


The Logic of Scientif ic
Discovery

‘One of the most important philosophical works of our
century.’

Richard Wollheim, The Observer

‘Wonderfully exhilarating.’
Naomi Bliven, New Yorker





Karl

Popper
The Logic of Scientif ic
Discovery

London and New York



Logik der Forschung first published 1935
by Verlag von Julius Springer, Vienna, Austria

First English edition published 1959
by Hutchinson & Co.
First published by Routledge 1992

First published in Routledge Classics 2002
by Routledge
11 New Fetter Lane, London EC4P 4EE
29 West 35th Street, New York, NY 10001

Routledge is an imprint of the Taylor & Francis Group

© 1959, 1968, 1972, 1980 Karl Popper
© 1999, 2002 The Estate of Karl Popper

All rights reserved. No part of this book may be reprinted
or reproduced or utilised in any form or by any electronic,
mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in
any information storage or retrieval system, without
permission in writing from the publishers.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
A catalogue record for this book has been requested

ISBN 0–415–27843–0 (hbk)
ISBN 0–415–27844–9 (pbk)

This edition published in the Taylor & Francis e-Library, 2005.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

ISBN 0-203-99462-0 Master e-book ISBN



TO MY WIFE
who is responsible for the revival of this book





CONTENTS

Translators’ Note xii
Preface to the First Edition, 1934 xv
Preface to the First English Edition, 1959 xviii

PART I Introduction to the Logic of Science

1 A Survey of Some Fundamental Problems 3
1 The Problem of Induction
2 Elimination of Psychologism
3 Deductive Testing of Theories
4 The Problem of Demarcation
5 Experience as a Method
6 Falsifiability as a Criterion of Demarcation
7 The Problem of the ‘Empirical Basis’
8 Scientific Objectivity and Subjective Conviction

2 On the Problem of a Theory of Scientific Method 27
9 Why Methodological Decisions are Indispensable

10 The Naturalistic Approach to the Theory of Method
11 Methodological Rules as Conventions



PART II Some Structural Components of a Theory of Experience

3 Theories 37
12 Causality, Explanation, and the Deduction of Predictions
13 Strict and Numerical Universality
14 Universal Concepts and Individual Concepts
15 Strictly Universal and Existential Statements
16 Theoretical Systems
17 Some Possibilities of Interpreting a System of Axioms
18 Levels of Universality. The Modus Tollens

4 Falsifiability 57
19 Some Conventionalist Objections
20 Methodological Rules
21 Logical Investigation of Falsifiability
22 Falsifiability and Falsification
23 Occurrences and Events
24 Falsifiability and Consistency

5 The Problem of the Empirical Basis 74
25 Perceptual Experiences as Empirical Basis:

Psychologism
26 Concerning the So-Called ‘Protocol Sentences’
27 The Objectivity of the Empirical Basis
28 Basic Statements
29 The Relativity of Basic Statements. Resolution of

Fries’s Trilemma
30 Theory and Experiment

6 Degrees of Testability 95
31 A Programme and an Illustration
32 How are Classes of Potential Falsifiers to be Compared?
33 Degrees of Falsifiability Compared by Means of the

Subclass Relation
34 The Structure of the Subclass Relation.

Logical Probability
35 Empirical Content, Entailment, and Degrees

of Falsifiability
36 Levels of Universality and Degrees of Precision

contentsviii



37 Logical Ranges. Notes on the Theory of Measurement
38 Degrees of Testability Compared by Reference

to Dimensions
39 The Dimension of a Set of Curves
40 Two Ways of Reducing the Number of Dimensions

of a Set of Curves

7 Simplicity 121
41 Elimination of the Aesthetic and the Pragmatic

Concepts of Simplicity
42 The Methodological Problem of Simplicity
43 Simplicity and Degree of Falsifiability
44 Geometrical Shape and Functional Form
45 The Simplicity of Euclidean Geometry
46 Conventionalism and the Concept of Simplicity

8 Probability 133
47 The Problem of Interpreting Probability Statements
48 Subjective and Objective Interpretations
49 The Fundamental Problem of the Theory of Chance
50 The Frequency Theory of von Mises
51 Plan for a New Theory of Probability
52 Relative Frequency within a Finite Class
53 Selection, Independence, Insensitiveness, Irrelevance
54 Finite Sequences. Ordinal Selection and

Neighbourhood Selection
55 n-Freedom in Finite Sequences
56 Sequences of Segments. The First Form of the

Binomial Formula
57 Infinite Sequences. Hypothetical Estimates

of Frequency
58 An Examination of the Axiom of Randomness
59 Chance-Like Sequences. Objective Probability
60 Bernoulli’s Problem
61 The Law of Great Numbers (Bernoulli’s Theorem)
62 Bernoulli’s Theorem and the Interpretation of

Probability Statements
63 Bernoulli’s Theorem and the Problem of Convergence

contents ix



64 Elimination of the Axiom of Convergence. Solution
of the ‘Fundamental Problem of the Theory of Chance’

65 The Problem of Decidability
66 The Logical Form of Probability Statements
67 A Probabilistic System of Speculative Metaphysics
68 Probability in Physics
69 Law and Chance
70 The Deducibility of Macro Laws from Micro Laws
71 Formally Singular Probability Statements
72 The Theory of Range

9 Some Observations on Quantum Theory 209
73 Heisenberg’s Programme and the

Uncertainty Relations
74 A Brief Outline of the Statistical Interpretation of

Quantum Theory
75 A Statistical Re-Interpretation of the

Uncertainty Formulae
76 An Attempt to Eliminate Metaphysical Elements by

Inverting Heisenberg’s Programme; with Applications
77 Decisive Experiments
78 Indeterminist Metaphysics

10 Corroboration, or How a Theory Stands up to Tests 248
79 Concerning the So-Called Verification of Hypotheses
80 The Probability of a Hypothesis and the Probability

of Events: Criticism of Probability Logic
81 Inductive Logic and Probability Logic
82 The Positive Theory of Corroboration: How a

Hypothesis may ‘Prove its Mettle’
83 Corroborability, Testability, and Logical Probability
84 Remarks Concerning the Use of the Concepts ‘True’

and ‘Corroborated’
85 The Path of Science

APPENDICES

i Definition of the Dimension of a Theory 283
ii The General Calculus of Frequency in Finite Classes 286

contentsx



iii Derivation of the First Form of the Binomial
Formula 290

iv A Method of Constructing Models of Random
Sequences 293

v Examination of an Objection. The Two-Slit
Experiment 297

vi Concerning a Non-Predictive Procedure of
Measuring 301

vii Remarks Concerning an Imaginary Experiment 305

NEW APPENDICES

*i Two Notes on Induction and Demarcation,
1933–1934 312

*ii A Note on Probability, 1938 319
*iii On the Heuristic Use of the Classical Definition

of Probability 325
*iv The Formal Theory of Probability 329
*v Derivations in the Formal Theory of Probability 356
*vi On Objective Disorder or Randomness 369

*vii Zero Probability and the Fine-Structure of
Probability and of Content 374

*viii Content, Simplicity, and Dimension 392
*ix Corroboration, the Weight of Evidence, and

Statistical Tests 402
*x Universals, Dispositions, and Natural or

Physical Necessity 440
*xi On the Use and Misuse of Imaginary

Experiments, Especially in Quantum Theory 464
*xii The Experiment of Einstein, Podolsky and Rosen.

A Letter from Albert Einstein, 1935 481

INDICES, compiled by Dr. J. Agassi

Name Index 489
Subject Index 494

contents xi



TRANSLATORS’ NOTE

The Logic of Scientific Discovery is a translation of Logik der Forschung, published
in Vienna in the autumn of 1934 (with the imprint ‘1935’). The
translation was prepared by the author, with the assistance of Dr. Julius
Freed and Lan Freed.

The original text of 1934 has been left unchanged for the purpose of
the translation. As usual, the translation is a little longer than the ori-
ginal. Words and phrases for which no equivalent exists had to be
paraphrased. Sentences had to be broken up and rearranged—the more
so as the text to be translated was highly condensed: it had been dras-
tically cut several times to comply with the publisher’s requirements.
Yet the author decided against augmenting the text, and also against
restoring cut passages [except for a few words indicated by square
brackets or footnotes].

In order to bring the book up to date, the author has added new
appendices and new footnotes. Some of these merely expand the text,
or correct it; but others explain where the author has changed his
mind, or how he would now reframe his arguments.

All new additions—new appendices and new footnotes—are
marked by starred number; and where old footnotes have been
expanded, the expansion is also marked by a star (unless it consists
only of a reference to the English edition of a book originally quoted
from a German edition).



In these new starred additions, references will be found to a sequel
to this volume, entitled Postscript to the Logic of Scientific Discovery (in three
volumes). Though they complement each other, they are independent.

It should also be mentioned that the numbering of the chapters of
the present volume has been changed. In the original, they were num-
bered i to ii (part i), and i to viii (part ii). They are now numbered
through from 1 to 10.

translators’ note xiii



Hypotheses are nets: only he who casts will catch.
Novalis



PREFACE TO THE FIRST EDITION, 1934

The hint that man has, after all, solved his most stubborn
problems . . . is small solace to the philosophic connoisseur;
for what he cannot help fearing is that philosophy will never
get so far as to pose a genuine problem.

M. Schlick (1930)

I for my part hold the very opposite opinion, and I assert that
whenever a dispute has raged for any length of time, espe-
cially in philosophy, there was, at the bottom of it, never a
problem about mere words, but always a genuine problem
about things.

 I. Kant (1786)

A scientist engaged in a piece of research, say in physics, can attack his
problem straight away. He can go at once to the heart of the matter: to
the heart, that is, of an organized structure. For a structure of scientific
doctrines is already in existence; and with it, a generally accepted
problem-situation. This is why he may leave it to others to fit his
contribution into the framework of scientific knowledge.

The philosopher finds himself in a different position. He does not
face an organized structure, but rather something resembling a heap of
ruins (though perhaps with treasure buried underneath). He cannot



appeal to the fact that there is a generally accepted problem-situation;
for that there is no such thing is perhaps the one fact which is generally
accepted. Indeed it has by now become a recurrent question in
philosophical circles whether philosophy will ever get so far as to pose
a genuine problem.

Nevertheless there are still some who do believe that philosophy can
pose genuine problems about things, and who therefore still hope to
get these problems discussed, and to have done with those depressing
monologues which now pass for philosophical discussions. And if by
chance they find themselves unable to accept any of the existing creeds,
all they can do is to begin afresh from the beginning.

vienna, Autumn 1934.
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There is nothing more necessary to the man of science than its history,
and the logic of discovery . . . : the way error is detected, the use of
hypothesis, of imagination, the mode of testing.

Lord Acton



PREFACE TO THE
FIRST ENGLISH EDITION, 1959

In my old preface of 1934 I tried to explain—too briefly, I am afraid—
my attitude towards the then prevailing situation in philosophy, and
especially towards linguistic philosophy and the school of language
analysts of those days. In this new preface I intend to explain my
attitude towards the present situation, and towards the two main
schools of language analysts of today. Now as then, language analysts
are important to me; not only as opponents, but also as allies, in so far
as they seem to be almost the only philosophers left who keep alive
some of the traditions of rational philosophy.

Language analysts believe that there are no genuine philosophical
problems, or that the problems of philosophy, if any, are problems of
linguistic usage, or of the meaning of words. I, however, believe that
there is at least one philosophical problem in which all thinking men
are interested. It is the problem of cosmology: the problem of understanding
the world—including ourselves, and our knowledge, as part of the world. All science is
cosmology, I believe, and for me the interest of philosophy, no less
than of science, lies solely in the contributions which it has made to it.
For me, at any rate, both philosophy and science would lose all their
attraction if they were to give up that pursuit. Admittedly, understand-
ing the functions of our language is an important part of it; but
explaining away our problems as merely linguistic ‘puzzles’ is not.



Language analysts regard themselves as practitioners of a method
peculiar to philosophy. I think they are wrong, for I believe in the
following thesis.

Philosophers are as free as others to use any method in searching for
truth. There is no method peculiar to philosophy.

A second thesis which I should like to propound here is this.
The central problem of epistemology has always been and still is the

problem of the growth of knowledge. And the growth of knowledge can be
studied best by studying the growth of scientific knowledge.

I do not think that the study of the growth of knowledge can be
replaced by the study of linguistic usages, or of language systems.

And yet, I am quite ready to admit that there is a method which
might be described as ‘the one method of philosophy’. But it is not
characteristic of philosophy alone; it is, rather, the one method of all
rational discussion, and therefore of the natural sciences as well as of phil-
osophy. The method I have in mind is that of stating one’s problem
clearly and of examining its various proposed solutions critically.

I have italicized the words ‘rational discussion’ and ‘critically’ in order to
stress that I equate the rational attitude and the critical attitude. The
point is that, whenever we propose a solution to a problem, we ought
to try as hard as we can to overthrow our solution, rather than defend
it. Few of us, unfortunately, practise this precept; but other people,
fortunately, will supply the criticism for us if we fail to supply it
ourselves. Yet criticism will be fruitful only if we state our problem as
clearly as we can and put our solution in a sufficiently definite form—a
form in which it can be critically discussed.

I do not deny that something which may be called ‘logical analysis’
can play a role in this process of clarifying and scrutinizing our prob-
lems and our proposed solutions; and I do not assert that the methods
of ‘logical analysis’ or ‘language analysis’ are necessarily useless. My
thesis is, rather, that these methods are far from being the only ones
which a philosopher can use with advantage, and that they are in no
way characteristic of philosophy. They are no more characteristic of
philosophy than of any other scientific or rational inquiry.

It may perhaps be asked what other ‘methods’ a philosopher might
use. My answer is that though there are any number of different
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‘methods’, I am really not interested in enumerating them. I do not
care what methods a philosopher (or anybody else) may use so long as
he has an interesting problem, and so long as he is sincerely trying to
solve it.

Among the many methods which he may use—always depending,
of course, on the problem in hand—one method seems to me worth
mentioning. It is a variant of the (at present unfashionable) historical
method. It consists, simply, in trying to find out what other people
have thought and said about the problem in hand: why they had to face
it: how they formulated it: how they tried to solve it. This seems to me
important because it is part of the general method of rational discus-
sion. If we ignore what other people are thinking, or have thought in
the past, then rational discussion must come to an end, though each of
us may go on happily talking to himself. Some philosophers have made
a virtue of talking to themselves; perhaps because they felt that there
was nobody else worth talking to. I fear that the practice of philo-
sophizing on this somewhat exalted plane may be a symptom of the
decline of rational discussion. No doubt God talks mainly to Himself
because He has no one worth talking to. But a philosopher should
know that he is no more godlike than any other man.

There are several interesting historical reasons for the widespread
belief that what is called ‘linguistic analysis’ is the true method of
philosophy.

One such reason is the correct belief that logical paradoxes, like that of
the liar (‘I am now lying’) or those found by Russell, Richard, and
others, need the method of linguistic analysis for their solution, with
its famous distinction between meaningful (or ‘well-formed’) and
meaningless linguistic expressions. This correct belief is then com-
bined with the mistaken belief that the traditional problems of
philosophy arise from the attempt to solve philosophical paradoxes whose
structure is analogous to that of logical paradoxes, so that the distinc-
tion between meaningful and meaningless talk must be of central im-
portance for philosophy also. That this belief is mistaken can be shown
very easily. It can be shown, in fact, by logical analysis. For this reveals
that a certain characteristic kind of reflexivity or self-reference which
is present in all logical paradoxes is absent from all the so-called
philosophical paradoxes—even from Kant’s antinomies.
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perception or knowledge or belief by the analysis of the phrases ‘I see’
or ‘I perceive’, or ‘I know’, ‘I believe’, ‘I hold that it is probable’; or
perhaps by that of the word ‘perhaps’.

Now to those who favour this approach to the theory of knowledge I
should reply as follows. Although I agree that scientific knowledge is
merely a development of ordinary knowledge or common-sense know-
ledge, I contend that the most important and most exciting problems
of epistemology must remain completely invisible to those who con-
fine themselves to analysing ordinary or common-sense knowledge or
its formulation in ordinary language.

I wish to refer here only to one example of the kind of problem I
have in mind: the problem of the growth of our knowledge. A little
reflection will show that most problems connected with the growth of
our knowledge must necessarily transcend any study which is confined
to common-sense knowledge as opposed to scientific knowledge. For
the most important way in which common-sense knowledge grows is,
precisely, by turning into scientific knowledge. Moreover, it seems
clear that the growth of scientific knowledge is the most important and
interesting case of the growth of knowledge.

It should be remembered, in this context, that almost all the prob-
lems of traditional epistemology are connected with the problem of
the growth of knowledge. I am inclined to say even more: from Plato to
Descartes, Leibniz, Kant, Duhem and Poincaré; and from Bacon,
Hobbes, and Locke, to Hume, Mill, and Russell, the theory of
knowledge was inspired by the hope that it would enable us not only to
know more about knowledge, but also to contribute to the advance
of knowledge—of scientific knowledge, that is. (The only possible
exception to this rule among the great philosophers I can think of is
Berkeley.) Most of the philosophers who believe that the characteristic
method of philosophy is the analysis of ordinary language seem to have
lost this admirable optimism which once inspired the rationalist trad-
ition. Their attitude, it seems, has become one of resignation, if not
despair. They not only leave the advancement of knowledge to the
scientists: they even define philosophy in such a way that it becomes,
by definition, incapable of making any contribution to our knowledge
of the world. The self-mutilation which this so surprisingly persuasive
definition requires does not appeal to me. There is no such thing as an
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The main reason for exalting the method of linguistic analysis, how-
ever, seems to have been the following. It was felt that the so-called ‘new
way of ideas’ of Locke, Berkeley, and Hume, that is to say the psycho-
logical or rather pseudo-psychological method of analysing our ideas
and their origin in our senses, should be replaced by a more ‘objective’
and a less genetic method. It was felt that we should analyse words and
their meanings or usages rather than ‘ideas’ or ‘conceptions’ or
‘notions’; that we should analyse propositions or statements or sen-
tences rather than ‘thoughts’ or ‘beliefs’ or ‘judgments’. I readily admit
that this replacement of Locke’s ‘new way of ideas’ by a ‘new way of
words’ was an advance, and one that was urgently needed.

It is understandable that those who once saw in the ‘new way of
ideas’ the one true method of philosophy may thus have turned to the
belief that the ‘new way of words’ is the one true method of philo-
sophy. From this challenging belief I strongly dissent. But I will make
only two critical comments on it. First, the ‘new way of ideas’ should
never have been taken for the main method of philosophy, let alone for
its one true method. Even Locke introduced it merely as a method
of dealing with certain preliminaries (preliminaries for a science of
ethics); and it was used by both Berkeley and Hume chiefly as a
weapon for harrying their opponents. Their own interpretation of the
world—the world of things and of men—which they were anxious to
impart to us was never based upon this method. Berkeley did not base
his religious views on it, nor Hume his political theories (though he
based his determinism on it).

But my gravest objection to the belief that either the ‘new way of
ideas’ or the ‘new way of words’ is the main method of
epistemology—or perhaps even of philosophy—is this.

The problem of epistemology may be approached from two sides:
(1) as the problem of ordinary or common-sense knowledge, or (2) as the
problem of scientific knowledge. Those philosophers who favour the first
approach think, rightly, that scientific knowledge can only be an exten-
sion of common-sense knowledge, and they also think, wrongly, that
common-sense knowledge is the easier of the two to analyse. In this
way these philosophers come to replace the ‘new way of ideas’ by an
analysis of ordinary language—the language in which common-sense
knowledge is formulated. They replace the analysis of vision or
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essence of philosophy, to be distilled and condensed into a definition.
A definition of the word ‘philosophy’ can only have the character of a
convention, of an agreement; and I, at any rate, see no merit in the
arbitrary proposal to define the word ‘philosophy’ in a way that may
well prevent a student of philosophy from trying to contribute, qua
philosopher, to the advancement of our knowledge of the world.

Also, it seems to me paradoxical that philosophers who take pride in
specializing in the study of ordinary language nevertheless believe that
they know enough about cosmology to be sure that it is in essence so
different from philosophy that philosophy cannot make any contribu-
tion to it. And indeed they are mistaken. For it is a fact that purely
metaphysical ideas—and therefore philosophical ideas—have been of
the greatest importance for cosmology. From Thales to Einstein, from
ancient atomism to Descartes’s speculation about matter, from the
speculations of Gilbert and Newton and Leibniz and Boscovic about
forces to those of Faraday and Einstein about fields of forces,
metaphysical ideas have shown the way.

Such are, in brief, my reasons for believing that even within the
province of epistemology, the first approach mentioned above—that
is to say, the analysis of knowledge by way of an analysis of ordinary
language—is too narrow, and that it is bound to miss the most
interesting problems.

Yet I am far from agreeing with all those philosophers who favour
that other approach to epistemology—the approach by way of an
analysis of scientific knowledge. In order to explain more easily where I
disagree and where I agree, I am going to sub-divide the philosophers
who adopt this second approach into two groups—the goats and the
sheep, as it were.

The first group consists of those whose aim is to study ‘the language
of science’, and whose chosen philosophical method is the construc-
tion of artificial model languages; that is to say, the construction of
what they believe to be models of ‘the language of science’.

The second group does not confine itself to the study of the language
of science, or any other language, and it has no such chosen philo-
sophical method. Its members philosophize in many different ways,
because they have many different problems which they want to solve;
and any method is welcome to them if they think that it may help them
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to see their problems more clearly, or to hit upon a solution, however
tentative.

I turn first to those whose chosen method is the construction of
artificial models of the language of science. Historically, they too take
their departure from the ‘new way of ideas’. They too replace the
(pseudo-) psychological method of the old ‘new way’ by linguistic
analysis. But perhaps owing to the spiritual consolations offered by the
hope for knowledge that is ‘exact’ or ‘precise’ or ‘formalized’, the
chosen object of their linguistic analysis is ‘the language of science’
rather than ordinary language. Yet unfortunately there seems to be no
such thing as ‘the language of science’. It therefore becomes necessary
for them to construct one. However, the construction of a full-scale
working model of a language of science—one in which we could
operate a real science such as physics—turns out a little difficult in
practice; and for this reason we find them engaged in the construction
of intricate working models in miniature—of vast systems of minute
gadgets.

In my opinion, this group of philosophers gets the worst of both
worlds. By their method of constructing miniature model languages
they miss the most exciting problems of the theory of knowledge—
those connected with its advancement. For the intricacy of the outfit
bears no relation to its effectiveness, and practically no scientific theory
of any interest can be expressed in these vast systems of minutiae.
These model languages have no bearing on either science or common
sense.

Indeed, the models of ‘the language of science’ which these philo-
sophers construct have nothing to do with the language of modern
science. This may be seen from the following remarks which apply to
the three most widely known model languages. (They are referred to in
notes 13 and 15 to appendix *vii, and in note *2 to section 38.) The
first of these model languages lacks even the means of expressing iden-
tity. As a consequence, it cannot express an equation: it does not con-
tain even the most primitive arithmetic. The second model language
works only as long as we do not add to it the means of proving
the usual theorems of arithmetic—for example, Euclid’s theorem
that there is no greatest prime number, or even the principle that
every number has a successor. In the third model language—the most
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elaborate and famous of all—mathematics can again not be formulated;
and, what is still more interesting, there are no measurable properties
expressible in it. For these reasons, and for many others, the three
model languages are too poor to be of use to any science. They are also,
of course, essentially poorer than ordinary languages, including even
the most primitive ones.

The limitations mentioned were imposed upon the model languages
simply because otherwise the solutions offered by the authors to their
problems would not have worked. This fact can be easily proved, and it
has been partly proved by the authors themselves. Nevertheless, they all
seem to claim two things: (a) that their methods are, in some sense or
other, capable of solving problems of the theory of scientific know-
ledge, or in other words, that they are applicable to science (while in
fact they are applicable with any precision only to discourse of an
extremely primitive kind), and (b) that their methods are ‘exact’ or
‘precise’. Clearly these two claims cannot both be upheld.

Thus the method of constructing artificial model languages is incap-
able of tackling the problems of the growth of our knowledge; and it
is even less able to do so than the method of analysing ordinary lan-
guages, simply because these model languages are poorer than ordin-
ary languages. It is a result of their poverty that they yield only the most
crude and the most misleading model of the growth of knowledge—
the model of an accumulating heap of observation statements.

I now turn to the last group of epistemologists—those who do not
pledge themselves in advance to any philosophical method, and who
make use, in epistemology, of the analysis of scientific problems, theor-
ies, and procedures, and, most important, of scientific discussions. This
group can claim, among its ancestors, almost all the great philosophers
of the West. (It can claim even the ancestry of Berkeley despite the fact
that he was, in an important sense, an enemy of the very idea of
rational scientific knowledge, and that he feared its advance.) Its most
important representatives during the last two hundred years were Kant,
Whewell, Mill, Peirce, Duhem, Poincaré, Meyerson, Russell, and—at
least in some of his phases—Whitehead. Most of those who belong to
this group would agree that scientific knowledge is the result of the
growth of common-sense knowledge. But all of them discovered that
scientific knowledge can be more easily studied than common-sense
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knowledge. For it is common-sense knowledge writ large, as it were. Its very
problems are enlargements of the problems of common-sense know-
ledge. For example, it replaces the Humean problem of ‘reasonable
belief ’ by the problem of the reasons for accepting or rejecting scien-
tific theories. And since we possess many detailed reports of the discus-
sions pertaining to the problem whether a theory such as Newton’s or
Maxwell’s or Einstein’s should be accepted or rejected, we may look at
these discussions as if through a microscope that allows us to study
in detail, and objectively, some of the more important problems of
‘reasonable belief’.

This approach to the problems of epistemology gets rid (as do the
other two mentioned) of the pseudo-psychological or ‘subjective’
method of the new way of ideas (a method still used by Kant). It
suggests that we analyse scientific discussions, and also scientific prob-
lem situations. And so it can help us to understand the history of
scientific thought.

I have tried to show that the most important of the traditional prob-
lems of epistemology—those connected with the growth of knowledge—
transcend the two standard methods of linguistic analysis and require
the analysis of scientific knowledge. But the last thing I wish to do,
however, is to advocate another dogma. Even the analysis of science—
the ‘philosophy of science’—is threatening to become a fashion, a
specialism. yet philosophers should not be specialists. For myself, I am
interested in science and in philosophy only because I want to learn
something about the riddle of the world in which we live, and the
riddle of man’s knowledge of that world. And I believe that only a
revival of interest in these riddles can save the sciences and philosophy
from narrow specialization and from an obscurantist faith in the
expert’s special skill, and in his personal knowledge and authority;
a faith that so well fits our ‘post-rationalist’ and ‘post-critical’
age, proudly dedicated to the destruction of the tradition of rational
philosophy, and of rational thought itself.

Penn, Buckinghamshire, Spring 1958.

preface, 1959xxvi



ACKNOWLEDGMENTS, 1960 and 1968

I wish to thank Mr. David G. Nicholls for communicating to me the
admirable passage, now printed on page xvii, which he discovered
among the Acton Manuscripts in the Library of Cambridge University
(Add. MSS 5011:266). The reprint of the book gives me the welcome
opportunity to quote this passage.

Summer 1959

In this second English edition four short Addenda have been added to the
appendices. Minor mistakes have been corrected, and I have made a few
linguistic improvements. Misprints have been corrected that were
brought to my notice by Imre Lakatos, David Miller, and Alan
Musgrave. They also suggested many new entries in the Index of
Subjects. I am very grateful to them.

My greatest debt is to Paul Bernays who, shortly after this book had
appeared in English, checked through my axiomatization of the prob-
ability calculus, especially the new appendix *v. I value his approval
more highly than I can express in words. It does not, of course, absolve
me from bearing the sole responsibility for any mistake I may have
made.

November 1967 K. R. P.

preface, 1959 xxvii





Part I
Introduction to the
Logic of Science





1
A SURVEY OF SOME

FUNDAMENTAL PROBLEMS

A scientist, whether theorist or experimenter, puts forward statements,
or systems of statements, and tests them step by step. In the field of the
empirical sciences, more particularly, he constructs hypotheses, or sys-
tems of theories, and tests them against experience by observation and
experiment.

I suggest that it is the task of the logic of scientific discovery, or the
logic of knowledge, to give a logical analysis of this procedure; that is,
to analyse the method of the empirical sciences.

But what are these ‘methods of the empirical sciences’? And what do
we call ‘empirical science’?

1 THE PROBLEM OF INDUCTION

According to a widely accepted view—to be opposed in this book —
the empirical sciences can be characterized by the fact that they use
‘inductive methods’, as they are called. According to this view, the logic of
scientific discovery would be identical with inductive logic, i.e. with
the logical analysis of these inductive methods.

It is usual to call an inference ‘inductive’ if it passes from singular



statements (sometimes also called ‘particular’ statements), such as
accounts of the results of observations or experiments, to universal
statements, such as hypotheses or theories.

Now it is far from obvious, from a logical point of view, that we are
justified in inferring universal statements from singular ones, no mat-
ter how numerous; for any conclusion drawn in this way may always
turn out to be false: no matter how many instances of white swans we
may have observed, this does not justify the conclusion that all swans
are white.

The question whether inductive inferences are justified, or under
what conditions, is known as the problem of induction.

The problem of induction may also be formulated as the
question of the validity or the truth of universal statements which
are based on experience, such as the hypotheses and theoretical
systems of the empirical sciences. For many people believe that the
truth of these universal statements is ‘known by experience’; yet it is
clear that an account of an experience—of an observation or the
result of an experiment—can in the first place be only a singular
statement and not a universal one. Accordingly, people who say of a
universal statement that we know its truth from experience usually
mean that the truth of this universal statement can somehow be
reduced to the truth of singular ones, and that these singular ones are
known by experience to be true; which amounts to saying that the
universal statement is based on inductive inference. Thus to ask
whether there are natural laws known to be true appears to be only
another way of asking whether inductive inferences are logically
justified.

Yet if we want to find a way of justifying inductive inferences, we
must first of all try to establish a principle of induction. A principle of
induction would be a statement with the help of which we could put
inductive inferences into a logically acceptable form. In the eyes of
the upholders of inductive logic, a principle of induction is of
supreme importance for scientific method: ‘. . . this principle’, says
Reichenbach, ‘determines the truth of scientific theories. To eliminate
it from science would mean nothing less than to deprive science of
the power to decide the truth or falsity of its theories. Without it,
clearly, science would no longer have the right to distinguish its
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theories from the fanciful and arbitrary creations of the poet’s
mind.’1

Now this principle of induction cannot be a purely logical truth like
a tautology or an analytic statement. Indeed, if there were such a thing
as a purely logical principle of induction, there would be no problem
of induction; for in this case, all inductive inferences would have to be
regarded as purely logical or tautological transformations, just like
inferences in deductive logic. Thus the principle of induction must be a
synthetic statement; that is, a statement whose negation is not
self-contradictory but logically possible. So the question arises why
such a principle should be accepted at all, and how we can justify
its acceptance on rational grounds.

Some who believe in inductive logic are anxious to point out, with
Reichenbach, that ‘the principle of induction is unreservedly accepted
by the whole of science and that no man can seriously doubt this
principle in everyday life either’.2 Yet even supposing this were the
case—for after all, ‘the whole of science’ might err—I should still
contend that a principle of induction is superfluous, and that it must
lead to logical inconsistencies.

That inconsistencies may easily arise in connection with the prin-
ciple of induction should have been clear from the work of Hume;*1

also, that they can be avoided, if at all, only with difficulty. For the
principle of induction must be a universal statement in its turn. Thus if
we try to regard its truth as known from experience, then the very
same problems which occasioned its introduction will arise all over
again. To justify it, we should have to employ inductive inferences; and
to justify these we should have to assume an inductive principle of a
higher order; and so on. Thus the attempt to base the principle of
induction on experience breaks down, since it must lead to an infinite
regress.

Kant tried to force his way out of this difficulty by taking the

1 H. Reichenbach, Erkenntnis 1, 1930, p. 186 (cf. also pp. 64 f.). Cf. the penultimate
paragraph of Russell’s chapter xii, on Hume, in his History of Western Philosophy, 1946,
p. 699.
2 Reichenbach ibid., p. 67.
*1 The decisive passages from Hume are quoted in appendix *vii, text to footnotes 4, 5,
and 6; see also note 2 to section 81, below.
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principle of induction (which he formulated as the ‘principle of
universal causation’) to be ‘a priori valid’. But I do not think that his
ingenious attempt to provide an a priori justification for synthetic
statements was successful.

My own view is that the various difficulties of inductive logic here
sketched are insurmountable. So also, I fear, are those inherent in the
doctrine, so widely current today, that inductive inference, although
not ‘strictly valid’, can attain some degree of ‘reliability’ or of ‘probability’.
According to this doctrine, inductive inferences are ‘probable infer-
ences’.3 ‘We have described’, says Reichenbach, ‘the principle of induc-
tion as the means whereby science decides upon truth. To be more
exact, we should say that it serves to decide upon probability. For it is
not given to science to reach either truth or falsity . . . but scientific
statements can only attain continuous degrees of probability whose
unattainable upper and lower limits are truth and falsity’.4

At this stage I can disregard the fact that the believers in inductive
logic entertain an idea of probability that I shall later reject as highly
unsuitable for their own purposes (see section 80, below). I can do so
because the difficulties mentioned are not even touched by an appeal to
probability. For if a certain degree of probability is to be assigned to
statements based on inductive inference, then this will have to be justi-
fied by invoking a new principle of induction, appropriately modified.
And this new principle in its turn will have to be justified, and so on.
Nothing is gained, moreover, if the principle of induction, in its turn, is
taken not as ‘true’ but only as ‘probable’. In short, like every other form
of inductive logic, the logic of probable inference, or ‘probability
logic’, leads either to an infinite regress, or to the doctrine of
apriorism.*2

The theory to be developed in the following pages stands directly
opposed to all attempts to operate with the ideas of inductive logic. It

3 Cf. J. M. Keynes, A Treatise on Probability, 1921; O. Külpe, Vorlesungen über Logic (ed. by
Selz, 1923); Reichenbach (who uses the term ‘probability implications’), Axiomatik der
Wahrscheinlichkeitsrechnung, Mathem. Zeitschr. 34, 1932; and elsewhere.
4 Reichenbach, Erkenntnis 1, 1930, p. 186.
*2 See also chapter 10, below, especially note 2 to section 81, and chapter *ii of the
Postscript for a fuller statement of this criticism.
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might be described as the theory of the deductive method of testing, or as the
view that a hypothesis can only be empirically tested—and only after it
has been advanced.

Before I can elaborate this view (which might be called ‘deductiv-
ism’, in contrast to ‘inductivism’5) I must first make clear the distinc-
tion between the psychology of knowledge which deals with empirical facts,
and the logic of knowledge which is concerned only with logical relations.
For the belief in inductive logic is largely due to a confusion of psycho-
logical problems with epistemological ones. It may be worth noticing,
by the way, that this confusion spells trouble not only for the logic of
knowledge but for its psychology as well.

2 ELIMINATION OF PSYCHOLOGISM

I said above that the work of the scientist consists in putting forward
and testing theories.

The initial stage, the act of conceiving or inventing a theory, seems
to me neither to call for logical analysis nor to be susceptible of it.
The question how it happens that a new idea occurs to a man—
whether it is a musical theme, a dramatic conflict, or a scientific
theory—may be of great interest to empirical psychology; but it is
irrelevant to the logical analysis of scientific knowledge. This latter is
concerned not with questions of fact (Kant’s quid facti?), but only with
questions of justification or validity (Kant’s quid juris?). Its questions are of
the following kind. Can a statement be justified? And if so, how? Is it
testable? Is it logically dependent on certain other statements? Or
does it perhaps contradict them? In order that a statement may be
logically examined in this way, it must already have been presented to

5 Liebig (in Induktion und Deduktion, 1865) was probably the first to reject the inductive
method from the standpoint of natural science; his attack is directed against Bacon.
Duhem (in La théorie physique, son objet et sa structure, 1906; English translation by P. P. Wiener:
The Aim and Structure of Physical Theory, Princeton, 1954) holds pronounced deductivist
views. (*But there are also inductivist views to be found in Duhem’s book, for example
in the third chapter, Part One, where we are told that only experiment, induction, and
generalization have produced Descartes’s law of refraction; cf. the English translation,
p. 34.) So does V. Kraft, Die Grundformen der Wissenschaftlichen Methoden, 1925; see also
Carnap, Erkenntnis 2, 1932, p. 440.
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us. Someone must have formulated it, and submitted it to logical
examination.

Accordingly I shall distinguish sharply between the process of con-
ceiving a new idea, and the methods and results of examining it logic-
ally. As to the task of the logic of knowledge—in contradistinction to
the psychology of knowledge—I shall proceed on the assumption that
it consists solely in investigating the methods employed in those sys-
tematic tests to which every new idea must be subjected if it is to be
seriously entertained.

Some might object that it would be more to the purpose to regard it
as the business of epistemology to produce what has been called a
‘rational reconstruction’ of the steps that have led the scientist to a
discovery—to the finding of some new truth. But the question is: what,
precisely, do we want to reconstruct? If it is the processes involved in
the stimulation and release of an inspiration which are to be
reconstructed, then I should refuse to take it as the task of the logic of
knowledge. Such processes are the concern of empirical psychology
but hardly of logic. It is another matter if we want to reconstruct
rationally the subsequent tests whereby the inspiration may be discovered
to be a discovery, or become known to be knowledge. In so far as the
scientist critically judges, alters, or rejects his own inspiration we may,
if we like, regard the methodological analysis undertaken here as a
kind of ‘rational reconstruction’ of the corresponding thought-
processes. But this reconstruction would not describe these processes
as they actually happen: it can give only a logical skeleton of the
procedure of testing. Still, this is perhaps all that is meant by those who
speak of a ‘rational reconstruction’ of the ways in which we gain
knowledge.

It so happens that my arguments in this book are quite independent
of this problem. However, my view of the matter, for what it is worth, is
that there is no such thing as a logical method of having new ideas, or a
logical reconstruction of this process. My view may be expressed by
saying that every discovery contains ‘an irrational element’, or ‘a cre-
ative intuition’, in Bergson’s sense. In a similar way Einstein speaks of
the ‘search for those highly universal laws . . . from which a picture of
the world can be obtained by pure deduction. There is no logical
path’, he says, ‘leading to these . . . laws. They can only be reached by
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intuition, based upon something like an intellectual love (‘Einfühlung’)
of the objects of experience.’6

3 DEDUCTIVE TESTING OF THEORIES

According to the view that will be put forward here, the method of
critically testing theories, and selecting them according to the results of
tests, always proceeds on the following lines. From a new idea, put up
tentatively, and not yet justified in any way—an anticipation, a hypoth-
esis, a theoretical system, or what you will—conclusions are drawn by
means of logical deduction. These conclusions are then compared with
one another and with other relevant statements, so as to find what
logical relations (such as equivalence, derivability, compatiblity, or
incompatibility) exist between them.

We may if we like distinguish four different lines along which the
testing of a theory could be carried out. First there is the logical com-
parison of the conclusions among themselves, by which the internal
consistency of the system is tested. Secondly, there is the investigation
of the logical form of the theory, with the object of determining
whether it has the character of an empirical or scientific theory, or
whether it is, for example, tautological. Thirdly, there is the com-
parison with other theories, chiefly with the aim of determining
whether the theory would constitute a scientific advance should it
survive our various tests. And finally, there is the testing of the theory
by way of empirical applications of the conclusions which can be
derived from it.

The purpose of this last kind of test is to find out how far the new
consequences of the theory—whatever may be new in what it asserts
—stand up to the demands of practice, whether raised by purely scien-
tific experiments, or by practical technological applications. Here too
the procedure of testing turns out to be deductive. With the help of

6 Address on Max Planck’s 60th birthday (1918). The passage quoted begins with the
words, ‘The supreme task of the physicist is to search for those highly universal laws . . .,’
etc. (quoted from A. Einstein, Mein Weltbild, 1934, p. 168; English translation by A. Harris:
The World as I see It, 1935, p. 125). Similar ideas are found earlier in Liebig, op. cit.; cf. also
Mach, Principien der Wärmelehre, 1896, pp. 443 ff. *The German word ‘Einfühlung’ is difficult
to translate. Harris translates: ‘sympathetic understanding of experience’.
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other statements, previously accepted, certain singular statements—
which we may call ‘predictions’—are deduced from the theory; espe-
cially predictions that are easily testable or applicable. From among
these statements, those are selected which are not derivable from the
current theory, and more especially those which the current theory
contradicts. Next we seek a decision as regards these (and other)
derived statements by comparing them with the results of practical
applications and experiments. If this decision is positive, that is, if the
singular conclusions turn out to be acceptable, or verified, then the the-
ory has, for the time being, passed its test: we have found no reason to
discard it. But if the decision is negative, or in other words, if the
conclusions have been falsified, then their falsification also falsifies the
theory from which they were logically deduced.

It should be noticed that a positive decision can only temporarily sup-
port the theory, for subsequent negative decisions may always overthrow
it. So long as theory withstands detailed and severe tests and is not super-
seded by another theory in the course of scientific progress, we may say
that it has ‘proved its mettle’ or that it is ‘corroborated’*1 by past experience.

Nothing resembling inductive logic appears in the procedure here
outlined. I never assume that we can argue from the truth of singular
statements to the truth of theories. I never assume that by force of
‘verified’ conclusions, theories can be established as ‘true’, or even as
merely ‘probable’.

In this book I intend to give a more detailed analysis of the methods
of deductive testing. And I shall attempt to show that, within the
framework of this analysis, all the problems can be dealt with that are
usually called ‘epistemological’. Those problems, more especially, to
which inductive logic gives rise, can be eliminated without creating
new ones in their place.

4 THE PROBLEM OF DEMARCATION

Of the many objections which are likely to be raised against the view
here advanced, the most serious is perhaps the following. In rejecting

*1 For this term, see note *1 before section 79, and section *29 of my Postscript.
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the method of induction, it may be said, I deprive empirical science of
what appears to be its most important characteristic; and this means
that I remove the barriers which separate science from metaphysical
speculation. My reply to this objection is that my main reason for
rejecting inductive logic is precisely that it does not provide a suitable dis-
tinguishing mark of the empirical, non-metaphysical, character of a theor-
etical system; or in other words, that it does not provide a suitable ‘criterion of
demarcation’.

The problem of finding a criterion which would enable us to dis-
tinguish between the empirical sciences on the one hand, and math-
ematics and logic as well as ‘metaphysical’ systems on the other, I call
the problem of demarcation.1

This problem was known to Hume who attempted to solve it.2

With Kant it became the central problem of the theory of know-
ledge. If, following Kant, we call the problem of induction ‘Hume’s
problem’, we might call the problem of demarcation ‘Kant’s
problem’.

Of these two problems—the source of nearly all the other problems
of the theory of knowledge—the problem of demarcation is, I think,
the more fundamental. Indeed, the main reason why epistemologists
with empiricist leanings tend to pin their faith to the ‘method of
induction’ seems to be their belief that this method alone can provide a
suitable criterion of demarcation. This applies especially to those
empiricists who follow the flag of ‘positivism’.

The older positivists wished to admit, as scientific or legitimate,
only those concepts (or notions or ideas) which were, as they put it,
‘derived from experience’; those concepts, that is, which they
believed to be logically reducible to elements of sense-experience,
such as sensations (or sense-data), impressions, perceptions, visual
or auditory memories, and so forth. Modern positivists are apt to see
more clearly that science is not a system of concepts but rather a

1 With this (and also with sections 1 to 6 and 13 to 24) compare my note in Erkenntnis 3,
1933, p. 426; *It is now here reprinted, in translation, in appendix *i.
2 Cf. the last sentence of his Enquiry Concerning Human Understanding. *With the next para-
graph (and my allusion to epistemologists) compare for example the quotation from
Reichenbach in the text to note 1, section 1.
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system of statements.*1 Accordingly, they wish to admit, as scientific
or legitimate, only those statements which are reducible to ele-
mentary (or ‘atomic’) statements of experience—to ‘judgments of
perception’ or ‘atomic propositions’ or ‘protocol-sentences’ or
what not.*2 It is clear that the implied criterion of demarcation is
identical with the demand for an inductive logic.

Since I reject inductive logic I must also reject all these attempts to
solve the problem of demarcation. With this rejection, the problem of
demarcation gains in importance for the present inquiry. Finding an
acceptable criterion of demarcation must be a crucial task for any
epistemology which does not accept inductive logic.

Positivists usually interpret the problem of demarcation in a natural-
istic way; they interpret it as if it were a problem of natural science.
Instead of taking it as their task to propose a suitable convention, they
believe they have to discover a difference, existing in the nature of
things, as it were, between empirical science on the one hand and
metaphysics on the other. They are constantly trying to prove that
metaphysics by its very nature is nothing but nonsensical twaddle—
‘sophistry and illusion’, as Hume says, which we should ‘commit to
the flames’.*3

If by the words ‘nonsensical’ or ‘meaningless’ we wish to express no
more, by definition, than ‘not belonging to empirical science’, then the
characterization of metaphysics as meaningless nonsense would be

*1 When I wrote this paragraph I overrated the ‘modern positivists’, as I now see. I
should have remembered that in this respect the promising beginning of Wittgenstein’s
Tractatus—‘The world is the totality of facts, not of things’—was cancelled by its end
which denounced the man who ‘had given no meaning to certain signs in his
propositions’. See also my Open Society and its Enemies, chapter 11, section ii, and chapter
*i of my Postscript, especially sections *ii (note 5), *24 (the last five paragraphs),
and *25.
*2 Nothing depends on names, of course. When I invented the new name ‘basic state-
ment’ (or ‘basic proposition’; see below, sections 7 and 28) I did so only because I
needed a term not burdened with the connotation of a perception statement. But
unfortunately it was soon adopted by others, and used to convey precisely the kind of
meaning which I wished to avoid. Cf. also my Postscript, *29.
*3 Thus Hume, like Sextus, condemned his own Enquiry on its last page; just as later
Wittgenstein condemned his own Tractatus on its last page. (See note 2 to section 10.)
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trivial; for metaphysics has usually been defined as non-empirical. But
of course, the positivists believe they can say much more about meta-
physics than that some of its statements are non-empirical. The words
‘meaningless’ or ‘nonsensical’ convey, and are meant to convey, a
derogatory evaluation; and there is no doubt that what the positivists
really want to achieve is not so much a successful demarcation as the
final overthrow3 and the annihilation of metaphysics. However this
may be, we find that each time the positivists tried to say more clearly
what ‘meaningful’ meant, the attempt led to the same result—to
a definition of ‘meaningful sentence’ (in contradistinction to ‘mean-
ingless pseudo-sentence’) which simply reiterated the criterion of
demarcation of their inductive logic.

