.org/schneider-wagemann) we provide empirical illustrations 
of the role of (impossible) logical remainders in Mill’s methods and logistic regression.

At-a-glance: sources of limited diversity

Impossible remainders describe hypothetical “cases” whose existence defies common-
sense knowledge about the world (e.g., pregnant men, a country that is both rich and poor 
at the same time, or a tropical village in the Himalayas).

Arithmetic and clustered remainders could potentially exist in the empirical world as 
we know it, but cannot be empirically observed. This is because either the number of logic-
ally possible combinations outnumbers the cases at hand (arithmetic remainders), and/or 
past historical, social, cultural, and other processes have so far prevented their occurrence 
(clustered remainders).
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the number of variables exceeds even the seemingly modest #gure of three. 
Sometimes, the unavoidable assumptions that are made by applying a speci#c 
statistical model to these non-existent cases are reasonable, and sometimes 
they are not. "us, the most problematic issues with regard to limited diver-
sity are that researchers are o%en not aware of the assumptions made, how 
they a$ect their results, and what their theoretical or commonsensical sta-
tus is. Even if researchers do know about the presence of logical remainders 
in their analysis, there is currently little debate as to what to do about them 
within the framework of statistical approaches. Some exceptions exist and 
the debates come under di$erent labels, such as empty cells, structural zeros 
(Timpone 1998; Achen 2008), or convex hulls (King and Zeng 2007a, 2007b; 
Morrow 2007; Sambanis and Doyle 2007; Schrodt 2007). "is latter discus-
sion shows, however, that even among leading quantitative scholars there is 
little agreement on how to handle the omnipresent phenomenon of limited 
diversity within a multivariate statistical framework.5

While, as we argue, the issue of limited diversity is rarely taken head-on, 
several well-known topics within the statistical literature might mistakenly be 
seen as a treatment of limited diversity. As we argue now, neither the literature 
on missing values nor that on degrees of freedom provides much guidance for 
dealing with limited diversity.

"e simple reason why the literature on missing values does not tackle the 
problem of limited diversity is straightforward. Missing values refer to situ-
ations in which, for one or more empirically observed case(s), information is 
missing on one or more variable. "us, the concept of missing values makes 
sense only in reference to real and existing cases for which empirical infor-
mation on at least some variables is at hand. Logical remainders, in contrast, 
are by de#nition non-existing cases, i.e., there is no empirical information on 
either any of the independent or the dependent variable. It seems nonsensical 
to invoke the notion of missing values when empirical information is lack-
ing on all variables, i.e., to interpret a logical remainder as an extreme scen-
ario of missing values on all conditions and the outcome. To the best of our 
knowledge, none of even the most sophisticated techniques for dealing with 
missing values imputes values for all variables of a “case,” thus literally invent-
ing a case from scratch. Limited diversity, in contrast, exclusively focuses on 
precisely these logically possible but empirically non-existent “cases.” In sum, 
the conceptual di$erence between missing values and logical remainders is 

5 "is debate also nicely illustrates that logical remainders and missing values are two separate issues 
(see below). "e concept of missing values is not invoked in this discussion.
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twofold. "e former focuses on empirically observed cases and provides prin-
ciples for imputing values for (one or more, but not all) independent variables 
but not the dependent variable, while the latter focuses on empirically unob-
served cases and provides principles for imputing values for the outcome.6

Another concept from the statistical literature that could mistakenly be 
interpreted as dealing with the issue of limited diversity refers to the notion 
of degrees of freedom. Strictly speaking, degrees of freedom refer to how many 
parameters a researcher is “free” to choose in an inferential model. "is has 
o%en been simpli#ed to “there must be enough cases for drawing inferences 
on the variables.” In order to see that degrees of freedom address an issue 
di$erent from logical remainders, simply imagine a very large-N study (N = 
100,000) on the driving skills of individuals with only, say, three dichotomous 
conditions, two of which are the set of male persons and the set of pregnant 
persons, respectively.7 Out of the eight logically possible combinations, at 
least four will not contain any cases because they denote impossible remain-
ders (see section 6.2.3). With three variables and 100,000 cases, degrees of 
freedom are clearly not an issue. Yet, limited diversity is present. "is dem-
onstrates that these two concepts are independent of each other. It is not the 
number of conditions itself that matters for limited diversity, but rather the 
number of logically possible combinations of conditions, which increases 
exponentially. If most cases cluster in a few truth tables, i.e., if most cases are 
analytically identical (falling in the same truth table rows), then adding more 
cases of the same type to the dataset will increase the degrees of freedom, but 
will do nothing to lower the number of logical remainders. Because limited 
diversity can also occur in the absence of the lack of degrees of freedom, it 
should be clear that signi!cance tests are not an appropriate means to detect 
or determine the extent and e$ect of limited diversity.

"ese are also the reasons why it is futile to try to assess the presence of 
logical remainders by focusing on single variables in isolation and checking 
whether they empirically vary enough. Even if all possible values on their 
respective scales occur empirically for all variables, we still can have logical 

6 Researchers performing set-theoretic analysis might encounter missing values. However, for various 
reasons, in this book we will not discuss the treatment of missing values in any further detail. First, 
their occurrence is very rare. Especially when set-theoretic methods are used in a smaller-N setting, 
the requirement, akin to purely qualitative approaches, is that if missing values exist one needs to go 
back to the #eld (or the library) and dig up this missing information. When set-theoretic methods are 
applied to a large number of cases, missing values do occur more o%en. In such a scenario, there is no 
set-theoretic method-speci#c proposal for handling missing values. Instead, the general literature on 
missing values applies.

7 For more detail on this illustrative example, see the online appendix (www.cambridge.org/schneider-
wagemann).
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remainders. As an illustration, consider, again, the study on driving skills and 
the two conditions “being female” (yes/no) and “being pregnant” (yes/no). For 
both conditions, both possible values empirically materialize in the data, i.e., 
there will be females and males, as well as pregnant people and non-pregnant 
people. Yet, diversity will be limited as there will be the logical remainder of a 
pregnant man about whom we have no empirical information as to whether 
he would be a good car driver.8

In sum, limited diversity is the rule rather than the exception in comparative 
social science research. "e examples show that limited diversity can hardly 
ever be remedied by a “better” case selection, where “better” in the eyes of 
many would be equivalent to “more (and randomly selected) cases.” Rather, 
limited diversity is the inevitable result of logical constraints, features of com-
mon research designs, and the clustered way in which social reality presents 
itself. All this applies regardless of the speci#c technique that is employed to 
analyze the data. "e general aim should be to be aware of their existence and 
to make careful decisions on them – something which cannot happen if lim-
ited diversity is overlooked, disregarded, or not even debated.

6.4 The Standard Analysis procedure: identifying logical remainders for 
crafting plausible solution terms

Limited diversity is essentially omnipresent, and assumptions about logical 
remainders in&uence the solution formulas from a truth table. "is is why it 
is very important to handle logical remainders in a conscious manner, i.e., to 
develop strategies that allow for transparent and informed decisions on which 
remainders can serve as the basis for counterfactual claims while others can-
not. "is issue becomes even more important once we understand that, 

8 Limited diversity is also not the same as the fallacy of predicting, based on regression equations, 
values that fall outside the observable range of the dependent variable or which rely on values of the 
independent variable outside of the range for which empirical information exists. None of these issues 
takes stock of the fact that what is missing are speci#c combinations of characteristics.

At-a-glance: what limited diversity is not

Logical remainders also influence analytic results in non-set-theoretic data analysis 
techniques. Limited diversity does not correspond to the concepts of missing values or 
degrees of freedom.
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from a pure formal logical and set-theoretic perspective, assumptions about 
any logical remainders are permissible. Regardless of which remainders are 
included, logical minimization will yield a solution formula that never con-
tradicts the empirical information at hand. "at is to say, any solution term 
will be a superset of the truth table rows that contain empirical information 
and that are su!cient for the outcome of interest.

If formal logic provides no guide for selecting logical remainders for cre-
ating plausible solution terms, other criteria are needed. In this section we 
explain the logic of the Standard Analysis procedure as a major advancement 
in the treatment of logical remainders (Ragin and Sonnett 2004; Ragin 2008a). 
In order to explain its logic, we introduce three di$erent dimensions based on 
which the di$erent solution terms and logical remainders that go into them 
can be classi#ed. "e #rst dimension is that of a set relation. Di$erent solution 
formulas are in a subset relation if the truth table rows that are used for the 
logical minimization are in a subset relation as well. Second, the dimension 
of complexity captures the degree of complexity, or parsimony, of a solution 
term. And third, the dimension of type of counterfactual classi#es the assump-
tions about logical remainders according to their substantive, theoretical, and 
formal logical qualities (see section 6.2). In the following, we explain each 
dimension in further detail.

6.4.1 The dimension of set relations

As we now show, no matter which assumptions a researcher imposes on any 
of the logical remainders, the solution term resulting from these assumptions 
will never contradict the empirical evidence contained in the data. To illus-
trate, Table 6.1 displays a truth table with three logical remainders, indicated 
by a question mark in the column for outcome Y (rows 6–8). If we are inter-
ested in #nding the conditions for outcome Y = 1, then rows 1, 4, and 5 of 
Table 6.1 are relevant and have to be included into the minimization process; 
if we are interested in explaining Y = 0, then rows 2 and 3 are relevant. "e 
question arises what to do with the logical remainders in rows 6, 7, and 8. 
Should they be included in the logical minimization of outcome Y, of out-
come ~Y, of both, or of neither?

Di$erent assumptions on di$erent logical remainders produce di$erent 
solution formulas. To illustrate this point, Table 6.2 displays the eight dif-
ferent truth tables that result by making all logically possible combinations 
of assumptions on the three logical remainder rows. All eight truth tables 
displayed in Table 6.2 are identical with regard to their values in column Y for 
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the empirically observed rows 1–5, but di$er in the values assigned to Y for 
the logical remainders in rows 6–8 (highlighted in bold font).

Each of these truth tables can be logically minimized by using the rules 
described in section 4.3. Choosing Y as the outcome of interest and applying 
the principles of logical minimization to each of the eight truth tables, we 
obtain eight slightly di$erent solution terms. Although they appear di$erent, 
as we show, they share quite a lot.

(a) AB~C + ~BC → Y
(b) AB + ~BC → Y
(c) A~C + ~BC → Y
(d) A + ~BC → Y
(e) ~A~B + ~BC + AB~C  → Y
(f) ~A~B + ~BC + AB → Y9

(g) ~B + A~C → Y
(h) ~B + A → Y.

Solution (a) is the result when no assumptions about any logical remain-
der are made. "is solution is o%en referred to as the complex solution term. 
For reasons that become clear when we discuss the dimension of complexity 
below (section 6.4.2), however, we suggest referring to it as the conservative 
solution term. Conservative because in producing it, the researcher refrains 
from making assumptions about any logical remainder and is exclusively 
guided by the empirical information at hand. Notice that when we are inter-
ested in the su!cient paths towards Y = 1, then assigning the value of Y = 0 

Table 6.1 Truth table with three conditions and limited diversity

Conditions Outcome

Row A B C Y

1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 1 1
5 1 1 0 1
6 1 1 1 ?
7 0 0 0 ?
8 1 0 0 ?

9 Due to logically redundant prime implicants (see section 4.3.2), a logically equivalent solution is ~A~B 
+ AB + AC → Y.
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Table 6.2 Truth tables with all logically possible combinations of simulated values for logical remainders

(a) (b)
Row A B C Y Row A B C Y
1 0 0 1 1 1 0 0 1 1
2 0 1 0 0 2 0 1 0 0
3 0 1 1 0 3 0 1 1 0
4 1 0 1 1 4 1 0 1 1
5 1 1 0 1 5 1 1 0 1
6 1 1 1 0 6 1 1 1 1
7 0 0 0 0 7 0 0 0 0
8 1 0 0 0 8 1 0 0 0
(c) (d)
Row A B C Y Row A B C Y
1 0 0 1 1 1 0 0 1 1
2 0 1 0 0 2 0 1 0 0
3 0 1 1 0 3 0 1 1 0
4 1 0 1 1 4 1 0 1 1
5 1 1 0 1 5 1 1 0 1
6 1 1 1 0 6 1 1 1 1
7 0 0 0 0 7 0 0 0 0
8 1 0 0 1 8 1 0 0 1
(e) (f)
Row A B C Y Row A B C Y
1 0 0 1 1 1 0 0 1 1
2 0 1 0 0 2 0 1 0 0
3 0 1 1 0 3 0 1 1 0
4 1 0 1 1 4 1 0 1 1
5 1 1 0 1 5 1 1 0 1
6 1 1 1 0 6 1 1 1 1
7 0 0 0 1 7 0 0 0 1
8 1 0 0 0 8 1 0 0 0
(g) (h)
Row A B C Y Row A B C Y
1 0 0 1 1 1 0 0 1 1
2 0 1 0 0 2 0 1 0 0
3 0 1 1 0 3 0 1 1 0
4 1 0 1 1 4 1 0 1 1
5 1 1 0 1 5 1 1 0 1
6 1 1 1 0 6 1 1 1 1
7 0 0 0 1 7 0 0 0 1
8 1 0 0 1  8 1 0 0 1
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to a logical remainder indicates only that this remainder is not su!cient for 
Y = 1. It does not imply that this remainder is a su!cient condition for the 
outcome ~Y. "is is because the very same remainder could also be excluded 
from the logical minimization procedure for ~Y. In other words, a remainder 
row might well be considered insu!cient for both Y and ~Y.

"e crucial commonality of all eight seemingly di$erent solution terms is 
that they all imply the rows with empirical evidence for su!ciency for Y (rows 
1, 4, and 5). In addition to these three rows, solutions (b) through (h) imply 
one, two, or even all three logical remainders. It follows that all the solutions 
from (b) to (h) are supersets of the conservative solution (a). By virtue of this 
subset relation, none of the solution terms is in contradiction to the empirical 
evidence at hand and expressed in solution (a).

Note that this subset/superset logic also implies that one of the eight solu-
tion terms must be the superset of all the others. Intuitively, we might sus-
pect that if the solution based on no assumptions on logical remainders is 
the subset of all other solutions, then the solution based on assuming that all 
remainders are su!cient for the outcome might be the superset of all other 
solutions, and this intuition would be correct. In our example, solution (h) is 
the one based on the assumption that all logical remainders are linked to the 
outcome Y. "e more general insight is this: a solution term (X1) is a superset 
of another solution term (X2), if all rows implied by X2 are also implied by X1, 
and X1 implies at least one more row. Hence, solution (f) is a superset of solu-
tion (e) but not of solution (c). Likewise, solution (d) is a superset of solution 
(c) but not of solution (f), and so on.

In sum, we see that di$erent assumptions about logical remainders prod-
uce di$erent solution formulas that all imply, and thus do not contradict, the 
empirical information at hand. "e conservative solution rests on no assump-
tions and is the subset of all the other terms, whereas the solution term based 
on the assumption that all remainders are su!cient for the outcome is the 
superset of all others. All other solutions in-between (i.e., those that make 
assumptions on only some remainders) are only in a subset relation to each 
other if all assumptions used for one solution are also all used for another 
solution.

At-a-glance: the dimension of set relations

In the presence of limited diversity, the same truth table can yield different solution 
terms, depending on the assumptions made about the logical remainders. None of 
these solutions ever contradicts the empirical evidence at hand.
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6.4.2 The dimension of complexity

In addition to set relations, there is another dimension on which we can 
di$erentiate between our eight solution terms. We call it the dimension of 
complexity. "e complexity of a solution term is de#ned by the number 
of conditions and the logical operators AND and OR that it involves. For 
instance, the solution term

A*B*C + ~F*D → Y
is more complex than the solution term

A*B + ~F → Y,
which, in turn, is more complex than the term

A + ~F → Y.
Among the di$erent solution terms that are produced by altering the assump-
tions on the logical remainders, one (or, in the presence of tied [Mendel and 
Ragin 2011: 36] prime implicants, more than one) does consist of fewer con-
ditions and logical operators than the others. "is solution formula is known 
as the most parsimonious solution term (Ragin 1987).

Let us go back to our solution formulas (a) through (h) from the example 
above (section 6.4.1). "ey clearly vary in their degree of complexity. Solution 
(h) (~B + A → Y) is the most parsimonious one. It contains just two sets rep-
resenting the conditions (A and ~B), which are linked by only one operator 
(OR). Solution (h) therefore describes the empirical information in the most 
parsimonious manner.

Among the eight solution terms, we can also identify the most complex 
term. It is solution formula (e) (~A*~B + ~B*C + A*B*~C → Y). It con-
sists of six logical operators and invokes #ve di$erent conditions (A, ~A, 
B, ~B, and ~C). "e level of complexity of all the other solution terms falls 
between that of the most complex formula (e) and the most parsimonious 
formula (h).

The conservative solution does not rest on any assumption about the logical remain-
ders and is the subset of all the other solution terms. The solution for which all logical 
remainders have been included in the logical minimization is a superset of all other 
solutions.

Solution terms that rest on assumptions on some, but not all, remainders form subset 
relations with some, but not all, of the other solution terms.
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It is important to point out that the dimensions of complexity, on the one 
hand, and that of subset relations, on the other, do not necessarily run in par-
allel. As our example demonstrates, the most complex solution term (e) is not 
identical with the subset solution of all the others (a). "is is why we suggest 
labeling the subset solution the conservative solution term rather than the 
complex solution term, for, quite obviously, solution terms can get more com-
plex by making assumptions about logical remainders, and the formula with-
out any assumptions is not necessarily the most complex one.

Likewise, the most parsimonious solution term does not necessarily have 
to be identical to the superset of all the others. "e fact that, in our example, 
the solution term (h) is both the most parsimonious and the superset solution 
is a coincidental property of our data and cannot be generalized. In applied 
QCA, the extreme ends of the dimensions of set relations and complexity 
more o%en than not refer to di$erent solution formulas – the subset formula 
is usually not the most complex, and the superset formula not the most par-
simonious one.

It is for two reasons that we emphasize the distinction between the two 
dimensions of set relations and complexity. First, part of the established ter-
minology misleads users into thinking that these two dimensions are the 
same. More speci#cally, the terms most parsimonious solution term and com-
plex solution term seem to imply that their respective properties refer to the 
same underlying dimension of complexity. As shown, however, the most par-
simonious solution term has no distinct set-theoretic property other than 
being one of many other supersets of the conservative solution term. In other 
words, the most parsimonious solution can be anywhere on the dimension of 
set relations. At the same time, the so-called complex solution (which we have 
renamed conservative) has no distinct property on the complexity dimension 
other than being more complex than the most parsimonious solution term.

"e second, related, reason for stressing this distinction is that it is crucial 
for understanding both the fundamental logic of the Standard Analysis pro-
cedure and its potential pitfalls (Chapter 8). "e Standard Analysis narrows 
the range of solutions by imposing the requirement that each of them must 
be a subset of the most parsimonious solution term.10 Since in our example in 
Table 6.2 the most parsimonious solution is (by coincidence) also the superset 
of all other solutions, this requirement does not exclude any of the eight solu-
tion terms. If, however, the most parsimonious solution is not the superset of 

10 In addition, any solution term must be a superset of the conservative solution. Since all solution terms, 
by default, comply with this, it does not serve as a selection criterion.
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all others, then several logically possible solution terms are ruled out simply 
because they are not a subset of the most parsimonious solution. For the sake 
of argument, imagine that solution (f) in Table 6.2 was the most parsimoni-
ous solution term. Apart from the conservative solution (a), only solutions (b) 
and (e) are subsets of (f).11 Hence, if solution (f) was the most parsimonious 
one, the Standard Analysis would consider only four out of eight solution 
terms (solutions (a), (b), (e), and (f)).12

6.4.3 The dimension of types of counterfactuals

"e Standard Analysis uses the most parsimonious solution as the anchor 
and allows all of its subset solutions to enter the next round of acceptable 
solution terms. Notice that neither the subset dimension nor the complexity 
dimension requires any substantive knowledge of the meaning of the condi-
tions and, by virtue of this, of the plausibility of the assumptions made on 
the logical remainders. In the Standard Analysis, such considerations come 
into play only a"er the criterion of parsimony has been used to select some 
logical remainders for counterfactual claims. In the following, we introduce 
only those criteria for classifying assumptions that are used in the Standard 
Analysis. In Chapter 8, we add further quality criteria and show that unless 
these are also taken care of, there is no guarantee that the Standard Analysis 
procedure will not yield solution formulas that are based on what we label 
untenable counterfactual claims.

"e #rst classi#cation of assumptions has, in fact, already been introduced 
in discussing the dimension of complexity. Some assumptions contribute to 
making a solution term more parsimonious, while others do not. "e former 
are called simplifying assumptions, whereas the others are called assumptions 
or counterfactuals.

11 Solution (f) implies the remainders in rows 6 and 7, solution (b) row 6, solution (e) row 7, and solution 
(a) no remainder row.

12 In Chapter 8 we formulate two critiques. First, interesting solution terms might be rejected; second, 
some solution terms might be accepted although they rest on what we will call untenable assumptions.

At-a-glance: the dimension of complexity

Solution terms differ in their degree of complexity. The least complex solution is called the 
most parsimonious solution.

The dimension of complexity does not run parallel to the dimension of subset relations.
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By de#nition, the Standard Analysis allows only for simplifying assump-
tions. Within that group, a distinction is made between di#cult counterfactu-
als, on the one hand, and easy counterfactuals, on the other (Ragin and Sonnett 
2004). Both easy and di!cult counterfactuals are simplifying assumptions, 
or – put di$erently – easy counterfactuals and di!cult counterfactuals are 
each subsets of, and jointly constitute, the set of simplifying assumptions.

Easy counterfactuals are de#ned as those simplifying assumptions that 
are in line with both the empirical evidence at hand and existing theoret-
ical knowledge on the e$ect of the single conditions that compose the logical 
remainder. "ese theory-guided hunches about conditions are o%en called 
directional expectations (Ragin 2008b). Di!cult counterfactuals, in contrast, 
are in line only with the empirical evidence at hand, but not with directional 
expectations. Some examples should further clarify the notion of easy and 
di!cult counterfactuals and the role of directional expectations.13

6.4.3.1 !e principle of directional expectations
In the following, we illustrate the practice of cra%ing intermediate solution 
formulas with a hypothetical example from research on welfare states (Ragin 
2000; Grofman and Schneider 2009). Imagine a researcher interested in the 
outcome strong welfare state (W). She has empirical evidence that in coun-
tries with well-developed neo-corporatist systems of interest intermediation 
(C), strong trade unions (U), and the absence of a le%-wing government(~L) 
a strong welfare state can be observed. In Boolean notation the conservative 
solution reads as:

CU~L → W.
Furthermore, her study does not include any country with a well-developed 
neo-corporatist system of interest intermediation, strong trade unions, and 
a le%-wing government. In other words, CUL is a logical remainder. "us 
no empirical information exists as to whether this conjunction of conditions 
produces W or ~W or neither. In Boolean notation:

CUL → ?
"e conservative solution, by de#nition, does not make assumptions for any 
logical remainder, including the remainder CUL.

13 In principle, the dividing line between what is an easy and what a di!cult counterfactual is not a 
dichotomy but more a continuum, because the theoretical hunches on which they rest vary in their 
level of certainty (Ragin 2008a: 162). In research practice, however, the distinction is a crisp one, 
because no weight is attached to the directional expectations that distinguish between easy and 
di!cult counterfactuals.

   

 

 

 



Limited diversity and logical remainders169

Imagine further that the most parsimonious solution based on the truth 
table reads as follows:

CU → W.
"e most parsimonious solution term rests on the assumption that remainder 
CUL would produce a strong welfare if it existed. "is yields two rows linked 
to W, the empirically observed row CU~L and the counterfactual CUL, which 
can then be logically minimized to CU (section 4.3.1).

From a substantive point of view, the question is whether the simplifying 
assumption

CUL → W
is an easy or a di!cult counterfactual. "ere are good reasons to deem this an 
easy counterfactual. Indeed, most scholars would agree that, ceteris paribus, 
the presence of a le%-wing party (L) rather than its absence (~L) is conducive 
to the presence of a strong welfare state (W). So, if W already occurs when 
~L is combined with C*U, it is not too far-fetched to assume that W would 
also occur when L is combined with C*U. Hence, the claim that CUL is suf-
#cient for W is an easy counterfactual for two reasons. First, we empirically 
observe that CU~L is su!cient for W. Second, we know from theory that 
L – rather than ~L – is expected to contribute to outcome W (our directional 
expectation).

Imagine, however, a slightly di$erent empirical situation. "is time, we 
have empirical evidence that CUL produces W, but the conjunction CU~L 
is a logical remainder. In order to produce the more parsimonious statement 
CU → W, we would need to assume that the remainder CU~L is su!cient for 
W. "is is a di!cult counterfactual, as it runs counter to pre-existing theory-
based hunches, which state that the presence of L, not its absence (~L), is 
expected to be conducive for bringing about W.14

6.4.3.2 Using directional expectations for cra"ing intermediate solution terms
In the following, we provide a detailed discussion of how to arrive at the inter-
mediate solution term. In our example, #ve conditions (A–E) form a truth 
table with 32 rows (Table 6.3), of which only 12 contain empirical informa-
tion. Hence, there are 20 logical remainders – no less than 62.5 percent of all 
truth table rows, a rather common scenario in applied QCA. "e conservative 
solution term is:

14 Notice that here directional expectations are formulated for single conditions. In section 8.3.2, we 
elaborate on the idea of formulating conjunctural directional expectations.
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ABCD~E + A~BDE + A~CDE + A~B~C~D~E + ~ABC~D + ~AB~CD~E 
→ Y.

"is is a very complex statement; interpreting it in a theoretically mean-
ingful manner is likely to cause some headaches. "ere is much heterogeneity 

Table 6.3 Hypothetical truth table with five conditions and limited diversity

Conditions Outcome Row included in

  
  
Rows

  
  
A

  
  
B

  
  
C

  
  
D

  
  
E 

  
  
Y 

  
conservative 
solution

most 
parsimonious 
solution

  
intermediate 
solution

1 0 0 0 0 1 0
2 0 0 0 1 0 0
3 0 0 1 0 1 0
4 0 1 0 1 0 1 X X X
5 0 1 1 0 0 1 X X X
6 0 1 1 0 1 1 X X X
7 0 1 1 1 0 0
8 1 0 0 0 0 1 X X X
9 1 0 0 1 1 1 X X X

10 1 0 1 1 1 1 X X X
11 1 1 0 1 1 1 X X X
12 1 1 1 1 0 1 X X X
13 0 0 0 0 0 ?
14 0 0 0 1 1 ?
15 0 0 1 0 0 ?
16 0 0 1 1 0 ?
17 0 0 1 1 1 ?
18 0 1 0 0 0 ? X
19 0 1 0 0 1 ? X
20 0 1 0 1 1 ? X X
21 0 1 1 1 1 ?
22 1 0 0 0 1 ? X X
23 1 0 0 1 0 ? X X
24 1 0 1 0 0 ? X X
25 1 0 1 0 1 ? X X
26 1 0 1 1 0 ? X X
27 1 1 0 0 0 ? X X
28 1 1 0 0 1 ? X X
29 1 1 0 1 0 ? X X
30 1 1 1 0 0 ? X X
31 1 1 1 0 1 ? X X
32 1 1 1 1 1 ?  X X
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among the cases that are members of the outcome. "is is why they fall into 
very di$erent truth table rows, and why very little logical minimization is 
possible.

In order to produce the most parsimonious solution term, we need to iden-
tify those remainders that, if assumed to produce outcome Y, would make 
the solution term more parsimonious. With truth tables such as the one in 
Table 6.3, this is a complex task that needs to be performed by the relevant 
so%ware packages.15 For our example, the most parsimonious formula is the 
following:

A + B~C + B~D → Y.
"is term represents the shortest way of expressing the empirical evidence 
on the su!cient conditions for Y. It rests on numerous counterfactual claims 
about logical remainders. Most likely, not all of them are in line with existing 
theoretical knowledge and are thus di!cult counterfactuals. "is is why any 
substantive interpretation of the most parsimonious solution term should be 
treated with care.

Nevertheless, in the Standard Analysis procedure, the most parsimonious 
solution plays a crucial role. It de#nes the set of remainders that are eligible 
for the intermediate solution term. We therefore need to know which of the 
20 logical remainders in Table 6.3 have been assumed to produce the out-
come Y. As the column “most parsimonious solution” in Table 6.3 shows, 
simplifying assumptions have been made on the remainders in rows 18–20 
and 22–32.

In principle, the creation of the intermediate solution term is based on bar-
ring all di!cult counterfactuals from the simplifying assumptions and allow-
ing only the easy counterfactuals to be included. "is suggests that researchers 
would need to pass judgment on each and every individual simplifying 
assumption. "is would be a complex task, and not only because the number 
of simplifying assumptions can o%en be quite high. More importantly, for 
each single assumption this judgment involves complex considerations that 
simultaneously need to take into account several pieces of information: (a) 
which conjunctions are empirically observed to be su!cient for the outcome 
(as expressed in the conservative solution term); (b) which single conditions 
are available for any intermediate solution (as expressed in the most parsi-
monious solution); and (c) which theory-guided expectations exist for single 
conditions (as expressed in the directional expectations).

15 See the online How-to section for Chapter 6 for practical guidance (www.cambridge.org/schneider-
wagemann).
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In practice, therefore, the strategy for cra%ing an intermediate solution 
term focuses not on truth table rows but on the conservative and most par-
simonious solution terms and decides which of the single conditions that 
appear in the conservative but not the most parsimonious solution can 
be dropped, using directional expectations as a guide. In the following, 
we demonstrate the logic of this procedure. For the sake of simplicity, the 
directional expectations in our example are: each single condition (A–E) 
is expected to contribute to the outcome Y when it is present rather than 
absent.

"e strategy for cra%ing an intermediate solution term follows two prin-
ciples (Ragin and Sonnett 2004). First, no single condition can be dropped 
from any su!cient path of the most parsimonious solution term, because the 
most parsimonious solution term would otherwise not be a superset of the 
intermediate solution. "is principle can be restated as follows: only those 
single conditions can be dropped from su!cient paths in the conservative 
solution that do not appear in the most parsimonious solution term. Second, 
only those conditions that are in line with the directional expectations can be 
dropped from the conservative solution term. If, according to the #rst prin-
ciple, condition ~X is eligible for being dropped, and our directional expect-
ation is that X contributes to the outcome, then ~X can be dropped. In the 
following, we show how these principles yield the intermediate solution term 
reported in Figure 6.1.

Remember, each single condition in this hypothetical example is expected 
to contribute to the outcome in its presence rather than absence. Let us start 
with path B~C from the most parsimonious solution. "is is the super-
set of path ~AB~CD~E from the conservative solution. Any intermediate 

intermediate conservative;
subset

ABCD~E +

A~BDE +

A~CDE +

A~B~C~D~E +

~ABC~D +

~AB~CD~E

A + 

B~CD + 

BC~D 

A +

B~C +

B~D

most parsimonious;
superset

Figure 6.1 Conservative, intermediate, and most parsimonious solution terms
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solution must contain conjunction B~C. Let us check which conditions can 
be dropped from the conservative path. Following our directional expecta-
tions, these conditions could be ~A, ~C, and ~E, because our expectation is 
that A, C, and E contribute to the outcome in their presence rather than their 
absence. However, ~C cannot be dropped, since – as just mentioned – any 
intermediate solution must contain B~C. "is leads to the intermediate solu-
tion term B~CD. "is term rests on assumptions about the remainder rows 
20 (~AB~CDE) and 29 (AB~CD~E) of Table 6.3. "ey denote easy counter-
factuals because if ~AB~CD~E (row 4) – which is di$erent from rows 20 and 
29 in having only ~A instead of A and ~E instead of E, respectively – already 
implies the outcome, then we have every reason to believe that rows 20 and 29 
would also imply the outcome if they were empirically observed.

Path B~D from the most parsimonious solution term is a superset of path 
~ABC~D of the conservative solution. "e intermediate solution path must 
contain the conjunction B~D but can drop all those conditions that appear in 
their absence in the conservative path (again due to our directional expectations 
that conditions will be su!cient in their presence, not their absence). In this 
example, we can only drop condition ~A, thus yielding the intermediate path 
BC~D. Path BC~D rests on assumptions on remainders in rows 30 (ABC~D~E) 
and 31 (ABC~DE). "ey are easy counterfactuals: row 30 is di$erent from row 
5 (~ABC~D~E) – a row which is empirically connected to the outcome – only 
in condition A, which, however, following our directional expectations, con-
tributes to the outcome in its presence rather than in its absence. Also, row 31 
(ABC~DE) is di$erent from row 6 (~ABC~DE; connected to the outcome) 
only in condition A and is thus also an easy counterfactual.

It becomes a bit more complicated for path A from the most parsimo-
nious solution. It is the superset of all remaining paths in the conservative 
term, namely those that contain condition A (ABCD~E, A~BDE, A~CDE, 
and A~B~C~D~E). "e most promising path is A~B~C~D~E. Following the 
logic explained above, we can drop all those conditions that appear in their 
negation, because our directional expectations are that each condition should 
contribute to the outcome when present. "ere is no negated condition in the 
path of the most parsimonious solution (A) which would have to be main-
tained. Since in path A~B~C~D~E all conditions but condition A appear in 
their negation, this procedure yields simply A. "is means that we have used 
the remainder rows 22 to 32 as easy counterfactuals. Rows 22 (A~B~C~DE), 
23 (A~B~CD~E), 24 (A~BC~D~E), and 27 (AB~C~D~E) are easy counter-
factuals since row 8 (A~B~C~D~E) di$ers in just one condition from each of 
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them and since the directional expectations suggest that, if row 8 is su!cient 
for the outcome, rows 22, 23, 24, and 27 can be considered easy counterfactu-
als. If we consider row 24 (A~BC~D~E) as an easy counterfactual, then we 
can consider row 25 (A~BC~DE) and 26 (A~BCD~E) easy counterfactuals, 
too, because they di$er in just one condition (E in the case of row 25 and D in 
the case of row 26) from row 24, and are in line with our directional expecta-
tions. By a similar logic, if we consider row 27 an easy counterfactual, then 
rows 28 through 30 are also easy counterfactuals.16 If assumptions about row 
30 are allowed, then row 31 is also an easy counterfactual.17 Finally, row 32 
(ABCDE) is an easy counterfactual, because it di$ers in just one condition 
from row 10 (A~BCDE), row 11 (AB~CDE), and row 12 (ABCD~E), which 
all imply the outcome and for which the condition di$ering from row 32 is 
absent (so that row ABCDE con#rms our directional expectations). Row 32 
also di$ers from row 31 (ABC~DE) – which we have already de#ned an easy 
counterfactual – in one condition, for which we can follow the same logic and 
which we have also already de#ned as an easy counterfactual above.

"is procedure yields three paths that can be summarized in the following 
intermediate solution:

A + BC~D + B~CD → Y.
"e last three columns of Table 6.3 reveal several of the properties of the three 
solution terms. First, they all imply the same rows that contain empirical evi-
dence. Second, the set of assumptions about remainders that are used for the 
intermediate solution is a subset of the set of assumptions used for the most 
parsimonious solution. Lastly, the two simplifying assumptions in rows 18 
and 19 are deemed di!cult counterfactuals.

In sum, all three solution terms are true in the sense that they capture 
the empirical facts expressed by the truth table in Table 6.3. Any of them 
can be used as the center of the substantive interpretation, and which one 
is chosen depends on the speci#c features of the research. We do suggest, 
though, that researchers present all three solution formulas in their results, 
together with the assumptions on which they are based. "is allows readers 
to make their own judgments with regard to the plausibility of each of the 
solution terms.

16 Another reason why row 29 (AB~CD~E) is an easy counterfactual is that row 4 (~AB~CD~E) implies 
the outcome and di$ers only in A from row 29; this comparison follows the logic in our directional 
expectations. A parallel argument can be made for row 30 with the help of row 5.

17 Row 6 being linked to the outcome also con#rms that row 31 is an easy counterfactual.
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6.4.4 The Standard Analysis procedure in a nutshell

"e Standard Analysis is the strategy suggested by Ragin (2008a and Ragin 
and Sonnett 2004) when confronted with a truth table that contains logical 
remainders. It consists of producing the conservative solution (no assump-
tion about logical remainders); the most parsimonious solution (all simplify-
ing assumptions); and the intermediate solution (only easy counterfactuals). 
As argued above, the latter is – by de#nition – a subset of the most parsi-
monious solution and a superset of the conservative solution, a direct result 
of the requirement that easy counterfactuals are a subset of all simplifying 
assumptions. "e intermediate solution term is also in between the conserva-
tive and the most parsimonious solution in terms of complexity. "e rationale 
for creating intermediate solution terms is that, on the one hand, the con-
servative solution o%en tends to be too complex to be interpreted in a the-
oretically meaningful or plausible manner and that, on the other hand, the 
most parsimonious solution term risks resting on assumptions about logical 
remainders that contradict theoretical expectations, common sense, or both. 
Intermediate solution terms therefore aim at striking a balance between com-
plexity and parsimony, using theory as a guide as to which logical remainders 
should be assumed to have a link to the outcome.

In short, the basic di$erence between the various solution terms consists of 
which logical remainder rows are used as simplifying assumptions. In applied 

At-a-glance: the dimension of types of counterfactuals

Intermediate solutions can be crafted in two ways. We can drop from the conservative 
solution any of those single conditions that do not appear in the most parsimonious solu-
tion and are in line with the directional expectations. Or we can screen all simplifying 
assumptions that go into the most parsimonious solution term and accept only those that 
can be classified as easy counterfactuals. Both strategies yield the same intermediate 
solution. In research practice, relevant software packages can be used for putting the notion 
of directional expectations into practice.

As long as no outcome value is altered for the empirically observed truth table rows, no 
solution term that is produced by changing assumptions on logical remainders can ever 
contradict the empirical evidence at hand.

The intermediate solution has various important properties. It is a subset of the most par-
simonious and a superset of the conservative solution. It is less parsimonious than the most 
parsimonious solution and more parsimonious than the conservative solution. Unlike the 
most parsimonious solution, it does not rest on difficult counterfactuals. Unlike the conser-
vative solution, it incorporates theoretical hunches in the form of easy counterfactuals.
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QCA, researchers are o%en confronted with a very large number of remain-
ders. "e Standard Analysis procedure can be considered a powerful way of 
drastically reducing the number of remainders that need to be considered. It 
starts from the principle that only those remainders are eligible that contrib-
ute to parsimony (aka simplifying assumptions) and then proposes those for 
logical minimization that are in line with theoretical expectations (aka easy 
counterfactuals). Figure 6.2 displays a Venn diagram of the types of logical 
remainders as de#ned by the Standard Analysis procedure. "e rectangular 
box contains all logical remainders, or better, assumptions about all remain-
ders. A subset of these consists of the simplifying assumptions (the circle in 
the center of Figure 6.2). "ey yield the most parsimonious solution term and 
consist of the two mutually exclusive sets of easy and di!cult counterfactu-
als. "e easy counterfactuals alone produce the intermediate solution term. 
"e drastic reduction of eligible remainders compared to all logically possible 
remainders is graphically displayed by the area outside the circle for simplify-
ing assumptions. "ose remainders will never be considered in the Standard 
Analysis procedure, simply because they do not contribute to parsimony.

"is reduction has the virtue of lowering the number of possible solution 
terms to a more manageable number. In Chapter 8, however, we show that this 
reduction comes with two risks. First, by choosing parsimony as the criterion 
for selecting eligible remainders, it can (and o%en does) happen that impos-
sible remainders are selected, which unavoidably leads to untenable assump-
tions. Directional expectations do not prevent this from happening, so that 
even intermediate solutions might be based on some untenable assumptions. 

Simplifying Assumptions

Assumptions 
on logical
remainders

Easy
counterfactuals

Difficult
counterfactuals

Figure 6.2 Venn diagram – types of counterfactuals in Standard Analysis procedure
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Second, some remainders that are never considered might actually provide 
very useful grounds for good counterfactual claims. "is should not be a sur-
prise. "e only reason that they are discarded by the Standard Analysis is that 
they do not contribute to parsimony. Parsimony, however, is never the sole 
goal when it comes to good theoretical and substantive argumentation.

Before introducing extensions of the Standard Analysis in Chapters 8 and 
9, we put all the insights from Chapters 1–6 together and describe in detail the 
so-called Truth Table Algorithm introduced by Ragin (2008a) in Chapter 7.
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7 The Truth Table Algorithm

Easy reading guide

This chapter should be seen as a gateway in this book. It summarizes and systematizes 
the previous chapters and thus describes the current default way of performing QCA. In so 
doing, it also provides a fruitful opener for understanding several of the pitfalls and exten-
sions that we are going to address in the remainder of the book.

In the preceding chapters, we outlined the various ingredients of the Truth Table Algorithm. 
More specifically, in Chapter 4, we introduced the truth table as the central analytical tool for 
QCA. Chapters 5 and 6 added to this by discussing various issues that arise when this formal 
logical tool meets noisy social science data. In Chapter 5, we introduced several parameters 
of fit. The consistency parameter enabled us to decide whether a given truth table row can 
count as a sufficient condition and be included in the logical minimization. In Chapter 6, we 
discussed logical remainder rows as a second feature of incomplete truth tables and pre-
sented strategies for dealing with them. We now have all the components of the so-called 
Truth Table Algorithm (Ragin 2008a), the predominant mode of sufficiency analysis in QCA. 
Strictly speaking, no new major insights are contained in this chapter. Nevertheless, Chapter 7 
is crucial, as it illustrates in detail how the various aspects discussed previously relate to one 
another and how they are part of the Truth Table Algorithm. The algorithm is composed of 
several steps: the conversion of a data matrix into a truth table (7.1), which heavily draws 
on knowledge gained in Chapter 4; the attribution of an outcome value to every truth table 
row (7.2), which follows the guidelines of Chapter 4 and adds the knowledge about the con-
sistency parameter from Chapter 5; and the logical minimization of a truth table (7.3), which 
takes into account the rules of Chapter 4, enriched with our knowledge about the Standard 
Analysis from Chapter 6. After the presentation of these steps, we refer to some important 
issues (and misunderstandings) related to the Truth Table Algorithm (7.4).

As mentioned, this chapter is also the basis for more advanced refinements which will 
subsequently be presented in Chapters 8 and 9. Readers both at the beginner and the more 
advanced level should only proceed with the book if and when they feel confident that they 
have mastered the material up to this point and which is presented in a condensed manner 
here in Chapter 7.