This ‘shows itself’ very clearly in the case of Wittgenstein, according
to whom every meaningful proposition must be logically reducible4 to
elementary (or atomic) propositions, which he characterizes as
descriptions or ‘pictures of reality’5 (a characterization, by the way,
which is to cover all meaningful propositions). We may see from this
that Wittgenstein’s criterion of meaningfulness coincides with the
inductivists’ criterion of demarcation, provided we replace their words
‘scientific’ or ‘legitimate’ by ‘meaningful’. And it is precisely over the
problem of induction that this attempt to solve the problem of demar-
cation comes to grief: positivists, in their anxiety to annihilate meta-
physics, annihilate natural science along with it. For scientific laws, too,
cannot be logically reduced to elementary statements of experience. If
consistently applied, Wittgenstein’s criterion of meaningfulness rejects
as meaningless those natural laws the search for which, as Einstein
says,6 is ‘the supreme task of the physicist’: they can never be accepted
as genuine or legitimate statements. Wittgenstein’s attempt to unmask
the problem of induction as an empty pseudo-problem was formulated

3 Carnap, Erkenntnis 2, 1932, pp. 219 ff. Earlier Mill had used the word ‘meaningless’ in a
similar way, *no doubt under the influence of Comte; cf. Comte’s Early Essays on Social
Philosophy, ed. by H. D. Hutton, 1911, p. 223. See also my Open Society, note 51 to chapter
11.
4 Wittgenstein, Tractatus Logico-Philosophicus (1918 and 1922), Proposition 5. *As this was
written in 1934, I am dealing here of course only with the Tractatus.
5 Wittgenstein, op. cit., Propositions 4.01; 4.03; 2.221.
6 Cf. note 1 to section 2.
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by Schlick*4 in the following words: ‘The problem of induction consists
in asking for a logical justification of universal statements about reality . . .
We recognize, with Hume, that there is no such logical justification:
there can be none, simply because they are not genuine statements.’7

This shows how the inductivist criterion of demarcation fails to
draw a dividing line between scientific and metaphysical systems, and
why it must accord them equal status; for the verdict of the positivist
dogma of meaning is that both are systems of meaningless pseudo-
statements. Thus instead of eradicating metaphysics from the empirical
sciences, positivism leads to the invasion of metaphysics into the
scientific realm.8

In contrast to these anti-metaphysical stratagems—anti-metaphysical
in intention, that is—my business, as I see it, is not to bring about the
overthrow of metaphysics. It is, rather, to formulate a suitable charac-
terization of empirical science, or to define the concepts ‘empirical
science’ and ‘metaphysics’ in such a way that we shall be able to say of a

*4 The idea of treating scientific laws as pseudo-propositions—thus solving the problem
of induction—was attributed by Schlick to Wittgenstein. (Cf. my Open Society, notes 46
and 51 f. to chapter 11.) But it is really much older. It is part of the instrumentalist
tradition which can be traced back to Berkeley, and further. (See for example my paper
‘Three Views Concerning Human Knowledge’, in Contemporary British Philosophy, 1956; and
‘A Note on Berkeley as a Precursor of Mach’, in The British Journal for the Philosophy of Science 4,
1953, pp. 26 ff., now in my Conjectures and Refutations, 1959. Further references in note *1
before section 12 (p. 37). The problem is also treated in my Postscript, sections *11 to *14,
and *19 to *26.)
7 Schlick, Naturwissenschaften 19, 1931, p. 156. (The italics are mine). Regarding natural
laws Schlick writes (p. 151), ‘It has often been remarked that, strictly, we can never speak
of an absolute verification of a law, since we always, so to speak, tacitly make the reserva-
tion that it may be modified in the light of further experience. If I may add, by way of
parenthesis’, Schlick continues, ‘a few words on the logical situation, the above-
mentioned fact means that a natural law, in principle, does not have the logical character
of a statement, but is, rather, a prescription for the formation of statements.’ *(‘Forma-
tion’ no doubt was meant to include transformation or derivation.) Schlick attributed
this theory to a personal communication of Wittgenstein’s. See also section *12 of my
Postscript.
8 Cf. Section 78 (for example note 1). *See also my Open Society, notes 46, 51, and 52 to
chapter 11, and my paper. ‘The Demarcation between Science and Metaphysics’, contrib-
uted in January 1955 to the Carnap volume of the Library of Living Philosophers, edited by
P. A. Schilpp and now in my Conjectures and Refutations, 1963 and 1965.
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given system of statements whether or not its closer study is the
concern of empirical science.

My criterion of demarcation will accordingly have to be regarded as
a proposal for an agreement or convention. As to the suitability of any such
convention opinions may differ; and a reasonable discussion of these
questions is only possible between parties having some purpose in
common. The choice of that purpose must, of course, be ultimately a
matter of decision, going beyond rational argument.*5

Thus anyone who envisages a system of absolutely certain, irrevoc-
ably true statements9 as the end and purpose of science will certainly
reject the proposals I shall make here. And so will those who see ‘the
essence of science . . . in its dignity’, which they think resides in its
‘wholeness’ and its ‘real truth and essentiality’.10 They will hardly be
ready to grant this dignity to modern theoretical physics in which I
and others see the most complete realization to date of what I call
‘empirical science’.

The aims of science which I have in mind are different. I do not try
to justify them, however, by representing them as the true or the essen-
tial aims of science. This would only distort the issue, and it would
mean a relapse into positivist dogmatism. There is only one way, as far
as I can see, of arguing rationally in support of my proposals. This is to
analyse their logical consequences: to point out their fertility—their
power to elucidate the problems of the theory of knowledge.

Thus I freely admit that in arriving at my proposals I have been
guided, in the last analysis, by value judgments and predilections. But I
hope that my proposals may be acceptable to those who value not only
logical rigour but also freedom from dogmatism; who seek practical
applicability, but are even more attracted by the adventure of science,
and by discoveries which again and again confront us with new and
unexpected questions, challenging us to try out new and hitherto
undreamed-of answers.

The fact that value judgments influence my proposals does not mean

*5 I believe that a reasonable discussion is always possible between parties interested in
truth, and ready to pay attention to each other. (Cf. my Open Society, chapter 24.)
9 This is Dingler’s view; cf. note 1 to section 19.
10 This is the view of O. Spann (Kategorienlehre, 1924).
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that I am making the mistake of which I have accused the positivists—
that of trying to kill metaphysics by calling it names. I do not even go
so far as to assert that metaphysics has no value for empirical science.
For it cannot be denied that along with metaphysical ideas which have
obstructed the advance of science there have been others—such as
speculative atomism—which have aided it. And looking at the matter
from the psychological angle, I am inclined to think that scientific
discovery is impossible without faith in ideas which are of a purely
speculative kind, and sometimes even quite hazy; a faith which is com-
pletely unwarranted from the point of view of science, and which, to
that extent, is ‘metaphysical’.11

Yet having issued all these warnings, I still take it to be the first task
of the logic of knowledge to put forward a concept of empirical science, in
order to make linguistic usage, now somewhat uncertain, as definite as
possible, and in order to draw a clear line of demarcation between
science and metaphysical ideas—even though these ideas may have
furthered the advance of science throughout its history.

5 EXPERIENCE AS A METHOD

The task of formulating an acceptable definition of the idea of an
‘empirical science’ is not without its difficulties. Some of these arise
from the fact that there must be many theoretical systems with a logical structure
very similar to the one which at any particular time is the accepted
system of empirical science. This situation is sometimes described by
saying that there is a great number—presumably an infinite number—
of ‘logically possible worlds’. Yet the system called ‘empirical science’
is intended to represent only one world: the ‘real world’ or the ‘world of
our experience’.*1

In order to make this idea a little more precise, we may distinguish
three requirements which our empirical theoretical system will
have to satisfy. First, it must be synthetic, so that it may represent a

11 Cf. also: Planck. Positivismus und reale Aussenwelt (1931) and Einstein, Die Religiosität der
Forschung, in Mein Weltbild, 1934, p. 43; English translation by A. Harris: The World as I See It,
1935, pp. 23 ff. *See also section 85, and my Postscript.
*1 Cf. appendix *x.
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non-contradictory, a possible world. Secondly, it must satisfy the cri-
terion of demarcation (cf. sections 6 and 21), i.e. it must not be meta-
physical, but must represent a world of possible experience. Thirdly, it
must be a system distinguished in some way from other such systems
as the one which represents our world of experience.

But how is the system that represents our world of experience to be
distinguished? The answer is: by the fact that it has been submitted to
tests, and has stood up to tests. This means that it is to be distinguished
by applying to it that deductive method which it is my aim to analyse,
and to describe.

‘Experience’, on this view, appears as a distinctive method whereby
one theoretical system may be distinguished from others; so that
empirical science seems to be characterized not only by its logical form
but, in addition, by its distinctive method. (This, of course, is also the
view of the inductivists, who try to characterize empirical science by
its use of the inductive method.)

The theory of knowledge, whose task is the analysis of the method
or procedure peculiar to empirical science, may accordingly be
described as a theory of the empirical method—a theory of what is usually
called ‘experience’.

6 FALSIFIABILITY AS A CRITERION OF DEMARCATION

The criterion of demarcation inherent in inductive logic—that is, the
positivistic dogma of meaning—is equivalent to the requirement that
all the statements of empirical science (or all ‘meaningful’ statements)
must be capable of being finally decided, with respect to their truth and
falsity; we shall say that they must be ‘conclusively decidable’. This means
that their form must be such that to verify them and to falsify them must both
be logically possible. Thus Schlick says: ‘. . . a genuine statement must
be capable of conclusive verification’;1 and Waismann says still more clearly:
‘If there is no possible way to determine whether a statement is true then that
statement has no meaning whatsoever. For the meaning of a statement
is the method of its verification.’2

1 Schlick, Naturwissenschaften 19, 1931, p. 150.
2 Waismann, Erkenntnis 1, 1903, p. 229.
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Now in my view there is no such thing as induction.*1 Thus
inference to theories, from singular statements which are ‘verified
by experience’ (whatever that may mean), is logically inadmissible.
Theories are, therefore, never empirically verifiable. If we wish to
avoid the positivist’s mistake of eliminating, by our criterion of demar-
cation, the theoretical systems of natural science,*2 then we must
choose a criterion which allows us to admit to the domain of
empirical science even statements which cannot be verified.

But I shall certainly admit a system as empirical or scientific only if it
is capable of being tested by experience. These considerations suggest
that not the verifiability but the falsifiability of a system is to be taken as a
criterion of demarcation.*3 In other words: I shall not require of a
scientific system that it shall be capable of being singled out, once and
for all, in a positive sense; but I shall require that its logical form shall
be such that it can be singled out, by means of empirical tests, in a
negative sense: it must be possible for an empirical scientific system to be refuted by
experience.3

*1 I am not, of course, here considering so-called ‘mathematical induction’. What I am
denying is that there is such a thing as induction in the so-called ‘inductive sciences’: that
there are either ‘inductive procedures’ or ‘inductive inferences’.
*2 In his Logical Syntax (1937, pp. 321 f.) Carnap admitted that this was a mistake (with a
reference to my criticism); and he did so even more fully in ‘Testability and Meaning’,
recognizing the fact that universal laws are not only ‘convenient’ for science but even
‘essential’ (Philosophy of Science 4, 1937, p. 27). But in his inductivist Logical Foundations of
Probability (1950), he returns to a position very like the one here criticized: finding that
universal laws have zero probability (p. 511), he is compelled to say (p. 575) that though
they need not be expelled from science, science can very well do without them.
*3 Note that I suggest falsifiability as a criterion of demarcation, but not of meaning. Note,
moreover, that I have already (section 4) sharply criticized the use of the idea of meaning
as a criterion of demarcation, and that I attack the dogma of meaning again, even more
sharply, in section 9. It is therefore a sheer myth (though any number of refutations of
my theory have been based upon this myth) that I ever proposed falsifiability as a
criterion of meaning. Falsifiability separates two kinds of perfectly meaningful state-
ments: the falsifiable and the non-falsifiable. It draws a line inside meaningful language,
not around it. See also appendix *i, and chapter *i of my Postscript, especially sections *17
and *19, and my Conjectures and Refutations, chs. 1 and 11.
3 Related ideas are to be found, for example, in Frank, Die Kausalität und ihre Grenzen, 1931,
ch. I, §10 (pp. 15f.); Dubislav, Die Definition (3rd edition 1931), pp. 100 f. (Cf. also note 1
to section 4, above.)
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(Thus the statement, ‘It will rain or not rain here tomorrow’ will not
be regarded as empirical, simply because it cannot be refuted; whereas
the statement, ‘It will rain here tomorrow’ will be regarded as
empirical.)

Various objections might be raised against the criterion of demarca-
tion here proposed. In the first place, it may well seem somewhat
wrong-headed to suggest that science, which is supposed to give us
positive information, should be characterized as satisfying a negative
requirement such as refutability. However, I shall show, in sections 31
to 46, that this objection has little weight, since the amount of positive
information about the world which is conveyed by a scientific state-
ment is the greater the more likely it is to clash, because of its logical
character, with possible singular statements. (Not for nothing do
we call the laws of nature ‘laws’: the more they prohibit the more
they say.)

Again, the attempt might be made to turn against me my own
criticism of the inductivist criterion of demarcation; for it might seem
that objections can be raised against falsifiability as a criterion of
demarcation similar to those which I myself raised against
verifiability.

This attack would not disturb me. My proposal is based upon an
asymmetry between verifiability and falsifiability; an asymmetry which
results from the logical form of universal statements.*4 For these are
never derivable from singular statements, but can be contradicted by
singular statements. Consequently it is possible by means of purely
deductive inferences (with the help of the modus tollens of classical
logic) to argue from the truth of singular statements to the falsity of
universal statements. Such an argument to the falsity of universal
statements is the only strictly deductive kind of inference that proceeds,
as it were, in the ‘inductive direction’; that is, from singular to
universal statements.

A third objection may seem more serious. It might be said that even
if the asymmetry is admitted, it is still impossible, for various reasons,
that any theoretical system should ever be conclusively falsified. For it is
always possible to find some way of evading falsification, for example

*4 This asymmetry is now more fully discussed in section *22 of my Postscript.
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by introducing ad hoc an auxiliary hypothesis, or by changing ad hoc a
definition. It is even possible without logical inconsistency to adopt the
position of simply refusing to acknowledge any falsifying experience
whatsoever. Admittedly, scientists do not usually proceed in this
way, but logically such procedure is possible; and this fact, it might
be claimed, makes the logical value of my proposed criterion of
demarcation dubious, to say the least.

I must admit the justice of this criticism; but I need not therefore
withdraw my proposal to adopt falsifiability as a criterion of demarca-
tion. For I am going to propose (in sections 20 f.) that the empirical
method shall be characterized as a method that excludes precisely those
ways of evading falsification which, as my imaginary critic rightly
insists, are logically possible. According to my proposal, what charac-
terizes the empirical method is its manner of exposing to falsification,
in every conceivable way, the system to be tested. Its aim is not to save
the lives of untenable systems but, on the contrary, to select the one
which is by comparison the fittest, by exposing them all to the fiercest
struggle for survival.

The proposed criterion of demarcation also leads us to a solution of
Hume’s problem of induction—of the problem of the validity of nat-
ural laws. The root of this problem is the apparent contradiction
between what may be called ‘the fundamental thesis of empiricism’—
the thesis that experience alone can decide upon the truth or falsity of
scientific statements—and Hume’s realization of the inadmissibility of
inductive arguments. This contradiction arises only if it is assumed that
all empirical scientific statements must be ‘conclusively decidable’, i.e.
that their verification and their falsification must both in principle be
possible. If we renounce this requirement and admit as empirical also
statements which are decidable in one sense only—unilaterally decid-
able and, more especially, falsifiable—and which may be tested by
systematic attempts to falsify them, the contradiction disappears: the
method of falsification presupposes no inductive inference, but only
the tautological transformations of deductive logic whose validity is
not in dispute.4

4 For this see also my paper mentioned in note 1 to section 4, *now here reprinted in
appendix *i; and my Postscript, esp. section *2.

the logic of science 20



7 THE PROBLEM OF THE ‘EMPIRICAL BASIS’

If falsifiability is to be at all applicable as a criterion of demarcation,
then singular statements must be available which can serve as premisses
in falsifying inferences. Our criterion therefore appears only to shift the
problem—to lead us back from the question of the empirical character
of theories to the question of the empirical character of singular
statements.

Yet even so, something has been gained. For in the practice of scien-
tific research, demarcation is sometimes of immediate urgency in con-
nection with theoretical systems, whereas in connection with singular
statements, doubt as to their empirical character rarely arises. It is true
that errors of observation occur and that they give rise to false singular
statements, but the scientist scarcely ever has occasion to describe a
singular statement as non-empirical or metaphysical.

Problems of the empirical basis—that is, problems concerning the empir-
ical character of singular statements, and how they are tested—thus
play a part within the logic of science that differs somewhat from that
played by most of the other problems which will concern us. For most
of these stand in close relation to the practice of research, whilst the
problem of the empirical basis belongs almost exclusively to the theory
of knowledge. I shall have to deal with them, however, since they have
given rise to many obscurities. This is especially true of the relation
between perceptual experiences and basic statements. (What I call a ‘basic state-
ment’ or a ‘basic proposition’ is a statement which can serve as a prem-
ise in an empirical falsification; in brief, a statement of a singular fact.)

Perceptual experiences have often been regarded as providing a kind of
justification for basic statements. It was held that these statements are
‘based upon’ these experiences; that their truth becomes ‘manifest by
inspection’ through these experiences; or that it is made ‘evident’ by
these experiences, etc. All these expressions exhibit the perfectly sound
tendency to emphasize the close connection between basic statements
and our perceptual experiences. Yet it was also rightly felt that statements can
be logically justified only by statements. Thus the connection between the percep-
tions and the statements remained obscure, and was described by cor-
respondingly obscure expressions which elucidated nothing, but slurred
over the difficulties or, at best, adumbrated them through metaphors.
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Here too a solution can be found, I believe, if we clearly separate the
psychological from the logical and methodological aspects of the prob-
lem. We must distinguish between, on the one hand, our subjective experi-
ences or our feelings of conviction, which can never justify any statement
(though they can be made the subject of psychological investigation)
and, on the other hand, the objective logical relations subsisting among the
various systems of scientific statements, and within each of them.

The problems of the empirical basis will be discussed in some detail
in sections 25 to 30. For the present I had better turn to the problem of
scientific objectivity, since the terms ‘objective’ and ‘subjective’ which
I have just used are in need of elucidation.

8 SCIENTIFIC OBJECTIVITY AND
SUBJECTIVE CONVICTION

The words ‘objective’ and ‘subjective’ are philosophical terms heavily
burdened with a heritage of contradictory usages and of inconclusive
and interminable discussions.

My use of the terms ‘objective’ and ‘subjective’ is not unlike Kant’s.
He uses the word ‘objective’ to indicate that scientific knowledge
should be justifiable, independently of anybody’s whim: a justification is
‘objective’ if in principle it can be tested and understood by anybody.
‘If something is valid’, he writes, ‘for anybody in possession of his
reason, then its grounds are objective and sufficient.’1

Now I hold that scientific theories are never fully justifiable or verifi-
able, but that they are nevertheless testable. I shall therefore say that
the objectivity of scientific statements lies in the fact that they can be
inter-subjectively tested.*1

1 Kritik der reinen Vernunft, Methodenlehre, 2. Haupstück, 3. Abschnitt (2nd edition, p. 848;
English translation by N. Kemp Smith, 1933: Critique of Pure Reason, The Transcendental
Doctrine of Method, chapter ii, section 3, p. 645).
*1 I have since generalized this formulation; for inter-subjective testing is merely a very
important aspect of the more general idea of inter-subjective criticism, or in other words,
of the idea of mutual rational control by critical discussion. This more general idea,
discussed at some length in my Open Society and Its Enemies, chapters 23 and 24, and in my
Poverty of Historicism, section 32, is also discussed in my Postscript, especially in chapters *i,
*ii, and *vi.
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The word ‘subjective’ is applied by Kant to our feelings of conviction
(of varying degrees).2 To examine how these come about is the busi-
ness of psychology. They may arise, for example, ‘in accordance with
the laws of association’.3 Objective reasons too may serve as ‘subject-
ive causes of judging’,4 in so far as we may reflect upon these reasons,
and become convinced of their cogency.

Kant was perhaps the first to realize that the objectivity of scientific
statements is closely connected with the construction of theories—
with the use of hypotheses and universal statements. Only when certain
events recur in accordance with rules or regularities, as is the case with
repeatable experiments, can our observations be tested—in
principle—by anyone. We do not take even our own observations quite
seriously, or accept them as scientific observations, until we have
repeated and tested them. Only by such repetitions can we convince
ourselves that we are not dealing with a mere isolated ‘coincidence’,
but with events which, on account of their regularity and
reproducibility, are in principle inter-subjectively testable.5

Every experimental physicist knows those surprising and inexplic-
able apparent ‘effects’ which in his laboratory can perhaps even be
reproduced for some time, but which finally disappear without trace.
Of course, no physicist would say in such a case that he had made a
scientific discovery (though he might try to rearrange his experiments
so as to make the effect reproducible). Indeed the scientifically signifi-
cant physical effect may be defined as that which can be regularly

2 Ibid.
3 Cf. Kritik der reinen Vernunft, Transcendentale Elementarlehre §19 (2nd edition, p. 142;
English translation by N. Kemp Smith, 1933: Critique of Pure Reason, Transcendental
Doctrine of Elements, §19, p. 159).
4 Cf. Kritik der reinen Vernuft, Methodenlehre, 2. Haupstück, 3. Abschnitt (2nd edition,
p. 849; English translation, chapter ii, section 3, p. 646).
5 Kant realized that from the required objectivity of scientific statements it follows that
they must be at any time inter-subjectively testable, and that they must therefore have the
form of universal laws or theories. He formulated this discovery somewhat obscurely by
his ‘principle of temporal succession according to the law of causality’ (which principle
he believed that he could prove a priori by employing the reasoning here indicated). I do
not postulate any such principle (cf. section 12); but I agree that scientific statements,
since they must be inter-subjectively testable, must always have the character of universal
hypotheses. *See also note *1 to section 22.
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reproduced by anyone who carries out the appropriate experiment in
the way prescribed. No serious physicist would offer for publication, as
a scientific discovery, any such ‘occult effect’, as I propose to call it—
one for whose reproduction he could give no instructions. The ‘dis-
covery’ would be only too soon rejected as chimerical, simply because
attempts to test it would lead to negative results.6 (It follows that any
controversy over the question whether events which are in principle
unrepeatable and unique ever do occur cannot be decided by science: it
would be a metaphysical controversy.)

We may now return to a point made in the previous section: to my
thesis that a subjective experience, or a feeling of conviction, can never
justify a scientific statement, and that within science it can play no part
except that of an object of an empirical (a psychological) inquiry. No
matter how intense a feeling of conviction it may be, it can never justify
a statement. Thus I may be utterly convinced of the truth of a state-
ment; certain of the evidence of my perceptions; overwhelmed by the
intensity of my experience: every doubt may seem to me absurd. But
does this afford the slightest reason for science to accept my statement?
Can any statement be justified by the fact that K. R. P. is utterly con-
vinced of its truth? The answer is, ‘No’; and any other answer would be
incompatible with the idea of scientific objectivity. Even the fact, for
me to so firmly established, that I am experiencing this feeling of
conviction, cannot appear within the field of objective science except
in the form of a psychological hypothesis which, of course, calls for inter-
subjective testing: from the conjecture that I have this feeling of convic-
tion the psychologist may deduce, with the help of psychological and
other theories, certain predictions about my behaviour; and these may
be confirmed or refuted in the course of experimental tests. But from
the epistemological point of view, it is quite irrelevant whether my

6 In the literature of physics there are to be found some instances of reports, by serious
investigators, of the occurrence of effects which could not be reproduced, since further
tests led to negative results. A well-known example from recent times is the unexplained
positive result of Michelson’s experiment observed by Miller (1921–1926) at Mount
Wilson, after he himself (as well as Morley) had previously reproduced Michelson’s
negative result. But since later tests again gave negative results it is now customary to
regard these latter as decisive, and to explain Miller’s divergent result as ‘due to unknown
sources of error’. *See also section 22, especially footnote *1.
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feeling of conviction was strong or weak; whether it came from a
strong or even irresistible impression of indubitable certainty (or ‘self-
evidence’), or merely from a doubtful surmise. None of this has any
bearing on the question of how scientific statements can be justified.

Considerations like these do not of course provide an answer to the
problem of the empirical basis. But at least they help us to see its main
difficulty. In demanding objectivity for basic statements as well as for
other scientific statements, we deprive ourselves of any logical means
by which we might have hoped to reduce the truth of scientific state-
ments to our experiences. Moreover we debar ourselves from granting
any favoured status to statements which describe experiences, such as
those statements which describe our perceptions (and which are some-
times called ‘protocol sentences’). They can occur in science only as
psychological statements; and this means, as hypotheses of a kind
whose standards of inter-subjective testing (considering the present
state of psychology) are certainly not very high.

Whatever may be our eventual answer to the question of the empir-
ical basis, one thing must be clear: if we adhere to our demand that
scientific statements must be objective, then those statements which
belong to the empirical basis of science must also be objective, i.e.
inter-subjectively testable. Yet inter-subjective testability always implies
that, from the statements which are to be tested, other testable state-
ments can be deduced. Thus if the basic statements in their turn are to
be inter-subjectively testable, there can be no ultimate statements in science:
there can be no statements in science which cannot be tested, and
therefore none which cannot in principle be refuted, by falsifying
some of the conclusions which can be deduced from them.

We thus arrive at the following view. Systems of theories are tested
by deducing from them statements of a lesser level of universality.
These statements in their turn, since they are to be inter-subjectively
testable, must be testable in like manner—and so ad infinitum.

It might be thought that this view leads to an infinite regress, and
that it is therefore untenable. In section 1, when criticizing induction, I
raised the objection that it may lead to an infinite regress; and it might
well appear to the reader now that the very same objection can be
urged against that procedure of deductive testing which I myself advo-
cate. However, this is not so. The deductive method of testing cannot
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establish or justify the statements which are being tested; nor is it
intended to do so. Thus there is no danger of an infinite regress. But it
must be admitted that the situation to which I have drawn attention—
testability ad infinitum and the absence of ultimate statements which are
not in need of tests—does create a problem. For, clearly, tests cannot in
fact be carried on ad infinitum: sooner or later we have to stop. Without
discussing this problem here in detail, I only wish to point out that the
fact that the tests cannot go on for ever does not clash with my demand
that every scientific statement must be testable. For I do not demand
that every scientific statement must have in fact been tested before it is
accepted. I only demand that every such statement must be capable of
being tested; or in other words, I refuse to accept the view that there
are statements in science which we have, resignedly, to accept as true
merely because it does not seem possible, for logical reasons, to test
them.
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2
ON THE PROBLEM OF A
THEORY OF SCIENTIFIC

METHOD

In accordance with my proposal made above, epistemology, or the
logic of scientific discovery, should be identified with the theory of
scientific method. The theory of method, in so far as it goes beyond the
purely logical analysis of the relations between scientific statements, is
concerned with the choice of methods—with decisions about the way in
which scientific statements are to be dealt with. These decisions will of
course depend in their turn upon the aim which we choose from
among a number of possible aims. The decision here proposed for
laying down suitable rules for what I call the ‘empirical method’ is
closely connected with my criterion of demarcation: I propose to adopt
such rules as will ensure the testability of scientific statements; which is
to say, their falsifiability.

9 WHY METHODOLOGICAL DECISIONS
ARE INDISPENSABLE

What are rules of scientific method, and why do we need them? Can
there be a theory of such rules, a methodology?



The way in which one answers these questions will largely depend
upon one’s attitude to science. Those who, like the positivists, see
empirical science as a system of statements which satisfy certain logical
criteria, such as meaningfulness or verifiability, will give one answer. A
very different answer will be given by those who tend to see (as I do)
the distinguishing characteristic of empirical statements in their sus-
ceptibility to revision—in the fact that they can be criticized, and
superseded by better ones; and who regard it as their task to analyse the
characteristic ability of science to advance, and the characteristic man-
ner in which a choice is made, in crucial cases, between conflicting
systems of theories.

I am quite ready to admit that there is a need for a purely logical
analysis of theories, for an analysis which takes no account of how they
change and develop. But this kind of analysis does not elucidate those
aspects of the empirical sciences which I, for one, so highly prize. A
system such as classical mechanics may be ‘scientific’ to any degree you
like; but those who uphold it dogmatically—believing, perhaps, that it
is their business to defend such a successful system against criticism as
long as it is not conclusively disproved—are adopting the very reverse of that
critical attitude which in my view is the proper one for the scientist. In
point of fact, no conclusive disproof of a theory can ever be produced;
for it is always possible to say that the experimental results are not
reliable, or that the discrepancies which are asserted to exist between
the experimental results and the theory are only apparent and that they
will disappear with the advance of our understanding. (In the struggle
against Einstein, both these arguments were often used in support of
Newtonian mechanics, and similar arguments abound in the field of
the social sciences.) If you insist on strict proof (or strict disproof*1) in
the empirical sciences, you will never benefit from experience, and
never learn from it how wrong you are.

If therefore we characterize empirical science merely by the formal

*1 I have now here added in brackets the words ‘or strict disproof ’ to the text (a) because
they are clearly implied by what is said immediately before (‘no conclusive disproof of a
theory can ever be produced’), and (b) because I have been constantly misinterpreted as
upholding a criterion (and moreover one of meaning rather than of demarcation) based upon
a doctrine of ‘complete’ or ‘conclusive’ falsifiability.
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or logical structure of its statements, we shall not be able to exclude
from it that prevalent form of metaphysics which results from elevating
an obsolete scientific theory into an incontrovertible truth.

Such are my reasons for proposing that empirical science should be
characterized by its methods: by our manner of dealing with scientific
systems: by what we do with them and what we do to them. Thus I
shall try to establish the rules, or if you will the norms, by which the
scientist is guided when he is engaged in research or in discovery, in
the sense here understood.

10 THE NATURALISTIC APPROACH TO THE
THEORY OF METHOD

The hint I gave in the previous section as to the deep-seated difference
between my position and that of the positivists is in need of some
amplification.

The positivist dislikes the idea that there should be meaningful prob-
lems outside the field of ‘positive’ empirical science—problems to be
dealt with by a genuine philosophical theory. He dislikes the idea that
there should be a genuine theory of knowledge, an epistemology or a
methodology.*1 He wishes to see in the alleged philosophical prob-
lems mere ‘pseudo-problems’ or ‘puzzles’. Now this wish of his—
which, by the way, he does not express as a wish or a proposal but
rather as a statement of fact*2—can always be gratified. For nothing is
easier than to unmask a problem as ‘meaningless’ or ‘pseudo’. All you
have to do is to fix upon a conveniently narrow meaning for ‘meaning’,
and you will soon be bound to say of any inconvenient question that
you are unable to detect any meaning in it. Moreover, if you admit as

*1 In the two years before the first publication of this book, it was the standing criticism
raised by members of the Vienna Circle against my ideas that a theory of method which
was neither an empirical science nor pure logic was impossible: what was outside these
two fields was sheer nonsense. (The same view was still maintained by Wittgenstein in
1948; cf. my paper ‘The Nature of Philosophical Problems’, The British Journal for the Philo-
sophy of Science 3, 1952, note on p. 128.) Later, the standing criticism became anchored in
the legend that I had proposed to replace the verifiability criterion by a falsifiability
criterion of meaning. See my Postscript, especially sections *19 to *22.
*2 Some positivists have since changed this attitude; see note 6, below.
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meaningful none except problems in natural science,1 any debate about
the concept of ‘meaning’ will also turn out to be meaningless.2 The
dogma of meaning, once enthroned, is elevated forever above the bat-
tle. It can no longer be attacked. It has become (in Wittgenstein’s own
words) ‘unassailable and definitive’.3

The controversial question whether philosophy exists, or has any
right to exist, is almost as old as philosophy itself. Time and again an
entirely new philosophical movement arises which finally unmasks the
old philosophical problems as pseudo-problems, and which confronts
the wicked nonsense of philosophy with the good sense of meaning-
ful, positive, empirical, science. And time and again do the despised
defenders of ‘traditional philosophy’ try to explain to the leaders of the
latest positivistic assault that the main problem of philosophy is the
critical analysis of the appeal to the authority of ‘experience’4—
precisely that ‘experience’ which every latest discoverer of positivism
is, as ever, artlessly taking for granted. To such objections, however, the
positivist only replies with a shrug: they mean nothing to him, since
they do not belong to empirical science, which alone is meaningful.
‘Experience’ for him is a programme, not a problem (unless it is
studied by empirical psychology).

I do not think positivists are likely to respond any differently to my
own attempts to analyse ‘experience’ which I interpret as the method
of empirical science. For only two kinds of statement exist for them:
logical tautologies and empirical statements. If methodology is not
logic, then, they will conclude, it must be a branch of some empirical
science—the science, say, of the behaviour of scientists at work.

This view, according to which methodology is an empirical science
in its turn—a study of the actual behaviour of scientists, or of the actual

1 Wittgenstein, Tractatus Logico-Philosophicus, Proposition 6.53.
2 Wittgenstein at the end of the Tractatus (in which he explains the concept of meaning)
writes, ‘My propositions are elucidatory in this way: he who understands me finally
recognizes them as senseless. . . .’ Cp. Sextus Adv. Log. ii, 481; Loeb edn.ii, 488.)
3 Wittgenstein, op. cit., at the end of his Preface.
4 H. Gomperz (Weltanschauungslehre I, 1905, p. 35) writes: ‘If we consider how infinitely
problematic the concept of experience is . . . we may well be forced to believe that . . .
enthusiastic affirmation is far less appropriate in regard to it . . . than the most careful and
guarded criticism . . . .’
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procedure of ‘science’—may be described as ‘naturalistic’. A naturalistic
methodology (sometimes called an ‘inductive theory of science’5) has
its value, no doubt. A student of the logic of science may well take an
interest in it, and learn from it. But what I call ‘methodology’ should
not be taken for an empirical science. I do not believe that it is possible
to decide, by using the methods of an empirical science, such contro-
versial questions as whether science actually uses a principle of induc-
tion or not. And my doubts increase when I remember that what is to
be called a ‘science’ and who is to be called a ‘scientist’ must always
remain a matter of convention or decision.

I believe that questions of this kind should be treated in a different
way. For example, we may consider and compare two different systems
of methodological rules; one with, and one without, a principle of
induction. And we may then examine whether such a principle, once
introduced, can be applied without giving rise to inconsistencies;
whether it helps us; and whether we really need it. It is this type of
inquiry which leads me to dispense with the principle of induction:
not because such a principle is as a matter of fact never used in science,
but because I think that it is not needed; that it does not help us; and
that it even gives rise to inconsistencies.

Thus I reject the naturalistic view. It is uncritical. Its upholders fail to
notice that whenever they believe themselves to have discovered a fact,
they have only proposed a convention.6 Hence the convention is liable
to turn into a dogma. This criticism of the naturalistic view applies not
only to its criterion of meaning, but also to its idea of science, and
consequently to its idea of empirical method.

5 Dingler, Physik und Hypothesis, Versuch einer induktiven Wissenschaftslehre, 1921;
similarly V. Kraft, Die Grundformen der wissenschaftlichen Methoden, 1925.
6 (Addition made in 1934 while this book was in proof.) The view, only briefly set forth
here, that it is a matter for decision what is to be called ‘a genuine statement’ and what ‘a
meaningless pseudo-statement’ is one that I have held for years. (Also the view that the
exclusion of metaphysics is likewise a matter for decision.) However, my present criti-
cism of positivism (and of the naturalistic view) no longer applies, as far as I can see, to
Carnap’s Logische Syntax der Sprache, 1934, in which he too adopts the standpoint that all
such questions rest upon decisions (the ‘principle of tolerance’). According to Carnap’s
preface, Wittgenstein has for years propounded a similar view in unpublished works.
(*See however note *1 above.) Carnap’s Logische Syntax was published while the present
book was in proof. I regret that I was unable to discuss it in my text.
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11 METHODOLOGICAL RULES AS CONVENTIONS

Methodological rules are here regarded as conventions. They might be
described as the rules of the game of empirical science. They differ
from the rules of pure logic rather as do the rules of chess, which few
would regard as part of pure logic: seeing that the rules of pure logic
govern transformations of linguistic formulae, the result of an inquiry
into the rules of chess could perhaps be entitled ‘The Logic of Chess’,
but hardly ‘Logic’ pure and simple. (Similarly, the result of an inquiry
into the rules of the game of science—that is, of scientific discovery—
may be entitled ‘The Logic of Scientific Discovery’.)

Two simple examples of methodological rules may be given. They
will suffice to show that it would be hardly suitable to place an inquiry
into method on the same level as a purely logical inquiry.

(1) The game of science is, in principle, without end. He who
decides one day that scientific statements do not call for any further
test, and that they can be regarded as finally verified, retires from the
game.

(2) Once a hypothesis has been proposed and tested, and has
proved its mettle,*1 it may not be allowed to drop out without ‘good
reason’. A ‘good reason’ may be, for instance: replacement of the
hypothesis by another which is better testable; or the falsification
of one of the consequences of the hypothesis. (The concept ‘better
testable’ will later be analysed more fully.)

These two examples show what methodological rules look like.
Clearly they are very different from the rules usually called ‘logical’.
Although logic may perhaps set up criteria for deciding whether a
statement is testable, it certainly is not concerned with the question
whether anyone exerts himself to test it.

In section 6 I tried to define empirical science with the help of the
criterion of falsifiability; but as I was obliged to admit the justice of
certain objections, I promised a methodological supplement to my
definition. Just as chess might be defined by the rules proper to it, so
empirical science may be defined by means of its methodological rules.

*1 Regarding the translation ‘to prove one’s mettle’ for ‘sich bewähren’, see the first
footnote to chapter 10 (Corroboration), below.
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In establishing these rules we may proceed systematically. First a
supreme rule is laid down which serves as a kind of norm for deciding
upon the remaining rules, and which is thus a rule of a higher type. It
is the rule which says that the other rules of scientific procedure must
be designed in such a way that they do not protect any statement in
science against falsification.

Methodological rules are thus closely connected both with other
methodological rules and with our criterion of demarcation. But the
connection is not a strictly deductive or logical one.1 It results, rather,
from the fact that the rules are constructed with the aim of ensuring
the applicability of our criterion of demarcation; thus their formula-
tion and acceptance proceeds according to a practical rule of a higher
type. An example of this has been given above (cf. rule 1): theories
which we decide not to submit to any further test would no longer be
falsifiable. It is this systematic connection between the rules which
makes it appropriate to speak of a theory of method. Admittedly the
pronouncements of this theory are, as our examples show, for the most
part conventions of a fairly obvious kind. Profound truths are not to be
expected of methodology.*2 Nevertheless it may help us in many cases
to clarify the logical situation, and even to solve some far-reaching
problems which have hitherto proved intractable. One of these, for
example, is the problem of deciding whether a probability statement
should be accepted or rejected. (Cf. section 68.)

It has often been doubted whether the various problems of the
theory of knowledge stand in any systematic relation to one another,
and also whether they can be treated systematically. I hope to show in
this book that these doubts are unjustified. The point is of some
importance. My only reason for proposing my criterion of demarcation
is that it is fruitful: that a great many points can be clarified and
explained with its help. ‘Definitions are dogmas; only the conclusions
drawn from them can afford us any new insight’, says Menger.2 This is

1 Cf. K. Menger. Moral, Wille und Weltgestaltung, 1934, pp. 58 ff.
*2 I am still inclined to uphold something like this, even though such theorems as ‘degree
of corroboration ≠ probability’, or my ‘theorem on truth-content’ (see the Feigl Festschrift: Mind,
Matter, and Method, edited by P. K. Feyerabend and G. Maxwell, 1966, pp. 343–353) are
perhaps unexpected and not quite on the surface.
2 K. Menger, Dimensionstheorie, 1928, p. 76.
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certainly true of the definition of the concept ‘science’. It is only from
the consequences of my definition of empirical science, and from the
methodological decisions which depend upon this definition, that the
scientist will be able to see how far it conforms to his intuitive idea of
the goal of his endeavours.*3

The philosopher too will accept my definition as useful only if he can
accept its consequences. We must satisfy him that these consequences
enable us to detect inconsistencies and inadequacies in older theories of
knowledge, and to trace these back to the fundamental assumptions and
conventions from which they spring. But we must also satisfy him that
our own proposals are not threatened by the same kind of difficulties.
This method of detecting and resolving contradictions is applied
also within science itself, but it is of particular importance in the theory
of knowledge. It is by this method, if by any, that methodological
conventions might be justified, and might prove their value.3

Whether philosophers will regard these methodological investiga-
tions as belonging to philosophy is, I fear, very doubtful, but this does
not really matter much. Yet it may be worth mentioning in this connec-
tion that not a few doctrines which are metaphysical, and thus certainly
philosophical, could be interpreted as typical hypostatizations of
methodological rules. An example of this, in the shape of what is called
‘the principle of causality’, will be discussed in the next section. Another
example which we have already encountered is the problem of object-
ivity. For the requirement of scientific objectivity can also be inter-
preted as a methodological rule: the rule that only such statements may
be introduced in science as are inter-subjectively testable (see sections
8, 20, 27, and elsewhere). It might indeed be said that the majority of
the problems of theoretical philosophy, and the most interesting ones,
can be re-interpreted in this way as problems of method.

*3 See also section *15, ‘The Aim of Science’, of my Postscript.
3 In the present work I have relegated the critical—or, if you will, the ‘dialectical’—
method of resolving contradictions to second place, since I have been concerned with the
attempt to develop the practical methodological aspects of my views. In an as yet
unpublished work I have tried to take the critical path; and I have tried to show that the
problems of both the classical and the modern theory of knowledge (from Hume via
Kant to Russell and Whitehead) can be traced back to the problem of demarcation, that
is, to the problem of finding the criterion of the empirical character of science.
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Part II
Some Structural Components
of a Theory of Experience





3
THEORIES

The empirical sciences are systems of theories. The logic of scientific
knowledge can therefore be described as a theory of theories.

Scientific theories are universal statements. Like all linguistic repre-
sentations they are systems of signs or symbols. Thus I do not think it
helpful to express the difference between universal theories and singu-
lar statements by saying that the latter are ‘concrete’ whereas theories
are merely symbolic formulae or symbolic schemata; for exactly the
same may be said of even the most ‘concrete’ statements.*1

Theories are nets cast to catch what we call ‘the world’: to

*1 This is a critical allusion to a view which I later described as ‘instrumentalism’ and
which was represented in Vienna by Mach, Wittgenstein, and Schlick (cf. notes *4 and 7
to section 4, and note 5 to section 27). It is the view that a theory is nothing but a tool or an
instrument for prediction. I have analysed and criticized it in my papers ‘A Note on
Berkeley as a Precursor of Mach’, Brit. Journ. Philos. Science 6, 1953, pp. 26 ff.; ‘Three Views
Concerning Human Knowledge’, in Contemporary British Philosophy iii, 1956, edited by H. D.
Lewis, pp. 355 ff.; and more fully in my Postscript, sections *11 to *15 and *19 to *26. My
point of view is, briefly, that our ordinary language is full of theories: that observation is
always observation in the light of theories; that it is only the inductivist prejudice which leads
people to think that there could be a phenomenal language, free of theories, and dis-
tinguishable from a ‘theoretical language’; and lastly, that the theorist is interested in
explanation as such, that is to say, in testable explanatory theories: applications and
predictions interest him only for theoretical reasons—because they may be used as tests of
theories. See also the new appendix *x.
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rationalize, to explain, and to master it. We endeavour to make the
mesh ever finer and finer.

12 CAUSALITY, EXPLANATION, AND THE
DEDUCTION OF PREDICTIONS

To give a causal explanation of an event means to deduce a statement which
describes it, using as premises of the deduction one or more universal
laws, together with certain singular statements, the initial conditions. For
example, we can say that we have given a causal explanation of the
breaking of a certain piece of thread if we have found that the thread
has a tensile strength of 1 lb. and that a weight of 2 lbs. was put on it. If
we analyse this causal explanation we shall find several constituent
parts. On the one hand there is the hypothesis: ‘Whenever a thread is
loaded with a weight exceeding that which characterizes the tensile
strength of the thread, then it will break’; a statement which has the
character of a universal law of nature. On the other hand we have
singular statements (in this case two) which apply only to the specific
event in question: ‘The weight characteristic for this thread is 1 lb.’, and
‘The weight put on this thread was 2 lbs.’*1

We have thus two different kinds of statement, both of which are
necessary ingredients of a complete causal explanation. They are (1)
universal statements, i.e. hypotheses of the character of natural laws, and (2)
singular statements, which apply to the specific event in question and which
I shall call ‘initial conditions’. It is from universal statements in conjunc-
tion with initial conditions that we deduce the singular statement, ‘This
thread will break’. We call this statement a specific or singular prediction.*2

The initial conditions describe what is usually called the ‘cause’ of the

*1 A clearer analysis of this example—and one which distinguishes two laws as well as
two initial conditions—would be the following: ‘For every thread of a given structure S
(determined by its material, thickness, etc.) there is a characteristic weight w, such that
the thread will break if any weight exceeding w is suspended from it.’—‘For every thread
of the structure S1, the characteristic weight w1 equals 1 lb.’ These are the two universal
laws. The two initial conditions are, ‘This is a thread of structure S1’ and, ‘The weight to
be put on this thread is equal to 2 lbs.’
*2 The term ‘prediction’, as used here, comprises statements about the past (‘retrodic-
tions’), or even ‘given’ statements which we wish to explain (‘explicanda’); cf. my Poverty of
Historicism, 1945, p. 133 of the edition of 1957, and the Postscript, section *15.
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event in question. (The fact that a load of 2 lbs. was put on a thread with
a tensile strength of 1 lb. was the ‘cause’ of its breaking.) And the
prediction describes what is usually called the ‘effect’. Both these terms I
shall avoid. In physics the use of the expression ‘causal explanation’ is
restricted as a rule to the special case in which the universal laws have
the form of laws of ‘action by contact’; or more precisely, of action at a
vanishing distance, expressed by differential equations. This restriction will
not be assumed here. Furthermore, I shall not make any general asser-
tion as to the universal applicability of this deductive method of theor-
etical explanation. Thus I shall not assert any ‘principle of causality’ (or
‘principle of universal causation’).