Note that this chapter does not amount to a full-fledged recommendation of best prac-
tices for QCA (for this, see section 11.1). Moreover, the Truth Table Algorithm is about the 
analysis of sufficient conditions. No reference to the analysis of necessity in made in this 
chapter. Issues in the analysis of necessity have been addressed in sections 3.2, 5.4, and 
5.5 and we will further elaborate on these in Chapter 9.
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7.1 From the data matrix to truth table

In order to illustrate the Truth Table Algorithm, we use Pennings’ data 
(2003).1 His is a fuzzy-set QCA, but the same principles and practices apply 
to crisp-set QCA. Pennings is interested in the conditions for high constitu-
tional control of the executive in parliamentary democracies (K). He iden-
ti!es the presence of a consensus democracy (C), a strong presidentialist 
component in the political system (P), whether the democracy is new (N), 
and the rigidity of the constitution (R) as potential conditions. "e data 
matrix in Table 7.1 displays each case’s fuzzy-set membership in all condi-
tions and the outcome.

We !rst have to convert this data matrix into a truth table. As laid out in 
section 4.2, this requires three steps: the identi!cation of all logically pos-
sible con!gurations; the assignment of each case to one of these truth table 
rows; and the de!nition of the outcome values for each row. Step 1 is easy 
and straightforward: 4 conditions produce a truth table with 16 rows.

In step 2, each case is assigned to that row in which its membership 
exceeds 0.5. For example, let us consider Australia. Its membership in C, P, 
N, and R is 0.33, 0, 0.33, and 0.83, respectively. Australia is thus closest to 
the ideal type of a country with a low level of consensus democracy (~C), 
without a strong president (~P), a democracy that is not new (~N), and with 
a rigid constitution (R). Its membership in row ~C~P~NR is 0.67 and lower 
than 0.5 in all other truth table rows, for, as shown in Chapter 4, each case 
can have a membership greater than 0.5 in one and only one row. Canada 
(0.83) and Ireland (0.55) are also members of the ideal type ~C~P~NR. For 
further illustration, let us take Austria. Its best-!tting ideal type, or row, is 
CP~NR, in which it has a membership of 0.55. Finland (0.67) shares this 
row with Austria.

Based on this procedure, all cases can be attributed to their respective ideal 
type. "e result of this exercise is displayed in Table 7.2. For instance, the ideal 
type ~C~P~NR is denoted by row 2 with C = 0, P = 0, N = 0, R = 1. As we have 
seen, this truth table row contains three cases: Australia, Canada, and Ireland 
(shown in the last column of Table 7.2).

1 Ours is not meant to be a reanalysis, but merely an illustration. In the original study, Pennings uses the 
so-called Inclusion Algorithm (Ragin 2000) (see also section 7.4), and each case set with a membership 
score of 0.5 has been recoded by us to 0.55. Furthermore, we have excluded the Russian Federation 
from our analysis because of incomplete data.
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Table 7.1 Fuzzy values data matrix, 44 cases

Conditions Outcome

Country C P N R K

Australia 0.33 0 0.33 0.83 0.33
Austria 0.55 0.55 0.33 0.67 0.33
Bangladesh 0.17 0.17 1 0.67 0.33
Belgium 1 0 0.17 0.67 0.17
Botswana 0 1 0.67 0.17 0
Bulgaria 0.55 0 1 0.17 0.67
Canada 0.17 0 0.17 0.83 0.33
Czech Rep. 0.55 0.83 1 0.17 0.55
Denmark 0.83 0 0.17 0.55 0.55
Estonia 0.83 0.33 1 0.17 0.67
Finland 0.83 0.67 0.33 0.67 0.17
France 0.67 0.55 0.67 0.55 0
Germany 0.55 0.17 0.55 0.83 0.67
Greece 0.33 0.67 0.83 0.55 0.55
Guyana 0 0.33 0.67 0.67 0.17
Hungary 0.67 0 1 0.33 1
Iceland 0.67 0.83 0.33 0 0.17
India 0.33 0.55 0.55 0.67 0.33
Ireland 0.33 0 0.33 0.55 0.55
Israel 1 0 0.55 0 0.83
Italy 1 0.67 0.55 0.33 0.67
Jamaica 0 0 0.67 0.67 0.33
Japan 0.17 0 0.55 1 0.33
Latvia 0.83 0.17 1 0.67 0.83
Lithuania 0.33 0.33 1 0.33 0.17
Luxembourg 0.67 0 0.17 0.33 0.55
Macedonia 0.55 0 1 0.67 1
Malta 0 0.17 0.83 0.33 0.33
Namibia 0 0.83 1 0.33 0.17
"e Netherlands 0.83 0 0.17 0.67 0.55
New Zealand 0.67 0 0.17 0 0.17
Norway 0.67 0 0.17 0.67 0.55
Pakistan 0.17 1 0.83 1 0
Poland 0.55 0.55 1 0.33 0.55
Portugal 0.17 0.67 0.83 0.67 0.55
Romania 0.83 0.33 1 1 0.55
Slovakia 0.83 0.83 1 0.17 0.67
Slovenia 0.83 0.55 1 0.17 0.33
South Africa 0 0.67 1 0.67 0.55
Spain 0.33 0 0.83 0.33 0.55
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Table 7.2 Distribution of cases to ideal types

Description of ideal type = truth  
table row = corner of property space

Number of 
cases with 
membership > 
0.5 in this ideal 
type

  
  
Cases with membership > 
0.5 in this ideal type    

Row
  
C

  
P

  
N

  
R

1 0 0 0 0 1 GB
2 0 0 0 1 3 AUS, CDN, IRL
3 0 0 1 0 3 E, LT, M
4 0 0 1 1 4 BD, GUY, J, JA
5 0 1 0 0 0 No cases
6 0 1 0 1 0 No cases
7 0 1 1 0 3 CL, NAM, RB
8 0 1 1 1 5 GR, IND, P, PK, ZA
9 1 0 0 0 3 L, NZ, S

10 1 0 0 1 4 BE, DK, N, NL
11 1 0 1 0 4 BG, EW, H, IL
12 1 0 1 1 5 D, LV, MK, RO, TR
13 1 1 0 0 1 IS
14 1 1 0 1 2 A, FIN
15 1 1 1 0 5 CZ, I, PL, SK, SLO
16 1 1 1 1 1 F

Conditions Outcome

Country C P N R K

Sri Lanka 0.33 1 0.83 0.33 0.17
Sweden 0.67 0 0.17 0 0.55
Turkey 0.55 0.17 0.83 1 0.17
UK 0 0 0 0 0.17

Adapted from Pennings (2003)
C = Consensus democracy
P = Strong president
N = New democracy
R = Rigid constitution
K = Constitutional control of the executive

Table 7.1 (cont.)
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7.2 Attributing an outcome value to each truth table row

Step 3 of the Truth Table Algorithm consists of determining the outcome 
value for each truth table row. A row can either be su#cient for the outcome, 
not su#cient for the outcome, or a logical remainder row. "e latter type of 
row is identi!ed !rst.

In our data, none of the cases under examination has a membership higher 
than 0.5 in either ~CP~N~R (row 5) or ~CP~NR (row 6). "us, rows 5 and 
6 are logical remainders. Several other rows each contain only one case with 
membership higher than 0.5 (rows 1, 13, and 16).2

A$er identifying logical remainders, all remaining rows are subjected to a 
test of su#ciency. "is consists of calculating each row’s consistency value as 
a su#cient condition for the outcome. For this calculation, we need to check 
if each case’s membership in a given row is equal to or smaller than its mem-
bership in the outcome (section 3.1.2.1). Note that the consistency test of all 
non-remainder rows always involves all cases under study and not just those 
that hold a membership higher than 0.5 in the respective row.3

As an example, let us demonstrate a consistency test for row 2 (~C~P~NR). 
First, each case’s membership in this row is calculated (column ~C~P~NR 
in Table 7.3). We see that most cases have low membership in ~C~P~NR. 
Only the aforementioned cases of Australia, Canada, and Ireland hold a 
membership higher than 0.5 in this ideal type. For calculating the consistency 
of ~C~P~NR as a su#cient condition for outcome K, we apply the formula 
introduced in section 5.2. For this, we need to sum up the minimum values 
across ~C~P~NR and K over all the cases. "e value is 5.17 and goes into the 
numerator of the formula. "en we need the sum of all cases’ membership in 
condition ~C~P~NR. "is value is 6.86 and goes into the denominator. "e 
consistency value for ~C~P~NR then is:

Consistency su#ciency ~C~P~NR = 5.17 / 6.86 = 0.75.

While it is at the lower bound of acceptable consistency levels, researchers 
might still classify this row as a su#cient condition for the outcome. If we 

2 As mentioned earlier (section 6.1), researchers might set the frequency threshold for de!ning logical 
remainders higher than one case, either because theirs is a large-N study and/or because the set 
calibration is thought to be imprecise and the presence of only one case in a row probably due to 
measurement error. "e higher the frequency threshold, the lower the solution coverage is likely to be 
(section 5.3).

3 "is explains why most of the relevant so$ware packages report consistency values also for logical 
remainder rows.
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have a look at which cases violate the statement of su#ciency, some doubts 
about this judgment should arise, though. As the last column of Table 7.3 
shows, the cases that contradict the statement of su#ciency of C~P~NR are: 
Australia, Austria, Canada, France, Guyana, India, and Japan. Two of these 
cases (Australia, Canada) represent true logical contradictions (TLCs; see 
section 5.2). "ey are more in than out of the hypothesized su#cient condi-
tion (~C~P~NR > 0.5), but more out of than in the outcome (K < 0.5). What 
is more, these two are also among the only three cases for which ~C~P~NR 
is the best-!tting ideal type. Hence, it is precisely those cases that are good 
empirical representations of the alleged su#cient condition that contradict 
the very statement of su#ciency. "erefore, despite its still acceptable consist-
ency level of 0.75, there are good arguments against de!ning the truth table 
row ~C~P~NR as a su#cient condition for K.

"e practical implication for research is that looking only at the consist-
ency values is o$en not enough in evaluating su#ciency. Since the consist-
ency formula does not re&ect the presence of true logical contradictions, the 
judgment of su#ciency should always be based also on a more case-oriented 
perspective (Ragin 2009). If inconsistency stems from true logical contradic-
tions, then the statement of su#ciency is put more in question than if it does 
not.

Table 7.4 displays the consistency value for each truth table row except for 
the two remainder rows. Based on the consistency scores – and, as we argue, 
based on the presence of true logical contradictions – we have to decide 
whether a given row can be considered su#cient for outcome K.

We see that consistency ranges from 0.91 (row 11) to 0.62 (row 14).4 If we 
accept a threshold of 0.8, then !ve rows (rows 3 and 9–12) are deemed su#-
cient for outcome K and thus included in the logical minimization procedure 
(section 4.3). As suggested, researchers should also take into account the pres-
ence or absence of true logical contradictions before declaring a row su#cient 
for the outcome. For row 3, out of the !ve cases that are inconsistent with the 
statement of su#ciency, two (Lithuania and Malta) are true logical contradic-
tions. For row 9, there are six inconsistent cases, one of which (New Zealand) 
is a true logical contradiction. Row 10 displays six inconsistent cases, of which 
one is a true logical contradiction (Belgium). For row 11, four inconsistent 
cases exist, none of which is a logical contradiction. Finally, !ve inconsistent 
cases exist in row 12, of which one is a true logical contradiction (Turkey).

4 In research practice, it is highly advisable to sort the rows by their consistency value in order to check if 
there are larger gaps in consistency that could be used as a threshold for consistency (Ragin 2008a: 144).
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Just as they are for the choice of the precise consistency threshold – which 
should depend on research-speci!c characteristics – researchers should also 
be &exible and explicitly justify which rows containing true logical contra-
dictions are declared su#cient and which ones not. For instance, one might 
argue that the di'erence in consistency of 0.8 (rows 9 and 10), on the one 
hand, and 0.79 (row 4) is too minor to declare the former two rows su#cient 
for K, but not the latter. Notice, however, that for row 4 there are eight incon-
sistent cases, of which no fewer than four are true logical contradictions.

We decide to include rows 3, 9, 10, 11, and 12 for logical minimization, 
although all rows but one (row 11) contain true logical contradictions. Any 
solution term based on this truth table will therefore not only be less than 
fully consistent, but also contain true logically contradictory cases.

7.3 Logically minimizing the truth table

Table 7.5 displays the truth table that results from our previous decisions 
about which rows to declare as logical remainders (those with fewer than one 

Table 7.4 Consistency values of ideal types

Description of ideal type = truth table  
row = corner of property space Number of cases with 

membership >0.5 in this 
ideal type

Consistency 
scoreRow C P N R

1 0 0 0 0 1 0.76
2 0 0 0 1 3 0.75
3 0 0 1 0 3 0.85
4 0 0 1 1 4 0.79
5 0 1 0 0 0 –
6 0 1 0 1 0 –
7 0 1 1 0 3 0.66
8 0 1 1 1 5 0.68
9 1 0 0 0 3 0.80

10 1 0 0 1 4 0.80
11 1 0 1 0 4 0.91
12 1 0 1 1 5 0.87
13 1 1 0 0 1 0.68
14 1 1 0 1 2 0.62
15 1 1 1 0 5 0.78
16 1 1 1 1 1 0.77
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case with a membership higher than 0.5), which ones to declare su#cient 
conditions (those with a consistency score of 0.8 or higher without too many 
logically contradictory cases), and which ones not (those below the consist-
ency threshold of 0.8 and/or too many logically contradictory cases). "e col-
umn labeled “Is row deemed su#cient for K?” re&ects this classi!cation for 
each truth table row.5

At this point, we can revert to the tools for the logical minimization of 
truth tables introduced in sections 4.3 and 6.4. We are interested in the suf-
!cient conditions for the presence of constitutional control of the executive 
(K). "is is why we calculated each row’s consistency as a su#cient condition 
for K. In other words, this truth table is valid only for the analysis of the suf-
!cient conditions for the presence of outcome K, and neither for the absence 
(~K) nor the analysis of necessary conditions (see section 9.1).

Table 7.5 Truth table based on fuzzy-set data matrix

Description of ideal type = truth  
table row = corner of property space Number of cases 

with membership 
>0.5 in this ideal 
type Consistency 

Is row deemed 
su#cient for 
K? Row C P N R

11 1 0 1 0 4 0.91 1
12 1 0 1 1 5 0.87 1

3 0 0 1 0 3 0.85 1
9 1 0 0 0 3 0.80 1

10 1 0 0 1 4 0.80 1
4 0 0 1 1 4 0.79 0

15 1 1 1 0 5 0.78 0
16 1 1 1 1 1 0.77 0

1 0 0 0 0 1 0.76 0
2 0 0 0 1 3 0.75 0
8 0 1 1 1 5 0.68 0

13 1 1 0 0 1 0.68 0
7 0 1 1 0 3 0.66 0

14 1 1 0 1 2 0.62 0
5 0 1 0 0 0 Logical remainder ?
6 0 1 0 1 0 Logical remainder ?

5 Note that this column is called “outcome” or “Y” in most so$ware packages that perform the Truth 
Table Algorithm. "is is misleading, for the values in this column do not re&ect a dichotomized version 
of the empirically observed outcome value of cases in the respective row. Instead, they re&ect the 
researcher’s assessment of whether the given row can be considered su#cient for the outcome.
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As explained in section 6.4, in the presence of limited diversity, the 
Standard Analysis procedure allows for di'erent solution terms to be pro-
duced depending on whether assumptions on logical remainders are made. 
If no assumptions are made, the conservative solution is produced, if sim-
plifying assumptions are made, the most parsimonious solution results, 
and if only easy counterfactuals are permitted, an intermediate solution 
emerges. For presentational purposes, we produce only the conservative 
solution here.

"e Boolean expression of all su#cient rows for outcome K is this:

C~PN~R + C~PNR + ~C~PN~R + C~P~N~R + C~P~NR → K.
"is can be minimized to:

C~P + ~PN~R → K.
We identify two su#cient paths for high constitutional control of the execu-
tive: a combination of a consensus democracy with the absence of a strong 
president, or the combination of the absence of a strong president with the 
presence of a new democracy and the absence of a rigid constitution.6 "e 
parameters of !t for this solution are as follows:

In addition to reporting the parameters of !t, another, more case-oriented 
strategy for assessing and interpreting this solution term is to produce XY 
plots for each path and/or the entire solution term. Figure 7.1 displays such 

6 We might be tempted to interpret ~P as a necessary condition, since it is part of all paths of the solution 
for su#ciency. However, if we do so we risk creating so-called false necessary conditions. In section 
9.1.2, we provide a detailed discussion of this fallacy and potential remedies.

 C~P + ~PN~R → K

Raw coverage 0.69 0.57
Unique coverage 0.23 0.11
Uniquely covered
Covered cases* BE,DK,LV,NL,LX LIT,MAL,SP

NZ,S,RO,G,MC,TK
Consistency 0.77 0.84
Solution coverage 0.80
Uncovered cases** I,SK,RU,PL,CZ,IR,GR,SA,PT
Solution consistency 0.75

* cases uniquely covered by path, that is membership > 0.5 in only this path and not the other
** cases with membership in outcome > 0.5 and of < 0.5 in any path
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an XY plot for path C~P. "e rather low consistency value is visualized by the 
number of cases below the main diagonal and their distance from it. "e worst 
o'ender against the statement that a consensus democracy combined with 
the absence of presidentialism (C~P) is su#cient for the presence of strong 
constitutional control of the executive (K) is Belgium with its perfect mem-
bership in path C~P and its virtual non-membership in outcome K. In add-
ition to Belgium, New Zealand (NZ) and Turkey (TR) are also true logically 
contradictory cases to the statement that C~P is su#cient for Y. Researchers 
should report this evidence and adequately include it in their substantive 
interpretation of the !ndings. For instance, it would be implausible to refer 
to Belgium, New Zealand, or Turkey as empirical instances that demonstrate 
that condition C~P is su#cient for K, or, even worse, to use these cases for 
within-case analysis trying to unravel the causal mechanisms linking C~P 
with K.7 Furthermore, we see that several cases are more in than out of the 
outcome set but have low membership in path C~P. "ese are cases like Italy, 
Slovakia, and others in the upper le$ corner of the XY plot. In principle, they 

7 In section 11.4, we discuss the issue of post-QCA case selection strategies in further detail.
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Figure 7.1 XY plot for path C~P

 

 



Neat formal logic meets noisy social science data190

could be covered by the other su#cient path – in practice, however, they are 
not and thus remain uncovered by the entire solution term.

In sum, the Truth Table Algorithm consists of a sequence of steps that starts 
with the crisp- or fuzzy-set data matrix; attributes cases to rows; de!nes rows 
either as su#cient, not su#cient, or as logical remainders; and then logically 
minimizes the truth table. Figure 7.2 provides a graphical summary of the 
steps of the Truth Table Algorithm. For each logically possible combination of 
conditions, it needs to be decided whether the underlying fuzzy-set evidence 
warrants treating it as a logical remainder. Among those con!gurations that 
are not logical remainders, a distinction needs to be made between those that 
are consistent enough to be considered su#cient for the outcome and those 
that are not.

7.4 Implications of the Truth Table Algorithm

Several important features of the Truth Table Algorithm are worth pointing 
out (again). First, once a truth table is constructed, di'erent treatments of 
logical remainders can be chosen, either by applying the Standard Analysis 
(section 6.4) or the Enhanced Standard Analysis (section 8.2). Second, the 
truth tables produced by the Truth Table Algorithm like that in Table 7.5 

(1) Corner of property space/truth table row/ideal
type contains enough empirical evidence?

(2) Corner/row/ideal type is consistently
     sufficient for the outcome?

Yes

Y = 1 Y = 0

No: Y = Logical Remainder

NoYes

Figure 7.2 Steps in the Truth Table Algorithm
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are no proper base for performing analyses of necessity, because they do 
not display each case’s membership in the outcome. As a consequence, no 
inferences about the presence or absence of necessary conditions should be 
drawn based on the Truth Table Algorithm, a point we elaborate in more 
detail in section 9.1.

"ird, the truth table produced by the algorithm is only valid for either the 
presence of the outcome or its negation, never for both. "us, if we wanted to 
analyze the su#cient conditions for the absence of constitutional control of 
the executive (~K), then we cannot use the truth table displayed in Table 7.5, 
which has been constructed with K as the outcome. "at is, when interested 
in outcome ~K, we cannot simply logically minimize all rows that are denoted 
with the value 0 in the outcome column of Table 7.5. Instead, when analyzing 
~K, we have to start the Truth Table Algorithm from the beginning and calcu-
late each row’s consistency as a su#cient condition for ~K. "e reason for the 
need to create separate truth tables is that the decision on whether a row can be 
deemed su#cient for the outcome is partially based on the consistency value 
it obtains. It might well be – and it frequently happens in applied QCA – that 
a given row is su#cient neither for K nor for ~K, because it does not pass the 
consistency threshold for either of the two outcomes and researchers therefore 
do not include it in any of the two logical minimization procedures.8

Fourth, the algorithm can be applied to both crisp and fuzzy sets. As a mat-
ter of fact, since the Truth Table Algorithm rests on a truth table, which, in 
turn, exclusively consist of 1s and 0s, some might think that what the Truth 
Table Algorithm does is nothing more than turning fuzzy sets into crisp sets 
by dichotomizing them. However, this is false. "e more !ne-grained infor-
mation contained in fuzzy sets is never lost and is used at various steps: (a) 
when calculating the membership of cases in truth table rows and thus when 
identifying logical remainders; (b) when calculating the consistency of a 
row and thus when identifying su#cient rows; and (c) when calculating the 
parameters of !t for the solution formula. In addition, a$er the analysis of 
fuzzy data with the Truth Table Algorithm, each case’s fuzzy-set membership 
in the solution term and outcome can and should be displayed, such as, for 
instance, in the XY plot in Figure 7.1.

As a matter of fact, whenever a concept is not a natural dichotomy and 
when fuzzy sets are available, there is never a good reason for turning them 

8 With fuzzy sets, it can happen that one and the same row passes the consistency threshold for both 
outcomes and might thus be deemed su#cient for both Y and ~Y. In section 9.2.2, we provide an 
extensive treatment of this issue and several other analytic challenges that all derive from skewed 
membership in X, or Y, or both.
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into crisp sets (Ragin 2008a: 138–41). First, with fuzzy sets, the test for su#-
ciency is more conservative. If we turned fuzzy sets into crisp sets, using the 
qualitative anchor of 0.5 as the threshold for membership, it can then happen 
that a condition that is not consistently su#cient when using fuzzy sets all of 
a sudden becomes fully consistent when using the crisp version of the same 
data. To illustrate this, consider Figure 7.3, which displays an XY plot with a 
two-by-two table superimposed.

With fuzzy sets, all cases need to be above the main diagonal in order for X 
to be fully consistent as a su#cient condition for Y. In other words, cases that 
fall into areas B and D are inconsistent with the statement that X is su#cient 
for Y. For instance, a case with X = 0.8 and Y = 0.6 would fall into area D and 
would thus contribute to the inconsistency of X. Similarly, a case with, say, X 
= 0.4 and Y = 0.3 would fall into area B and make condition X more incon-
sistent. Now, consider what happens if we turn a fuzzy set into a crisp set. All 
cases in area D obtain crisp-set membership scores of 1 in both X and Y and 
all cases in area B obtain membership scores of 0 in both X and Y. Because of 
this, they no longer contradict the set-theoretic statement that X is su#cient 
for Y. In other words, by eliminating the !ner-grained fuzzy-set membership 
scores and retaining only the information on their qualitative di'erences (as 
re&ected by their membership scores above or below the qualitative anchor 
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0.5), we have turned a hitherto inconsistent condition into a more (or even 
fully) consistent su#cient condition. By dichotomizing the fuzzy-set mem-
bership scores, we therefore arti!cially increase the consistency of set rela-
tions – an argument that also applies to set relations denoting necessity.

Finally, the Truth Table Algorithm has by now replaced the so-called 
Inclusion Algorithm described in Ragin (2000) as the predominant protocol 
for analyzing fuzzy sets. "e major advantage of the Truth Table Algorithm 
is that, unlike with the Inclusion Algorithm, researchers can make use of the 
powerful tool of the truth table. By virtue of this, researchers have a better 
grip on logical remainders and the analytic processes of crisp-set QCA and 
fuzzy-set QCA become virtually identical rather than being two di'erent 
types of data analysis approaches.

At-a-glance: the Truth Table Algorithm

The Truth Table Algorithm is the central tool to analyze sufficient conditions and con-
sists of the three steps. First, the data matrix is converted into a truth table. Second, each 
truth table row is classified either as a logical remainder, as consistent for the outcome 
of interest, or as not consistent. Third, the truth table is logically minimized.

The Truth Table Algorithm can be applied both to crisp and fuzzy sets. Dichotomizing 
fuzzy sets and executing a crisp-set analysis lead to different results.

The outcome and the non-occurrence of the outcome have to be analyzed separately.
Based on the Truth Table Algorithm, necessary conditions are commonly not correctly 

identified.
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8 Potential pitfalls in the Standard Analysis 
procedure and suggestions  
for improvement

Easy reading guide

In the previous chapter, our presentations of the various elements of QCA have culminated 
in the Truth Table Algorithm. It describes the data analysis procedure from the creation of a 
truth table based on empirical data and its subsequent logical minimization. For the latter, 
the Standard Analysis is applied, which produces the conservative, most parsimonious, 
and the intermediate solution through different strategies for handling logical remainders. 
In Chapters 8 and 9, we develop suggestions on how to improve the Standard Analysis. We 
consider these chapters a valuable addition to the current debate, because the Standard 
Analysis can result in real analytic pitfalls that are more than just cosmetic nuisances.

There is no doubt that the Standard Analysis is a very useful strategy for dealing with 
limited diversity. In particular, intermediate solutions have several advantageous prop-
erties: they strike a balance between parsimony and complexity; they are the result of 
supplementing the empirical information at hand with a controlled dose of theory-guided 
assumptions; and they handle logical remainders in a conscious, yet practical manner. 
These properties make intermediate solution terms preferable to both the complex and the 
most parsimonious solution term. While intermediate solutions are indeed highly useful, in 
this chapter we aim to qualify the idea that they are always preferable. We argue that the 
Standard Analysis does not guard against two pitfalls. One is that it might create solution 
terms that are based upon what we label untenable assumptions. The other is that it leads 
researchers to overlook interesting and useful logical remainders, and thus insightful solu-
tions, simply because these remainders are not contributing to parsimony.

What is thus needed is a more differentiated view on counterfactuals (8.1). We demon-
strate with published QCA that the problem of making untenable assumptions does in fact 
occur when the Standard Analysis is applied. We offer the Enhanced Standard Analysis as 
a remedy (8.2). This, in essence, consists of barring untenable assumptions from being 
included in any solution term. The Theory-Guided Enhanced Standard Analysis, in turn, pre-
sented in (8.3), consists in replacing parsimony with theoretical soundness as the primary 
decision rule as to which logical remainders should be used for counterfactual claims. This 
includes the extension of the notion of directional expectations from single conditions to 
conjunctions of conditions, with entire truth table rows being the most extreme form of this 
form of conjunctural directional expectations.
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8.1 Beyond the Standard Analysis: expanding the types  
of counterfactuals

In section 6.4.3, we introduced the distinction between di!erent types of 
assumptions, or counterfactual claims: simplifying assumptions, and easy and 
di"cult counterfactuals. In the following, we further di!erentiate between 
types of counterfactuals. We will label them good counterfactuals and unten-
able counterfactuals, the latter consisting of implausible and incoherent 
counterfactuals.

Incoherent counterfactuals are de#ned as assumptions that contradict 
claims made about the same remainder at a di!erent moment of the analyt-
ical process. $is fallacy can happen in two ways. First, the researcher per-
forms separate analyses for both Y and ~Y and includes the same remainder 
into both minimization procedures. By doing so, the researcher is e!ectively 
saying that the same logical remainder is su"cient for both the occurrence 
and the non-occurrence of an outcome. $is type of assumption is already 
discussed in the literature under the label contradictory assumption (Yamasaki 
and Rihoux 2009).1 $e second form of incoherent counterfactuals can occur 
when researchers make a claim of necessity but then also allow a logical 
remainder to be part of a su"ciency solution that contradicts that claim of 
necessity. To see how this happens, recall that if X is necessary for Y, then Y 
cannot occur in the presence of ~X. Formally: if X ←Y, then ~X → ~Y (sec-
tion 3.3.3). Hence, if a researcher claims that X is necessary for Y, then any 

Note that this chapter and the next expand on the current literature on QCA. Most 
likely, readers who stop reading the book at this point and correctly implement all their 
knowledge from the previous chapters in their QCA-based research will not be seen as 
falling short of current standards for how to perform QCA. The issues we address from 
now on are real, however, and they do impact the quality of inferences drawn from QCA. 
We therefore recommend that readers at beginner’s level first make sure that the basics 
addressed in Chapters 1–7 have been adequately digested, and then gain at least a gen-
eral overview of the topics dealt with in the coming chapters. More advanced readers 
might especially enjoy the following chapters because it is highly likely that most of them 
have been confronted with one or more of these issues without yet having found sound 
solutions.

1 Commonly, they are labeled contradictory simplifying assumptions. We prefer to drop the 
adjective “simplifying,” for such assumptions do not have to contribute to parsimony in order to be 
contradictory.
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logical remainder row that implies condition ~X cannot be used for a coun-
terfactual claim following which it would produce outcome Y. $is is, so far, 
a widely overlooked pitfall.

Implausible counterfactuals are de#ned as assumptions about impossible 
remainders. Recall from section 6.2.3 that impossible remainders denote 
those con#gurations that run counter either to pure formal logic (e.g., a coun-
try that is rich and poor at the same time) or to common sense (e.g., the preg-
nant man). Claiming that any such impossible remainder is su"cient for any 
outcome strikes us as an implausible counterfactual which should, thus, be 
avoided.

A further category is that of good counterfactuals (Lewis 1973; Tetlock and 
Belkin 1996; Lebow 2010; Goertz and Mahoney 2012: ch. 9). $ese are claims 
about logical remainders that ful#ll the criterion of being theoretically sound 
counterfactuals – regardless of, and this is the main point here, whether they 
contribute to parsimony.2 In other words, good counterfactuals are chosen 
because the researcher has strong theoretical and substantive arguments that 
this speci#c remainder (or set of remainders) would produce the outcome, if 
only it existed.

Figure 8.1 is an updated version of a similar Venn diagram in section 6.4.4 
(Figure 6.2). It graphically summarizes our point and provides a visualization 
of where the pitfalls of the Standard Analysis (SA) can be found. $e rect-
angle denotes the set of all logical remainders. $e inner circle denotes all 
simplifying assumptions, which are decomposed into di"cult and easy coun-
terfactuals. We go beyond this and further di!erentiate between tenable and 
untenable simplifying assumptions (both easy and di"cult ones) and among 
the tenable assumptions between good and not good assumptions.

$e SA di!erentiates neither between tenable and untenable, nor between 
good and not good assumptions. It therefore allows for the inclusion of unten-
able easy and di"cult counterfactuals and the exclusion of those good coun-
terfactuals that are not simplifying. In essence, then, the di!erence between 
the SA and our suggestions for the treatment of logical remainders is the fol-
lowing. $e SA certi#es any solution as long as it is based on logical remain-
ders that fall into the inner circle of Figure 8.1. We, instead, argue that only 
solution terms should be accepted that are based on those logical remainders 
that fall into the grey-shaded area of Figure 8.1. $is area consists of only 
good counterfactuals that can be simplifying (easy counterfactuals) or not.

2 According to Emmenegger’s (2012) review of the literature on this topic, these criteria are: clarity 
of antecedent and consequent assumptions; plausibility of antecedent; conditional plausibility of 
consequent; projectability; and minimum rewrite rule.
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To be fair, most easy counterfactuals are good counterfactuals, and most 
good counterfactuals are easy counterfactuals. In this sense, the size of the 
areas in Figure 8.1 does not re%ect the frequencies with which the di!er-
ent types of counterfactuals usually occur in applied QCA. However, when 
assessing the role of counterfactuals, it is not so much the quantity but their 
quality that matters. If it turns out that a speci#c intermediate solution term 
for outcome Y rests, among many other assumptions, on the counterfactual 
claim that the pregnant man produces Y, then the problem is not how many 
impossible remainders implying the pregnant man have been used but that at 
least one such remainder has been used.

8.2 The Enhanced Standard Analysis: forms of untenable assumptions 
and how to avoid them

We demonstrate how the primacy given to parsimony by the SA procedure 
can produce implausible and incoherent counterfactuals. We show that this 
pitfall can also occur when using only easy counterfactuals. Hence, there 
is the risk that the SA produces intermediate solution terms that are based 

Good counterfactuals Tenable assumptions 
that are neither good 

nor simplifying 

Easy
counterfactuals

Untenable assumptions

Difficult
counterfactuals

Simplifying Assumptions

Figure 8.1 Venn diagram – types of counterfactuals, extended list
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on untenable assumptions. In the #nal section, we describe the Enhanced 
Standard Analysis as a strategy for avoiding untenable assumptions. In the 
following, we use published data, without, however, either replicating the ori-
ginal analyses or always claiming that the original authors have committed 
the analytic fallacies we describe with the help of their data.

8.2.1 Incoherent counterfactuals I: contradicting the statement of necessity

$e #rst example stems from Vis (2009), which we have already introduced 
in section 5.3. In her fsQCA, she investigates the conditions under which 
governments pursue unpopular social policies (U). She speci#es three condi-
tions: weak political position, with parties in government expecting losses 
at the next election (P); a deteriorating socio-economic situation (S); and a 
government dominated by parties from the right of the political spectrum 
(R). In her article, Vis analyzes the occurrence of the outcome (U). For pres-
entational purposes, we analyze the su"cient conditions for ~U – the non-
occurrence of unpopular reforms.

Table 8.1 represents the information on the 25 cases in the form of a truth 
table.3 $ere are only eight truth table rows. Nevertheless, three of them 
remain without enough empirical evidence and are thus classi#ed as logical 
remainders (sections 6.1 and 7.1).

$e analysis of necessity reveals that parties in government not expect-
ing losses is a necessary condition for the absence of unpopular reform. 
Formally:

~P ← ~U.4

For the analysis of su"ciency, we choose a frequency threshold of 1 and a 
consistency threshold of 0.8. For the intermediate solution, we impose the 
following directional expectations:

~S → ~U, ~R → ~U.
In plain words, we expect that the lack of socio-economic deterioration (~S) 
and the absence of rightist parties in government should both contribute to 
~U. We have no directional expectation on condition P.

Based on this setup, the SA produces the following three solution terms:5

3 $e fuzzy-set data matrix can be found in the online appendix (www.cambridge.org/schneider-
wagemann).

4 ~P has a consistency of 0.93 and a coverage of 0.7 as a necessary condition for ~U.
5 For ease of reading and because they are irrelevant for the argument we make, we do not report the 

parameters of #t.
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conservative: ~P~S + PSR  → ~U
most parsimonious: ~S + PR    → ~U
intermediate: ~P~S + PR    → ~U.

As foreseen by the SA (section 6.4), the most parsimonious solution is a 
superset of the intermediate one, which, in turn, is a superset of the conser-
vative solution term. For the latter, by de#nition, no assumptions on logical 
remainders are made. $e most parsimonious solution rests on the simpli-
fying assumption that the remainders in rows 7 and 8 are su"cient for the 
outcome (P~S~R + P~SR → ~U). $is is indicated by the Greek letter α in 
column ~U of Table 8.1.

$e problem with these simplifying assumptions is that they contradict 
the statement of necessity from above. If we claim that ~P is necessary for 
~U, then this means that outcome ~U cannot be present without condition 
~P being present. In other words, their cannot be a simultaneous presence of 

Table 8.1 Truth table for outcome ~U (Vis 2009)

Row P S R ~U Consistency Cases

1 0 0 0 1 0.829 Kok I, II; Schröder I; N. Rasmussen I, 
IV; Blair I, II

2 0 0 1 1 0.911 Lubbers II; Kohl I, II, III; Schlüter I; 
$atcher II

3 1 1 1 1 0.836 Balkenende II; Kohl IV; Schlüter V6

4 0 1 1 0 0.706 Lubbers I, III; Schlüter II, IV; $atcher 
I, III; Major

5 1 1 0 0 0.696 N. Rasmussen II/III; Schröder II
6 0 1 0 0.887 –
7 1 0 0 α ε 0.916 –
8 1 0 1 α ε β 0.958 –

Rows 6–8: logical remainder
α simplifying assumption for most parsimonious solution term for outcome ~U
β easy counterfactual for intermediate solution term for outcome ~U
ε the negation of the necessary condition is present
α ε and α ε β assumption contradicting statement of necessity

6 $is particular row not only has a high raw consistency for outcome ~U, but also for U (0.91). In her 
original analysis of outcome U, Vis (2009: 44) therefore correctly attributes a value of 1 to this row. Row 
3 in Table 8.1 is an example of a simultaneous subset relation with both the outcome and its negation – 
another important analytic pitfall which we address in detail in section 9.2.2.
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~U and P (the complement of ~P). Or, even more simple, in the presence of 
P, ~U cannot occur. From this follows that no logical remainder with P pre-
sent (denoted by ε in Table 8.1) can be included into the logical minimization 
process, for it would mean that we assume such remainders to be su"cient 
for ~U. Now, as Table 8.1 shows, assumptions on remainders containing P 
have been made (rows 7 and 8, denoted by α ε): the most parsimonious solu-
tion rests on the assumption that when P is combined with either ~SR or 
~S~R, it is su"cient for ~U. Remainders with P present that are included 
in minimization constitute incoherent counterfactual claims and should be 
avoided.

One might think that this is less of a problem because at the center of 
substantive interpretation should be not the most parsimonious solution, 
but rather the intermediate solution term. And because the latter allows 
only for easy counterfactuals, the problem of untenable assumptions would 
be solved. Unfortunately, this is not true by default. Notice that the inter-
mediate solution term for outcome ~U also rests on an assumption that 
contradicts the statement of necessity. As column ~U in Table 8.1 shows, 
the logical remainder in row 8 is included in the intermediate solution 
term despite the fact that it is an incoherent counterfactual (denoted by the 
symbol β).

$is example demonstrates that easy counterfactuals can, indeed, be logic-
ally untenable assumptions and that neither the SA, in general, nor the dir-
ectional expectations, in particular, are safeguards against making untenable 
assumptions.7

8.2.2 Incoherent counterfactuals II: contradictory assumptions

In the textbook on con#gurational comparative methods edited by Rihoux 
and Ragin (2009), data on the social requisites for the survival of democ-
racy (Lipset 1959) is used to illustrate the di!erent variants of QCA. Ragin 
(2009) presents fsQCA using the survival of democracy during the inter-
war period in Europe as the outcome (S) and the following #ve conditions: 
economically developed countries (D); urbanized countries (U); countries 
with high literacy rate (L); industrialized countries (I); and politically stable 
countries (G) (Ragin 2009: 93). $e fuzzy-set membership scores for the 18 

7 Note that the conservative solution also seems to contradict the statement of necessity, since ~P is 
only part of one su"cient path, but not of both. $is is a di!erent phenomenon from the inclusion of 
untenable assumptions, and we will discuss this topic of “hidden necessary conditions” in section 9.1.1.
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European countries during the interwar period examined (Ragin 2009: table 
5.2) with a threshold for raw consistency value of 0.8 (section 5.2) produce 
the truth table displayed in Table 8.2. In the following, we are using these 
data as an example for the second type of incoherent counterfactual: contra-
dictory assumptions.8 $is problem may arise when the occurrence and the 
non-occurrence of the outcome are analyzed in separate steps based on the 
same truth table.9

$e most parsimonious solution for outcome S is:

D~I + UG → S.
In order to obtain this solution, 12 of the logical remainders are used as sim-
plifying assumptions (denoted by the Greek letter α in column S of Table 8.2). 
$e most parsimonious solution for the non-occurrence of the outcome ~S 
is:

~D + ~G → ~S.
From column S in Table 8.2, we see that 18 of the 23 logical remainders have 
been used for producing the most parsimonious solution term for outcome 
~S. $ey are indicated by the Greek letter β (rows 10–22, 24, 26, 27, 29, and 
31). $e problem is that several of these are contradictory simplifying assump-
tions. More speci#cally, the logical remainders in rows 15, 17, 19, 21, 22, 26, 
27, and 31 (denoted as α β) have already been assumed to produce outcome 
S and are now also assumed to produce outcome ~S. But we cannot have it 
both ways. Either we assume that the remainders under question are su"-
cient for S or we assume that they are su"cient for ~S. Contradictory simpli-
fying assumptions are clearly untenable and they occur because the selection 
of remainders is exclusively driven by the goal of parsimony.

Unfortunately, even if we allow only for easy counterfactuals, contradictory 
simplifying assumptions can occur. We call them contradictory easy counter-
factuals. For illustration, consider the following directional expectations for 
our analyses of S and ~S, respectively:

~D → S; ~U → S: ~I → S

8 With this data, it is also possible to generate counterfactuals that are incoherent with the statement of 
necessity. An analysis of necessity reveals L (consistency: 0.99) and G (consistency: 0.92) as necessary 
conditions for S. Now, if we specify the directional expectations ~L → S, ~D → S, ~U → S, ~I → S, 
both the most parsimonious solution (D~I + UG → S) and the intermediate solution (D~IG + UG → 
S) are based on incoherent assumptions about necessary conditions.

9 As mentioned, this is not meant to be a reanalysis of the original study. For didactic reasons, we use 
a di!erent consistency threshold (0.8 rather than 0.7) and di!erent directional expectations than the 
original study.

 

 

 

 

 



Table 8.2 Truth table, Lipset data (Ragin 2009)

Conditions Outcome

Row D U L I G S Cases

1 1 1 1 1 1 1 BE; CZ; NL; UK
2 1 0 1 0 1 1 FIN; IRL
3 1 0 1 1 1 0 F; S
4 0 0 1 0 1 0 EE
5 0 0 1 0 0 0 H; PL
6 1 1 1 1 0 0 D
7 1 0 1 1 0 0 A
8 0 0 0 0 1 0 I; RO
9 0 0 0 0 0 0 GR; P; E

10 0 0 0 1 0 β δ ε
11 0 0 0 1 1 β δ ε
12 0 0 1 1 0 β δ ε
13 0 0 1 1 1 β δ
14 0 1 0 0 0 β δ ε
15 0 1 0 0 1 α β δ ε
16 0 1 0 1 0 β δ ε
17 0 1 0 1 1 α β δ ε
18 0 1 1 0 0 β δ ε
19 0 1 1 0 1 α β γ δ
20 0 1 1 1 0 β δ ε
21 0 1 1 1 1 α β γ δ
22 1 0 0 0 0 α β ε
23 1 0 0 0 1 α ε
24 1 0 0 1 0 β δ ε
25 1 0 0 1 1 ε
26 1 0 1 0 0 α β ε
27 1 1 0 0 0 α β ε
28 1 1 0 0 1 α ε
29 1 1 0 1 0 β δ ε
30 1 1 0 1 1 α ε
31 1 1 1 0 0 α β ε
32 1 1 1 0 1 α γ

Adapted from Ragin (2009: table 5.8)
Rows 10–32: logical remainders
α simplifying assumption for most parsimonious solution term for outcome S
β simplifying assumption for most parsimonious solution term for outcome ~S
γ easy counterfactual for intermediate solution term for outcome S (directional 
expectations: ~D → S; ~U → S; ~I → S)
δ easy counterfactual for intermediate solution term for outcome ~S (directional 
expectations: D → ~S; U → ~S; ~L → ~S; I → ~S; ~G → ~S)
ε the negation of the necessary condition is present
α β contradictory simplifying assumption
γ δ contradictory easy counterfactual
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D → ~S; U → ~S; ~L → ~S; I → ~S; ~G → ~S.
$e directional expectations for ~S take into account the #nding that L and 
G are necessary conditions for S (consistency values: 0.99 and 0.92, respect-
ively). $ere are no necessary conditions for ~S, but, following our interpret-
ation of DeMorgan’s law (section 3.3.3), if L ← S and G ← S, then ~L → ~S 
and ~G → ~S.10

$ese produce the following intermediate solution terms:

D~ILG + UGL  → S
~D + ~GI → ~S.