The ‘principle of causality’ is the assertion that any event whatsoever
can be causally explained—that it can be deductively predicted. Accord-
ing to the way in which one interprets the word ‘can’ in this assertion,
it will be either tautological (analytic), or else an assertion about reality
(synthetic). For if ‘can’ means that it is always logically possible to
construct a causal explanation, then the assertion is tautological, since
for any prediction whatsoever we can always find universal statements
and initial conditions from which the prediction is derivable.
(Whether these universal statements have been tested and corroborated
in other cases is of course quite a different question.) If, however, ‘can’
is meant to signify that the world is governed by strict laws, that it is so
constructed that every specific event is an instance of a universal regu-
larity or law, then the assertion is admittedly synthetic. But in this case
it is not falsifiable, as will be seen later, in section 78. I shall, therefore,
neither adopt nor reject the ‘principle of causality’; I shall be content
simply to exclude it, as ‘metaphysical’, from the sphere of science.

I shall, however, propose a methodological rule which corresponds
so closely to the ‘principle of causality’ that the latter might be
regarded as its metaphysical version. It is the simple rule that we are not
to abandon the search for universal laws and for a coherent theoretical
system, nor ever give up our attempts to explain causally any kind of
event we can describe.1 This rule guides the scientific investigator in his

1 The idea of regarding the principle of causality as the expression of a rule or of a
decision is due to H. Gomperz, Das Problem der Willensfreiheit, 1907. Cf. Schlick, Die Kausalitat
in der gegenwartigen Physik, Naturwissenschaften 19, 1931, p. 154.
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work. The view that the latest developments in physics demand the
renunciation of this rule, or that physics has now established that
within one field at least it is pointless to seek any longer for laws, is not
accepted here.2 This matter will be discussed in section 78.*3

13 STRICT AND NUMERICAL UNIVERSALITY

We can distinguish two kinds of universal synthetic statement: the
‘strictly universal’ and the ‘numerically universal’. It is the strictly uni-
versal statements which I have had in mind so far when speaking of
universal statements—of theories or natural laws. The other kind, the
numerically universal statements, are in fact equivalent to certain sin-
gular statements, or to conjunctions of singular statements, and they
will be classed as singular statements here.

Compare, for example, the following two statements: (a) Of all har-
monic oscillators it is true that their energy never falls below a certain
amount (viz. hv/2); and (b) Of all human beings now living on the
earth it is true that their height never exceeds a certain amount (say

* I feel that I should say here more explicitly that the decision to search for causal
explanation is that by which the theoretician adopts his aim—or the aim of theoretical
science. His aim is to find explanatory theories (if possible, true explanatory theories); that is
to say, theories which describe certain structural properties of the world, and which
permit us to deduce, with the help of initial conditions, the effects to be explained. It was
the purpose of the present section to explain, if only very briefly, what we mean by
causal explanation. A somewhat fuller statement will be found in appendix *x, and in my
Postscript, section *15. My explanation of explanation has been adopted by certain positiv-
ists or ‘instrumentalists’ who saw in it an attempt to explain it away—as the assertion that
explanatory theories are nothing but premises for deducing predictions. I therefore wish to
make it quite clear that I consider the theorist’s interest in explanation—that is, in discover-
ing explanatory theories—as irreducible to the practical technological interest in the
deduction of predictions. The theorist’s interest in predictions, on the other hand, is explic-
able as due to his interest in the problem whether his theories are true; or in other words,
as due to his interest in testing his theories—in trying to find out whether they cannot be
shown to be false. See also appendix *x, note 4 and text.
2 The view here opposed is held for example by Schlick; he writes, op. cit. p. 155: ‘. . . this
impossibility . . .’ (he is referring to the impossibility of exact prediction maintained by
Heisenberg) ‘. . . means that it is impossible to search for that formula.’ (Cf. also note 1 to
section 78.)
*3 But see now also chapters *iv to *vi of my Postscript.
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8 ft.). Formal logic (including symbolic logic), which is concerned
only with the theory of deduction, treats these two statements alike as
universal statements (‘formal’ or ‘general’ implications).1 I think how-
ever that it is necessary to emphasize the difference between them.
Statement (a) claims to be true for any place and any time. Statement
(b) refers only to a finite class of specific elements within a finite
individual (or particular) spatio-temporal region. Statements of this
latter kind can, in principle, be replaced by a conjunction of singular
statements; for given sufficient time, one can enumerate all the elements
of the (finite) class concerned. This is why we speak in such cases of
‘numerical universality’. By contrast, statement (a), about the oscil-
lators, cannot be replaced by a conjunction of a finite number of singu-
lar statements about a definite spatio-temporal region; or rather, it
could be so replaced only on the assumption that the world is bounded
in time and that there exists only a finite number of oscillators in it. But
we do not make any such assumption; in particular, we do not make
any such assumption in defining the concepts of physics. Rather we
regard a statement of type (a) as an all-statement, i.e. a universal assertion
about an unlimited number of individuals. So interpreted it clearly
cannot be replaced by a conjunction of a finite number of singular
statements.

My use of the concept of a strictly universal statement (or ‘all-
statement’) stands opposed to the view that every synthetic universal
statement must in principle be translatable into a conjunction of a
finite number of singular statements. Those who adhere to this view2

insist that what I call ‘strictly universal statements’ can never be veri-
fied, and they therefore reject them, referring either to their criterion

1 Classical logic (and similarly symbolic logic or ‘logistic’) distinguishes universal, par-
ticular, and singular statements. A universal statement is one referring to all the elements
of some class; a particular statement is one referring to some among its elements; a
singular statement is one referring to one given element—an individual. This classifica-
tion is not based on reasons connected with the logic of knowledge. It was developed
with an eye to the technique of inference. We can therefore identify our ‘universal
statements’ neither with the universal statements of classical logic nor with the ‘general’
or ‘formal’ implications of logistic (cf. note 6 to section 14). *See now also appendix *x,
and my Postscript, especially section *15.
2 Cf. for instance F. Kaufmann, Bemerkungen zum Grundlagenstreit in Logik und Mathematik,
Erkenntnis 2, 1931, p. 274.
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of meaning, which demands verifiability, or to some similar
consideration.

It is clear that on any such view of natural laws which obliterates the
distinction between singular and universal statements, the problem of
induction would seem to be solved; for obviously, inferences from
singular statements to merely numerically universal ones may be per-
fectly admissible. But it is equally clear that the methodological prob-
lem of induction is not affected by this solution. For the verification of
a natural law could only be carried out by empirically ascertaining
every single event to which the law might apply, and by finding that
every such event actually conforms to the law—clearly an impossible
task.

In any case, the question whether the laws of science are strictly or
numerically universal cannot be settled by argument. It is one of those
questions which can be settled only by an agreement or a convention.
And in view of the methodological situation just referred to, I consider
it both useful and fruitful to regard natural laws as synthetic and strictly
universal statements (‘all-statements’). This is to regard them as non-
verifiable statements which can be put in the form: ‘Of all points in
space and time (or in all regions of space and time) it is true that . . .’.
By contrast, statements which relate only to certain finite regions of
space and time I call ‘specific’ or ‘singular’ statements.

The distinction between strictly universal statements and merely
numerically universal statements (i.e. really a kind of singular
statement) will be applied to synthetic statements only. I may, however,
mention the possibility of applying this distinction to analytic
statements also (for example, to certain mathematical statements).3

14 UNIVERSAL CONCEPTS AND
INDIVIDUAL CONCEPTS

The distinction between universal and singular statements is closely
connected with that between universal and individual concepts or names.

It is usual to elucidate this distinction with the help of examples of

3 Examples: (a) Every natural number has a successor. (b) With the exception of the
numbers 11, 13, 17, and 19, all numbers between 10 and 20 are divisible.
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the following kind: ‘dictator’, ‘planet’, ‘H2O’ are universal concepts or
universal names. ‘Napoleon’, ‘the earth’, ‘the Atlantic’ are singular
or individual concepts or names. In these examples individual concepts
or names appear to be characterized either by being proper names, or
by having to be defined by means of proper names, whilst universal
concepts or names can be defined without the use of proper names.

I consider the distinction between universal and individual concepts
or names to be of fundamental importance. Every application of sci-
ence is based upon an inference from scientific hypotheses (which are
universal) to singular cases, i.e. upon a deduction of singular predic-
tions. But in every singular statement individual concepts or names
must occur.

The individual names that occur in the singular statements of science
often appear in the guise of spatio-temporal co-ordinates. This is easily
understood if we consider that the application of a spatio-temporal sys-
tem of co-ordinates always involves reference to individual names. For
we have to fix its points of origin, and this we can do only by making
use of proper names (or their equivalents). The use of the names
‘Greenwich’ and ‘The year of Christ’s birth’ illustrates what I mean. By
this method an arbitrarily large number of individual names may be
reduced to a very few.1

Such vague and general expressions as ‘this thing here’, ‘that thing
over there’, etc., can sometimes be used as individual names, perhaps
in conjunction with ostensive gestures of some kind; in short, we can
use signs which are not proper names but which to some extent are
interchangeable with proper names or with individual co-ordinates.
But universal concepts too can be indicated, if only vaguely, with the
help of ostensive gestures. Thus we may point to certain individual
things (or events) and then express by a phrase like ‘and other similar
things’ (or ‘and so on’) our intention to regard these individuals only
as representatives of some class which should properly be given a
universal name. There can be no doubt that we learn the use of universal

1 But the units of measurements of the co-ordinate system which first were also estab-
lished by individual names (the rotation of the earth; the standard metre in Paris) can be
defined in principle by means of universal names, for example by means of the wave-
length or frequency of the monochromatic light emitted by a certain kind of atoms
treated in a certain way.
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words, that is their application to individuals, by ostensive gestures and
by similar means. The logical basis of applications of this kind is that
individual concepts may be concepts not only of elements but also of
classes, and that they may thus stand to universal concepts not only in a
relation corresponding to that of an element to a class, but also in a
relation corresponding to that of a sub-class to a class. For example, my
dog Lux is not only an element of the class of Viennese dogs, which is
an individual concept, but also an element of the (universal) class of
mammals, which is a universal concept. And the Viennese dogs, in
their turn, are not only a sub-class of the (individual) class of Austrian
dogs, but also a sub-class of the (universal) class of mammals.

The use of the word ‘mammals’ as an example of a universal name
might possibly cause misunderstanding. For words like ‘mammal’,
‘dog’, etc., are in their ordinary use not free from ambiguity. Whether
these words are to be regarded as individual class names or as universal
class names depends upon our intentions: it depends upon whether we
wish to speak of a race of animals living on our planet (an individual
concept), or of a kind of physical bodies with properties which can be
described in universal terms. Similar ambiguities arise in connection
with the use of concepts such as ‘pasteurized’, ‘Linnean System’, and
‘Latinism’, in so far as it is possible to eliminate the proper names to
which they allude (or else, to define them with the help of these proper
names).*1

The above examples and explanations should make it clear what will
here be meant by ‘universal concepts’ and ‘individual concepts’. If I
were asked for definitions I should probably have to say, as above: ‘An
individual concept is a concept in the definition of which proper
names (or equivalent signs) are indispensable. If any reference to
proper names can be completely eliminated, then the concept is a
universal concept.’ Yet any such definition would be of very little value,
since all that it does is to reduce the idea of an individual concept
or name to that of a proper name (in the sense of a name of one
individual physical thing).

*1 ‘Pasteurized’ may be defined, either, as ‘treated according to the advice of M. Louis
Pasteur’ (or something like this), or else as ‘heated to 80 degrees centigrade and kept at
this temperature for ten minutes’. The first definition makes ‘pasteurized’ an individual
concept; the second makes it a universal concept. But cp. also note 4, below.
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I believe that my usage corresponds fairly closely to the customary
use of the expressions ‘universal’ and ‘individual’. But whether or not
this is so I certainly consider the distinction here made to be indispens-
able if we are not to blur the corresponding distinction between uni-
versal and singular statements. (There is a complete analogy between
the problem of universals and the problem of induction.) The attempt
to identify an individual thing merely by its universal properties and
relations, which appear to belong to it alone and to nothing else, is
foredoomed to failure. Such a procedure would describe not a single
individual thing but the universal class of all those individuals to which
these properties and relations belong. Even the use of a universal
spatio-temporal system of co-ordinates would alter nothing.2 For
whether there are any individual things corresponding to a description
by means of universal names, and if so how many, must always remain
an open question.

In the same way, any attempt to define universal names with the
help of individual names is bound to fail. This fact has often been
overlooked, and it is widely believed that it is possible to rise by a
process called ‘abstraction’ from individual concepts to universal con-
cepts. This view is a near relation of inductive logic, with its passage
from singular statements to universal statements. Logically, these pro-
cedures are equally impracticable.3 It is true that one can obtain classes
of individuals in this way, but these classes will still be individual
concepts—concepts defined with the help of proper names. (Examples
of such individual class-concepts are ‘Napoleon’s generals’, and ‘the
inhabitants of Paris’.) Thus we see that my distinction between uni-
versal names or concepts and individual names or concepts has noth-
ing to do with the distinction between classes and elements. Both
universal names and individual names may occur as names of some
classes, and also as the names of elements of some classes.

It is therefore not possible to abolish the distinction between

2 Not ‘space and time’ in general but individual determinations (spatial, temporal or
others) based on proper names are ‘principles of individuation’.
3 Similarly, the ‘method of abstraction’ used in symbolic logic is unable to accomplish
the ascent from individual names to universal names. If the class defined by means of
abstraction is defined extensionally with the help of individual names, then it is in its
turn an individual concept.
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individual concepts and universal concepts with arguments like the
following of Carnap’s: ‘. . . this distinction is not justified’, he says,
because ‘. . . every concept can be regarded as an individual or uni-
versal concept according to the point of view adopted’. Carnap tries to
support this by the assertion ‘. . . that (almost) all so-called individual
concepts are (names of) classes, just like universal concepts’.4 This last
assertion is quite correct, as I have shown, but has nothing to do with
the distinction in question.

Other workers in the field of symbolic logic (at one time called
‘logistics’) have similarly confused the distinction between universal
names and individual names with the distinction between classes and
their elements.5 It is certainly permissible to use the term ‘universal
name’ as a synonym for ‘name of a class’, and ‘individual name’ as a
synonym for ‘name of an element’; but there is little to be said for this
usage. Problems cannot be solved in this way; on the other hand, this
usage may very well prevent one from seeing them. The situation here
is quite similar to what we met before when discussing the distinction

4 Carnap, Der logische Aufbau der Welt, p. 213. (Addition made in 1934 while the work was in
proof.) In Carnap’s Logical Syntax of Language (1934; Engl. ed. 1937), the distinction
between individual names and universal names does not seem to have been considered;
nor does this distinction seem to be expressible in the ‘co-ordinate language’ which he
constructs. One might perhaps think that the ‘co-ordinates’, being signs of lowest type
(cf. pp. 12 f.), are to be interpreted as individual names (and that Carnap uses a co-ordinate
system defined with the help of individuals). But this interpretation will not do, since
Carnap writes (p. 87; see also p. 12 Engl. ed., p. 97, para. 4) that in the language which he
uses ‘. . . all expressions of lowest type are numerical expressions’ in the sense that they
denote what would fall under Peano’s undefined primitive sign ‘number’ (cf. pp. 31 and
33). This makes it clear that the number signs appearing as co-ordinates are not to be
thought of as proper names or individual co-ordinates, but as universals. (They are
‘individual’ only in a Pickwickian sense, cf. note 3 (b) to section 13.)
5 The distinction drawn by Russell and Whitehead between individuals (or particulars)
and universals has also nothing to do with the distinction here introduced between
individual names and universal names. According to Russell’s terminology, in the sen-
tence ‘Napoleon is a French general’, ‘Napoleon’ is, as in my scheme, an individual, but
‘French general’ is a universal; but conversely, in the sentence ‘Nitrogen is a non-metal’,
‘non-metal’ is, as in my scheme, a universal, but ‘nitrogen’ is an individual. Moreover,
what Russell calls ‘descriptions’ does not correspond to my ‘individual names’ since e.g.
the class of ‘geometrical points falling within my body’, is for me an individual concept,
but cannot be represented by means of a ‘description’. Cf. Whitehead and Russell Principia
Mathematica (2nd edition 1925, vol. I), Introduction to the second edition, II 1, pp. xix, f.
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between universal and singular statements. The instruments of
symbolic logic are no more adequate for handling the problem of
universals than for handling the problem of induction.6

15 STRICTLY UNIVERSAL AND
EXISTENTIAL STATEMENTS

It is not enough, of course, to characterize universal statements as
statements in which no individual names occur. If the word ‘raven’ is
used as a universal name, then, clearly, the statement ‘all ravens are
black’ is a strictly universal statement. But in many other statements
such as ‘many ravens are black’ or perhaps ‘some ravens are black’ or
‘there are black ravens’, etc., there also occur only universal names; yet
we should certainly not describe such statements as universal.

Statements in which only universal names and no individual names
occur will here be called ‘strict’ or ‘pure’. Most important among them
are the strictly universal statements which I have already discussed. In
addition to these, I am especially interested in statements of the form
‘there are black ravens’, which may be taken to mean the same as ‘there
exists at least one black raven’. Such statements will be called strictly or
purely existential statements (or ‘there-is’ statements).

The negation of a strictly universal statement is always equivalent to
a strictly existential statement and vice versa. For example, ‘not all ravens
are black’ says the same thing as ‘there exists a raven which is not
black’, or ‘there are non-black ravens’.

6 The difference between universal and singular statements can also not be expressed in
the system of Whitehead and Russell. It is not correct to say that the so-called ‘formal’ or
‘general’ implications must be universal statements. For every singular statement can be
put in the form of a general implication. For example, the statement ‘Napoleon was born
in Corsica’ can be expressed in the form, (x) (x = N → �x), in words: it is true for all
values of x that, if x is identical with Napoleon, then x was born in Corsica.

A general implication is written, ‘(x) (�x → fx)’, where the ‘universal operator’, ‘(x)’, can
be read: ‘It is true for all values of x’; ‘�x’ and ‘fx’ are ‘propositional functions’: (e.g. ‘x was born
in Corsica’, without its being said who x is; a propositional function can be neither true
nor false). ‘ → ’ stands for: ‘if it is true that . . . then it is true that . . .’ the propositional
function �x preceding ‘ → ’ may be called the antecedent or the conditioning propositional
function, and fx the consequent propositional function or the prediction; and the general implication, (x)
(�x → fx), asserts that all values of x which satisfy � also satisfy f.
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The theories of natural science, and especially what we call natural
laws, have the logical form of strictly universal statements; thus they
can be expressed in the form of negations of strictly existential state-
ments or, as we may say, in the form of non-existence statements (or ‘there-
is-not’ statements). For example, the law of the conservation of energy
can be expressed in the form: ‘There is no perpetual motion machine’,
or the hypothesis of the electrical elementary charge in the form:
‘There is no electrical charge other than a multiple of the electrical
elementary charge’.

In this formulation we see that natural laws might be compared to
‘proscriptions’ or ‘prohibitions’. They do not assert that something
exists or is the case; they deny it. They insist on the non-existence of
certain things or states of affairs, proscribing or prohibiting, as it were,
these things or states of affairs: they rule them out. And it is precisely
because they do this that they are falsifiable. If we accept as true one
singular statement which, as it were, infringes the prohibition by
asserting the existence of a thing (or the occurrence of an event) ruled
out by the law, then the law is refuted. (An instance would be, ‘In such-
and-such a place, there is an apparatus which is a perpetual motion
machine’.)

Strictly existential statements, by contrast, cannot be falsified. No
singular statement (that is to say, no ‘basic statement’, no statement of
an observed event) can contradict the existential statement, ‘There are
white ravens’. Only a universal statement could do this. On the basis of
the criterion of demarcation here adopted I shall therefore have to treat
strictly existential statements as non-empirical or ‘metaphysical’. This
characterization may perhaps seem dubious at first sight and not quite
in accordance with the practice of empirical science. By way of objec-
tion, it might be asserted (with justice) that there are theories even in
physics which have the form of strictly existential statements. An
example would be a statement, deducible from the periodic system
of chemical elements, which asserts the existence of elements of cer-
tain atomic numbers. But if the hypothesis that an element of a certain
atomic number exists is to be so formulated that it becomes testable,
then much more is required than a purely existential statement.
For example, the element with the atomic number 72 (Hafnium) was
not discovered merely on the basis of an isolated purely existential
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statement. On the contrary, all attempts to find it were in vain until
Bohr succeeded in predicting several of its properties by deducing
them from his theory. But Bohr’s theory and those of its conclusions
which were relevant to this element and which helped to bring
about its discovery are far from being isolated purely existential
statements.*1 They are strictly universal statements. That my decision
to regard strictly existential statements as non-empirical—because
they are not falsifiable—is helpful, and also in accordance with
ordinary usage, will be seen from its application to probability
statements and to the problem of testing them empirically. (Cf.
sections 66–68.)

Strict or pure statements, whether universal or existential, are not
limited as to space and time. They do not refer to an individual,
restricted, spatio-temporal region. This is the reason why strictly
existential statements are not falsifiable. We cannot search the whole
world in order to establish that something does not exist, has never
existed, and will never exist. It is for precisely the same reason that
strictly universal statements are not verifiable. Again, we cannot
search the whole world in order to make sure that nothing exists
which the law forbids. Nevertheless, both kinds of strict statements,
strictly existential and strictly universal, are in principle empirically
decidable; each, however, in one way only: they are unilaterally decidable.
Whenever it is found that something exists here or there, a strictly
existential statement may thereby be verified, or a universal one
falsified.

The asymmetry here described, with its consequence, the one-sided
falsifiability of the universal statements of empirical science, may now
perhaps seem less dubious than it did before (in section 6). We now
see that no asymmetry of any purely logical relationship is involved. On
the contrary, the logical relationships show symmetry. Universal and

*1 The word ‘isolated’ has been inserted to avoid misinterpretation of the passage though
its tendency, I feel, was clear enough: an isolated existential statement is never falsifiable;
but if taken in context with other statements, an existential statement may in some cases add to
the empirical content of the whole context: it may enrich the theory to which it belongs,
and may add to its degree of falsifiability or testability. In this case, the theoretical system
including the existential statement in question is to be described as scientific rather than
metaphysical.
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existential statements are constructed symmetrically. It is only*2 the
line drawn by our criterion of demarcation which produces an
asymmetry.

16 THEORETICAL SYSTEMS

Scientific theories are perpetually changing. This is not due to mere
chance but might well be expected, according to our characterization
of empirical science.

Perhaps this is why, as a rule, only branches of science—and these only
temporarily—ever acquire the form of an elaborate and logically well-
constructed system of theories. In spite of this, a tentative system can
usually be quite well surveyed as a whole, with all its important con-
sequences. This is very necessary; for a severe test of a system presup-
poses that it is at the time sufficiently definite and final in form to make
it impossible for new assumptions to be smuggled in. In other words,
the system must be formulated sufficiently clearly and definitely to
make every new assumption easily recognizable for what it is: a
modification and therefore a revision of the system.

This, I believe, is the reason why the form of a rigorous system is
aimed at. It is the form of a so-called ‘axiomatized system’—the form
which Hilbert, for example, was able to give to certain branches of
theoretical physics. The attempt is made to collect all the assumptions
which are needed, but no more, to form the apex of the system. They
are usually called the ‘axioms’ (or ‘postulates’, or ‘primitive proposi-
tions’; no claim to truth is implied in the term ‘axiom’ as here used).
The axioms are chosen in such a way that all the other statements
belonging to the theoretical system can be derived from the axioms by
purely logical or mathematical transformations.

A theoretical system may be said to be axiomatized if a set of state-
ments, the axioms, has been formulated which satisfies the following
four fundamental requirements. (a) The system of axioms must be free

*2 The word ‘only’ here should not be taken too seriously. The situation is quite simple.
If it is characteristic of empirical science to look upon singular statements as test-
statements, then the asymmetry arises from the fact that, with respect to singular statements,
universal statements are falsifiable only and existential statements verifiable only. See also
section *22 of my Postscript.
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from contradiction (whether self-contradiction or mutual contradiction).
This is equivalent to the demand that not every arbitrarily chosen
statement is deducible from it.1 (b) The system must be independent, i.e.
it must not contain any axiom deducible from the remaining axioms.
(In other words, a statement is to be called an axiom only if it is not
deducible within the rest of the system.) These two conditions concern
the axiom system as such; as regards the relation of the axiom system
to the bulk of the theory, the axioms should be (c) sufficient for the
deduction of all statements belonging to the theory which is to be
axiomatized, and (d) necessary, for the same purpose; which means that
they should contain no superfluous assumptions.2

In a theory thus axiomatized it is possible to investigate the mutual
dependence of various parts of the system. For example, we may
investigate whether a certain part of the theory is derivable from some
part of the axioms. Investigations of this kind (of which more will be
said in sections 63 and 64, and 75 to 77) have an important bearing on
the problem of falsifiability. They make it clear why the falsification of
a logically deduced statement may sometimes not affect the whole
system but only some part of it, which may then be regarded as falsi-
fied. This is possible because, although the theories of physics are in
general not completely axiomatized, the connections between its vari-
ous parts may yet be sufficiently clear to enable us to decide which of
its sub-systems are affected by some particular falsifying observation.*1

17 SOME POSSIBILITIES OF INTERPRETING
A SYSTEM OF AXIOMS

The view of classical rationalism that the ‘axioms’ of certain systems,
e.g. those of Euclidean geometry, must be regarded as immediately or
intuitively certain, or self-evident, will not be discussed here. I will
only mention that I do not share this view. I consider two different
interpretations of any system of axioms to be admissible. The axioms

1 Cf. section 24.
2 Regarding these four conditions, and also the following section, see, for example, the
somewhat different account in Carnap’s Abriss der Logistik, 1929, pp. 70 ff.
*1 The point is more fully discussed in my Postscript, especially section *22.
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may be regarded either (i) as conventions, or they may be regarded (ii) as
empirical or scientific hypotheses.

(i) If the axioms are regarded as conventions then they tie down the
use or meaning of the fundamental ideas (or primitive terms, or con-
cepts) which the axioms introduce; they determine what can and what
cannot be said about these fundamental ideas. Sometimes the axioms
are described as ‘implicit definitions’ of the ideas which they introduce.
This view can perhaps be elucidated by means of an analogy between
an axiomatic system and a (consistent and soluble) system of
equations.

The admissible values of the ‘unknowns’ (or variables) which
appear in a system of equations are in some way or other determined
by it. Even if the system of equations does not suffice for a unique
solution, it does not allow every conceivable combination of values to
be substituted for the ‘unknowns’ (variables). Rather, the system of
equations characterizes certain combinations of values or value-
systems as admissible, and others as inadmissible; it distinguishes the
class of admissible value systems from the class of inadmissible value
systems. In a similar way, systems of concepts can be distinguished as
admissible or as inadmissible by means of what might be called a
‘statement-equation’. A statement-equation is obtained from a prop-
ositional function or statement-function (cf. note 6 to section 14); this
is an incomplete statement, in which one or more ‘blanks’ occur. Two
examples of such propositional functions or statement functions are:
‘An isotope of the element x has the atomic weight 65’; or ‘x + y = 12’.
Every such statement-function is transformed into a statement by the
substitution of certain values for the blanks, x and y. The resulting
statement will be either true or false, according to the values (or com-
bination of values) substituted. Thus, in the first example, substitution
of the word ‘copper’ or ‘zinc’ for ‘x’ yields a true statement, while
other substitutions yield false ones. Now what I call a ‘statement-
equation’ is obtained if we decide, with respect to some statement-
function, to admit only such values for substitution as turn this
function into a true statement. By means of this statement-equation a
definite class of admissible value-systems is defined, namely the class of
those which satisfy it. The analogy with a mathematical equation is
clear. If our second example is interpreted, not as a statement-function
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but as a statement-equation, then it becomes an equation in the ordin-
ary (mathematical) sense.

Since its undefined fundamental ideas or primitive terms can be
regarded as blanks, an axiomatic system can, to begin with, be treated
as a system of statement-functions. But if we decide that only such
systems or combinations of values may be substituted as will satisfy it,
then it becomes a system of statement-equations. As such it implicitly
defines a class of (admissible) systems of concepts. Every system of
concepts which satisfies a system of axioms can be called a model of that
system of axioms.*1

The interpretation of an axiomatic system as a system of (conven-
tions or) implicit definitions can also be expressed by saying that it
amounts to the decision: only models may be admitted as substi-
tutes.*2 But if a model is substituted then the result will be a system of
analytic statements (since it will be true by convention). An axiomatic
system interpreted in this way cannot therefore be regarded as a system
of empirical or scientific hypotheses (in our sense) since it cannot
be refuted by the falsification of its consequences; for these too must be
analytic.

(ii) How then, it may be asked, can an axiomatic system be inter-
preted as a system of empirical or scientific hypotheses? The usual view is
that the primitive terms occurring in the axiomatic system are not to
be regarded as implicitly defined, but as ‘extra-logical constants’. For
example, such concepts as ‘straight line’ and ‘point’, which occur in
every axiom system of geometry, may be interpreted as ‘light ray’ and
‘intersection of light rays’. In this way, it is thought, the statements of
the axiom system become statements about empirical objects, that is to
say, synthetic statements.

At first sight, this view of the matter may appear perfectly satisfac-
tory. It leads, however, to difficulties which are connected with the
problem of the empirical basis. For it is by no means clear what would

*1 See note *2.
*2 Today I should clearly distinguish between the systems of objects which satisfy an axiom
system and the system of names of these objects which may be substituted in the axioms
(rendering them true); and I should call only the first system a ‘model’. Accordingly, I
should now write: ‘only names of objects which constitute a model may be admitted for
substitution’.
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be an empirical way of defining a concept. It is customary to speak of ‘ostensive
definitions’. This means that a definite empirical meaning is assigned
to a concept by correlating it with certain objects belonging to the real
world. It is then regarded as a symbol of those objects. But it should
have been clear that only individual names or concepts can be fixed by
ostensively referring to ‘real objects’—say, by pointing to a certain
thing and uttering a name, or by attaching to it a label bearing a name,
etc. Yet the concepts which are to be used in the axiomatic system
should be universal names, which cannot be defined by empirical
indications, pointing, etc. They can be defined if at all only explicitly,
with the help of other universal names; otherwise they can only be left
undefined. That some universal names should remain undefined is
therefore quite unavoidable; and herein lies the difficulty. For these
undefined concepts can always be used in the non-empirical sense (i),
i.e. as if they were implicitly defined concepts. Yet this use must inevit-
ably destroy the empirical character of the system. This difficulty, I
believe, can only be overcome by means of a methodological decision.
I shall, accordingly, adopt a rule not to use undefined concepts as if
they were implicitly defined. (This point will be dealt with below in
section 20.)

Here I may perhaps add that it is usually possible for the primitive
concepts of an axiomatic system such as geometry to be correlated
with, or interpreted by, the concepts of another system, e.g. physics.
This possibility is particularly important when, in the course of the
evolution of a science, one system of statements is being explained by
means of a new—a more general—system of hypotheses which per-
mits the deduction not only of statements belonging to the first system,
but also of statements belonging to other systems. In such cases it may
be possible to define the fundamental concepts of the new system with
the help of concepts which were originally used in some of the old
systems.

18 LEVELS OF UNIVERSALITY. THE MODUS TOLLENS

We may distinguish, within a theoretical system, statements belonging
to various levels of universality. The statements on the highest level of
universality are the axioms; statements on the lower levels can be
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deduced from them. Higher level empirical statements have always the
character of hypotheses relative to the lower level statements deducible
from them: they can be falsified by the falsification of these less uni-
versal statements. But in any hypothetical deductive system, these less
universal statements are themselves still strictly universal statements, in
the sense here understood. Thus they too must have the character of
hypotheses—a fact which has often been overlooked in the case of lower-
level universal statements. Mach, for example, calls1 Fourier’s theory
of heat conduction a ‘model theory of physics’ for the curious reason
that ‘this theory is founded not on a hypothesis but on an observable fact’.
However, the ‘observable fact’ to which Mach refers is described by
him by the statement. ‘ . . . the velocity of the levelling out of tempera-
ture differences, provided these differences of temperature are small, is
proportional to these differences themselves’—an all-statement whose
hypothetical character should be sufficiently conspicuous.

I shall say even of some singular statements that they are hypo-
thetical, seeing that conclusions may be derived from them (with
the help of a theoretical system) such that the falsification of these
conclusions may falsify the singular statements in question.

The falsifying mode of inference here referred to—the way in which
the falsification of a conclusion entails the falsification of the system
from which it is derived—is the modus tollens of classical logic. It may be
described as follows:*1

Let p be a conclusion of a system t of statements which may consist
of theories and initial conditions (for the sake of simplicity I will not
distinguish between them). We may then symbolize the relation of
derivability (analytical implication) of p from t by ‘t → p’ which may

1 Mach, Principien der Wärmelehre, 1896, p. 115.
*1 In connection with the present passage and two later passages (cf. notes *1 to section
35 and *1 to section 36) in which I use the symbol ‘ → ’, I wish to say that when writing
the book, I was still in a state of confusion about the distinction between a conditional
statement (if-then-statement; sometimes called, somewhat misleadingly, ‘material
implication’) and a statement about deducibility (or a statement asserting that some
conditional statement is logically true, or analytic, or that its antecedent entails its
consequent)—a distinction which I was taught to understand by Alfred Tarski, a few
months after the publication of the book. The problem is not very relevant to the context
of the book; but the confusion should be pointed out nevertheless. (These problems are
discussed more fully, for example, in my paper in Mind, 56, 1947, pp. 193 ff.)
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be read: ‘p follows from t’. Assume p to be false, which we may write
‘p̄’, to be read ‘not-p’. Given the relation of deducibility, t → p, and
the assumption p̄, we can then infer t̄ (read ‘not-t’); that is, we regard
t as falsified. If we denote the conjunction (simultaneous assertion)
of two statements by putting a point between the symbols standing
for them, we may also write the falsifying inference thus:
((t → p).p̄) → t̄, or in words: ‘If p is derivable from t, and if p is false,
then t also is false’.

By means of this mode of inference we falsify the whole system (the
theory as well as the initial conditions) which was required for the
deduction of the statement p, i.e. of the falsified statement. Thus it
cannot be asserted of any one statement of the system that it is, or is
not, specifically upset by the falsification. Only if p is independent of some
part of the system can we say that this part is not involved in the
falsification.2 With this is connected the following possibility: we may,
in some cases, perhaps in consideration of the levels of universality, attrib-
ute the falsification to some definite hypothesis—for instance to a
newly introduced hypothesis. This may happen if a well-corroborated
theory, and one which continues to be further corroborated, has been
deductively explained by a new hypothesis of a higher level. The
attempt will have to be made to test this new hypothesis by means of
some of its consequences which have not yet been tested. If any of
these are falsified, then we may well attribute the falsification to the
new hypothesis alone. We shall then seek, in its stead, other high-level
generalizations, but we shall not feel obliged to regard the old system,
of lesser generality, as having been falsified. (Cf. also the remarks on
‘quasi-induction’ in section 85.)

2 Thus we cannot at first know which among the various statements of the remaining
sub-system t′ (of which p is not independent) we are to blame for the falsity of p; which
of these statements we have to alter, and which we should retain. (I am not here discuss-
ing interchangeable statements.) It is often only the scientific instinct of the investigator
(influenced, of course, by the results of testing and re-testing) that makes him guess
which statements of t′ he should regard as innocuous, and which he should regard as
being in need of modification. Yet it is worth remembering that it is often the modifica-
tion of what we are inclined to regard as obviously innocuous (because of its complete
agreement with our normal habits of thought) which may produce a decisive advance. A
notable example of this is Einstein’s modification of the concept of simultaneity.
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4
FALSIFIABILITY

The question whether there is such a thing as a falsifiable singular
statement (or a ‘basic statement’) will be examined later. Here I shall
assume a positive answer to this question; and I shall examine how far
my criterion of demarcation is applicable to theoretical systems—if it is
applicable at all. A critical discussion of a position usually called ‘con-
ventionalism’ will raise first some problems of method, to be met by
taking certain methodological decisions. Next I shall try to characterize the
logical properties of those systems of theories which are falsifiable—
falsifiable, that is, if our methodological proposals are adopted.

19 SOME CONVENTIONALIST OBJECTIONS

Objections are bound to be raised against my proposal to adopt falsifi-
ability as our criterion for deciding whether or not a theoretical system
belongs to empirical science. They will be raised, for example, by those
who are influenced by the school of thought known as ‘conventional-
ism’.1 Some of these objections have already been touched upon in

1 The chief representatives of the school are Poincaré and Duhem (cf. La théorie physique, son
objet et sa structure, 1906; English translation by P. P. Wiener: The Aim and Structure of Physical
Theory, Princeton, 1954). A recent adherent is H. Dingler (among his numerous works
may be mentioned: Das Experiment, and Der Zusammenbruch der Wissenschaft und das Primat der



sections 6, 11, and 17; they will now be considered a little more
closely.

The source of the conventionalist philosophy would seem to be
wonder at the austerely beautiful simplicity of the world as revealed in the
laws of physics. Conventionalists seem to feel that this simplicity would
be incomprehensible, and indeed miraculous, if we were bound to
believe, with the realists, that the laws of nature reveal to us an inner, a
structural, simplicity of our world beneath its outer appearance of
lavish variety. Kant’s idealism sought to explain this simplicity by
saying that it is our own intellect which imposes its laws upon nature.
Similarly, but even more boldly, the conventionalist treats this sim-
plicity as our own creation. For him, however, it is not the effect of
the laws of our intellect imposing themselves upon nature, thus mak-
ing nature simple; for he does not believe that nature is simple. Only
the ‘laws of nature’ are simple; and these, the conventionalist holds, are
our own free creations; our inventions; our arbitrary decisions and
conventions. For the conventionalist, theoretical natural science is not
a picture of nature but merely a logical construction. It is not the
properties of the world which determine this construction; on the
contrary it is this construction which determines the properties of an
artificial world: a world of concepts implicitly defined by the natural
laws which we have chosen. It is only this world of which science
speaks.

According to this conventionalist point of view, laws of nature are
not falsifiable by observation; for they are needed to determine what an
observation and, more especially, what a scientific measurement is. It is
these laws, laid down, by us, which form the indispensable basis for
the regulation of our clocks and the correction of our so-called
‘rigid’ measuring-rods. A clock is called ‘accurate’ and a measuring
rod ‘rigid’ only if the movements measured with the help of these

Philosophie, 1926). *The German Hugo Dingler should not be confused with the English-
man Herbert Dingle. The chief representative of conventionalism in the English-speaking
world is Eddington. It may be mentioned here that Duhem denies (Engl. transl. p. 188)
the possibility of crucial experiments, because he thinks of them as verifications, while I
assert the possibility of crucial falsifying experiments. Cf. also my paper ‘Three Views
Concerning Human Knowledge’, in Contemporary British Philosophy, iii, 1956, and in my
Conjectures and Refutations, 1959.
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instruments satisfy the axioms of mechanics which we have decided to
adopt.2

The philosophy of conventionalism deserves great credit for the way
it has helped to clarify the relations between theory and experiment. It
recognized the importance, so little noticed by inductivists, of the part
played by our actions and operations, planned in accordance with
conventions and deductive reasoning, in conducting and interpreting
our scientific experiments. I regard conventionalism as a system which
is self-contained and defensible. Attempts to detect inconsistencies in it
are not likely to succeed. Yet in spite of all this I find it quite unaccept-
able. Underlying it is an idea of science, of its aims and purposes,
which is entirely different from mine. Whilst I do not demand any final
certainty from science (and consequently do not get it), the con-
ventionalist seeks in science ‘a system of knowledge based upon ultim-
ate grounds’, to use a phrase of Dingler’s. This goal is attainable; for it is
possible to interpret any given scientific system as a system of implicit
definitions. And periods when science develops slowly will give little
occasion for conflict—unless purely academic—to arise between scien-
tists inclined towards conventionalism and others who may favour a
view like the one I advocate. It will be quite otherwise in a time of
crisis. Whenever the ‘classical’ system of the day is threatened by the
results of new experiments which might be interpreted as falsifications
according to my point of view, the system will appear unshaken to the
conventionalist. He will explain away the inconsistencies which may
have arisen; perhaps by blaming our inadequate mastery of the system.

2 This view can also be regarded as an attempt to solve the problem of induction; for the
problem would vanish if natural laws were definitions, and therefore tautologies. Thus
according to the views of Cornelius (cf. Zur Kritik der wissenschaftlichen Grundbegriffe, Erkenntnis 2,
1931, Number 4) the statement, ‘The melting point of lead is about 335°C.’ is part of the
definition of the concept ‘lead’ (suggested by inductive experience) and cannot therefore
be refuted. A substance otherwise resembling lead but with a different melting point
would simply not be lead. But according to my view the statement of the melting point
of lead is, qua scientific statement, synthetic. It asserts, among other things, that an
element with a given atomic structure (atomic number 82) always has this melting
point, whatever name we may give to this element.

(Added to the book in proof.) Ajdukiewicz appears to agree with Cornelius (cf.
Erkenntnis 4, 1934, pp. 100 f., as well as the work there announced, Das Weltbild und die
Begriffsapparatur); he calls his standpoint ‘radical conventionalism’.
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Or he will eliminate them by suggesting ad hoc the adoption of
certain auxiliary hypotheses, or perhaps of certain corrections to our
measuring instruments.

In such times of crisis this conflict over the aims of science will
become acute. We, and those who share our attitude, will hope to make
new discoveries; and we shall hope to be helped in this by a newly
erected scientific system. Thus we shall take the greatest interest in the
falsifying experiment. We shall hail it as a success, for it has opened up
new vistas into a world of new experiences. And we shall hail it even if
these new experiences should furnish us with new arguments against
our own most recent theories. But the newly rising structure, the bold-
ness of which we admire, is seen by the conventionalist as a monument
to the ‘total collapse of science’, as Dingler puts it. In the eyes of the
conventionalist one principle only can help us to select a system as the
chosen one from among all other possible systems: it is the principle of
selecting the simplest system—the simplest system of implicit defini-
tions; which of course means in practice the ‘classical’ system of the
day. (For the problem of simplicity see sections 41–45, and especially
46.)

Thus my conflict with the conventionalists is not one that can be
ultimately settled merely by a detached theoretical discussion. And yet
it is possible I think to extract from the conventionalist mode of
thought certain interesting arguments against my criterion of demarca-
tion; for instance the following. I admit, a conventionalist might say,
that the theoretical systems of the natural sciences are not verifiable,
but I assert that they are not falsifiable either. For there is always the
possibility of ‘. . . attaining, for any chosen axiomatic system, what is
called its “correspondence with reality” ’;3 and this can be done in a
number of ways (some of which have been suggested above). Thus we
may introduce ad hoc hypotheses. Or we may modify the so-called
‘ostensive definitions’ (or the ‘explicit definitions’ which may replace
them as shown in section 17). Or we may adopt a sceptical attitude as
to the reliability of the experimenter whose observations, which
threaten our system, we may exclude from science on the ground that
they are insufficiently supported, unscientific, or not objective, or even

3 Carnap, Über die Aufgabe der Physik, Kantstudien, 28, 1923, p. 100.
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on the ground that the experimenter was a liar. (This is the sort of
attitude which the physicist may sometimes quite rightly adopt
towards alleged occult phenomena.) In the last resort we can always
cast doubt on the acumen of the theoretician (for example if he does
not believe, as does Dingler, that the theory of electricity will one day
be derived from Newton’s theory of gravitation).

Thus, according to the conventionalist view, it is not possible to
divide systems of theories into falsifiable and non-falsifiable ones; or
rather, such a distinction will be ambiguous. As a consequence, our
criterion of falsifiability must turn out to be useless as a criterion of
demarcation.

20 METHODOLOGICAL RULES

These objections of an imaginary conventionalist seem to me
incontestable, just like the conventionalist philosophy itself. I admit
that my criterion of falsifiability does not lead to an unambiguous
classification. Indeed, it is impossible to decide, by analysing its
logical form, whether a system of statements is a conventional sys-
tem of irrefutable implicit definitions, or whether it is a system
which is empirical in my sense; that is, a refutable system. Yet this
only shows that my criterion of demarcation cannot be applied
immediately to a system of statements—a fact I have already pointed out
in sections 9 and 11. The question whether a given system should as
such be regarded as a conventionalist or an empirical one is therefore
misconceived. Only with reference to the methods applied to a theoretical
system is it at all possible to ask whether we are dealing with a
conventionalist or an empirical theory. The only way to avoid con-
ventionalism is by taking a decision: the decision not to apply its
methods. We decide that if our system is threatened we will never
save it by any kind of conventionalist stratagem. Thus we shall guard against
exploiting the ever open possibility just mentioned of ‘. . . attaining
for any chosen . . . system what is called its “correspondence with
reality” ’.

A clear appreciation of what may be gained (and lost) by con-
ventionalist methods was expressed, a hundred years before Poincaré,
by Black who wrote: ‘A nice adaptation of conditions will make almost
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any hypothesis agree with the phenomena. This will please the
imagination but does not advance our knowledge.’1

In order to formulate methodological rules which prevent the adop-
tion of conventionalist stratagems, we should have to acquaint our-
selves with the various forms these stratagems may take, so as to meet
each with the appropriate anti-conventionalist counter-move. More-
over we should agree that, whenever we find that a system has been
rescued by a conventionalist stratagem, we shall test it afresh, and reject
it, as circumstances may require.

The four main conventionalist stratagems have already been listed at
the end of the previous section. The list makes no claim to complete-
ness: it must be left to the investigator, especially in the fields of soci-
ology and psychology (the physicist may hardly need the warning) to
guard constantly against the temptation to employ new conventionalist
stratagems—a temptation to which psycho-analysts, for example, often
succumb.

As regards auxiliary hypotheses we propose to lay down the rule that
only those are acceptable whose introduction does not diminish the
degree of falsifiability or testability of the system in question, but, on
the contrary, increases it. (How degrees of falsifiability are to be esti-
mated will be explained in sections 31 to 40.) If the degree of falsifi-
ability is increased, then introducing the hypothesis has actually
strengthened the theory: the system now rules out more than it did
previously: it prohibits more. We can also put it like this. The introduc-
tion of an auxiliary hypothesis should always be regarded as an attempt
to construct a new system; and this new system should then always be
judged on the issue of whether it would, if adopted, constitute a real
advance in our knowledge of the world. An example of an auxiliary
hypothesis which is eminently acceptable in this sense is Pauli’s exclu-
sion principle (cf. section 38). An example of an unsatisfactory aux-
iliary hypothesis would be the contraction hypothesis of Fitzgerald and
Lorentz which had no falsifiable consequences but merely*1 served to
restore the agreement between theory and experiment—mainly the

1 J. Black, Lectures on the Elements of Chemistry, Vol. I, Edinburgh, 1803, p. 193.
*1 This is a mistake, as pointed out by A. Grünbaum, B.J.P.S. 10, 1959, pp. 48 ff. Yet as this
hypothesis is less testable than special relativity, it may illustrate degrees of adhocness.
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findings of Michelson and Morley. An advance was here achieved only
by the theory of relativity which predicted new consequences, new
physical effects, and thereby opened up new possibilities for testing,
and for falsifying, the theory. Our methodological rule may be quali-
fied by the remark that we need not reject, as conventionalistic, every
auxiliary hypothesis that fails to satisfy these standards. In particular,
there are singular statements which do not really belong to the theor-
etical system at all. They are sometimes called ‘auxiliary hypotheses’,
and although they are introduced to assist the theory, they are quite
harmless. (An example would be the assumption that a certain observa-
tion or measurement which cannot be repeated may have been due to
error. Cf. note 6 to section 8, and sections 27 and 68.)

In section 17 I mentioned explicit definitions whereby the concepts of
an axiom system are given a meaning in terms of a system of lower
level universality. Changes in these definitions are permissible if useful;
but they must be regarded as modifications of the system, which there-
after has to be re-examined as if it were new. As regards undefined
universal names, two possibilities must be distinguished: (1) There are
some undefined concepts which only appear in statements of the high-
est level of universality, and whose use is established by the fact that we
know in what logical relation other concepts stand to them. They can
be eliminated in the course of deduction (an example is ‘energy’).2 (2)
There are other undefined concepts which occur in statements of lower
levels of universality also, and whose meaning is established by usage
(e.g. ‘movement’, ‘mass-point’, ‘position’). In connection with these,
we shall forbid surreptitious alterations of usage, and otherwise
proceed in conformity with our methodological decisions, as before.

As to the two remaining points (which concern the competence of
the experimenter or theoretician) we shall adopt similar rules, Inter-
subjectively testable experiments are either to be accepted, or to be
rejected in the light of counter-experiments. The bare appeal to logical
derivations to be discovered in the future can be disregarded.

2 Compare, for instance, Hahn, Logik, Mathematik, und Naturerkennen, in Einheitswissenschaft 2,
1933, pp. 22 ff. In this connection, I only wish to say that in my view ‘constituable’ (i.e.
empirically definable) terms do not exist at all. I am using in their place undefin-
able universal names which are established only by linguistic usage. See also end of
section 25.

falsifiability 63



21 LOGICAL INVESTIGATION OF FALSIFIABILITY

Only in the case of systems which would be falsifiable if treated in
accordance with our rules of empirical method is there any need to
guard against conventionalist stratagems. Let us assume that we have
successfully banned these stratagems by our rules: we may now ask for
a logical characterization of such falsifiable systems. We shall attempt to
characterize the falsifiability of a theory by the logical relations holding
between the theory and the class of basic statements.

The character of the singular statements which I call ‘basic state-
ments’ will be discussed more fully in the next chapter, and also the
question whether they, in their turn, are falsifiable. Here we shall
assume that falsifiable basic statements exist. It should be borne in
mind that when I speak of ‘basic statements’, I am not referring to a
system of accepted statements. The system of basic statements, as I use the
term, is to include, rather, all self-consistent singular statements of a certain
logical form—all conceivable singular statements of fact, as it were.
Thus the system of all basic statements will contain many statements
which are mutually incompatible.

As a first attempt one might perhaps try calling a theory ‘empirical’
whenever singular statements can be deduced from it. This attempt
fails, however, because in order to deduce singular statements from a
theory, we always need other singular statements—the initial condi-
tions that tell us what to substitute for the variables in the theory. As a
second attempt, one might try calling a theory ‘empirical’ if singular
statements are derivable with the help of other singular statements
serving as initial conditions. But this will not do either; for even a non-
empirical theory, for example a tautological one, would allow us to
derive some singular statements from other singular statements.
(According to the rules of logic we can for example say: From the
conjunction of ‘Twice two is four’ and ‘Here is a black raven’ there
follows, among other things, ‘Here is a raven’.) It would not even be
enough to demand that from the theory together with some initial
conditions we should be able to deduce more than we could deduce
from those initial conditions alone. This demand would indeed
exclude tautological theories, but it would not exclude synthetic meta-
physical statements. (For example from ‘Every occurrence has a cause’
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and ‘A catastrophe is occurring here’, we can deduce ‘This catastrophe
has a cause’.)

In this way we are led to the demand that the theory should allow us
to deduce, roughly speaking, more empirical singular statements than we
can deduce from the initial conditions alone.*1 This means that we
must base our definition upon a particular class of singular statements;
and this is the purpose for which we need the basic statements. Seeing
that it would not be very easy to say in detail how a complicated
theoretical system helps in the deduction of singular or basic state-
ments, I propose the following definition. A theory is to be called
‘empirical’ or ‘falsifiable’ if it divides the class of all possible basic
statements unambiguously into the following two non-empty sub-
classes. First, the class of all those basic statements with which it is

*1 Foundations equivalent to the one given here have been put forward as criteria of the
meaningfulness of sentences (rather than as criteria of demarcation applicable to theoretical
systems) again and again after the publication of my book, even by critics who pooh-
poohed my criterion of falsifiability. But it is easily seen that, if used as a criterion of
demarcation, our present formulation is equivalent to falsifiability. For if the basic statement
b2 does not follow from b1, but follows from b1 in conjunction with the theory t (this is
the present formulation) then this amounts to saying that the conjunction of b1 with the
negation of b2 contradicts the theory t. But the conjunction of b1 with the negation of b2 is
a basic statement (cf. section 28). Thus our criterion demands the existence of a falsifying
basic statement, i.e. it demands falsifiability in precisely my sense. (See also note *1 to
section 82).

As a criterion of meaning (or of ‘weak verifiability’) it breaks down, however, for
various reasons. First, because the negations of some meaningful statements would
become meaningless, according to this criterion. Secondly, because the conjunction
of a meaningful statement and a ‘meaningless pseudo-sentence’ would become
meaningful—which is equally absurd.

If we now try to apply these two criticisms to our criterion of demarcation, they both
prove harmless. As to the first, see section 15 above, especially note *2 (and section *22
of my Postscript). As to the second, empirical theories (such as Newton’s) may contain
‘metaphysical’ elements. But these cannot be eliminated by a hard and fast rule; though if
we succeed in so presenting the theory that it becomes a conjunction of a testable and a
non-testable part, we know, of course, that we can now eliminate one of its metaphysical
components.

The preceding paragraph of this note may be taken as illustrating another rule of method
(cf. the end of note *5 to section 80): that after having produced some criticism of a rival
theory, we should always make a serious attempt to apply this or a similar criticism to
our own theory.
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inconsistent (or which it rules out, or prohibits): we call this the class
of the potential falsifiers of the theory; and secondly, the class of those
basic statements which it does not contradict (or which it ‘permits’).
We can put this more briefly by saying: a theory is falsifiable if the class
of its potential falsifiers is not empty.

It may be added that a theory makes assertions only about its poten-
tial falsifiers. (It asserts their falsity.) About the ‘permitted’ basic state-
ments it says nothing. In particular, it does not say that they are true.*2

22 FALSIFIABILITY AND FALSIFICATION

We must clearly distinguish between falsifiability and falsification. We
have introduced falsifiability solely as a criterion for the empirical
character of a system of statements. As to falsification, special rules
must be introduced which will determine under what conditions a
system is to be regarded as falsified.

We say that a theory is falsified only if we have accepted basic state-
ments which contradict it (cf. section 11, rule 2). This condition is
necessary, but not sufficient; for we have seen that non-reproducible
single occurrences are of no significance to science. Thus a few stray
basic statements contradicting a theory will hardly induce us to reject it
as falsified. We shall take it as falsified only if we discover a reproducible
effect which refutes the theory. In other words, we only accept the
falsification if a low-level empirical hypothesis which describes such
an effect is proposed and corroborated. This kind of hypothesis may
be called a falsifying hypothesis.1 The requirement that the falsifying

*2 In fact, many of the ‘permitted’ basic statements will, in the presence of the theory,
contradict each other. (Cf. section 38.) For example, the universal law ‘All planets move
in circles’ (i.e. ‘Any set of positions of any one planet is co-circular’) is trivially ‘instanti-
ated’ by any set of no more than three positions of one planet; but two such ‘instances’
together will in most cases contradict the law.
1 The falsifying hypothesis can be of a very low level of universality (obtained, as it were,
by generalising the individual co-ordinates of a result of observation; as an instance I
might cite Mach’s so-called ‘fact’ referred to in section 18). Even though it is to be inter-
subjectively testable, it need not in fact be a strictly universal statement. Thus to falsify the
statement ‘All ravens are black’ the inter-subjectively testable statement that there is a
family of white ravens in the zoo at New York would suffice. *All this shows the urgency
of replacing a falsified hypothesis by a better one. In most cases we have, before falsifying
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hypothesis must be empirical, and so falsifiable, only means that it
must stand in a certain logical relationship to possible basic statements;
thus this requirement only concerns the logical form of the hypothesis.
The rider that the hypothesis should be corroborated refers to tests
which it ought to have passed—tests which confront it with accepted
basic statements.*1

Thus the basic statements play two different rôles. On the one
hand, we have used the system of all logically possible basic statements
in order to obtain with its help the logical characterization for which
we were looking—that of the form of empirical statements. On the
other hand, the accepted basic statements are the basis for the cor-
roboration of hypotheses. If accepted basic statements contradict a
theory, then we take them as providing sufficient grounds for its
falsification only if they corroborate a falsifying hypothesis at the
same time.

a hypothesis, another one up our sleeves; for the falsifying experiment is usually a crucial
experiment designed to decide between the two. That is to say, it is suggested by the fact
that the two hypotheses differ in some respect; and it makes use of this difference to
refute (at least) one of them.

*1 This reference to accepted basic statements may seem to contain the seeds of an
infinite regress. For our problem here is this. Since a hypothesis is falsified by accepting a
basic statement, we need methodological rules for the acceptance of basic statements. Now if these
rules in their turn refer to accepted basic statements, we may get involved in an infinite
regress. To this I reply that the rules we need are merely rules for accepting basic
statements that falsify a well-tested and so far successful hypothesis; and the accepted
basic statements to which the rule has recourse need not be of this character. Moreover,
the rule formulated in the text is far from exhaustive; it only mentions an important
aspect of the acceptance of basic statements that falsify an otherwise successful
hypothesis, and it will be expanded in chapter 5 (especially in section 29).

Professor J. H. Woodger, in a personal communication, has raised the question: how
often has an effect to be actually reproduced in order to be a ‘reproducible effect’ (or a
‘discovery’)? The answer is: in some cases not even once. If I assert that there is a family of
white ravens in the New York zoo, then I assert something which can be tested in principle.
If somebody wishes to test it and is informed, upon arrival, that the family has died, or
that it has never been heard of, it is left to him to accept or reject my falsifying basic
statement. As a rule, he will have means for forming an opinion by examining witnesses,
documents, etc.; that is to say, by appealing to other intersubjectively testable and
reproducible facts. (Cf. sections 27 to 30.)
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23 OCCURRENCES AND EVENTS

The requirement of falsifiability which was a little vague to start with
has now been split into two parts. The first, the methodological postu-
late (cf. section 20), can hardly be made quite precise. The second, the
logical criterion, is quite definite as soon as it is clear which statements
are to be called ‘basic’ (cf. section 28). This logical criterion has so far
been presented, in a somewhat formal manner, as a logical relation
between statements—the theory and the basic statements. Perhaps it
will make matters clearer and more intuitive if I now express my cri-
terion in a more ‘realistic’ language. Although it is equivalent to the
formal mode of speech, it may be a little nearer to ordinary usage.

In this ‘realistic’ mode of speech we can say that a singular statement
(a basic statement) describes an occurrence. Instead of speaking of basic
statements which are ruled out or prohibited by a theory, we can then
say that the theory rules out certain possible occurrences, and that it
will be falsified if these possible occurrences do in fact occur.

The use of this vague expression ‘occurrence’ is perhaps open to
criticism. It has sometimes been said1 that expressions such as ‘occur-
rence’ or ‘event’ should be banished altogether from epistemological
discussion, and that we should not speak of ‘occurrences’ or ‘non-
occurrences’, or of the ‘happening’ of ‘events’, but instead of the truth
or falsity of statements. I prefer, however, to retain the expression
‘occurrence’. It is easy enough to define its use so that it is
unobjectionable. For we may use it in such a way that whenever we
speak of an occurrence, we could speak instead of some of the singular
statements which correspond to it.

When defining ‘occurrence’, we may remember the fact that it
would be quite natural to say that two singular statements which are
logically equivalent (i.e. mutually deducible) describe the same occurrence.

1 Especially by some writers on probability; cf. Keynes, A Treatise on Probability, 1921, p. 5.
Keynes refers to Ancillon as the first to propose the ‘formal mode of expression’; also to
Boole, Czuber, and Stumpf. *Although I still regard my (‘syntactical’) definitions of
‘occurrence’ and ‘event’, given below, as adequate for my purpose, I do no longer believe that
they are intuitively adequate; that is, I do not believe that they adequately represent our
usage, or our intentions. It was Alfred Tarski who pointed out to me (in Paris, in 1935)
that a ‘semantic’ definition would be required instead of a ‘syntactical’ one.
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This suggests the following definition. Let pk be a singular statement.
(The subscript ‘k’ refers to the individual names or coordinates which
occur in pk.) Then we call the class of all statements which are equiva-
lent to pk the occurrence pk. Thus we shall say that it is an occurrence, for
example, that it is now thundering here. And we may regard this occurrence
as the class of the statements ‘It is now thundering here’; ‘It is thunder-
ing in the 13th District of Vienna on the 10th of June 1933 at 5.15
p.m.’, and of all other statements equivalent to these. The realistic
formulation ‘The statement pk represents the occurrence Pk’ can then be
regarded as meaning the same as the somewhat trivial statement ‘The
statement pk is an element of the class Pk of all statements which are
equivalent to it’. Similarly, we regard the statement ‘The occurrence Pk

has occurred’ (or ‘is occurring’) as meaning the same as ‘pk and all
statements equivalent to it are true’.

The purpose of these rules of translation is not to assert that whoever
uses, in the realistic mode of speech, the word ‘occurrence’ is thinking
of a class of statements; their purpose is merely to give an interpret-
ation of the realistic mode of speech which makes intelligible what is
meant by saying, for example, that an occurrence Pk contradicts a theory
t. This statement will now simply mean that every statement equivalent
to pk contradicts the theory t, and is thus a potential falsifier of it.

Another term, ‘event’, will now be introduced, to denote what may
be typical or universal about an occurrence, or what, in an occurrence, can
be described with the help of universal names. (Thus we do not under-
stand by an event a complex, or perhaps a protracted, occurrence,
whatever ordinary usage may suggest.) We define: Let Pk, Pl, . . . be
elements of a class of occurrences which differ only in respect of the
individuals (the spatio-temporal positions or regions) involved; then
we call this class ‘the event (P)’. In accordance with this definition, we
shall say, for example, of the statement ‘A glass of water has just been
upset here’ that the class of statements which are equivalent to it is an
element of the event, ‘upsetting of a glass of water’.

Speaking of the singular statement pk, which represents an occur-
rence Pk, one may say, in the realistic mode of speech, that this state-
ment asserts the occurrence of the event (P) at the spatio-temporal
position k. And we take this to mean the same as ‘the class Pk, of the
singular statements equivalent to pk, is an element of the event (P)’.
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We will now apply this terminology2 to our problem. We can say of a
theory, provided it is falsifiable, that it rules out, or prohibits, not
merely one occurrence, but always at least one event. Thus the class of the
prohibited basic statements, i.e. of the potential falsifiers of the theory,
will always contain, if it is not empty, an unlimited number of basic
statements; for a theory does not refer to individuals as such. We may
call the singular basic statements which belong to one event ‘homo-
typic’, so as to point to the analogy between equivalent statements
describing one occurrence, and homotypic statements describing one
(typical) event. We can then say that every non-empty class of potential
falsifiers of a theory contains at least one non-empty class of
homotypic basic statements.

Let us now imagine that the class of all possible basic statements is
represented by a circular area. The area of the circle can be regarded as
representing something like the totality of all possible worlds of experience, or
of all possible empirical worlds. Let us imagine, further, that each event
is represented by one of the radii (or more precisely, by a very narrow
area—or a very narrow sector—along one of the radii) and that any
two occurrences involving the same co-ordinates (or individuals) are
located at the same distance from the centre, and thus on the same
concentric circle. Then we can illustrate the postulate of falsifiability by
the requirement that for every empirical theory there must be at least
one radius (or very narrow sector) in our diagram which the theory
forbids.

This illustration may prove helpful in the discussion of our various
problems,*1 such as that of the metaphysical character of purely exist-
ential statements (briefly referred to in section 15). Clearly, to each of
these statements there will belong one event (one radius) such that the

2 It is to be noted that although singular statements represent occurrences, universal state-
ments do not represent events: they exclude them. Similarly to the concept of ‘occurrence’,
a ‘uniformity’ or ‘regularity’ can be defined by saying that universal statements represent
uniformities. But here we do not need any such concept, seeing that we are only inter-
ested in what universal statements exclude. For this reason such questions as whether
uniformities (universal ‘states of affairs’ etc.) exist, do not concern us. *But such ques-
tions are discussed in section 79, and now also in appendix *x, and in section *15 of the
Postscript.
*1 The illustration will be used, more especially, in sections 31 ff., below.
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various basic statements belonging to this event will each verify the
purely existential statement. Nevertheless, the class of its potential fal-
sifiers is empty; so from the existential statement nothing follows about the
possible worlds of experience. (It excludes or forbids none of the
radii.) The fact that, conversely, from every basic statement a purely
existential statement follows, cannot be used as an argument in support
of the latter’s empirical character. For every tautology also follows from
every basic statement, since it follows from any statement whatsoever.

At this point I may perhaps say a word about self-contradictory
statements.

Whilst tautologies, purely existential statements and other nonfalsi-
fiable statements assert, as it were, too little about the class of possible
basic statements, self-contradictory statements assert too much. From a
self-contradictory statement, any statement whatsoever can be validly
deduced.*2 Consequently, the class of its potential falsifiers is identical

*2 This fact was even ten years after publication of this book not yet generally under-
stood. The situation can be summed up as follows: a factually false statement ‘materially
implies’ every statement (but it does not logically entail every statement). A logically
false statement logically implies—or entails—every statement. It is therefore of course
essential to distinguish clearly between a merely factually false (synthetic) statement and a
logically false or inconsistent or self-contradictory statement; that is to say, one from which a
statement of the form p · p̄ can be deduced.

That an inconsistent statement entails every statement can be shown as follows:
From Russell’s ‘primitive propositions’ we get at once

p → (p v q)(1)

and further, by substituting here first ‘p̄’ for ‘p’, and then ‘p → q’ for ‘p̄ v q’ we get

p̄ → (p → q),(2)

which yields, by ‘importation’,

p̄ · p → q(3)

But (3) allows us to deduce, using the modus ponens, any statement q from any statement
of the form ‘p̄ · p’, or ‘p · p̄’. (See also my note in Mind 52, 1943, pp. 47 ff.) The fact that
everything is deducible from an inconsistent set of premises is rightly treated as well
known by P. P. Wiener (The Philosophy of Bertrand Russell, edited by P. A. Schilpp, 1944,
p. 264); but surprisingly enough, Russell challenged this fact in his reply to Wiener
(op. cit., pp. 695 f.), speaking however of ‘false propositions’ where Wiener spoke of
‘inconsistent premises’. Cf. my Conjectures and Refutations, 1963, 1965, pp. 317 ff.
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with that of all possible basic statements: it is falsified by any statement
whatsoever. (One could perhaps say that this fact illustrates an advan-
tage of our method, i.e. of our way of considering possible falsifiers
rather than possible verifiers. For if one could verify a statement by the
verification of its logical consequences, or merely make it probable in
this way, then one would expect that, by the acceptance of any basic
statement whatsoever, any self-contradictory statements would become
confirmed, or verified, or at least probable.)

24 FALSIFIABILITY AND CONSISTENCY

The requirement of consistency plays a special rôle among the various
requirements which a theoretical system, or an axiomatic system, must
satisfy. It can be regarded as the first of the requirements to be satisfied
by every theoretical system, be it empirical or non-empirical.

In order to show the fundamental importance of this requirement it
is not enough to mention the obvious fact that a self-contradictory
system must be rejected because it is ‘false’. We frequently work with
statements which, although actually false, nevertheless yield results
which are adequate for certain purposes.*1 (An example is Nernst’s
approximation for the equilibrium equation of gases.) But the import-
ance of the requirement of consistency will be appreciated if one real-
izes that a self-contradictory system is uninformative. It is so because
any conclusion we please can be derived from it. Thus no statement is
singled out, either as incompatible or as derivable, since all are deriv-
able. A consistent system, on the other hand, divides the set of all
possible statements into two: those which it contradicts and those with
which it is compatible. (Among the latter are the conclusions which
can be derived from it.) This is why consistency is the most general
requirement for a system, whether empirical or non-empirical, if it is
to be of any use at all.

Besides being consistent, an empirical system should satisfy a fur-
ther condition: it must be falsifiable. The two conditions are to a large
extent analogous.1 Statements which do not satisfy the condition of

*1 Cf. my Postscript, section *3 (my reply to the ‘second proposal’); and section *12,
point (2).
1 Cf. my note in Erkenntnis 3, 1933, p. 426. *This is now printed in appendix *i, below.
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consistency fail to differentiate between any two statements within the
totality of all possible statements. Statements which do not satisfy
the condition of falsifiability fail to differentiate between any two
statements within the totality of all possible empirical basic statements.
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5
THE PROBLEM OF THE

EMPIRICAL BASIS

We have now reduced the question of the falsifiability of theories to
that of the falsifiability of those singular statements which I have called
basic statements. But what kind of singular statements are these basic
statements? How can they be falsified? To the practical research worker,
these questions may be of little concern. But the obscurities and
misunderstandings which surround the problem make it advisable to
discuss it here in some detail.

25 PERCEPTUAL EXPERIENCES AS EMPIRICAL
BASIS: PSYCHOLOGISM

The doctrine that the empirical sciences are reducible to sense-
perceptions, and thus to our experiences, is one which many accept as
obvious beyond all question. However, this doctrine stands or falls with
inductive logic, and is here rejected along with it. I do not wish to deny
that there is a grain of truth in the view that mathematics and logic are
based on thinking, and the factual sciences on sense-perceptions. But
what is true in this view has little bearing on the epistemological
problem. And indeed, there is hardly a problem in epistemology which



has suffered more severely from the confusion of psychology with
logic than this problem of the basis of statements of experience.

The problem of the basis of experience has troubled few thinkers so
deeply as Fries.1 He taught that, if the statements of science are not to
be accepted dogmatically, we must be able to justify them. If we demand
justification by reasoned argument, in the logical sense, then we are
committed to the view that statements can be justified only by statements. The
demand that all statements are to be logically justified (described by
Fries as a ‘predilection for proofs’) is therefore bound to lead to an
infinite regress. Now, if we wish to avoid the danger of dogmatism as well
as an infinite regress, then it seems as if we could only have recourse to
psychologism, i.e. the doctrine that statements can be justified not only by
statements but also by perceptual experience. Faced with this trilemma—
dogmatism vs. infinite regress vs. psychologism—Fries, and with him
almost all epistemologists who wished to account for our empirical
knowledge, opted for psychologism. In sense-experience, he taught,
we have ‘immediate knowledge’:2 by this immediate knowledge, we
may justify our ‘mediate knowledge’—knowledge expressed in the
symbolism of some language. And this mediate knowledge includes, of
course, the statements of science.

Usually the problem is not explored as far as this. In the epistemol-
ogies of sensationalism and positivism it is taken for granted that
empirical scientific statements ‘speak of our experiences’.3 For how
could we ever reach any knowledge of facts if not through sense-
perception? Merely by taking thought a man cannot add an iota to his
knowledge of the world of facts. Thus perceptual experience must be
the sole ‘source of knowledge’ of all the empirical sciences. All we
know about the world of facts must therefore be expressible in the
form of statements about our experiences. Whether this table is red or blue
can be found out only by consulting our sense-experience. By the
immediate feeling of conviction which it conveys, we can distinguish
the true statement, the one whose terms agree with experience, from

1 J. F. Fries, Neue oder anthropologische Kritik der Vernunft (1828 to 1831).
2 Cf. for example, J. Kraft, Von Husserl zu Heidegger, 1932, pp. 102 f. (*Second edition, 1957,
pp. 108 f.)
3 I am following here almost word for word the expositions of P. Frank (cf. section 27,
note 4) and H. Hahn (cf. section 27, note 1).
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the false statement, whose terms do not agree with it. Science is merely
an attempt to classify and describe this perceptual knowledge, these
immediate experiences whose truth we cannot doubt; it is the systematic
presentation of our immediate convictions.

This doctrine founders in my opinion on the problems of induction
and of universals. For we can utter no scientific statement that does not
go far beyond what can be known with certainty ‘on the basis of
immediate experience’. (This fact may be referred to as the ‘transcend-
ence inherent in any description’.) Every description uses universal
names (or symbols, or ideas); every statement has the character of a
theory, of a hypothesis. The statement, ‘Here is a glass of water’ cannot
be verified by any observational experience. The reason is that the
universals which appear in it cannot be correlated with any specific
sense-experience. (An ‘immediate experience’ is only once ‘immediately
given’; it is unique.) By the word ‘glass’, for example, we denote
physical bodies which exhibit a certain law-like behaviour, and the same
holds for the word ‘water’. Universals cannot be reduced to classes of
experiences; they cannot be ‘constituted’.4

26 CONCERNING THE SO-CALLED
‘PROTOCOL SENTENCES’

The view which I call ‘psychologism’, discussed in the previous
section, still underlies, it seems to me, a modern theory of the em-
pirical basis, even though its advocates do not speak of experiences
or perceptions but, instead, of ‘sentences’—sentences which represent
experiences. These are called protocol sentences by Neurath1 and by
Carnap.2

A similar theory had been held even earlier by Reininger. His
starting-point was the question: Wherein lies the correspondence or
agreement between a statement and the fact or state of affairs which it
describes? He came to the conclusion that statements can be compared
only with statements. According to his view, the correspondence of a

4 Cf. note 2 to section 20, and text. *‘Constituted’ is Carnap’s term.
1 The term is due to Neurath; cf., for example, Soziologie, in Erkenntnis 2, 1932, p. 393.
2 Carnap, Erkenntnis 2, 1932, pp. 432 ff.; 3, 1932, pp. 107 ff.
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statement with a fact is nothing else than a logical correspondence
between statements belonging to different levels of universality: it is3

‘. . . the correspondence of higher level statements with statements
which are of similar content, and ultimately with statements recording
experiences’. (These are sometimes called ‘elementary statements’ by
Reininger.4)

Carnap starts with a somewhat different question. His thesis is that
all philosophical investigations speak ‘of the forms of speech’.5 The
logic of science has to investigate ‘the forms of scientific language’.6 It
does not speak of (physical) ‘objects’ but of words; not of facts, but of
sentences. With this, the correct, the ‘formal mode of speech’, Carnap con-
trasts the ordinary or, as he calls it, the ‘material mode of speech’. If
confusion is to be avoided, then the material mode of speech should
only be used where it is possible to translate it into the correct formal
mode of speech.

Now this view—with which I can agree—leads Carnap (like Reinin-
ger) to assert that we must not say, in the logic of science, that sen-
tences are tested by comparing them with states of affairs or with
experiences: we may only say that they can be tested by comparing
them with other sentences. Yet Carnap is nevertheless really retaining the
fundamental ideas of the psychologistic approach to the problem; all
that he is doing is to translate them into the ‘formal mode of speech’.
He says that the sentences of science are tested ‘with the help of proto-
col sentences’;7 but since these are explained as statements or sen-
tences ‘which are not in need of confirmation but serve as a basis for all
the other sentences of science’, this amounts to saying—in the ordin-
ary ‘material’ mode of speech—that the protocol sentences refer to the
‘given’: to the ‘sense-data’. They describe (as Carnap himself puts it)
‘the contents of immediate experience, or the phenomena; and thus
the simplest knowable facts’.8 Which shows clearly enough that the
theory of protocol sentences is nothing but psychologism translated

3 R. Reininger, Metaphysik der Wirklichkeit, 1931, p. 134.
4 Reininger, op. cit., p. 132.
5 Carnap, Erkenntnis 2, 1932, p. 435, ‘These der Metalogik’.
6 Carnap, Erkenntnis. 3, 1933, p. 228.
7 Carnap, Erkenntnis 2, 1932, p. 437.
8 Carnap, Erkenntnis, p. 438.
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into the formal mode of speech. Much the same can be said of
Neurath’s view:9 he demands that in protocol sentences such words as
‘perceive’, ‘see’, etc., should occur together with the full name of the
author of the protocol sentence. Protocol sentences, as the term
indicates, should be records or protocols of immediate observations, or perceptions.

Like Reininger,10 Neurath holds that perceptual statements recording
experiences—i.e. ‘protocol sentences’—are not irrevocable, but that
they can sometimes be rejected. He opposes11 Carnap’s view (since
revised by the latter12) that protocol sentences are ultimate, and not in
need of confirmation. But whilst Reininger describes a method of testing his
‘elementary’ statements, in cases of doubt, by means of other
statements—it is the method of deducing and testing conclusions—
Neurath gives no such method. He only remarks that we can either
‘delete’ a protocol sentence which contradicts a system, ‘. . . or else
accept it, and modify the system in such a way that, with the sentence
added, it remains consistent’.

Neurath’s view that protocol sentences are not inviolable represents,
in my opinion, a notable advance. But apart from the replacement of
perceptions by perception-statements—merely a translation into the
formal mode of speech—the doctrine that protocol sentences may be
revised is his only advance upon the theory (due to Fries) of the
immediacy of perceptual knowledge. It is a step in the right direction;
but it leads nowhere if it is not followed up by another step: we need a
set of rules to limit the arbitrariness of ‘deleting’ (or else ‘accepting’) a
protocol sentence. Neurath fails to give any such rules and thus unwit-
tingly throws empiricism overboard. For without such rules, empirical
statements are no longer distinguished from any other sort of state-
ments. Every system becomes defensible if one is allowed (as every-
body is, in Neurath’s view) simply to ‘delete’ a protocol sentence if it is
inconvenient. In this way one could not only rescue any system, in the

9 Otto Neurath, Erkenntnis 3, 1933, pp. 205 ff. Neurath gives the following example, ‘A
complete protocol statement might run: {Otto’s protocol at 3 hrs. 17mins. [Otto’s
speech-thought was at 3hrs. 16mins.: (in the room, at 3hrs. 15mins., there was a table
which was observed by Otto)]}.’
10 Reininger, op. cit., p. 133.
11 Neurath, op. cit., pp. 209 f.
12 Carnap, Erkenntnis 3, 1933, pp. 215 ff.; cf. note 1 to section 29.
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manner of conventionalism; but given a good supply of protocol sen-
tences, one could even confirm it, by the testimony of witnesses who
have testified, or protocolled, what they have seen and heard. Neurath
avoids one form of dogmatism, yet he paves the way for any arbitrary
system to set itself up as ‘empirical science’.

Thus it is not quite easy to see what part the protocol sentences are
supposed to play in Neurath’s scheme. In Carnap’s earlier view, the
system of protocol sentences was the touchstone by which every asser-
tion of an empirical science had to be judged. This is why they had to
be ‘irrefutable’. For they alone could overthrow sentences—sentences
other than protocol sentences, of course. But if they are deprived of this
function, and if they themselves can be overthrown by theories, what
are they for? Since Neurath does not try to solve the problem of demar-
cation, it seems that his idea of protocol sentences is merely a relic—a
surviving memorial of the traditional view that empirical science starts
from perception.

27 THE OBJECTIVITY OF THE EMPIRICAL BASIS

I propose to look at science in a way which is slightly different
from that favoured by the various psychologistic schools: I wish to
distinguish sharply between objective science on the one hand, and ‘our knowledge’ on the
other.

I readily admit that only observation can give us ‘knowledge con-
cerning facts’, and that we can (as Hahn says) ‘become aware of facts
only by observation’.1 But this awareness, this knowledge of ours,
does not justify or establish the truth of any statement. I do not believe,
therefore, that the question which epistemology must ask is, ‘. . . on
what does our knowledge rest? . . . or more exactly, how can I, having had
the experience S. justify my description of it, and defend it against
doubt?’2 This will not do, even if we change the term ‘experience’ into
‘protocol sentence’. In my view, what epistemology has to ask is,
rather: how do we test scientific statements by their deductive

1 H. Hahn, Logik, Mathematik und Naturerkennen, in Einheitswissenschaft 2, 1933, pp. 19 and 24.
2 Cf. Carnap, for instance, Scheinprobleme in der Philosophie, 1928, p. 15 (no italics in the
original).

the problem of the empirical basis 79



consequences?*1 And what kind of consequences can we select for this
purpose if they in their turn are to be inter-subjectively testable?

By now, this kind of objective and non-psychological approach is
pretty generally accepted where logical or tautological statements are
concerned. Yet not so long ago it was held that logic was a science
dealing with mental processes and their laws—the laws of our thought.
On this view there was no other justification to be found for logic than
the alleged fact that we just could not think in any other way. A logical
inference seemed to be justified because it was experienced as a neces-
sity of thought, as a feeling of being compelled to think along certain
lines. In the field of logic, this kind of psychologism is now perhaps a
thing of the past. Nobody would dream of justifying the validity of a
logical inference, or of defending it against doubts, by writing beside it
in the margin the following protocol sentence. ‘Protocol: In checking
this chain of inferences today, I experienced an acute feeling of
conviction.’

The position is very different when we come to empirical statements of
science. Here everybody believes that these are grounded on experiences
such as perceptions; or in the formal mode of speech, on protocol
sentences. Most people would see that any attempt to base logical
statements on protocol sentences is a case of psychologism. But curi-
ously enough, when it comes to empirical statements, the same kind of
thing goes today by the name of ‘physicalism’. Yet whether statements
of logic are in question or statements of empirical science, I think the
answer is the same: our knowledge, which may be described vaguely as a
system of dispositions, and which may be of concern to psychology, may
be in both cases linked with feelings of belief or of conviction: in the
one case, perhaps, with the feeling of being compelled to think in a
certain way; in the other with that of ‘perceptual assurance’. But all this
interests only the psychologist. It does not even touch upon problems
like those of the logical connections between scientific statements,
which alone interest the epistemologist.

*1 At present, I should formulate this question thus. How can we best criticize our theories
(our hypotheses, our guesses), rather than defend them against doubt? Of course, testing
was always, in my view, part of criticizing. (Cf. my Postscript, sections *7, text between notes
5 and 6, and end of *52.)
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(There is a widespread belief that the statement ‘I see that this table
here is white’, possesses some profound advantage over the statement
‘This table here is white’, from the point of view of epistemology. But
from the point of view of evaluating its possible objective tests, the first
statement, in speaking about me, does not appear more secure than the
second statement, which speaks about the table here.)

There is only one way to make sure of the validity of a chain of
logical reasoning. This is to put it in the form in which it is most easily
testable: we break it up into many small steps, each easy to check by
anybody who has learnt the mathematical or logical technique of trans-
forming sentences. If after this anybody still raises doubts then we can
only beg him to point out an error in the steps of the proof, or to think
the matter over again. In the case of the empirical sciences, the situation
is much the same. Any empirical scientific statement can be presented
(by describing experimental arrangements, etc.) in such a way that
anyone who has learned the relevant technique can test it. If, as a result,
he rejects the statement, then it will not satisfy us if he tells us all about
his feelings of doubt or about his feelings of conviction as to his
perceptions. What he must do is to formulate an assertion which con-
tradicts our own, and give us his instructions for testing it. If he fails to
do this we can only ask him to take another and perhaps a more careful
look at our experiment, and think again.

An assertion which owing to its logical form is not testable can at
best operate, within science, as stimulus: it can suggest a problem. In
the field of logic and mathematics, this may be exemplified by Fermat’s
problem, and in the field of natural history, say, by reports about sea-
serpents. In such cases science does not say that the reports are
unfounded; that Fermat was in error or that all the records of observed
sea-serpents are lies. Instead, it suspends judgment.3

Science can be viewed from various standpoints, not only from that
of epistemology; for example, we can look at it as a biological or as a
sociological phenomenon. As such it might be described as a tool, or
an instrument, comparable perhaps to some of our industrial
machinery. Science may be regarded as a means of production—as the

3 Cf. the remark on ‘occult effects’ in section 8.
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last word in ‘roundabout production’.4 Even from this point of view
science is no more closely connected with ‘our experience’ than other
instruments or means of production. And even if we look at it as
gratifying our intellectual needs, its connection with our experiences
does not differ in principle from that of any other objective structure.
Admittedly it is not incorrect to say that science is ‘. . . an instrument’
whose purpose is ‘. . . to predict from immediate or given experiences
later experiences, and even as far as possible to control them’.5 But I do
not think that this talk about experiences contributes to clarity. It has
hardly more point than, say, the not incorrect characterization of an oil
derrick by the assertion that its purpose is to give us certain experi-
ences: not oil, but rather the sight and smell of oil; not money, but
rather the feeling of having money.

28 BASIC STATEMENTS

It has already been briefly indicated what rôle the basic statements play
within the epistemological theory I advocate. We need them in order to
decide whether a theory is to be called falsifiable, i.e. empirical. (Cf.
section 21.) And we also need them for the corroboration of falsifying
hypotheses, and thus for the falsification of theories. (Cf. section 22.)

Basic statements must therefore satisfy the following conditions. (a)
From a universal statement without initial conditions, no basic state-
ment can be deduced.*1 On the other hand, (b) a universal statement

4 The expression is Böhm-Bawerk’s (‘Produktionsumweg’).
5 Frank, Das Kausalgesetz und seine Grenzen, 1932, p. 1. *Concerning instrumentalism, see note
*1 before section 12, and my Postscript, especially sections *12 to *15.
*1 When writing this, I believed that it was plain enough that from Newton’s theory
alone, without initial conditions, nothing of the nature of an observation statement can
be deducible (and therefore certainly no basic statements). Unfortunately, it turned out
that this fact, and its consequences for the problem of observation statements or ‘basic
statements’, was not appreciated by some of the critics of my book. I may therefore add
here a few remarks.

First, nothing observable follows from any pure all-statement—‘All swans are white’,
say. This is easily seen if we contemplate the fact that ‘All swans are white’ and ‘All swans
are black’ do not, of course, contradict each other, but together merely imply that there
are no swans—clearly not an observation statement, and not even one that can be
‘verified’. (A unilaterally falsifiable statement like ‘All swans are white’, by the way, has

some structural components of a theory of experience82



and a basic statement can contradict each other. Condition (b) can only
be satisfied if it is possible to derive the negation of a basic statement
from the theory which it contradicts. From this and condition (a) it
follows that a basic statement must have a logical form such that its
negation cannot be a basic statement in its turn.

We have already encountered statements whose logical form is
different from that of their negations. These were universal state-
ments and existential statements: they are negations of one another,
and they differ in their logical form. Singular statements can be con-
structed in an analogous way. The statement: ‘There is a raven in the
space-time region k’ may be said to be different in its logical form—
and not only in its linguistic form—from the statement ‘There is no
raven in the space-time region k’. A statement of the form ‘There is a
so-and-so in the region k’ or ‘Such-and-such an event is occurring in
the region k’ (cf. section 23) may be called a ‘singular existential
statement’ or a ‘singular there-is statement’. And the statement which
results from negating it, i.e. ‘There is no so-and-so in the region k’ or
‘No event of such-and-such a kind is occurring in the region k’, may

the same logical form as ‘There are no swans’, for it is equivalent to ‘There are no
non-white swans’.)

Now if this is admitted, it will be seen at once that the singular statements which can be
deduced from purely universal statements cannot be basic statements. I have in mind
statements of the form: ‘If there is a swan at the place k, then there is a white swan at the
place k.’ (Or, ‘At k, there is either no swan or a white swan.’) We see now at once why
these ‘instantial statements’ (as they may be called) are not basic statements. The reason
is that these instantial statements cannot play the role of test statements (or of potential falsifiers)
which is precisely the role which basic statements are supposed to play. If we were to
accept instantial statements as test statements, we should obtain for any theory (and
thus both for ‘All swans are white’ and for ‘All swans are black’) an overwhelming
number of verifications—indeed, an infinite number, once we accept as a fact that the
overwhelming part of the world is empty of swans.

Since ‘instantial statements’ are derivable from universal ones, their negations must be
potential falsifiers, and may therefore be basic statements (if the conditions stated below
in the text are satisfied). Instantial statements, vice versa, will then be of the form of
negated basic statements (see also note *4 to section 80). It is interesting to note that
basic statements (which are too strong to be derivable from universal laws alone) will
have a greater informative content than their instantial negations; which means that the
content of basic statements exceeds their logical probability (since it must exceed 1/2).

These were some of the considerations underlying my theory of the logical form of
basic statements. (See my Conjectures and Refutations, 1963, pp. 386 f.)
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be called a ‘singular non-existence statement’, or a ‘singular there-is-not
statement’.

We may now lay down the following rule concerning basic state-
ments: basic statements have the form of singular existential statements. This rule
means that basic statements will satisfy condition (a), since a singular
existential statement can never be deduced from a strictly universal
statement, i.e. from a strict non-existence statement. They will also
satisfy condition (b), as can be seen from the fact that from every
singular existential statement a purely existential statement can be
derived simply by omitting any reference to any individual space-time
region; and as we have seen, a purely existential statement may indeed
contradict a theory.

It should be noticed that the conjunction of two basic statements, p
and r, which do not contradict each other, is in turn a basic statement.
Sometimes we may even obtain a basic statement by joining one basic
statement to another statement which is not basic. For example, we
may form the conjunction of the basic statement, r ‘There is a pointer at
the place k’ with the singular non-existence statement p̄, ‘There is no
pointer in motion at the place k’. For clearly, the conjunction r·p̄ (‘r-and-
non-p’) of the two statements is equivalent to the singular existential
statement ‘There is a pointer at rest at the place k’. This has the con-
sequence that, if we are given a theory t and the initial conditions r,
from which we deduce the prediction p, then the statement r·p̄ will be a
falsifier of the theory, and so a basic statement. (On the other hand, the
conditional statement ‘r → p’ i.e. ‘If r then p’, is no more basic than the
negation p̄, since it is equivalent to the negation of a basic statement, viz.
to the negation of r·p̄.)

These are the formal requirements for basic statements; they are
satisfied by all singular existential statements. In addition to these, a
basic statement must also satisfy a material requirement—a require-
ment concerning the event which, as the basic statement tells us, is
occurring at the place k. This event must be an ‘observable’ event; that is to
say, basic statements must be testable, inter-subjectively, by ‘observa-
tion’. Since they are singular statements, this requirement can of course
only refer to observers who are suitably placed in space and time (a
point which I shall not elaborate).

No doubt it will now seem as though in demanding observability, I

some structural components of a theory of experience84



have, after all, allowed psychologism to slip back quietly into my
theory. But this is not so. Admittedly, it is possible to interpret the
concept of an observable event in a psychologistic sense. But I am using it
in such a sense that it might just as well be replaced by ‘an event
involving position and movement of macroscopic physical bodies’. Or
we might lay it down, more precisely, that every basic statement must
either be itself a statement about relative positions of physical bodies,
or that it must be equivalent to some basic statement of this ‘mech-
anistic’ or ‘materialistic’ kind. (That this stipulation is practicable is
connected with the fact that a theory which is inter-subjectively test-
able will also be inter-sensually1 testable. This is to say that tests
involving the perception of one of our senses can, in principle, be
replaced by tests involving other senses.) Thus the charge that, in
appealing to observability, I have stealthily readmitted psychologism
would have no more force than the charge that I have admitted mech-
anism or materialism. This shows that my theory is really quite neutral
and that neither of these labels should be pinned to it. I say all this only
so as to save the term ‘observable’, as I use it, from the stigma of
psychologism. (Observations and perceptions may be psychological,
but observability is not.) I have no intention of defining the term
‘observable’ or ‘observable event’, though I am quite ready to eluci-
date it by means of either psychologistic or mechanistic examples. I
think that it should be introduced as an undefined term which
becomes sufficiently precise in use: as a primitive concept whose use
the epistemologist has to learn, much as he has to learn the use of the
term ‘symbol’, or as the physicist has to learn the use of the term
‘mass-point’.

Basic statements are therefore—in the material mode of speech—
statements asserting that an observable event is occurring in a certain
individual region of space and time. The various terms used in this
definition, with the exception of the primitive term ‘observable’, have
been explained more precisely in section 23; ‘observable’ is
undefined, but can also be explained fairly precisely, as we have seen
here.

1 Carnap, Erkenntnis 2, 1932, p. 445.
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29 THE RELATIVITY OF BASIC STATEMENTS.
RESOLUTION OF FRIES’S TRILEMMA

Every test of a theory, whether resulting in its corroboration or falsifi-
cation, must stop at some basic statement or other which we decide to
accept. If we do not come to any decision, and do not accept some basic
statement or other, then the test will have led nowhere. But considered
from a logical point of view, the situation is never such that it compels
us to stop at this particular basic statement rather than at that, or else
give up the test altogether. For any basic statement can again in its turn
be subjected to tests, using as a touchstone any of the basic statements
which can be deduced from it with the help of some theory, either the
one under test, or another. This procedure has no natural end.1 Thus if
the test is to lead us anywhere, nothing remains but to stop at some
point or other and say that we are satisfied, for the time being.