In the analysis of outcome S, easy counterfactuals are made about the logical 
remainders in rows 19, 21, and 32, indicated by γ in Table 8.2. In the analysis 
for outcome ~S, easy counterfactuals are made for the remainders in rows 
10–21, 24, and 29 (indicated by δ). Hence, there are two contradictory easy 
counterfactuals (indicated by γ δ) in rows 19 and 21. $e intermediate solu-
tions for S and ~S, respectively, rest on the claim that these logical remainders 
are su"cient for S and ~S, respectively.

While this example demonstrates that even intermediate solutions do not, 
by default, rule out contradictory counterfactuals, an element of caution is 
required. Much depends on how the directional expectations are formulated. 
$e methodological point we aim at making here is not that contradictory 
easy counterfactuals o!en occur. Rather, we want to draw attention to the fact 
that they can occur even when following current best practices by producing 
the intermediate solution term.

8.2.3 Implausible counterfactuals: contradicting common sense

In section 6.2.3, we de#ned impossible remainders as combinations of con-
ditions that describe cases that simply cannot exist in the world as we know 
it. To some readers it might seem that impossible remainders are just too 
obvious and rare in social science research to constitute a serious threat to 
the task of drawing inferences based on observational data. As the following 
example shows, not only are there more intricate impossible remainders than 
the hypothetical pregnant man we have referred to, but their number might 
also be quite large in a given truth table. If so, then researchers need to be 

10 If a condition X is necessary for Y, one could argue that then the directional expectation for condition 
X should be X → Y. In fact, Mahoney et al. (2009) hint in this direction. We believe, however, that the 
only logical consequence for directional expectations that follows from the empirical #nding X ← Y is 
the directional expectation ~X→ ~Y.
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particularly alert in order not to make any implausible assumptions about 
such impossible remainders.

In section 6.2.3, we have already introduced Ragin et al.’s (2003) study of 
collective action in communal irrigation in some villages in India’s Andhra 
Pradesh state. $ree of their conditions are: village is located on channel MN 
(M), village is located on channel V (V), and village is irrigated (I). $eir truth 
table (Table 8.3) contains these three conditions (plus two more, which are 
irrelevant to our current point). By pure formal logic, several logical remain-
der rows denote hypothetical villages that are located on channel MN or V 
or both that are not irrigated. $ese combinations are, of course, impossible, 
since any village on a channel is irrigated by de#nition – as the authors them-
selves correctly point out (Ragin et al. 2003: 331). $ere are even more impos-
sible remainders. Given the geographical features, no village can be close to 
the V channel without being also close to the MN channel. Hence, the set of 
impossible remainders can be expressed in Boolean terms as follows:

Impossible remainders = M~I + V~I + ~MV.

As Table 8.3 shows, the majority of the truth table rows are logical remainders 
(20 of the 32 rows). Seventeen out of the 20 logical remainders are, in fact, 
impossible remainders, indicated by the Greek letter ζ. $e most parsimoni-
ous solution and the conservative solution di!er quite considerably in their 
degree of complexity:
conservative:

IM~VW + IMWD → CA

most parsimonious:

MW  → CA.

$e most parsimonious solution is based on simplifying assumptions 
about #ve logical remainders (indicated by α in column CA of Table 8.3). We 
see that four of the #ve simplifying assumptions used for the most parsimo-
nious solution term are, indeed, made on impossible remainders and thus 
constitute implausible counterfactuals (denoted as ζ α). Only the simplifying 
assumption about the remainder in row 32 does not constitute an untenable 
assumption.

Even intermediate solution terms might be based on implausible assump-
tions. As a demonstration, let us formulate the directional expectation that, if 
a village is not irrigated, inhabitants engage in collective action. Formally:

~I → CA. 
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Table 8.3 Truth table, outcome CA (Ragin et al. 2003)

Conditions Outcome

Row I M V W D CA

1 1 1 1 0 1 0
2 0 0 0 0 0 0
3 1 1 1 1 1 1
4 1 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 1 0
7 1 0 0 1 1 0
8 1 1 0 0 1 0
9 1 1 0 1 0 1

10 1 0 0 0 0 0
11 1 0 0 1 0 0
12 1 1 0 1 1 1
13 0 0 0 1 0
14 0 0 0 1 1
15 0 0 1 0 0 ζ
16 0 0 1 0 1 ζ
17 0 0 1 1 0 ζ
18 0 0 1 1 1 ζ
19 0 1 0 0 0 ζ
20 0 1 0 0 1 ζ
21 0 1 0 1 0 ζ α γ
22 0 1 0 1 1 ζ α γ
23 0 1 1 0 0 ζ
24 0 1 1 0 1 ζ
25 0 1 1 1 0 ζ α
26 0 1 1 1 1 ζ α γ
27 1 0 1 0 0 ζ
28 1 0 1 0 1 ζ
29 1 0 1 1 0 ζ
30 1 0 1 1 1 ζ
31 1 1 1 0 0
32 1 1 1 1 0 α

α simplifying assumption used for most parsimonious solution 
term for outcome CA
γ easy counterfactual for intermediate solution term for outcome 
CA (directional expectation ~I → CA)
ζ impossible remainder
ζ α and ζ α γ implausible counterfactual
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$is yields the following intermediate solution:

M~VW + MWD → CA.
$is solution is based on assumptions about three logical remainders (indi-
cated by γ in Table 8.3). All three of them are impossible remainders and the 
assumptions thus implausible easy counterfactuals (denoted as ζ α γ). Together 
with the examples by Vis and Ragin from above (see sections 8.2.1 and 8.2.2), 
this shows that intermediate solution terms are, in fact, prone to include any 
type of untenable assumptions (incoherent and implausible assumptions).

8.2.4 Putting the Enhanced Standard Analysis procedure into practice

We think it is plausible to require that no solution formula obtained by set-
theoretic methods in general, or by QCA in particular, should incorpor-
ate untenable assumptions. In the following, we explain how the Standard 
Analysis as the current best practice in handling logical remainders should 
be modi#ed. We label this slightly altered procedure the Enhanced Standard 
Analysis procedure (ESA).

$e remedy for avoiding untenable assumptions that we suggest is straight-
forward. All logical remainder rows that would provide the basis for untenable 
assumptions must be excluded prior to the application of the SA procedure. 
In the online How-to section to Chapter 8,11 we show how barring remain-
ders from being included in the logical minimization procedure is done in 
the di!erent so&ware packages. Here, it is important to point out the various 
bene#ts of ESA.

First and foremost, the most obvious advantage is that the ESA makes 
sure that no solution term rests on untenable assumptions. $is implies two 
things. First, with ESA no contradictory simplifying assumptions are made. 
$is is because contradictory simplifying assumptions are a subtype of unten-
able assumptions. Second, necessary conditions do not disappear from the 
solution term for su"ciency.12

For demonstrational purposes, we apply ESA to our examples from 
above. $e analysis of the lack of unpopular reforms (~U: Vis 2009), bar-
ring any remainder from the minimization that would lead to untenable 

11 www.cambridge.org/schneider-wagemann.
12 To be more precise, ESA assures that necessary conditions do not disappear from solution terms of 

su"ciency due to assumptions made on logical remainders. As we discuss in detail in section 9.1.1.2, 
necessary conditions can disappear for reasons unrelated to the treatment of logical remainders.
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 assumptions (denoted as α ε in Table 8.1), produces the following enhanced 
most parsimonious solution term:

~P~S + PSR → ~U.
!is solution is equivalent to the conservative and the intermediate solution 
because the only remainder that is not untenable is the one in row 6 of Table 
8.1 (~PS~R). No assumption is made about this remainder because it does 
not contribute to parsimony.

Let us apply ESA to our Lipset data (section 8.2.2). In the analysis of out-
come S, we need to bar those remainders that would lead to assumptions that 
contradict the statement that conditions L and G are necessary for S. !at 
is, we need to exclude the logical remainders in rows 10–12, 14–18, 20, and 
22–31 (marked ε in Table 8.2) from the minimization procedure:13

Enhanced most parsimonious solution:  D~ILG + UGL → S
Enhanced intermediate solution:  D~ILG + UGL → S.

!e enhanced most parsimonious solution di"ers from the one produced 
by SA, whereas the enhanced intermediate solution is identical to the one 
derived with SA. !is is because the intermediate solution did not rest on 
assumptions that were incoherent with the statement of necessity, that is, 
there are no rows labeled γ ε in the table.14

Since the enhanced most parsimonious solution and the enhanced inter-
mediate solution coincide with the intermediate solution derived in the SA, it 
just happens in our example that the Greek letter γ also denotes those remain-
der rows that have been used for producing the ESA solution. Hence, none 
of the remainders in rows 19, 21, and 32 can be used for the analysis of the 
non-occurrence of the outcome (~S). !ey are thus barred from the analysis 
of ~S. All other remainders are available. !is yields the following enhanced 
solution terms:

Enhanced most parsimonious solution:  ~D~U + ~G → ~S
Enhanced intermediate solution:    ~D~U + DI~G → ~S.

Both solutions for ~S produced with ESA di"er from those obtained with SA 
(most parsimonious solution: ~D + ~G → ~S; intermediate solution: ~D + 
I~G → ~S).
13 !e consistency threshold and the directional expectations are the same as in the analyses performed 

in section 8.2.2.
14 !e intermediate solution for S did rest on contradictory simplifying assumptions, though. 

Assumptions on such remainders can be made as long as they are made only in the analysis of 
outcome S or ~S but not in both. We decide to bar contradictory simplifying assumptions from the 
analysis of ~S (below) and keep them for the analysis of outcome S.
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Finally, applying ESA to the analysis of collective action in Indian villages 
(Ragin et al. 2003), we obtain the following. For the enhanced most parsimo-
nious solution, we need to bar all implausible counterfactuals (denoted as ζ α 
γ in Table 8.3).

Enhanced most parsimonious solution term: IMW → CA.

$e enhanced most parsimonious solution is only slightly more complex than 
the most parsimonious one. But we can now be sure that it does not incorpor-
ate any untenable assumptions.

Imposing the directional expectation ~I → CA, we obtain the following:

Enhanced intermediate solution: IM~VW + IMWD → CA.15

In addition, this ESA solution is slightly more complex than the SA inter-
mediate solution. However, unlike the solutions from SA, ESA does not imply 
anything about collective actions in villages that cannot possibly exist. In sum, 
solutions produced with ESA tend to be less parsimonious, but researchers 
can rest assured that they are not based on untenable assumptions.

8.3 Theory-Guided Enhanced Standard Analysis: complementary 
strategies for dealing with logical remainders

Our ESA strategy restricts the range of usable remainders and, by virtue of 
this, the range of acceptable solutions. Now we outline a strategy for handling 
logical remainders that broadens the set of usable remainders without, however, 

At-a-glance: the Enhanced Standard Analysis: forms of untenable 
assumptions and how to avoid them

The Standard Analysis risks producing results based on untenable assumptions. This 
concerns both the most parsimonious and the intermediate solution. Assumptions 
can be untenable because they are implausible (i.e., they contradict common sense), 
are incoherent with findings for necessity, or because they are contradictory assump-
tions. The Enhanced Standard Analysis (ESA) restricts the choice of logical remain-
ders for counterfactuals by excluding any remainder that would create untenable 
assumptions.

15 See the online appendix (www.cambridge.org/schneider-wagemann) for a detailed analysis of this 
example.
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bringing untenable assumptions back in. $e key to doing this is to drop the 
central premise of both SA and ESA, namely that parsimony is the overarching 
goal and guiding principle for choosing logical remainders for counterfactu-
als. Our basic critique is that both procedures categorically rule out the use of 
logical remainders that are theoretically sound but do not contribute to parsi-
mony. Since parsimony should not, simply by default, be regarded the highest 
goal, we suggest that researchers – in addition to using ESA – should always 
carefully think about which of the logical remainders represent good counter-
factuals, regardless of whether their inclusion produces a more parsimonious 
solution term. As mentioned in section 8.1, we label these assumptions good 
counterfactuals. Some of the good counterfactuals are also easy counterfactu-
als, which, by de#nition, contribute to parsimony (Figure 8.1). Other good 
counterfactuals do not contribute to parsimony and are thus, by de#nition, not 
easy counterfactuals. $us, the solution based on good counterfactuals will be 
more complex than the conservative solution term, but we do not think that 
this should rule them out by default. For lack of a better term, we label the fol-
lowing two strategies $eory-Guided Enhanced Standard Analysis (TESA).16

When identifying hitherto overlooked remainders by SA and ESA, 
researchers can either identify entire remainder rows or specify conjunctural 
directional expectations. In the following, we illustrate both strategies with 
examples from applied QCA.

8.3.1 Choosing entire truth table rows as good counterfactuals

For an illustration of the strategy of choosing entire truth table rows for coun-
terfactuals based on theoretical reasoning, we turn to Koenig-Archibugi’s 
(2004) study on why some members of the European Union are in favor 
of a supranational foreign and security policy (SUPRA). He identi#es four 
conditions: a Europeanized public (IDENTITIES); high policy conformity 
with other European member states (CONFORMITY); domestic multilevel 
governance structures (REGIONALISM); and high capabilities of a country 
(CAPABILITIES). As Table 8.4 shows,17 the 13 countries fall into 9 di!erent 
truth table rows, thus producing 7 logical remainders (rows 10–16).18

16 $e SA part in the acronym TESA is slightly misleading, for TESA does not prioritize parsimony as SA 
and ESA do, and therefore represents a deviation rather than an extension from the latter two.

17 $e fuzzy-set data can be found in the online appendix (www.cambridge.org/schneider-wagemann).
18 $e point we make about the treatment of logical remainders is una!ected by the fact that Koenig-

Archibugi uses fuzzy sets.
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$e author formulates hypotheses for each of the four conditions. Although 
they are not formulated in terms of set relations, that is, in terms of necessity 
or su"ciency, we can, for the sake of the argument, derive directional expec-
tations from them. In Boolean notation, they look as follows:

CAPABILITIES → SUPRA; IDENTITIES → SUPRA; REGIONALISM → 
SUPRA; CONFORMITY → SUPRA.

SA produces the following solution formulas.19

conservative: REGIONALISM*CONFORMITY  → SUPRA
most parsimonious: REGIONALISM        → SUPRA.

19 For the sake of readability – and because they are irrelevant for the argument we make – we do not 
report the parameters of #t.

Table 8.4 Truth table (Koenig-Archibugi 2004)

Conditions Outcome

Row IDENTITIES CONFORMITY REGIONALISM CAPABILITIES SUPRA # cases

1 1 1 1 0 1 2
2 0 1 1 0 1 1
3 0 1 1 1 1 1
4 1 1 1 1 1 1
5 0 1 0 0 0 3
6 1 1 0 0 0 2
7 0 0 0 0 0 1
8 1 0 0 1 0 1
9 0 0 0 1 0 1

10 1 0 1 1 α 0
11 0 0 1 0 α 0
12 0 0 1 1 α 0
13 0 1 0 1 θ 0
14 1 0 0 0 0
15 1 0 1 0 α η 0
16 1 1 0 1 θ 0

Rows 10–16: logical remainders
α simplifying assumptions for most parsimonious solution term for outcome SUPRA
η good counterfactual, entire row selected by Koenig-Archibugi for producing theory-guided solution term
θ good counterfactual, selected based on conjunctural directional expectation CONFORMITY * 
CAPABILITIES → SUPRA
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Four simplifying assumptions are made in order to obtain this solution (indi-
cated by α in Table 8.4).

$e intermediate solution is identical to the conservative term:

REGIONALISM*CONFORMITY  → SUPRA.

$is means that there is no solution term that is simultaneously a subset of the 
most parsimonious and a superset of the conservative solution. $is should 
not come as a surprise, as the conservative solution is already quite parsimo-
nious, consisting of just one path with only two conditions.

$e SA procedure, thus, produces only two solutions. Does this mean that 
there is no other theoretically meaningful and substantively interesting for-
mula that can be derived based on the empirical evidence at hand? We think 
there is. And, in fact, Koenig-Archibugi does derive a theory-guided solu-
tion term. In order to obtain this solution, Koenig-Archibugi allows just one 
assumption: countries are in favor of a supranational foreign and defense pol-
icy (SUPRA) if their population has a strong European identity AND they 
do not expect conformity AND they have a domestic multilevel governance 
structure AND if they do not have high power capabilities. In short, only the 
logical remainder in row 15 in Table 8.4 is assumed to produce the outcome. 
$is yields the following TESA solution:

Clearly, this solution is more complex than any of the others mentioned 
before. In addition to the path that appeared in the conservative solution, 
a second is identi#ed. $is is the result of choosing a logical remainder as 
a plausible counterfactual – irrespective of whether it contributes to parsi-
mony. Koenig-Archibugi can justify the counterfactual claim on the logical 
remainder in row 15 and he provides a theoretically plausible interpretation 

  CONFORMITY * 
REGIONAL +

  
IDENTITIES*REGIONAL*~CAPABIL

Consistency 1 1
Raw coverage 0.494 0.29
Unique coverage 0.211 0.07
Cases* Germany, Belgium, 

Austria, Italy, Spain
Belgium, Spain

Solution consistency 1
Solution coverage 0.501

* cases with membership > 0.5 in path
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of this solution term. In addition, the second path, which makes the solu-
tion term more complex than the conservative solution, is also empiric-
ally not redundant. Its unique coverage (section 5.3), while small, is not 0. 
More importantly, for two out of the nine cases that are members of out-
come SUPRA – Belgium and Spain – this path provides a good description 
because their membership in it is higher than 0.5. In short, the more com-
plex solution term both rests on solid theoretical arguments and is empir-
ically non-redundant.

8.3.2 Formulating conjunctural directional expectations

Another, related strategy of dealing with logical remainders that can go beyond 
SA and ESA is to formulate directional expectations on conjunctions of con-
ditions. $e argument in favor of this practice seems plausible. In many cases, 
researchers already have expectations about the e!ect of combinations of con-
ditions on the outcome (see, e.g., Schneider 2009). If this is the case, specify-
ing directional expectations on single conditions is not in line with theoretical 
knowledge and can lead to making assumptions that run counter to the theor-
etical knowledge at hand. Put di!erently, while the current practice of limit-
ing directional expectations to single conditions does not violate QCA’s focus 
on conjunctural causation per se, it does underemphasize the role this notion 
of causality can and should play when formulating directional expectations. 
And, in fact, in the literature the notion of conjunctural directional expecta-
tions is gaining ground (see, for instance, Amenta & Poulsen 1994; Amenta, 
Caren, and Olasky 2005; Maggetti 2007; Schneider 2009; Blatter, Kreutzer, 
Rentl, and $iele 2009). So far, it has not yet been treated in a more system-
atic manner and its implications for the treatment of logical remainders have 
not been spelled out in detail. We think that an adequate strategy consists in 
formulating conjunctural directional expectations.

For a demonstration, let us return to the example of Koenig-Archibugi 
and assume that the existing literature on supranational arrangements in 
foreign and defense policy pointed to the following conjunctural direc-
tional expectation. Countries with high power capabilities (CAPABILITIES) 
can be expected to be in favor of supranational arrangements (SUPRA) if, 
in addition, there is also a high policy congruence with other EU member 
states (CONFORMITY). In Boolean notation this conjunctural directional 
 expectation looks as follows:

CONFORMITY * CAPABILITIES → SUPRA.
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$e two logical remainders in rows 13 and 16 (Table 8.4) imply this conjunc-
tion. If, based on our directional expectations, we assume that these two, and 
only these two, remainders produce the outcome SUPRA, then we obtain the 
following solution:

$e strategy of conjunctural directional expectations yields a solution that 
is di!erent from any of the others produced based on di!erent strategies for 
dealing with the logical remainders. It is, as expected, more complex than the 
conservative solution (REGIONALISM*CONFORMITY)20 but, at the same 
time, less complex than the solution obtained by including an entire truth 
table row (REGIONALISM*CONFORMITY + IDENTITIES*REGIONALI
SM*~CAPABILITIES). Both paths are empirically non-redundant, as indi-
cated by their unique coverage scores and the fact that both paths contain 
cases with membership higher than 0.5.

Notice that strategy of selecting entire logical remainder rows for coun-
terfactual claims as described in section 8.3.1 above can be seen as an 
extreme way of formulating conjunctural directional expectations. By for-
mulating directional expectations that involve only two or three condi-
tions, researchers are less rigid in their treatment of remainders than when 
choosing entire truth table rows. At the same time, conjunctural  directional 

20 $e di!erence between the TESA solution and the conservative solution consists of path 
CONFORMITY * CAPABILITIES. $is, in turn, is exactly our conjunctural directional expectation. 
$e fact that the path added fully coincides with the conjunctural directional expectations is a 
coincidence in the present example and not a general rule, though. In other words, even if directional 
expectations are formulated on combinations of conditions, these conjunctions do not have to form a 
path on their own.

  CONFORMITY * 
REGIONALISM

CONFORMITY* CAPABILITIES 
→ SUPRA

Consistency 1 1
Raw coverage 0.494 0.334
Unique coverage 0.185 0.025
Cases* Germany, Belgium, Austria, 

Italy, Spain
Germany, Italy

Solution consistency 1
Solution coverage 0.519

* cases with membership > 0.5 in path
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expectations are more restrictive than directional expectations on single 
conditions only.

Notice as well that some counterfactuals based on conjunctural directional 
expectations contribute to parsimony, while others do not. If a researcher 
accepts only those counterfactuals that contribute to parsimony, then all 
assumptions allowed for are, in fact, a subset of the easy counterfactuals. In 
such a scenario, the practice of conjunctural directional expectations should 
be considered as a further re#nement of the (Enhanced) Standard Analysis. If, 
however, also non-simplifying counterfactuals are accepted, then the practice 
of conjunctural directional expectations is an alternative to the (Enhanced) 
Standard Analysis.

8.4 Comparing the different strategies for the treatment  
of logical remainders

QCA, mainly due to its reliance on truth tables in the analytic process, has a 
competitive advantage in confronting the omnipresent phenomenon of lim-
ited diversity. $anks to the introduction of the Standard Analysis proced-
ure (Ragin and Sonnett 2004; Ragin 2008a), much progress has been made 
in handling logical remainders in a conscious and theory-guided manner. 
In this chapter, we have tried to further improve the treatment of logical 
remainders.

At-a-glance: Theory-Guided Enhanced Standard Analysis: 
complementary strategies for dealing with logical remainders

If the central emphasis in the treatment of logical remainders is not placed on par-
simony but theoretical plausibility, then different counterfactuals can be used and 
solution terms produced than with the (Enhanced) Standard Analysis procedure. 
We label it the Theory-Guided Enhanced Standard Analysis (TESA) for which entire 
truth table rows can be chosen as good counterfactuals, or directional expecta-
tions can be based on conjunctions instead of on single conditions (or their comple-
ments) only. Generally, researchers should always feel encouraged to take a direct 
look at the logical remainders and engage in careful theoretical thinking as to which 
of them might be good counterfactuals, regardless of whether they contribute to 
parsimony.
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Our message, in a nutshell, is this: in their substantive interpretation of the 
empirical evidence at hand, researchers should only rely on solution terms 
that are exclusively based on counterfactual claims that are both good and 
tenable. Graphically, this refers to all those solution terms that result when 
only including counterfactuals that fall into the grey-shaded area in Figure 
8.1. $e same message is conveyed in a di!erent form in Table 8.5. It juxta-
poses criteria for counterfactuals. Good assumptions are divided into sim-
plifying and non-simplifying assumptions, while tenable assumptions are 
either present or not. First, it shows that the Standard Analysis (SA) does 
exclusively rely on simplifying assumptions (upper row in Table 8.5). Second, 
among those, some counterfactuals are actually not tenable (upper le& cell). 
$ese should not be allowed. $is is precisely the argument in favor of the 
Enhanced Standard Analysis (ESA). $ird, ESA accepts the predominance of 
parsimony in selecting counterfactuals, but tames it by strictly barring any 
untenable assumptions (upper right cell). Fourth, the theory-guided analysis 
of logical remainders (TESA), in contrast, does put theoretical plausibility at 
the top of the priority list when selecting logical remainders for counterfac-
tual claims. $is might or might not come at the cost of parsimony (right-
hand column).

How relevant are the potential pitfalls in handling logical remainders in 
applied set-theoretic methods? No doubt, by only allowing easy counterfac-
tuals, the SA has greatly reduced the risks of untenable assumptions which 
occur when producing the most parsimonious solution. It is also true that 
most of the time, easy counterfactuals used in the SA are indeed tenable – as 
required by ESA – and good – as required by TESA. Nevertheless, when it 
comes to making counterfactual claims, it is less relevant how many untenable 
assumptions are made. A single one is already enough to cast doubt on the 
solution term that is derived from it. In this chapter we have shown that all 

Table 8.5 Types of assumptions included in Standard Analysis vis-à-vis additional strategies

Tenable assumptions

  No Yes

Good
assumptions

Simplifying SA SA; ESA; TESA
Non-simplifying  TESA

SA = Standard Analysis
ESA = Enhanced Standard Analysis
TESA = $eory-Guided Enhanced Standard Analysis
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the di!erent types of untenable assumption can occur in the SA. Among these 
types, we think that assumptions contradicting the statement of necessity 
are most likely to occur, followed by contradictory assumptions, and #nally 
implausible assumptions. In general, the higher the number of conditions, 
the more likely the occurrence of untenable assumptions and the higher the 
bene#ts of applying ESA or TESA instead of SA.
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9 Potential pitfalls in the analysis 
of necessity and sufficiency and 
suggestions for avoiding them

Easy reading guide

Just as in Chapter 8, so in this chapter we offer solutions to common problems that go 
beyond the currently dominant best practices in applied QCA. Here, we concentrate on pit-
falls that can occur when analyzing sufficiency and necessity at the same time. As empha-
sized throughout this book, set-theoretic methods are, in essence, about unraveling subset 
patterns – which, in turn, are interpreted in terms of necessity and sufficiency and their 
derivatives, such as INUS and SUIN conditions. However, as it is applied (and taught), most 
QCA puts much more emphasis on the analysis of sufficiency, to the detriment of the analysis 
of necessity. One reason for the prevalence of sufficiency is the central role that truth tables 
play in QCA. Each truth table row is interpreted as a statement of sufficiency and, thus, the 
analysis of a truth table as described in Chapters 4–7, is an analysis of sufficiency.

This “sufficiency bias” in QCA-based research increases the risks for several analytic 
pitfalls to occur. First, the analysis of necessity is often erroneously treated as being essen-
tially the same as the sufficiency analysis and is assumed not to require any separate 
examination. Second, and perhaps as a result of the negligence with which necessity tends 
to be treated in applied QCA, some strands of the literature fully separate the analysis of 
necessity from QCA. As an illustration, consider the fact that the seminal work on neces-
sary conditions by Goertz and Starr (2003) does not contain a separate entry on QCA. Third, 
much of QCA-based research remains silent about the presence or absence of necessary 
conditions, even if there are good theoretical and empirical reasons to investigate them. 
Fourth, and finally, some studies address the presence or absence of necessary conditions 
but do so based on the results of a sufficiency analysis, thus assuming that the former are 
correctly identified as an automatic byproduct of the latter.

In this chapter, we provide conceptual and technical arguments as well as empirical 
evidence that the common neglect with regard to necessity comes at an analytic cost. 
It can happen that necessary conditions remain invisible from the result of a sufficiency 
analysis. We call this the problem of hidden necessary conditions (9.1.1). In turn, it can 
also happen that the result of the sufficiency analysis suggests that a condition is neces-
sary when, in fact, it is not. We call this the problem of false necessary conditions (9.1.2). 
As we show in this chapter, the remedy is easy: simply perform separate analyses for 
necessity and sufficiency, preferably with the analysis of necessity coming first (Ragin 
2000: 106).
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9.1 Pitfalls in inferring necessity from sufficiency solution terms

!ere are two pitfalls related to the analysis of necessity: the disappearance of 
true necessary conditions and the appearance of false necessary conditions. 
We illustrate both fallacies using data from published QCA. As before in the 
book, we do not aim at reanalyzing the original studies but rather alter them 
in order to better demonstrate our methodological arguments.

9.1.1 Hidden necessary conditions

Hidden necessary conditions can occur due to two, mutually non-exclusive 
features of the data at hand. One reason consists in the kind of assumptions 
made on logical remainders. !e other reason rests in the treatment of less-
than-perfect set relations. In the following, we provide one example for each 
source. From these examples, we then derive the general conditions under 
which this phenomenon occurs.

9.1.1.1 Hidden necessary conditions due to incoherent counterfactuals
Stokke (2004) aims at identifying the conditions under which the strategy of 
shaming makes hitherto non-compliant countries observe international "sh-
ing rules (SUCCESS). He identi"es "ve conditions: advice (A); commitment 

Even when following our advice to perform separate analyses of necessity and sufficiency, 
intricate analytic issues can arise. One of these is how to handle necessary conditions during the 
sufficiency analysis. We addressed this in section 8.2.1, when we stated that necessary condi-
tions should be kept in the analysis of sufficiency but no assumptions about logical remainders 
ought to be made that contradict the statement of necessity.

Another pitfall consists in naming a condition as necessary when, in fact, it is merely trivially 
necessary. We have already touched upon this issue in section 5.5. Here, we expand on this and 
demonstrate that to correctly capture the triviality of necessary conditions, it is useful to frame 
the concept in terms of “skewed set-membership scores” not only in condition X, but also in 
outcome Y. We also show that skewed set membership triggers analytic problems that go well 
beyond those of trivial necessary conditions and also affects statements of sufficiency in a similar 
manner. This is why we provide a more general discussion on the potential pitfalls of skewed set-
membership scores in set-theoretic methods (9.2).

As with Chapter 8, the reading of this chapter requires a solid knowledge of the analysis of 
truth tables and (with regard to section 9.2) of the parameters of consistency and coverage. In 
set-theoretic terminology, a necessary condition for getting the most out of this chapter is that 
readers feel sufficiently familiar with the topics addressed in Chapters 1–8.
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(C); shadow of the future (S); inconvenience (I); and reverberation (R). !e 
ten countries evenly split into "ve successful and "ve unsuccessful incidences 
of shaming. !e cases fall into eight di#erent truth table rows (four connected 
to success and four to the lack of success). Given a truth table with 25 condi-
tions, there are 32 − 8 = 24 logical remainders (Table 9.1).

!e most parsimonious solution formula is:

~I + SR → SUCCESS.

From this one might be tempted to conclude that no condition is necessary, 
for none of them appears in both su%cient paths. However, as a glance at the 
truth table readily reveals, condition ADVICE (A) is present in all instances 
of successful shaming. It therefore empirically quali"es as a necessary con-
dition.1 Why then does the most parsimonious solution term not contain 
 condition A?

!e answer to this question rests in the treatment of logical remainders. 
Recall from Chapters 6 and 8 that the most parsimonious solution rests on 
assumptions about some of the logical remainders. !ose remainders are 
chosen in such a way that the logically minimized solution term is most par-
simonious. Let us therefore "rst identify those logical remainders for which 
the occurrence of SUCCESS has been assumed in order to produce the most 
parsimonious solution term.2 !e Boolean expression of the 16 simplifying 
assumption looks as follows.

Table 9.1 Truth table (Stokke 2004)

Conditions Outcome

Row A C S I R SUCCESS

1 0 0 0 1 0 0
2 1 0 0 0 0 1
3 1 0 0 1 0 0
4 1 0 0 1 1 0
5 1 0 1 1 1 1
6 1 1 1 0 0 1
7 1 1 1 1 0 0
8 1 1 1 1 1 1
9–32 logical remainders ?

1 !is has, of course, not escaped the attention of the authors and has been discussed by Stokke (2007) 
and also by Ragin and Sonnett (2004) and Ragin (2008a: ch. 9).

2 See the online How-to section for Chapter 6 on how to identify simplifying assumptions (www.
cambridge.org/schneider-wagemann).
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~A~C (~S~I~R + ~S~IR + S~I~R + S~IR + SIR) +
~AC     (~S~I~R + ~S~IR + S~I~R + S~IR + SIR) +
A~C     (~S~IR + S~I~R + S~IR) +
AC          (~S~I~R + ~S~IR + S~IR).

!e most parsimonious solution for SUCCESS rests on the assumption that 
16 out of 24 logical remainders would produce SUCCESS if they were empir-
ically observed. Note that 10 out of the 16 counterfactual claims involve 
remainders that display the absence of the necessary condition ADVICE (i.e., 
~A). It is because of these incoherent assumptions that the necessary condi-
tion A is deemed logically redundant and is thus minimized away from the 
parsimonious solution term. For instance, truth table row 2 (A~C~S~I~R), 
which is linked to outcome SUCCESS, is logically minimized through com-
bination with the logical remainder ~A~C~S~I~R by dropping condition A 
to the new statement:

~C~S~I~R → SUCCESS.

Combined with a number of other remainders, this new term can be simpli-
"ed to ~I and becomes a prime implicant of the most parsimonious solution.3 
!is means that every single combination containing ~I either empirically 
implies the outcome or is assumed to imply it, regardless of whether it logic-
ally contradicts the statement that A is necessary for SUCCESS.

!is example suggests that the disappearance of necessary conditions 
from statements of su%ciency is caused by wrong-headed assumptions about 
logical remainders. In fact, if condition A is necessary for SUCCESS (A ← 
SUCCESS), then this implies that there cannot be any simultaneous occur-
rence of ~A and SUCCESS. In other words, whenever we see a con"guration 
containing ~A, we expect the outcome SUCCESS not to occur. Assuming that 
in the presence of ~A outcome SUCCESS occurs – as we do for the most par-
simonious solution when including remainders containing ~A – contradicts 
our conclusion drawn from empirical observation, namely that SUCCESS 
occurs only when condition A is present, and that the latter should therefore 
be interpreted as a necessary condition. In section 8.2, we have labeled such 
assumptions incoherent counterfactuals.

If necessary conditions disappear due to incoherent assumptions on logical 
remainders, the way to avoid this problem is straightforward: do not make 

3 A~C~S~I~R and ACS~I~R exist empirically (rows 2 and 6) and ~A~C~S~I~R, ~A~C~S~IR, 
~A~CS~I~R, ~A~CS~IR, ~AC~S~I~R, ~AC~S~IR, ~ACS~I~R, ~ACS~IR, A~C~S~IR, A~CS~I~R, 
A~CS~IR, AC~S~I~R, AC~S~IR, and ACS~IR are part of the simplifying assumptions listed above.
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any such incoherent assumptions, i.e., assumptions that contradict the claim 
that a speci"c condition is necessary. More speci"cally, logical remainders 
containing the absence of the necessary condition must be barred from the 
logical minimization for outcome Y.

Let us apply this strategy to the example provided by Stokke (2004). If we 
produce the enhanced most parsimonious solution term (section 8.2.4) by 
blocking all incoherent assumptions,4 we obtain the following result for out-
come SUCCESS from Stokke’s data:

As we see, the exclusion from the process of logical minimization of all 
those logical remainders that would contradict the statement of necessity pro-
duces a solution in which the necessary condition is part of all su%cient paths 
toward SUCCESS. !e danger of overlooking the presence of a necessary con-
dition is averted with the enhanced most parsimonious solution term.

As an alternative strategy against the disappearance of necessary condi-
tions Ragin and Sonnett (2004; see also Ragin 2008a: ch. 9 and Stokke 2004) 
propose to simply add the necessary condition to each su%cient path a!er 
the analysis of necessity. !is strategy always yields the same solution as our 
enhanced most parsimonious solution term and, by virtue of this, also avoids 
the pitfall of incoherent assumptions that contradict the statement of neces-
sity. Note, however, that our strategy of excluding incoherent counterfactuals 
before the analysis of su%ciency has the practical advantage that the so&ware 
correctly calculates the consistency and coverage values for the resulting solu-
tion formula. If necessary conditions are reinserted into a su%ciency solution 
formula, no correct parameters of "t are calculated.

In sum, the remedy for avoiding the disappearance of necessary conditions 
due to incoherent assumptions boils down to what in section 8.2.1 we have 
already introduced as part of our Enhanced Standard Analysis (ESA): during 

 A~I + ASR → SUCCESS

Consistency 1 1
Raw coverage 0.6 0.4
Unique coverage 0.6 0.4
Solution consistency 1
Solution coverage 1

4 See the online How-to section for Chapter 8 for practical advice (www.cambridge.org/schneider-
wagemann).
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the analysis of su%ciency, do not allow any assumptions on remainders that 
would contradict the statement of necessity. !is requires, of course, that the 
analysis of necessity is performed prior to the analysis of su%ciency.

9.1.1.2 Hidden necessary conditions due to inconsistent truth table rows
Are incoherent assumptions about logical remainders the only reason for the 
disappearance of necessary conditions? Alas, unfortunately not. Necessary 
conditions can disappear even from the conservative solution term, which, 
by de"nition, makes no assumptions at all on logical remainders. !is can 
happen when inconsistent truth table rows are included in the logical mini-
mization that contain the absence of the necessary condition. Let’s have a look 
at the hypothetical example displayed in Table 9.2.

!is truth table does not su#er from limited diversity. !erefore, no sim-
plifying assumptions are made on logical remainders. Row 7, however, is a 
contradictory row: it contains four cases displaying Y and one case with out-
come ~Y. !e consistency score of AB~C as a su%cient condition for Y is 
4/5, or 0.8 (section 5.2). If we accept this score as high enough for a su%cient 
condition, and thus include ~A~BC in the minimization procedure, we then 
obtain the conservative solution term for outcome Y:

Table 9.2 Truth table with logical contradictions and hidden necessary condition

Conditions Outcome

Row A B C Y Cases with Y Cases with ~Y Consistency for Y

1 0 0 0 0 0 1 0
2 0 0 1 1 20 0 1
3 0 1 0 0 0 39 0
4 0 1 1 0 0 15 0
5 1 0 0 1 10 0 1
6 1 0 1 1 15 0 1
7 1 1 0 1 4 1 0.8
8 1 1 1 0 0 2 0

 A~C + ~BC → Y

Consistency 0.93 1
Raw coverage 0.286 0.714
Unique coverage 0.286 0.714
Solution consistency 1
Solution coverage 0.98
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!ere are two su%cient paths. Both are highly consistent, and jointly 
they cover all cases that are members of outcome Y. What is important 
for our point here is that no single condition appears in both paths. One 
is therefore tempted to conclude that there is no necessary condition for 
Y. Is this conclusion correct? In order to "nd out, let us run a proper test 
of necessity. !is, as explained in section 3.2.1.2, starts with the test of 
single conditions in isolation. Testing each condition and its complement 
yields the following consistency scores for being a necessary condition of 
Y (Table 9.3).

We see that condition ~B is almost fully consistent (0.92) with the state-
ment of being necessary for Y. Out of the 49 members of Y, only 4 are 
not also members of condition ~B and thus contradict the statement of 
necessity. Since ~B also has a high coverage score (0.98), we can conclude 
that it is a relevant necessary condition (section 5.5). Hence, based on the 
empirical evidence, we have good reasons to consider ~B to be a relevant 
necessary condition for Y.

Why, then, is ~B not part of all su%cient paths in the conservative solution? 
Necessary condition ~B is logically minimized from the su%ciency solution 
by matching row 5 of Table 9.2 (A~B~C) with the inconsistent row 7 (AB~C) 
into the su%cient path A~C. In this example, thus, the necessary condition 
disappears from the su%ciency solution because both the former and the lat-
ter are not fully consistent. In other words, this is an example of a hidden 
necessary condition due to inconsistent subset relations.

When necessary conditions disappear due to inconsistent set relations, 
an imperfect remedy is to increase the raw consistency threshold for truth 
table rows and/or for necessary conditions. By increasing the raw consist-
ency threshold for truth table rows, it becomes less likely that the necessary 
condition is minimized out of the su%ciency solution. For instance, if in our 
example above we had chosen a consistency threshold of 1, truth table row 

Table 9.3 Test of necessity, outcome Y

Condition Consistency

A 0.59
~A 0.41
B 0.08
~B 0.92
C 0.71
~C 0.29
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8 of Table 9.2 would not have been included in the logical minimization and 
necessary condition ~B would thus not have been logically minimized away.5 
By increasing the consistency threshold for necessity, we make it less likely 
that any condition is deemed necessary in the "rst place. Obviously, if no 
condition is considered as necessary, none can disappear from the su%ciency 
solution term. If in the same example we had required that a necessary con-
dition be fully consistent, we would not have accepted ~B as a necessary con-
dition, and the su%ciency solution term A~C + ~BC → Y would not be in 
contradiction to any statement of necessity.

In general, when researchers select consistency thresholds and thus deviate 
from perfect set relations, they must pay attention to the potential danger of 
disappearing necessary conditions. At the same time, to always impose very 
high – if not perfect – consistency thresholds is not a practical one-size-"ts-
all solution. First, social science data deviate more o&en than not from perfect 
set relations. And, second, even with a consistency threshold for necessary 
conditions well above the suggested 0.9 consistency benchmark, the prob-
lem of disappearing necessary conditions might occur, as our example above 
demonstrated. Condition ~B had a consistency score of 0.92 as a necessary 
condition for Y, yet it disappeared from one of the two su%cient paths and 
thus remained invisible as a necessary condition.

In sum, several lessons can be drawn from the fact that necessary conditions 
might be overlooked when only performing an analysis of su%ciency. First, 
always perform separate analyses of necessity and su%ciency. Second, unless 
these two separate analyses are run, do not infer necessity from an analysis of 
su%ciency and vice versa. !ird, of the two reasons for the disappearance of 
necessary conditions, that stemming from limited diversity is analytically more 
disturbing: necessary conditions disappear even though this disappearance 
is not based on any empirical counterexamples. In contrast, when necessary 
conditions disappear from the solution for su%cient conditions due to incon-
sistency, the hidden necessary conditions themselves are not fully consistent. 
Nonetheless, since subset relations are usually at least slightly inconsistent in 
applied set-theoretic methods, this issue is of high practical relevance.

9.1.2 The appearance of false necessary conditions

A related important issue consists of the fallacy of postulating the presence of 
a necessary condition based on the su%ciency solution formula when, in fact, 

5 Imposing a raw consistency threshold of 1 would yield the solution formula ~BA + ~BC → Y.
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there is no necessary condition. A good example for discussing this intricate 
phenomenon is provided by Vis (2009), which we have already used in sec-
tions 5.3 and 8.2.1.6 She aims at explaining the conditions under which gov-
ernments pursue unpopular social policies (U). As analytically relevant, Vis 
identi"es three conditions: a weak political position (P); a weak socioeconomic 
situation (S); and a rightist government (R). !e 25 cases (Table 9.4) – cabinets 
in various Western European countries during the 1970s to 1990s – fall into 5 
di#erent truth table rows, leaving the 3 remaining rows as logical remainders 
(Table 9.5).

We use a consistency threshold of 0.85, thus including rows 3 and 4 in the 
logical minimization procedure. !e conservative solution term (i.e., with no 
assumptions on logical remainders) is:

Let us disregard the coverage scores and focus only on the consistency 
values. !ere are two highly consistent paths toward outcome U, and the over-
all solution term is also highly consistent. We note that both paths contain 
condition S. !is seems to suggest that the outcome U would not occur with-
out condition S being present. If so, why should we not declare S a necessary 
condition for U, as Vis (2009: 31#., 48), based on her fuzzy-set data, does?

!e direct test of necessity reveals the following surprise: the consistency 
of S as a necessary condition for U is a meager 0.77 – far too low to be consid-
ered a necessary condition (Schneider and Wagemann 2010; see also section 
5.4, above). Indeed, looking at the data (Table 9.4), we see that in three cases 
(the governments of N. Rasmussen IV, !atcher II, and Kok I) unpopular 
reforms were implemented in the absence of the alleged necessary condition 
S, a clear contradiction to the claim of necessity. Since 3 out of a total of 13 
relevant cases (i.e., cases with membership in outcome U) do not support it, 
the claim of necessity of S needs to be rejected.

 PS~R + ~PSR → U

Consistency 1 0.857
Raw coverage 0.154 0.462
Unique coverage 0.154 0.462
Solution consistency 0.889
Solution coverage 0.615

6 For didactic purposes, we are using a dichotomized version of Vis’ (2009) original fuzzy-set data. 
Note, though, that the same problem of suspecting a necessary condition when there is none also 
occurs with the original fuzzy-set data and is not an artifact of our recoding the data into crisp sets.
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Why, however, is S included in all su%cient conjunctions for U such that it 
seems to be a necessary condition? !e answer to this question lies in the fact 
that some truth table rows are inconsistent. In our example, the three govern-
ments that are members of U but do not show the false necessary condition S, 
and which therefore lower the consistency score of S as a necessary condition, 
are all part of those truth table rows (rows 1 and 2) that are not included in 
the logical minimization, due to their low raw consistency values. It is merely 
a coincidence that all those truth table rows that are included in the logical 
minimization contain condition S.

In sum, the problem of false necessary conditions depends on particular 
properties of not fully speci"ed truth tables. From this it does not follow that, 

Table 9.4 Crisp-set membership scores (Vis 2009)

Conditions Outcome

Government P S R U

Lubbers I 0 1 1 1
Lubbers II 0 0 1 0
Lubbers III 0 1 1 1
Kok I 0 0 0 1
Kok II 0 0 0 0
Balkenende II 1 1 1 1
Kohl I 0 0 1 0
Kohl II 0 0 1 0
Kohl III 0 0 1 0
Kohl IV 1 1 1 1
Schröder I 0 0 0 0
Schröder II 1 1 0 1
Schlüter I 0 0 1 0
Schlüter II 0 1 1 1
Schlüter IV 0 1 1 0
Schlüter V 1 1 1 0
N. Rasmussen I 0 0 0 0
N. Rasmussen II 
(and III)

1 1 0 1

N. Rasmussen IV 0 0 0 1
!atcher I 0 1 1 1
!atcher II 0 0 1 1
!atcher III 0 1 1 1
Major I 0 1 1 1
Blair I 0 0 0 0
Blair II 0 0 0 0
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in the presence of inconsistent rows, false necessary conditions always appear. 
Nor does it mean that false necessary conditions appear only in the presence 
of inconsistent truth table rows. To illustrate the latter point, imagine we had 
imposed a consistency threshold of 1 for truth table rows in Table 9.5. !is 
would have yielded the following conservative solution term:

PS~R → U.

!ere is just one path toward outcome U, corresponding to row 4 in Table 
9.5. From this, one might want to infer that PS~R is also necessary for U, but 
this would obviously be wrong. !e consistency score of PS~R as a necessary 
condition for U is a dismal 0.15.7 !e reasons for this low value is again that 
many cases that are members of U are located in truth table rows that are not 
fully consistent with su%ciency, and which therefore have not been included 
in the logical minimization. !us, even if all su%cient paths and the entire 
solution term for su%ciency are fully consistent, false necessary conditions 
can appear. For this to happen, the entire solution term (and thus at least one 
path) must have a coverage of less than 1. !is is because less-than-perfect 
coverage means that there are cases in the data that are not members of the 

Table 9.5 Truth table, outcome U (Vis 2009)

Conditions Outcome

Row P S R U N Consistency for U Cases

1 0 0 0 0 7 0.29 Kok I, II;Schröder I; N. 
Rasmussen I, IV; Blair I, II

2 0 0 1 0 6 0.17 Lubbers II; Kohl I, II, III;
Schlüter I; !atcher II

3 0 1 1 1 7 0.86 Lubbers I, III; Schlüter II, 
IV; !atcher I, III; Major I

4 1 1 0 1 2 1.00 Schröder II; N. Rasmussen 
II/III

5 1 1 1 0 3 0.67 Balkenende II; Kohl IV;
Schlüter V

6 0 1 0 ? 0 Logical remainder –
7 1 0 0 ? 0 Logical remainder –
8 1 0 1 ? 0 Logical remainder –

7 For each single condition, the consistency scores as necessary conditions for U are: P (0.31), S (0.77), 
~R (0.31).
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su%ciency solution but are members of the outcome. If those unexplained 
members of Y happen not to be members of the alleged necessary condition, 
then this condition ceases to be necessary.

!e strategy for avoiding the analytic pitfall of declaring conditions as 
necessary when, in fact, they are not, is to simply perform a separate test 
of necessity prior to the analysis of su%ciency. Applying the strategy to the 
example by Vis (2009), one would "rst perform a test of necessity and con-
clude from this that no condition is necessary for the outcome. !en, when 
confronted with the solution term PS~R + ~PSR → U, or with only PS~R → 
U, one simply does not interpret any condition as necessary. At this point, it 
would perhaps also be wise for the researcher to explicitly name those cases 
that contradict the statement that condition S is necessary for U (the govern-
ments of N. Rasmussen IV, !atcher II, and Kok I, see Table 9.4).

In sum, necessary conditions are the set-theoretic mirror image of su%-
cient conditions. In principle, i.e., in an ideal world that neatly "ts into subset 
relations (with no inconsistencies) and into fully speci"ed truth tables (with 
no logical remainders), it would therefore be possible to correctly derive the 
presence or absence of necessary conditions by simply performing an analysis 
of su%ciency. However, social scientists hardly ever encounter an ideal world. 
Sets are o&en not in perfect subset relations, and truth tables lack information 
for a wide number of reasons that are beyond the control of the researcher. 
Because of this lack of perfect information and the strategies used to han-
dle this lack – assumptions about logical remainders and using the notion of 
consistency – necessary and su%cient conditions cease to be perfect mirror 
images of each other. In practical terms, this implies that necessary condi-
tions cannot be simply identi"ed by performing an analysis of su%ciency, or 
vice versa. Instead, separate analyses of necessity and su%ciency must be per-
formed in order to avoid the pitfalls of hidden or false necessary conditions.

At-a-glance: pitfalls in inferring necessity from sufficiency solution 
terms

When analyzing necessary and sufficient conditions, researchers are often tempted to 
derive the necessary conditions from their analysis of sufficient conditions. This, however, 
may lead to two problems.

First, a condition which has been identified as necessary may not be visible in all paths 
of the analysis of sufficient conditions (a hidden necessary condition), due to the inclu-
sion in the logical minimization either of remainder rows which contradict the statement 
of necessity or of not fully consistent truth table rows.
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9.2 The analytic consequences of skewed set-membership scores

So far, in this chapter we have presented various scenarios in which the infer-
ence about the presence or absence of necessary conditions might be 'awed. 
In this section, we add another potential source of 'awed inference about set 
relations. What the following pitfalls have in common is that they are based 
in one way or another on skewed distributions of membership in either the 
condition(s), or the outcome, or both. Membership in a set is skewed if the large 
majority of cases holds high or low membership in the set. Unlike the previous 
sources, this problem is not restricted to inference about necessity, but also has 
an equally distorting impact on inferences about su%ciency.

In the literature, two issues that are intimately linked to aspects of skewed 
distributions have already been discussed without, however, making refer-
ence to each other. One of these debates addresses the notion of trivial neces-
sary conditions. Parameters have been developed that aim at distinguishing 
trivial from non-trivial necessary conditions (Braumoeller and Goertz 2000; 
Dion 2003; Goertz 2003; Mahoney 2004; Ragin 2008a). Below, we discuss the 
notion of trivialness and suggest an updated version for calculating this par-
ameter of "t (9.2.1). Second, and less well discussed,8 are the consequences 
of a perplexing characteristic of fuzzy sets. !e same set X can be a subset 
of both set Y and its complement ~Y, meaning that X can pass the test of 
su%ciency both for Y and ~Y. Furthermore, the same set Y can be a super-
set of both set X and its complement ~X, meaning that both X and ~X pass 
the test of su%ciency for Y. !is is possible because in fuzzy sets the Rule of 
the Excluded Middle does not hold (section 2.4.1). Combined with skewed 
membership scores, this property of fuzzy sets provides fertile grounds for 
drawing wrong inferences about su%cient and necessary conditions. In the 
following, we "rst turn to the notion of trivialness, then discuss the practical 
8 For an exception, see Ragin (2008a: 137f.).

Second, a condition can appear in all sufficient paths, even though it is not a neces-
sary condition (a false necessary condition). This might happen if only those rows which 
include the false necessary condition are included in the logical minimization.

These pitfalls can be avoided if necessary and sufficient conditions are analyzed in two 
separate steps, with the necessary conditions analyzed first. Furthermore, it is useful to 
choose rather high consistency levels in the assessment of necessary conditions and to 
make sure not to allow any incoherent assumptions about logical remainders.
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implications of the absence of the Rule of the Excluded Middle for the analysis 
of su%ciency, and "nally engage in a broader re'ection on the consequences 
of skewed distributions for set-theoretic data analysis techniques. In other 
words, we start with two special phenomena that are occasionally discussed 
in the literature, but we then integrate these debates into the broader frame of 
skewed set membership.

9.2.1 The coverage of necessary conditions and the problem of trivialness

9.2.1.1 !e two sources of trivialness
In section 5.5, we presented trivialness as a possible interpretation of the 
coverage value of a necessary condition. !ere, we alluded to the fact that 
there are two sources for the trivialness of a necessary condition rather than 
just one – X can be much bigger than Y and X can be close to a constant – and 
that the current formula for calculating relevance (Ragin 2006) adequately 
captures only the former of these two sources.

As a demonstration, we return to our example from section 5.5. Let Y1 be 
the set of speech acts in parliament during which members of parliament 
curse. X1 is the set of male members of parliament and X2 the set of parlia-
mentarians born in the country. To these, we add another outcome: speech 
acts during which reference to government policies is made (Y2). !e three 
Venn diagrams in Figure 9.1 display three empirical patterns. In all three, the 
condition is a fully consistent superset of the outcome and thus easily passes 
the formal test for necessity (aka their consistency score is 1).

If we apply the standard formula for the relevance of a necessary condition, 
we obtain the following results. First, X1 would obtain a high value and thus be 
deemed a relevant necessary condition for Y1. Second, X2 would obtain a low 
value and thus be deemed a trivial necessary condition for Y1. Both of these 
results are plausible. !e problem occurs when we turn to the assessment of 
necessity of X2 for Y2. Both sets are of roughly equal size. Hence, the standard 
relevance formula yields a high value. !is, in turn, might lead researchers to 
infer that being born in the country (X2) is a relevant necessary condition for 
addressing government policies in parliamentary speeches (Y2). !is infer-
ence is problematic, though. In this research context (speech acts in parlia-
ment), X2 (the set of members of parliament born in the country) is almost 
a constant. It is therefore, by default, a superset of whatever the outcome set 
is – any other set could scarcely avoid being a subset of X2. Hence, by being 
close to a constant, X2 automatically passes the formal requirement of being 
classi"ed as a necessary condition for whatever the outcome set is. It does so 
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not by virtue of its substantive or causal relevance but by its empirical distri-
bution. !e reason why this clear trivialness is not detected by the standard 
relevance formula is that in addition outcome set Y is very big.

!is example reveals that in order to establish the relevance or trivialness 
of a necessary condition, two pieces of information have to be taken into 
account: the relation in size of sets X and Y, and the relation in size of X and 
~X. If X is so much bigger than ~X, then it is very easy for X to be a superset 
of whatever the outcome set Y consists of. !is should make clear that the 
issue of trivialness is linked to the more general topic of skewed membership 
distributions (section 9.2.3). Saying that X is much bigger than ~X is nothing 
more than saying that the membership of cases in X is skewed toward high 
membership in X.

Ragin’s formula for the relevance of necessary conditions (section 5.5) 
assesses correctly the relation in size between X and Y, but is insensitive to 
the relation in size between X and ~X. Arithmetically, if set membership in 
X is always 1 (the most extreme case of skewedness), the denominator of the 
relevance formula is equal to the number of cases under investigation. !e 
minima of X and Y which are used in the numerator all correspond to the Y 
value (since X is always 1). In other words, the formula is equal to the arith-
metic mean of all Y values. Now, if Y itself almost exclusively contains cases 
with high membership scores (such as in the example above of speech acts 
with references to government policies), then this arithmetic mean, and with 
it the coverage value, will be high.

In sum, the coverage parameter as proposed by Ragin (2006) correctly cap-
tures trivialness understood as the relation between the size of the sets X and 
Y. !e formula does not, however, account for trivialness that is due to the 
necessary condition being (close to) a constant. What, then, could a formula 
look like that captures both sources of trivialness?

X1 X2

X2

Y2
Y2Y1

Figure 9.1 Venn diagram – different sources of trivialness necessity
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9.2.1.2 Suggestions for an updated formula for trivialness necessity
For demonstrational purposes, take Samford’s (2010) study on trade liberal-
ization in Latin America. Let the set of countries without rapid trade liberal-
ization be the outcome to be explained (Y). Furthermore, let us argue that two 
of his seven conditions form a functionally equivalent necessary condition 
(section 3.2.1.2): the lack of hyperin'ation (H) or the lack of weak growth 
(G). Put di#erently, all governments in Latin America that abstain from rapid 
trade liberalization are either not confronted with hyperin'ation, or not con-
fronted with weak growth, or neither. Formally:

H + G ← Y.

Empirically, this claim seems to be supported by the high consistency (0.9) 
and coverage (0.87) scores for condition H + G. A look at the XY plot of Y and 
H + G (Figure 9.2), however, should trigger some doubts. We notice that both 
the sets of Y and of H + G are skewed toward high membership. !is can be 
seen from the fact that most cases cluster in the upper right corner of the XY 
plot. !is pattern corresponds to the Venn diagram for X2 and Y2 in Figure 
9.1. !us, H + G is trivially necessary despite its high coverage value.

Two proposals have been made in order to capture trivialness triggered 
by skewed set membership, which, as we have stated, goes unnoticed by the 

0

La
ck

 o
f r

ap
id

 tr
ad

e 
lib

er
al

iz
at

io
n 

(Y
)

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

Lack of hyperinflation (H) OR lack of weak growth (G)
0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

Figure 9.2 XY plot – trivial necessary condition
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alness of X be de!ned as the average distance between xi and 1, standardized 
by the maximum importance that this value can attain based on yi” (Goertz 
2006a: 95). Based on this reasoning, he arrives at the following formula for 
trivialness:9

Trivialness of Necessity (Goty (Goty ertz) i1 11 1
N i

( )i( )i( )1 1( )1 1
( )( )1( )1 i( )i

.( )x( )
y( )y( )

coming is revealed. For H + G, it returns the value of 1.58. " is is disturbing 

Since we already know from looking at the XY plot that H + G is trivially 
necessary, this high value is misleading, if not wrong. Second, the value is 
higher than 1, suggesting that, unlike the case for all other parameters of !t 
introduced so far, there is no upper limit for Goertz’s trivialness measure. " is 
increases the di# culty of interpreting this parameter.

" e reason for both problems is that this formula is unduly sensitive to 
inconsistency. With only minor deviations from perfect consistency (such as 
in our example with 0.9), it might return values that are greater than 1 and 

Goertz’s formula yields more plausible results than Ragin’s when applied 
to (close to) constant conditions. In fact, for a perfectly constant condition – 
which, by default, will also be perfectly consistent – Goertz’s formula returns 
the value of 0,10 while Ragin’s would not always. Goertz’s formula returns 
implausible values in the presence of inconsistency, though. In response to 
this, we suggest the following formula for the assessment of trivialness:

 Relevance of Necessity (Schneider and Wagemann)
( )( )

(
( )1( )

1
( )x( )i( )i( )
min( , )

.
x y, )x y, )i i, )i i, )x yi ix y, )x y, )i i, )x y, )

" is parameter aims at including the positive features of both Ragin’s and 
Goertz’s formulas while avoiding the pitfalls of each. Like Ragin’s parameter, it 
is not a$ected too much by inconsistent cases.11 Like Goertz’s, our parameter 

 9 Naming this formula “trivialness” is prone to contribute to confusion, because low values indicate 

10 " is is because in this scenario the numerator is 0 for all fractions of the sum.
11 " is is achieved both by using the minima instead of y values and by !rst summing up and then 

dividing (like Ragin’s formula) instead of !rst dividing and then summing up (Goertz). Incidentally, 
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takes into account whether X is (close to) a constant. If X is constant, our for-
mula returns the value of 0. At the same time, our formula can never return 
values higher than 1.

Applied to condition H + G, our formula yields a value of 0.56. !is 
value is lower than Ragin’s and thus more correctly suggests that condition 
H + G is trivial and not relevant as a necessary condition for rapid trade 
 liberalization (Y).

We think our parameter can be deemed a valid assessment of the relevance 
of a necessary condition. Low values indicate trivialness and high values rele-
vance.12 Hence, researchers should substantively interpret only those condi-
tions that pass the consistency test and receive high values on our formula.

As we have suggested, one might assume that researchers will simply know 
if there are many more instances of the alleged necessary condition than of the 
outcome, and thus that a necessary condition is trivial. !ere are situations, 
however, when the size of the sets of X and Y are less visible. !is usually is the 
case when applying QCA to larger data sets and/or when using fuzzy sets. In 
addition, the identi"cation of trivial necessary conditions by pure eyeballing 
is particularly di%cult when the notion of functional equivalents, in the form 
of SUIN conditions (Mahoney et al. 2009), is invoked. All this points to the 
need to use parameters that e#ectively reveal trivialness and relevance when 
making statements about necessary conditions.

9.2.2 The consistency of sufficient conditions and the problem of simultaneous  
subset relations

In the previous section, 'awed inferences about necessity could occur because 
the set of condition X was very big. As we now show, similar problems can 
occur in the analysis of su%ciency. If X is very small, then it can pass the formal 

this latter feature reveals another potential shortcoming of Goertz’s formula for trivialness: it might 
lead to the mathematically unde"ned situation of a division by zero. !is did not go unnoticed by 
Goertz himself, who proposed "xing the value of the fraction at 1 (Goertz 2006a: 108). However, 
when making this proposal, full consistency is consumed where X = 1 and Y = 1. !e problem of a 
value of 0 in the denominator of his formula can also occur in case of inconsistency (e.g., X = 0.9 and 
Y = 1), though.

12 Goertz (2006a), instead, separates trivialness from relevance and suggests calculating both with 
di#erent formulas. For him, the relevance of X as a necessary condition is indicated by how 
consistent X is as a su%cient condition (Goertz 2006a: 91). !e formula is: Relevance of Necessity 
(Goertz) = (1/N) Σ (yi/xi) (Goertz 2006a: 96). In addition, Goertz proposes the notion of the 
importance of a necessary condition and calculating it by taking the arithmetic mean of his relevance 
and the trivialness parameters (2006a: 98). Our use of the term “relevance” of a necessary condition 
makes it a synonym of “non-trivialness” rather than “also su%cient,” as suggested by Goertz (2006a).
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test of being su%cient both for Y and ~Y. Clearly, claiming that one and the 
same condition is su%cient for an outcome and its complement amounts to a 
logical fallacy. In the following section, we "rst provide a simple example that 
demonstrates the simultaneous subset relation of X with both Y and ~Y and 
explain the circumstances under which this phenomenon occurs. A&er this, 
we present various strategies for confronting simultaneous subset relations in 
fsQCA, using published data for illustration.

9.2.2.1 Sources of simultaneous subset relations
A fuzzy set X can be a perfectly consistent subset of both fuzzy set Y and its 
logical complement ~Y. For illustration, consider the situation displayed in 
Table 9.6. All cases have a membership in X13 that is smaller than their respect-
ive membership in Y. X, thus, is a subset of Y and could thus be considered 
as a fully consistent su%cient condition for Y. At the same time, and perhaps 
surprisingly, each case’s membership in X is also smaller than its membership 
in ~Y. Hence, X is also a subset of ~Y and thus passes the test as a fully con-
sistent su%cient condition for ~Y.

!e phenomenon of simultaneous subset relations to be discussed now 
occurs only with fuzzy sets – unlike the occurrence of misleading values for 
the assessment of relevance necessity due to skewed set membership discussed 
above (9.2.1), which a#ects both crisp and fuzzy sets. Simultaneous subset 
relations cannot occur in crisp sets, because if X is a subset of Y, then all elem-
ents in X are also elements of Y. Now, if (some) elements of X also were elem-
ents of ~Y, then the set of Y and of ~Y would partially overlap. !is, however, 
is impossible with crisp sets. !is has become known as the principle of the 
excluded middle. With fuzzy sets, however, the Rule of the Excluded Middle 

13 Notice that X can be a placeholder for a complex Boolean statement, such as, for instance, a truth 
table row involving several single conditions combined with a logical AND.

Table 9.6 Simultaneous consistent subset relation of X with both Y and ~Y

Condition Outcome Subset relation

Case X Y ~Y X<Y X<~Y

A 0.1 0.8 0.2 Yes Yes
B 0.2 0.4 0.6 Yes Yes
C 0.3 0.3 0.7 Yes Yes
D 0 0.9 0.1 Yes Yes
E 0.2 0.7 0.3 Yes Yes
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does not hold (section 2.4.1). As a consequence, and as shown in Table 9.6, 
cases can have membership scores in X that are smaller than their values in Y 
and ~Y, respectively. In substantive terms, it is, of course, nonsense to claim 
that the same condition is su%cient for producing both the outcome and its 
non-occurrence.14 Such inferences must be avoided.15 In the following, we 
show how this can be done.

For developing our argument, it is crucial to distinguish between di#erent 
forms of simultaneous subset relations. Notice that in the example in Table 
9.6, all membership values in X are smaller than 0.5. According to the cur-
rent principles in fsQCA, X would be deemed a logical remainder, for there 
is not a single case that is more in than out of the set of X (section 6.1). In 
other words, if membership in a fuzzy set X is so highly skewed toward non-
membership that no (or not enough) cases display a membership higher than 
0.5 in X, then X is treated as a logical remainder and the problem of fully con-
sistent simultaneous subset relations seizes to exist.16

In applied fsQCA, it frequently happens, though, that a condition X is not 
a logical remainder and is still a simultaneous subset of both Y and ~Y. !e 
only di#erence to the situation depicted in Table 9.6 is that then simultaneous 
subset relations of non-remainders can never be fully consistent. Yet, they 
easily can be – and in applied fsQCA, they o&en are – well above any rea-
sonable thresholds for consistency of a su%cient condition. !e problem of 
simultaneous subset relations is thus a real one.

For purposes of illustration, take the slightly expanded version of the data 
from Table 9.6 as displayed in Table 9.7. To cases A–E, we add case F with X 
= 0.7 and Y = 0.6. Condition X is not a logical remainder anymore because 
F’s membership is above the 0.5 qualitative anchor. Case F’s membership in 
X, however, exceeds its membership both in Y and in ~Y. Case F therefore 
contradicts the statement that X is su%cient for Y and also the statement that 
X is su%cient for ~Y. If we take the information about all cases into account 
and calculate the consistency scores of X as a su%cient condition for Y and 
~Y, respectively, we discover that X passes reasonable thresholds in both. Its 

14 Single conditions can play a causal role in producing Y and ~Y only as INUS conditions (section 
3.3.2), a phenomenon known as multi"nality.

15 As shown in section 8.2.2, a similar problem can occur when making contradictory assumptions 
about logical remainders. In both scenarios, the same truth table row is included in the logical 
minimization for outcome Y and outcome ~Y.

16 If X stands for a truth table row, we might still decide to include X into the logical minimization 
procedure, i.e., we might use X for counterfactual claims (section 6.4). If so, however, we are allowed 
to do so either in the analysis of Y or of ~Y, not in both. Otherwise, we make a contradictory 
assumption (section 8.2.2). Furthermore, consistency does not usually play any role when selecting 
remainders for counterfactual claims.
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consistency for Y is 0.93 and for ~Y it is 0.8. So even if X is not a perfectly 
consistent subset, it still passes conventional tests of su%ciency for both Y 
and ~Y.

Notice, though, that inconsistent simultaneous subset relations always 
imply the presence of at least one true logically contradictory case (section 
5.2).17 For su%ciency, these are those inconsistent cases (i.e., X > Y) that have 
membership in X > 0.5 and in Y < 0.5. In other words, if X is an inconsist-
ent subset both for Y and ~Y, then there must be a true logically contradict-
ory case hidden behind at least one of the two consistency scores. Above and 
below (sections 5.2, 7.2, 11.1.6, and 11.4), we argue that researchers should 
capitalize on this characteristic of fuzzy sets when deciding which of the two 
subset relations they interpret in terms of su%ciency.

In sum, in fuzzy sets, a condition with most cases having low membership 
scores (skewed distribution) can be a simultaneous subset of outcome Y and 
outcome ~Y. Such simultaneous subset relations are usually not fully consist-
ent (unless X is a logical remainder), yet can pass conventional thresholds of 
consistency. Since the statement that a given condition in and of itself is su%-
cient for both Y and ~Y must be avoided, and given that the standard toolset 
for identifying su%cient conditions does not automatically capture simultan-
eous subset relations, additional strategies need to be developed.

Table 9.7 Simultaneous inconsistent subset relation of X with both Y and ~Y

Case X Y ~Y X<Y X<~Y

A 0.1 0.8 0.2 Yes Yes
B 0.2 0.4 0.6 Yes Yes
C 0.3 0.3 0.7 Yes Yes
D 0 0.9 0.1 Yes Yes
E 0.2 0.7 0.3 Yes Yes
F 0.7 0.6 0.4 No No

17 Remember that consistency is de"ned as the sum of the minima of the condition and outcome values, 
divided by the sum of the values of the condition. If X is not a remainder (i.e., X > 0.5 in at least 
one case), then X is automatically greater than Y or 1 − Y (= ~Y) (or both) in those cases for which 
X > 0.5. !is means that the consistency value for Y or ~Y (or both) cannot be 1 anymore. Depending 
on how distant X is from Y (or ~Y) for the inconsistent case(s), this reduction of the consistency 
can vary: if both values are close to 0.5, then the consistency value will still remain high, perhaps 
even high enough to suggest Y as a consistent su%cient condition. Furthermore, if one case with 
X > 0.5 exists, such case must have a value of < 0.5 in either Y or ~Y, and therefore at least one truly 
inconsistent case exists for either Y or ~Y.
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9.2.2.2 Strategies for handling simultaneous subset relations
For demonstrating potential strategies, and also to provide further evidence 
that simultaneous subset relations are a more common problem in applied 
fsQCA than is currently recognized, we return to the example of Vis (2009) 
and her study on the conditions for the implementation of unpopular reforms 
(sections 5.3 and 8.2.1). Table 9.8 displays the truth table of her data. Out of 
the eight rows, three are logical remainders and are not displayed here, for 
they are not central to the problem of misguided inferences about simultan-
eous subset relations.

!e table also displays each relevant truth table row’s consistency as a suf-
"cient condition for outcome U (unpopular reform) and ~U (no unpopular 
reform). If we apply the reasonable threshold of raw consistency of 0.8, we 
"nd that row 1 (PSR) passes the threshold for su%ciency for both U and ~U. 
In essence, the conjunction of characteristics of a cabinet being in a weak pol-
itical situation (P), in a weakening socio-economic situation (S), and being 
dominated by parties on the right (R) formally quali"es as being su%cient 
for such cabinets to implement unpopular reforms but also not to implement 
such reforms. !is, of course, amounts to a contradictory and thus untenable 
claim. PSR can be interpreted as su%cient either for U or for ~U or for nei-
ther, but certainly not for both.

!e XY plots for condition PSR and outcomes U and ~U, respectively 
(Figure 9.3), provide graphical evidence that PSR could be considered su%-
cient for U and ~U. Furthermore, the plots show what we have already alluded 
to above (see especially note 17), namely that with simultaneous subset rela-
tions at least one relation must contain at least one true logically contradictory 
case. In our example, the analysis of U contains one such case: the Schlüter IV 
government (PSR = 0.6; U = 0.33). !e analysis of ~U contains two of them: 
Balkenende II (PSR = 0.67; ~U = 0.17) and Kohl IV (PSR = 0.67; ~U = 0.33).

Table 9.8 Consistency of truth table rows for outcome and its complement

Conditions Consistency with outcome

Row P S R U ~U

1 1 1 1 0.911 0.836
2 0 1 1 0.918 0.706
3 1 1 0 0.911 0.696
4 0 0 1 0.719 0.911
5 0 0 0 0.642 0.829
6–8 Logical remainders – –
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" e !rst, and so far only, scholar to have taken up the task of tackling the 
analytic troubles caused by simultaneous subset relations is Ragin.18

poses a formula that uses the notion of a proportional reduction in error akin 
to many statistical measures of associations.19 20 
which is also reported by default when using the Truth Table Algorithm in 
the fsQCA 2.5 so%ware package, provides a numerical measure of (roughly 
speaking) how much it helps to know that a given X is speci!cally a subset of 

PRI =
min( , ,~ )

.
X Y, ,X Y, ,~ )Y~ )min(min( , ), )X YX Y, )X Y, ), )X Y, )

) min( , ,~ )X X) mX X) minX Xin( ,X X( ,Y Y,~Y Y,~min(min( ) m) mX XX X) mX X) m) mX X) m) mX X) m) mX X) m) mX X) m) mX X) m

high scores. " is holds true irrespective of the level of consistency reached by 
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Figure 9.3 XY plots for condition PSR and outcomes U and ~U

18 " e following arguments rest on personal exchanges with Charles Ragin, who generously shared his 
as yet unpublished thoughts on this intricate issue with us (see also Mendel and Ragin 2011).
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independent variable(s), as compared to a situation in which the values of the dependent variable are 
estimated by their arithmetic mean.

20 
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even if X is not consistent enough as a su%cient condition for either Y nor ~Y. 
!is should make clear that PRI cannot substitute the conventional consist-
ency measure. Instead, both measures need to be combined. Ragin proposes 
multiplying the consistency measure and PRI. In the fsQCA 2.5 so&ware, this 
measure is labeled PRODUCT in the Truth Table Algorithm. If both the con-
sistency and the PRI measure are high, then PRODUCT will also be high. 
Conjunctions with a high PRODUCT value are those for which there is a 
clear non-simultaneous subset relation, and there is no problem in interpret-
ing them as su%cient conditions for the outcome of interest.

Applying the PRI measure to row 1 (PSR) in Table 9.8, we obtain the values 
displayed in Table 9.9. While the standard consistency measure suggests that 
PSR can be interpreted as su%cient for both U and ~U, the PRI measure now 
says that by taking into account the simultaneous subset relation, PSR should 
be considered as a su%cient condition only for U, and not for ~U. !e value 
of PRI (and thus also PRODUCT) is high for the analysis of U and low for the 
analysis of ~U.21

We deem the PRI and PRODUCT parameters to be important improve-
ments of applied fsQCA. !ey are calculated by some of the relevant pack-
ages, and making use of them comes at no cost, producing potentially huge 
gains. Researchers should make use of them even if they are not interested in 
analyzing the non-occurrence of the outcome. PRI and PRODUCT help to 
identify, and potentially reject as su%cient conditions, those sets that pass the 
consistency threshold only because they are so small, i.e., because their mem-
bership scores are highly skewed.

PRI, just like consistency, is a continuous measure. !is, of course, raises 
the question of where to put the threshold above which PRI (and PRODUCT) 
are high enough to consider the condition under consideration to be a suf-
"cient condition. In the following, we provide some clues. First of all, inter-
preting PRI and PRODUCT only makes sense, of course, for those conditions 
that have passed the consistency threshold in the "rst place. In addition, we 

21 !is inference is also supported by the fact that for outcome ~U there are two true logically 
contradictory cases while for outcome ~U there is only one (Figure 9.3).

Table 9.9 Consistency, PRI, and PRODUCT for simultaneous subset relation

Outcome U Outcome ~U

Row Consistency PRI PRODUCT Consistency PRI PRODUCT

PSR 0.911 0.647 0.589 0.836 0.353 0.295
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encourage readers to always inquire which of the two consistency values (for 
Y and for ~Y) are driven by true logically contradictory cases. Researchers 
could use the presence of logically contradictory cases as an argument for 
ruling out as evidence of su%ciency one of the two subset relations of X with 
Y and ~Y.

In sum, researchers should combine considerations of PRI and PRODUCT 
with a more case-oriented focus and take true logically contradictory cases 
head-on. Researchers should also be aware that skewed membership scores in 
conditions are a frequent phenomenon when using the Truth Table Algorithm 
(Chapter 7). !e reason is simple. In the Truth Table Algorithm, each truth 
table row is tested for its consistency as a su%cient condition for the outcome. 
As shown above (section 4.2 and Chapter 7), most cases have low member-
ship in most truth table rows. In other words, most truth table rows denote 
small sets. !is might occur even when each individual set in the analysis is 
not skewed at all. !us, the problem of skewedness might be hidden from 
the eyes of the researcher who believes him- or herself to be on the safe side 
because no single condition is skewed.

9.2.3 A general treatment of skewed set membership in fuzzy-set analyses

!e deeper, underlying issue in all the potential pitfalls addressed so far in 
this section is the impact of skewed distributions of set membership scores. 
An extensive treatment of all the potential pitfalls, and their potential cures, 
is a still-pending task in the set-theoretic literature – and one which goes well 
beyond the scope and aims of this book. Our following overview is intended 
simply to create a sensitivity to this topic and to outline potential avenues for 
further work on this issue.

In order to visualize our argument, we use a modi"ed version of an XY 
plot (Figure 9.4). In addition to the usual diagonal running from the bottom 
le& to the top right, we add another diagonal running from the top le& to the 
lower right. Just as the commonly plotted diagonal denotes where X = Y, the 
new diagonal denotes where X = ~Y. By using two diagonals, we can therefore 
visualize subset relations for Y (standard main diagonal) and ~Y (new diag-
onal) (see also Cooper and Glaesser 2011a). For instance, if X is a subset of 
~Y, all cases fall below the new diagonal. If X is necessary for ~Y, then all cases 
fall above the new diagonal.

With two diagonals, four di#erent areas are formed. In the following, we 
spell out the subset relations that one would infer if all cases fell into only 
one or two of the four areas. We specify these areas for all the eight logically 

  



The analysis of necessity and sufficiency245

possible set relations between conditions X and ~X, on the one hand, and 
outcomes Y and ~Y, on the other:

1. All cases in areas I and/or IV: X → Y.
2. All cases in areas II and/or III:  X ← Y.

If X is su%cient for Y, then this means that X ≤ Y for all cases. We can neg-
ate this statement and obtain ~X ≥ ~Y. Hence, if all cases fall in the areas I 
and IV, this not only means that X is su%cient for Y (X ≤ Y), but also that ~X 
is necessary for ~Y (~X ≥ ~Y). Similarly, an area which denotes necessity of 
X for Y (X ≥ Y) also describes the subset relation ~X ≤ ~Y. We can therefore 
say:

3. All cases in areas I and/or IV: ~X ← ~Y.
4. All cases in areas II and/or III:  ~X → ~Y.

As mentioned above, if X is a subset of ~Y, all cases fall below the new 
diagonal. Similarly, if ~Y is a subset of X, then all cases fall above the new 
diagonal. Hence:
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Figure 9.4 XY plot – four areas and eight potential subset relations
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5. All cases in areas III and/or IV:  X → ~Y.
6. All cases in areas I and/or II: X ← ~Y.
 We can again negate statements 5 and 6 and get the following:
7. All cases in areas III and/or IV: ~X ← Y.
8. All cases in areas I and/or II: ~X → Y.

As we see, in order to denote su%ciency and necessity, two areas of the XY 
plot are always examined. Note that, through the expression “and/or,” we have 
indicated that the cases can fall into both areas or also into just one of them – 
what matters is that they cannot fall into any other area in order to be fully 
consistent set relations.

Now, consider the consequences if all cases fall into just one of the four 
areas. We are then confronted with an interesting phenomenon. In order to 
explain, let us start with area I. If all cases fall into area I, then – based on our 
list from above – the following statements are true:

All cases in area I: X → Y & ~X ← ~Y & X ← ~Y & ~X → Y.

We see that, with all cases in area I, both X and ~X are su%cient for Y and 
necessary for ~Y. !is clearly is a logical contradiction. It occurs when mem-
bership in Y is skewed towards high membership. !e stronger the skewedness 
in Y towards high membership, the more membership in X can vary for this 
phenomenon to still occur.

If all cases only fall into area II, then the following holds:

All cases in area II:  ~X → Y & ~X → ~Y & X ← Y & X ← ~Y.

In words: ~X is su%cient for both Y and ~Y and X is necessary for both Y and 
~Y. !is logical pitfall occurs when membership in X is skewed towards high 
membership. !e stronger the skewedness in X towards high membership, 
the more membership in Y can vary for this phenomenon to still occur.

If all cases fall in area III, then the following holds:

All cases in area III:  X ← Y & ~X ← Y & X → ~Y & ~X → ~Y.

In words: both X and ~X are necessary for Y and both X and ~X are su%cient 
for ~Y. !is logical pitfall occurs when membership in Y is skewed towards 
low membership. !e stronger the skewedness in Y towards low membership, 
the more membership in X can vary and still allow for this phenomenon to 
occur.

If all cases fall into area IV, then the following holds:

All cases in area IV:  X → Y & X → ~Y & ~X ← Y & ~X ← ~Y.
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In words: X is su%cient for both Y and ~Y, and ~X is necessary for both Y 
and ~Y. !is logical pitfalls occurs if membership in X is skewed towards 
low membership. !e stronger the skewedness in X towards low membership, 
the more membership in Y can vary and still allow for this phenomenon to 
occur.

Apart from formal logical exercises, what are the insights of this for applied 
fsQCA? First, and importantly, skewed set-membership scores do have ser-
ious impacts on drawing inferences with set-theoretic methods as they can 
lead to illogical statements. Second, all of these analytic problems can occur 
even if neither X nor Y is a constant. Instead, as the above XY plot shows, 
all that is required is that cases tend to fall into speci"c triangular regions of 
the XY plot. !is, in turn, already happens when set membership scores are 
skewed rather than being constant. !ird, and related to the previous point, it 
is enough that either X or Y is skewed for these pitfalls to occur. !e stronger 
the skewedness in one set, the more membership in the other set can be dis-
tributed normally and the logical pitfall still arise. Both points make it harder 
for researchers to detect the presence of skewedness and its impact on their 
"ndings. Fourth, by allowing for less than perfect consistency scores, not all 
cases have to be located in one speci"c area, yet the analytic pitfalls could still 
occur.

Fi&h, the literature has so far only addressed some of the four scenarios 
caused by skewed set membership. More precisely, the scenario with most 
cases in area IV is dealt with by our discussion of the non-existence of the 
Rule of the Excluded Middle in fuzzy sets in section 9.2.2. As explained there, 
the PRI and the PRODUCT parameters are possible instruments to remedy 
the fallacy of declaring X su%cient for both Y and ~Y.22 Furthermore, the 
scenario with most cases in area II is addressed in the discussion on rele-
vant and trivial necessary conditions in section 9.2.1. !e di#erent formulas 
for the relevance of necessary conditions aim at not pointing to those sets 
of X that are highly skewed towards high membership as relevant neces-
sary conditions even if membership in Y is also highly skewed towards high 
membership.23

Sixth, as point "ve shows, only the analytic consequences of skewed mem-
bership in X have been addressed in the literature so far. !e consequences 

22 We now see that PRI and PRODUCT could also be used to avoid the fallacy of declaring ~X 
necessary for both Y and ~Y.

23 Following our logic as discussed here, these formulas could also be used to avoid the fallacy of 
declaring ~X su%cient for both Y and ~Y.
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of cases only falling into area I or area III, respectively, are not addressed 
and stem from skewedness in outcome Y. Luckily, they are of somewhat less 
practical research concern because skewedness in Y seems less likely or, at 
least, less likely to go unnoticed. First, unlike condition X, the outcome Y 
usually consists of a single set rather than of several sets combined by logical 
AND (produces small sets) or logical OR (produces large sets). Second, being 
rooted in the qualitative mode of reasoning, set-theoretic methods tend to 
be more Y-oriented and thus researchers tend to pay closer attention to how 
their cases score in the outcome set. !is, in turn, makes awareness of skewed 
set membership more likely – though not necessarily awareness of the ana-
lytic consequences it triggers.

Clearly, skewed set membership can lead to 'awed conclusions. Here are 
some proposals for how to avoid such pitfalls. !e most straightforward sug-
gestion is to avoid skewed membership distributions. !is, however, is o&en 
easier said than done. For one, sometimes all cases under investigation simply 
have low membership in a given set. For instance, most cases in research on 
public debt among EU member states might simply have low membership in 
the set of, say, countries with a very light public debt burden. If so, research-
ers might want to mitigate skewedness by reconceptualizing and therefore 
also recalibrating the set into, say, countries with a modest public debt bur-
den. Second, as mentioned above, skewedness is o&en present even if sin-
gle conditions are not skewed at all. In the analysis of su%ciency, this occurs 
because we are usually looking at logical AND combinations and o&en many 
cases have low membership in such conjunctions, i.e., they denote sets that 
are skewed toward low membership scores. In the analysis of necessity, we 
are sometimes interested in logical OR combinations (functionally equiva-
lent necessary conditions, see section 3.2.1.2) and o&en many cases have high 
membership in such expressions, i.e., they denote sets that are skewed toward 
high scores.