It is fairly easy to see that we arrive in this way at a procedure
according to which we stop only at a kind of statement that is especially
easy to test. For it means that we are stopping at statements about
whose acceptance or rejection the various investigators are likely to
reach agreement. And if they do not agree, they will simply continue
with the tests, or else start them all over again. If this too leads to no
result, then we might say that the statements in question were not
inter-subjectively testable, or that we were not, after all, dealing with
observable events. If some day it should no longer be possible for
scientific observers to reach agreement about basic statements this
would amount to a failure of language as a means of universal com-
munication. It would amount to a new ‘Babel of Tongues’: scientific
discovery would be reduced to absurdity. In this new Babel, the soaring
edifice of science would soon lie in ruins.

1 Cf. Carnap, Erkenntnis 3, 1932, p. 224. I can accept this report by Carnap of my theory,
save for a few not too important details. These are, first, the suggestion that basic
statements (called by Carnap ‘protocol statements’) are the starting points from which
science is built up; secondly, the remark (p. 225) that a protocol statement can be
confirmed ‘with such and such degree of certainty’; thirdly that ‘statements about
perceptions’ constitute ‘equally valid links in the chain’ and that it is these statements
about perception to which we ‘appeal in critical cases’. Cf. the quotation in the text to the
next note. I wish to take this opportunity of thanking Professor Carnap for his friendly
words about my unpublished work, at the place mentioned.
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Just as a logical proof has reached a satisfactory shape when the
difficult work is over, and everything can be easily checked, so, after
science has done its work of deduction or explanation, we stop at basic
statements which are easily testable. Statements about personal
experiences—i.e. protocol sentences—are clearly not of this kind; thus
they will not be very suitable to serve as statements at which we stop.
We do of course make use of records or protocols, such as certificates
of tests issued by a department of scientific and industrial research.
These, if the need arises, can be re-examined. Thus it may become
necessary, for example, to test the reaction-times of the experts who
carry out the tests (i.e. to determine their personal equations). But in
general, and especially ‘. . . in critical cases’ we do stop at easily testable
statements, and not, as Carnap recommends, at perception or protocol
sentences; i.e. we do not ‘. . . stop just at these . . . because the
inter-subjective testing of statements about perceptions . . . is relatively
complicated and difficult’.2

What is our position now in regard to Fries’s trilemma, the choice
between dogmatism, infinite regress, and psychologism? (Cf. section
25.) The basic statements at which we stop, which we decide to
accept as satisfactory, and as sufficiently tested, have admittedly the
character of dogmas, but only in so far as we may desist from justifying
them by further arguments (or by further tests). But this kind of
dogmatism is innocuous since, should the need arise, these state-
ments can easily be tested further. I admit that this too makes the
chain of deduction in principle infinite. But this kind of ‘infinite regress’
is also innocuous since in our theory there is no question of trying to
prove any statements by means of it. And finally, as to psychologism: I
admit, again, that the decision to accept a basic statement, and to be
satisfied with it, is causally connected with our experiences—
especially with our perceptual experiences. But we do not attempt to justify
basic statements by these experiences. Experiences can motivate a deci-
sion, and hence an acceptance or a rejection of a statement, but a basic

2 Cf. the previous note. *This paper of Carnap’s contained the first published report of
my theory of testing hypotheses; and the view here quoted from it was there erroneously
attributed to me.
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statement cannot be justified by them—no more than by thumping the
table.3

30 THEORY AND EXPERIMENT

Basic statements are accepted as the result of a decision or agreement;
and to that extent they are conventions. The decisions are reached in
accordance with a procedure governed by rules. Of special importance
among these is a rule which tells us that we should not accept stray basic
statements—i.e. logically disconnected ones—but that we should accept
basic statements in the course of testing theories; of raising searching
questions about these theories, to be answered by the acceptance of
basic statements.

Thus the real situation is quite different from the one visualized by
the naïve empiricist, or the believer in inductive logic. He thinks that
we begin by collecting and arranging our experiences, and so ascend
the ladder of science. Or, to use the more formal mode of speech, that if
we wish to build up a science, we have first to collect protocol sen-
tences. But if I am ordered: ‘Record what you are now experiencing’ I
shall hardly know how to obey this ambiguous order. Am I to report
that I am writing; that I hear a bell ringing; a newsboy shouting; a
loudspeaker droning; or am I to report, perhaps, that these noises
irritate me? And even if the order could be obeyed: however rich a
collection of statements might be assembled in this way, it could never
add up to a science. A science needs points of view, and theoretical
problems.

Agreement upon the acceptance or rejection of basic statements is
reached, as a rule, on the occasion of applying a theory; the agreement, in
fact, is part of an application which puts the theory to the test. Coming

3 It seems to me that the view here upheld is closer to that of the ‘critical’ (Kantian)
school of philosophy (perhaps in the form represented by Fries) than to positivism. Fries
in his theory of our ‘predilection for proofs’ emphasizes that the (logical) relations
holding between statements are quite different from the relation between statements and
sense experiences; positivism on the other hand always tries to abolish the distinction:
either all science is made part of my knowing, ‘my’ sense experience (monism of sense
data); or sense experiences are made part of the objective scientific network of arguments
in the form of protocol statements (monism of statements).
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to an agreement upon basic statements is, like other kinds of applica-
tions, to perform a purposeful action, guided by various theoretical
considerations.

We are now, I think, in a position to solve such problems as, for
instance, Whitehead’s problem of how it is that the tactile breakfast
should always be served along with the visual breakfast, and the tactile
Times with the visible and the audibly rustling Times.*1 The inductive
logician who believes that all science starts from stray elementary per-
ceptions must be puzzled by such regular coincidences; they must
seem to him entirely ‘accidental’. He is prevented from explaining
regularity by theories, because he is committed to the view that
theories are nothing but statements of regular coincidences.

But according to the position reached here, the connections between
our various experiences are explicable, and deducible, in terms of
theories which we are engaged in testing. (Our theories do not lead us
to expect that along with the visible moon we shall be served a tactile
moon; nor do we expect to be bothered by an auditory nightmare.)
One question, certainly, does remain—a question which obviously
cannot be answered by any falsifiable theory and which is therefore
‘metaphysical’: how is it that we are so often lucky in the theories we
construct—how is it that there are ‘natural laws’?*2

All these considerations are important for the epistemological theory
of experiment. The theoretician puts certain definite questions to the
experimenter, and the latter, by his experiments, tries to elicit a decisive
answer to these questions, and to no others. All other questions he tries
hard to exclude. (Here the relative independence of sub-systems of a
theory may be important.) Thus he makes his test with respect to this
one question ‘. . . as sensitive as possible, but as insensitive as possible
with respect to all other associated questions. . . . Part of this work
consists in screening off all possible sources of error.’1 But it is a
mistake to suppose that the experimenter proceeds in this way ‘in

*1 A. N. Whitehead, An Enquiry Concerning the Principles of Natural Knowledge (1919), 1925,
p. 194.
*2 This question will be discussed in section 79 and in appendix *x; see also my Postscript,
especially sections *15 and *16.
1 H. Weyl, Philosophie der Mathematik und Naturwissenschaft, 1927, p. 113; English Edition:
Philosophy of Mathematics and Natural Science, Princeton, 1949, p. 116.
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order to lighten the task of the theoretician’,2 or perhaps in order to
furnish the theoretician with a basis for inductive generalizations. On
the contrary, the theoretician must long before have done his work, or
at least what is the most important part of his work: he must have
formulated his question as sharply as possible. Thus it is he who
shows the experimenter the way. But even the experimenter is not in
the main engaged in making exact observations; his work, too, is
largely of a theoretical kind. Theory dominates the experimental work
from its initial planning up to the finishing touches in the
laboratory.*3

This is well illustrated by cases in which the theoretician succeeded
in predicting an observable effect which was later experimentally pro-
duced; perhaps the most beautiful instance is de Broglie’s prediction
of the wave-character of matter, first confirmed experimentally by
Davisson and Germer.*4 It is illustrated perhaps even better by cases in
which experiments had a conspicuous influence upon the progress of
theory. What compels the theorist to search for a better theory, in these
cases, is almost always the experimental falsification of a theory, so far
accepted and corroborated: it is, again, the outcome of tests guided by
theory. Famous examples are the Michelson-Morley experiment which
led to the theory of relativity, and the falsification, by Lummer and
Pringsheim, of the radiation formula of Rayleigh and Jeans, and of that
of Wien, which led to the quantum theory. Accidental discoveries
occur too, of course, but they are comparatively rare. Mach3 rightly
speaks in such cases of a ‘correction of scientific opinions by accidental

2 Weyl, ibid.
*3 I now feel that I should have emphasized in this place a view which can be found
elsewhere in the book (for example in the fourth and the last paragraphs of section 19). I
mean the view that observations, and even more so observation statements and state-
ments of experimental results, are always interpretations of the facts observed; that they are
interpretations in the light of theories. This is one of the main reasons why it is always decep-
tively easy to find verifications of a theory, and why we have to adopt a highly critical attitude
towards our theories if we do not wish to argue in circles: the attitude of trying to refute
them.
*4 The story is briefly and excellently told by Max Born in Albert Einstein, Philosopher-Scientist,
edited by P. A. Schilpp, 1949, p. 174. There are better illustrations, such as Adams’s and
Leverrier’s discovery of Neptune, or that of Hertzean waves.
3 Mach, Die Prinzipien der Wärmelehre 1896, p. 438.
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circumstances’ (thus acknowledging the significance of theories in
spite of himself ).

It may now be possible for us to answer the question: How and why
do we accept one theory in preference to others?

The preference is certainly not due to anything like a experiential
justification of the statements composing the theory; it is not due to a
logical reduction of the theory to experience. We choose the theory
which best holds its own in competition with other theories; the one
which, by natural selection, proves itself the fittest to survive. This will
be the one which not only has hitherto stood up to the severest tests,
but the one which is also testable in the most rigorous way. A theory is
a tool which we test by applying it, and which we judge as to its fitness
by the results of its applications.*5

From a logical point of view, the testing of a theory depends upon
basic statements whose acceptance or rejection, in its turn, depends
upon our decisions. Thus it is decisions which settle the fate of theories.
To this extent my answer to the question, ‘how do we select a the-
ory?’ resembles that given by the conventionalist; and like him I say
that this choice is in part determined by considerations of utility. But
in spite of this, there is a vast difference between my views and his.
For I hold that what characterizes the empirical method is just this:
that the convention or decision does not immediately determine our
acceptance of universal statements but that, on the contrary, it enters
into our acceptance of the singular statements—that is, the basic
statements.

For the conventionalist, the acceptance of universal statements is
governed by his principle of simplicity: he selects that system which is
the simplest. I, by contrast, propose that the first thing to be taken into
account should be the severity of tests. (There is a close connection
between what I call ‘simplicity’ and the severity of tests; yet my idea of
simplicity differs widely from that of the conventionalist; see section
46.) And I hold that what ultimately decides the fate of a theory is the
result of a test, i.e. an agreement about basic statements. With the

*5 For a criticism of the ‘instrumentalist’ view see however the references in note *1
before section 12 (p. 37), and in the starred addition to note 1, section 12.
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conventionalist I hold that the choice of any particular theory is an act,
a practical matter. But for me the choice is decisively influenced by the
application of the theory and the acceptance of the basic statements in
connection with this application; whereas for the conventionalist,
aesthetic motives are decisive.

Thus I differ from the conventionalist in holding that the state-
ments decided by agreement are not universal but singular. And I differ
from the positivist in holding that basic statements are not justifiable
by our immediate experiences, but are, from the logical point of
view, accepted by an act, by a free decision. (From the psychological
point of view this may perhaps be a purposeful and well-adapted
reaction.)

This important distinction, between a justification and a decision—a
decision reached in accordance with a procedure governed by rules—
might be clarified, perhaps, with the help of an analogy: the old
procedure of trial by jury.

The verdict of the jury (vere dictum = spoken truly), like that of the
experimenter, is an answer to a question of fact (quid facti?) which
must be put to the jury in the sharpest, the most definite form. But
what question is asked, and how it is put, will depend very largely on
the legal situation, i.e. on the prevailing system of criminal law (corre-
sponding to a system of theories). By its decision, the jury accepts,
by agreement, a statement about a factual occurrence—a basic state-
ment, as it were. The significance of this decision lies in the fact that
from it, together with the universal statements of the system (of crim-
inal law) certain consequences can be deduced. In other words, the
decision forms the basis for the application of the system; the verdict
plays the part of a ‘true statement of fact’. But it is clear that the
statement need not be true merely because the jury has accepted it.
This fact is acknowledged in the rule allowing a verdict to be quashed
or revised.

The verdict is reached in accordance with a procedure which is
governed by rules. These rules are based on certain fundamental
principles which are chiefly, if not solely, designed to result in the
discovery of objective truth. They sometimes leave room not only
for subjective convictions but even for subjective bias. Yet even if we
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disregard these special aspects of the older procedure and imagine
a procedure based solely on the aim of promoting the discovery
of objective truth, it would still be the case that the verdict of
the jury never justifies, or gives grounds for, the truth of what it
asserts.

Neither can the subjective convictions of the jurors be held to justify
the decision reached; although there is, of course, a close causal con-
nection between them and the decision reached—a connection which
might be stated by psychological laws; thus these convictions may be
called the ‘motives’ of the decision. The fact that the convictions are
not justifications is connected with the fact that different rules may
regulate the jury’s procedure (for example, simple or qualified major-
ity). This shows that the relationship between the convictions of the
jurors and their verdict may vary greatly.

In contrast to the verdict of the jury, the judgment of the judge is
‘reasoned’; it needs, and contains, a justification. The judge tries to
justify it by, or deduce it logically from, other statements: the state-
ments of the legal system, combined with the verdict that plays the
rôle of initial conditions. This is why the judgment may be chal-
lenged on logical grounds. The jury’s decision, on the other hand,
can only be challenged by questioning whether it has been reached
in accordance with the accepted rules of procedure; i.e. formally, but
not as to its content. (A justification of the content of a decision is
significantly called a ‘motivated report’, rather than a ‘logically
justified report’.)

The analogy between this procedure and that by which we decide
basic statements is clear. It throws light, for example, upon their relativ-
ity, and the way in which they depend upon questions raised by the
theory. In the case of the trial by jury, it would be clearly impossible to
apply the ‘theory’ unless there is first a verdict arrived at by decision; yet
the verdict has to be found in a procedure that conforms to, and thus
applies, part of the general legal code. The case is analogous to that of
basic statements. Their acceptance is part of the application of a theor-
etical system; and it is only this application which makes any further
applications of the theoretical system possible.

The empirical basis of objective science has thus nothing ‘absolute’
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about it.4 Science does not rest upon solid bedrock. The bold structure
of its theories rises, as it were, above a swamp. It is like a building
erected on piles. The piles are driven down from above into the swamp,
but not down to any natural or ‘given’ base; and if we stop driving the
piles deeper, it is not because we have reached firm ground. We simply
stop when we are satisfied that the piles are firm enough to carry the
structure, at least for the time being.

Addendum, 1972

(1) My term ‘basis’ has ironical overtones: it is a basis that is not firm.
(2) I assume a realist and objectivist point of view: I try to replace
perception as ‘basis’ by critical testing. (3) Our observational experiences are
never beyond being tested; and they are impregnated with theories. (4)
‘Basic statements’ are ‘test statements’: they are, like all language,
impregnated with theories. (Even a ‘phenomenal’ language permitting
statements like ‘now here red’ would be impregnated with theories
about time, space, and colour.)

4 Weyl (op. cit., p. 83, English edition p. 116) writes: ‘. . . this pair of opposites, subjective-
absolute and objective-relative seems to me to contain one of the most profound epistemo-
logical truths which can be gathered from the study of nature. Whoever wants the
absolute must get subjectivity—ego-centricity—into the bargain, and whoever longs for
objectivity cannot avoid the problem of relativism.’ And before this we find, ‘What is
immediately experienced is subjective and absolute . . . ; the objective world, on the other
hand, which natural science seeks to precipitate in pure crystalline form . . . is relative’.
Born expresses himself in similar terms (Die Relativitätstheorie Einsteins und ihre physikalischen
Grundlagen, 3rd edition, 1922, Introduction). Fundamentally, this view is Kant’s theory of
objectivity consistently developed (cf. section 8 and note 5 to that section). Reininger also
refers to this situation. He writes in Das Psycho-Physische Problem, 1916, p. 29, ‘Metaphysics
as science is impossible . . . because although the absolute is indeed experienced, and for
that reason can be intuitively felt, it yet refuses to be expressed in words. For “Spricht die
Seele, so spricht, ach! schon die Seele nicht mehr”. (If the soul speaks then alas it is no
longer the soul that speaks.)’
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6
DEGREES OF TESTABILITY

Theories may be more, or less, severely testable; that is to say, more, or
less, easily falsifiable. The degree of their testability is of significance for
the selection of theories.

In this chapter, I shall compare the various degrees of testability or
falsifiability of theories through comparing the classes of their poten-
tial falsifiers. This investigation is quite independent of the question
whether or not it is possible to distinguish in an absolute sense
between falsifiable and non-falsifiable theories. Indeed one might
say of the present chapter that it ‘relativizes’ the requirement of
falsifiability by showing falsifiability to be a matter of degree.

31 A PROGRAMME AND AN ILLUSTRATION

A theory is falsifiable, as we saw in section 23, if there exists at least one
non-empty class of homotypic basic statements which are forbidden
by it; that is, if the class of its potential falsifiers is not empty. If, as in
section 23, we represent the class of all possible basic statements by a
circular area, and the possible events by the radii of the circle, then we
can say: At least one radius—or perhaps better, one narrow sector whose
width may represent the fact that the event is to be ‘observable’—must
be incompatible with the theory and ruled out by it. One might then



represent the potential falsifiers of various theories by sectors of vari-
ous widths. And according to the greater and lesser width of the
sectors ruled out by them, theories might then be said to have more,
or fewer, potential falsifiers. (The question whether this ‘more’ or
‘fewer’ could be made at all precise will be left open for the moment.)
It might then be said, further, that if the class of potential falsifiers of
one theory is ‘larger’ than that of another, there will be more
opportunities for the first theory to be refuted by experience; thus
compared with the second theory, the first theory may be said to be
‘falsifiable in a higher degree’. This also means that the first theory says
more about the world of experience than the second theory, for it rules
out a larger class of basic statements. Although the class of permitted
statements will thereby become smaller, this does not affect our argu-
ment; for we have seen that the theory does not assert anything about
this class. Thus it can be said that the amount of empirical information
conveyed by a theory, or its empirical content, increases with its degree of
falsifiability.

Let us now imagine that we are given a theory, and that the sector
representing the basic statements which it forbids becomes wider and
wider. Ultimately the basic statements not forbidden by the theory will
be represented by a narrow remaining sector. (If the theory is to be
consistent, then some such sector must remain.) A theory like this
would obviously be very easy to falsify, since it allows the empirical
world only a narrow range of possibilities; for it rules out almost all
conceivable, i.e. logically possible, events. It asserts so much about the
world of experience, its empirical content is so great, that there is, as it
were, little chance for it to escape falsification.

Now theoretical science aims, precisely, at obtaining theories
which are easily falsifiable in this sense. It aims at restricting the range
of permitted events to a minimum; and, if this can be done at all, to
such a degree that any further restriction would lead to an actual
empirical falsification of the theory. If we could be successful in
obtaining a theory such as this, then this theory would describe ‘our
particular world’ as precisely as a theory can; for it would single out
the world of ‘our experience’ from the class of all logically possible
worlds of experience with the greatest precision attainable by
theoretical science. All the events or classes of occurrences which we
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actually encounter and observe, and only these, would be characterized
as ‘permitted’.*1

32 HOW ARE CLASSES OF POTENTIAL
FALSIFIERS TO BE COMPARED?

The classes of potential falsifiers are infinite classes. The intuitive
‘more’ and ‘fewer’ which can be applied without special safeguards to
finite classes cannot similarly be applied to infinite classes.

We cannot easily get round this difficulty; not even if, instead of the
forbidden basic statements or occurrences, we consider, for the purpose of
comparison, classes of forbidden events, in order to ascertain which of
them contains ‘more’ forbidden events. For the number of events for-
bidden by an empirical theory is also infinite, as may be seen from the
fact that the conjunction of a forbidden event with any other event
(whether forbidden or not) is again a forbidden event.

I shall consider three ways of giving a precise meaning, even in
the case of infinite classes, to the intuitive ‘more’ or ‘fewer,’ in order
to find out whether any of them may be used for the purpose of
comparing classes of forbidden events.

(1) The concept of the cardinality (or power) of a class. This concept
cannot help us to solve our problem, since it can easily be shown that
the classes of potential falsifiers have the same cardinal number for all
theories.1

(2) The concept of dimension. The vague intuitive idea that a cube in
some way contains more points than, say, a straight line can be clearly
formulated in logically unexceptionable terms by the set-theoretical
concept of dimension. This distinguishes classes or sets of points
according to the wealth of the ‘neighbourhood relations’ between their
elements: sets of higher dimension have more abundant neighbour-
hood relations. The concept of dimension which allows us to compare

*1 For further remarks concerning the aims of science, see appendix *x, and section *15 of
the Postscript, and my paper ‘The Aim of Science’, Ratio 1, 1957, pp. 24–35.
1 Tarski has proved that under certain assumptions every class of statements is denumer-
able (cf. Monatshefte f. Mathem. u. Physik 40, 1933, p. 100, note 10). *The concept of measure
is inapplicable for similar reasons (i.e. because the set of all statements of a language is
denumerable).
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classes of ‘higher’ and ‘lower’ dimension, will be used here to tackle
the problem of comparing degrees of testability. This is possible
because basic statements, combined by conjunction with other basic
statements, again yield basic statements which, however, are ‘more
highly composite’ than their components; and this degree of com-
position of basic statements may be linked with the concept of dimen-
sion. However, it is not the compositions of the forbidden events but
that of the permitted ones which will have to be used. The reason is
that the events forbidden by a theory can be of any degree of com-
position; on the other hand, some of the permitted statements are
permitted merely because of their form or, more precisely, because
their degree of composition is too low to enable them to contradict the
theory in question; and this fact can be used for comparing
dimensions.*1

(3) The subclass relation. Let all elements of a class α be also elements
of a class β, so that α is a subclass of β (in symbols: α ⊂ β). Then either
all elements of β are in their turn also elements of α—in which case the
two classes are said to have the same extension, or to be identical—or
there are elements of β which do not belong to α. In the latter case the
elements of β which do not belong to α form ‘the difference class’ or
the complement of α with respect to β, and α is a proper subclass of β. The
subclass relation corresponds very well to the intuitive ‘more’ and
‘fewer’, but it suffers from the disadvantage that this relation can only
be used to compare the two classes if one includes the other. If there-
fore two classes of potential falsifiers intersect, without one being
included in the other, or if they have no common elements, then the
degree of falsifiability of the corresponding theories cannot be com-
pared with the help of the subclass relation: they are non-comparable
with respect to this relation.

*1 The German term ‘komplex’ has been translated here and in similar passages by ‘composite’
rather than by ‘complex’. The reason is that it does not denote, as does the English ‘com-
plex’, the opposite of ‘simple’. The opposite of ‘simple’ (‘einfach’) is denoted, rather, by
the German ‘kompliziert’. (Cf. the first paragraph of section 41 where ‘kompliziert’ is trans-
lated by ‘complex’.) In view of the fact that degree of simplicity is one of the major topics of
this book, it would have been misleading to speak here (and in section 38) of degree of
complexity. I therefore decided to use the term ‘degree of composition’ which seems to fit the
context very well.
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33 DEGREES OF FALSIFIABILITY COMPARED BY
MEANS OF THE SUBCLASS RELATION

The following definitions are introduced provisionally, to be
improved later in the course of our discussion of the dimensions of
theories.*1

(1) A statement x is said to be ‘falsifiable in a higher degree’ or
‘better testable’ than a statement y, or in symbols: Fsb(x) > Fsb(y), if and
only if the class of potential falsifiers of x includes the class of the
potential falsifiers of y as a proper subclass.

(2) If the classes of potential falsifiers of the two statements x and y
are identical, then they have the same degree of falsifiability, i.e.
Fsb(x) = Fsb(y).

(3) If neither of the classes of potential falsifiers of the two state-
ments includes the other as a proper subclass, then the two statements
have non-comparable degrees of falsifiability (Fsb(x) || Fsb(y)).

If (1) applies, there will always be a non-empty complement class.
In the case of universal statements, this complement class must be
infinite. It is not possible, therefore, for the two (strictly universal)
theories to differ in that one of them forbids a finite number of single
occurrences permitted by the other.

The classes of potential falsifiers of all tautological and metaphysical
statements are empty. In accordance with (2) they are, therefore, iden-
tical. (For empty classes are subclasses of all classes, and hence also of
empty classes, so that all empty classes are identical; which may be
expressed by saying that there exists only one empty class.) If we denote
an empirical statement by ‘e’, and a tautology or a metaphysical state-
ment (e.g. a purely existential statement) by ‘t’ or ‘m’ respectively, then
we may ascribe to tautological and metaphysical statements a zero
degree of falsifiability and we can write: Fsb(t) = Fsb(m) = 0, and
Fsb(e) > 0.

A self-contradictory statement (which we may denote by ‘c’) may be
said to have the class of all logically possible basic statements as its class
of potential falsifiers. This means that any statements whatsoever is
comparable with a self-contradictory statement as to its degree of

*1 See section 38, and the appendices i, *vii, and *viii.
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falsifiability. We have Fsb(c) > Fsb(e) > 0.*2 If we arbitrarily put
Fsb(c) = 1, i.e. arbitrarily assign the number 1 to the degree of falsifi-
ability of a self-contradictory statement, then we may even define an
empirical statement e by the condition 1 > Fsb(e) > 0. In accordance
with this formula, Fsb(e) always falls within the interval between 0 and
1, excluding these limits, i.e. within the ‘open interval’ bounded by
these numbers. By excluding contradiction and tautology (as well as
metaphysical statements) the formula expresses at the same time both
the requirement of consistency and that of falsifiability.

34 THE STRUCTURE OF THE SUBCLASS
RELATION. LOGICAL PROBABILITY

We have defined the comparison of the degree of falsifiability of two
statements with the help of the subclass relation; it therefore shares all
the structural properties of the latter. The question of comparability can
be elucidated with the help of a diagram (fig. 1), in which certain
subclass relations are depicted on the left, and the corresponding

Figure 1

*2 See however now appendix *vii.
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testability relations on the right. The Arabic numerals on the right
correspond to the Roman numerals on the left in such a way that a
given Roman numeral denotes the class of the potential falsifiers of that
statement which is denoted by the corresponding Arabic numeral. The
arrows in the diagram showing the degrees of testability run from
the better testable or better falsifiable statements to those which are
not so well testable. (They therefore correspond fairly precisely to
derivability-arrows; see section 35.)

It will be seen from the diagram that various sequences of subclasses
can be distinguished and traced, for example the sequence i–ii–iv or
i–iii–v, and that these could be made more ‘dense’ by introducing
new intermediate classes. All these sequences begin in this particular
case with 1 and end with the empty class, since the latter is included in
every class. (The empty class cannot be depicted in our diagram on the
left, just because it is a subclass of every class and would therefore have
to appear, so to speak, everywhere.) If we choose to identify class 1
with the class of all possible basic statements, then 1 becomes the
contradiction (c); and 0 (corresponding to the empty class) may then
denote the tautology (t). It is possible to pass from 1 to the empty class,
or from (c) to (t) by various paths; some of these, as can be seen from
the right hand diagram, may cross one another. We may therefore say
that the structure of the relation is that of a lattice (a ‘lattice of
sequences’ ordered by the arrow, or the subclass relation). There are
nodal points (e.g. statements 4 and 5) in which the lattice is partially
connected. The relation is totally connected only in the universal
class and in the empty class, corresponding to the contradiction c and
tautology t.

Is it possible to arrange the degrees of falsifiability of various state-
ments on one scale, i.e. to correlate, with the various statements, num-
bers which order them according to their falsifiability? Clearly, we
cannot possibly order all statements in this way;*1 for if we did, we

*1 I still believe that the attempt to make all statements comparable by introducing a metric
must contain an arbitrary, extra-logical element. This is quite obvious in the case of
statements such as ‘All adult men are more than two feet high’ (or ‘All adult men are less
than nine feet high’); that is to say, statements with predicates stating a measurable
property. For it can be shown that the metric of content or falsifiability would have to be
a function of the metric of the predicate; and the latter must always contain an arbitrary,
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should be arbitrarily making the non-comparable statements compar-
able. There is, however, nothing to prevent us from picking out one of
the sequences from the lattice, and indicating the order of its state-
ments by numbers. In so doing we should have to proceed in such a
way that a statement which lies nearer to the contradiction c is always
given a higher number than one which lies nearer to the tautology t.
Since we have already assigned the numbers 0 and 1 to tautology and
contradiction respectively, we should have to assign proper fractions to the
empirical statements of the selected sequence.

I do not really intend, however, to single out one of the sequences.
Also, the assignment of numbers to the statements of the sequence
would be entirely arbitrary. Nevertheless, the fact that it is possible to
assign such fractions is of great interest, especially because of the light
it throws upon the connection between degree of falsifiability and the
idea of probability. Whenever we can compare the degrees of falsifiability
of two statements, we can say that the one which is the less falsifiable is
also the more probable, by virtue of its logical form. This probability I
call*2 ‘logical probability’;1 it must not be confused with that numerical
probability which is employed in the theory of games of chance, and
in statistics. The logical probability of a statement is complementary to its degree
of falsifiability: it increases with decreasing degree of falsifiability. The
logical probability 1 corresponds to the degree 0 of falsifiability, and vice

or at any rate an extra-logical element. Of course, we may construct artificial languages
for which we lay down a metric. But the resulting measure will not be purely logical,
however ‘obvious’ the measure may appear as long as only discrete, qualitative yes-or-no
predicates (as opposed to quantitative, measurable ones) are admitted. See also appendix
*ix, the Second and Third Notes.

*2 I now (since 1938; cf. appendix *ii) use the term ‘absolute logical probability’ rather
than ‘logical probability’ in order to distinguish it from ‘relative logical probability’ (or
‘conditional logical probability’). See also appendices *iv, and *vii to *ix.
1 To this idea of logical probability (inverted testability) corresponds Bolzano’s idea of
validity, especially when he applies it to the comparison of statements. For example, he
describes the major propositions in a derivability relation as the statements of lesser
validity, the consequents as those of greater validity (Wissenschaftslehre, 1837, Vol. II, §157,
No. 1). The relation of his concept of validity to that of probability is explained by
Bolzano in op. cit. §147. Cf. also Keynes, A Treatise on Probability, 1921, p. 224. The examples
there given show that my comparison of logical probabilities is identical with Keynes’s
‘comparison of the probability which we ascribe a priori to a generalization’. See also
notes 1 to section 36 and 1 to section 83.
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versa. The better testable statement, i.e. the one with the higher degree
of falsifiability, is the one which is logically less probable; and the
statement which is less well testable is the one which is logically more
probable.

As will be shown in section 72, numerical probability can be linked
with logical probability, and thus with degree of falsifiability. It is
possible to interpret numerical probability as applying to a sub-
sequence (picked out from the logical probability relation) for which a
system of measurement can be defined, on the basis of frequency estimates.

These observations on the comparison of degrees of falsifiability do
not hold only for universal statements, or for systems of theories; they
can be extended so as to apply to singular statements. Thus they hold,
for example, for theories in conjunction with initial conditions. In this
case the class of potential falsifiers must not be mistaken for a class of
events—for a class of homotypic basic statements—since it is a class
of occurrences. (This remark has some bearing on the connection
between logical and numerical probability which will be analysed in
section 72.)

35 EMPIRICAL CONTENT, ENTAILMENT, AND
DEGREES OF FALSIFIABILITY

It was said in section 31 that what I call the empirical content of a state-
ment increases with its degree of falsifiability: the more a statement
forbids, the more it says about the world of experience. (Cf. section 6.)
What I call ‘empirical content’ is closely related to, but not identical
with, the concept ‘content’ as defined, for instance, by Carnap.1 For the
latter I will use the term ‘logical content’, to distinguish it from that of
empirical content.

I define the empirical content of a statement p as the class of its potential
falsifiers (cf. section 31). The logical content is defined, with the help of
the concept of derivability, as the class of all non-tautological state-
ments which are derivable from the statement in question. (It may be
called its ‘consequence class’.) So the logical content of p is at least equal
to (i.e. greater than or equal to) that of a statement q, if q is derivable

1 Carnap, Erkenntnis 2, 1932, p. 458.
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from p (or, in symbols, if ‘p → q’*1). If the derivability is mutual (in
symbols, ‘p ↔ q’) then p and q are said to be of equal content.2 If q is
derivable from p, but not p from q, then the consequence class of q must
be a proper sub-set of the consequence class of p; and p then possesses
the larger consequence class, and thereby the greater logical content
(or logical force*2).

It is a consequence of my definition of empirical content that the com-
parison of the logical and of the empirical contents of two statements p
and q leads to the same result if the statements compared contain no
metaphysical elements. We shall therefore require the following: (a)
two statements of equal logical content must also have equal empirical
content; (b) a statement p whose logical content is greater than that of a
statement q must also have greater empirical content, or at least equal
empirical content; and finally, (c) if the empirical content of a state-
ment p is greater than that of a statement q, then the logical content
must be greater or else non-comparable. The qualification in (b) ‘or at
least equal empirical content’ had to be added because p might be, for
example, a conjunction of q with some purely existential statement,
or with some other kind of metaphysical statement to which we
must ascribe a certain logical content; for in this case the empirical
content of p will not be greater than that of q. Corresponding consider-
ations make it necessary to add to (c) the qualification ‘or else
non-comparable’.*3

In comparing degrees of testability or of empirical content we shall
therefore as a rule—i.e. in the case of purely empirical statements—
arrive at the same results as in comparing logical content, or
derivability-relations. Thus it will be possible to base the comparison

*1 ‘p → q’ means, according to this explanation, that the conditional statement with the
antecedent p and the consequent q is tautological, or logically true. (At the time of writing
the text, I was not clear on this point; nor did I understand the significance of the fact that
an assertion about deducibility was a meta-linguistic one. See also note *1 to section 18,
above.) Thus ‘p → q’ may be read here: ‘p entails q’.
2 Carnap, op. cit., says: ‘The metalogical term “equal in content” is defined as “mutually
derivable”.’ Carnap’s Logische Syntax der Sprache, 1934, and his Die Aufgabe der Wissenschaftslogik,
1934, were published too late to be considered here.
*2 If the logical content of p exceeds that of q, then we say also that p is logically stronger than
q, or that its logical force exceeds that of q.
*3 See, again, appendix *vii.
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of degrees of falsifiability to a large extent upon derivability relations.
Both relations show the form of lattices which are totally connected in
the self-contradiction and in the tautology (cf. section 34). This may be
expressed by saying that a self-contradiction entails every statement
and that a tautology is entailed by every statement. Moreover, empirical
statements, as we have seen, can be characterized as those whose
degree of falsifiability falls into the open interval which is bounded by
the degrees of falsifiability of self-contradictions on the one side, and
of tautologies on the other. Similarly, synthetic statements in general
(including those which are non-empirical) are placed, by the entail-
ment relation, in the open interval between self-contradiction and
tautology.

To the positivist thesis that all non-empirical (metaphysical)
statements are ‘meaningless’ there would thus correspond the thesis
that my distinction between empirical and synthetic statements, or
between empirical and logical content, is superfluous; for all synthetic
statements would have to be empirical—all that are genuine, that is,
and not mere pseudo-statements. But this way of using words,
though feasible, seems to me more likely to confuse the issue than
to clarify it.

Thus I regard the comparison of the empirical content of two state-
ments as equivalent to the comparison of their degrees of falsifiability.
This makes our methodological rule that those theories should be
given preference which can be most severely tested (cf. the anti-
conventionalist rules in section 20) equivalent to a rule favouring
theories with the highest possible empirical content.

36 LEVELS OF UNIVERSALITY AND
DEGREES OF PRECISION

There are other methodological demands which may be reduced to
the demand for the highest possible empirical content. Two of these
are outstanding: the demand for the highest attainable level (or
degree) of universality, and the demand for the highest attainable degree
of precision.

With this in mind we may examine the following conceivable
natural laws:
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p: All heavenly bodies which move in closed
orbits move in circles: or more briefly: All orbits of
heavenly bodies are circles.

q: All orbits of planets are circles.
r: All orbits of heavenly bodies are ellipses.
s: All orbits of planets are ellipses.

The deducibility relations holding between these four statements are
shown by the arrows in our diagram. From p all the others follow; from
q follows s, which also follows from r; so that s follows from all the
others.

Moving from p to q the degree of universality decreases; and q says less
than p because the orbits of planets form a proper subclass of the orbits
of heavenly bodies. Consequently p is more easily falsified than q: if q is
falsified, so is p, but not vice versa. Moving from p to r, the degree of precision
(of the predicate) decreases: circles are a proper subclass of ellipses;
and if r is falsified, so is p, but not vice versa. Corresponding remarks
apply to the other moves: moving from p to s, the degree of both
universality and precision decreases; from q to s precision decreases;
and from r to s, universality. To a higher degree of universality or
precision corresponds a greater (logical or) empirical content, and thus
a higher degree of testability.

Both universal and singular statements can be written in the form of
a ‘universal conditional statement’ (or a ‘general implication’ as it is
often called). If we put our four laws in this form, then we can perhaps
see more easily and accurately how the degrees of universality and the
degrees of precision of two statements may be compared.

A universal conditional statement (cf. note 6 to section 14) may be
written in the form: ‘(x) (φx → fx)’ or in words: ‘All values of x which
satisfy the statement function φx also satisfy the statement function fx.’
The statement s from our diagram yields the following example: ‘(x) (x
is an orbit of a planet → x is an ellipse)’ which means: ‘Whatever x may
be, if x is an orbit of a planet then x is an ellipse.’ Let p and q be two
statements written in this ‘normal’ form; then we can say that p is of
greater universality than q if the antecedent statement function of
p (which may be denoted by ‘φpx’) is tautologically implied by (or
logically deducible from), but not equivalent to, the corresponding
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statement function of q (which may be denoted by ‘φqx’); or in other
words, if ‘(x) (φqx → φpx)’ is tautological (or logically true). Similarly we
shall say that p has greater precision than q if ‘(x) (fpx → fqx)’ is tauto-
logical, that is if the predicate (or the consequent statement function)
of p is narrower than that of q, which means that the predicate of
p entails that of q.*1

This definition may be extended to statement functions with more
than one variable. Elementary logical transformations lead from it to
the derivability relations which we have asserted, and which may be
expressed by the following rule:1 If of two statements both their uni-
versality and their precision are comparable, then the less universal or
less precise is derivable from the more universal or more precise;
unless, of course, the one is more universal and the other more precise
(as in the case of q and r in my diagram).2

We could now say that our methodological decision—sometimes
metaphysically interpreted as the principle of causality—is to leave
nothing unexplained, i.e. always to try to deduce statements from
others of higher universality. This decision is derived from the demand
for the highest attainable degree of universality and precision, and it
can be reduced to the demand, or rule, that preference should be given
to those theories which can be most severely tested.*2

*1 It will be seen that in the present section (in contrast to sections 18 and 35), the arrow
is used to express a conditional rather than the entailment relation; cf. also note *1 to
section 18.
1 We can write: [(�qx → �px).(fpx → fqx)] → [(�px → fpx) → (�qx) → fqx)] or for short:
[(�q → �p).(fp → fq] → (p → q). *The elementary character of this formula, asserted in
the text, becomes clear if we write: ‘[(a → b).(c → d)] → [(b → c) → (a → d)]’. We then
put, in accordance with the text, ‘p’ for ‘b → c’ and ‘q’ for ‘a → d’, etc.
2 What I call higher universality in a statement corresponds roughly to what classical
logic might call the greater ‘extension of the subject’; and what I call greater precision
corresponds to the smaller extension, or the ‘restriction of the predicate’. The rule
concerning the derivability relation, which we have just discussed, can be regarded as
clarifying and combining the classical ‘dictum de omni et nullo’ and the ‘nota-notae’ principle,
the ‘fundamental principle of mediate predication’. Cf. Bolzano, Wissenschaftslehre II,
1837, §263, Nos. 1 and 4; Külpe, Vorlesungen über Logik (edited by Selz, 1923), §34, 5,
and 7.
*2 See now also section *15 and chapter *iv of my Postscript, especially section *76, text to
note 5.

degrees of testability 107



37 LOGICAL RANGES. NOTES ON THE
THEORY OF MEASUREMENT

If a statement p is more easy to falsify than a statement q, because it
is of a higher level of universality or precision, then the class of the
basic statements permitted by p is a proper subclass of the class of
the basic statements permitted by q. The subclass-relationship holding
between classes of permitted statements is the opposite of that
holding between classes of forbidden statements (potential falsifiers):
the two relationships may be said to be inverse (or perhaps comple-
mentary). The class of basic statements permitted by a statement may
be called its ‘range’.1 The ‘range’ which a statement allows to reality is,
as it were, the amount of ‘free play’ (or the degree of freedom) which
it allows to reality. Range and empirical content (cf. section 35) are
converse (or complementary) concepts. Accordingly, the ranges of two
statements are related to each other in the same way as are their logical
probabilities (cf. sections 34 and 72).

I have introduced the concept of range because it helps us to handle
certain questions connected with degree of precision in measurement. Assume
that the consequences of two theories differ so little in all fields of
application that the very small differences between the calculated
observable events cannot be detected, owing to the fact that the degree
of precision attainable in our measurements is not sufficiently high. It
will then be impossible to decide by experiment between the two
theories, without first improving our technique of measurement.*1

This shows that the prevailing technique of measurement determines a
certain range—a region within which discrepancies between the
observations are permitted by the theory.

Thus the rule that theories should have the highest attainable degree
of testability (and thus allow only the narrowest range) entails the

1 The concept of range (Spielraum) was introduced by von Kries (1886); similar ideas are
found in Bolzano. Waismann (Erkenntnis 1, 1930, pp. 228 ff.) attempts to combine the
theory of range with the frequency theory; cf. section 72. *Keynes gives (Treatise, p. 88)
‘field’ as a translation of ‘Spielraum’, here translated as ‘range’; he also uses (p.224) ‘scope’
for what in my view amounts to precisely the same thing.
*1 This is a point which, I believe, was wrongly interpreted by Duhem. See his Aim and
Structure of Physical Theory, pp. 137 ff.
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demand that the degree of precision in measurement should be raised
as much as possible.

It is often said that all measurement consists in the determination of
coincidences of points. But any such determination can only be correct
within limits. There are no coincidences of points in a strict sense.*2

Two physical ‘points’—a mark, say, on the measuring-rod, and another
on a body to be measured—can at best be brought into close proxim-
ity; they cannot coincide, that is, coalesce into one point. However trite
this remark might be in another context, it is important for the ques-
tion of precision in measurement. For it reminds us that measurement
should be described in the following terms. We find that the point of
the body to be measured lies between two gradations or marks on the
measuring-rod or, say, that the pointer of our measuring apparatus lies
between two gradations on the scale. We can then either regard these
gradations or marks as our two optimal limits of error, or proceed to
estimate the position of (say) the pointer within the interval of the
gradations, and so obtain a more accurate result. One may describe this
latter case by saying that we take the pointer to lie between two
imaginary gradation marks. Thus an interval, a range, always remains. It
is the custom of physicists to estimate this interval for every
measurement. (Thus following Millikan they give, for example, the
elementary charge of the electron, measured in electrostatic units,
as e = 4.774.10 − 10, adding that the range of imprecision
is ± 0.005.10 − 10.) But this raises a problem. What can be the purpose
of replacing, as it were, one mark on a scale by two—to wit, the two
bounds of the interval—when for each of these two bounds there must
again arise the same question: what are the limits of accuracy for the
bounds of the interval?

Giving the bounds of the interval is clearly useless unless these two
bounds in turn can be fixed with a degree of precision greatly exceed-
ing what we can hope to attain for the original measurement; fixed,
that is, within their own intervals of imprecision which should thus
be smaller, by several orders of magnitude, than the interval they
determine for the value of the original measurement. In other words,

*2 Note that I am speaking here of measuring, not of counting. (The difference between
these two is closely related to that between real numbers and rational numbers.)
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the bounds of the interval are not sharp bounds but are really very
small intervals, the bounds of which are in their turn still much
smaller intervals, and so on. In this way we arrive at the idea of what
may be called the ‘unsharp bounds’ or ‘condensation bounds’ of the
interval.

These considerations do not presuppose the mathematical theory of
errors, nor the theory of probability. It is rather the other way round;
by analysing the idea of a measuring interval they furnish a back-
ground without which the statistical theory of errors makes very little
sense. If we measure a magnitude many times, we obtain values which
are distributed with different densities over an interval—the interval of
precision depending upon the prevailing measuring technique. Only if
we know what we are seeking—namely the condensation bounds of
this interval—can we apply to these values the theory of errors, and
determine the bounds of the interval.*3

Now all this sheds some light, I think, on the superiority of methods that
employ measurements over purely qualitative methods. It is true that even in the
case of qualitative estimates, such as an estimate of the pitch of a
musical sound, it may sometimes be possible to give an interval of
accuracy for the estimates; but in the absence of measurements, any
such interval can be only very vague, since in such cases the concept of
condensation bounds cannot be applied. This concept is applicable
only where we can speak of orders of magnitude, and therefore only
where methods of measurement are defined. I shall make further use of
the concept of condensation bounds of intervals of precision in section
68, in connection with the theory of probability.