All of this illustrates why it is of great importance that researchers keep an 
eye on the distribution of set-membership scores and whether it could in'u-
ence their results. With our formula for the relevance of necessity, and with 
Ragin’s PRI and PRODUCT formulas, some initial parameters are available 
for this task. In addition, researchers should always visualize their "ndings 
through an XY plot and see if their cases cluster in one of the four areas of 
Figure 9.4.
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At-a-glance: the analytic consequences of skewed set-membership 
scores

Sets with skewed membership scores can lead to flawed inferences in the analysis of suf-
ficiency and necessity.

Researchers should always check whether any of the single sets or their solution for-
mulas are characterized by skewed membership scores.

In the analysis of necessity, the Schneider–Wagemann formula for relevance can help 
researchers avoid flawed statements of necessity. In the analysis of sufficiency, the param-
eters of PRI and PRODUCT are helpful and should be used more frequently in applied 
QCA.

Skewedness has further intricate implications for which no ready-made fixes currently 
exist. This makes it all the more important that researchers do not lose touch with their 
cases and their membership scores in the sets under consideration.

 





Part IV
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10 Variants of QCA

10.1 The two-step approach

!e two-step approach (Schneider and Wagemann 2006; Schneider 2008) is 
based on the idea that o"en in comparative social science research endeav-
ors, “conditions … can be divided into two groups, which can be labeled 
‘remote’ and ‘proximate’ factors” (Schneider and Wagemann 2006: 759; see 
also Kitschelt 2003). Remoteness and proximity can be de#ned along various 
dimensions. For instance, remote factors are relatively stable over time. Also, 
their origin is o"en remote from the outcome to be explained on the space 
and time dimensions. As a consequence, remote factors cannot usually be 
easily altered by actors and are treated as exogenously given. In many research 
settings, remote factors are adequately labeled structural factors, contexts, his-
torical legacies, etc. Proximate factors, by contrast, vary over time and origin-
ate not so far back in the past. !ey can be relatively easily modi#ed by actors; 
o"en, they even describe human action itself. Remoteness and proximity can 
thus be interpreted not only in terms of space and time, but also with regard 
to the causal closeness which they are assumed to have.

Easy reading guide

In the previous parts of this book, we have first presented the basics of QCA (Chapters 
1–6), built them together into the Truth Table Algorithm (Chapter 7), and then elaborated on 
strategies for avoiding potential pitfalls (Chapters 8 and 9). We have done so by referring 
to static crisp-set or fuzzy-set QCA. In this chapter, we present further variants of QCA. 
More precisely, we discuss two-step approaches in QCA (10.1); multi-value QCA (mvQCA, 
10.2) and how causally relevant notions of time can be dealt with in set-theoretic methods 
(10.3).

Readers at beginner’s level should turn to these topics only having gone through Chapters 
1–9. Advanced readers are likely to have already come across these three additional forms 
of QCA but might be interested in further reflections and critical assessments of them.
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Two-step thinking is of course not exclusive to QCA. Many sub-disciplines 
of the social sciences refer to causal processes (proximate factors) which unfold 
within certain contexts (remote factors). Kitschelt (1999), for instance, argues 
that explanations that rely exclusively on remote (structural) factors provide 
for causal depth, but fall short of demonstrating the causal mechanisms that 
link deep, distant causes with an outcome. By contrast, explanations based 
on proximate factors display causal mechanisms (o"en, but not necessarily, 
at the micro-level). Consequently, a good causal statement consists of #nd-
ing the right balance between the two core features: causal depth and causal 
mechanisms (Schneider and Wagemann 2006: 761f.).

!e general principle of the two-step QCA approach is as follows. In step 
one, a truth table is constructed exclusively based on remote conditions and 
the outcome. !is truth table is then logically minimized, yielding a solution 
term that unravels what we label “outcome-enabling conditions” (Schneider 
and Wagemann 2006: 761). Because of the deliberate exclusion of proximate 
factors that are expected to matter for the outcome, the analysis in step one 
is under-speci#ed. It should therefore be performed using lower consistency 
thresholds, in order to leave room for improvement once the proximate con-
ditions are brought into the picture in step two.

!e second step consists of constructing truth tables for each outcome 
enabling context from step one and the proximate conditions. Hence, if step 
one produced, say, three outcome-enabling contexts, then one truth table is 
constructed for each context and the proximate conditions. !e logical mini-
mization of these tables yields the su$cient paths towards the outcome. In 
step two, the consistency thresholds should be high and no assumptions about 
logical remainders should be made.1 !e purpose of step two is to unravel the 
con#guration of proximate conditions that link a well-speci#ed remote con-
text to the outcome.

One positive side-e%ect of the two-step approach is that, by splitting the 
conditions into two groups, the number of logical remainders is drastically 
reduced (Schneider and Wagemann 2006: 762). !e reduction in the number 
of remainders stems from barring any of the combinations between remote 
conditions that have not shown themselves as being outcome-enabling, on 

1 Alternative treatments of logical remainders in step two are possible and plausible. For instance, 
Schneider (2009: ch. 6), who is interested in the con#guration of political institutions (proximate 
conditions) that are su$cient for the consolidation of democracy within speci#c societal (remote) 
contexts, suggests refraining from any logical minimization in step two. Otherwise, the crucial 
information on the precise institutional con#guration gets lost. Another option could be to prevent any 
logical remainder that implies the remote context being used as a counterfactual and to produce the 
intermediate solution term.
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the one hand, and, proximate factors, on the other. Of course, the plausibil-
ity of excluding these combinations of conditions crucially depends on the 
plausibility of the division into remote and proximate conditions imposed by 
the researcher.

We nevertheless think that, despite being contingent on such theory-
based decisions by the researcher, the two-step approach represents a viable 
research strategy that holds potential when researchers are confronted with 
a large number of conditions and/or when a clear division into remote and 
proximate factors suggests itself (e.g., Roehner 2011). !e two-step QCA 
approach can be used both with crisp and fuzzy sets, and with multi-value 
“sets”  (section 10.2).2

10.2 Multi-value QCA

So far, in this book, we have almost exclusively referred to crisp-set and fuzzy-
set QCA. Next to these two QCA variants, multi-value QCA (mvQCA) is 
o"en presented as a further type of QCA (Cronqvist 2005; Cronqvist and 
Berg-Schlosser 2008). It uses some of the key principles of QCA – #rst and 
foremost, the logical minimization of truth tables – but operates not on crisp 
or fuzzy sets but on multi-value “sets.”

!e argument most o"en encountered for introducing yet another form 
of QCA is that many social phenomena do not manifest themselves in expli-
cit (crisp sets) or implicit (fuzzy sets) dichotomies.3 Rather, many of them 
straightforwardly consist of multinomial categories. !ink, for instance, of 
the geographical location of a country (Europe, America, Asia, etc.), family 
status (married, single, widowed), professional a$liations (lawyer, academic, 
unemployed, etc.), to mention just a few. With any multinomial variable, 
there is no clear way to assign membership scores of cases into one crisp or 
fuzzy set.

In standard csQCA or fsQCA, a multinomial variable with c categories can 
be captured by creating c−1 di%erent sets.4 For instance, the multinomial vari-
able marital status with three categories (married, single, widowed) can be 

2 For a further discussion of the two-step approach, see also Mannewitz (2011).
3 Recall (section 1.1.3) that fuzzy sets, despite their “continuous” membership scores, also maintain 

the notion of dichotomy through the 0.5 qualitative anchor that separates cases into two qualitatively 
di%erent groups with regard to their membership in the fuzzy set.

4 !is procedure is akin to creating multiple dummy variables in multivariate regression.
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captured by the two sets “married” and “single.” !e third category (widowed) 
is implied by the combination “not married” and “not single.”

As Cronqvist and Berg-Schlosser (2008: 70–72) point out, this strategy of 
capturing multi-value concepts through multiple sets creates two problems. 
First, it increases the number of truth table rows and thus the problem of lim-
ited diversity. Second, some of these remainders are, by default, what we have 
called impossible remainders (sections 6.2.3 and 8.2.3). For instance, by cap-
turing all three categories of the variable marital status through the two sets 
“married” and “single,” we create at least one implausible truth table row that 
denotes individuals who are both married and single. Proponents of mvQCA 
see as its strength the fact that it mitigates limited diversity and the related 
analytic challenges.

In the following, we #rst present the principles and then a critical assess-
ment of mvQCA. Here, we focus both on whether mvQCA really handles the 
issue of limited diversity in a superior manner compared to existing variants 
of QCA as well as on limitations that are inherent to mvQCA.

10.2.1 Principles of mvQCA: notation and logical minimization

Since mvQCA operates with conditions that do not indicate the presence 
or absence of one speci#c trait of a case, but allows di%erent statuses, the 
notational system of just using letters with or without tilde (e.g., A and ~A) 
in order to indicate the presence or absence of a condition cannot be used 
anymore. Instead, the status of the condition is either indexed or indicated 
in brackets. For example, if a case takes on the value 2 in condition A, the 
indexed notation would be A2 and the version using brackets A{2}. A com-
bination of the conditions A, B, and C, where A takes on the value 2, B 
the value 0, and C the value 3, would therefore be A2B0C3 in the indexed 
form and A{2}B{0}C{3} in the form using brackets. In this chapter, we use 
brackets.5

Truth tables and their logical minimization are also at the core of mvQCA. 
!e principles of logical minimization are very similar to those in csQCA 
and fsQCA (section 4.3.1). Two or more expressions can be simpli#ed if they 
ful#ll the following two criteria. First, all but one conditions have to have 
the same value in all the expressions (e.g., condition A has to have the value 
2, or condition B has to have the value 1 in all expressions, i.e., A{2}B{1}). 
Second, the remaining condition (C in our example) has to be present in 

5 !is presentational form is also used in the Tosmana 1.3.2 so"ware.
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every primitive expression resulting from the #rst step (A{2}B{1}), taking on 
every possible value. If, e.g., every condition can take on the values 0, 1, 2, 
and 3, then condition C has to be combined with A{2}B{1} in all these values. 
Only then can this condition be excluded through logical minimization. For 
instance, in the following logical expression, all the prime implicants con-
sist of A{2}B{1} and C takes on all of its possible values across these prime 
implicants:

A{2}B{1}C{0} + A{2}B{1}C{1} + A{2}B{1}C{2} + A{2}B{1}C{3} → Y.

Condition C therefore is logically redundant and can be eliminated. !is 
yields the new, more parsimonious expression:

A{2}B{1} → Y.

If any of the prime implicants were missing, then this logical minimization 
would not be possible. For example:

A{2}B{1}C{0} + A{2}B{1}C{1} + A{2}B{1}C{3} → Y

cannot be minimized into A{2}B{1}, since C does not appear in the status 
C{2}, i.e., the prime implicant A{2}B{1}C{2} is missing.

Continuing with the example, A{2}B{1} could be further simpli#ed into 
A{2}, if A{2}B{0}, A{2}B{2}, and A{2}B{3} were also available for logical mini-
mization. However, in order for this to be the case, the following conjunctions 
would need to be connected to the outcome:

A{2}B{0}C{0}, A{2}B{0}C{1}, A{2}B{0}C{2}, and A{2}B{0}C{3}

in order to make A{2}B{0} available;

A{2}B{2}C{0}, A{2}B{2}C{1}, A{2}B{2}C{2}, and A{2}B{2}C{3}

in order to make A{2}B{2} available; and

A{2}B{3}C{0}, A{2}B{3}C{1}, A{2}B{3}C{2}, and A{2}B{3}C{3}

in order to make A{2}B{3} available.

As can be seen, the principles of logical minimization in mvQCA are similar 
to those in the truth table analysis of csQCA and fsQCA.6 !e di%erence is 
that in csQCA and fsQCA, only one partner conjunction is needed in order 
to render minimization possible. In mvQCA, by contrast, more (sometimes 

6 According to Cronqvist and Berg-Schlosser (2008: 74), the logical minimization used on mvQCA is as 
a generalized version of that in csQCA.
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many more) such partner conjunctions are needed, simply because single 
conditions can appear in various statuses. Because the logical minimization 
in mvQCA requires more from the data, conservative solution terms tend to 
be more complex and most parsimonious solution terms based on more sim-
plifying assumptions than the respective solutions produced by other variants 
of QCA.

In sum, mvQCA is in principle very similar to the main variants of QCA. 
First, a data matrix is converted into a truth table. !en, the truth table is 
logically minimized, applying rules very similar to those in QCA, and pro-
ducing solution formulas that can be interpreted in terms of su$ciency. In 
practice, however, some quali#cations are apt.

10.2.2 An assessment of mvQCA

In the following, we raise some issues related to mvQCA, some of which have 
not been discussed in detail so far and that should help researchers in decid-
ing which variant of QCA to choose. We address the question of the set-the-
oretic status of mvQCA and shed some light on whether mvQCA is superior 
to csQCA and fsQCA in handling both multinomial concepts and limited 
diversity.

10.2.2.1 Is mvQCA a set-theoretic method?
In the following, we raise three issues that put the status of mvQCA as a set-
theoretic method in doubt. First, it is argued (Vink and van Vliet 2009) that 
the data – multi-value variables – squarely #t into the notion of sets. Second, 
within the category of multi-value variables, two quite di%erent types exist 
(one ordinal and one categorical). !ird, mvQCA tends to de-emphasize one 
of the core epistemologies of set- theoretic methods: the focus on subset rela-
tions of necessity and su$ciency, respectively.

!e distinctive feature of mvQCA is that it can handle variables with 
multiple categories. Can such multi-value variables be perceived as sets, 
though? One distinct feature of sets is that some cases are members while 
other are not and that the set label already expresses this qualitative distinc-
tion between members and non-members. For instance, the (crisp or fuzzy) 
set of rich people establishes a qualitative di%erence between those that are 
(more) in that set (rich people) and those that are not (not-rich people). 
Now, let us try to do the same with a typical multi-value variable, say, “pro-
fessional status” with the four categories “white collar (1)”; “blue collar (2)”; 
“farmers (3)”; “managers (4).” It is impossible to assign non-membership 
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to any person in this multi-value variable. If there is no non-membership, 
it suggests that multi-value variables are indeed not sets. Along these lines, 
notice that the acronym mvQCA stands for multi-value QCA and not multi-
set QCA, suggesting that the set-theoretic status of mvQCA is at least not 
entirely clear.

One counterargument in favor of mvQCA being a straightforward set-
 theoretic method could be that multinomial variables simply stack together 
multiple crisp sets. Rather than focusing on one professional category (e.g., 
the crisp set “blue collar workers”) and thus relegating all others into the 
residual categories of non-blue collar workers, as is done with crisp sets, it is 
argued that mvQCA unpacks the set of non-members by allowing for mul-
tiple categories. From this perspective, each category in a multi-value variable 
is a set in itself (Vink and van Vliet 2009: 273). !is interpretation, though 
appealing, has a major shortcoming. It leaves open the crucial question of 
how non-membership in a set is handled in mvQCA. If we take, for instance, 
the professional category “farmer,” it is not clear of which set of other pro-
fessional categories “farmers” are non-member.7 One fundamental feature 
of sets is that they establish the qualitative di%erence between members and 
non-members of a given set. Multi-value “sets” are ambiguous about this. !e 
only solution to establishing clear membership and non-membership is the 
aforementioned strategy of creating (crisp or fuzzy) sets for each of the cat-
egories in a multinomial variable. Only then it is possible to correctly identify 
all the sets in which a farmer, for example, is a non-member (see Vink and 
van Vliet 2009: 273).

A second reason why the set-theoretic status of mvQCA is put in doubt 
is the fact that many mvQCA applications do not operate on multinomial 
variables. Instead, they use ordinal variables, o"en derived from underlying 
interval-scale level data (Vink and van Vliet 2009: 271).8 For instance, in a 
textbook example introducing mvQCA (Cronqvist and Berg-Schlosser 2008), 
the only multi-value variable used is called “GNPCAP” and contains three 
di%erent categories, with countries in category 1 displaying lower GDP per 

7 !e mvQCA minimization algorithm, where all combinations of possible values have to be observed 
in order to logically minimize an expression (see section 10.2.1), suggests the interpretation that a case 
with given value in a multi-value “set” has a membership of 0 in all the other possible values of the 
same “set.” If this interpretation is correct – the literature on mvQCA is not explicit on that, though – 
then mvQCA could be seen as a set-theoretic method. !en, however, one cannot simultaneously 
sustain the claim that mvQCA reduces the number of logical remainders because multi-value “sets” de 
facto are a conglomerate of multiple crisp sets (see section 10.2.2.2).

8 Also consider that only a small fraction of all published QCA are performed with mvQCA (Rihoux 
et al. in press).
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capita than those in category 2, which, in turn, display lower GDP per capita 
than those in 3. Hence, while the primary motivation for mvQCA is to handle 
multinomial categories, in research practice, and methodological introduc-
tions, this is extended to (or con'ated with) ordinal notions of multi-value 
variables.9 For multi-value variables with an ordinal notion, however, it is not 
clear what the advantage over fuzzy sets is.

Finally, the impression that mvQCA is di%erent from the main QCA var-
iants is fostered if we recall what the main aims – and strengths – of set-
 theoretic methods are: the unraveling of set relations that are interpreted in 
terms of necessity and su$ciency and all other forms of conditions, such as 
INUS and SUIN, that can be derived from it (see section 3.3, in particular 
3.3.2). Precisely the notions of set relations, necessity, and su$ciency are 
strikingly missing in publications on mvQCA, though.10

In sum, when confronted with multi-value variables, we have two choices. 
Either we apply mvQCA but create uncertainty about the set-theoretic status 
of such data (Vink and van Vliet 2009: 286) and, in consequence, of mvQCA, 
or else we create multiple (crisp or fuzzy) sets and apply csQCA or fsQCA, 
thus creating certainty about the set-theoretic status of the method we use. If 
mvQCA operates on ordinal multi-value variables, then its distinct methodo-
logical contribution is less clear.

10.2.2.2 Does mvQCA reduce limited diversity?
One of the arguments in favor of mvQCA and against the strategy of using 
multiple (crisp or fuzzy) sets for representing multinomial concepts is 
that, with mvQCA, the number of conditions is kept lower and thus the 
problem of limited diversity is more under control (Cronqvist and Berg-
Schlosser 2008: 70ff.). It is easy to see, however, that this claim is difficult 
to sustain.

With three crisp- or fuzzy-set conditions A, B, and C, there are eight logic-
ally possible combinations, i.e., truth table rows. But if we allow for, say, three 
statuses of conditions A and B and for four statuses of condition C, then no 
less than 3 × 3 × 4 = 36 logically possible combinations result. Five conditions, 
each with four possible statuses, will already lead to 45 = 256 truth table rows. 

 9 In the same publication, another illustration of multi-value variables also uses a metric scale – the age 
of children – to group them into categories 0, 1, 2, and 3 of a multi-value variable.

10 In their seminal introduction to mvQCA, Cronqvist and Berg-Schlosser (2008) do not mention any of 
these terms once. Furthermore, Tosmana, the so"ware developed by Cronqvist for mvQCA, does not 
provide a possibility for analyzing necessary conditions.
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Clearly, many of these rows will be logical remainders, and several of them 
might even be impossible remainders.

One strategy for mitigating this problem is to limit the number of categor-
ies of conditions. Cronqvist and Berg-Schlosser (2008: 84) propose a max-
imum of four categories. However, even in such a scenario, many truth table 
rows result. Ironically, then, the best way of keeping limited diversity at bay is 
to make mvQCA as similar to csQCA or fsQCA as possible.

A second strategy for reducing limited diversity consists of representing a 
given multinomial concept with c categories with neither a multi-value condi-
tion with c values nor with c−1 crisp sets. Instead, a researcher could establish 
a new crisp set that captures each case’s membership and non-membership 
in only one of the categories (e.g., professional categories: farmers and non-
farmers), thus focusing on just one of the possible values the concept can take 
(Vink and van Vliet 2009: 271f.). Clearly, with this strategy, there is a tradeo% 
between reducing limited diversity, on the one hand, and measurement val-
idity of a concept, on the other. First, because many di%erent cases are cap-
tured within the same category (e.g., “non-farmers”), this strategy is prone to 
increase the number of contradictory truth table rows. Second, and related, 
whenever the negation of such a set is involved in a solution, either on its own 
or as an INUS or SUIN condition, it is di$cult to substantively interpret this 
#nding, for all that is known about the non-members of the set of farmers is, 
well, that they are non-farmers but not whether they are doctors, academics, 
or street cleaners.

Recall that one argument in favor of mvQCA is that it reduces the problem 
of limited diversity vis-à-vis the strategy of converting multi-value concepts 
with c categories into c−1 crisp or fuzzy sets (Cronqvist and Berg-Schlosser 
2008: 72; Herrmann and Cronqvist 2009: 39). It is argued that by convert-
ing multinomial variables into crisp or fuzzy sets, one unavoidably creates 
truth table rows that are impossible.11 !is argument would only be in favor 
of mvQCA and against csQCA and fsQCA if it were the case that in mvQCA 
fewer of these impossible remainders were produced than with the aforemen-
tioned strategy of converting multinomial variable into various crisp or fuzzy 
sets. !is, however, is not the case. As can be shown, both strategies for hand-
ling multinomial concepts – mvQCA and the creating of c−1 crisp or fuzzy 

11 If a condition A with three values is split into three mutually exclusive crisp sets A1, A2, and A3, then 
these three conditions form eight truth table rows. Of these eight rows, only three are possible, namely 
all those rows that describe a situation in which cases have membership in just one of the sets. !e 
remaining #ve rows refer to hypothetical cases which have membership in more than one set, or in no 
set, and are, thus, impossible (see also sections 6.2.3 and 8.2.3).
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sets – produce exactly the same number of possible truth table rows.12 Hence, 

vant logical remainders.13

sion, for one of the arguments in favor of mvQCA is that it avoids the pitfalls 

lined above, consisted in an increase of limited diversity and the creation of 
impossible remainders.

! e initial problem raised by mvQCA 
ena do not neatly "t into one crisp set 

tial upstream (Rihoux and Lobe 2009
in press) research phase can potentially be of help in learning more about 
cases and potential patterns in the data. As has become clear, however, we 
are skeptical whether the most important analytic goals that can be achieved 

Most importantly, we argue that it is impossible to simultaneously claim that 
mvQCA operates on sets and reduces limited diversity. Instead, to us it seems 

ited diversity.

12 
m m (c) −  m crisp 

 −m truth table rows. Each 

by 2c −1 = ½*2c

be plausible which show only exactly one of the categories to be present, and the others absent. ! is 

c, but by c/(½*2c), which 
expresses the share of the plausible truth table rows (on all added truth table rows). If performing 

2  −m * ∏m (c/(½*2c

conditions, that is ∏m(c). ! e mathematical proof is this: 2  −m = ∏m(2c)/2m and each single one of the 
m other factors, c/(½*2c) = 2c/2c. ! us: ∏m(2c)/2m * ∏m(2c/2c) = ∏m(2c) / 2m * ∏m(2c) / ∏m(2c) = ∏m(2c) 
/ ∏m(2c) * ∏m(2c) / 2m = ∏m(2c) / 2m. Furthermore: ∏m(2c) = 2m * ∏ (c). ! us, the formula becomes 2m * 
∏m(c) / 2m = ∏m(c). And this is precisely the number of truth table rows in an mvQCA.

For our example, with A and B having three categories each, and C four, mvQCA produces 
3 3 4 = 36 truth table rows. For csQCA, we calculate, following our formula, 23+3+4 −3 * (3/(½*23)) *  
(3/(½*23)) * (4/(½*24)) = 27 * (¾) * (¾) * ( 4

8
) = 128 * 0.75 * 0.75 * 0.5 = 36 plausible truth table rows.

13 one source for impossible 
remainders. All other types of impossible remainders, as discussed in sections 6.2.3 and 8.2.3, can of 
course also occur in mvQCA, as in csQCA and fsQCA.
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In closing, we deem it important to address two further misunderstandings 
related to mvQCA. First, mvQCA cannot make the use of crisp sets obso-
lete. For one, the outcome in mvQCA has to be a crisp set (Cronqvist and 
Berg-Schlosser 2008: 84).14 Only the conditions can be multi-value, but as 
shown, even there the advice is to have as many crisp sets as feasible, even in 
an mvQCA. Second, the choice of mvQCA vis-à-vis other variants of QCA 
is not (and should not be) driven by the number of cases studied. !us, the 
claim according to which csQCA is appropriate for small-N, mvQCA for 
mid-sized-N, and fsQCA for large-N (Herrmann and Cronqvist 2009) is not 
convincing, for it seems to assume that small-N studies – by default – exclu-
sively invoke dichotomous concepts and that large-N studies deal with con-
cepts that can always be best captured by fuzzy sets. We, instead, think that 
the decision of which QCA variant to apply should be based exclusively on 
the characteristics of the underlying concepts. If in a small-N analysis all con-
cepts lend themselves to being represented by fuzzy sets, so be it.

10.3 Set-theoretic methods and time

So far, we have introduced set-theoretic methods as cross-sectional data ana-
lysis tools. When reporting solution formulas, the order by which conditions 

14 !ere is, however, no reason why, in principle, multi-value outcomes could not also be handled 
(Cronqvist and Berg-Schlosser 2006). In that case, each analysis would still focus on just one of the 
various values of the outcome, though. If four values in the outcome were allowed, then di%erent 
solution formulas could be derived for Y{0}, Y{1}, Y{2}, and Y{3}.

At-a-glance: multi-value QCA

mvQCA is designed for handling multinomial concepts that are not dichotomous in nature. 
The outcome has to be a crisp set, though.

mvQCA uses an indexed form of notation or brackets, such as A{2}. The principles of 
logical minimization are similar to those in csQCA and fsQCA, but solutions obtained with 
mvQCA tend to be more complex or based on a greater number of simplifying assump-
tions, thus raising the risk of making untenable assumptions.

The set-theoretic status of mvQCA is unclear, for multi-value variables squarely fit into 
the notion of sets; two quite different types of multi-value variables exist (ordinal and 
categorical); and mvQCA de-emphasizes the focus on subset relations of necessity and 
sufficiency.

An alternative to using mvQCA is to transform multinomial concepts with k categories 
into k−1 crisp or fuzzy sets and to use csQCA or fsQCA. This strategy produces exactly the 
same number of logical remainders once impossible remainders are discarded.
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are linked through logical AND or OR does not matter. A*B is equivalent 
to B*A and so are A+B and B+A. Just like their false friends in normal alge-
bra, these logical operators follow the commutative law (section 2.4.1). !us, 
unless speci#c strategies are adopted, solutions produced by QCA are largely 
insensitive to the potential causal role di%erent aspects of time might play.

It is obvious that any cross-sectional method that turns a blind eye to the 
relevance of time in its analysis will be subject to criticism. Since one of the 
trademarks of qualitative research is its careful treatment of di%erent aspects 
of time (Mahoney 2000; Grzymala-Busse 2010), this omission is particu-
larly awkward for a technique called “qualitative comparative analysis.” !e 
plausibility of causal claims made in qualitative research very o"en depends 
crucially on arguments that elaborate sequences (Mahoney et al. 2009), use 
causal process observations (Brady and Collier 2004, 2010), detect slow-
moving processes (Pierson 2003), use process tracing (George and Bennett 
2005; Hall 2006), invoke the notion of path dependency (Bennett and 
Elman 2006), and the like. In the following, we outline strategies for making 
set-theoretic approaches more time sensitive. For this, we #rst di%erentiate 
between di%erent forms of causally relevant notions of time (section 10.3.1), 
discuss informal ways of integrating some of these notions into the analysis 
(section 10.3.2), and then present a formalized set-theoretic treatment of 
sequence elaboration (section 10.3.3). In the major part of this section, we 
explain the principle and practice of the so-called temporal QCA (tQCA) as 
a further variant of QCA (section 10.3.4).

10.3.1 Forms of causally relevant notions of time

!ere are di%erent ways in which time, broadly understood, might be caus-
ally relevant. We only brie'y mention some of them here (for extensive treat-
ments, see, e.g., Mahoney 2000; Pierson 2000, 2004; Abbott 2001; Cappocia 
and Kelemen 2007; Grzymala-Busse 2010).

!e temporal order of events might matter. Former communist countries 
that #rst establish a functioning legal framework (A) and then liberalize their 
economy (B) might be more likely to achieve a proper market economy (Y) 
than countries that do it the other way around. If we introduce the notation 
“/” for a logical THEN, capturing thus the aspect of temporal order, we can 
say while A/B is su$cient for Y, B/A is not. Similarly, the causal sequence of 
events might matter. !is is the classical form of a causal process argument 
and could be denoted as A → B → C → Y. Unlike with temporal order, here 
conditions A, B, and C are causally connected in a sequence at the end of 

  

felicianoguimaraes
Realce

felicianoguimaraes
Realce

felicianoguimaraes
Realce

felicianoguimaraes
Realce

felicianoguimaraes
Realce

Feliciano
Realce



Variants of QCA265

15 See Grzymala-Busse (2010) for an intriguing discussion of the di%erences between “tempo” and 
“duration.”

which C implies the outcome of interest Y. A third possibility is that the speed 
of the processes might matter. Some events unfold their causal impact because 
they happen suddenly, last only brie'y, and are very visible. Military coups, 
the onset of a war, or even natural disasters are typical instances of this cat-
egory of time-related causes.15 O"en they are interpreted as critical junctures 
(Collier-Berins and Collier 1991; Mahoney 2000). Other processes, in con-
trast, produce an outcome precisely because they are evolving very slowly, 
o"en over several decades, if not centuries. Because the changes are incre-
mental, they o"en remain invisible and derive their causal role precisely from 
these characteristics (Pierson 2003, 2004). Even more intricate time-related 
arguments abound in the qualitative literature. Scholars detect feedback loops 
(A produces B, which, in a subsequent phase, has an e%ect on A) or antici-
pated e!ects (B occurs because the occurrence of A is anticipated, even if A 
then actually does not occur).

In short, without any attempt to include at least some of these aspects in set-
theory based research, its credentials as an essentially qualitative research tool 
are hampered, an issue hinted at early on by Ragin (1987: 162f.). Neglecting 
time o"en might also mean that wrong conclusions are drawn and conditions 
deemed irrelevant when they are not (or vice versa), a danger common to 
any purely cross-sectional approach. Finally, the integration of time into set-
theoretic techniques would be bene#cial because it greatly facilitates the com-
bination of case studies with cross-sectional approaches in a multi-method 
research design (section 11.4).

In the following, we describe several strategies for integrating some of these 
notions of time into set-theoretic-methods-based research. Depending on the 
research design and interest, some are more adequate than others.

10.3.2 Informal ways of integrating notions of time into set-theoretic methods

A #rst and very basic way to consider time in QCA is to run separate QCA for 
di%erent points in time. For instance, one might be interested in the change 
over time of the conditions that explain #scal discipline of EU member states. 
One could produce truth tables on identical sets of countries and conditions 
for, say, 1980, 1990, 2000, and 2010. !e logical minimization of these truth 
tables will yield di%erent solution terms. !e time-related analytically relevant 
information would be stored in the di%erence between these solution terms.
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Another strategy is to collect data for each case at di%erent points in time 
and then sort them as di%erent cases into one pooled truth table. Here, the 
relevant information is provided by how cases move over time in the prop-
erty space, i.e., how they move from one truth table row to another. In such a 
setup, a researcher might not necessarily want to engage in the logical mini-
mization of a pooled truth table, for the meaning of such a solution term is 
dubious. Instead, the strategy of pooling data over time seems more promising 
when analyzing multidimensional concepts over time. When using only two 
or three fuzzy sets, two- or three-dimensional plots provide a useful graphical 
representation of each case’s movement over time (for an example from wel-
fare state research, see Kvist 2007).

Four further, straightforward strategies exist. !e #rst three incorporate 
the notion of time through the calibration of conditions. First, raw data can be 
averaged over a given time period and this information then used for set cali-
bration. Second, the over-time di%erence in raw scores (or set-membership 
scores) is calculated and a new set is created that captures these di%erences. 
!e third strategy is already mentioned by Ragin (1987: 162f.). It entails 
producing a condition that expresses the sequence of two or more events. 
For instance, a researcher might have information not only on each case’s 
membership in the set of high in'ation (A) and slow growth (B), but also on 
whether in a given case A occurred before B or vice versa. Based on this, it 
is possible to assign a membership score for each case in the set called “High 
in'ation occurred before slow growth” (A_before_B). !is sequence-captur-
ing condition is then used along the other conditions to form a truth table. 
!is, in essence, is the strategy that is at the heart of temporal QCA (tQCA), 
which we describe in further detail in section 10.3.4.

A fourth way is to adapt the two-step approach (section 10.1) such that the 
di%erence between remote and proximate conditions is framed in an exclu-
sively time-related way. Remote conditions would be those occurring prior 
to the proximate conditions. !e #rst step of the analysis, taking into account 
only the remote conditions, would give us some indications of historical leg-
acies which are favorable for the occurrence of the outcome and the second 
step reveals which conjunctions of subsequently occurring factors are su$-
cient for producing the outcome within a speci#c historical legacy.

10.3.3 Sequence elaboration

Mahoney et al. (2009) develop an approach called sequence elaboration. 
In essence, this can be interpreted as an attempt at translating well-known 
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research principles of macro-historical approaches into set-theoretic lan-
guage and practices. !e aim of sequence elaboration is to specify the rela-
tive importance of individual conditions that are part of a sequence of causal 
factors. According to the authors, such analyses usually start with a bivariate 
relationship between X and Y, which is then extended, or elaborated, through 
the introduction of a further condition Z. Z can either be an antecedent or an 
intervening factor. Furthermore, X and Z can be any of the #ve possible types 
of cause in set-theoretic methods: necessary, su$cient, necessary and su$-
cient, INUS, and SUIN.

!e authors suggest the following notations for a research design aiming 
at elaborating a sequence by introducing an antecedent and an intervening 
condition, respectively:

Antecedent condition:  Z --?→ X –n(s)→ Y
              ║---------?---------↑.
Intervening condition:     X --?→ Z – ?→ Y
              ║-------n(s)-----↑.

Y always denotes the outcome of interest, X the initial cause, and Z the con-
dition that is subsequently added to the analysis. !e symbol ║ denotes the 
beginning and ↑ the end of the sequence; “n” stands for necessity, “s” for 
su$ciency, and a “?” for an unknown set relation. !e arrow → simply indi-
cates the direction of causality. Contrary to standard notation in set theory, 
it does not indicate su$ciency but, if preceded by the letter “n,” it denotes 
necessity.

Mahoney et al. (2009) show that depending on its position in the sequence, Z 
either contextualizes or diminishes the causal role of X. Consider, for instance, 
the “antecedent condition” scenario. A researcher interested in explaining the 
sequence of events that leads to the outbreak of large-scale protests in authori-
tarian regimes (Y) might #nd that egregious vote-rigging in national elections 
(X) is a su$cient condition. She then #nds that youth poverty (Z) is a neces-
sary condition for X and a su$cient condition for Y. Formally:

Z –n→ X –s→ Y
║-------s-------↑.

According to Mahoney et al.’s (2009: 135) inventory of sequence elabor-
ation results, this is an instance in which Z diminishes the initial relationship 
between X and Y. Anti-regime street protests (Y) do occur when youth pov-
erty is high (Z), even if no vote-rigging (X) took place.
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Imagine the very same example with the only di%erence being that, this 
time, Z is found to also be necessary for Y. Formally:

Z –n→ X –s→ Y
║-------n-------↑.

Now, the introduction of the antecedent condition Z contextualizes the initial 
role of X in bringing about Y. Vote-rigging (X) produces anti-regime protest 
(Y) only in countries that display high levels of youth poverty (Z).

In sum, by translating common arguments found in the path-dependence 
literature into the language of set theory and formal logic, sequence elabor-
ation tremendously enlightens the underlying structure of many, if not most, 
arguments that are commonly made in historical approaches to social phe-
nomena. Put the other way round, sequence elaboration makes set-theoretic 
approaches sensitive to time by showing that historical institutionalists essen-
tially make set-theoretic statements. For researchers interested in unraveling 
the sequences by which a given phenomenon is produced, set-theory-based 
sequence elaboration o%ers an appealing framework for analysis. Sequence 
elaboration helps clarify the arguments that are made and prevents research-
ers from making logically impossible claims.16

On a more cautious note, sequence elaboration also reveals the perplexing 
complexity that researchers are buying into when attributing causal relevance 
to the sequence of events. Notice that although Mahoney et al.’s (2009) dis-
cussion is limited to only two conditions (X and Z) and only two set rela-
tions (necessity and su$ciency), the number and complexity of sequences is 
already remarkable. !e mapping of sequences – and with this the capacity 
for avoiding logically 'awed claims – quickly reaches its limits when more 
conditions and forms of set relations (INUS and SUIN) are involved. !is, as 
we will see again below when discussing temporal QCA (section 10.3.4), is a 
common feature of paying attention to time in social research: it massively 
increases the complexity of the analysis and therefore faces remarkable sub-
stantive and methodological hurdles.

Sequence elaboration does not involve truth tables or standard principles 
of logical minimization. Nor is it meant to be comparative. Sequence elabor-
ation, therefore, does not represent a strategy that helps to make QCA more 
time sensitive. In the following, we describe the most elaborate strategy as of 
now: temporal QCA.

16 !e authors show that several formal logically possible sequences do describe, in fact, logical 
impossibilities.
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10.3.4 Temporal QCA

So far the most formalized approach to making QCA more amenable to 
capturing the causally relevant role of time stems from Caren and Panofsky 
(2005) and Ragin and Strand (2008). We #rst present the general di$culties 
that emerge when trying to formalize time as causally relevant information in 
a QCA. !en we explain the logic and principles of temporal QCA (tQCA), 
followed by some notes of caution.

10.3.4.1 Time and property space: keeping logical remainders at bay
Among the many di%erent notions of time mentioned above (section 10.3.1), 
tQCA tries to incorporate information on the sequence of events. In addition 
to the logical OR (A+B) and AND (A*B), in tQCA the temporal operator “/” 
(A/B, read: “A then B”) is also allowed for. !is has tremendous consequences 
for the number of logically possible combinations. With two conditions 
A and B, eight logically possible sequences are created.17 !ree conditions 
yield 48 sequences and four conditions already the staggering number of 
384 sequences. !e formula for calculating the number of logically possible 
sequences is:

k! * 2k,

with k being the number of conditions. !us, in a QCA based on a moder-
ate number of, say, #ve to eight conditions, the complexity of a truth table 
spins out of control if all possible sequences of events are taken into account. 
Fortunately, several research design strategies are available for reducing the 
number of logical remainders in tQCA. In the following, we present some of 
them.

!e #rst strategy, suggested both by Caren and Panofsky (2005: 158) and 
Ragin and Strand (2008), is to only focus on sequences that involve the pres-
ence of condition events. !e substantive argument for this restriction sounds 
plausible. If event A did not happen (~A), then it is futile, if not impossible, to 
determine whether ~A “happened” before event B (~A/B) or a"er B (B/~A). 
!is argument obviously extends to the sequencing of more than two condi-
tions and when more than one event condition did not occur.

!e second strategy is to focus only on event pairings and their sequences 
rather than the sequence of three or more events. For instance, with three con-
ditions A, B, C, there are three event pairings (A*B, A*C, B*C), yielding 23 = 
8 logically possible event sequences. As Ragin and Strand (2008: 439f.) show, 

17 !ese are: A/B, A/~B, ~A/B, ~A/~B, B/A, B/~A, ~B/A, ~B/~A.
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some sequences of two-event pairings are logically possible but intransitive. 
!is means they cannot occur and are thus impossible remainders (sections 
6.2.3 and 8.2.3).18 Such meaningless sequences must be excluded from any 
logical minimization procedure, thus reducing the problem of limited diver-
sity. When considering only sequences that involve the presence of two condi-
tions, the formula for calculating the number of transitive truth table rows 
that are created by transitive sequences is k!,19 with k being the number of ini-
tial conditions to be sequenced (Ragin and Strand 2008: 439). With three ini-
tial conditions, then, there are only six event sequences.20 While this number 
of truth table rows is much more manageable, it still implies that with more 
than a handful of events to be sequenced, things are prone to get out of con-
trol. !is is why the authors suggest not involving more than four sequenced 
events (Ragin and Strand 2008: 439f.).

Yet another powerful way of drastically reducing the property space is to 
#x the temporal order for one or more of the initial conditions (Caren and 
Panofsky 2005; Ragin and Strand 2008). To demonstrate how far this strategy 
reduces complexity, consider Caren and Panofsky (2005), who try to #nd the 
sequences of events that lead to the recognition of graduate student unions 
at research universities (Y). !eir four conditions are whether the potential 
union is at a public university (P), has elite allies (E), has a national union 
a$liation (A), and organizes a (threat of a) strike (S). Based on substantive 
arguments grounded in the meaning of these sets, it is a credible claim to say 
that condition P (or its negation ~P) always comes #rst and condition S (or 
~S) always comes last in any empirically observable sequence of events. !is 
means that the only events that can occur in di%erent sequences are E and 
A. In principle, these would be eight sequences (see note 20), but because 
the authors allow only the presence of events to be sequenced (and not their 
negation), this number is down to two. Cases are either members of the set 
E_before_A or the set A_before_E.

10.3.4.2 !e logic and principles of temporal QCA
!e introduction of sequences of events into formal logical statements requires 
additional rules of logical minimization. According to Caren and Panofsky 
(2005: 160–62), these are as follows.

18 For instance, if A occurs before B and C before A, then B cannot occur before C.
19 !e complete formula would be k! * 1k. !e expression 1k indicates that for each single condition only 

its presence and not its negation is taken into account. 1k can be omitted regardless of the value of k, 
however, since it always yields the value of 1.

20 !ese are A/B, A/C, B/C, B/A, C/A and C/B.
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First, researchers need to check the causal relevance of temporal borders. 
A statement like

A/B + B/A → Y

can be reduced to

A*B → Y,

because if both sequences of these two events lead to Y, their sequence is 
irrelevant.

Second, conditions can be logically minimized only if they belong to the 
same temporal block. For instance,

A/B/C + A/B/~C → Y

can be logically minimized to

A/B → Y.

In other words, within the sequence A/B, the presence or absence of condi-
tion C does not make any di%erence in bringing about Y.21

In the example discussed by Caren and Panofsky (2005) and Ragin and 
Strand (2008), #ve sequences lead to the recognition of student unions. 
Following the logical minimization rules, these #ve sequences can be reduced 
to only three sequences, as shown in Figure 10.1.

!ere are three sequences that are su$cient for the recognition of student 
unions at universities. In public universities students #rst obtain elite support 
and then threaten to strike or become a$liated with national associations 
(P/E/(S+A)) or students become #rst a$liated, then receive elite support, and 
then threaten to strike (A/E/S).