38 DEGREES OF TESTABILITY COMPARED BY
REFERENCE TO DIMENSIONS

Till now we have discussed the comparison of theories with respect to
their degrees of testability only in so far as they can be compared with
the help of the subclass-relation. In some cases this method is quite

*3 These considerations are closely connected with, and supported by, some of the results
discussed under points 8 ff. of my ‘Third Note’, reprinted in appendix *ix. See also
section *15 of the Postscript for the significance of measurement for the ‘depth’ of
theories.
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successful in guiding our choice between theories. Thus we may now
say that Pauli’s exclusion principle, mentioned by way of example in
section 20, indeed turns out to be highly satisfactory as an auxiliary
hypothesis. For it greatly increases the degree of precision and, with it,
the degree of testability, of the older quantum theory (like the corres-
ponding statement of the new quantum theory which asserts that anti-
symmetrical states are realized by electrons, and symmetrical ones by
uncharged, and by certain multiply charged, particles).

For many purposes, however, comparison by means of the subclass
relation does not suffice. Thus Frank, for example, has pointed out that
statements of a high level of universality—such as the principle of the
conservation of energy in Planck’s formulation—are apt to become
tautological, and to lose their empirical content, unless the initial con-
ditions can be determined ‘. . . by few measurements, . . . i.e. by means
of a small number of magnitudes characteristic of the state of the
system’.1 The question of the number of parameters which have to be
ascertained, and to be substituted in the formulae, cannot be elucidated
with the help of the sub-class relation, in spite of the fact that it is
evidently closely connected with the problem of testability and falsifi-
ability, and their degrees. The fewer the magnitudes which are needed
for determining the initial conditions, the less composite*1 will be the
basic statements which suffice for the falsification of the theory; for a
falsifying basic statement consists of the conjunction of the initial con-
ditions with the negation of the derived prediction (cf. section 28).
Thus it may be possible to compare theories as to their degree of
testability by ascertaining the minimum degree of composition which
a basic statement must have if it is to be able to contradict the theory;
provided always that we can find a way to compare basic statements in
order to ascertain whether they are more (or less) composite, i.e. com-
pounds of a greater (or a smaller) number of basic statements of a
simpler kind. All basic statements, whatever their content, whose
degree of composition does not reach the requisite minimum, would
be permitted by the theory simply because of their low degree of
composition.

1 Cf. Frank, Das Kausalgesetz und seine Grenzen, 1931, e.g. p. 24.
*1 For the term ‘composite’, see note *1 to section 32.
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But any such programme is faced with difficulties. For generally it is
not easy to tell, merely by inspecting it, whether a statement is compos-
ite, i.e. equivalent to a conjunction of simpler statements. In all state-
ments there occur universal names, and by analysing these one can
often break down the statement into conjunctive components. (For
example, the statement ‘There is a glass of water at the place k’ might
perhaps be analysed, and broken down into the two statements ‘There
is a glass containing a fluid at the place k’ and ‘There is water at the
place k’.) There is no hope of finding any natural end to the dissection
of statements by this method, especially since we can always introduce
new universals defined for the purpose of making a further dissection
possible.

With a view to rendering comparable the degrees of composition
of all basic statements, it might be suggested that we should choose a
certain class of statements as the elementary or atomic ones,2 from
which all other statements could then be obtained by conjunction
and other logical operations. If successful, we should have defined in
this way an ‘absolute zero’ of composition, and the composition of
any statement could then be expressed, as it were, in absolute
degrees of composition.*2 But for the reason given above, such a
procedure would have to be regarded as highly unsuitable; for it

2 ‘Elementary propositions’ in Wittgenstein, Tractatus Logico-Philosophicus, Proposition 5:
‘Propositions are truth-functions of elementary propositions’. ‘Atomic propositions’ (as
opposed to the composite ‘molecular propositions’) in Whitehead and Russell’s Principia
Mathematica Vol. I. Introduction to 2nd edition, 1925, pp. xv f. C. K. Ogden translated
Wittgenstein’s term ‘Elementarsatz’ as ‘elementary proposition’, (cf. Tractatus 4.21), while
Bertrand Russell in his Preface to the Tractatus, 1922, p. 13, translated it as ‘atomic
proposition’. The latter term has become more popular.
*2 Absolute degrees of composition would determine, of course, absolute degrees of
content, and thus of absolute logical improbability. The programme here indicated of
introducing improbability, and thus probability, by singling out a certain class of abso-
lutely atomic statements (earlier sketched, for example, by Wittgenstein) has more
recently been elaborated by Carnap in his Logical Foundations of Probability, 1950, in order to
construct a theory of induction. See also the remarks on model languages in my Preface to
the English Edition, 1958, above, where I allude to the fact that the third model language
(Carnap’s language system) does not admit measurable properties. (Nor does it in its
present form allow the introduction of a temporal or spatial order.)
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would impose serious restrictions upon the free use of scientific
language.*3

Yet it is still possible to compare the degrees of composition of basic
statements, and thereby also those of other statements. This can be
done by selecting arbitrarily a class of relatively atomic statements, which
we take as a basis for comparison. Such a class of relatively atomic
statements can be defined by means of a generating schema or matrix (for
example, ‘There is a measuring apparatus for . . . at the place . . ., the
pointer of which lies between the gradation marks . . . and . . .’). We
can then define as relatively atomic, and thus as equi-composite, the
class of all statements obtained from this kind of matrix (or statement
function) by the substitution of definite values. The class of these
statements, together with all the conjunctions which can be formed
from them may be called a ‘field’. A conjunction of n different relatively
atomic statements of a field may be called an ‘n-tuple of the field’; and
we can say that the degree of its composition is equal to the number n.

If there exists, for a theory t, a field of singular (but not necessarily
basic) statements such that, for some number d, the theory t cannot be
falsified by any d-tuple of the field, although it can be falsified by
certain d + 1-tuples, then we call d the characteristic number of the theory
with respect to that field. All statements of the field whose degree of
composition is less than d, or equal to d, are then compatible with the
theory, and permitted by it, irrespective of their content.

Now it is possible to base the comparison of the degree of test-
ability of theories upon this characteristic number d. But in order to
avoid inconsistencies which might arise through the use of different
fields, it is necessary to use a somewhat narrower concept than that of
a field, namely that of a field of application. If a theory t is given, we say
that a field is a field of application of the theory t if there exists a character-
istic number d of the theory t with respect to this field, and if, in

*3 The words ‘scientific language’ were here used quite naïvely, and should not be
interpreted in the technical sense of what is today called a ‘language system’. On the
contrary, my main point was that we should remember the fact that scientists cannot use
a ‘language system’ since they have constantly to change their language, with every new
step they take. ‘Matter’, or ‘atom’, after Rutherford, and ‘matter’, or ‘energy’, after
Einstein, meant something different from what they meant before: the meaning of these
concepts is a function of the—constantly changing—theory.
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addition, it satisfies certain further conditions (which are explained in
appendix i).

The characteristic number d of a theory t, with respect to a field of
application, I call the dimension of t with respect to this field of applica-
tion. The expression ‘dimension’ suggests itself because we can think
of all possible n-tuples of the field as spatially arranged (in a configur-
ation space of infinite dimensions). If, for example, d = 3, then those
statements which are admissible because their composition is too low
form a three-dimensional sub-space of this configuration. Transition
from d = 3 to d = 2 corresponds to the transition from a solid to a
surface. The smaller the dimension d, the more severely restricted is the
class of those permitted statements which, regardless of their content,
cannot contradict the theory owing to their low degree of com-
position; and the higher will be the degree of falsifiability of the
theory.

The concept of the field of application has not been restricted to
basic statements, but singular statements of all kinds have been allowed
to be statements belonging to a field of application. But by comparing
their dimensions with the help of the field, we can estimate the degree
of composition of the basic statements. (We assume that to highly
composite singular statements there correspond highly composite
basic statements.) It thus can be assumed that to a theory of higher
dimension, there corresponds a class of basic statements of higher
dimension, such that all statements of this class are permitted by the
theory, irrespective of what they assert.

This answers the question of how the two methods of comparing
degrees of testability are related—the one by means of the dimension
of a theory, and the other by means of the subclass relation. There will
be cases in which neither, or only one, of the two methods is applic-
able. In such cases there is of course no room for conflict between the
two methods. But if in a particular case both methods are applicable,
then it may conceivably happen that two theories of equal dimensions
may yet have different degrees of falsifiability if assessed by the method
based upon the subclass relation. In such cases, the verdict of the latter
method should be accepted, since it would prove to be the more sensi-
tive method. In all other cases in which both methods are applicable,
they must lead to the same result; for it can be shown, with the help of
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a simple theorem of the theory of dimension, that the dimension of a
class must be greater than, or equal to, that of its subclasses.3

39 THE DIMENSION OF A SET OF CURVES

Sometimes we can identify what I have called the ‘field of application’ of
a theory quite simply with the field of its graphic representation, i.e. the area of a
graph-paper on which we represent the theory by graphs: each point of
this field of graphic representation can be taken to correspond to one
relatively atomic statement. The dimension of the theory with respect to
this field (defined in appendix 1) is then identical with the dimension of
the set of curves corresponding to the theory. I shall discuss these rela-
tions with the help of the two statements q and s of section 36. (Our
comparison of dimensions applies to statements with different predi-
cates.) The hypothesis q—that all planetary orbits are circles—is three-
dimensional: for its falsification at least four singular statements of the
field are necessary, corresponding to four points of its graphic represen-
tation. The hypothesis s, that all planetary orbits are ellipses, is five-
dimensional, since for its falsification at least six singular statements are
necessary, corresponding to six points of the graph. We saw in section
36 that q is more easily falsifiable than s: since all circles are ellipses, it
was possible to base the comparison on the subclass relation. But the use
of dimensions enables us to compare theories which previously we were
unable to compare. For example, we can now compare a circle-
hypothesis with a parabola-hypothesis (which is four dimensional).
Each of the words ‘circle’, ‘ellipse’, ‘parabola’ denotes a class or set of
curves; and each of these sets has the dimension d if d points are necessary
and sufficient to single out, or characterize, one particular curve of the
set. In algebraic representation, the dimension of the set of curves
depends upon the number of parameters whose values we may freely
choose. We can therefore say that the number of freely determinable
parameters of a set of curves by which a theory is represented is charac-
teristic for the degree of falsifiability (or testability) of that theory.

In connection with the statements q and s in my example I should
3 Cf. Menger, Dimensionstheorie, 1928, p. 81. *The conditions under which this theorem
holds can be assumed to be always satisfied by the ‘spaces’ with which we are concerned
here.
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like to make some methodological comments on Kepler’s discovery of
his laws.*1

I do not wish to suggest that the belief in perfection—the heuristic
principle that guided Kepler to his discovery—was inspired, con-
sciously or unconsciously, by methodological considerations regarding
degrees of falsifiability. But I do believe that Kepler owed his success in
part to the fact that the circle-hypothesis with which he started was
relatively easy to falsify. Had Kepler started with a hypothesis which
owing to its logical form was not so easily testable as the circle hypoth-
esis, he might well have got no result at all, considering the difficulties
of calculations whose very basis was ‘in the air’—adrift in the skies, as
it were, and moving in a way unknown. The unequivocal negative result
which Kepler reached by the falsification of his circle hypothesis was in
fact his first real success. His method had been vindicated sufficiently
for him to proceed further; especially since even this first attempt had
already yielded certain approximations.

No doubt, Kepler’s laws might have been found in another way. But
I think it was no mere accident that this was the way which led to
success. It corresponds to the method of elimination which is applicable only
if the theory is sufficiently easy to falsify—sufficiently precise to be
capable of clashing with observational experience.

40 TWO WAYS OF REDUCING THE NUMBER OF
DIMENSIONS OF A SET OF CURVES

Quite different sets of curves may have the same dimension. The set of
all circles, for example, is three-dimensional; but the set of all circles
passing through a given point is a two-dimensional set (like the set of
straight lines). If we demand that the circles should all pass through two
given points, then we get a one-dimensional set, and so on. Each
additional demand that all curves of a set should pass through one
more given point reduces the dimensions of the set by one.

The number of dimensions can also be reduced by methods other
than that of increasing the number of given points. For example the set

*1 The views here developed were accepted, with acknowledgments, by W. C. Kneale,
Probability and Induction, 1949, p. 230, and J. G. Kemeny, ‘The Use of Simplicity in
Induction’, Philos. Review 57, 1953; see his footnote on p. 404.
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of ellipses with given ratio of the axes is four-dimensional (as is that of
parabolas), and so is the set of ellipses with given numerical eccen-
tricity. The transition from the ellipse to the circle, of course, is equiva-
lent to specifying an eccentricity (the eccentricity 0) or a particular
ratio of the axes (unity).

As we are interested in assessing degrees of falsifiability of theories
we will now ask whether the various methods of reducing the number
of dimensions are equivalent for our purposes, or whether we should
examine more closely their relative merits. Now the stipulation that a
curve should pass through a certain singular point (or small region) will
often be linked up with, or correspond to, the acceptance of a certain
singular statement, i.e. of an initial condition. On the other hand, the
transition from, say, an ellipse-hypothesis to a circle-hypothesis, will
obviously correspond to a reduction of the dimension of the theory itself.

zero
dimensional

classes 1

one
dimensional

classes

two
dimensional

classes

three
dimensional

classes

four
dimensional

classes

— — straight line circle parabola

—
straight line
through one
given point
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given points
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through two
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conic
through

three given
points

— —

1 We could also, of course, begin with the empty (over-determined) minus-one-
dimensional class.
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But how are these two methods of reducing the dimensions to be kept
apart? We may give the name ‘material reduction’ to that method of
reducing dimensions which does not operate with stipulations as to the
‘form’ or ‘shape’ of the curve; that is, to reductions through specifying
one or more points, for example, or by some equivalent specification.
The other method, in which the form or shape of the curve becomes
more narrowly specified as, for example, when we pass from ellipse to
circle, or from circle to straight line, etc., I will call the method of ‘formal
reduction’ of the number of dimensions.

It is not very easy, however, to get this distinction sharp. This may be
seen as follows. Reducing the dimensions of a theory means, in alge-
braic terms, replacing a parameter by a constant. Now it is not quite
clear how we can distinguish between different methods of replacing a
parameter by a constant. The formal reduction, by passing from the general
equation of an ellipse to the equation of a circle, can be described as
equating one parameter to zero, and a second parameter to one. But if
another parameter (the absolute term) is equated to zero, then this
would mean a material reduction, namely the specification of a point of the
ellipse. I think, however, that it is possible to make the distinction clear,
if we see its connection with the problem of universal names. For
material reduction introduces an individual name, formal reduction a
universal name, into the definition of the relevant set of curves.

Let us imagine that we are given a certain individual plane, perhaps
by ‘ostensive definition’. The set of all ellipses in this plane can be
defined by means of the general equation of the ellipse; the set of
circles, by the general equation of the circle. These definitions are
independent of where, in the plane, we draw the (Cartesian) co-ordinates to which
they relate; consequently they are independent of the choice of the
origin, and the orientation, of the co-ordinates. A specific system of co-
ordinates can be determined only by individual names; say, by osten-
sively specifying its origin and orientation. Since the definition of the
set of ellipses (or circles) is the same for all Cartesian co-ordinates, it is
independent of the specification of these individual names: it is invariant
with respect to all co-ordinate transformations of the Euclidean group
(displacements and similarity transformations).

If, on the other hand, one wishes to define a set of ellipses (or
circles) which have a specific, an individual point of the plane in
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common, then we must operate with an equation which is not
invariant with respect to the transformations of the Euclidean group,
but relates to a singular, i.e. an individually or ostensively specified,
co-ordinate system. Thus it is connected with individual names.2

The transformations can be arranged in a hierarchy. A definition
which is invariant with respect to a more general group of transform-
ations is also invariant with respect to more special ones. For each
definition of a set of curves, there is one—the most general—
transformation group which is characteristic of it. Now we can say: The
definition D1 of a set of curves is called ‘equally general’ to (or more
general than) a definition D2 of a set of curves if it is invariant with
respect to the same transformation group as is D2 (or a more general
one). A reduction of the dimension of a set of curves may now be
called formal if the reduction does not diminish the generality of the
definition; otherwise it may be called material.

If we compare the degree of falsifiability of two theories by con-
sidering their dimensions, we shall clearly have to take into account
their generality, i.e. their invariance with respect to co-ordinate
transformations, along with their dimensions.

The procedure will, of course, have to be different according to
whether the theory, like Kepler’s theory, in fact makes geometrical
statements about the world or whether it is ‘geometrical’ only in that it
may be represented by a graph—such as, for example, the graph which
represents the dependence of pressure upon temperature. It would be
inappropriate to require of this latter kind of theory, or of the corres-
ponding set of curves, that its definition should be invariant with
respect to, say, rotations of the co-ordinate system; for in these cases,
the different co-ordinates may represent entirely different things (the
one pressure and the other temperature).

This concludes my exposition of the methods whereby degrees of
falsifiability are to be compared. I believe that these methods can help
us to elucidate epistemological questions, such as the problem of simplicity
which will be our next concern. But there are other problems which

2 On the relations between transformation groups and ‘individualization’ cf. Weyl,
Philosophie der Mathematik u. Naturwissenschaft, 1927, p. 59, English edition pp. 73 f.,
where reference is made to Klein’s Erlanger Programm.
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are placed in a new light by our examination of degrees of falsifiability,
as we shall see; especially the problem of the so-called ‘probability of
hypotheses’ or of corroboration.

Addendum, 1972

One of the more important ideas of this book is that of the (empirical,
or informative) content of a theory. (‘Not for nothing do we call the
laws of nature “laws”: the more they prohibit, the more they say.’ Cp.
pp. 18–19 above, and pp. 95 f.)

Two points were stressed by me in the preceding chapter: (1) The
content or the testability (or the simplicity: see ch. vii) of a theory may
have degrees, which may thus be said to relativize the idea of falsifiability
(whose logical basis remains the modus tollens). (2) The aim of science—
the growth of knowledge—can be identified with the growth
of the content of our theories. (See my paper ‘The Aim of Science’,
in Ratio I, 1957, pp. 24–35 and (revised) in Contemporary Philosophy, ed.
R. Klibansky, 1969, pp. 129–142; now also Chapter 5 of my book
Objective Knowledge: An Evolutionary Approach, which is forthcoming at
the Clarendon Press.)

More recently I have developed these ideas further; see especially ch.
10 of my Conjectures and Refutations, 1963 and later editions (with the new
Addenda). Two of the new points are: (3) A further relativization of the
idea of content or testability with respect to the problem, or set of problems,
under discussion. (Already in 1934 I relativized these ideas with
respect to a field of application; see my old Appendix i.) (4) The
introduction of the idea of the truth content of a theory and of its
approximation or nearness to truth (‘verisimilitude’).
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7
SIMPLICITY

There seems to be little agreement as to the importance of the so-called
‘problem of simplicity’. Weyl said, not long ago, that ‘the problem of
simplicity is of central importance for the epistemology of the natural
sciences’.1 Yet it seems that interest in the problem has lately declined;
perhaps because, especially after Weyl’s penetrating analysis, there
seemed to be so little chance of solving it.

Until quite recently the idea of simplicity has been used uncritically,
as though it were quite obvious what simplicity is, and why it should
be valuable. Not a few philosophers of science have given the concept
of simplicity a place of crucial importance in their theories, without
even noticing the difficulties to which it gives rise. For example, the
followers of Mach, Kirchhoff, and Avenarius have tried to replace the
idea of a causal explanation by that of the ‘simplest description’. With-
out the adjective ‘simplest’ or a similar word this doctrine would say
nothing. As it is supposed to explain why we prefer a description of the
world with the help of theories to one with the help of singular state-
ments, it seems to presuppose that theories are simpler than singular
statements. Yet few have ever attempted to explain why they should be
simpler, or what is meant, more precisely, by simplicity.

1 Cf. Weyl, op. cit., pp. 115 f.; English edition p. 155. See also section 42 below.



If, moreover, we assume that theories are to be used for the sake of
simplicity then, clearly, we should use the simplest theories. This is
how Poincaré, for whom the choice of theories is a matter of conven-
tion, comes to formulate his principle for the selection of theories: he
chooses the simplest of the possible conventions. But which are the
simplest?

41 ELIMINATION OF THE AESTHETIC AND THE
PRAGMATIC CONCEPTS OF SIMPLICITY

The word ‘simplicity’ is used in very many different senses.
Schrödinger’s theory, for instance, is of great simplicity in a method-
ological sense, but in another sense it might well be called ‘complex’.
We can say of a problem that its solution is not simple but difficult, or
of a presentation or an exposition that it is not simple but intricate.

To begin with, I shall exclude from our discussion the application of
the term ‘simplicity’ to anything like a presentation or an exposition. It
is sometimes said of two expositions of one and the same mathematical
proof that the one is simpler or more elegant than the other. This is a
distinction which has little interest from the point of view of the
theory of knowledge; it does not fall within the province of logic, but
merely indicates a preference of an aesthetic or pragmatic character. The
situation is similar when people say that one task may be ‘carried out
by simpler means’ than another, meaning that it can be done more
easily or that, in order to do it, less training or less knowledge is
needed. In all such cases the word ‘simple’ can be easily eliminated; its
use is extra-logical.

42 THE METHODOLOGICAL PROBLEM OF SIMPLICITY

What, if anything, remains after we have eliminated the aesthetic and
the pragmatic ideas of simplicity? Is there a concept of simplicity
which is of importance for the logician? Is it possible to distinguish
theories that are logically not equivalent according to their degrees of
simplicity?

The answer to this question may well seem doubtful, seeing how
little successful have been most attempts to define this concept. Schlick,
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for one, gives a negative answer. He says: ‘Simplicity is . . . a concept
indicative of preferences which are partly practical, partly aesthetic in
character.’1 And it is notable that he gives this answer when writing of
the concept which interests us here, and which I shall call the epistemo-
logical concept of simplicity; for he continues: ‘Even if we are unable to
explain what is really meant by “simplicity” here, we must yet recog-
nize the fact that any scientist who has succeeded in representing a
series of observations by means of a very simple formula (e.g. by a
linear, quadratic, or exponential function) is immediately convinced
that he has discovered a law.’

Schlick discusses the possibility of defining the concept of law-like
regularity, and especially the distinction between ‘law’ and ‘chance’,
with the help of the concept of simplicity. He finally dismisses it with
the remark that ‘simplicity is obviously a wholly relative and vague
concept; no strict definition of causality can be obtained with its help;
nor can law and chance be precisely distinguished’.2 From this passage
it becomes clear what the concept of simplicity is actually expected to
achieve: it is to provide a measure of the degree of law-likeness or
regularity of events. A similar view is voiced by Feigl when he speaks of
the ‘idea of defining the degree of regularity or of law-likeness with
the help of the concept of simplicity’.3

The epistemological idea of simplicity plays a special part in theories
of inductive logic, for example in connection with the problem of the
‘simplest curve’. Believers in inductive logic assume that we arrive at
natural laws by generalization from particular observations. If we think
of the various results in a series of observations as points plotted in a
co-ordinate system, then the graphic representation of the law will be a
curve passing through all these points. But through a finite number of
points we can always draw an unlimited number of curves of the most
diverse form. Since therefore the law is not uniquely determined by
the observations, inductive logic is confronted with the problem of
deciding which curve, among all these possible curves, is to be chosen.

1 Schlick, Naturwissenschaften 19, 1931, p. 148. *I have translated Schlick’s term
‘pragmatischer’ freely.
2 Schlick, ibid.
3 Feigl, Theorie und Erfahrung in der Physik, 1931, p. 25.
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The usual answer is, ‘choose the simplest curve’. Wittgenstein, for
example, says: ‘The process of induction consists in assuming the
simplest law that can be made to harmonize with our experience.’4 In
choosing the simplest law, it is usually tacitly assumed that a linear
function, say, is simpler than a quadratic one, a circle simpler than an
ellipse, etc. But no reasons are given either for choosing this particular
hierarchy of simplicities in preference to any other, or for believing that
‘simple’ laws have advantages over the less simple—apart from aes-
thetic and practical ones.5 Schlick and Feigl mention6 an unpublished
paper of Natkin who, according to Schlick’s account, proposes to call
one curve simpler than another if its average curvature is smaller; or,
according to Feigl’s account, if it deviates less from a straight line. (The
two accounts are not equivalent.) This definition seems to agree pretty
well with our intuitions; but it somehow misses the crucial point; it
would, for example, make certain parts (the asymptotic parts) of a
hyperbola much simpler than a circle, etc. And really, I do not think
that the question can be settled by such ‘artifices’ (as Schlick
calls them). Moreover, it would remain a mystery why we should give
preference to simplicity if defined in this particular way.

Weyl discusses and rejects a very interesting attempt to base sim-
plicity on probability. ‘Assume, for example, that twenty co-ordinated
pairs of values (x, y) of the same function, y = f(x) lie (within the
expected accuracy) on a straight line, when plotted on square graph
paper. We shall then conjecture that we are faced here with a rigorous
natural law, and that y depends linearly upon x. And we shall conjecture
this because of the simplicity of the straight line, or because it would be
so extremely improbable that just these twenty pairs of arbitrarily chosen
observations should lie very nearly on a straight line, had the law in
question been a different one. If now we use the straight line for
interpolation and extrapolation, we obtain predictions which go
beyond what the observations tell us. However, this analysis is open to

4 Wittgenstein, op. cit., Proposition 6.363.
5 Wittgenstein’s remark on the simplicity of logic (op. cit., Proposition 5.4541) which sets
‘the standard of simplicity’ gives no clue. Reichenbach’s ‘principle of the simplest curve’
(Mathematische Zeitschrift 34, 1932, p. 616) rests on his Axiom of Induction (which I believe
to be untenable), and also affords no help.
6 In the places referred to.
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criticism. It will always be possible to define all kinds of mathematical
functions which . . . will be satisfied by the twenty observations; and
some of these functions will deviate considerably from the straight line.
And for every single one of these we may claim that it would be
extremely improbable that the twenty observations should lie just on this
curve, unless it represented the true law. It is thus essential, after all, that
the function, or rather the class of functions, should be offered to us, a
priori, by mathematics because of its mathematical simplicity. It should
be noted that this class of functions must not depend upon as many
parameters as the number of observations to be satisfied.’7 Weyl’s
remark that ‘the class of functions should be offered to us a priori, by
mathematics, because of its mathematical simplicity’, and his reference
to the number of parameters agree with my view (to be developed in
section 43). But Weyl does not say what ‘mathematical simplicity’ is;
and above all, he does not say what logical or epistemological advantages the
simpler law is supposed to possess, compared with one that is more
complex.8

The various passages so far quoted are very important, because of
their bearing upon our present aim—the analysis of the epistemo-
logical concept of simplicity. For this concept is not yet precisely
determined. It is therefore possible to reject any attempt (such as mine)
to make this concept precise by saying that the concept of simplicity in
which epistemologists are interested is really quite a different one. To
such objections I could answer that I do not attach the slightest import-
ance to the word ‘simplicity’. The term was not introduced by me, and I
am aware of its disadvantages. All I do assert is that the concept of
simplicity which I am going to clarify helps to answer those very

7 Weyl, op. cit., p. 116; English edition, p. 156. *When writing my book I did not know
(and Weyl, no doubt, did not know when writing his) that Harold Jeffreys and Dorothy
Wrinch had suggested, six years before Weyl, that we should measure the simplicity of a
function by the paucity of its freely adjustable parameters. (See their joint paper in Phil.
Mag. 42, 1921, pp. 369 ff.) I wish to take this opportunity to make full acknowledgement
to these authors.
8 Weyl’s further comments on the connection between simplicity and corroboration are
also relevant in this connection; they are largely in agreement with my own views
expressed in section 82, although my line of approach and my arguments are quite
different; cf. note 1 to section 82, *and the new note here following (note *1 to
section 43).
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questions which, as my quotations show, have so often been raised by
philosophers of science in connection with their ‘problem of
simplicity’.

43 SIMPLICITY AND DEGREE OF FALSIFIABILITY

The epistemological questions which arise in connection with the con-
cept of simplicity can all be answered if we equate this concept with
degree of falsifiability. This assertion is likely to meet with opposition;*1

and so I shall try, first, to make it intuitively more acceptable.

*1 It was gratifying to find that this theory of simplicity (including the ideas of section
40) has been accepted at least by one epistemologist—by William Kneale, who writes in
his book Probability and Induction, 1949, pp. 229 f: ‘. . . it is easy to see that the hypothesis
which is simplest in this sense is also that which we can hope to eliminate most quickly if
it is false. . . . In short, the policy of assuming always the simplest hypothesis which
accords with the known facts is that which will enable us to get rid of false hypotheses
most quickly.’ Kneale adds a footnote in which he refers to p. 116 of Weyl’s book, and
also to mine. But I cannot detect on this page—of which I quoted the relevant portions in
the text—or anywhere else in Weyl’s great book (or in any other) even a trace of the view
that the simplicity of a theory is connected with its falsifiability, i.e. with the ease of its
elimination. Nor would I have written (as I did near the end of the preceding section)
that Weyl ‘does not say what logical or epistemological advantages the simpler law is supposed to
possess’ had Weyl (or anybody else known to me) anticipated my theory.

The facts are these. In his profound discussion of the problem (here quoted in section
42, text to note 7) Weyl mentions first the intuitive view that a simple curve—say, a
straight line—has an advantage over a more complex curve because it might be considered a
highly improbable accident if all the observations would fit such a simple curve. But instead of following
up this intuitive view (which I think would have led him to see that the simpler theory is
the better testable one), Weyl rejects it as not standing up to rational criticism: he points
out that the same could be said of any given curve, however complex. (This argument is
correct, but it does no longer hold if we consider the potential falsifiers—and their degree of
composition—rather than the verifying instances.) Weyl then proceeds to discuss the
paucity of the parameters as a criterion of simplicity, without connecting this in any way
either with the intuitive view just rejected by him, or with anything which, like test-
ability, or content, might explain our epistemological preference for the simpler theory.

Weyl’s characterization of the simplicity of a curve by the paucity of its parameters
was anticipated in 1921 by Harold Jeffreys and Dorothy Wrinch (Phil. Mag. 42, 369 ff.).
But if Weyl merely failed to see what is now ‘easy to see’ (according to Kneale), Jeffreys
actually saw—and still sees—the very opposite: he attributes to the simpler law the
greater prior probability instead of the greater prior improbability. (Thus Jeffreys’s and
Kneale’s views together may illustrate Schopenhauer’s remark that the solution of a

some structural components of a theory of experience126



I have already shown that theories of a lower dimension are more
easily falsifiable than those of a higher dimension. A law having the
form of a function of the first degree, for instance, is more easily
falsifiable than one expressible by means of a function of the second
degree. But the latter still belongs to the best falsifiable ones among the
laws whose mathematical form is that of an algebraic function. This
agrees well with Schlick’s remark concerning simplicity: ‘We should
certainly be inclined to regard a function of the first degree as simpler
than one of the second degree, though the latter also doubtless
represents a perfectly good law . . .’1

The degree of universality and of precision of a theory increases
with its degree of falsifiability, as we have seen. Thus we may per-
haps identify the degree of strictness of a theory—the degree, as it were,
to which a theory imposes the rigour of law upon nature—with
its degree of falsifiability; which shows that the latter does just
what Schlick and Feigl expected the concept of simplicity to do. I
may add that the distinction which Schlick hoped to make between
law and chance can also be clarified with the help of the idea
of degrees of falsifiability: probability statements about sequences
having chance-like characteristics turn out to be of infinite dimen-
sion (cf. section 65); not simple but complex (cf. section 58 and
latter part of 59); and falsifiable only under special safeguards
(section 68).

The comparison of degrees of testability has been discussed at length
in sections 31 to 40. Some of the examples and other details given
there can be easily transferred to the problem of simplicity. This holds
especially for the degree of universality of a theory: a more universal
statement can take the place of many less universal ones, and for that
reason has often been called ‘simpler’. The concept of the dimension of
a theory may be said to give precision to Weyl’s idea of using the

problem often first looks like a paradox and later like a truism.) I wish to add here that I
have further developed my views on simplicity, and that in doing so I have tried hard
and, I hope, not quite without success, to learn something from Kneale. Cf. appendix *x
and section *15 of my Postscript.
1 Schlick, Naturwissenschaften 19, 1931, p. 148 (cf. note 1 to the preceding section).
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number of parameters to determine the concept of simplicity.*2 And
by means of our distinction between a formal and a material reduction
of the dimension of a theory (cf. section 40), certain possible objec-
tions to Weyl’s theory can be met. One of these is the objection that the
set of ellipses whose axes stand in a given ratio, and whose numerical
eccentricity is given, has exactly as many parameters as the set of
circles, although it is obviously less ‘simple’.

Above all, our theory explains why simplicity is so highly desirable. To
understand this there is no need for us to assume a ‘principle of econ-
omy of thought’ or anything of the kind. Simple statements, if know-
ledge is our object, are to be prized more highly than less simple ones
because they tell us more; because their empirical content is greater; and because they are
better testable.

44 GEOMETRICAL SHAPE AND FUNCTIONAL FORM

Our view of the concept of simplicity enables us to resolve a number of
contradictions which up to now have made it doubtful whether this
concept was of any use.

Few would regard the geometrical shape of, say, a logarithmic curve as

*2 As mentioned in notes 7 to section 42 and *1 to the present section, it was Harold
Jeffreys and Dorothy Wrinch who first proposed to measure the simplicity of a function
by the paucity of its freely adjustable parameters. But they also proposed to attach to the
simpler hypothesis a greater prior probability. Thus their views can be presented by the
schema

simplicity = paucity of parameters = high prior probability.

It so happens that I approached the matter from an entirely different angle. I was
interested in assessing degrees of testability, and I found first that testability can be
measured by ‘logical’ improbability (which corresponds exactly to Jeffreys’ ‘prior’
improbability). Then I found that testability, and thus prior improbability, can be
equated with paucity of parameters; and only at the end, I equated high testability with
high simplicity. Thus my view can be presented by the schema: testability =

high prior improbability = paucity of parameters = simplicity.

It will be seen that these two schemata coincide in part; but on the decisive point—
probability vs. improbability—they stand in direct opposition. See also appendix *viii.
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particularly simple; but a law which can be represented by a loga-
rithmic function is usually regarded as a simple one. Similarly a sine
function is commonly said to be simple, even though the geometrical
shape of the sine curve is perhaps not so very simple.

Difficulties like this can be cleared up if we remember the connec-
tion between the number of parameters and the degree of falsifiability,
and if we distinguish between the formal and the material reduction of
dimensions. (We must also remember the rôle of invariance with
respect to transformations of the co-ordinate systems.) If we speak of
the geometrical form or shape of a curve, then what we demand is invariance
with respect to all transformations belonging to the group of dis-
placements, and we may demand invariance with respect to similarity
transformations; for we do not think of a geometrical figure or shape as
being tied to a definite position. Consequently, if we think of the shape of
a one-parametric logarithmic curve (y = logax) as lying anywhere in a
plane, then it would have five parameters (if we allow for similarity
transformations). It would thus be by no means a particularly simple
curve. If, on the other hand, a theory or law is represented by a loga-
rithmic curve, then co-ordinate transformations of the kind described
are irrelevant. In such cases, there is no point in either rotations or
parallel displacements or similarity transformations. For a logarithmic
curve as a rule is a graphic representation in which the co-ordinates
cannot be interchanged. (For example, the x-axis might represent
atmospheric pressure, and the y-axis height above sea-level.) For this
reason, similarity transformations are equally without any significance
here. Analogous considerations hold for sine oscillations along a
particular axis, for example, the time axis; and for many other cases.

45 THE SIMPLICITY OF EUCLIDEAN GEOMETRY

One of the issues which played a major rôle in most of the discussions
of the theory of relativity was the simplicity of Euclidean geometry.
Nobody ever doubted that Euclidean geometry as such was simpler
than any non-Euclidean geometry with given constant curvature—not
to mention non-Euclidean geometries with curvatures varying from
place to place.

At first sight the kind of simplicity here involved seems to have little
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to do with degrees of falsifiability. But if the statements at issue
are formulated as empirical hypotheses, then we find that the two
concepts, simplicity and falsifiability, coincide in this case also.

Let us consider what experiments may help us to test the hypothesis,
‘In our world, we have to employ a certain metrical geometry with
such and such a radius of curvature.’ A test will be possible only if we
identify certain geometrical entities with certain physical objects—for
instance straight lines with light rays; or points with the intersection of
threads. If such an identification (a correlating definition, or perhaps an
ostensive definition; cf. section 17) is adopted, then it can be shown
that the hypothesis of the validity of an Euclidean light-ray-geometry is
falsifiable to a higher degree than any of the competing hypotheses
which assert the validity of some non-Euclidean geometry. For if we
measure the sum of the angles of a light-ray triangle, then any signifi-
cant deviation from 180 degrees will falsify the Euclidean hypothesis.
The hypothesis of a Bolyai-Lobatschewski geometry with given curva-
ture, on the other hand, would be compatible with any particular
measurement not exceeding 180 degrees. Moreover, to falsify this
hypothesis it would be necessary to measure not only the sum of the
angles, but also the (absolute) size of the triangle; and this means that
in addition to angles, a further unit of measurement, such as a unit of
area, would have to be defined. Thus we see that more measurements
are needed for a falsification; that the hypothesis is compatible with
greater variations in the results of measurements; and that it is there-
fore more difficult to falsify: it is falsifiable to a lesser degree. To put it
in another way, Euclidean geometry is the only metric geometry with a
definite curvature in which similarity transformations are possible. In
consequence, Euclidean geometrical figures can be invariant with
respect to more transformations; that is, they can be of lower
dimension: they can be simpler.

46 CONVENTIONALISM AND THE
CONCEPT OF SIMPLICITY

What the conventionalist calls ‘simplicity’ does not correspond to what
I call ‘simplicity’. It is the central idea of the conventionalist, and also
his starting point, that no theory is unambiguously determined by
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experience; a point with which I agree. He believes that he must there-
fore choose the ‘simplest’ theory. But since the conventionalist does
not treat his theories as falsifiable systems but rather as conventional
stipulations, he obviously means by ‘simplicity’ something different
from degree of falsifiability.

The conventionalist concept of simplicity turns out to be indeed
partly aesthetic and partly practical. Thus the following comment by
Schlick (cf. section 42) applies to the conventionalist concept of sim-
plicity, but not to mine: ‘It is certain that one can only define the
concept of simplicity by a convention which must always be arbi-
trary.’1 It is curious that conventionalists themselves have overlooked
the conventional character of their own fundamental concept—that of
simplicity. That they must have overlooked it is clear, for otherwise they
would have noticed that their appeal to simplicity could never save
them from arbitrariness, once they had chosen the way of arbitrary
convention.

From my point of view, a system must be described as complex in the
highest degree if, in accordance with conventionalist practice, one holds
fast to it as a system established forever which one is determined to
rescue, whenever it is in danger, by the introduction of auxiliary
hypotheses. For the degree of falsifiability of a system thus protected is
equal to zero. Thus we are led back, by our concept of simplicity, to the
methodological rules of section 20; and especially also to that rule or
principle which restrains us from indulgence in ad hoc hypotheses and
auxiliary hypotheses: to the principle of parsimony in the use of
hypotheses.

Addendum, 1972

In this chapter I have tried to show how far degrees of simplicity can be
identified with degrees of testability. Nothing depends on the word
‘simplicity’: I never quarrel about words, and I did not seek to reveal
the essence of simplicity. What I attempted was merely this:

Some great scientists and philosophers have made assertions about
simplicity and its value for science. I suggested that some of these

1 Schlick, ibid., p. 148.
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assertions can be better understood if we assume that when speaking
about simplicity they sometimes had testability in mind. This eluci-
dates even some of Poincaré’s examples, though it clashes with his views.

Today I should stress two further points: (1) We can compare theor-
ies with respect to testability only if at least some of the problems they are
supposed to solve coincide. (2) Ad hoc hypotheses cannot be compared
in this way.
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8
PROBABILITY

In this chapter I shall only deal with the probability of events and the
problems it raises. They arise in connection with the theory of games
of chance, and with the probabilistic laws of physics. I shall leave the
problems of what may be called the probability of hypotheses—such ques-
tions as whether a frequently tested hypothesis is more probable than
one which has been little tested—to be discussed in sections 79 to 85
under the title of ‘Corroboration’.

Ideas involving the theory of probability play a decisive part in mod-
ern physics. Yet we still lack a satisfactory, consistent definition of
probability; or, what amounts to much the same, we still lack a satisfac-
tory axiomatic system for the calculus of probability. The relations
between probability and experience are also still in need of clarifica-
tion. In investigating this problem we shall discover what will at first
seem an almost insuperable objection to my methodological views. For
although probability statements play such a vitally important rôle in
empirical science, they turn out to be in principle impervious to strict
falsification. Yet this very stumbling block will become a touchstone
upon which to test my theory, in order to find out what it is worth.

Thus we are confronted with two tasks. The first is to provide new founda-
tions for the calculus of probability. This I shall try to do by developing the
theory of probability as a frequency theory, along the lines followed by



Richard von Mises, but without the use of what he calls the ‘axiom of
convergence’ (or ‘limit axiom’), and with a somewhat weakened
‘axiom of randomness’. The second task is to elucidate the relations between
probability and experience. This means solving what I call the problem of decid-
ability of probability statements.

My hope is that these investigations will help to relieve the present
unsatisfactory situation in which physicists make much use of prob-
abilities without being able to say, consistently, what they mean by
‘probability’.*1

47 THE PROBLEM OF INTERPRETING
PROBABILITY STATEMENTS

I shall begin by distinguishing two kinds of probability statements:
those which state a probability in terms of numbers—which I will call
numerical probability statements—and those which do not.

Thus the statement, ‘The probability of throwing eleven with two
(true) dice is 1/18’, would be an example of a numerical probability
statement. Non-numerical probability statements can be of various
kinds. ‘It is very probable that we shall obtain a homogeneous mixture

*1 Within the theory of probability, I have made since 1934 three kinds of changes.
(1) The introduction of a formal (axiomatic) calculus of probabilities which can be

interpreted in many ways—for example, in the sense of the logical and of the frequency
interpretations discussed in this book, and also of the propensity interpretation discussed
in my Postscript.

(2) A simplification of the frequency theory of probability through carrying out,
more fully and more directly than in 1934, that programme for reconstructing the
frequency theory which underlies the present chapter.

(3) The replacement of the objective interpretation of probability in terms of fre-
quency by another objective interpretation—the propensity interpretation—and the replace-
ment of the calculus of frequencies by the neo-classical (or measure-theoretical)
formalism.

The first two of these changes date back to 1938 and are indicated in the book itself
(i.e. in this volume): the first by some new appendices, *ii to *v, and the second—the one
which affects the argument of the present chapter—by a number of new footnotes to this
chapter, and by the new appendix *vi. The main change is described here in footnote
*1 to section 57.

The third change (which I first introduced, tentatively, in 1953) is explained and
developed in the Postscript, where it is also applied to the problems of quantum theory.
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by mixing water and alcohol’, illustrates one kind of statement which,
suitably interpreted, might perhaps be transformed into a numerical
probability statement. (For example, ‘The probability of obtaining . . .
is very near to 1’.) A very different kind of non-numerical probability
statement would be, for instance, ‘The discovery of a physical effect
which contradicts the quantum theory is highly improbable’; a state-
ment which, I believe, cannot be transformed into a numerical prob-
ability statement, or put on a par with one, without distorting its
meaning. I shall deal first with numerical probability statements; non-
numerical ones, which I think less important, will be considered
afterwards.

In connection with every numerical probability statement, the ques-
tion arises: ‘How are we to interpret a statement of this kind and, in
particular, the numerical assertion it makes?’

48 SUBJECTIVE AND OBJECTIVE INTERPRETATIONS

The classical (Laplacean) theory of probability defines the numerical
value of a probability as the quotient obtained by dividing the number
of favourable cases by the number of equally possible cases. We might
disregard the logical objections which have been raised against this
definition,1 such as that ‘equally possible’ is only another expression
for ‘equally probable’. But even then we could hardly accept this defin-
ition as providing an unambiguously applicable interpretation. For
there are latent in it several different interpretations which I will
classify as subjective and objective.

A subjective interpretation of probability theory is suggested by the fre-
quent use of expressions with a psychological flavour, like ‘mathemat-
ical expectation’ or, say, ‘normal law of error’, etc.; in its original form it is
psychologistic. It treats the degree of probability as a measure of the feel-
ings of certainty or uncertainty, of belief or doubt, which may be

1 Cf. for example von Mises, Wahrscheinlichkeit, Statistik und Wahrheit, 1928, pp. 62 ff.; 2nd
edition, 1936, pp. 84 ff.; English translation by J. Neyman, D. Sholl, and E. Rabinowitsch,
Probability, Statistics and Truth, 1939, pp. 98 ff. *Although the classical definition is often
called ‘Laplacean’ (also in this book), it is at least as old as De Moivre’s Doctrine of Chances,
1718. For an early objection against the phrase ‘equally possible’, see C. S. Peirce, Collected
Papers 2, 1932 (first published 1878), p. 417, para. 2, 673.
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aroused in us by certain assertions or conjectures. In connection with
some non-numerical statements, the word ‘probable’ may be quite
satisfactorily translated in this way; but an interpretation along these
lines does not seem to me very satisfactory for numerical probability
statements.

A newer variant of the subjective interpretation,*1 however, deserves
more serious consideration here. This interprets probability statements
not psychologically but logically, as assertions about what may be called
the ‘logical proximity’2 of statements. Statements, as we all know, can
stand in various logical relations to one another, like derivability,
incompatibility, or mutual independence; and the logico-subjective
theory, of which Keynes3 is the principal exponent, treats the probability
relation as a special kind of logical relationship between two statements.
The two extreme cases of this probability relation are derivability and
contradiction: a statement q ‘gives’,4 it is said, to another statement p
the probability 1 if p follows from q. In case p and q contradict each
other the probability given by q to p is zero. Between these extremes lie
other probability relations which, roughly speaking, may be inter-
preted in the following way: The numerical probability of a statement p
(given q) is the greater the less its content goes beyond what is already
contained in that statement q upon which the probability of p depends
(and which ‘gives’ to p a probability).

The kinship between this and the psychologistic theory may be seen
from the fact that Keynes defines probability as the ‘degree of rational
belief’. By this he means the amount of trust it is proper to accord to a
statement p in the light of the information or knowledge which we get
from that statement q which ‘gives’ probability to p.