Rather than doing the logical minimization by hand, Ragin and Strand 
(2008) suggest using the so"ware package fsQCA 2.5. !is is done in the fol-
lowing manner: the condition capturing the sequence “E occurs before A” 
is added to the truth table, which then consists of #ve conditions (P, E, A, S, 
and E_before_A). !e membership of each case in E_before_A is determined 
in the following manner: cases that are members of both conditions E and 
A need to be separated into two groups, those in which E occurred before 
A and those in which A occurred before E. !e former group of cases has 

21 According to this rule, the expression A/B/D + A/B/C/~D → Y cannot be logically minimized, for D 
and ~D are parts of di%erent sequences (A/B/D vis-à-vis A/B/C). !is expression can be rewritten only 
by using the rules for factoring out conditions: A/B/(C/~D + D) → Y.
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full membership in condition E_before_A, whereas the latter has full non-
membership in E_before_A. !is is straightforward. !ere is, however, a 
third group of cases, namely all those that are not members in E, in A, or in 
either. Because in tQCA we assume that sequences involving the negation of 
event conditions cannot be formed, the membership of these cases in set E_
before_A should be denoted with a dash (–) (Ragin and Strand 2008). When 
encountering a dash in a combination of conditions, the so"ware treats this 
condition as irrelevant in the process of logical minimization. For instance, 
in the example on student unions, there is a truth table row P~EAS– (where 
the “–” represents the logical status of condition E_before_A).22 !is row is 
equivalent to the statement P~EAS(E_before_A) + P~EAS~(E_before_A).23 
Using this coding for condition E_before_A, the so"ware produces the fol-
lowing logically minimized result:

PES + EAS(~E_before_A) + PEA(E_before_A) → Y.24

It might be surprising that this solution term is void of any operator indicat-
ing the sequence of events. Yet, we can nevertheless infer the temporal order 
of events. First, we know by assumption that P always comes #rst and S always 
last. Second, condition E_before_A provides the information on the sequence 
of conditions E and A. We therefore can rewrite the solution term using the 
temporal THEN as follows:

P/E/S + A/E/S + P/E/A → Y.
22 See the online appendix for the truth table (www.cambridge.org/schneider-wagemann).
23 Notice that using a dash (–) in the coding the outcome, the so"ware can be asked to replace the dash 

with either a 1 or a 0 according to which decision yields the most parsimonious solution term. Instead, 
when a dash is assigned for a condition, the so"ware does not assign any value to that condition. We 
thank Charles Ragin for pointing this out to us (personal communication, March 2011).

24 Note that the so"ware accepts a dash as an entry in a condition only when choosing the option 
[Analyze] [Crisp Sets] [Quine (QCA 3.0)] but not when choosing [Truth Table Algorithm].

P/E/A/S + P/A/E/S + P/E/A/~S + P/E*~A/S + ~P/A/E/S

P/E*A/S + P/E/A  +  A/E/S  +  P/E*~A/S

P/E/S + P/E/A  +  A/E/S Y

Y

Y

Figure 10.1 Logical minimization of sequence of events
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!is, in turn, is exactly the same result as that obtained through logical mini-
mization by hand above. Because logical minimization by hand is prone to 
lead to wrong conclusions, Ragin and Strand (2008) strongly recommend 
making use of the computer so"ware when analyzing sequences of events in 
QCA.

10.3.4.3 Evaluating temporal QCA
Whenever researchers have theoretical hunches that a limited number of 
sequences involving a limited number of events are causally relevant, tQCA 
provides a formal, logically sound way of integrating these hunches into the 
analysis. Such analysis of sequences can even be performed with the help 
of the computer, using either fsQCA 2.5 or R. tQCA therefore is a valuable 
extension of QCA that should be used more o"en.

It should be recognized, though, that the level of complexity that is intro-
duced when taking time into consideration is kept at a manageable level in 
tQCA only through a set of limiting assumptions which can – as can any 
assumption – be questioned. First of all, it is assumed that sequences can only 
be formed with the occurrences of events. Notice, though, that sometimes 
the absence of an event is also an event itself. For instance, if X denotes the 
set “riots in response to IMF measures,” then ~X (“no riots in response to 
IMF measures”) is clearly also an event that can be located in time and space. 
Hence, a sequence of events that includes ~X is possible and plausible (Caren 
and Panofsky 2005: 158). Second, only sequences involving two conditions 
are investigated. Qualitative researchers o"en have hunches about longer and 
thus more complex sequences, though. !ird, only a subset of the initial con-
ditions is allowed to be part of a sequence. !is is achieved by restricting 
some conditions to always occur at a speci#c place in a sequence (condition P 
always #rst and S always last in the example above). In research practice, such 
clear-cut classi#cations might o"en not be feasible.

At-a-glance: set-theoretic methods and time

The inclusion of time is of great importance in understanding social phenomena. Many 
macro-historical approaches make set-theoretic arguments, as revealed by the sequence 
elaboration approach. By including time, however, the level of complexity of the analysis 
increases dramatically. One useful way of grasping this is by calculating the number of 
logically possible sequences.

Informal ways include the idea of running separate QCA for different points in time, 
using time-related information when calibrating sets, or adjusting the two-step approach 
accordingly. So far, tQCA is the most more formalized strategy for including time. It either 
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uses the logical THEN operator and logically minimizes “by hand,” or else specifies con-
ditions that express the sequence of events and uses the computer software for logical 
minimization. Both strategies produce the same result.

The integration of time aspects into a formal logical approach is practically feasible only 
when looking at a very reduced notion of time and only a small number of sequences. It 
is important to emphasize that this is an intrinsic problem and unrelated to whatever data 
analysis technique is employed. If we concentrate only on plausible sequences, excluding 
non-events, then k! of transitive sequences can be formed. The property space is further 
reduced by fixing the temporal order for one or more conditions.
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11 Data analysis technique meets  
set-theoretic approach

11.1 Recipe for a good QCA

!e following recipe is a summary of what an ideal QCA should look like.1 
We believe that providing a pro"le of an idea-typical QCA is fruitful, even if 
in research practice most published QCA comes short of ful"lling all the cri-
teria, mostly due to restrictions in space and time. Our list can help authors, 
readers, and reviewers to become aware of how a given study deviates from 
an ideal application and to provide explicit arguments for why certain items 
from the list have been omitted.

Easy reading guide

The double nature of QCA as both a research approach and a data analysis technique 
is paramount (see Introduction). Throughout this book, we have mostly concentrated on 
issues surrounding QCA as a technique. In this chapter, we strengthen our perspective 
on QCA as a research approach and discuss various salient comparative methodological 
issues from a set-theoretic perspective. This chapter should help researchers – begin-
ners and advanced – to increase the quality of their set-theoretic-method-based research 
endeavors as well as further insert set-theoretic principles into the broader methodological 
social science literature.

We start off with a recipe for a good QCA (11.1). Even if no new technical insights are 
provided, a careful reading of this recipe is nevertheless recommended to both beginning 
and advanced users of QCA, as it contains guidelines on how to perform QCA not only in 
a technically correct manner, but also in a plausible and complete way. All subsequent 
sections can be read separately and in the order of the reader’s choice. We discuss funda-
mental methodological issues from a set-theoretic perspective: robustness (11.2); theory 
evaluation (11.3); and case selection principles in set-theory-based multi-method research 
designs (11.4).

1 For an extended exposition, see Schneider and Wagemann (2010).
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11.1.1 The appropriateness of set-theoretic methods

!e "rst and fundamental question to be asked is whether the use of set-
theoretic methods makes sense for the research project at hand. !roughout 
this book, we have repeatedly argued that the use of set-theoretic methods 
makes sense only if a researcher has good reasons to believe (or straightfor-
ward hypotheses to be tested) that the phenomenon of interest is best under-
stood in terms of set relations. !is unavoidably implies that the researcher 
buys into the idea of producing causally complex accounts (section 3.3). In 
other words, one must "nd it plausible to claim that the outcome of interest is 
based on equi"nal, conjunctural, and asymmetric relations in terms of neces-
sary, su#cient, INUS, and/or SUIN conditions.

It seems obvious that not all – according to some, perhaps even only a 
minority of – research questions are adequately dealt with through set-
 theoretic methods. For our methodological purposes, there is no need to 
enter into this debate. It su#ces to state that set-theoretic methods such as 
QCA are an adequate tool if, and only if, a researcher is interested in set rela-
tions and not correlations. Standards of good practice require that an expli-
cit statement is made that a researcher is interested in relations between sets 
rather than correlations between variables.

Beyond this, there are di$erent, more speci"c aims one can pursue when 
using QCA. Berg-Schlosser, De Meur, Rihoux, and Ragin (2008; see also 
Ragin and Rihoux 2004: 6) mention several possible aims of using QCA: to 
summarize data, best done by representing it in the form of a truth table; to 
check whether the empirical evidence at hand is in line existing with claims 
of subset relations, i.e., the evaluation of existing hypotheses and theories;2 
and to develop new theoretical arguments. To this, we add the use of QCA 
as a means of creating empirical typologies (for more details, see Kvist 2006, 
2007). Of course, it is possible to pursue all or just some of these purposes of 
QCA in the framework of a research project.

11.1.2 The choice of the conditions and the outcome

!e number of conditions included in a QCA should be kept at a moderate 
level. Too many conditions in QCA are dysfunctional. Most importantly, the 
number of logical remainders grows considerably, leading to severe problems 

2 Recall that if hypothesis testing is the aim, these hypotheses need to be formulated in terms of subset 
relations (see also section 11.3).
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of limited diversity (Chapters 6 and 8). As a consequence, solution terms tend 
to be either too complex or based on too many assumptions on remainders. 
Complex solutions o%en apply only to single cases and are di#cult to inter-
pret in a theoretically meaningful manner, whereas a high number of assump-
tions increases the risk that some of those are untenable (section 8.2).

Several mutually non-exclusive strategies exist for the reduction of the 
number of conditions (Amenta and Poulsen 1994). For instance, higher-
order constructs can be created (Ragin 2000: 321–28) through so called mas-
ter or macro-variables (Berg-Schlosser and De Meur 1997; Rokkan 1999). 
Furthermore, the selection of conditions and the conceptualization of the 
outcome should occur via an iterative dialogue between prior theoretical 
knowledge and empirical insights gained during the research process (sec-
tion 11.4 and Schneider and Rohl"ng in press). Since social science theories, 
by and large, provide only limited guidance as to exactly which conditions to 
choose, the ongoing re"nement and reduction of the number of conditions 
forms an integral part of a good QCA.

11.1.3 The choice of the QCA variant

!e choice between di$erent types of QCA depends on whether the types of 
concepts involved and the empirical data at hand lend themselves to being 
captured in crisp or fuzzy sets. Whenever feasible, fuzzy sets should be used. 
!ey contain more information than crisp sets (section 1.1.2) and set higher 
standards for subset relations (Chapter 5). Needless to say, if a concept by its 
very nature presents itself in a dichotomous form, then it must be represented 
by a crisp set. Crisp-set conditions, though not crisp-set outcomes, can easily 
be integrated into an fsQCA, whereas the inverse is not true. !e choice of 
multi-value QCA should be handled with care for reasons speci"ed in section 
10.2. !e choice of the QCA variant is not driven by the number of cases.

11.1.4 Calibration of set-membership scores

!e calibration of set-membership scores should be discussed and docu-
mented in detail (Ragin 2008a, 2008b: chs. 4 and 5). !e most important issue 
here is which criteria are used in order to qualify cases as members of a set. 
!eoretical knowledge external to the data is needed in order to determine 
and justify where the qualitative anchors 0, 0.5, and 1 are located (or the cut-
o$ between 0 and 1 in csQCA, respectively). Beyond this, explicit arguments 
should also be provided which empirical evidence quali"es for the di$erences 
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in degree in set-membership scores that are established between cases on the 
same side of the 0.5 qualitative anchor. Membership values can be attributed 
to cases by using conventional forms of index-building or through the direct 
or indirect method of calibration (section 1.2.3 and Ragin 2008a: ch. 5). Using 
multiple empirical sources for calibrating one single set is encouraged.

11.1.5 Analysis of necessary conditions

!e analysis of necessary conditions should be separate from and should pre-
cede the analysis of su#cient conditions. Statements about necessity should be 
made only if speci"c tests for necessity have been performed; necessity must 
not be automatically inferred from the results of a su#ciency analysis (section 
9.1). !e consistency values for necessary conditions have to be higher than 
those for su#ciency. A threshold of 0.9 or even higher is recommended. If 
researchers make use of the possibility to combine single conditions through 
a logical OR in order to create a new set that then passes the consistency test 
as a necessary condition (functional equivalents), such new OR conditions 
need to be carefully justi"ed on theoretical grounds. Only those conditions 
should be declared necessary that pass the test of relevance and are thus not 
trivially necessary (sections 5.5 and 9.2.1). When statements of necessity are 
made, researchers, in the analysis of su#ciency, must avoid assumptions that 
are incoherent with those statements of necessity, something that is achieved 
by applying the Enhanced Standard Analysis (section 8.2.1).

11.1.6 Analysis of sufficient conditions

For the analysis of su#ciency, the researcher should always directly consult 
the truth table and decide for each row whether it is a logical remainder and, 
if not, whether it can be interpreted as a su#cient condition for the outcome 
of interest. According to the Truth Table Algorithm (Chapter 7), these deci-
sions are based on the number of cases in each row and its level of consist-
ency. We add to this that researchers should keep an eye on simultaneous 
subset relations (section 9.2.2) and the presence of true logically contradict-
ory cases (section 5.2) before declaring a non-remainder row su#cient for 
the outcome.

11.1.6.1 !reshold level for raw consistency values
Logical contradictions in the truth table should be resolved prior to the mini-
mization process. !e raw consistency score of each truth table row has to be 
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stated explicitly and the minimum threshold for the raw consistency has to be 
reported. As mentioned, true logically contradictory cases (section 5.2) might 
be hidden behind the consistency score and should be identi"ed. !e pres-
ence of true logical contradictions should make researchers more hesitant in 
assigning the status of su#cient condition to this row.

!e choice of an appropriate level of consistency for a su#cient condition 
is speci"c to every individual research project and needs to be explicitly jus-
ti"ed. It varies with the number of cases in the research; the knowledge the 
researcher has about the cases; the quality of data; the speci"city of theories 
and hypotheses at hand; the research aims; whether there is a large gap in 
consistency between two groups of rows; and whether a row contains logic-
ally contradictory cases. In general, consistency levels (well) above 0.75 are 
advisable. Including rows with a consistency below 0.5 does not make any 
sense at all, since there is more evidence against the claim of su#ciency than 
in favor of it.

11.1.6.2 Logical remainders and choice of solution terms
!e treatment of logical remainders should be transparent. !is requires, as a 
"rst step, to specify whether logical remainders exist and, if so, what type(s) 
of logically possible con"gurations are not observed empirically (preferably 
expressed in a Boolean expression). Researchers should bar from any logical 
minimization all logical remainders that would lead to untenable assump-
tions (section 8.2). !e directional expectations, both about single conditions 
and (theory permitting) conjunctions of conditions (section 8.3), should be 
explicitly formulated. A%er that, the conservative, the enhanced most parsi-
monious, and the enhanced intermediate solution term should be reported. 
Usually, the enhanced intermediate solution should be at the center of the 
substantive discussion.

11.1.6.3 Analysis of the negative outcome
!e outcome and its negation should always be dealt with in two separate ana-
lyses. DeMorgan’s law can only be meaningfully applied for generating the 
solution formula for the non-occurrence of the outcome if, and only if, the 
truth table does not contain any logical remainders and all truth table rows 
show perfect values for consistency (i.e., 0 or 1) – in other words, hardly ever 
in empirical research based on observational data (section 5.1). When analyz-
ing both the occurrence and the non-occurrence of the outcome with the same 
conditions, care must be taken not to include the same truth table row(s) in both 
minimizations. !is can either happen through contradictory assumptions on 
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logical remainders (section 8.2.2) or through the same empirically observed 
row passing the consistency thresholds in both the analysis of the outcome and 
its negation (section 9.2.2). O%en, however, it is required to alter the selection 
of conditions and thus construct a new truth table when shi%ing the analysis 
from the occurrence to the non-occurrence of the outcome.

11.1.7 Presentation of results

More than one presentational form should be used. Collectively, they should 
convey information on three interrelated, yet di$erent aspects of the ana-
lysis: (1) which conditions account for the outcome; (2) which cases are (not) 
accounted for by which part of the solution; and (3) how well does the solu-
tion "t to the underlying empirical evidence (Schneider and Grofman 2006)? 
In order to depict both the case- and the condition-oriented aspects of QCA, 
researchers should resort to the full repertoire of presentational forms. !e 
most important graphical forms of presentation are Venn diagrams (e.g., 
Figure 3.2) and XY plots (e.g., Figure 3.5).3 Tabular presentational forms are 
truth tables (section 4.1) and tables displaying each case’s membership in all 
su#cient paths, in the overall solution term, and the outcome (e.g., Table 5.3). 
Each published QCA should provide access to the truth table(s) and each 
case’s membership in the single sets and the outcome. Another indispens-
able presentational form is the solution term. In addition to stating the result 
in a Boolean expression, researchers should add the following information: 
for each path and the entire solution term, the parameters of "t (consistency 
and coverage) (Chapter 5); for each path, the uniquely covered cases (section 
5.3) and the true logically contradictory cases (section 5.2); and for the entire 
solution, the uncovered cases that are more in than out of the outcome set. 
!e solution formulas in section 11.2 provide an illustration of how to present 
these pieces of information.

11.1.8 Interpretation of results

11.1.8.1  Focus on cases
Solution formulas and high parameters of "t should not be seen as the ultim-
ate goal of a QCA. Instead, they need to be related back to the individual 

3 Two potentially useful, yet so far hardly ever used, graphical presentational forms are tree diagrams as 
suggested in Schneider and Grofman (2006), which might work particularly well in order to display 
sequence of conditions (section 10.3.3) or table 11.5 in Ragin and Fiss (2008), which distinguishes 
between core and contributing causal conditions.
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cases. If cases disappear behind computer-based algorithms and parameters 
of "t, the method loses one of its major strengths. Researchers should make 
clear which cases – mentioned by their proper names – are (uniquely) cov-
ered by which of the paths in the solution formula (typical cases), and which 
are responsible for lower levels of consistency or coverage (deviant cases; see 
also section 11.3).

11.1.8.2 Focus on parts of the solution
Almost by default, set-theoretic solutions are composed of multiple con-
junctural terms. Only paths that pass a pre-established consistency threshold 
should be interpreted. !e consistency of the overall solution term is less rele-
vant. Researchers should always give explicit justi"cations in situations where 
one (or more) of the paths towards the outcome are deemed more import-
ant for the substantial conclusions than others. !eoretical importance o%en 
deviates from empirical importance (coverage) and might be more interest-
ing. Sometimes, an empirically less important path that covers only a few 
cases, or even only one, can be theoretically and substantively more interest-
ing and important than paths with high coverage values. Focusing on single 
conditions in equi"nal and conjunctural QCA solution terms usually runs 
counter to the logic of this method. In a causally complex solution, single 
conditions are INUS conditions which possess causal relevance only in com-
bination with other conditions. If, however, in a given research "eld strong 
consensus prevails that a particular individual condition is indispensable for 
producing (or preventing) the outcome, then a researcher might exception-
ally want to pay tribute to this prominence in the interpretation of the QCA 
results. !e researcher might be able to conclude from a QCA that the single 
condition in question does not prevent or is not indispensable (necessary) for 
the occurrence of the outcome.

11.1.9 Reiteration of the research cycle

It cannot be reiterated enough that QCA is both a research approach and a 
data analysis technique. Once the data has been analyzed according to the 
guidelines above, a researcher might "nd reasons to go back to the beginning 
and redesign the research. Based on the evidence, the scope conditions of the 
study might be altered and cases thus added or dropped; conditions might be 
added, dropped, or reconceptualized, and thus some cases’ membership in 
these sets might be changed (Rihoux and Lobe 2009; Schneider and Rohl"ng 
in press). A good (but not the only) starting point for such a rede"nition is 
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to have a look at the deviant cases from the QCA solution term. Due to the 
asymmetric nature of set relations, researchers need to distinguish between 
di$erent types of deviant cases. !ere are deviant cases with regard to the 
statements of necessity and for su#ciency, respectively. Furthermore, for each 
of these two types of set relations, there are deviant cases with regard to con-
sistency and coverage, respectively. Each of these types of deviant cases car-
ries a di$erent analytic meaning and suggests di$erent changes to the QCA 
(section 11.4, and Schneider and Rohl"ng in press).

Part of the notion of QCA as an approach implies that QCA-based research 
is inherently multi-method research. Findings generated by QCA as a tech-
nique alone are less convincing than those that are followed by other analyses, 
most likely, but not exclusively, within-case studies of cases identi"ed as typ-
ical and deviant by the QCA.

11.1.10 The use of software

!e data analysis should be performed with the help of adequate so%ware. Sets 
need to be calibrated; data matrices displayed in a truth table format; consist-
ency and coverage values calculated; logical remainders identi"ed and classi-
"ed; assumptions about these remainders made; information in truth tables 
logically minimized; solution terms displayed in a graphical form. Doing all 
this by hand is di#cult, if not impossible. In the chapter-by-chapter online 
appendix (www.cambridge.org/schneider-wagemann), we therefore provide 
detailed instructions on the use of the di$erent so%ware packages.

Table 11.1 provides a summary of the analytic features that can currently be 
performed with the existing programs: fsQCA 2.5 (Ragin and Davey 2009), 
Tosmana 1.3.2 (Cronqvist 2011), ado "le “fuzzy” in Stata (Longest and Vaisey 
2008), and the packages “QCA” (Dusa and !iem 2012), “QCAGUI” (Dusa 
2012), and “QCA3” (Huang 2011) in R. We di$erentiate between essential, 
presentational, and convenient tools.

fsQCA 2.5 is the oldest and currently most widely used so%ware, most prob-
ably due to several characteristics. It produces all the standard para meters of 
"t; indicates which cases are members of the di$erent sets involved in a solu-
tion formula; and allows for a separate analysis of necessity. XY plots are easily 
produced; subset/superset analyses can be quickly performed, a particularly 
useful feature when hunches on speci"c conjunctions of conditions exist; it 
is freeware; performs the direct and indirect calibration; and it allows for the 
speci"cation of directional expectations and thus produces the intermediate 
solution term. On the downside, fsQCA 2.5 performs less well in terms of 
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user-friendliness. It is not syntax–based; inferior in data handling (such as 
creating new or manipulating existing datasets); slow when the number of 
cases is high; prone to break down quite o%en; and incompatible with several 
important operating systems.

!ese partial shortcomings can be circumvented by resorting to other pack-
ages for speci"c tasks. Tosmana 1.3.2 is the only so%ware that has a ready-made 
tool for producing Venn diagrams and a Boolean calculator. In addition, it lists 
all simplifying assumptions that went into producing the most parsimonious 
solution term; yields truth tables with case labels in the respective rows; and can 
handle crisp sets and multi-value data (section 10.2), though not fuzzy sets. !e 

Table 11.1 Synopsis of software packages for performing set-theoretic analyses

Analytic features fsQCA 2.5 Tosmana 1.3.2 Stata R*

Essential
Codable truth table X (X)
Intermediate solution term X
Automatic exclusion of untenable 
assumptions
Parameters of "t X X X
Analysis of su#ciency in csQCA X X X X
Analysis of su#ciency in fsQCA X X X
Performance of mvQCA X X
Analysis of necessity X X X
Display of results
Venn diagram X (X)
XY plot X X X
Identi"cation of cases in solutions X X X X
Listing cases in truth table rows X X
Listing simplifying assumptions X X
Convenience attributes
Fuzzy-set calibrations X X
Syntax-based X X
Freeware X X X
Boolean calculator X (X)
Open platform for developers X X
PRI and PRODUCT X
Statistical measures of "t X
Compatible with all major operating 
systems

X X X

* refers to packages QCA (0.6–5), QCAGUI (1.3–7), and QCA3 (0.0–4)
(X) not foreseen in speci"c package but possible within the so%ware environment
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biggest shortcoming is that Tosmana neither calculates the parameters of "t nor 
allows for the speci"cation of directional expectation. !is prevents Tosmana 
from being used as the only so%ware when the Truth Table Algorithm and the 
Standard Analysis option should be applied, which is virtually always.

!e ado "les and packages in Stata and R, respectively, are the most recent 
additions to the so%ware tools in set-theoretic analyses. As Table 11.1 shows, 
the fuzzy ado "le provides several useful functions, yet the QCA packages in R 
provide even more and are kept more up-to-date. In fact, the recently updated 
package QCA 1.0-3 not only mimics all core features of the fsQCA 2.5 so%ware. 
It is also designed for handling multi-value data; o$ers greater &exibility in the 
calibration functions; and provides a more encompassing strategy for the ana-
lysis of necessity (!iem and Dusa 2012). In addition, being inserted in  so%ware 
environments that allow for a vast amount of operations, allows for more &exi-
bility, at least to those familiar with R (or, to a lesser extent, Stata). Stata and R 
have advantages when large-N data are analyzed; when it is important to save the 
command syntax; when more information needs to be added to an XY plot; and/
or when probabilistic measures of set relations are employed (section 5.2).

In conclusion, several points are worth emphasizing. First, over the past 
years, set-theoretic so%ware packages have been quickly evolving. !is implies 
that ours is a snapshot of the current state of the art.4 Second, no single pack-
age is capable of performing all the analytic tasks that are required for a good 
QCA. Currently, fsQCA 2.5 and R (package QCA) o$er most functions. In 
fact, a good QCA cannot be performed without the use of at least one of these 
two packages. In applied QCA, most users still apply fsQCA, Tosmana, or 
both (Rihoux et al 2012). !is use of multiple so%ware packages will most 
likely continue in the foreseeable future. While among users the popularity 
of R is likely to increase due to the recently improved QCA package, it is 
improbable that it will soon become the modal so%ware choice in set-theory 
based research – a status the R platform has not yet even gained within the 
statistical camp of the social sciences.

11.2 Robustness and uncertainty in QCA

Our recipe for a good QCA has already made reference to those moments 
during the process of performing a QCA where researchers are confronted 

4 In the chapter-by-chapter How to sections of the online appendix, we discuss in detail the di$erent 
functions on the various so%ware packages (www.cambridge.org/schneider-wagemann).

  

 



Data analysis technique meets set-theoretic approach285

with decisions for which a considerable margin of discretion exists. Cases and 
conditions are dropped and added, calibration functions changed, consistency 
thresholds altered, etc. Depending on these decisions, the result obtained may 
change. !is raises the question of how robust QCA "ndings are, given that it 
is an inherent feature of this method that researchers end up retaining a large 
amount of leverage on all these decisions rather than outsourcing them to 
standards commonly agreed on in the scienti"c sub-communities, as is usu-
ally done in quantitative methods.

We do believe that QCA "ndings can and, in fact, should be subjected to 
robustness tests. !ese tests, however, need to stay true to the fundamental 
principles and nature of set-theoretic methods and thus cannot be a mere 
copy of robustness tests known to standard quantitative techniques. Despite 
some valuable attempts (Goldthorpe 1997; Lieberson 2004; Seawright 2005; 
Marx 2006; Skaaning 2011), the topic of robustness has so far not received 
enough systematic treatment in the QCA literature.

In this section, we focus on those decisions in the research process that 
are unique to QCA as a set-theoretic method and for which researchers usu-
ally possess enough discretion to warrant doubts about whether results would 
change substantively if (slightly) di$erent, yet equally plausible decisions were 
taken. We are referring to the process of set-membership calibration (location 
of qualitative anchors and choice of functional form); the choice of consist-
ency levels for truth table rows; and the choice to add and drop single cases.5

11.2.1 How do we see robustness in set-theoretic methods when it is there?

In multivariate regression, the notion of robustness is, by and large, uncon-
tested. If the signi"cance, direction, and strength of coe#cient(s) remain 
una$ected across di$erent model speci"cations and di$erent samples, then 
the "ndings on the e$ect of the variable(s) of interest are deemed robust. In 
QCA, the notion of robustness needs to be extended. In QCA, solution terms 
can be deemed robust if they involve similar necessary and su#cient con-
ditions and if consistency and coverage are roughly the same across di$er-
ent model speci"cations. By “similar” we mean solutions that are in a clear 

5 !e treatment of logical remainders is also consequential for the result obtained. However, we do not 
include this issue in this debate on robustness, because, "rst, we have provided an extensive treatment 
of it in Chapters 6 and 8. Second, as explained in those chapters, all solutions obtained through 
di$erent assumptions about logical remainders are supersets of the empirical evidence at hand as 
expressed in the conservative solution term. !is, in contrast, is not always true for di$erent decisions 
on case selection, calibration, or consistency thresholds.
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subset relation and parameters of "t that do not warrant di$erent substantive 
interpretations.

We therefore suggest two set-theoretic-method-speci"c dimensions of 
robustness: the di$erences in the parameters of "t and the set-relational sta-
tus of the di$erent formulas. First, if di$erent choices lead to di$erences in 
the parameters of "t that are large enough to warrant a meaningfully di$erent 
substantive interpretation, then results are not robust. If, however, di$erences 
in consistency and coverage are too marginal to provide the basis for mean-
ingfully di$erent substantive interpretations, then the results can be consid-
ered robust. Second, if di$erent choices lead to solution terms that are not in a 
subset relation with one another, then results are not robust. If, however, there 
is a clear subset relation between di$erent solution terms, then results can be 
interpreted as robust, even if these solution terms look quite di$erent on the 
surface. In the following, we discuss the consequences of changing consist-
ency levels, case selection, and calibration functions on the subset relation of 
su#ciency solution terms6 and their parameters of "t.

In order to illustrate our arguments, we use Emmenegger’s (2011) analysis 
of job security regulation in Europe in 19 Western democracies. In the art-
icle,7 the outcome of interest is high levels of job security regulations (JSR). 
Six conditions are speci"ed: strong state–society relationships (S); dominant 
non-market coordination of the economy (C); strong labor movement (L); 
dominant Catholic religious denomination (R); strong religious parties (P); 
and strong presence of veto points in the political system (V). Emmenegger 
opts for theory-guided calibration for the outcome JSR.8 He relies on quanti-
tative information, without, however, using a mathematical transformation. 
His calibration alters the rank order of the original values, and he justi"es this 
with in-depth knowledge of the recalibrated case combined with theoretical 
considerations, an issue we address in further detail in section 11.2.2.

In the analysis of su#cient conditions,9 the decision on where to set the 
raw consistency threshold is di#cult.10 All rows but one with enough empir-
ical evidence are either highly consistent or highly inconsistent as su#cient 
conditions for the outcome. One truth table row, however, denoting the 

 6 We do not o$er a discussion on the robustness of an analysis of necessity, both for reasons of clarity and 
because it is less intriguing than the robustness of su#ciency analyses, mainly because the analysis of 
necessity almost exclusively focuses on single conditions rather than combinations thereof (section 3.2.1.2).

 7 See the online appendix for more details (www.cambridge.org/schneider-wagemann).
 8 See section 1.2.2 for the calibration of the condition high number of veto points.
 9 No necessary conditions are found.
10 Another striking feature not dealt with here is the high number of logical remainders: 51 out of 64 

truth table rows.
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combination ~SCL~R~P~V has a raw consistency value of 0.8411 and contains 
two cases with membership higher than 0.5, which, however, display qualita-
tively di$erent membership scores in the outcome – Sweden (0.6; 0.86) and 
Denmark (0.6; 0.29). Consequently, including this row into the logical mini-
mization gives rise to a true logically contradictory case (Denmark), whereas 
excluding the row means that Sweden will be an uncovered case.

We follow Emmenegger both in excluding this row from the logical mini-
mization and his directional expectations.12 !is setup leads to the following 
intermediate solution:

 SR~V + SRPL + SRPC + LCP~V → JSR

Raw coverage 0.402 0.354 0.277 0.297
Unique coverage 0.152 0.027 0.041 0.138
Consistency 0.990 1.000 0.965 0.964
Covered cases* F, P, I E, I, AU BE, D, AU N
Solution consistency 0.97
Solution coverage 0.69
Uncovered cases** S, NL

* Cases with membership in path > 0.5
** Cases with membership in solution < 0.5 and outcome > 0.5

!e comparatively low coverage value is mainly due to two cases with high 
values in the outcome and low membership in the solution formula: Sweden 
and the Netherlands. In the following, we gauge how robust these "ndings are 
vis-à-vis changes in the calibration of the outcome and some conditions; the 
raw consistency threshold; and the dropping of speci"c cases.

11.2.2 The effects of changing calibration

Both in csQCA and in fsQCA, changing the threshold that determines 
whether a case is (more) in or (more) out of a set implies that some cases 
will also change the truth table row to which they belong (section 4.2). !is, 
in turn, might change a row from a logical remainder into an empirically 
observed row (or vice versa), or from an inconsistent row into a consistent 
one (or vice versa). !e choice of the 0.5 qualitative anchor is therefore the 
most important decision to be taken in the calibration process.

11 !e neighboring truth table rows, ordered by raw consistency values, show values of 0.94 and 0.72, 
respectively.

12 All conditions are assumed to contribute to JSR in their presence, only V in its absence.
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While the precise e$ect on the solution of shi%ing the qualitative anchor of 
set membership depends on characteristics of the data at hand and other deci-
sions taken during the analysis, some general implications can be formulated. 
If the threshold for membership in condition X is raised, fewer cases will be 
member of X. !e coverage of all those su#cient paths in which X is an INUS 
conditions either decreases or stays the same, but will never increase. !e con-
sistency of such paths remains the same or increases, but it never decreases. 
Notice, however, that raising the threshold for membership in X automatically 
implies lowering it for ~X. !us, for any path that involves ~X as an INUS con-
dition, coverage will either increase or stay the same, but never decrease, while 
consistency will remain the same or decrease but never increase. In general, 
whether the change of the 0.5 qualitative anchor of INUS condition X (or ~X) 
has an e$ect on the parameters of "t of a su#cient conjunction depends on 
whether X (or ~X) provides the minimum score for that conjunction. If it does 
not provide the minimum, nothing will change.

Predicting the consequences of changing the qualitative anchor for an equi-
!nal solution term is impossible. If both X and ~X are INUS conditions in some 
of the paths, then parameters of "t might increase or decrease, depending on the 
speci"c data at hand. !e only statement that can be made is this: if the consist-
ency of a truth table row involving either X or ~X decreases below the consistency 
threshold for su#cient conditions, then a change in qualitative anchor produces 
a di$erent solution term. !is solution, however, will be a subset of the previous 
solution. If the consistency of the truth table row instead increases beyond the 
threshold, then the new solution will be a superset of the previous one.

With fuzzy sets, next to establishing the cross-over point, two further 
 calibration-related decisions have to be taken: "rst, the precise position of the 
two other qualitative anchors (full membership and full non-membership) 
and, second, the functional form with which the underlying raw data trans-
late into set-membership scores given the qualitative anchors chosen. It is 
important to realize that, as long as the 0.5 anchor remains unchanged for 
conditions, none of these decisions can alter the truth table row to which 
a case belongs. As a consequence of this, these calibration decisions can be 
expected to hardly ever13 have any substantively relevant e$ect on the solution 
term. !ey can, however, have an e$ect on the parameters of "t.14

13 We say, “hardly ever” because a change of the functional form could trigger a change in the raw 
consistency that is big enough to shi% a truth table row from being consistent enough to being too 
inconsistent (or vice versa) to be included into the logical minimization. If the qualitative anchors are 
"xed, however, such an e$ect should rarely ever occur.

14 !iem’s (2010) study on the interactive e$ect of di$erent calibration functions, on the one hand, 
and various locations of the 0.5 qualitative anchors, on the other, on the coverage of single consistent 

 

 



Data analysis technique meets set-theoretic approach289

In sum, changes in the calibration do bring about changes in the parameters 
of "t. Most of the time, though, such changes are too small to be substantively 
meaningful. In addition, the set relation between the original and the altered 
solution is usually maintained. Only when major changes to the location of 
the cross-over point are made can it happen that solution terms are di$erent. 
!is sensitivity of QCA results to the choice of the 0.5 anchor must be put 
in perspective, though. Remember, the decision whether to consider a given 
case as a member of a set establishes a qualitative di$erence between cases 
(section 1.1.1). Since set-theoretic methods are all about qualitative di$er-
ences and similarities, they ought to be sensitive to such decisions. In general, 
researchers are advised to run di$erent analyses with slightly modi"ed cali-
bration criteria. O%en, the change will only be moderate. If so, this message 
should be conveyed to the reader. If the change is more substantial, then the 
"ne tuning and the subsequent justi"cation of the calibration decisions are 
even more important.

Applied to the example by Emmenegger, we present the e$ect of three 
modi"cations to the calibration.

Recalibrating condition R: if we assign a fuzzy value of 0.55 instead of 0.4 
to Denmark, Finland, Norway, and Sweden in condition religious denomin-
ation (R) – i.e., if we change the qualitative characteristic of these cases and 
consider them to be more in than out of the set of countries with a dominant 
Catholic religious denomination – then the solution formula is:15

 SR~C~V + SRLP + SRCP + LCRP~V → JSR

Raw coverage 0.329 0.354 0.277 0.283
Unique coverage 0.152 0.027 0.041 0.124
Consistency 0.988 1.000 0.965 0.963
Covered cases* F, P, I E, I, AU BE, D, AU N
Solution consistency 0.96
Solution coverage 0.67
Uncovered cases** S, NL

* Cases with membership in path > 0.5
** Cases with membership in solution < 0.5 and outcome > 0.5

We see that two paths are identical to two paths of the original solution 
while the other two paths are slightly di$erent. However, this solution is in a 

su"cient conditions shows, in essence, that the choice of the calibration function is inconsequential as 
long as one is not dealing with highly skewed single-set-membership scores.

15 For reasons of comparability with the original result, the threshold for raw consistencies is set at 0.9.
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perfect subset relation with the previous one. Yet another observation is that 
all consistency and coverage parameters change only slightly.

Recalibrating New Zealand’s membership in outcome JSR: Emmenegger 
mainly uses the OECD Employment Protection Legislation Indicator (EPLI) 
as the empirical evidence for calibrating set membership in outcome JSR. 
Respecting the rank order of the EPLI, New Zealand would have received a 
score of 0.29 but Emmenegger assigns a score of 0.14 to it by using additional 
empirical and theoretical arguments.16 Let us therefore rerun the analysis with 
a score of New Zealand of 0.29 in JSR. Virtually nothing changes. !e four 
paths of the intermediate solution remain identical, and there are only very 
marginal decreases in the solution consistency (0.96) and coverage (0.67). 
Most of the consistency values and raw and unique coverages only change 
a%er the second decimal, i.e., too small to be of any substantive meaning.

Recalibrating Denmark’s membership in JSR: in Emmenegger’s data, 
Denmark (0.29) scores low in the outcome set, whereas Sweden (0.86) scores 
high. !is makes sense, given the Danish “&exicurity” system. Both cases are 
located in the same truth table row, giving rise to a true logical contradiction 
(section 5.2). What happens to the solution term if a researcher was misled 
by stereotypical thinking about uniformly rigid labor market regulations in 
Scandinavia and thus assigned the same high set membership in the outcome 
to Denmark as Sweden? Such a mistaken recoding of cases, which a%er all 
implies a qualitative change of Denmark because it crosses the 0.5 qualitative 
anchor, does indeed a$ect the solution formula:

 SR~V + SRLP + SRCP + LC~S~V → JSR

Raw coverage 0.380 0.335 0.262 0.298
Unique coverage 0.144 0.026 0.039 0.298
Consistency 0.990 1.000 0.965 0.957
Covered cases* F, P, I E, I, AU BE, D, AU DK, N, S
Solution consistency 0.97
Solution coverage 0.75
Uncovered cases** NL

* Cases with membership in path > 0.5
** Cases with membership in solution < 0.5 and outcome > 0.5

Solution consistency is similar to the original formula, but the solution 
coverage is higher. In addition, three of the four paths remain identical; only 
16 !ese refer to New Zealand’s low level of regulation of collective dismissals, its low company-based 

protection, and its low collective bargaining coverage.
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the original path LCP~V has changed to LC~S~V. It covers Norway (which 
had also been covered by the previous solution), but now also Denmark and 
Sweden, the cases hitherto uncovered by the original result. Hence, changing 
Denmark’s outcome value increases the raw consistency of the truth table 
they belong to, which therefore is included in the logical minimization, thus 
producing a solution in which both cases are covered. Note that this revised 
solution is not in a perfect set relation with the original one.

!ese examples demonstrate that changes in the calibration tend not to 
trigger all-too-severe changes. !is should give some pause to those who sus-
pect that in QCA speci"c results can be produced at the discretion of the 
researcher by simply manipulating the data accordingly. !is is neither a feas-
ible strategy, nor a credible suspicion. First, the range of discretion in calibra-
tion is limited due to the substantive meaning of the concepts represented by 
sets. Absurd membership scores will be spotted by critical readers. Second, as 
long as it stays within a plausible range, the e$ects of recalibration are rather 
limited and small. And "nally, these e$ects are largely unpredictable, so that 
researchers would have to engage in a time-consuming trial-and-error iter-
ation of calibrating all their sets in order to produce a desired solution.

11.2.3 The effects of changing consistency levels

!roughout a QCA, another crucial decision to be taken by researchers is 
the choice of the raw consistency threshold for truth table rows (sections 5.2 
and 7.2). Compared to changes in the calibration, changes to the raw con-
sistency threshold have clear and predictable e$ects on the solution formulas 
obtained.

By increasing the raw consistency threshold, fewer truth table rows are 
used for logical minimization. As a consequence, the new solution will (a) be 
more consistent, (b) show lower coverage, and (c) be a perfect subset of the 
solution generated based on a lower raw consistency threshold. In contrast, 
by lowering the consistency thresholds, the solution term will (a) be less con-
sistent, (b) show higher coverage, and (c) be a true superset of the solution 
term based on a higher threshold.17 Note that both points (c) apply only to the 
conservative formula and not to the most parsimonious or any intermediate 
solution term. !is is because for the latter two di$erent logical remainders 

17 Whether this new result is more complex than the previous one depends on the nature of the truth table 
row, which is either included in nor le% out of the minimization process due to the change in consistency 
levels. Scenarios can be imagined in which raising the consistency thresholds adds a single truth table 
row to the result that cannot be further minimized, thus adding to the complexity of the solution.
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might serve as simplifying assumptions once di$erent truth table rows pass 
the consistency test.

Given that there is a rather straightforward e$ect of the raw consistency 
threshold on the parameters of "t and the set-relational features of the result 
obtained, researchers should always run their analyses with at least two dif-
ferent raw consistency thresholds and see if parameters of "t dramatically 
change. As in recalibrating sets, here the range of discretion is also limited, 
though. First, any raw consistency level should be above the lower-bound 
benchmark of 0.75. Second, if there is a clear gap in raw consistency levels 
across truth table rows which lends itself to choosing the raw consistency 
threshold (Ragin 2008b: ch. 7), then a robustness test requires the choice of 
one threshold above and another one below this gap.

When testing robustness against di$erent raw consistency thresholds, 
researchers should always check which cases are a$ected by these changes: 
which of them become uncovered by the solution due to a higher consistency 
threshold and which contradict the statement of su#ciency due to a lower 
consistency threshold? Among the latter, does the lowering of the consistency 
threshold produce true logically contradictory cases (section 5.2)?

As mentioned when introducing Emmenegger’s (2011) analysis (section 
11.2.1), the status of one truth table row (~SCL~R~P~V) as a su#cient con-
dition is subject to debate, with a consistency of 0.84 and the true logically 
contradictory case of Denmark (membership in row: 0.6; in JSR: 0.29). If we 
lower the raw consistency threshold from its original value of 0.9 to 0.8 – 
undoubtedly still an acceptable value – we now include this row in the logical 
minimization and obtain the following new intermediate solution:

 SR~V + SRPL + SRPC + LC~S~V → JSR

Raw coverage 0.402 0.354 0.277 0.211
Unique coverage 0.152 0.027 0.041 0.178
Consistency 0.990 1.000 0.965 0.872
Covered cases* F, P, I E, I, AU BE, D, AU N, DK, S
Solution consistency 0.94
Solution coverage 0.73
Uncovered cases** NL

* Cases with membership in path of > 0.5
** Cases with membership in solution < 0.5 and outcome > 0.5

!ree of the four paths are identical to the original solution (SR~V + SRPL 
+ SRPC). !e fourth path now is LC~S~V, whereas in the original analysis it 
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was LCP~V. In addition, the parameters of "t for most paths are the same as 
those reported in the original analysis (see section 11.2.1). As expected, the 
new solution is somewhat less consistent but achieves higher coverage.

Behind these rather small shi%s in parameters of "t, some important di$er-
ences are hidden, though. Denmark is now a true logically contradictory case 
with a membership in path LC~S~V of 0.67 and in outcome JSR of 0.29.

11.2.4 The effect of dropping or adding cases

One of the key points in a QCA where the researcher must use discretion 
is the selection of cases to be studied. As mentioned, this is not a one-way 
street, but rather a back-and-forth process during which cases are added and 
dropped based on preliminary empirical evidence and updated conceptual 
insights. While the e$ect of this case selection procedure on the parameters 
of "t follows some systematic patterns, its e$ect on the set relation of solution 
terms is impossible to generalize.

Dropping a case that contradicts a statement of su#ciency increases con-
sistency and leaves coverage substantively una$ected.18 Likewise, dropping a 
case that is (partially) uncovered, i.e., a case whose membership in the out-
come exceeds that in the solution term, increases coverage and leaves con-
sistency substantively una$ected.19 Finally, dropping a typical case, i.e., a case 
with virtually equal (and relatively high) membership in both the solution 
and the outcome should leave both consistency and coverage substantively 
una$ected. Whether the dropping of deviant cases changes the subset relation 
of the solution formulas obtained, however, cannot be anticipated. Rather, it 
depends on whether the inclusion or exclusion of a case changes the raw con-
sistency level of the truth table row to such an extent that it is (not) included 
in the logical minimization or whether a row turns from a logical remainder 
into a (consistent) row with enough empirical evidence, or vice versa.

Applied to the example by Emmenegger, if we exclude Denmark – one of 
the countries involved in the contradictory truth table row which was not 
included in the minimization in the original analysis – then the solution term 
becomes:

18 Here and in the following, we say “substantively una$ected” because a change in consistency always 
marginally a$ects coverage and vice versa. !is is because the sum of all x values is a part of both the 
formula for consistency and for coverage (sections 5.2 and 5.3). When excluding or adding one or 
more cases, these sums change, even when the cases are typical.

19 Below (section 11.4.1) we label these as deviant cases with regard to consistency and coverage, 
respectively.
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 SR~V + SRLP + SRCP + LC~S~V → JSR

Raw coverage 0.414 0.365 0.285 0.255
Unique coverage 0.157 0.028 0.042 0.187
Consistency 0.990 1.000 0.965 0.947
Covered cases* F, P, I E, I, AU BE, D, AU N, S
Solution consistency 0.96
Solution coverage 0.75
Uncovered cases** NL

* Cases with membership in path of > 0.5
** Cases with membership in solution < 0.5 and outcome > 0.5

In sum, while it is di#cult to formulate general laws of robustness in QCA 
(see also Skaaning 2011), researchers using QCA should be conscientious 
in keeping an eye on the robustness of their results while being assertive in 
claiming that QCA is not vastly inferior to other comparative methods in the 
social sciences both in terms of robustness and of adequately communicating 
the degree of robustness. !e topic of robustness is intimately linked to the 
notion of uncertainty. Attaching some indication of uncertainty to one’s "nd-
ings is a must for any scienti"c research (King et al. 1994). In set-theoretic 
methods, uncertainty can be expressed in several di$erent ways, of which 
statistical tests of signi"cance are but one (imperfect) mode (see, e.g., Schrodt 
2006). For instance, verbal quali"ers attached to fuzzy-set membership scores, 
such as “almost fully consistent” or “more in than out of a set” denote forms of 
uncertainty and should be read as such. Furthermore, reporting parameters 
of "t and verbalizing their meaning in the substantive interpretation of the 
"ndings is another way of reporting uncertainty. Finally, researchers should 
perform and report the results of di$erent robustness tests along the lines 
discussed above.

At-a-glance: robustness and uncertainty in QCA

The robustness of results generated by QCA is a legitimate concern. Given the specific 
nature of set-theoretic approaches, the assessment of robustness has to follow a different 
logic than robustness tests in statistics-based research.

QCA results are sensitive to decisions made by the researcher about issues such as 
the calibration strategy, the selection of cases, and the choice of consistency thresholds 
(among others). This sensitivity is both an asset and a potential pitfall. If researchers have 
very good reasons to classify their cases in a given manner, it is a good thing that the 
results will then reflect these deliberate decisions made by the researchers.
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11.3 The evaluation of theories in set-theoretic methods

Testing theories is the bread-and-butter business of most quantitative social sci-
ence research. In contrast, most qualitative research – and, within this group, 
QCA – is inductive in spirit. Based on some initial hunches, guided by estab-
lished knowledge and theoretical considerations, conditions are selected that 
are expected to be relevant for producing the outcome of interest (Amenta and 
Poulsen 1994; Berg-Schlosser and De Meur 2008). A%er the analysis, the task 
usually consists of "nding a plausible interpretation of the solution formulas 
obtained, ideally backed up with further empirical evidence provided through 
other methods, such as, for instance, within-case analysis (section 11.4). Despite 
this emphasis on developing rather than testing hypotheses as the goal of QCA, 
it still seems plausible to ask the extent to which the theoretical expectations 
prior to a QCA overlap with the empirical results generated by the QCA.

In the following, we "rst elaborate why the principles and practices of 
standard hypothesis testing cannot be meaningfully applied to set-theoretic 
methods (11.3.1). In a second step, we outline how it is possible to evalu-
ate theories while staying true to the principles and practice of set-theoretic 
methods (11.3.2). Here, we follow ideas "rst suggested by Ragin (1987: 118–
21). !e main thrust is that, based on set-theoretic methods, hypotheses are 
not rejected or supported tout court. Rather, the evaluation of theory-guided 
hunches sheds light on which parts of existing theories are supported by 
empirical "ndings; in which direction they should be expanded; and which 
parts need to be dropped. In a third step (11.3.3), we re"ne the practice of 
theory evaluation by arguing that one needs to take stock of the fact that QCA 
"ndings are usually not fully consistent, nor do they fully cover the outcome 
(on parameters of "t, see especially Chapter 5). As we show, taking inconsist-
ency and less-than-perfect coverage into account provides for a more subtle 
take on the process of theory evaluation in set-theoretic methods.

Most of the discretional decisions taken by researchers have only small effects, if any, 
as long as they remain within a reasonable and plausible range. The precise consequences 
usually cannot be foreseen and depend on features of the data and other decisions made 
in the analysis. Only changes in the raw consistency threshold can be precisely predicted. 
Increasing (decreasing) the threshold makes the solution more (less) consistent, with lower 
(higher) coverage, and the conservative solution will be a true subset (superset) of the con-
servative solution based on a lower (higher) consistency threshold.
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11.3.1 Why standard hypothesis testing does not fit into set-theoretic methods

Set-theoretic methods, in general, and QCA, in particular, have a strong 
a#nity with classic qualitative research approaches. Qualitative research-
ers usually aim at formulating plausible accounts for the outcome of interest 
in precisely speci"ed cases. !ese accounts can o%en be seen as hypotheses 
themselves. !ey are developed, however, on the basis of empirical "ndings 
and thus appear at the end of the research process rather than at the beginning. 
It therefore should come as no surprise that hypothesis testing as understood 
in the vast majority of applied quantitative methods does not feature among 
the primary goals of standard applications of set-theory-based methods.

In the process of elaborating plausible accounts of social reality, research-
ers using set-theoretic methods are required to move back and forth between 
ideas and evidence (Ragin 2000: ch. 11), a process also sometimes labeled 
upstream and downstream (Rihoux and Lobe 2009) or pre-QCA and post-
QCA research phase (Schneider and Rohl"ng in press and section 11.4). !e 
standards of good QCA research practice (Schneider and Wagemann 2010 
and section 11.1) dictate that preliminary "ndings are used as a justi"cation 
for changing crucial elements of the data at hand: cases and conditions are 
dropped or added; conditions and the outcome reconceptualized and thus 
membership scores of cases are altered; or scope conditions (Walker and 
Cohen 1985) are shaped.

All this is in stark contrast to – and incompatible with – the principles and 
practices of research based on inferential statistics. !ey are the cornerstone of 
most mainstream hypothesis-testing statistical approaches and require, among 
other things, that the researcher has not screened the data prior to testing the 
hypothesis. In other words, tests of a hypothesis via statistical signi"cance are 
valid only if researchers have no second chance to go back to the data and make 
those adjustments to their model that are purely motivated by the "ndings of 
previous statistical tests. All this implies that when using set-theoretic meth-
ods, one either adheres to the standards of good practice of carefully cra%ing 
the data and thus cannot engage in straightforward hypothesis testing,20 or one 
performs proper hypothesis tests, which, however, can only be done by violat-
ing the standards of good practice of set-theoretic methods.21

20 Note that this is not an argument against using statistical inference when assessing claims about subset 
relations. !e point is rather that the latter are a product of set-theoretic empirical research rather than 
clearly formulated theory-derived hypothesis at the beginning of the empirical research.

21 Such violation might be justi"able and, if so, should be explicitly argued for. If, for instance, strong 
interest, strong expectations, or both exist in a particular set relation, this hypothesized relation can be 
subjected to a statistical test.
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Another reason why a direct translation of standard notions of hypothesis 
testing into set-theoretic approaches is di#cult is that set-theoretic scholars 
tend to subscribe to the notion of causal complexity. Among other things, this 
implies that they embrace equi"nality and conjunctural causation. !ey are, 
thus, interested in the role played by various conjunctions of several condi-
tions. While hypotheses about the interaction e$ect of di$erent variables can 
be subjected to a statistical test, there are practical limits to how many vari-
ables can be interacted in a statistical model. Tests of third-order interaction 
e$ects are already quite rare, fourth-order interaction e$ects virtually absent 
in the literature.22

Yet, the even bigger problem when trying to subject solutions obtained 
from QCA to a standard hypothesis-testing procedure is that, in QCA, it is 
frequently postulated that alternative conjunctions are considered to be the 
causes for a given outcome. We have introduced this as the principle of equi-
"nality (section 3.3.1). In multivariate statistical research rooted in the poten-
tial outcomes framework and the experimental template, by contrast, each 
model allows for only one inference (Morgan and Winship 2007; Brady 2008; 
Sekhon 2008; Dunning 2010; Gerring 2012). !at is, only one variable (or one 
speci"c interaction of variables) can be the treatment, i.e., the cause. All other 
variables are control variables.

Given the incompatibility between the principles and practices of set-
 theory based research, on the one hand, and hypothesis testing, on the other, 
how can and should researchers "nd out whether the initial theoretical expec-
tations are in line with the empirical "ndings, contradict them, or both?

11.3.2 The basics of theory evaluation in set-theoretic methods

Ragin (1987: 118–21) provides an extensive treatment of how to evaluate the-
ories in set-theoretic approaches, suggestions which, however, have not been 
frequently used in the literature so far. To illustrate, imagine a hypothetical 
csQCA on 130 cases.23 !e outcome set is stable democracy (Y). Seventy-
eight cases are members of Y. !e three hypothetical conditions are a presi-
dential system of government (A), economic prosperity (B), and a British 
colonial past (C).24 Let us further assume that, from the existing literature, the 
following hypothesis can be derived: democratic stability is brought about by 

22 See Braumoeller (2003) for an attempt at mimicking set-theoretic notions of causal complexity within 
a statistical framework.

23 We choose csQCA for didactical purposes but the same principles apply to fsQCA.
24 !e data can be found in the online appendix (www.cambridge.org/schneider-wagemann).
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economic prosperity, and/or through a combination of a British colonial past 
and an absence of presidential government. In Boolean notation, the theory-
derived hunches (T) can be written as follows:

!eory (T): B + ~AC → Y.

!e analysis of necessity reveals that no single condition or any of their com-
plements is necessary for Y. !is can be seen as being in line with the theor-
etical expectations, which also do not stipulate the presence of a necessary 
condition. !e analysis of su#ciency yields the following solution term:25

Solution term (S): B~C + AC → Y.

Our data show that there are two su#cient paths towards the stability of 
democracies: either by economic prosperity combined with not having had 
a history of British colonialism (B~C), or by a combination of a presidential 
system of government and a British colonial past (AC).

Do these results con"rm or reject our theoretical expectations? !e answer 
is: both. In order to understand this counterintuitive answer, we separate the 
initial question into four: for which cases did the theoretical expectations (T) 
predict and the solution term (S) identify the outcome (TS)? For which cases 
did both T and S not predict and identify the outcome (~T~S)? For which 
cases did T predict the outcome while S did not identify it (T~S)? And for 
which cases did T not predict the outcome while S identi"ed it (~TS)?

!ere are, thus, 22 = 4 possible di$erent intersections between sets T and 
S. Each of these intersections highlights a di$erent aspect of the question of 
how far our empirical results con"rm or contradict standing theory. For each 
area, we provide its Boolean expression, spell out its meaning for the theory at 
hand, and label cases that are found in these areas.

First, the intersection between theory and the empirical solution (TS) is 
the area where theory and empirical "ndings overlap. !is is the part of the 
theory that is supported by empirical evidence. !e Boolean expression of the 
area of overlap is this:

Intersection TS: (B + ~AC) * (AC + B~C)
        = ABC + B~C.26

Various insights can be gained from this. Most importantly, it shows that the 
expectation that condition B on its own is su#cient for Y was much too bold. 

25 No simplifying assumptions are made because, for the time being, our hypothetical truth table (online 
appendix www.cambridge.org/schneider-wagemann) does not contain any logical remainders.

26 See section 2.4.2 for the rules of intersecting complex sets.

 

 



Data analysis technique meets set-theoretic approach299

Rather than being su#cient, B is one among several INUS conditions. It needs 
to be combined with either AC or with ~C in order to imply Y. Furthermore, 
we see that also the role of condition A needs to be reassessed. !e theoretical 
literature puts emphasis on the absence of A (i.e., ~A) being an INUS con-
dition. Empirically, we can only con"rm that the presence of A is an INUS 
condition, though. Cases covered by the intersection TS can be interpreted as 
con"rmed most likely cases.

A second interesting area is where empirical "ndings overlap with those 
cases not expected by theory (~TS). !e Boolean expression for this area is 
as follows:

Intersection ~TS: (A~B + ~B~C) * (AC + B~C)
            = A~BC.27

We thus "nd some cases with a presidential system (A) in non-prosperous 
countries (~B) that were formerly a British colony (C) which, contrary to our 
theoretical expectations, are members of the set of stable democracies (A~BC 
→ Y). Cases in this area are a variant of discovered least likely cases. Results 
like this can be used to reformulate the existing theory so that it includes 
these hitherto overlooked cases. In general, the result of the intersection ~TS 
suggest an extension of existing theories.

!ird, the area T~S captures those cases for which theory predicts the 
occurrence of Y but which our solution does not capture. In our example, the 
Boolean expression for these cases is:

Intersection T~S: (B + ~AC) * (~A~B + ~AC + ~B~C)
        = ~AC.

Contrary to our theoretical expectations, our cross-case model does not iden-
tify the combination of a non-presidential system in a former British colony 
as a su#cient condition for outcome Y. Cases in this area are also a form of 
uncon"rmed most likely cases. In general, the results of the intersection T~S 
suggest a delimitation of existing theories.

Fourth, the intersection ~T~S denotes a con"guration of conditions that 
neither theory nor our cross-case "ndings deem su#cient for the outcome. 
Applied to our example, the formula for ~T~S reads:

Intersection ~T~S: (A~B + ~B~C)*(~A~B + ~AC + ~B~C)
          = ~B~C.

27 One arrives at this formula by "rst applying DeMorgan’s law (section 2.3) on the expression for T in 
order to obtain ~T and then to intersect ~T with S.
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According to standing theory and our empirical evidence, cases that are both 
not economically prosperous (~B) and not a former British colony (~C) should 
not be stable democracies (~Y). Non-stable democracies that are members of 
set ~B~C are in line with theoretical expectations. Yet, due to the asymmetry 
inherent to set-theoretic methods, they should not be treated as typical cases 
rather than simply being consistent with the postulated set relation, yet sub-
stantively irrelevant cases (sections 3.3.3 and 11.4).

11.3.3 Extending theory evaluation by integrating consistency and coverage

What, however, if there are cases in the intersection ~T~S that are stable 
democracies (Y)? Or, what if some cases in the intersection TS are not stable 
democracies (~Y). In other words, how does theory evaluation look if di$er-
ent cases located in the same intersection between T and S display di$erent 
membership scores in the outcome? !e occurrence of such cases is possible 
whenever the solution term fails to achieve full consistency and coverage, 
which is virtually always in applied QCA. In the following, we re"ne the prin-
ciples of theory evaluation by adding the notions of consistency and coverage 
to the procedure.

!e parameters of "t for the solution term reported above are as follows:28

 B~C + AC → Y

Consistency 0.89 0.88
Raw coverage 0.42 0.37
Unique coverage 0.42 0.37
Solution consistency 0.88
Solution coverage 0.79

!e consistency of both paths are at an acceptable level (> 0.87) and each 
path covers a sizable amount of the outcome, without, however, explaining 
all cases. !e solution consistency (0.79) implies that there are 8 cases that 
contradict the statement of su#ciency, and the solution coverage of 0.79 indi-
cates that 62 of the 78 members of outcome Y are covered, i.e., 16 cases remain 
unexplained by this solution.

!e four cells in Table 11.2 correspond to the four intersections between 
T and S. For each of them, we not only report the Boolean expression, but 

28 For the Truth Table Algorithm, a frequency threshold of 1 and a raw consistency threshold of 0.85 
were applied.
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also distinguish between cases that are members of Y and those that are not. 
!ere are, thus, eight di$erent types of cases. Cases in row T are labeled most 
likely cases, whereas those in row ~T are least likely (Eckstein 1975; George 
and Bennett 2005). For cases in column S and ~S, we need to distinguish 
whether they are instances of Y or ~Y. Following the notions of consistency 
and coverage (Chapter 5), we label cases that are members of S and Y cov-
ered cases. Cases that are members of S but also of ~Y are inconsistent cases. 
Furthermore, cases in column ~S that are, however, members of Y are uncov-
ered cases, whereas those that are members of both ~S and ~Y are labeled 
consistent cases.29 With this terminology, we can label the eight di$erent types 
of cases in the four cells of Table 11.2.

First, for the intersection TS (ABC + B~C in our example), the claim was 
that it identi"es theory-supporting cases. !is, however, is true only for cases 
that are both members of this intersection and of the outcome Y (i.e., cases 
of TSY). !ese are the covered most likely cases. Of the 78 members of Y, 58 
cases fall into this category. Each of them lends itself to within-case analysis 
with the aim of unraveling the causal mechanisms that link the su#cient con-
junction to the outcome (section 11.4). In contrast, cases in this area that 

Table 11.2 Intersections of theory (T) and solution term (S) with types of cases

 Empirics  
  

!eory

Outcome predicted by   
solution (S)
Y: covered cases  
~Y: inconsistent cases

Outcome not predicted by 
solution (~S)   
Y: uncovered cases   
~Y: consistent cases

Outcome expected by 
theory (T)
most likely case

ABC + B~C
Y: covered most likely case 
(58)*
~Y: inconsistent most likely 
cases (8)

~AC
Y: uncovered most likely 
cases (0)
~Y: consistent most likely 
cases (4)

Outcome not 
expected by theory 
(~T)
least likely case

A~BC
Y: covered least likely case (4)
~Y: inconsistent least likely 
cases (0)

~B~C
Y: uncovered least likely 
cases (16)
~Y: consistent least likely 
case (40)

* numbers in parenthesis indicate the number of cases found in the empirical example

29 In section 3.3.3 we explained that cases of ~X and ~Y are not directly relevant for assessing set-
relational claims involving X and Y. In section 11.4 we call them “individually irrelevant cases.” Yet it 
remains true that these cases are consistent with the statements that X is su#cient for Y and/or that X 
is necessary for Y.
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are not members of Y (TS~Y) strongly contradict both T and S. We suggest 
labeling them inconsistent most likely cases. Eight cases in our data qualify as 
such. Given that both theory and empirics predict the outcome which, how-
ever, does not materialize, within-case analysis of these cases is particularly 
interesting. It should aim at "nding alternative explanations for Y that involve 
hitherto overlooked condition(s).

Another way of looking at the implications of the fact that cases in the same 
intersection between T and S do not share the same membership in the out-
come is to use the parameters of "t. For each of the four intersections between 
T and S, we can calculate the consistency and coverage scores as su#cient 
conditions for Y and ~Y, respectively. !e more the expression for TS is a con-
sistent subset of Y, the stronger the support for T. In addition, the more cases 
are covered by TS, the stronger the support for T.

Applied to our example, calculating the overlap of ABC + B~C as a su#-
cient condition for Y reveals a consistency of 0.88 and a coverage of 0.74.30 
!e consistency score indicates that most cases in TS are also members of Y. 
Behind the less than perfect consistency score are hiding the eight inconsist-
ent most likely cases mentioned above. !e coverage score shows that most 
members of Y (74 percent, or 58 out of 78) are both predicted by T and cov-
ered by S. !is implies strong empirical support for that part of the theory 
that is described by ABC + B~C.

Second, for intersection ~TS (A~BC in our example) the claim was that it 
identi"es cases that suggest the direction in which theoretical expectations 
should be extended. !is, however, holds only for cases that are also members 
of Y (~TSY). Within-case analysis of one or more of the four covered least 
likely cases should reveal clues in which direction to extend theory. In con-
trast, cases that are members of ~TS and ~Y (~TS~Y) – the inconsistent least 
likely cases – are not puzzling at all from the theoretical perspective at hand 
and thus weaken the need for any modi"cation of the theory. In our empirical 
example, no such case exists in the data. Using the perspective of parameters 
of "t, we can say that the higher the consistency of ~TS as a subset of Y, the 
stronger the support for extending T. In addition, the more cases of Y that 
fall into the area of ~TS, the more empirical evidence there is that supports 
the need for theory extension. !us, the higher the coverage of ~TS for Y, the 
stronger the support for extending T.

30 !ese parameters can be easily calculated by using the Subset/Superset function in the fsQCA 2.5 
so%ware (see the How-to section for Chapter 5 in the online appendix, www.cambridge.org/schneider-
wagemann).
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In our example, the consistency of A~BC as a su#cient condition for Y is 1 
and its coverage is 0.05. !e perfect consistency means that all cases described 
by this conjunction are, indeed, members of Y. !is provides good grounds 
for extending existing theory. !e relatively low coverage of 5 percent (4 of 
78 members of Y) puts the need for such a theory extension into perspective, 
though. An extension of the theory would help to explain only a few more 
cases. Of course, if these four cases are of particular substantive importance, 
then there are stronger incentives for a theory extension.

!ird, the claim for intersection T~S (~AC in our example) was that it 
identi"es cases that warrant a delimitation of T. !is, however, is true only for 
cases that are members of ~Y (T~S~Y), i.e., so-called consistent most likely 
cases, of which there are four in our data. In contrast, members of T~S and 
Y (T~SY) – the uncovered most likely cases – represent support for T and a 
weakening of the plausibility of S. !ere are, however, no such cases in the 
data. Using the parameter of "t perspective, we can say that the higher the 
consistency of T~S as a su#cient condition for ~Y, the higher the need for 
delimiting T by dropping ~AC. Also, the higher the coverage of T~S as a suf-
"cient condition for ~Y, the higher the empirical importance of delimiting T.

In our example, the consistency of ~AC as a su#cient condition for Y is 1 
and coverage 0.08. !e perfect consistency indicates that all (four) cases that 
are members of ~AC are also members of ~Y. !ey all provide empirical evi-
dence against the theoretical expectations that postulates conjunction ~AC as 
a su#cient condition and warrant a reformulation of that part of the theory. 
!e low coverage value, however, indicates that the need for such a reformu-
lation of T is not too pressing.

Finally, for intersection ~T~S (~B~C in our example) we expect to "nd no 
cases that are members of Y. If all cases in ~T~S are also members of ~Y – i.e., 
so-called consistent least likely cases – then there is no empirical evidence 
that contradicts both T and S. !ere are, however, also some cases in ~T~S 
that are members of Y (~T~SY). !ese 16 uncovered least likely cases are 
truly puzzling, for neither theory predicts them, nor does the solution term 
cover them, yet they display the outcome. !eir in-depth study should reveal 
which conditions are missing from both our theory and the empirical model. 
In general, the higher the consistency and coverage of ~T~S as a su#cient 
condition for Y, the higher the need for extending both the theory and empir-
ical model by including hitherto overlooked condition(s).

In our hypothetical example, expression ~B~C has a consistency of 0.29 
as a su#cient condition for Y and a coverage value of 0.21. !e low consist-
ency means that the majority of cases with ~B~C are, indeed, instances of 
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~Y, which do not challenge our theoretical expectation or empirical "ndings. 
Twenty-six percent of these cases do pose a challenge, though. In addition, 
the coverage value of 21 percent underlines this challenge. It shows that 16 
out of the 78 cases with Y are not explained by either our theory or empirical 
"ndings. Within-case analysis of these cases is motivated by unraveling hith-
erto overlooked su#cient paths towards the outcome, rather than just single 
INUS conditions that should be added to already identi"ed paths.

11.3.4 Summarizing set-theoretic theory evaluation

!eory evaluation in set-theoretic approaches aims at providing nuanced 
answers to the question of whether initial theoretical hunches are supported 
by the empirical "ndings. By creating di$erent intersections between theor-
etical expectations and empirical "ndings, clues can be derived about which 
cases to study in further detail in the next round of the back-and-forth proced-
ure between ideas and evidence. Such intersections can also help in reformu-
lating a theory by either increasing or reducing its parsimony. It is important 
to point out that in this type of hypothesis testing, theories are not falsi"ed in 
toto. Instead, it identi"es areas, or parts, of the theory that are not consistent 
with the empirical "ndings. !is makes theory evaluation quite di$erent from 
hypothesis testing, where the emphasis is usually on rejecting or not rejecting 
the null hypothesis or a similar benchmark.

When engaging in theory evaluation, we believe it is essential to not only 
calculate the Boolean expression of the four di$erent intersections that are 
logically possible between the sets denoted by T and S. In addition, it is of 
crucial importance to establish how many cases are members of the outcome 
and the non-outcome in each of these areas. Only once we know how many, 
if any, cases are members of Y and ~Y in each intersection, can we decide if 
a given intersection provides the evidence for supporting or challenging our 
initial theoretical beliefs.

Notice that the example above was devoid of any logical remainders. If 
logical remainders exist and the solution term (S) incorporates assumptions 
about some of them, then it is possible that one or more of the intersections 
between T and S also describe some logical remainders. If limited diversity 
is present, then, the researcher must not only distinguish between cases of 
Y and ~Y for each of the four intersections between T and S, but must also 
identify logical remainder cases. For instance, if the intersection TS almost 
exclusively covers logical remainders, then this obviously indicates very lit-
tle empirical support for T. It would mean, in fact, that the solution term 
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S overlaps with T only because of the assumptions that the researcher has 
made about the logical remainders. Since these assumptions should be the-
ory-guided, it would, of course, be &awed to claim that in such a scenario S 
provides empirical support for T.

11.4 Set-theoretic methods and case selection31

Much emphasis is put on the importance of intimate case knowledge for a 
successful QCA (Ragin 1987, 2000, 2008a; Rihoux and Ragin 2009). As a mat-
ter of fact, the idea of QCA as a research approach and of going back and 
forth between ideas and evidence (Ragin 2000) largely consists of combining 
(comparative) within-case studies and QCA as a technique. So far, the litera-
ture has mainly focused on how to choose cases prior to and during but not 
a%er a QCA, where by QCA we here refer to the analytic moment of ana-
lyzing a truth table. It is therefore puzzling that little systematic and speci"c 

At-a-glance: the evaluation of theories in set-theoretic methods

Hypothesis testing as understood in the vast majority of applied quantitative methods does 
not feature among the primary goals of standard applications of set-theory-based meth-
ods. However, hunches derived from theory can be evaluated in set-theoretic methods by 
creating intersections of the Boolean expression describing the theory (T) and the empirical 
solution (S).

The intersection TS describes the part of the theory that is supported by empirical evi-
dence. In the intersection ~TS, empirical findings overlap with those cases not expected 
by theory. The result of this intersection suggests an extension of existing theories. T~S 
captures those cases for which theory predicts the occurrence of Y but which our solution 
fails to capture; it suggests a delimitation of existing theories. Finally, ~T~S denotes a 
configuration of conditions that neither theory nor the empirical findings deem sufficient 
for the outcome.

Integrating the notions of consistency and coverage, we can further refine the theory 
evaluation procedure and define: (a) covered most likely cases (cases in intersection TS 
which show Y); (b) inconsistent most likely cases (TS and ~Y); (c) covered least likely cases 
(~TS and Y); (d) inconsistent least likely cases (~TS and ~Y); (e) uncovered most likely 
cases (T~S and Y); (f) consistent most likely cases (T~S and ~Y); (g) uncovered least likely 
cases (~T~S and Y); and (h) consistent least likely cases (~T~S and ~Y).

31 !e ideas expressed in this sub-section draw heavily on the joint work of Ingo Rohl"ng and Carsten Q. 
Schneider.
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guidance has so far been provided on which cases to select for within-case 
studies based on the results of, i.e., a%er, a QCA (for some initial attempts, see 
Ragin 2000: 90, 2006: 19; Goertz 2008: 11–12; Rihoux and Lobe 2009). !is 
is odd, for set-theoretic methods and (comparative) case studies share many 
properties – they largely agree in their epistemology by focusing on complex 
patterns of causation at the expense of parsimonious-yet-more-generalizable 
accounts of social phenomena – and multi-method research has become gen-
erally popular.

In an attempt to start bridging this gap, in this section, we focus on case 
selection principles a#er a QCA of su#cient conditions.32 We show that while 
the notions of typical and deviant cases can also be applied when the cross-
case evidence stems from a set-theoretic method rather than a regression-
based analysis, their analytic meaning and their location in the empirical 
distribution di$ers in important ways. Depending on which type of case is 
selected, the aim of the post-QCA within-case analysis is to corroborate or to 
update the cross-case model (11.4.1). We also specify what researchers need 
to take into account when selecting cases for comparative process tracing 
(11.4.2). Finally, we summarize our argument in distinct set-theoretic case 
selection principles (11.4.3).

Note that in this section we de"ne types of cases purely on their empirical 
properties – i.e., whether they are in line with general tendencies in the data 
(typical cases) or not (di$erent types of deviant cases) – whereas in the previ-
ous section on theory evaluation in set-theoretic methods (11.3) we de"ned 
types of cases by intersection theoretical expectations about cases with their 
empirical properties.

11.4.1 Types of cases after a QCA

If we misinterpret an XY plot as a scatterplot between a dependent variable 
and a summary of independent variables, then we might be tempted to claim 
that all cases on the main diagonal are typical while all those o$ the diagonal 
are deviant. !is is the standard (and appropriate) approach in the frame-
work of regression-based case selection. In the framework of set-theoretic 
methods, however, it is over-simplistic, if not wrong. Crucial for a meaning-
ful post-QCA case selection is the insight that set-theoretic methods impose 

32 Issues in choosing cases at the very beginning of a QCA-based research project are discussed by, for 
instance, Rihoux and Lobe (2009). Case selection principles a%er an analysis of necessity follow a 
similar, yet not identical, logic to that of su#ciency. For a speci"c treatment of case selection principles 
a%er an analysis of necessity, see Schneider and Rohl"ng (in press).
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qualitative di$erences between cases and that set relations are asymmetric. 
Simply put, cases above or below the 0.5 set membership score are qualita-
tively di$erent (section 1.1.3), and a statement of su#ciency has di$erent 
implications with regard to membership in Y for cases that are members of X 
vis-à-vis non-members of X. As a consequence, in set-theory based research, 
not all cases on the main diagonal are typical, and cases o$ the diagonal 
denote di$erent types of deviant cases, depending on which side of the diag-
onal they fall.

A graphical representation is helpful in demonstrating this point. Figure 
11.1 displays an enhanced XY plot.33 All cases above the main diagonal are 
consistent with the statement of su#ciency while those below are not (sec-
tions 3.1.2.1 and 5.2). Notice, though, that the notion of consistency in fuzzy 
sets, as represented by the main diagonal, does not take into account qualita-
tive di$erences between cases. !ese qualitative di$erences are established by 
a case’s membership above or below the 0.5 qualitative anchor in condition 
X and outcome Y, respectively. !is is why a two-by-two table is superim-
posed in the XY plot in Figure 11.1. !e latter graphically displays the quali-
tative di$erence between cases based on their membership scores in X and Y, 
respectively. Figure 11.1 is thus divided into six areas, most of them contain-
ing types of cases with di$erent analytic meaning with regard to their status 
vis-à-vis the cross-case pattern. !ese qualitative di$erences are crucial for a 
meaningful selection of cases for within-case analysis.

Typical cases are those that are both in line with the statement of su#-
ciency (above the main diagonal) and good empirical instances of the out-
come Y and condition X (area 1).34 Cases that are more out of than in both 
X and Y (lower le% quadrant of Figure 11.1, areas 4 and 5) are never directly 
relevant for assessing the claim of su#ciency (section 3.1.2.1). Cases in area 4 
we label “individually irrelevant,” for they carry analytic meaning not on their 
own, but only when used in a comparative within-case analysis (see section 
11.4.2), whereas cases in area 5 are never relevant to study, for they are incon-
sistent with the statement of su#ciency and weak empirical instances of both 
X and Y. Cases with X > 0.5 and Y < 0.5 (area 3) are true logical contradictions 
(section 5.2). In the context of case selection principles, they can be labeled 
“deviant cases consistency.” Cases in the upper le% quadrant (area 6) are also 
deviant cases. However, they do not contradict the statement of su#ciency. 

33 It is important to keep in mind that X is a placeholder for a conjunction of conditions, rather than a 
single set.

34 Cases in area 2 are also members of X and Y but contradict the statement of su#ciency. !ey are 
therefore not appropriate choices when aiming at studying typical cases.
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Instead, they are le% unexplained by the cross-case model, since they are good 
instances of the outcome (Y > 0.5) but not of the su#cient condition (X < 
0.5). We therefore suggest the label “deviant cases coverage.”35

11.4.2 Forms and aims of (comparative) within-case studies after a QCA

Within-case analyses of deviant cases, especially when geared toward updat-
ing the cross-case "ndings, are inherently comparative (Mahoney 1999; 
Tarrow 2010). !ere are good reasons for engaging in explicitly comparative 
within-case studies. When selecting cases for within-case studies, researchers 
must distinguish between the types of cases just introduced. With a statement 
of su#ciency, only three of the logically possible comparisons between two 
types of cases are meaningful, and each of these comparisons follows a di$er-
ent analytic aims.

First, a within-case comparative analysis of two typical cases should focus 
on unraveling the causal mechanisms that link the condition to the outcome 
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Figure 11.1 XY plot with two-by-two table and types of cases

35 Within each area de"ning types of cases, di$erences in degree can be established based on each case’s 
fuzzy-set membership score. !e best-"tting typical case is located in the upper right corner; the most 
deviant consistency case in the lower right corner; and the most deviant coverage case in the upper le% 
corner. See Rohl"ng and Schneider (in press), who propose formulas for identifying the most typical 
and most deviant cases.
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(Shively 2006; Gerring 2010). Comparing two typical cases represents a 
stronger basis for inference about causal mechanisms than the study of just 
one. !is is especially true if researchers unravel the same causal mechanism 
in two typical cases that are located at di$erent ends of the diagonal within 
area 1 in Figure 11.1 – aka two typical cases that di$er most in their degree of 
membership in both X and Y.

Second, a within-case analysis of a deviant case for consistency with a typ-
ical case should focus on identifying a condition that is missing from the suf-
"cient path under study. In this condition, the typical case must have high 
and the deviant case low membership.36 To see this, let X stand for the con-
junction A*B*C. Deviant cases with regard to consistency are those which, 
given their low membership in Y, have a too high a membership in A*B*C. By 
adding condition E to the path, a deviant case’s membership in the new path 
is reduced and it is shi%ed to the le% in the XY plot, making it an individually 
irrelevant case for the statement that A*B*C*E is su#cient for Y.

!ird, a deviant case for coverage should be compared to those individually 
irrelevant cases that belong to the same truth table row. !e "rst step, thus, 
consists of identifying the truth table row that best describes the deviant case 
for coverage and the individually irrelevant case (i.e., the one row in which 
each case has a membership greater than 0.5). By pure logic, this must be a 
row not implied by path A*B*C. For illustrative purposes, let us suppose it is 
truth table row A*~B*C*~D. !is creates a comparative within-case analysis 
setup akin to that between a typical and a deviant case for consistency just 
presented. Hence, the within-case comparison should focus on identifying a 
condition that is missing from conjunction A*~B*C*~D and distinguishes the 
deviant case for coverage from the individually irrelevant case. Let us call this 
condition F. !e result of this comparative within-case analysis is the addition 
of a new path – A*~B*C*~D*F – rather than of a single INUS condition to an 
already existing path of the cross-case model.37

!ree comparisons are possible, in principle, but futile. First, a comparison 
between deviant case consistency and an individually irrelevant case is mean-
ingless. Since none of the cases involved is a member of the outcome of inter-
est, no point of reference exists that could inform us about the reasons for the 
occurrence of the outcome. Second, a comparison between a deviant case for 
consistency and a deviant case for coverage does not make much sense. !ere 

36 A condition in which both types of cases have low membership does not qualify, as it would turn the 
typical case into a deviant case for coverage vis-à-vis the new path.

37 Alternatively, condition E is added to the truth table and a new QCA run on that updated truth table.
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is nothing puzzling about this pair of cases as they share neither the same 
membership in the path nor in the outcome.

!ird, and perhaps surprisingly, a within-case comparison between a devi-
ant case for coverage and a typical case is also logically &awed, and we dis-
courage it for several reasons. First, adding a condition to path X – as is done 
in the comparison of a typical case with deviant case for consistency – would 
exacerbate rather than mitigate the deviance of this type of cases by moving 
it even further to the le% in the XY plot. Second, dropping a condition from 
path X could shi% deviant cases for coverage to the right and thus turn them 
into a typical case for the new, less complex path. For instance, a deviant case 
for coverage with regard to path A*B*C, which holds low membership in C, 
but high membership in A and in B, would become a typical case for path 
A*B. Notice, however, that this strategy has two &aws. One is that it is diamet-
rically opposed to that suggested by the comparison of a typical case and a 
deviant case for consistency, where the clear guideline is to add a condition to 
path A*B*C rather than dropping a condition. !e other is that such a com-
parative within-case analysis of a typical case and a deviant case for coverage 
mimics precisely what is done by the logical minimization procedure (section 
4.3.1). !is means that if condition C could be dropped from path A*B*C, it 
would have been dropped already during the QCA-based cross-case analysis. 
But, apparently, path A*B does not meet the consistency criteria as a su#cient 
condition.38 A third argument against a comparison between a typical case 
and a deviant case for coverage is that path A*B*C simply is not a good point 
of reference for understanding why deviant cases for coverage display out-
come Y, for these cases are, by de"nition, bad empirical instances of that path. 
And because just knowing that they are not members of path A*B*C is not a 
good enough start for within-case analysis, we suggest above identifying the 
truth table row that best describes deviant cases for coverage and comparing 
them to individually irrelevant cases from the same row.

11.4.3 Post-QCA case selection principles

!e strategies for selecting cases a%er a QCA has been performed are governed 
by a list of principles (Schneider and Rohl"ng in press). Some of them apply 
to both crisp-set and fuzzy-set QCA, others only to fuzzy-set QCA. Some of 
them apply to single and comparative within-case analysis, while others are 

38 !is is because by dropping condition C, not only the deviant cases for coverage but also some 
individually irrelevant cases might be shi%ed to the right in an XY plot, turning the latter into deviant 
cases for consistency for path A*B.
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speci"c to comparative case studies. Unless explicitly mentioned otherwise, 
each principle applies to both analyses of necessity and of su#ciency.

Table 11.3 contains all 11 principles. In theory, they are not mutually exclu-
sive. !at means, under ideal conditions, that researchers are able to perform 
set-theoretic multi-method research that adheres to all principles. In prac-
tice, however, insu#cient time and incomplete data might require the choice 
between adhering to some and not other principles. For instance, researchers 
simply might not have time to perform within-case analyses of all types of 
typical and deviant cases. Or the data might not contain cases that would be 
adequate for one of the comparative within-case strategies outlined above.

Table 11.3 Post-QCA case selection principles

 Crisp-set and fuzzy-set QCA Fuzzy-set QCA

Single-case and 
comparative
process tracing

Principle of diverse case selection:
Choose at least one case for each 
term of the solution.
Principle of unique membership:
Choose cases that are covered by 
just one term.
Truth table principle for su"ciency:
For the choice of a deviant case for 
coverage, determine the truth table 
row to which the case belongs.

Principle of maximum set membership:
!e most typical case displays maximum 
set-membership scores in the subset and the 
superset.
Principle of maximum set-membership 
di$erence:
!e most deviant case displays maximum 
di$erence in its set membership in the subset 
and the superset.
Principle of di$erences in degree:
Di$erences in degree should only be 
established among cases that are similar in 
kind and located on the same side of the 
secondary diagonal.

Comparative
process tracing

Positive outcome principle:
At least one case must be a member 
of the outcome in comparative pro-
cess tracing.
Truth table principle for necessity:
When comparing a typical case 
and an individually irrelevant case, 
choose two cases that di$er in their 
membership in the necessary condi-
tion and the outcome, but share the 
qualitative membership in all other 
conditions that constitute the truth 
table.