A third interpretation, the objective interpretation, treats every numerical

*1 The reasons why I count the logical interpretation as a variant of the subjective inter-
pretation are more fully discussed in chapter *ii of the Postscript, where the subjective
interpretation is criticized in detail. Cf. also appendix *ix.
2 Waismann, Logische Analyse des Wahrscheinlichkeitsbegriffs, Erkenntnis 1, 1930, p. 237: ‘Prob-
ability so defined is then, as it were, a measure of the logical proximity, the deductive
connection between the two statements’. Cf. also Wittgenstein, op. cit., proposition 5.15 ff.
3 J. M. Keynes, A Treatise on Probability, 1921, pp. 95 ff.
4 Wittgenstein, op. cit., proposition 5.152: ‘If p follows from q, the proposition q gives to
the proposition p the probability 1. The certainty of logical conclusion is a limiting case
of probability.’

some structural components of a theory of experience136



probability statement as a statement about the relative frequency with
which an event of a certain kind occurs within a sequence of occurrences.5

According to this interpretation, the statement ‘The probability of
the next throw with this die being a five equals 1/6’ is not really an
assertion about the next throw; rather, it is an assertion about a whole
class of throws of which the next throw is merely an element. The state-
ment in question says no more than that the relative frequency of fives,
within this class of throws, equals 1/6.

According to this view, numerical probability statements are only
admissible if we can give a frequency interpretation of them. Those prob-
ability statements for which a frequency interpretation cannot be
given, and especially the non-numerical probability statements, are
usually shunned by the frequency theorists.

In the following pages I shall attempt to construct anew the theory
of probability as a (modified) frequency theory. Thus I declare my faith in
an objective interpretation; chiefly because I believe that only an objective
theory can explain the application of the probability calculus within
empirical science. Admittedly, the subjective theory is able to give a
consistent solution to the problem of how to decide probability state-
ments; and it is, in general, faced by fewer logical difficulties than is the
objective theory. But its solution is that probability statements are non-
empirical; that they are tautologies. And this solution turns out to be
utterly unacceptable when we remember the use which physics makes
of the theory of probability. (I reject that variant of the subjective
theory which holds that objective frequency statements should be
derived from subjective assumptions—perhaps using Bernoulli’s the-
orem as a ‘bridge’:6 I regard this programme for logical reasons as
unrealizable.)

5 For the older frequency theory cf. the critique of Keynes, op. cit., pp. 95 ff., where special
reference is made to Venn’s The Logic of Chance. For Whitehead’s view cf. section 80 (note
2). Chief representatives of the new frequency theory are: R. von Mises (cf. note 1 to
section 50), Dörge, Kamke, Reichenbach and Tornier. *A new objective interpretation,
very closely related to the frequency theory, but differing from it even in its mathemat-
ical formalism, is the propensity interpretation, introduced in sections *53 ff. of my Postscript.
6 Keynes’s greatest error; cf. section 62, below, especially note 3. *I have not changed my
view on this point even though I now believe that Bernoulli’s theorem may serve as a
‘bridge’ within an objective theory—as a bridge from propensities to statistics. See also
appendix *ix and sections *55 to *57 of my Postscript.
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49 THE FUNDAMENTAL PROBLEM OF
THE THEORY OF CHANCE

The most important application of the theory of probability is to what
we may call ‘chance-like’ or ‘random’ events, or occurrences. These
seem to be characterized by a peculiar kind of incalculability which
makes one disposed to believe—after many unsuccessful attempts—
that all known rational methods of prediction must fail in their case.
We have, as it were, the feeling that not a scientist but only a prophet
could predict them. And yet, it is just this incalculability that makes us
conclude that the calculus of probability can be applied to these
events.

This somewhat paradoxical conclusion from incalculability to cal-
culability (i.e. to the applicability of a certain calculus) ceases, it is true,
to be paradoxical if we accept the subjective theory. But this way of
avoiding the paradox is extremely unsatisfactory. For it entails the view
that the probability calculus is not a method of calculating predictions,
in contradistinction to all the other methods of empirical science. It is,
according to the subjective theory, merely a method for carrying out
logical transformations of what we already know; or rather what we do
not know; for it is just when we lack knowledge that we carry out these
transformations.1 This conception dissolves the paradox indeed, but it
does not explain how a statement of ignorance, interpreted as a frequency statement, can be
empirically tested and corroborated. Yet this is precisely our problem. How can
we explain the fact that from incalculability—that is, from ignorance—
we may draw conclusions which we can interpret as statements about
empirical frequencies, and which we then find brilliantly corroborated
in practice?

Even the frequency theory has not up to now been able to give a
satisfactory solution of this problem—the fundamental problem of the theory
of chance, as I shall call it. It will be shown in section 67 that this problem
is connected with the ‘axiom of convergence’ which is an integral part

1 Waismann, Erkenntnis 1, 1930, p. 238, says: ‘There is no other reason for introducing the
concept of probability than the incompleteness of our knowledge.’ A similar view is held
by C. Stumpf (Sitzungsberichte der Bayerischen Akademie der Wissenschaften, phil.-hist. Klasse, 1892,
p. 41). *I believe that this widely held view is responsible for the worst confusions. This
will be shown in detail in my Postscript, chapters *ii and *v.
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of the theory in its present form. But it is possible to find a satisfactory
solution within the framework of the frequency theory, after this
axiom has been eliminated. It will be found by analysing the assump-
tions which allow us to argue from the irregular succession of single
occurrences to the regularity or stability of their frequencies.

50 THE FREQUENCY THEORY OF VON MISES

A frequency theory which provides a foundation for all the principal
theorems of the calculus of probability was first proposed by Richard
von Mises.1 His fundamental ideas are as follows.

The calculus of probability is a theory of certain chance-like or
random sequences of events or occurrences, i.e. of repetitive events
such as a series of throws with a die. These sequences are defined as
‘chance-like’ or ‘random’ by means of two axiomatic conditions: the
axiom of convergence (or the limit-axiom) and the axiom of randomness. If a
sequence of events satisfies both of these conditions it is called by von
Mises a ‘collective’.

A collective is, roughly speaking, a sequence of events or occur-
rences which is capable in principle of being continued indefinitely;
for example a sequence of throws made with a supposedly indestruct-
ible die. Each of these events has a certain character or property; for
example, the throw may show a five and so have the property five. If we
take all those throws having the property five which have appeared up
to a certain element of the sequence, and divide their number by the
total number of throws up to that element (i.e. its ordinal number in
the sequence) then we obtain the relative frequency of fives up to that
element. If we determine the relative frequency of fives up to every
element of the sequence, then we obtain in this way a new sequence—
the sequence of the relative frequencies of fives. This sequence of frequencies is
distinct from the original sequence of events to which it corresponds,

1 R. von Mises, Fundamentalsätze der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift 4, 1919,
p. 1; Grundlagen der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift 5, 1919, p. 52; Wahrschein-
lichkeit, Statistik, und Wahrheit (1928), 2nd edition 1936, English translation by J. Neyman,
D. Sholl, and E. Rabinowitsch: Probability, Statistics and Truth, 1939; Wahrscheinlichkeitsrechnung
und ihre Anwendung in der Statistik und theoretischen Physik (Vorlesungen über angewandte Mathematik
1), 1931.
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and which may be called the ‘event-sequence’ or the ‘property-
sequence’.

As a simple example of a collective I choose what we may call an
‘alternative’. By this term we denote a sequence of events supposed to
have two properties only—such as a sequence of tosses of a coin. The one
property (heads) will be denoted by ‘1’, and the other (tails) by ‘0’.
A sequence of events (or sequence of properties) may then be
represented as follows:

0 1 1 0 0 0 1 1 1 0 1 0 1 0 . . . .(A)

Corresponding to this ‘alternative’—or, more precisely, correlated
with the property ‘1’ of this alternative—is the following sequence of
relative frequencies, or ‘frequency-sequence’:2

O
1

2

2

3

2

4

2

5

2

6

3

7

4

8

5

9

5

10

6

11

6

12

7

13

7

14
 . . . .(A′)

Now the axiom of convergence (or ‘limit-axiom’) postulates that, as the
event-sequence becomes longer and longer, the frequency-sequence
shall tend towards a definite limit. This axiom is used by von Mises
because we have to make sure of one fixed frequency value with which we
can work (even though the actual frequencies have fluctuating values).
In any collective there are at least two properties; and if we are given
the limits of the frequencies corresponding to all the properties of a
collective, then we are given what is called its ‘distribution’.

The axiom of randomness or, as it is sometimes called, ‘the principle of the
excluded gambling system’, is designed to give mathematical expres-
sion to the chance-like character of the sequence. Clearly, a gambler
would be able to improve his chances by the use of a gambling system

2 We can correlate with every sequence of properties as many distinct sequences of
relative frequencies as there are properties defined in the sequence. Thus in the case of an
alternative there will be two distinct sequences. Yet these two sequences are derivable
from one another, since they are complementary (corresponding terms add up to 1). For
this reason I shall, for brevity, refer to ‘the (one) sequence of relative frequencies correl-
ated with the alternative (α)’, by which I shall always mean the sequence of frequencies
correlated with the property ‘1’ of this alternative (α).
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if sequences of penny tosses showed regularities such as, say, a fairly
regular appearance of tails after every run of three heads. Now the
axiom of randomness postulates of all collectives that there does not
exist a gambling system that can be successfully applied to them. It
postulates that, whatever gambling system we may choose for selecting
supposedly favourable tosses, we shall find that, if gambling is con-
tinued long enough, the relative frequencies in the sequence of tosses
supposed to be favourable will approach the same limit as those in the
sequence of all tosses. Thus a sequence for which there exists a gambling
system by means of which the gambler can improve his chances is not
a collective in the sense of von Mises.

Probability, for von Mises, is thus another term for ‘limit of relative
frequency in a collective’. The idea of probability is therefore applic-
able only to sequences of events; a restriction likely to be quite unacceptable
from a point of view such as Keynes’s. To critics objecting to the
narrowness of his interpretation, von Mises replied by stressing the
difference between the scientific use of probability, for example in
physics, and the popular uses of it. He pointed out that it would be
a mistake to demand that a properly defined scientific term has to
correspond in all respects to inexact, pre-scientific usage.

The task of the calculus of probability consists, according to von Mises,
simply and solely in this: to infer certain ‘derived collectives’ with
‘derived distributions’ from certain given ‘initial collectives’ with cer-
tain given ‘initial distributions’; in short, to calculate probabilities
which are not given from probabilities which are given.

The distinctive features of his theory are summarized by von Mises
in four points:3 the concept of the collective precedes that of prob-
ability; the latter is defined as the limit of the relative frequencies; an
axiom of randomness is formulated; and the task of the calculus of
probability is defined.

51 PLAN FOR A NEW THEORY OF PROBABILITY

The two axioms or postulates formulated by von Mises in order to
define the concept of a collective have met with strong criticism—

3 Cf. von Mises, Wahrscheinlichkeitsrechnung, 1931, p. 22.
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criticism which is not, I think, without some justification. In particular,
objections have been raised against combining the axiom of con-
vergence with the axiom of randomness1 on the ground that it is
inadmissible to apply the mathematical concept of a limit, or of con-
vergence, to a sequence which by definition (that is, because of the
axiom of randomness) must not be subject to any mathematical rule or
law. For the mathematical limit is nothing but a characteristic property of the
mathematical rule or law by which the sequence is determined. It is merely a prop-
erty of this rule or law if, for any chosen fraction arbitrarily close to
zero, there is an element in the sequence such that all elements follow-
ing it deviate by less than that fraction from some definite value—
which is then called their limit.

To meet such objections it has been proposed to refrain from com-
bining the axiom of convergence with that of randomness, and to
postulate only convergence, i.e. the existence of a limit. As to the axiom
of randomness, the proposal was either to abandon it altogether
(Kamke) or to replace it by a weaker requirement (Reichenbach).
These suggestions presuppose that it is the axiom of randomness
which is the cause of the trouble.

In contrast to these views, I am inclined to blame the axiom of
convergence no less than the axiom of randomness. Thus I think that
there are two tasks to be performed: the improvement of the axiom of
randomness—mainly a mathematical problem; and the complete elim-
ination of the axiom of convergence—a matter of particular concern
for the epistemologist.2 (Cf. section 66.)

In what follows I propose to deal first with the mathematical, and
afterwards with the epistemological question.

The first of these two tasks, the reconstruction of the mathematical
theory,3 has as its main aim the derivation of Bernoulli’s theorem—
the first ‘Law of Great Numbers’—from a modified axiom of randomness;

1 Waismann, Erkenntnis 1, 1930, p. 232.
2 This concern is expressed by Schlick, Naturwissenschaften 19, 1931. *I still believe that
these two tasks are important. Although I almost succeeded in the book in achieving
what I set out to do, the two tasks were satisfactorily completed only in the new
appendix *vi.
3 A full account of the mathematical construction will be published separately. *Cf. the
new appendix *vi.
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modified, namely, so as to demand no more than is needed to achieve
this aim. Or to be more precise, my aim is the derivation of the
Binomial Formula (sometimes called ‘Newton’s Formula’), in what I
call its ‘third form’. For from this formula, Bernoulli’s theorem and the
other limit theorems of probability theory can be obtained in the usual
way.

My plan is to work out first a frequency theory for finite classes, and to
develop the theory, within this frame, as far as possible—that is, up to
the derivation of the (‘first’) Binomial Formula. This frequency theory
for finite classes turns out to be a quite elementary part of the theory of
classes. It will be developed merely in order to obtain a basis for
discussing the axiom of randomness.

Next I shall proceed to infinite sequences, i.e. to sequences of events
which can be continued indefinitely, by the old method of introducing
an axiom of convergence, since we need something like it for our
discussion of the axiom of randomness. And after deriving and exam-
ining Bernoulli’s theorem, I shall consider how the axiom of convergence might
be eliminated, and what sort of axiomatic system we should be left with as
the result.

In the course of the mathematical derivation I shall use three different
frequency symbols: F″ is to symbolize relative frequency in finite
classes; F′ is to symbolize the limit of the relative frequencies of an
infinite frequency-sequence; and finally F, is to symbolize objective
probability, i.e. relative frequency in an ‘irregular’ or ‘random’ or
‘chance-like’ sequence.

52 RELATIVE FREQUENCY WITHIN A FINITE CLASS

Let us consider a class α of a finite number of occurrences, for example
the class of throws made yesterday with this particular die. This class α,
which is assumed to be non-empty, serves, as it were, as a frame of
reference, and will be called a (finite) reference-class. The number of
elements belonging to α, i.e. its cardinal number, is denoted by ‘N(α)’,
to be read ‘the number of α’. Now let there be another class, β, which
may be finite or not. We will call β our property-class: it may be, for
example, the class of all throws which show a five, or (as we shall say)
which have the property five.
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The class of those elements which belong to both α and β, for
example the class of throws made yesterday with this particular die and
having the property five, is called the product-class of α and β, and is
denoted by ‘α.β’, to be read ‘α and β’. Since α.β is a subclass of α, it can
at most contain a finite number of elements (it may be empty). The
number of elements in α.β is denoted by ‘N(α.β)’.

Whilst we symbolize (finite) numbers of elements by N, the relative
frequencies are symbolized by F″. For example, ‘the relative frequency
of the property β within the finite reference-class α’ is written
‘αF″(β)’, which may be read ‘the α-frequency of β’. We can now
define

αF″(β) =
N(α.β)

N(α)
(Definition 1)

In terms of our example this would mean: ‘The relative frequency of
fives among yesterday’s throws with this die is, by definition, equal to
the quotient obtained by dividing the number of fives, thrown yester-
day with this die, by the total number of yesterday’s throws with this
die.’*1

From this rather trivial definition, the theorems of the calculus of
frequency in finite classes can very easily be derived (more especially, the
general multiplication theorem; the theorem of addition; and the the-
orems of division, i.e. Bayes’s rules. Cf. appendix ii). Of the theorems of
this calculus of frequency, and of the calculus of probability in general,
it is characteristic that cardinal numbers (N-numbers) never appear in
them, but only relative frequencies, i.e. ratios, or F-numbers. The N-
numbers only occur in the proofs of a few fundamental theorems
which are directly deduced from the definition; but they do not occur
in the theorems themselves.*2

*1 Definition 1 is of course related to the classical definition of probability as the ratio of
the favourable cases to the equally possible cases; but it should be clearly distinguished
from the latter definition: there is no assumption involved here that the elements of α are
‘equally possible’.
*2 By selecting a set of F-formulae from which the other F-formulae can be derived, we
obtain a formal axiom system for probability; compare the appendices ii, *ii, *iv, and *v.
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How this is to be understood will be shown here with the help of
one very simple example. (Further examples will be found in appendix
ii.) Let us denote the class of all elements which do not belong to β by
‘β
-
’ (read: ‘the complement of β’ or simply: ‘non-β’). Then we may

write

αF″(β) + αF″(β
-
) = 1

While this theorem only contains F-numbers, its proof makes use of N-
numbers. For the theorem follows from the definition (1) with the
help of a simple theorem from the calculus of classes which asserts that
N(α.β) + N(α.β

-
) = N(α).

53 SELECTION, INDEPENDENCE,
INSENSITIVENESS, IRRELEVANCE

Among the operations which can be performed with relative frequen-
cies in finite classes, the operation of selection1 is of special importance
for what follows.

Let a finite reference-class α be given, for example the class of but-
tons in a box, and two property-classes, β (say, the red buttons) and γ
(say, the large buttons). We may now take the product-class α.β as a new
reference-class, and raise the question of the value of α.βF″ (γ), i.e. of the
frequency of γ within the new reference-class.2 The new reference-
class α.β may be called ‘the result of selecting β-elements from α’, or
the ‘selection from α according to the property β’; for we may think of
it as being obtained by selecting from α all those elements (buttons)
which have the property β (red).

Now it is just possible that γ may occur in the new reference-class,
α.β, with the same relative frequency as in the original reference-class
α; i.e. it may be true that

α.βF″ (γ) = αF″ (γ)

1 Von Mises’s term is ‘choice’ (‘Auswahl’).
2 The answer to this question is given by the general division theorem (cf. appendix ii).
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In this case we say (following Hausdorff3) that the properties β and γ
are ‘mutually independent, within the reference-class α’. The relation of
independence is a three-termed relation and is symmetrical in the
properties β and γ.4 If two properties β and γ are (mutually)
independent within a reference-class α we can also say that the prop-
erty γ is, within α, insensitive to the selection of β-elements; or perhaps
that the reference-class α is, with respect to this property γ, insensitive
to a selection according to the property β.

The mutual independence, or insensitiveness, of β and γ within α
could also—from the point of view of the subjective theory—be inter-
preted as follows: If we are informed that a particular element of the
class α has the property β, then this information is irrelevant if β and γ
are mutually independent within α; irrelevant namely, to the question
whether this element also has the property γ, or not.*1 If, on the other
hand, we know that γ occurs more often (or less often) in the subclass
α.β (which has been selected from α according to β), then the infor-
mation that an element has the property β is relevant to the question
whether this element also has the property γ or not.5

3 Hausdorff, Berichte über die Verhandlungen der sächsischen Ges. d. Wissenschaften, Leipzig, mathem.-
physik. Klasse 53, 1901, p. 158.
4 It is even triply symmetrical, i.e. for α, β and γ, if we assume β and γ also to be finite. For
the proof of the symmetry assertion cf. appendix ii, (1s) and (1s). *The condition of
finitude for triple symmetry asserted in this note is insufficient. I may have intended to
express the condition that β and γ are bounded by the finite reference class α, or, most
likely, that α should be our finite universe of discourse. (These are sufficient conditions.)
The insufficiency of the condition, as formulated in my note, is shown by the following
counter-example. Take a universe of 5 buttons; 4 are round (α); 2 are round and black
(αβ); 2 are round and large (αγ); 1 is round, black, and large (αβγ); and 1 is square,
black, and large (�βγ). Then we do not have triple symmetry since αF″ (γ) ≠ βF″ (γ).
*1 Thus any information about the possession of properties is relevant, or irrelevant, if
and only if the properties in question are, respectively, dependent or independent. Rele-
vance can thus be defined in terms of dependence, but the reverse is not the case. (Cf. the
next footnote, and note *1 to section 55.)
5 Keynes objected to the frequency theory because he believed that it was impossible to
define relevance in its terms; cf. op. cit., pp. 103 ff. *In fact, the subjective theory cannot define
(objective) independence, which is a serious objection as 1 show in my Postscript, chapter *ii,
especially sections *40 to *43.
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54 FINITE SEQUENCES. ORDINAL SELECTION AND
NEIGHBOURHOOD SELECTION

Let us suppose that the elements of a finite reference-class α are numbered
(for instance that a number is written on each button in the box), and
that they are arranged in a sequence, in accordance with these ordinal
numbers. In such a sequence we can distinguish two kinds of selection
which have special importance, namely selection according to the
ordinal number of an element, or briefly, ordinal selection, and
selection according to its neighbourhood.

Ordinal selection consists in making a selection, from the sequence α, in
accordance with a property β which depends upon the ordinal number
of the element (whose selection is to be decided on). For example β
may be the property even, so that we select from α all those elements
whose ordinal number is even. The elements thus selected form a
selected sub-sequence. Should a property γ be independent of an ordinal
selection according to β, then we can also say that the ordinal selection is
independent with respect to γ; or we can say that the sequence α is,
with respect to γ, insensitive to a selection of β-elements.

Neighbourhood selection is made possible by the fact that, in ordering the
elements in a numbered sequence, certain neighbourhood relations are
created. This allows us, for example, to select all those members whose
immediate predecessor has the property γ; or, say, those whose first
and second predecessors, or whose second successor, have the property
γ; and so on.

Thus if we have a sequence of events—say tosses of a coin—we have
to distinguish two kinds of properties: its primary properties such as
‘heads’ or ‘tails’, which belong to each element independently of its
position in the sequence; and its secondary properties such as ‘even’ or
‘successor of tails’, etc., which an element acquires by virtue of its
position in the sequence.

A sequence with two primary properties has been called ‘alterna-
tive’. As von Mises has shown, it is possible to develop (if we are
careful) the essentials of the theory of probability as a theory of alterna-
tives, without sacrificing generality. Denoting the two primary proper-
ties of an alternative by the figures ‘1’ and ‘0’, every alternative can be
represented as a sequence of ones and zeros.
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Now the structure of an alternative can be regular, or it can be more or
less irregular. In what follows we will study this regularity or irregularity
of certain finite alternatives more closely.*1

55 N-FREEDOM IN FINITE SEQUENCES

Let us take a finite alternative α, for example one consisting of a
thousand ones and zeros regularly arranged as follows:

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 . . .(α)

In this alternative we have equal distribution, i.e. the relative frequen-
cies of the ones and the zeros are equal. If we denote the relative
frequency of the property 1 by ‘F″ (1)’ and that of 0 by ‘F″ (0)’, we can
write:

αF″ (1) = αF″ (0) = 1
2(1)

We now select from α all terms with the neighbourhood-property of
immediately succeeding a one (within the sequence α). If we denote this
property by ‘β’, we may call the selected sub-sequence ‘α.β’. It will
have the structure:

1 0 1 0 1 0 1 0 1 0 . . .(α.β)

This sequence is again an alternative with equal distribution. Moreover,
neither the relative frequency of the ones nor that of the zeros has
changed; i.e. we have

α.βF″ (1) = αF″ (1); α.βF″ (0) = αF″ (0).(2)

In the terminology introduced in section 53, we can say that the pri-
mary properties of the alternative α are insensitive to selection according
to the property β; or, more briefly, that α is insensitive to selection
according to β.

*1 I suggest that sections 55 to 64, or perhaps only 56 to 64, be skipped at first reading.
It may even be advisable to turn from here, or from the end of section 55, direct to
chapter 10.

some structural components of a theory of experience148



Since every element of α has either the property β (that of being the
successor of a one) or that of being the successor of a zero, we can
denote the latter property by ‘β

-
’. If we now select the members having

the property β
-
 we obtain the alternative:

0 1 0 1 0 1 0 1 0 . . .(α.β
-
)

This sequence shows a very slight deviation from equal distribution in
so far as it begins and ends with zero (since α itself ends with ‘0, 0’ on
account of its equal distribution). If α contains 2000 elements, then
α.β

-
 will contain 500 zeros, and only 499 ones. Such deviations from

equal distribution (or from other distributions) arise only on account
of the first or last elements: they can be made as small as we please by
making the sequence sufficiently long. For this reason they will be
neglected in what follows; especially since our investigations are to be
extended to infinite sequences, where these deviations vanish. Accord-
ingly, we shall say that the alternative α.β

-
 has equal distribution, and

that the alternative α is insensitive to the selection of elements having the
property β

-
. As a consequence, α, or rather the relative frequency of the

primary properties of α, is insensitive to both, a selection according to
β and according to β

-
; and we may therefore say that α is insensitive to

every selection according to the property of the immediate predecessor.
Clearly, this insensitivity is due to certain aspects of the structure of

the alternative α; aspects which may distinguish it from other alterna-
tives. For example, the alternatives α.β and α.β

-
 are not insensitive to

selection according to the property of a predecessor.
We can now investigate the alternative α in order to see whether it is

insensitive to other selections, especially to selection according to the
property of a pair of predecessors. We can, for example, select from α all
those elements which are successors of a pair 1,1. And we see at once
that α is not insensitive to the selection of the successor of any of the
four possible pairs 1,1; 1,0; 0,1; 0,0. In none of these cases have the
resulting sub-sequences equal distribution; on the contrary, they all
consist of uninterrupted blocks (or ‘iterations’), i.e. of nothing but ones, or
of nothing but zeros.

The fact that α is insensitive to selection according to single pre-
decessors, but not insensitive to selection according to pairs of
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predecessors, might be expressed, from the point of view of the sub-
jective theory, as follows. Information about the property of one pre-
decessor of any element in α is irrelevant to the question of the
property of this element. On the other hand, information about the
properties of its pair of predecessors is of the highest relevance; for given
the law according to which α is constructed, it enables us to predict the
property of the element in question: the information about the proper-
ties of its pair of predecessors furnishes us, so to speak, with the initial
conditions needed for deducing the prediction. (The law according to
which α is constructed requires a pair of properties as initial conditions;
thus it is ‘two-dimensional’ with respect to these properties. The speci-
fication of one property is ‘irrelevant’ only in being composite in an
insufficient degree to serve as an initial condition. Cf. section 38.*1)

Remembering how closely the idea of causality—of cause and effect—is
related to the deduction of predictions, I shall now make use of the
following terms. The assertion previously made about the alternative α,
‘α is insensitive to selection according to a single predecessor’, I shall
now express by saying, ‘α is free from any after-effect of single predeces-
sors’ or briefly, ‘α is 1-free’. And instead of saying as before, that α is
(or is not) ‘insensitive to selection according to pairs of predecessors’, I
shall now say: ‘α is (not) free from the after-effects of pairs of predeces-
sors’, or briefly, ‘α is (not) 2-free.’*2

Using the 1-free alternative α as our prototype we can now easily

*1 This is another indication of the fact that the terms ‘relevant’ and ‘irrelevant’, figuring
so largely in the subjective theory, are grossly misleading. For if p is irrelevant, and
likewise q, it is a little surprising to learn that p.q may be of the highest relevance. See also
appendix *ix, especially points 5 and 6 of the first note.
*2 The general idea of distinguishing neighbourhoods according to their size, and of
operating with well-defined neighbourhood-selections was introduced by me. But the
term ‘free from after-effect’ (‘nachwirkungsfrei’) is due to Reichenbach. Reichenbach, how-
ever, used it at the time only in the absolute sense of ‘insensitive to selection according to
any preceding group of elements’. The idea of introducing a recursively definable concept of
1-freedom, 2-freedom, . . . and n-freedom, and of thus utilizing the recursive method for
analysing neighbourhood selections and especially for constructing random sequences is mine.
(I have used the same recursive method also for defining the mutual independence of n
events.) This method is quite different from Reichenbach’s, See also footnote 4 to section
58, and especially footnote 2 to section 60, below. Added 1968: I have now found that
the term was used long before Reichenbach by Smoluchowski.
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construct other sequences, again with equal distribution, which are not
only free from the after effects of one predecessor, i.e. 1-free (like α),
but which are, in addition, free from the after effects of a pair of
predecessors, i.e., 2-free; and after this, we can go on to sequences
which are 3-free, etc. In this way we are led to a general idea which is
fundamental for what follows. It is the idea of freedom from the after-
effects of all the predecessors up to some number n; or, as we shall say,
of n-freedom. More precisely, we shall call a sequence ‘n-free’ if, and
only if, the relative frequencies of its primary properties are ‘n-
insensitive’, i.e. insensitive to selection according to single predecessors
and according to pairs of predecessors and according to triplets of
predecessors . . . and according to n-tuples of predecessors.1

An alternative α which is 1-free can be constructed by repeating the
generating period

1 1 0 0 . . .(A)

any number of times. Similarly we obtain a 2-free alternative with
equal distribution if we take

1 0 1 1 1 0 0 0 . . .(B)

as its generating period. A 3-free alternative is obtained from the
generating period

1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 . . .(C)

and a 4-free alternative is obtained from the generating period

0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 . . .(D)

It will be seen that the intuitive impression of being faced with an
irregular sequence becomes stronger with the growth of the number n
of its n-freedom.

1 As Dr. K. Schiff has pointed out to me, it is possible to simplify this definition. It is
enough to demand insensitivity to selection of any predecessor n-tuple (for a given n).
Insensitivity to selection of n −1-tuples (etc.) can then be proved easily.
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The generating period of an n-free alternative with equal distribu-
tion must contain at least 2n + 1 elements. The periods given as examples
can, of course, begin at different places; (C) for example can begin
with its fourth element, so that we obtain, in place of (C)

1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 . . .(C′)

There are other transformations which leave the n-freedom of a
sequence unchanged. A method of constructing generating periods
of n-free sequences for every number n will be described
elsewhere.*3

If to the generating period of an n-free alternative we add the first n
elements of the next period, then we obtain a sequence of the length
2n + 1 + n. This has, among others, the following property: every
arrangement of n + 1 zeros and ones, i.e. every possible n + 1-tuple,
occurs in it at least once.*4

56 SEQUENCES OF SEGMENTS. THE FIRST
FORM OF THE BINOMIAL FORMULA

Given a finite sequence α, we call a sub-sequence of α consisting of n
consecutive elements a ‘segment of α of length n’; or, more briefly, an
‘n-segment of α’. If, in addition to the sequence α, we are given some
definite number n, then we can arrange the n-segments of α in a
sequence—the sequence of n-segments of α. Given a sequence α, we may
construct a new sequence, of n-segments of α, in such a way that we

*3 Cf. note *1 to appendix iv. The result is a sequence of the length 2n + n − 1 such that by
omitting its last n − 1 elements, we obtain a generating period for an m-free alternative,
with m = n − 1.
*4 The following definition, applicable to any given long but finite alternative A, with
equidistribution, seems appropriate. Let N be the length of A, and let n be the greatest
integer such that 2n + 1 � N. Then A is said to be perfectly random if and only if the relative
number of occurrences of any given pair, triplet, . . . , m-tuplet (up to m = n) deviates
from that of any other pair, triplet, . . . , m-tuplet, by not more than, say, m/N½

respectively. This characterization makes it possible to say of a given alternative A that it is
approximately random; and it even allows us to define a degree of approximation. A
more elaborate definition may be based upon the method (of maximizing my
E-function) described under points 8 ff. of my Third Note reprinted in appendix *ix.
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begin with the segment of the first n elements of α. Next comes the
segment of the elements 2 to n + 1 of α. In general, we take as the xth
element of the new sequence the segment consisting of the elements x
to x + n − 1 of α. The new sequence so obtained may be called the
‘sequence of the overlapping n-segments of α’. This name indicates that
any two consecutive elements (i.e. segments) of the new sequence
overlap in such a way that they have n − 1 elements of the original
sequence α in common.

Now we can obtain, by selection, other n-sequences from a sequence
of overlapping segments; especially sequences of adjoining n-segments.

A sequence of adjoining n-segments contains only such n-segments
as immediately follow each other in α without overlapping. It may
begin, for example, with the n-segments of the elements numbered 1
to n, of the original sequence α, followed by that of the elements n + 1
to 2n, 2n + 1 to 3n, and so on. In general, a sequence of adjoining
segments will begin with the kth element of α and its segments will
contain the elements of α numbered k to n + k − 1, n + k to 2n + k − 1,
2n + k to 3n + k − 1, and so on.

In what follows, sequences of overlapping n-segments of α will be
denoted by ‘α(n)’, and sequences of adjoining n-segments by ‘αn’.

Let us now consider the sequences of overlapping segments α(n) a
little more closely. Every element of such a sequence is an n-segment of
α. As a primary property of an element of α(n), we might consider, for
instance, the ordered n-tuple of zeros and ones of which the segment
consists. Or we could, more simply, regard the number of its ones as the
primary property of the element (disregarding the order of the ones and
zeros). If we denote the number of ones by ‘m’ then, clearly, we have
m � n.

Now from every sequence α(n) we again get an alternative if we select
a particular m (m � n), ascribing the property ‘m’ to each element of
the sequence α(n) which has exactly m ones (and therefore n − m zeros)
and the property ‘m̄’ (non-m) to all other elements of α(n). Every
element of α(n) must then have one or the other of these two
properties.

Let us now imagine again that we are given a finite alternative α with
the primary properties ‘1’ and ‘0’. Assume that the frequency of the
ones, αF″ (1), is equal to p, and that the frequency of the zeros, αF″ (0),

probability 153



is equal to q. (We do not assume that the distribution is equal, i.e. that
p = q.)

Now let this alternative α be at least n −1-free (n being an arbitrarily
chosen natural number). We can then ask the following question: What
is the frequency with which the property m occurs in the sequence αn?
Or in other words, what will be the value of α(n)

F″(m)?
Without assuming anything beyond the fact that α is at least

n −1-free, we can settle this question1 by elementary arithmetic. The
answer is contained in the following formula, the proof of which will
be found in appendix iii:

α(n)
F″ (m) = nCmpmqn − m(1)

The right-hand side of the ‘binomial’ formula (1) was given—in
another connection—by Newton. (It is therefore sometimes called
Newton’s formula.) I shall call it the ‘first form of the binomial
formula’.*1

With the derivation of this formula, I now leave the frequency
theory as far as it deals with finite reference-classes. The formula will
provide us with a foundation for our discussion of the axiom of
randomness.

57 INFINITE SEQUENCES. HYPOTHETICAL
ESTIMATES OF FREQUENCY

It is quite easy to extend the results obtained for n-free finite sequences
to infinite n-free sequences which are defined by a generating period (cf.
section 55). An infinite sequence of elements playing the rôle of the
reference-class to which our relative frequencies are related may be

1 The corresponding problem in connection with infinite sequences of adjoining seg-
ments I call ‘Bernoulli’s problem’ (following von Mises, Wahrscheinlichkeitsrechnung, 1931,
p. 128); and in connection with infinite sequences of overlapping segments I call it ‘the
quasi-Bernoulli problem’ (cf. note 1 to section 60). Thus the problem here discussed
would be the quasi-Bernoulli problem for finite sequences.
*1 In the original text, I used the term ‘Newton’s formula’; but since this seems to be
rarely used in English, I decided to translate it by ‘binomial formula’.
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called a ‘reference-sequence’. It more or less corresponds to a
‘collective’ in von Mises’s sense.*1

The concept of n-freedom presupposes that of relative frequency; for
what its definition requires to be insensitive—insensitive to selection
according to certain predecessors—is the relative frequency with which a
property occurs. In our theorems dealing with infinite sequences I shall
employ, but only provisionally (up to section 64), the idea of a limit of
relative frequencies (denoted by F′), to take the place of relative frequency in
finite classes (F″). The use of this concept gives rise to no problem so long
as we confine ourselves to reference-sequences which are constructed
according to some mathematical rule. We can always determine for such
sequences whether the corresponding sequence of relative frequencies
is convergent or not. The idea of a limit of relative frequencies leads to
trouble only in the case of sequences for which no mathematical rule is
given, but only an empirical rule (linking, for example the sequence
with tosses of a coin); for in these cases the concept of limit is not
defined (cf. section 51).

An example of a mathematical rule for constructing a sequence is

*1 I come here to the point where I failed to carry out fully my intuitive programme—
that of analysing randomness as far as it is possible within the region of finite sequences,
and of proceeding to infinite reference sequences (in which we need limits of relative
frequencies) only afterwards, with the aim of obtaining a theory in which the existence
of frequency limits follows from the random character of the sequence. I could have
carried out this programme very easily by constructing, as my next step (finite) shortest n-
free sequences for a growing n, as I did in my old appendix iv. It can then be easily shown
that if, in these shortest sequences, n is allowed to grow without bounds, the sequences
become infinite, and the frequencies turn without further assumption into frequency
limits. (See note *2 to appendix iv, and my new appendix *vi.) All this would have
simplified the next sections which, however, retain their significance. But it would have
solved completely and without further assumption the problems of sections 63 and 64;
for since the existence of limits becomes demonstrable, points of accumulation need no
longer be mentioned.

These improvements, however, remain all within the framework of the pure frequency
theory: except in so far as they define an ideal standard of objective disorder, they
become unnecessary if we adopt a propensity interpretation of the neo-classical
(measure-theoretical) formalism, as explained in sections *53 ff of my Postscript. But even
then it remains necessary to speak of frequency hypotheses—of hypothetical estimates
and their statistical tests; and thus the present section remains relevant, as does much in
the succeeding sections, down to section 64.
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the following: ‘The nth element of the sequence α shall be 0 if, and
only if, n is divisible by four’. This defines the infinite alternative

1 1 1 0 1 1 1 0 . . .(α)

with the limits of the relative frequencies: αF′ (1) = 3/4; and αF′
(0) = 1/4. Sequences which are defined in this way by means of a
mathematical rule I shall call, for brevity, ‘mathematical sequences’.

By contrast, a rule for constructing an empirical sequence would be, for
instance: ‘The nth element of the sequence α shall be 0 if, and only if,
the nth toss of the coin c shows tails.’ But empirical rules need not
always define sequences of a random character. For example, I should
describe the following rule as empirical: ‘The nth element of the
sequence shall be 1 if, and only if, the nth second (counting from some
zero instant) finds the pendulum p to the left of this mark.’

The example shows that it may sometimes be possible to replace an
empirical rule by a mathematical one—for example on the basis of
certain hypotheses and measurements relating to some pendulum. In
this way, we may find a mathematical sequence approximating to our
empirical sequence with a degree of precision which may or may not
satisfy us, according to our purposes. Of particular interest in our
present context is the possibility (which our example could be used
to establish) of obtaining a mathematical sequence whose various
frequencies approximate to those of a certain empirical sequence.

In dividing sequences into mathematical and empirical ones I am
making use of a distinction that may be called ‘intensional’ rather than
‘extensional’. For if we are given a sequence ‘extensionally’, i.e. by
listing its elements singly, one after the other—so that we can only
know a finite piece of it, a finite segment, however long—then it is
impossible to determine, from the properties of this segment, whether
the sequence of which it is a part is a mathematical or an empirical
sequence. Only when a rule of construction is given—that is, an ‘inten-
sional’ rule—can we decide whether a sequence is mathematical or
empirical.

Since we wish to tackle our infinite sequences with the help of the
concept of a limit (of relative frequencies), we must restrict our
investigation to mathematical sequences, and indeed to those for
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which the corresponding sequence of relative frequencies is con-
vergent. This restriction amounts to introducing an axiom of con-
vergence. (The problems connected with this axiom will not be dealt
with until sections 63 to 66, since it turns out to be convenient to
discuss them along with the ‘law of great numbers’.)

Thus we shall be concerned only with mathematical sequences. Yet we
shall be concerned only with those mathematical sequences of which
we expect, or conjecture, that they approximate, as regards frequencies,
to empirical sequences of a chance-like or random character; for these are our main
interest. But to expect, or to conjecture, of a mathematical sequence
that it will, as regards frequencies, approximate to an empirical
one is nothing else than to frame a hypothesis—a hypothesis about the
frequencies of the empirical sequence.1

The fact that our estimates of the frequencies in empirical random
sequences are hypotheses is without any influence on the way we may
calculate these frequencies. Clearly, in connection with finite classes, it
does not matter in the least how we obtain the frequencies from which
we start our calculations. These frequencies may be obtained by actual
counting, or from a mathematical rule, or from a hypothesis of some
kind or other. Or we may simply invent them. In calculating frequen-
cies we accept some frequencies as given, and derive other frequencies
from them.

The same is true of estimates of frequencies in infinite sequences.
Thus the question as to the ‘sources’ of our frequency estimates is
not a problem of the calculus of probability; which, however, does not
mean that it will be excluded from our discussion of the problems of
probability theory.

In the case of infinite empirical sequences we can distinguish two
main ‘sources’ of our hypothetical estimates of frequencies—that is to
say, two ways in which they may suggest themselves to us. One is an
estimate based upon an ‘equal-chance hypothesis’ (or equi-probability
hypothesis), the other is an estimate based upon an extrapolation of
statistical findings.

1 Later, in sections 65 to 68, I will discuss the problem of decidability of frequency hypoth-
eses, that is to say, the problem whether a conjecture or hypothesis of this kind can be
tested; and if so, how; whether it can be corroborated in any way; and whether it is
falsifiable. *Cf. also appendix *ix.
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By an ‘equal-chance hypothesis’ I mean a hypothesis asserting that the
probabilities of the various primary properties are equal: it is a hypoth-
esis asserting equal distribution. Equal-chance hypotheses are usually based
upon considerations of symmetry.2 A highly typical example is the con-
jecture of equal frequencies in dicing, based upon the symmetry and
geometrical equivalence of the six faces of the cube.

For frequency hypotheses based on statistical extrapolation, estimates of
rates of mortality provide a good example. Here statistical data about
mortality are empirically ascertained; and upon the hypothesis that past trends
will continue to be very nearly stable, or that they will not change much—at
least during the period immediately ahead—an extrapolation to
unknown cases is made from known cases, i.e. from occurrences which
have been empirically classified, and counted.

People with inductivist leanings may tend to overlook the hypo-
thetical character of these estimates: they may confuse a hypothetical
estimate, i.e. a frequency-prediction based on statistical extrapolation,
with one of its empirical ‘sources’—the classifying and actual counting
of past occurrences and sequences of occurrences. The claim is often
made that we ‘derive’ estimates of probabilities—that is, predictions of
frequencies—from past occurrences which have been classified and
counted (such as mortality statistics). But from a logical point of view
there is no justification for this claim. We have made no logical deriv-
ation at all. What we may have done is to advance a non-verifiable
hypothesis which nothing can ever justify logically: the conjecture that
frequencies will remain constant, and so permit of extrapolation. Even
equal-chance hypotheses are held to be ‘empirically derivable’ or ‘empiric-
ally explicable’ by some believers in inductive logic who suppose them
to be based upon statistical experience, that is, upon empirically
observed frequencies. For my own part I believe, however, that in mak-
ing this kind of hypothetical estimate of frequency we are often guided
solely by our reflections about the significance of symmetry, and by
similar considerations. I do not see any reason why such conjectures
should be inspired only by the accumulation of a large mass of induct-
ive observations. However, I do not attach much importance to these

2 Keynes deals with such questions in his analysis of the principle of indifference. Cf. op. cit.,
Chapter IV, pp. 41–64.
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questions about the origins or ‘sources’ of our estimates. (Cf. section
2.) It is more important, in my opinion, to be quite clear about the fact
that every predictive estimate of frequencies, including one which we
may get from statistical extrapolation—and certainly all those that refer
to infinite empirical sequences—will always be pure conjecture since it
will always go far beyond anything which we are entitled to affirm on
the basis of observations.

My distinction between equal-chance hypotheses and statistical
extrapolations corresponds fairly well to the classical distinction
between ‘a priori’ and ‘a posteriori’ probabilities. But since these terms
are used in so many different senses,3 and since they are, moreover,
heavily tainted with philosophical associations, they are better
avoided.

In the following examination of the axiom of randomness, I shall
attempt to find mathematical sequences which approximate to random
empirical sequences; which means that I shall be examining
frequency-hypotheses.*2

58 AN EXAMINATION OF THE AXIOM
OF RANDOMNESS

The concept of an ordinal selection (i.e. of a selection according to
position) and the concept of a neighbourhood-selection, have both
been introduced and explained in section 55. With the help of these
concepts I will now examine von Mises’s axiom of randomness—the
principle of the excluded gambling system—in the hope of finding a
weaker requirement which is nevertheless able to take its place. In von
Mises’s theory this ‘axiom’ is part of his definition of the concept of a
collective: he demands that the limits of frequencies in a collective shall
be insensitive to any kind of systematic selection whatsoever. (As he

3 Born and Jordan, for instance, in Elementare Quantenmechanik, 1930, p. 308, use the first of
these terms in order to denote a hypothesis of equal distribution. A. A. Tschuprow, on the
other hand, uses the expression ‘a priori probability’ for all frequency hypotheses, in order to
distinguish them from their statistical tests, i.e. the results, obtained a posteriori, of empirical
counting.
*2 This is precisely the programme here alluded to in note *1 above, and carried out in
appendices iv and *vi.
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points out, a gambling system can always be regarded as a systematic
selection.)