Principle of deviance in kind:
Choose deviant cases that are qualitatively 
di$erent from typical cases in their 
membership in the superset.
Principle of max–max di$erence:
When comparing two typical cases, or a 
typical case with an individually irrelevant 
case, maximize the di$erence of the cases’ set 
membership in the superset and the subset.
Principle of maxi–min di$erence:
When comparing a typical case with a 
deviant case, maximize the di$erence of the 
cases’ set membership in the superset and 
minimize the di$erence in the subset.
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!is short outline has mapped some of the basic notions that should be 
kept in mind when selecting cases a%er a QCA. All the arguments we have 
presented equally apply to crisp-set QCA. Only when researchers want to 
identify not simply typical and deviant cases, but, beyond this, the most typ-
ical and the most deviant cases, is the use of fsQCA required (Rohl"ng and 
Schneider in press). For the sake of simplicity, we have not discussed issues 
of case selection that arise from equi"nality, or when the cross-case analysis 
is one of necessity rather than su#ciency (Schneider and Rohl"ng in press). 
Also, we have exclusively focused on model-related reasons for deviance. 
Needless to say, within-case studies can also aid not only in the identi"ca-
tion of other potential sources of deviance, such as concept misformation, 
measurement error, or misspeci"cation of the population. !e latter sources 
of deviance are usually dealt with in the pre-QCA phase of research, though, 
whereas the model-related reasons for deviance pertain more to the post-
QCA phase that we have focused on here.

At-a-glance: set-theoretic methods and case selection

QCA results provide useful cues for subsequent case selection. We can define typical cases, 
individually irrelevant cases, and deviant cases for consistency and for coverage, respect-
ively. Apart from within-case analyses of the various types of cases, we recommend com-
parative analyses of two typical cases in order to unravel the causal mechanisms that link 
the condition to the outcome; of a deviant case for consistency with a typical case in order 
to identify a sufficient path under study; and of a deviant case for coverage and those indi-
vidually irrelevant cases that belong to the same truth table row in order to identify first a 
condition that is missing from the analysis and then a sufficient path that is missing from 
the solution formula. Several other types of comparison are futile: comparisons between a 
deviant case for consistency and an individually irrelevant case; between a deviant case for 
consistency and a deviant case for coverage; and between deviant case for coverage and a 
typical case.
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12 Looking back, looking ahead

12.1 Looking back: the main topics of this book

!is book started o" from the general observation that claims about set rela-
tions are pervasive in the social sciences. Set-theoretical methods are thus 
an important addition to the correlational approach. We have de#ned set-
theoretic methods as those approaches to examining social reality that oper-
ate on sets, not variables; model relations between phenomena in terms of 
set relations rather than covariations; and that put emphasis on su$cient and 
necessary conditions and their derivates INUS and SUIN conditions, thus 
unraveling causally complex patterns in terms of equi#nal, conjunctural, and 
asymmetric causation. Within the family of set-theoretic methods, QCA can 
be distinguished by its explicit use of truth tables; the application of the prin-
ciple of logical minimization; and its interest in a causal interpretation of its 
results. We have focused on csQCA and fsQCA as the two main variants of 
QCA, with csQCA being a special case of fsQCA. mvQCA and tQCA are 
among the extensions of the main QCA variants.

In Chapter 1, we showed how sets are de#ned and how set membership is 
calibrated. Chapter 2 laid the basics for the analysis by introducing the main 
principles of set theory, Boolean algebra, and the logic of propositions – the 
three underpinnings on which QCA is built. In Chapter 3, we clari#ed in 
great detail the basic notions of su$ciency and necessity, which are at the core 
of any set-theoretic analysis. A major insight in this chapter was that neces-
sity and su$ciency both denote subset relations, which apply in both crisp 
and fuzzy sets. Furthermore, we showed that those who stipulate the pres-
ence of necessary and/or su$cient conditions unavoidably embrace causal 
complexity, which in set-theoretic methods is de#ned in terms of equi#nality, 
conjunctural causation, and asymmetric causality. In Chapter 4, we explained 
that three steps are needed in order to construct a truth table based on a set 
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membership data matrix: #rst, the truth table rows (i.e., the logically pos-
sible combinations of the conditions) have to be de#ned; second, cases have 
to be assigned to the single truth table row to which they best belong; and, 
third, for each truth table row the outcome value has to be determined by 
testing whether it is a subset of the outcome of interest. Rows that pass this 
test represent su$cient conditions. Subsequently, a QCA proceeds with the 
logical minimization of a truth table. !e result of this procedure yields the 
su$ciency solution formula, one important goal of any QCA.

Chapter 5 discussed the problem of inconsistent truth table rows, i.e., the 
situation when some truth table rows are not perfect subsets of the outcome. 
We introduced the consistency parameter as a tool to assess whether a truth 
table row should count as a su$cient condition (and thus be included or 
excluded from the logical minimization). Once a set passes the formal test 
of consistency, the coverage parameter for su$cient conditions expresses 
how much of the outcome is explained by that condition. We showed how 
consistency and coverage are also calculated for necessary conditions and 
argued that the coverage parameter expresses the relevance of a necessary 
condition.

In Chapter 6, we dealt with another ubiquitous phenomenon in QCA – but 
also in other types of empirical social research – related to incomplete truth 
tables: limited diversity. !is occurs when one or more truth table row does not 
contain enough empirical evidence, producing so-called logical remainders. 
In such a situation, the logical minimization of a truth table yields more than 
one solution formula, depending on the treatment of such remainder rows. We 
showed that none of these solutions ever contradicts the empirical evidence. 
Yet they di"er in their degree of complexity and therefore sometimes look quite 
di"erent and facilitate putting di"erent emphases in the substantive conclu-
sions. All this warrants transparent strategies for a plausible treatment of logical 
remainders. We explained that, in QCA, the strategy for such a conscious treat-
ment consists of taking into consideration the three dimensions along which 
assumptions on logical remainders can vary: the dimension of set relations, that 
of complexity, and that of theoretical appropriateness. !ree solution terms play 
a crucial role in QCA: the conservative solution, which is not based on any 
assumption on logical remainders; the most parsimonious solution, which is 
based on simplifying assumptions on many, sometimes even all logical remain-
ders; and the intermediate solution, which is based on only easy counterfactuals 
and is in-between the previous two solutions, both in terms of set relations and 
in terms of complexity. Chapter 7 presented the so-called Truth Table Algorithm 
as the currently prevailing mode of analyzing data in QCA.
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!e remainder of the book looked beyond this default way of perform-
ing QCA. In Chapter 8, we identi#ed various pitfalls in dealing with limited 
diversity when using the Standard Analysis procedure. We demonstrated that 
the most parsimonious solution, and even the intermediate solution, can be 
based on untenable assumptions. We also laid out various strategies for iden-
tifying and then for avoiding these assumptions, yielding what we called the 
Enhanced Standard Analysis procedure. We also encouraged researchers to 
engage more directly and consciously with logical remainders, and to dare 
to make counterfactuals based on theoretical reasoning and irrespective of 
whether such counterfactuals contribute to parsimony – a strategy we labeled 
!eory-Guided Enhanced Standard Analysis.

In Chapter 9, we discussed pitfalls that can occur when combining analyses 
and statements about both necessity and su$ciency. We showed that su$-
ciency solution formulas might suggest the presence of necessary conditions 
that are not actually necessary (false necessary conditions), and that some 
truly necessary conditions might disappear from the solution formula for suf-
#ciency (hidden necessary conditions). Wrong conclusions can be avoided 
if necessary and su$cient conditions are analyzed in two separate analytical 
steps, preferably with the necessary conditions coming #rst. Also linked to the 
analysis of necessary and su$cient conditions are pitfalls triggered by skewed 
membership values. !e literature has already discussed the problem of trivial 
necessary conditions. We demonstrated that the standard coverage formula 
for necessity captures only part of this problem and that current alternative 
measures of relevance work less well in the rather common scenario of less 
than perfectly consistent subset relations. As a remedy, we proposed a new 
formula for empirically assessing the relevance and trivialness of a necessary 
condition. As a further consequence of skewed set-membership scores, we 
discussed the phenomenon of simultaneous subset relations, a phenomenon 
that can a%ict only fuzzy sets, and possible strategies for detecting it. In a 
#nal section, we showed that skewed set-membership scores trigger potential 
pitfalls that go well beyond what is currently discussed in the literature.

In Chapter 10, we introduced further variants of QCA. Multi-value QCA 
(mvQCA) distinguishes itself from crisp-set and fuzzy-set QCA by the use 
of a di"erent type of set, whereas two-step QCA and temporal QCA (tQCA) 
can be used with crisp and fuzzy sets and even multi-value sets. In our discus-
sion of mvQCA, we took issue with the argument that it leads to fewer logical 
remainders than a conventional QCA, an argument that is incompatible with 
the interpretation of mvQCA as a set-theoretic method. We presented tQCA 
as the currently most formalized strategy of integrating time into QCA. Other, 



Variants of QCA as technique meet QCA as approach316

more informal strategies exist, but all face the conundrum of exponentially 
increasing complexity once time is considered as causally relevant.

!e aim of Chapter 11 was to spell out various issues that arise when 
standards of good practice for QCA as a technique meet those for QCA as 
an approach. We started by providing a recipe for a good QCA, which also 
included an overview of the four so&ware packages relevant for QCA: fsQCA 
2.5, Tosmana 1.3.2, R, and Stata. !en we discussed from a set-theoretic per-
spective three core issues in any comparative social research. Robustness, the-
ory evaluation, and case selection principles. With regard to robustness tests, 
we argued that set-theoretic methods are not exempted from them but that 
these tests look di"erent than in non-set-theoretic techniques. We saw that 
changes in calibration, in the consistency threshold, and in the case selection 
are among the most consequential for the solution formulas obtained. While 
the precise e"ects depend very much on the speci#cs of the data at hand, it 
remains true that most modi#cations have only modest e"ects. With regard to 
theory evaluation, we argued that this is di"erent from testing theories and that 
it consists in analyzing the di"erent intersections that can be created between 
prior theoretical hunches and the empirical #ndings generated with QCA. In 
doing so, we deemed it important to take stock of the fact that solution terms 
tend to achieve less-than-perfect consistency and coverage. In our section 
on case selection, our major point was that meaningful case selection a&er a 
QCA must take into account the components of causal complexity – equi#nal-
ity, conjunctural causation, and asymmetry – and the conceptual di"erences 
between consistency and coverage. !is led to the de#nition of various types of 
deviant and typical cases whose selection for subsequent within-case analysis 
is governed by several set-theoretic case selection principles.

12.2 Myths and misunderstandings

O&en implicitly, sometimes explicitly, our book responds to some of the pre-
vailing myths and misunderstandings about QCA. We brie'y list some of 
them in the hope of further promoting the critical debate on QCA in a fruit-
ful manner. !e list, while most likely not complete, contains those issues that 
we have most frequently encountered in our teaching activities and in discus-
sions with colleagues.

QCA is not a deterministic method by default. With the introduction of 
parameters of #t, most importantly the consistency parameter, QCA precisely 
allows for deviations from perfect su$ciency and perfect necessity. Also, the 
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use of fuzzy values instead of only dichotomous crisp sets can be seen as a 
defense against determinism. And, of course, nothing prevents researchers 
from using tests of statistical signi#cance when judging whether a given devi-
ation from a perfect subset relation is signi#cant enough to reject that relation 
(e.g., Ragin 2000: ch. 4; Braumoeller and Goertz 2003; Eliason and Stryker 
2009). Beyond this, we second Mahoney’s (2003: esp. 339–53) and Adcock’s 
(2007) thoughtful defenses of the notion of determinism.

Crisp-set QCA and fuzzy-set QCA are not very di!erent. All crucial analytic 
steps are equally valid for both variants of QCA. !is has several implications. 
First, we discourage the arti#cial separation which is sometimes encountered 
in the literature. Second, it dispels the myth that the choice of the QCA vari-
ant is driven by the number of cases at hand. !ird, it implies that whenever 
possible, fuzzy-set QCA should be used, for it allows for more #ne-grained 
distinctions between cases, is more conservative in its assessment of subset 
relations, and can easily integrate some crisp-set conditions in the analysis.

Related to the number of cases, two further myths should be dispelled. 
First, QCA is not a small-N method. In fact, if the number of cases is very 
small, say below ten, then QCA loses most of its comparative advantage to 
traditional comparative case studies. !e number of logical remainders will 
be high, barely any logical minimization of the truth table will be possible, and 
the paths identi#ed will mostly cover only one case each. QCA, in short, does 
not resolve the universal “few cases, many variables” problem (Lijphart 1971: 
687; King et al. 1994: ch. 6). We suggest that when the N is small, researchers 
should sort their empirical evidence in a truth table. But beyond this, there 
is little need to bring to the fore the whole technical arsenal of QCA. !e 
second issue related to the number of cases is that QCA can be a large-N 
method. Applied to the very same large-N data set, QCA will, indeed, produce 
di"erent results from a correlational statistical approach. If researchers have 
plausible reasons to be interested in causal complexity de#ned in terms of 
equi#nality, conjunctural causation, and asymmetry, then these QCA results 
might unravel insights that would remain hidden if other methods were 
used (see, e.g., Grendstad 2007; Ragin and Fiss 2008; Glaesser and Cooper 
2010). Of course, large-N QCA might require some adjustments to the stand-
ard protocol. Most importantly, notions of statistical signi#cance might be 
applied when assessing subset relations and the focus on speci#c cases might 
be replaced by a focus on types of cases, especially if individual-level data are 
analyzed.

QCA results are not arbitrary. !e fact that the same truth table allows for 
multiple solution terms does not testify against that claim. Di"erent solution 
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terms mainly stem from di"erent assumptions about logical remainders. 
!ese assumptions never contradict the empirical evidence at hand, and the 
solution formulas, di"erent as they seem, are usually in a perfect subset rela-
tion to each other.

12.3 Looking ahead: tasks and developments in the coming years

!is book, by necessity, has focused more on aspects of QCA as a technique, 
but QCA’s second important pillar – that of also being a research approach – 
should not be downplayed (Rihoux and Lobe 2009; Rihoux and Ragin 2009). 
QCA would lose much of its strength and appeal if it was exclusively used as 
yet another o"-the-shelf data analysis technique and if users were misled into 
thinking that the only thing that matters is getting all the technicalities straight 
and then going on the hunt for high values of consistency and coverage.

On several occasions, even our in-depth discussion of technical aspects 
made clear that the research approach part of QCA is crucial for success. !e 
most straightforward examples are provided in Chapter 11 with our discus-
sions of set-theoretic principles of case selection (section 11.4), of theory 
evaluation (section 11.3), and of robustness tests (section 11.2). All of these 
topics addressed issues that arise when linking QCA as a technique with QCA 
as a research approach, and could not just be solved by adding merely tech-
nical tweaks. Also, when spelling out our remedies for avoiding potential 
pitfalls in a QCA (Chapters 8 and 9), we have gone beyond the pure applica-
tion of an algorithm and pointed to a more direct theoretical and substantial 
engagement of researchers with their cases – something which is also import-
ant in other, more fundamental steps, such as during the calibration (section 
1.2). All this demonstrates that high-quality QCA must pay careful attention 
to research phases before and a&er the analytical moment and properly link 
these phases in “the dialogue between ideas and evidence” (Ragin 2000).

Several other issues raised in our book are based on seeing QCA predom-
inantly as a research approach. For instance, we argued that the fundamen-
tal decision on whether to apply QCA, as opposed to a non-set-theoretic 
method, should be based on theoretical and substantive grounds, not the 
number of cases at hand. If the assumption of causal complexity makes sense 
in a given research area, then set-theoretic methods are a plausible methodo-
logical choice – regardless of the number of cases. If such an assumption is 
not plausible, then set-theoretic methods will not be a good choice – again, 
regardless of the N. Furthermore, we repeatedly emphasized that parameters 
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of #t, useful as they are in applied QCA, should not cause the researcher to 
lose sight of the cases. Simply reporting consistency and coverage values is 
inferior to identifying the cases that contribute to less-than-perfect consist-
ency or coverage and subjecting them to within-case analyses. We have also 
made clear that in a good QCA, the data do not belong to the “untouchables” 
caste. Taking the requirement of a back and forth between ideas and evidence 
seriously, researchers must be allowed to alter their data during the research 
process. !is is usually done through adjustments to the case selection, con-
cept formation and calibration, and model speci#cation. What is clear from 
the double nature of QCA as both a technique and an approach is that QCA 
is inherently a multi-method approach.

!e framing of several social science research methods in terms of set rela-
tions is a rather recent phenomenon, and QCA has barely passed the stage of 
adolescence 25 years a&er the publication of Ragin’s "e Comparative Method 
(1987). No wonder that improvements and additions to this toolset are still 
ongoing.

With regard to the topics addressed in Chapter 11, we envisage the fol-
lowing developments. More insights about robustness checks will be devel-
oped, and eventually even standard routines be proposed that inform the 
standards of good QCA (publication) practice. !e integration of time as a 
relevant analytic category will (hopefully) receive more attention, both by 
making better use of the already existing tools, such as tQCA, and by pro-
viding new ideas on how to make causally relevant claims about time-related 
features without loosing control of the property space thus created. Further 
speci#cations of set-theoretic case selection principles are already under way 
(e.g., Schneider and Rohl#ng in press). And by resuscitating and developing 
Ragin’s (1987) early thoughts on set-theoretic theory evaluation, we hope to 
stimulate users to think more about this crucial and general issue in social 
science methodology.

Other chapters also contained debates that require further re'ection. For 
instance, our plea for a more conscious engagement with logical remainders, 
condensed into what we call the Enhanced Standard Analysis procedure (sec-
tion 8.2.4), needs to be exposed to more practical tests. If it turns out that in 
the great majority of instances, the current Standard Analysis procedure cor-
rectly excludes all untenable assumptions, then our suggestion for improve-
ment would be super'uous; we doubt that this will be true, though. Similarly, 
our debates on pitfalls related to skewed set-membership scores – relevant 
necessary condition and simultaneous subset relations of su$ciency – are of 
practical relevance only if enough researchers #nd that in their research these 



Variants of QCA as technique meet QCA as approach320

pitfalls are indeed potential sources for 'awed inference. We therefore hope 
that many researchers applying QCA will make use of the PRI and PRODUCT 
parameters, and of the various formulas for relevant necessary conditions, 
among them the formula developed by us in section 9.2.1.2.

Most of the pending methodological challenges are of a conceptual nature. 
Once settled, they need to be implemented in the relevant so&ware packages 
for set-theoretic analyses. Much progress has been made on this front over the 
past years. !e fsQCA 2.5 so&ware being developed by Ragin is usually the 
front-runner in terms of innovations in set-theoretic analysis. !e program 
has steadily improved over the past years and will remain an essential tool for 
good QCA. We foresee a trend, though, for an increasing number of schol-
ars to turn their eyes to alternatives, and here especially to the R platform. 
It is freeware, tremendously 'exible, powerful, reliable, stable, syntax-based, 
and open source. !e more that R turns into a common tool for scholars 
using set-theoretic methods, the more important it becomes that packages 
be developed that allow for state-of-the-art analyses (!iem and Dusa 2012). 
Tosmana (not open source) and Stata (not free) will remain useful additional 
tools, but we predict that they will not take over as the main so&ware packages 
for QCA. Our impression is that the implementation of QCA in both Stata 
and R is linked to – both as a sign of and as a trigger for – an increased recog-
nition of QCA among more quantitatively-minded scholars in the social sci-
ences. As circumstantial evidence, we remember a colleague telling us (only 
half-jokingly, we suppose) that now that the “fuzzy” ado #le in Stata exists, 
he is willing to consider QCA as a true method. We think that, overall, the 
expansion of so&ware options will make a net contribution to the improve-
ment of QCA. In addition to the above-mentioned general advantages of R 
(and Stata), we hope that an increased interest among advanced quantitative 
scholars will contribute fresh and constructive insights into the debate over 
the vices and virtues of QCA.

One aspect here might be the question of how set-theoretic methods, in 
general, and QCA, in particular, relate to the potential outcomes model (also 
known as the experimental template or the Neyman–Rubin–Holland causal 
model; see, e.g., Morgan and Winship 2007) as the current state of the art in 
quantitative social sciences. Some attempts in this direction have already been 
made (King and Powell 2008; Mahoney 2008; Goertz and Mahoney 2012; 
Yamamoto 2012), but more is needed. We suspect that if set-theoretic, method-
speci#c concepts such as consistency and coverage, simplifying assumptions, 
and the like can be translated into the potential outcomes framework, the 
communication between scholars from di"erent research traditions will be 
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facilitated – which is always a positive thing. Even if it turned out that some 
concepts cannot be translated and that, thus, QCA and other set-theoretic 
methods simply cannot be subsumed under the potential outcomes template, 
this would be a positive contribution, as it would clarify the di"erences and 
similarities and avoid future misunderstanding.

It might strike the reader as an odd #nal paragraph for a textbook on social 
science methodology, but we would like to use this last opportunity to cau-
tion those readers who are in danger of becoming obsessed with methods. It 
is helpful to remember that methods are simply a tool for good social science 
research. Methodological skills are but one characteristic of a good social sci-
entist; boosting them at the expense of other competences – language skills, 
theoretical knowledge, and/or plain, simple curiosity about what is going on 
in the world out there – is not. Methodological consciousness de#nes high-
quality scholars; methodological fetishism does not. Trying to apply methods 
in a correct manner is an obligation; doing so at the expense of other relevant 
aims of social research is not. No matter what, researchers will face tradeo"s 
at virtually every stage of their research, requiring hard decisions about which 
standards of perfection to sacri#ce. Due to their reliance on a continuous dia-
logue between theoretical ideas and empirical evidence, set-theoretic methods 
in general, and QCA in particular, are well equipped to strike a more healthy 
balance between paying attention to technical matters, on the one hand, and 
focusing on the cases being studied, on the other. We hope that this book has 
helped to identify tradeo"s that exist when applying set-theoretic methods, 
and that it has helped to #nd strategies for making conscious and deliberate 
decisions. If so, then the threat of stultifying methodological perfectionism 
has been averted and a good service has been provided for the cause of both 
methodological and substantive progress.
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Glossary

Addition, Boolean/fuzzy  See logical OR.
Arithmetic remainder Logical remainder that occurs when the number of 

logically possible combinations of conditions 
(see also con!guration) exceeds the number of 
cases at hand.

Associativity !e sequence in which single sets are combined 
(when the operator remains the same) is 
unimportant.

(A * B) * C = A * (B * C) = (A * C) * B
A + B) + C = A + (B + C) = (A + C) + B.

Assumption Claim that a given logical remainder is su"cient for 
the outcome, which therefore is subsequently 
included into the logical minimization 
process. See also counterfactual and 
simplifying assumption.

Asymmetry Implies that (a) a causal role attributed to a 
condition always refers to only one of the two 
qualitative states – presence or absence – in 
which the condition set can be found and 
(b) any solution term always refers to only 
one of the two qualitative states – presence 
or absence – in which the outcome set can 
be found. Both forms of asymmetry are the 
consequence of the fact that, in set-theoretic 
methods, the presence of a set and its 
negation denote two qualitatively di#erent 
phenomena. Su"ciency and necessity are 
typical asymmetric relations.

Calibration Process in which set membership scores are 
assigned to cases.
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Causal complexity Consists of equi!nality, conjunctural causation, and 
asymmetric causation.

Clustered remainder Logical remainder that occurs because social reality 
is structured by historical, social, cultural, and 
other processes.

Commutativity !e order in which two or more sets are connected 
through logical AND and logical OR is 
irrelevant.

A * B = B * A
A + B = B + A.
!is rule does not apply to the negation and the 

implication.
Complement Set that contains all those cases that are not 

members in the original set. With fuzzy 
sets, one and the same case can have 
partial membership both in the set and its 
complement (see Rule of the Excluded Middle), 
but such partial membership will be above the 
qualitative anchor of 0.5 in only one of the two 
sets.

Complex solution term Synonymous to conservative solution term. 
Attention: “complex” might be misleading, 
because the complex solution is not the most 
complex term, but the subset of all other 
possible solutions. See also most parsimonious 
solution and superset solution.

Condition Factor which is used to explain the outcome. In set-
theoretic methods, there are di#erent types of 
conditions, such as necessary, su"cient, SUIN, 
and INUS conditions.

Con!guration Combination of conditions which describes a group 
of empirically observed or hypothetical cases 
(aka logical remainders).

Conjunction A conjunction is “true” when all its components 
can be observed; otherwise it is “false.” See 
also logical AND and multiplication, Boolean/
fuzzy.

In a di#erent usage, this term is also o$en used as 
a synonym for a su"cient term or path which 
combines several conditions by a logical AND.
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Conjunctural causality Situation in which the e#ect of a single condition 
unfolds in combination with precisely 
speci%ed other conditions.

Conservative solution term Solution that rests on no assumption about logical 
remainders. It is based solely on truth table 
rows that are deemed su"cient for the outcome 
based on empirical evidence. It is the subset of 
all other possible solutions.

Consistency Expresses the percentage of cases’ set-membership 
scores in two sets that is in line with the 
statement that one of the two sets is a subset 
(or superset) of the other. It thus indicates to 
what degree the empirical data are in line with 
a postulated subset relation.

Contradictory easy 
counterfactual  

An easy counterfactual that contradicts an 
assumption already made on the same logical 
remainder in the analysis of the complement 
of the outcome. Sub-type of incoherent easy 
counterfactual. See also untenable assumption.

Contradictory (simplifying) 
assumption

A (simplifying) assumption that contradicts an 
assumption already made on the same logical 
remainder in the analysis of the complement 
of the outcome. Contradictory assumptions 
are simplifying when they contribute to 
parsimony. !ey are one type of incoherent 
assumptions, which, in turn, are one form of 
untenable assumption.

Contradictory truth table  
rows/logical 
contradictions

With crisp sets, these are truth table rows or 
su"cient conditions (X) that contain cases 
with di#erent membership in the outcome 
(see also logical contradiction). With fuzzy sets, 
X can be inconsistent without being a logical 
contradiction. !e former are those in which one 
or more cases’ membership in the row exceeds 
that in the outcome (so-called inconsistent cases). 
!e latter are those rows where inconsistent 
cases are located on two di#erent sides of the 
qualitative anchor (in row > 0.5; in outcome 
< 0.5). All logically contradictory cases are 
inconsistent, but not all inconsistent cases are 
also logically contradictory.
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!e same applies to statements of necessity. !ey are 
inconsistent if some cases hold membership in 
X that is smaller than in Y. !ey are logically 
contradictory if, in addition, one or more cases 
hold membership in X < 0.5 and in Y > 0.5.

Counterfactual O$en used as synonym for assumption about 
logical remainder.

Coverage Assesses the relation in size between the condition 
set and the outcome set. Coverage su"ciency 
expresses how much of the outcome is covered 
by the su"cient condition. “Coverage” necessity 
is better understood in terms of the relevance 
and trivialness of a necessary condition.

Crisp set Set which allows only for full membership (1) and 
full non-membership (0). Can be perceived as 
special cases of fuzzy sets.

Crisp-set QCA (csQCA) Version of QCA with which only crisp sets can be 
analyzed.

DeMorgan’s law Provides rules to calculate the negation of a 
complex set-theoretical expression.

Deviant case consistency For su"ciency: a case with membership in X > 0.5 
and Y < 0.5.

For necessity: a case with membership in X < 0.5 
and Y > 0.5.

Deviant case coverage Exists only with regard to statements of su"ciency: a 
case with membership in X < 0.5 and Y > 0.5.

Di"cult counterfactual Assumptions on logical remainders that contribute 
to producing the most parsimonious solution 
term but that are not in line with directional 
expectations.

Direct (method of)  
calibration

Calibration procedure, based on a logit function 
which is established between the three 
qualitative anchors 0, 0.5, and 1 imposed by the 
researcher.

Directional expectation !eoretically derived and justi%ed argument that 
a single condition is expected to contribute 
to the occurrence of the outcome when it is 
present rather than absent (or vice versa). 
If such expectations are formulated for 
conjunctions of conditions, they are labeled 
conjunctural directional expectations.
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Disjunction A disjunction is “true” when all of its components 
can be observed (of which there must be at 
least one); if no component can be observed, 
it is “false.”

Distributivity If both logical AND and OR operators are used 
in the same logical expression, then single 
conditions that are shared by the various 
conjunctions can be factored out:

A * B + A * C = A * (B + C).
Easy counterfactual Assumptions on logical remainders that are in 

line with directional expectations and that 
contribute to parsimony.

Enhanced most  
parsimonious 
(intermediate)  
solution term

Variant of the most parsimonious (intermediate) 
solution that does not rest on untenable 
assumptions.

Enhanced Standard Analysis 
(ESA)

Produces the enhanced most parsimonious solution 
and the enhanced intermediate solution.

Equi!nality Allows for di#erent, mutually non-exclusive 
su"cient conditions, or paths, for the outcome.

Excluded Middle  
(Rule of the)

Postulates that a case cannot belong both to a set and 
its complement. Does not apply to fuzzy sets.

False necessary condition Condition that forms part of all su"cient paths, 
but fails the consistency test as a necessary 
condition.

Functional equivalent 
necessary condition

Two or more conditions represent the same 
overarching concept. Each condition on its 
own does not pass the consistency test of 
necessity, but their logical OR combination 
does.

Fuzzi!cation Sometimes used as synonym for the calibration of 
fuzzy sets.

Fuzzy set Set which allows for partial membership, in 
addition to full membership and full non-
memberships. Translated to the social 
sciences, it enables the researcher to work 
with concepts for which the establishing of 
di#erences in degree among qualitatively 
similar cases is both conceptually plausible 
and empirically feasible.
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Fuzzy-set QCA (fsQCA) Version of QCA with which fuzzy sets can be 
analyzed. Since crisp sets are nothing more 
than a special version of fuzzy sets, fsQCA 
can also be used for crisp sets.

Fuzzy-set membership  
score

Expresses the degree of set membership of a case in 
a fuzzy set.

Good counterfactual Claim that an empirically non-observed 
combination of conditions is su"cient for 
the outcome. !is claim is based on a set 
of criteria for good counterfactuals and 
irrespective of whether it contributes to 
parsimony. A good counterfactual cannot be 
an implausible or incoherent assumption.

Hidden necessary condition Condition which is consistent as a necessary 
condition, but is not part of all su"cient paths.

Ideal type A con!guration of conditions (see also truth table 
row). With crisp sets, cases are either full 
members or full non-members of an ideal 
type. With fuzzy sets, cases can have partial 
membership in various ideal types.

Implausible assumption Inclusion of an impossible remainder into the 
logical minimization.

Implausible easy  
counterfactual

Easy counterfactual made on an implausible 
remainder.

Impossible remainder Logical remainder that describes a case whose 
existence de%es pure formal logic (e.g., the rich 
poor country) or common-sense knowledge 
about the world (e.g., pregnant men).

Incoherent assumption Inclusion into the logical minimization of a logical 
remainder that either contradicts statements 
about necessary conditions or an assumption 
made on the same remainder in the analysis 
of the complement of the outcome (aka 
contradictory (simplifying) assumption).

Inconsistent case A case with membership in sets X and Y that is 
not in line with the statement of necessity 
or su"ciency made about condition X. 
With crisp sets, any inconsistent case is 
automatically also a logical contradictory case. 
With fuzzy sets, cases can be inconsistent 
without being logically contradictory.
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Indirect (method of) 
calibration

Semi-automatic procedure of calibration, which 
establishes a fractional logit model between 
the preliminary fuzzy set membership scores 
imposed by the researcher.

Individually irrelevant  
case

Case with membership in X < 0.5 and Y < 0.5. 
Provides analytic insights to the analysis of 
necessity or su"ciency only when compared 
to a deviant case consistency (necessity) or 
a deviant case coverage (su"ciency).

Intermediate solution  
term

Solution term that is exclusively based on easy 
counterfactuals. It is a subset of, and more 
complex than, the most parsimonious solution 
term. It is a superset to, and less complex 
than, the conservative solution term.

Intersection Set that contains those cases that are (partial) 
members in all the sets that are intersected. 
See also logical AND.

INUS condition Single condition that is insu"cient for producing 
the outcome on its own but which is a 
necessary part of a conjunction that, in turn, 
is unnecessary but su"cient for producing 
the outcome. Any su"ciency statement that 
consists of at least one logical AND and one 
logical OR operator contains at least one INUS 
condition. For instance, in the term A*B + 
C*D → Y, each single condition (A, B, C, D) 
is an INUS condition.

Limited diversity Logically possible combinations of conditions used 
in an analysis, for which, however, not enough 
empirical evidence is at hand. In a truth table, 
limited diversity is represented by the set of all 
logical remainder rows.

Logical AND Creates the intersection between two or more sets. 
Membership of cases in this intersection is 
determined by their minimum value across 
these sets.

Logical contradiction In the framework of su"ciency, a situation in 
which cases that are members of the su"cient 
condition or conjunction are more out of than 
in the outcome. In the framework of necessity, 



Glossary329

a situation in which cases that are members of the 
outcome are more out of than in the necessary 
condition.

Logical minimization Summary of the information contained in a truth 
table, applying the rules of Boolean algebra. 
Leads to the solution formula for su"ciency, 
but not necessity. See also Quine–McCluskey 
algorithm.

Logical OR Creates the union between two or more sets. 
Membership of cases in the union is 
determined by their maximum value across 
these sets.

Logical remainder Truth table rows for which not enough empirical 
evidence is at hand. “Enough empirical 
evidence” is de%ned by a minimum number 
of cases with full membership (crisp sets) and 
with membership higher than 0.5 (fuzzy sets) 
in a truth table row.

Logically redundant prime 
implicant

Prime implicant which can be omitted from 
the solution formula without leaving any 
primitive expression uncovered, i.e., without 
violating the truth value contained in the 
truth table.

Most parsimonious solution 
term

Solution formula among all logically possible 
solution terms that uses the lowest number 
of conditions and of the two operators logical 
AND and logical OR. In the presence of logically 
redundant prime implicants, two or more 
formulas can be equally most parsimonious.

Multi!nality One and the same single INUS condition can 
be causally relevant for producing both 
the occurrence of the outcome Y and its 
complement ~Y.

Multiplication,  
Boolean/fuzzy

See logical AND.

Multi-value QCA Version of QCA which operates on multi-value 
variables.

Necessary condition For crisp sets and in everyday language: a condition 
is necessary if, whenever the outcome is 
present, the condition is also present, but 
there can be cases that are members of the
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condition but not the outcome. More generally 
(and for fuzzy sets): a condition might be 
interpreted as necessary if, across all cases, 
set membership in it is larger than or  
equal to each case’s membership in the 
outcome.

Negation, logical Determined by 1 – the membership value in the 
original set. See also complement.

Non-occurrence (of  
outcome or condition)

Logical negation of a set (outcome or condition). 
Sometimes also referred to as the absence of 
the set.

Outcome Phenomenon to be studied in an analysis.
Parsimony Applied to set-theoretic solution terms, it refers to 

the number of conditions and logical AND 
and OR operators. !e fewer conditions 
and operators, the more parsimonious the 
solution term.

Path Logical AND combination of conditions that is 
su"cient for the outcome. O$en used as a 
synonym to su"cient condition.

PRI Acronym for Proportional Reduction in 
Inconsistency. Expresses how much it helps 
to know that a given condition X is a subset of 
outcome Y rather than a subset of either Y, its 
complement ~Y, or the intersection between Y 
and ~Y.

Prime implicant End product of the logical minimization 
process through pairwise comparisons of 
conjunctions.

Primitive expression Synonym for truth table row that is su"cient for 
the outcome.

PRODUCT Derived by multiplying the raw consistency value 
and the PRI score. Small values indicate that 
the truth table row is either not a subset of 
the outcome Y or that it is a subset of both 
Y and its complement ~Y. Such rows should 
not be considered as su"cient for Y and 
thus should not be included in the logical 
minimization.
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Property space !e k number of conditions used in a set-
theoretic analysis de%ne a k-dimensional 
property space with 2k corners. !ese corners 
correspond to the 2k truth table rows (see also 
ideal type). With crisp sets, each case has full 
membership in one corner and full non-
membership in all other corners. With fuzzy 
sets, cases can have partial membership in all 
corners but a membership of higher than 0.5 
in only one.

Qualitative anchors !ey identify qualitative di#erences of cases’ 
membership in a set and need to be 
established during the calibration procedure 
by using criteria external to the empirical 
information at hand. !e qualitative anchor 
of 0.5 describes the point of indi#erence, 
where it is impossible to say whether the case 
is more a member or a non-member of a 
set; the qualitative anchor of 0 describes full 
non-membership; and the qualitative anchor 
of 1 full membership. See also qualitatively 
di#erent set membership score.

Qualitative Comparative  
Analysis (QCA)

Most formalized set-theoretic method, which  
uses formal logic and Boolean algebra 
in the analysis of truth tables and aims 
at establishing necessary or su"cient 
conditions, integrating parameters of %t 
(consistency and coverage). Variants exist: 
crisp-set QCA, fuzzy-set QCA, multi-value 
QCA, and temporal QCA.

Qualitatively di#erent set  
membership score

Set-membership scores above or below the 
qualitative anchor 0.5 denote a qualitative 
di#erence. With crisp sets, cases with 
di#erent membership scores in a set are 
always qualitatively di#erent. In fuzzy sets, 
cases on the opposite side of the 0.5 anchor 
are qualitatively di#erent. Cases on the 
same side of the 0.5 anchor are qualitatively 
identical but may di#er in their degree of set 
membership.
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Quine–McCluskey algorithm Algorithm for the logical minimization of truth 
tables. It consists of %rst logically minimizing 
those conjunctions that are su"cient for 
the outcome and similar to each other and 
then of excluding logically redundant prime 
implicants.

Raw coverage Percentage of all cases’ set membership in the 
outcome covered by a single su"cient path of 
an equi!nal solution term.

Raw consistency Consistency of a single truth table row.
Relevance necessity Measures how far a set X is not only a superset of 

Y (and thus denotes a necessary condition), 
but also to what degree it is not much bigger 
than Y nor ~X. If X is a superset of Y but 
much bigger than either Y, or ~X, or both, 
then X is not a relevant, but a trivial necessary 
condition for Y.

Set-membership score Numerical expression for the belonging of a case 
to a set. With crisp sets, only full membership 
and full non-membership are possible. With 
fuzzy sets, degrees of membership can be 
expressed – yet the qualitative distinction 
between cases that are more in than out 
vis-à-vis those that are more out than in is 
maintained.

Set-theoretic methods Approaches to analyzing social reality through 
the notion of sets and their relations. Can 
model causal complexity, expressed in terms 
of equi!nality, conjunctural causation, and 
asymmetry. Qualitative Comparative Analysis 
is one, but not the only set-theoretic method.

Simplifying assumption Assumption on logical remainder that yields a 
solution term that is less complex than the 
conservative solution term.

Solution coverage Percentage of all cases’ set membership in the 
outcome covered by the solution term.

Solution formula/term !e result of a truth table analysis (see also logical 
minimization). Usually consists of several 
paths (see also equi!nality).
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Standard Analysis Produces the most parsimonious solution, the 
intermediate solution, and the conservative 
solution. See also Enhanced Standard Analysis.

SUIN condition A single condition, which is unnecessary part of 
a logical OR combination that, in turn, is 
insu"cient, but necessary for the outcome. 
Any statement of necessity that includes at 
least one logical AND and one logical OR 
operator contains at least one SUIN condition. 
In (A+B) * (C+D) ← Y, the conditions A, B, 
C, and D are SUIN conditions.

Su"cient condition For crisp sets and in everyday language: a condition 
is su"cient if, whenever the condition is 
present, the outcome is also present, but there 
can be cases that are members of the outcome 
but not the condition. More generally (and for 
fuzzy sets): a condition can be interpreted as 
su"cient if, across all cases, set membership 
in it is smaller than or equal to each case’s 
membership in the outcome.

Superset solution term !e result of a logical minimization that includes 
all logical remainders. !is formula is the 
superset of all logically possible solution 
terms that can be derived from a truth table 
without violating its truth value.

Temporal QCA (tQCA) Modi%cation of a conventional QCA which 
includes conditions that express the temporal 
order of two or more single conditions. For 
example, A/B expresses that A occurred prior 
to B.

Tenable assumption Assumption on logical remainders that is not 
implausible or incoherent, regardless of 
whether it contributes to parsimony.

$eory-Guided Enhanced  
Standard Analysis  
(TESA)

Extension of the Enhanced Standard Analysis 
(ESA): also allows for good counterfactuals 
that do not contribute to parsimony.

Tied redundant prime 
implicant

Situation in which two or more prime implicants 
are logically redundant and some of them, but 
not all, need to be kept in order to preserve the 
truth value of the solution formula.
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Trivialness necessity See relevance necessity.
True logically contradictory 

case
With crisp sets, all cases whose membership in 

X and Y is inconsistent with the postulated 
subset relation of necessity or su"ciency, 
respectively, are true logical contradictory 
cases. With fuzzy sets, only those cases with 
inconsistent set-membership scores in X and 
Y are true logical contradictory cases that 
possess qualitatively di#erent set-membership 
scores in X and Y, respectively.

Truth table At the core of any QCA. It contains the empirical 
evidence gathered by the researcher by 
sorting cases into one of the 2k logically 
possible combinations, aka truth table rows, 
of k conditions. Each row linked to the 
outcome can be interpreted as a statement of 
su"ciency.

Truth Table Algorithm Describes the sequence of the su"ciency analysis. 
First, the empirical information on cases is 
represented in a truth table. !en, rows are 
classi%ed as either being su"cient for the 
outcome, not su"cient, or a logical remainder. 
!ird, rows deemed as su"cient are included 
in the logical minimization. Works with both 
crisp and fuzzy sets.

Two-step QCA Variant of (crisp, fuzzy, and multi-value) QCA in 
which conditions are grouped into remote 
and proximate factors and then analyzed in 
subsequent steps.

Typical case For su"ciency: a case with membership in X > 0.5 
and Y > 0.5 and with X < Y.

For necessity: a case with membership in X > 0.5 
and Y > 0.5 and with X > Y

Uncovered case For su"ciency: a case with membership in Y > 0.5 
and X < 0.5. See also deviant case coverage.

Union, Boolean/fuzzy See Logical OR.
Unique coverage Percentage of all cases’ set membership in the 

outcome uniquely covered by a single path of 
an equi%nal solution term (see equi!nality).
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Uniquely covered case Case with membership in outcome > 0.5 and in 
only one su"cient path of > 0.5.

Untenable assumptions Assumption on logical remainder that is either 
implausible or incoherent.

Venn diagram Graphical representation of sets and their relations, 
using overlapping circles.

XY plot Plot that displays each case’s fuzzy membership 
in the (single or conjunctural) condition 
on the X axis and the membership in the 
outcome on the Y axis. Usually drawn 
with a diagonal at X = Y, which facilitates 
the detection of subset relations. Helps in 
the assessment of su"cient and necessary 
conditions and the identi%cation of types 
of cases (see also typical case, deviant case, 
and individually irrelevant case).
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