Most of the criticism which has been levelled against this axiom
concentrates on a relatively unimportant and superficial aspect of its
formulation. it is connected with the fact that, among the possible
selections, there will be the selection, say, of those throws which come
up five; and within this selection, obviously, the frequency of the fives
will be quite different from what it is in the original sequence. This is
why von Mises in his formulation of the axiom of randomness speaks
of what he calls ‘selections’ or ‘choices’ which are ‘independent of the
result’ of the throw in question, and are thus defined without making
use of the property of the element to be selected.1 But the many attacks
levelled against this formulation2 can all be answered merely by point-
ing out that we can formulate von Mises’s axiom of randomness with-
out using the questionable expressions at all.3 For we may put it, for
example, as follows: The limits of the frequencies in a collective shall
be insensitive both to ordinal and to neighbourhood selection, and also
to all combinations of these two methods of selection that can be used
as gambling systems.*1

With this formulation the above mentioned difficulties disappear.
Others however remain. Thus it might be impossible to prove that the
concept of a collective, defined by means of so strong an axiom of
randomness, is not self-contradictory; or in other words, that the class
of ‘collectives’ is not empty. (The necessity for proving this has been
stressed by Kamke.4) At least it seems to be impossible to construct an

1 Cf. for example von Mises’s Wahrscheinlichkeit, Statistik und Wahrheit, 1928, p. 25; English
translation, 1939, p. 33.
2 Cf. for instance, Feigl, Erkenntnis 1, 1930, p. 256, where that formulation is described as
‘not mathematically expressible’. Reichenbach’s criticism, in Mathematische Zeitschrift 34,
1932, p. 594 f., is very similar.
3 Dörge has made a similar remark, but he did not explain it.
*1 The last seven words (which are essential) were not in the German text.
4 Cf. for instance, Kamke, Einführung in die Wahrscheinlichkeitstheorie, 1932, p. 147, and Jahres-
bericht der Deutschen mathem. Vereinigung 42, 1932. Kamke’s objection must also be raised
against Reichenbach’s attempt to improve the axiom of randomness by introducing
normal sequences, since he did not succeed in proving that this concept is non-empty. Cf.
Reichenbach, Axiomatik der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift 34, 1932,
p. 606.
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example of a collective and in that way to show that collectives exist. This
is because an example of an infinite sequence which is to satisfy certain
conditions can only be given by a mathematical rule. But for a collect-
ive in von Mises’s sense there can be, by definition, no such rule, since
any rule could be used as a gambling system or as a system of selection.
This criticism seems indeed unanswerable if all possible gambling
systems are ruled out.*2

Against the idea of excluding all gambling systems, another objection
may be raised, however: that it really demands too much. If we are going to
axiomatize a system of statements—in this case the theorems of the
calculus of probability, particularly the special theorem of multiplica-
tion or Bernoulli’s theorem—then the axioms chosen should not only
be sufficient for the derivation of the theorems of the system, but also (if
we can make them so) necessary. Yet the exclusion of all systems of selec-
tion can be shown to be unnecessary for the deduction of Bernoulli’s
theorem and its corollaries. It is quite sufficient to demand the exclusion
of a special class of neighbourhood-selection: it suffices to demand that
the sequence should be insensitive to selections according to arbitrarily
chosen n-tuples of predecessors; that is to say, that it should be n-free from
after-effects for every n, or more briefly, that it should be ‘absolutely free’.

I therefore propose to replace von Mises’s principle of the excluded
gambling system by the less exacting requirement of ‘absolute free-
dom’, in the sense of n-freedom for every n, and accordingly to define
chance-like mathematical sequences as those which fulfil this require-
ment. The chief advantage of this is that it does not exclude all gam-
bling systems, so that it is possible to give mathematical rules for
constructing sequences which are ‘absolutely free’ in our sense, and
hence to construct examples. (Cf. section (a) of appendix iv.) Thus
Kamke’s objection, discussed above, is met. For we can now prove that
the concept of chance-like mathematical sequences is not empty, and is
therefore consistent.*3

*2 It is, however, answerable if any given denumerable set of gambling systems is to be ruled
out; for then an example of a sequence may be constructed (by a kind of diagonal
method). See section *54 of the Postscript (text after note 5), on A. Wald.
*3 The reference to appendix iv is of considerable importance here. Also, most of the
objections which have been raised against my theory were answered in the following
paragraph of my text.

probability 161



It may seem odd, perhaps, that we should try to trace the highly
irregular features of chance sequences by means of mathematical
sequences which must conform to the strictest rules. Von Mises’s
axiom of randomness may seem at first to be more satisfying to our
intuitions. It seems quite satisfying to learn that a chance sequence
must be completely irregular, so that every conjectured regularity will
be found to fail, in some later part of the sequence, if only we keep on
trying hard to falsify the conjecture by continuing the sequence long
enough. But this intuitive argument benefits my proposal also. For if
chance sequences are irregular, then, a fortiori, they will not be regular
sequences of one particular type. And our requirement of ‘absolute
freedom’ does no more than exclude one particular type of regular
sequence, though an important one.

That it is an important type may be seen from the fact that by our
requirement we implicitly exclude the following three types of gam-
bling systems (cf. the next section). First we exclude ‘normal’ or
‘pure’*4 neighbourhood selections, i.e. those in which we select
according to some constant characteristic of the neighbourhood. Secondly we
exclude ‘normal’ ordinal selection which picks out elements whose
distance apart is constant, such as the elements numbered k, n + k,
2n + k . . . and so on. And finally, we exclude [many] combinations of
these two types of selection (for example the selection of every nth
element, provided its neighbourhood has certain specified [constant]
characteristics). A characteristic property of all these selections is that
they do not refer to an absolute first element of the sequence; they may
thus yield the same selected sub-sequence if the numbering of the
original sequence begins with another (appropriate) element. Thus the
gambling systems which are excluded by my requirement are those
which could be used without knowing the first element of the
sequence: the systems excluded are invariant with respect to certain
(linear) transformations: they are the simple gambling systems (cf.
section 43). Only*5 gambling systems which refer to the absolute

*4 Cf. the last paragraph of section 60, below.
*5 The word ‘only’ is only correct if we speak of (predictive) gambling systems; cf. note *3
to section 60, below, and note 6 to section *54 of my Postscript.
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distances of the elements from an absolute (initial) element5 are not
excluded by my requirement.

The requirement of n-freedom for every n—of ‘absolute freedom’—
also seems to agree quite well with what most of us, consciously or
unconsciously, believe to be true of chance sequences; for example that
the result of the next throw of a die does not depend upon the results
of preceding throws. (The practice of shaking the die before the throw
is intended to ensure this ‘independence’.)

59 CHANCE-LIKE SEQUENCES. OBJECTIVE PROBABILITY

In view of what has been said I now propose the following definition.
An event-sequence or property-sequence, especially an alternative, is

said to be ‘chance-like’ or ‘random’ if and only if the limits of the
frequencies of its primary properties are ‘absolutely free’, i.e. insensi-
tive to every selection based upon the properties of any n-tuple of
predecessors. A frequency-limit corresponding to a sequence which is
random is called the objective probability of the property in question,
within the sequence concerned; it is symbolized by F. This may also be
put as follows. Let the sequence α be a chance-like or random-like
sequence with the primary property β; in this case, the following
holds:

αF(β) = αF′ (β)

We shall have to show now that our definition suffices for the deriv-
ation of the main theorems of the mathematical theory of probability,
especially Bernoulli’s theorem. Subsequently—in section 64—the def-
inition here given will be modified so as to make it independent of the
concept of a limit of frequencies.*1

5 Example: the selection of all terms whose number is a prime.
*1 At present I should be inclined to use the concept of ‘objective probability’
differently—that is, in a wider sense, so as to cover all ‘objective’ interpretations of the formal
calculus of probabilities, such as the frequency interpretation and, more especially, the pro-
pensity interpretation which is discussed in the Postscript. Here, in section 59, the concept
is used merely as an auxiliary concept in the construction of a certain form of the
frequency theory.
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60 BERNOULLI’S PROBLEM

The first binomial formula which was mentioned in section 56, viz.

α(n)
F″ (m) = nCmpmqn − m (1)

holds for finite sequences of overlapping segments. It is derivable on
the assumption that the finite sequence α is at least n −1-free. Upon the
same assumption, we immediately obtain an exactly corresponding
formula for infinite sequences; that is to say, if α is infinite and at least
n−1-free, then

α(n)
F′ (m) = nCmpmqn − m (2)

Since chance-like sequences are absolutely free, i.e. n-free for every n,
formula (2), the second binomial formula, must also apply to them; and
it must apply to them, indeed, for whatever value of n we may choose.

In what follows, we shall be concerned only with chance-like
sequences, or random sequences (as defined in the foregoing section).
We are going to show that, for chance-like sequences, a third binomial
formula (3) must hold in addition to formula (2); it is the formula

αn
F(m) = nCmpmqn − m (3)

Formula (3) differs from formula (2) in two ways: First, it is asserted
for sequences of adjoining segments αn instead of for sequences of
overlapping segments α(n). Secondly, it does not contain the symbol F′
but the symbol F. This means that it asserts, by implication, that the
sequences of adjoining segments are in their turn chance-like, or random; for F,
i.e. objective probability, is defined only for chance-like sequences.

The question, answered by (3), of the objective probability of the
property m in a sequence of adjoining segments—i.e. the question of
the value of αn

F(m)—I call, following von Mises, ‘Bernoulli’s prob-
lem’.1 For its solution, and hence for the derivation of the third

1 The corresponding question for sequences of overlapping segments, i.e. the problem of

α(n)
F′(m), answered by (2), can be called the ‘quasi-Bernoulli problem’; cf. note 1 to

section 56 as well as section 61.
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binomial formula (3), it is sufficient to assume that α is chance-like or
random.2 (Our task is equivalent to that of showing that the special
theorem of multiplication holds for the sequence of adjoining
segments of a random sequence α.)

The proof*1 of formula (3) may be carried out in two steps. First we
show that formula (2) holds not only for sequences of overlapping
segments α(n), but also for sequences of adjoining sequences αn. Sec-
ondly, we show that the latter are ‘absolutely free’. (The order of these
steps cannot be reversed, because a sequence of overlapping segments
α(n) is definitely not ‘absolutely free’; in fact, a sequence of this kind
provides a typical example of what may be called ‘sequences with
after-effects’.3)

First step. Sequences of adjoining segments αn are sub-sequences of
α(n). They can be obtained from these by normal ordinal selection. Thus
if we can show that the limits of the frequencies in overlapping
sequences α(n)

F′(m) are insensitive to normal ordinal selection, we
have taken our first step (and even gone a little farther); for we shall
have proved the formula:

αn
F′ (m) = α(n)

F′ (m) (4)

I shall first sketch this proof in the case of n = 2; i.e. I shall show that

α2
F′(m) = α(2)

F′(m) (m � 2) (4a)

is true; it will then be easy to generalize this formula for every n.
From the sequence of overlapping segments α(2) we can select two

2 Reichenbach (Axiomatik der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift 34, 1932,
p. 603) implicitly contests this when he writes, ‘ . . . normal sequences are also free
from after-effect, whilst the converse does not necessarily hold’. But Reichenbach’s normal
sequences are those for which (3) holds. (My proof is made possible by the fact that I
have departed from previous procedure, by defining the concept ‘freedom from after-
effect’ not directly, but with the help of ‘n-freedom from after-effect’, thus making it
accessible to the procedure of mathematical induction.)
*1 Only a sketch of the proof is here given. Readers not interested in the proof may turn
to the last paragraph of the present section.
3 Von Smoluchowski based his theory of the Brownian movement on after-effect
sequences, i.e. on sequences of overlapping segments.
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and only two distinct sequences α2 of adjoining segments; one, which
will be denoted by (A), contains the first, third, fifth, . . . , segments of
α(2), that is, the pairs of α consisting of the numbers 1,2; 3,4; 5,6; . . .
The other, denoted by (B), contains the second, fourth, sixth, . . . ,
segments of α(2), that is, the pairs of elements of α consisting of the
numbers 2,3; 4,5; 6,7; . . . , etc. Now assume that formula (4a) does not
hold for one of the two sequences, (A) or (B), so that the segment (i.e.
the pair) 0,0 occurs too often in, say, the sequence (A); then in sequence
(B) a complementary deviation must occur; that is, the segment 0,0
will occur not often enough (‘too often’, or ‘not often enough’, as com-
pared with the binomial formula). But this contradicts the assumed
‘absolute freedom’ of α. For if the pair 0,0 occurs in (A) more often
than in (B), then in sufficiently long segments of α the pair 0,0 must
appear more often at certain characteristic distances apart than at other
distances. The more frequent distances would be those which would
obtain if the 0,0 pairs belonged to one of the two α2-sequences. The less
frequent distances would be those which would obtain if they
belonged to both α2-sequences. But this would contradict the assumed
‘absolute freedom’ of α; for according to the second binomial formula,
the ‘absolute freedom’ of α entails that the frequency with which a
particular sequence of the length n occurs in any α(n)-sequence depends
only on the number of ones and zeros occurring in it, and not on their
arrangement in the sequence.*2

This proves (4a); and since this proof can easily be generalized for
any n, the validity of (4) follows; which completes the first step of the
proof.

Second step. The fact that the αn-sequences are ‘absolutely free’ can be
shown by a very similar argument. Again, we first consider α2-
sequences only; and with respect to these it will only be shown, to start
with, that they are 1-free. Assume that one of the two α2-sequences, e.g.
the sequence (A), is not 1-free. Then in (A) after at least one of the
segments consisting of two elements (a particular α-pair), say after the

*2 The following formulation may be intuitively helpful: if the 0,0 pairs are more
frequent in certain characteristic distances than in others, then this fact may be easily
used as the basis of a simple system which would somewhat improve the chances of a
gambler. But gambling systems of this type are incompatible with the ‘absolute freedom’
of the sequence. The same consideration underlies the ‘second step’ of the proof.
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segment 0,0, another segment, say 1,1, must follow more often than
would be the case if (A) were ‘absolutely free’; this means that the
segment 1,1 would appear with greater frequency in the sub-sequence
selected from (A) according to the predecessor-segment 0,0 than the
binomial formula would lead us to expect.

This assumption, however, contradicts the ‘absolute freedom’ of the
sequence α. For if the segment 1,1 follows in (A) the segment 0,0 too
frequently then, by way of compensation, the converse must take place
in (B); for otherwise the quadruple 0,0,1,1 would, in a sufficiently
long segment of α, occur too often at certain characteristic distances apart—
namely at the distances which would obtain if the double pairs in
question belonged to one and the same α2-sequence. Moreover, at
other characteristic distances the quadruple would occur not often
enough—at those distances, namely, which would obtain if they
belonged to both α2-sequences. Thus we are confronted with precisely
the same situation as before; and we can show, by analogous consider-
ations, that the assumption of a preferential occurrence at characteristic
distances is incompatible with the assumed ‘absolute freedom’ of α.

This proof can again be generalized, so that we may say of α-
sequences that they are not only 1-free but n-free for every n; and hence
that they are chance-like, or random.

This completes our sketch of the two steps. Thus we are now entitled
to replace, in (4), F′ by F; and this means that we may accept the claim
that the third binomial formula solves Bernoulli’s problem.

Incidentally we have shown that sequences α(n) of overlapping seg-
ments are insensitive to normal ordinal selection whenever α is ‘absolutely
free’.

The same is also true for sequences αn of adjoining segments,
because every normal ordinal selection from αn can be regarded as a
normal ordinal selection from α(n); and it must therefore apply to the
sequence α itself, since α is identical with both α(1) and α1

We have thus shown, among other things, that from ‘absolute
freedom’—which means insensitiveness to a special type of neigh-
bourhood selection—insensitiveness to normal ordinal selection fol-
lows. A further consequence, as can easily be seen, is insensitiveness to
any ‘pure’ neighbourhood selection (that is, selection according to a
constant characterization of its neighbourhood—a characterization

probability 167



that does not vary with the ordinal number of the element). And it
follows, finally, that ‘absolute freedom’ will entail insensitivity to all*3

combinations of these two types of selection.

61 THE LAW OF GREAT NUMBERS
(BERNOULLI’S THEOREM)

Bernoulli’s theorem, or the (first1) ‘law of great numbers’ can be
derived from the third binomial formula by purely arithmetical reason-
ing, under the assumption that we can take n to the limit, n → ∞. It can
therefore be asserted only of infinite sequences α; for it is only in these
that the n-segments of αn-sequences can increase in length indefinitely.
And it can be asserted only of such sequences α as are ‘absolutely free’,
for it is only under the assumption of n-freedom for every n that we can
take n to the limit, n → ∞.

Bernoulli’s theorem provides the solution of a problem which is
closely akin to the problem which (following von Mises) I have called
‘Bernoulli’s problem’, viz. the problem of the value of αn

F(m). As
indicated in section 56, an n-segment may be said to have the property
‘m’ when it contains precisely m ones; the relative frequency of ones
within this (finite) segment is then, of course, m/n. We may now
define: An n-segment of α has the property ‘∆p’ if and only if the
relative frequency of its ones deviates by less than δ from the value

αF(1) = p, i.e. the probability of ones in the sequence α; here, δ is any
small fraction, chosen as near to zero as we like (but different from
zero). We can express this condition by saying: an n segment has the

property ‘∆p’ if and only if |
m

n
− p | < δ; otherwise, the segment has

the property ‘∆p’. Now Bernoulli’s theorem answers the question of
the value of the frequency, or probability, of segments of this kind—of

*3 Here the word ‘all’ is, I now believe, mistaken, and should be replaced, to be a little
more precise, by ‘all those . . . that might be used as gambling systems’. Abraham Wald
showed me the need for this correction in 1935. Cf. footnotes *1 and *5 to section 58
above (and footnote 6, referring to A. Wald, in section *54 of my Postscript).
1 Von Mises distinguishes Bernoulli’s—or Poisson’s—theorem from its inverse which
he calls ‘Bayes’s theorem’ or ‘the second law of great numbers’.
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segments possessing the property ‘∆p’—within the αn-sequences; it
thus answers the question of the value of αn

F(∆p).
Intuitively one might guess that if the value δ (with δ > 0) is fixed,

and if n increases, then the frequency of these segments with the prop-
erty ∆p, and therefore the value of αn

F(∆p), will also increase (and
that its increase will be monotonic). Bernoulli’s proof (which can be
found in any textbook on the calculus of probability) proceeds by
evaluating this increase with the help of the binomial formula. He finds
that if n increases without limit, the value of αn

F(∆p) approaches
the maximal value 1, for any fixed value of δ, however small. This may
be expressed in symbols by

lim
n → ∞

αnF(∆p) = 1 (for any value of ∆p) (1)

This formula results from transforming the third binomial formula
for sequences of adjoining segments. The analogous second binomial for-
mula for sequences of overlapping segments would immediately lead, by
the same method, to the corresponding formula

lim
n → ∞

α(n)F′(∆p) = 1 (2)

which is valid for sequences of overlapping segments and normal
ordinal selection from them, and hence for sequences with after-effects
(which have been studied by Smoluchowski2). Formula (2) itself
yields (1) in case sequences are selected which do not overlap, and
which are therefore n-free. (2) may be described as a variant of
Bernoulli’s theorem; and what I am going to say here about Bernoulli’s
theorem applies mutatis mutandis to this variant.

Bernoulli’s theorem, i.e. formula (1), may be expressed in words as
follows. Let us call a long finite segment of some fixed length, selected
from a random sequence α, a ‘fair sample’ if, and only if, the frequency
of the ones within this segment deviates from p, i.e. the value of the prob-
ability of the ones within the random sequence α, by no more than some

2 Cf. note 3 to section 60, and note 5 to section 64.
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small fixed fraction (which we may freely choose). We can then say
that the probability of chancing upon a fair sample approaches 1 as
closely as we like if only we make the segments in question sufficiently
long.*1

In this formulation the word ‘probability’ (or ‘value of the probability’)
occurs twice. How is it to be interpreted or translated here? In the sense
of my frequency definition it would have to be translated as follows (I
italicize the two translations of the word ‘probability’ into the fre-
quency language): The overwhelming majority of all sufficiently long finite
segments will be ‘fair samples’; that is to say, their relative frequency
will deviate from the frequency value p of the random sequence in ques-
tion by an arbitrarily fixed small amount; or, more briefly: The frequency
p is realized, approximately, in almost all sufficiently long segments.
(How we arrive at the value p is irrelevant to our present discussion; it
may be, say, the result of a hypothetical estimate.)

Bearing in mind that the Bernoulli frequency αn
F(∆p) increases

monotonically with the increasing length n of the segment and that it
decreases monotonically with decreasing n, and that, therefore, the
value of the relative frequency is comparatively rarely realized in short
segments, we can also say:

Bernoulli’s theorem states that short segments of ‘absolutely free’ or
chance-like sequences will often show relatively great deviations from p
and thus relatively great fluctuations, while the longer segments, in
most cases, will show smaller and smaller deviations from p with
increasing length. Consequently, most deviations in sufficiently long
segments will become as small as we like; or in other words, great
deviations will become as rare as we like.

Accordingly, if we take a very long segment of a random sequence,
in order to find the frequencies within its sub-sequences by counting,
or perhaps by the use of other empirical and statistical methods, then
we shall get, in the vast majority of cases, the following result. There is
a characteristic average frequency, such that the relative frequencies in
the whole segment, and in almost all long sub-segments, will deviate

*1 This sentence has been reformulated (without altering its content) in the translation
by introducing the concept of a ‘fair sample’: the original operates only with the
definiens of this concept.
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only slightly from this average, whilst the relative frequencies of
smaller sub-segments will deviate further from this average, and the
more often, the shorter we choose them. This fact, this statistically
ascertainable behaviour of finite segments, may be referred to as their
‘quasi-convergent-behaviour’; or as the fact that random sequences are statistically
stable.*2

Thus Bernoulli’s theorem asserts that the smaller segments of
chance-like sequences often show large fluctuations, whilst the large
segments always behave in a manner suggestive of constancy or con-
vergence; in short, that we find disorder and randomness in the small,
order and constancy in the great. It is this behaviour to which the
expression ‘the law of great numbers’ refers.

62 BERNOULLI’S THEOREM AND THE INTERPRETATION
OF PROBABILITY STATEMENTS

We have just seen that in the verbal formulation of Bernoulli’s theorem
the word ‘probability’ occurs twice.

The frequency theorist has no difficulty in translating this word, in
both cases, in accordance with its definition: he can give a clear inter-
pretation of Bernoulli’s formula and the law of great numbers. Can the
adherent of the subjective theory in its logical form do the same?

The subjective theorist who wants to define ‘probability’ as ‘degree
of rational belief’ is perfectly consistent, and within his rights, when he
interprets the words ‘The probability of . . . approaches to I as closely as
we like’ as meaning, ‘It is almost certain1 that . . .’ But he merely
obscures his difficulties when he continues ‘. . . that the relative fre-
quency will deviate from its most probable value p by less than a given
amount . . .’, or in the words of Keynes,2 ‘that the proportion of the
event’s occurrences will diverge from the most probable proportion p by less

*2 Keynes says of the ‘Law of Great Numbers’ that ‘the “Stability of Statistical
Frequencies” would be a much better name for it’. (Cf. his Treatise, p. 336.)
1 Von Mises also uses the expression ‘almost certain’, but according to him it is of course to
be regarded as defined by ‘having a frequency close to [or equal to] I’.
2 Keynes, A Treatise on Probability, 1921, p. 338. *The preceding passage in quotation marks
had to be inserted here because it re-translates the passage I quoted from the German
edition of Keynes on which my text relied.
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than a given amount . . . ’. This sounds like good sense, at least on first
hearing. But if here too we translate the word ‘probable’ (sometimes
suppressed) in the sense of the subjective theory then the whole story
runs: ‘It is almost certain that the relative frequencies deviate from the
value p of the degree of rational belief by less than a given amount . . . ’,
which seems to me complete nonsense.*1 For relative frequencies can
be compared only with relative frequencies, and can deviate or not
deviate only from relative frequencies. And clearly, it must be inadmis-
sible to give after the deduction of Bernoulli’s theorem a meaning to p
different from the one which was given to it before the deduction.3

Thus we see that the subjective theory is incapable of interpreting
Bernouilli’s formula in terms of the statistical law of great numbers.
Derivation of statistical laws is possible only within the framework of
the frequency theory. If we start from a strict subjective theory, we
shall never arrive at statistical statements—not even if we try to bridge
the gulf with Bernoulli’s theorem.*2

*1 It may be worth while to be more explicit on this point. Keynes writes (in a passage
preceding the one quoted above): ‘If the probability of an event’s occurrence under
certain conditions is p, then . . . the most probable proportion of its occurrences to the
total number of occasions is p . . .’ This ought to be translatable, according to his own
theory, into: ‘If the degree of rational belief in the occurrence of an event is p, then p is
also a proportion of occurrences, i.e. a relative frequency—that, namely, in whose emer-
gence the degree of our rational belief is greatest.’ I am not objecting to the latter use of
the expression ‘rational belief ’. (It is the use which might also be rendered by ‘It is
almost certain that . . .’.) What I do object to is the fact that p is at one time a degree of
rational belief and at another a frequency; in other words, I do not see why an empirical
frequency should be equal to a degree of rational belief; or that it can be proved to be so
by any theorem however deep. (Cf. also section 49 and appendix *ix.)
3 This was first pointed out by von Mises in a similar connection in Wahrscheinlichkeit,
Statistik und Wahrheit, 1928, p. 85 (2nd edition 1936, p. 136; the relevant words are
missing in the English translation). It may be further remarked that relative frequencies
cannot be compared with ‘degrees of certainty of our knowledge’ if only because the
ordering of such degrees of certainty is conventional and need not be carried out by
correlating them with fractions between o and I. Only if the metric of the subjective
degrees of certainty is defined by correlating relative frequencies with it (but only then) can
it be permissible to derive the law of great numbers within the framework of the
subjective theory (cf. section 73).
*2 But it is possible to use Bernoulli’s theorem as a bridge from the objective interpretation
in terms of ‘propensities’ to statistics. Cf. sections *49 to *57 of my Postscript.
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63 BERNOULLI’S THEOREM AND THE
PROBLEM OF CONVERGENCE

From the point of view of epistemology, my deduction of the law of
great numbers, outlined above, is unsatisfactory; for the part played in
our analysis by the axiom of convergence is far from clear.

I have in effect tacitly introduced an axiom of this kind, by confining
my investigation to mathematical sequences with frequency limits. (Cf.
section 57.) Consequently one might even be tempted to think that our
result—the derivation of the law of great numbers—is trivial; for the
fact that ‘absolutely free’ sequences are statistically stable might be
regarded as entailed by their convergence which has been assumed
axiomatically, if not implicitly.

But this view would be mistaken, as von Mises has clearly shown. For
there are sequences1 which satisfy the axiom of convergence although
Bernoulli’s theorem does not hold for them, since with a frequency
close to 1, segments of any length occur in them which may deviate
from p to any extent. (The existence of the limit p is in these cases due
to the fact that the deviations, although they may increase without
limit, cancel each other.) Such sequences look as if they were divergent
in arbitrarily large segments, even though the corresponding fre-
quency sequences are in fact convergent. Thus the law of great numbers
is anything but a trivial consequence of the axiom of convergence, and
this axiom is quite insufficient for its deduction. This is why my modi-
fied axiom of randomness, the requirement of ‘absolute freedom’,
cannot be dispensed with.

Our reconstruction of the theory, however, suggests the possibility
that the law of great numbers may be independent of the axiom of con-
vergence. For we have seen that Bernoulli’s theorem follows immedi-
ately from the binomial formula; moreover, I have shown that the first
binomial formula can be derived for finite sequences and so, of course,
without any axiom of convergence. All that had to be assumed was that
the reference-sequence α was at least n −1-free; an assumption from

1 As an example von Mises cites the sequence of figures occupying the last place of a
six-figure table of square roots. Cf. for example, Wahrscheinlichkeit, Statistik und Wahrheit,
1928, p. 86 f.; (2nd edition 1936, p. 137; English translation, p. 165), and Wahrschein-
lichkeitsrechnung, 1931, p. 181 f.
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which the validity of the special multiplication theorem followed, and
with it that of the first binomial formula. In order to make the transi-
tion to the limit, and to obtain Bernoulli’s theorem, it is only necessary
to assume that we may make n as large as we like. From this it can be
seen that Bernoulli’s theorem is true, approximately, even for finite
sequences, if they are n-free for an n which is sufficiently large.

It seems therefore that the deduction of Bernoulli’s theorem does
not depend upon an axiom postulating the existence of a frequency
limit, but only on ‘absolute freedom’ or randomness. The limit concept
plays only a subordinate rôle: it is used for the purpose of applying
some conception of relative frequency (which, in the first instance, is
only defined for finite classes, and without which the concept of n-
freedom cannot be formulated) to sequences that can be continued
indefinitely.

Moreover, it should not be forgotten that Bernoulli himself deduced
his theorem within the framework of the classical theory, which con-
tains no axiom of convergence; also, that the definition of probability
as a limit of frequencies is only an interpretation—and not the only
possible one—of the classical formalism.

I shall try to justify my conjecture—the independence of Bernoulli’s
theorem of the axiom of convergence—by deducing this theorem
without assuming anything except n-freedom (to be appropriately
defined).*1 And I shall try to show that it holds even for those math-
ematical sequences whose primary properties possess no frequency limits.

Only if this can be shown shall I regard my deduction of the law of
great numbers as satisfactory from the point of view of the epistemolo-
gist. For it is a ‘fact of experience’—or so at least we are sometimes
told—that chance-like empirical sequences show that peculiar

*1 I still consider my old doubt concerning the assumption of an axiom of convergence,
and the possibility of doing without it, perfectly justified: it is justified by the develop-
ments indicated in appendix iv, note *2, and in appendix *vi, where it is shown that
randomness (if defined by ‘shortest random-like sequences’) entails convergence which
therefore need not be separately postulated. Moreover, my reference to the classical
formalism is justified by the development of the neo-classical (or measure-theoretical)
theory of probability, discussed in chapter *iii of the Postscript; in fact, it is justified by
Borel’s ‘normal numbers’. But I do not agree any longer with the view implicit in the
next sentence of my text, although I agree with the remaining paragraphs of this section.
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behaviour which I have described as ‘quasi-convergent’ or ‘statistically
stable’. (Cf. section 61.) By recording statistically the behaviour of long
segments one can establish that the relative frequencies approach
closer and closer to a definite value, and that the intervals within
which the relative frequencies fluctuate become smaller and smaller.
This so-called ‘empirical fact’, so much discussed and analysed, which
is indeed often regarded as the empirical corroboration of the law of
great numbers, can be viewed from various angles. Thinkers with
inductivist leanings mostly regard it as a fundamental law of nature,
not reducible to any simpler statement; as a peculiarity of our world
which has simply to be accepted. They believe that expressed in a
suitable form—for example in the form of the axiom of
convergence—this law of nature should be made the basis of the the-
ory of probability which would thereby assume the character of a
natural science.

My own attitude to this so-called ‘empirical fact’ is different. I am
inclined to believe that it is reducible to the chance-like character of the
sequences; that it may be derived from the fact that these sequences are
n-free. I see the great achievement of Bernoulli and Poisson in the field
of probability theory precisely in their discovery of a way to show that
this alleged ‘fact of experience’ is a tautology, and that from disorder in
the small (provided it satisfies a suitably formulated condition of n-
freedom), there follows logically a kind of order of stability in the
large.

If we succeed in deducing Bernoulli’s theorem without assuming an
axiom of convergence, then we shall have reduced the epistemological
problem of the law of great numbers to one of axiomatic independ-
ence, and thus to a purely logical question. This deduction would also
explain why the axiom of convergence works quite well in all practical
applications (in attempts to calculate the approximate behaviour of
empirical sequences). For even if the restriction to convergent
sequences should turn out to be unnecessary, it can certainly not be
inappropriate to use convergent mathematical sequences for calculat-
ing the approximate behaviour of empirical sequences which, on
logical grounds, are statistically stable.
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64 ELIMINATION OF THE AXIOM OF CONVERGENCE.
SOLUTION OF THE ‘FUNDAMENTAL PROBLEM
OF THE THEORY OF CHANCE’

So far frequency limits have had no other function in our reconstruc-
tion of the theory of probability than that of providing an unambigu-
ous concept of relative frequency applicable to infinite sequences, so
that with its help we may define the concept of ‘absolute freedom’
(from after-effects). For it is a relative frequency which is required to be
insensitive to selection according to predecessors.

Earlier we restricted our inquiry to alternatives with frequency
limits, thus tacitly introducing an axiom of convergence. Now, so as to
free us from this axiom, I shall remove the restriction without
replacing it by any other. This means that we shall have to construct a
frequency concept which can take over the function of the discarded
frequency limit, and which may be applied to all infinite reference
sequences.*1

One frequency concept fulfilling these conditions is the concept of a
point of accumulation of the sequence of relative frequencies. (A value a is said to be
a point of accumulation of a sequence if after any given element there
are elements deviating from a by less than a given amount, however
small.) That this concept is applicable without restriction to all infinite
reference sequences may be seen from the fact that for every infinite
alternative at least one such point of accumulation must exist for the
sequence of relative frequencies which corresponds to it. Since relative
frequencies can never be greater than 1 nor less than 0, a sequence of
them must be bounded by 1 and 0. And as an infinite bounded
sequence, it must (according to a famous theorem of Bolzano and
Weierstrass) have at least one point of accumulation.1

For brevity, every point of accumulation of the sequence of relative
frequencies corresponding to an alternative α will be called ‘a middle
frequency of α’. We can then say: If a sequence α has one and only one
middle frequency, then this is at the same time its frequency limit; and

*1 In order not to postulate convergence, I appealed in the following paragraph to what
can be demonstrated—the existence of points of accumulation. All this becomes unneces-
sary if we adopt the method described in note *1 to section 57, and in appendix *vi.
1 A fact which, surprisingly enough, has not hitherto been utilized in probability theory.
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conversely: if it has no frequency limit, then it has more than one2

middle frequency.
The idea of a middle frequency will be found very suitable for our

purpose. Just as previously it was our estimate—perhaps a hypothetical
estimate—that p was the frequency limit of a sequence α, so we now
work with the estimate that p is a middle frequency of α. And provided
we take certain necessary precautions,3 we can make calculations with
the help of these estimated middle frequencies, in a way analogous to
that in which we calculate with frequency limits. Moreover the concept
of middle frequency is applicable to all possible infinite reference
sequences, without any restriction.

If we now try to interpret our symbol αF′ (β) as a middle frequency,
rather than a frequency limit, and if we accordingly alter the definition
of objective probability (section 59), most of our formulae will still be
derivable. One difficulty arises however: middle frequencies are not
unique. If we estimate or conjecture that a middle frequency is αF′
(β) = p, then this does not exclude the possibility that there are values
of αF′ (β) other than p. If we postulate that this shall not be so, we
thereby introduce, by implication, the axiom of convergence. If on the
other hand we define objective probability without such a postulate of
uniqueness,4 then we obtain (in the first instance, at least) a concept of
probability which is ambiguous; for under certain circumstances a sequence
may possess at the same time several middle frequencies which are
‘absolutely free’ (cf. section c of appendix iv). But this is hardly
acceptable, since we are accustomed to work with unambiguous or unique

2 It can easily be shown that if more than one middle frequency exists in a reference
sequence then the values of these middle frequencies form a continuum.
3 The concept of ‘independent selection’ must be interpreted more strictly than hith-
erto, since otherwise the validity of the special multiplication theorem cannot be proved.
For details see my work mentioned in note 3 to section 51. (*This is now superseded by
appendix *vi.)
4 We can do this because it must be possible to apply the theory for finite classes (with
the exception of the theorem of uniqueness) immediately to middle frequencies. If a
sequence α has a middle frequency p, then it must contain—whatever the term with
which the counting starts—segments of any finite magnitude, the frequency of which
deviates from p as little as we choose. The calculation can be carried out for these. That p
is free from after-effect will then mean that this middle frequency of α is also a middle
frequency of any predecessor selection of α.
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probabilities; to assume, that is to say, that for one and the same prop-
erty there can be one and only one probability p, within one and the
same reference sequence.

However, the difficulty of defining a unique probability concept
without the limit axiom can easily be overcome. We may introduce the
requirement of uniqueness (as is, after all, the most natural procedure)
as the last step, after having postulated that the sequence shall be ‘abso-
lutely free’. This leads us to propose, as a solution of our problem, the
following modification of our definition of chance-like sequences, and
of objective probability.

Let α be an alternative (with one or several middle frequencies). Let
the ones of α have one and only one middle frequency p that is ‘abso-
lutely free’; then we say that α is chance-like or random, and that p is
the objective probability of the ones, within α.

It will be helpful to divide this definition into two axiomatic
requirements.*2

(1) Requirement of randomness: for an alternative to be chance-
like, there must be at least one ‘absolutely free’ middle frequency, i.e.
its objective probability p.

(2) Requirement of uniqueness: for one and the same property of
one and the same chance-like alternative, there must be one and only one
probability p.

The consistency of the new axiomatic system is ensured by the
example previously constructed. It is possible to construct sequences
which, whilst they have one and only one probability, yet possess no
frequency limit (cf. section b of appendix iv). This shows that the new
axiomatic demands are actually wider, or less exacting, than the old
ones. This fact will become even more evident if we state (as we may)
our old axioms in the following form:

(1) Requirement of randomness: as above.

*2 It is possible to combine the approach described in note *1 to section 57, and in
appendices iv and *vi, with these two requirements by retaining requirement (1) and
replacing requirement (2) by the following:

(+ 2) Requirement of finitude: the sequence must become, from its commencement,
as quickly n-free as possible, and for the largest possible n; or in other words, it must be
(approximately) a shortest random-like sequence.
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(2) Requirement of uniqueness: as above.
(2′) Axiom of convergence: for one and the same property of one and

the same chance-like alternative there exists no further middle
frequency apart from its probability p.

From the proposed system of requirements we can deduce
Bernoulli’s theorem, and with it all the theorems of the classical calcu-
lus of probability. This solves our problem: it is now possible to deduce
the law of great numbers within the framework of the frequency theory
without using the axiom of convergence. Moreover, not only does the
formula (1) of section 61 and the verbal formulation of Bernoulli’s
theorem remain unchanged,5 but the interpretation we have given to
it also remains unchanged: in the case of a chance-like sequence without
a frequency limit it will still be true that almost all sufficiently long
sequences show only small deviations from p. In such sequences (as in
chance-like sequences with frequency limits) segments of any length
behaving quasi-divergently will of course occur at times, i.e. segments
which deviate from p by any amount. But such segments will be com-
paratively rare, since they must be compensated for by extremely long
parts of the sequence in which all (or almost all) segments behave
quasi-convergently. As calculation shows, these stretches will have to
be longer by several orders of magnitude, as it were, than the
divergently-behaving segments for which they compensate.*3

This is also the place to solve the ‘fundamental problem of the theory of
chance’ (as it was called in section 49). The seemingly paradoxical infer-
ence from the unpredictability and irregularity of singular events to the
applicability of the rules of the probability calculus to them is indeed
valid. It is valid provided we can express the irregularity, with a fair
degree of approximation, in terms of the hypothetical assumption that
one only of the recurring frequencies—of the ‘middle frequencies’—
so occurs in any selection according to predecessors that no after-effects

5 The quasi-Bernoulli formulae (symbol: F′) also remain unambiguous for chance-
like sequences (according to the new definition), although ‘F′’ now symbolizes only a
middle frequency.
*3 I am in full agreement with what follows here, even though any reference to ‘middle
frequencies’ becomes redundant if we adopt the method described in section 57, note
*1, and appendix iv.
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result. For upon these assumptions it is possible to prove that the law of
great numbers is tautological. It is admissible and not self-
contradictory (as has sometimes been asserted6) to uphold the conclu-
sion that in an irregular sequence in which, as it were, anything may
happen at one time or another—though some things only rarely—a
certain regularity or stability will appear in very large sub-sequences.
Nor is this conclusion trivial, since we need for it specific mathematical
tools (the Bolzano and Weierstrass theorem, the concept of n-freedom,
and Bernoulli’s theorem). The apparent paradox of an argument from
unpredictability to predictability, or from ignorance to knowledge,
disappears when we realize that the assumption of irregularity can be
put in the form of a frequency hypothesis (that of freedom from after-
effects), and that it must be put in this form if we want to show the
validity of that argument.

It now also becomes clear why the older theories have been unable
to do justice to what I call the ‘fundamental problem’. The subjective
theory, admittedly, can deduce Bernoulli’s theorem; but it can never
consistently interpret it in terms of frequencies, after the fashion of
the law of great numbers (cf. section 62). Thus it can never explain the
statistical success of probability predictions. On the other hand, the
older frequency theory, by its axiom of convergence, explicitly postu-
lates regularity in the large. Thus within this theory the problem of
inference from irregularity in the small to stability in the large does not
arise, since it merely involves inference from stability in the large
(axiom of convergence), coupled with irregularity in the small (axiom
of randomness) to a special form of stability in the large (Bernoulli’s
theorem, law of great numbers).*4

The axiom of convergence is not a necessary part of the foundations

6 Cf., for instance, Feigl, Erkenntnis 1, 1930, p. 254: ‘In the law of great numbers an attempt
is made to reconcile two claims which prove on closer analysis to be in fact mutually
contradictory. On the one hand . . . every arrangement and distribution is supposed to be
able to occur once. On the other hand, these occurrences . . . are to appear with a
corresponding frequency.’ (That there is in fact no incompatibility here is proved by the
construction of model sequences; cf. appendix iv.)
*4 What is said in this paragraph implicitly enhances the significance, for the solution of
the ‘fundamental problem’, of an objectively interpreted neo-classical theory. A theory of
this kind is described in chapter *iii of my Postscript.
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of the calculus of probability. With this result I conclude my analysis of
the mathematical calculus.7

We now return to the consideration of more distinctively method-
ological problems, especially the problem of how to decide probability
statements.

65 THE PROBLEM OF DECIDABILITY

In whatever way we may define the concept of probability, or whatever
axiomatic formulations we choose: so long as the binomial formula is
derivable within the system, probability statements will not be falsifiable. Prob-
ability hypotheses do not rule out anything observable; probability estimates
cannot contradict, or be contradicted by, a basic statement; nor can
they be contradicted by a conjunction of any finite number of basic
statements; and accordingly not by any finite number of observations
either.

Let us assume that we have proposed an equal-chance hypothesis for
some alternative α; for example, that we have estimated that tosses with
a certain coin will come up ‘1’ and ‘0’ with equal frequency, so that

αF(1) = αF(0) = 1
2; and let us assume that we find, empirically, that ‘1’

comes up over and over again without exception: then we shall, no
doubt, abandon our estimate in practice, and regard it as falsified. But
there can be no question of falsification in a logical sense. For we can
surely observe only a finite sequence of tosses. And although, accord-
ing to the binomial formula, the probability of chancing upon a very
long finite segment with great deviations from 12 is exceedingly small, it
must yet always remain greater than zero. A sufficiently rare occurrence
of a finite segment with even the greatest deviation can thus never

7 Cf. note 3 to section 51. In retrospect I wish to make it clear that I have taken a
conservative attitude to von Mises’s four points (cf. end of section 50). I too define
probability only with reference to random sequences (which von Mises calls ‘collectives’). I
too set up a (modified) axiom of randomness, and in determining the task of the calculus of
probability I follow von Mises without reservation. Thus our differences concern only the
limit axiom which I have shown to be superfluous and which I have replaced by the
demand for uniqueness, and the axiom of randomness which I have so modified that
model sequences can be constructed. (Appendix iv.) As a result, Kamke’s objection (cf.
note 3 to section 53) ceases to be valid.
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contradict the estimate. In fact, we must expect it to occur: this is a
consequence of our estimate. The hope that the calculable rarity of any
such segment will be a means of falsifying the probability estimate
proves illusory, since even a frequent occurrence of a long and greatly
deviating segment may always be said to be nothing but one occur-
rence of an even longer and more greatly deviating segment. Thus there
are no sequences of events, given to us extensionally, and therefore no
finite n-tuple of basic statements, which could falsify a probability
statement.

Only an infinite sequence of events—defined intensionally by a
rule—could contradict a probability estimate. But this means, in view
of the considerations set forth in section 38 (cf. section 43), that prob-
ability hypotheses are unfalsifiable because their dimension is infinite.
We should therefore really describe them as empirically uninformative,
as void of empirical content.1

Yet any such view is clearly unacceptable in face of the successes which
physics has achieved with predictions obtained from hypothetical
estimates of probabilities. (This is the same argument as has been used
here much earlier against the interpretation of probability statements as
tautologies by the subjective theory.) Many of these estimates are not
inferior in scientific significance to any other physical hypothesis (for
example, to one of a determinist character). And a physicist is usually
quite well able to decide whether he may for the time being accept
some particular probability hypothesis as ‘empirically confirmed’, or
whether he ought to reject it as ‘practically falsified’, i.e., as useless for
purposes of prediction. It is fairly clear that this ‘practical falsification’
can be obtained only through a methodological decision to regard
highly improbable events as ruled out—as prohibited. But with what
right can they be so regarded? Where are we to draw the line? Where
does this ‘high improbability’ begin?

Since there can be no doubt, from a purely logical point of view,
about the fact that probability statements cannot be falsified, the
equally indubitable fact that we use them empirically must appear
as a fatal blow to my basic ideas on method which depend crucially

1 But not as void of ‘logical content’ (cf. section 35); for clearly, not every frequency
hypothesis holds tautologically for every sequence.
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upon my criterion of demarcation. Nevertheless I shall try to answer
the questions I have raised—which constitute the problem of
decidability—by a resolute application of these very ideas. But to do
this, I shall first have to analyse the logical form of probability state-
ments, taking account both of the logical inter-relations between them
and of the logical relations in which they stand to basic statements.*1

66 THE LOGICAL FORM OF PROBABILITY STATEMENTS

Probability estimates are not falsifiable. Neither, of course, are they veri-
fiable, and this for the same reasons as hold for other hypotheses,
seeing that no experimental results, however numerous and favourable,
can ever finally establish that the relative frequency of ‘heads’ is 1

2, and
will always be 12.

Probability statements and basic statements can thus neither contra-
dict one anther nor entail one another. And yet, it would be a mistake
to conclude from this that no kind of logical relations hold between
probability statements and basic statements. And it would be equally
wide of the mark to believe that while logical relations do obtain
between statements of these two kinds (since sequences of observa-
tions may obviously agree more or less closely with a frequency
statement), the analysis of these relations compels us to introduce a
special probabilistic logic1 which breaks the fetters of classical logic. In

*1 I believe that my emphasis upon the irrefutability of probabilistic hypotheses—which
culminates in section 67—was healthy: it laid bare a problem which had not been
discussed previously (owing to the general emphasis on verifiability rather than falsifi-
ability, and the fact that probability statements are, as explained in the next section, in
some sense verifiable or ‘confirmable’). Yet my reform, proposed in note *1 to section 57
(see also note *2 to section 64), changes the situation entirely. For this reform, apart
from achieving other things, amounts to the adoption of a methodological rule, like the
one proposed below in section 68, which makes probability hypotheses falsifiable.
The problem of decidability is thereby transformed into the following problem: since
empirical sequences can only be expected to approximate to shortest random-like
sequences, what is acceptable and what is unacceptable as an approximation? The answer
to this is clearly that closeness of approximation is a matter of degree, and that the
determination of this degree is one of the main problems of mathematical statistics.

Added 1972. A new solution is given by D. Gillies. See below p. 443.
1 Cf. Section 80, especially notes 3 and 6.
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opposition to such views I believe that the relations in question can be
fully analysed in terms of the ‘classical’ logical relations of deducibility
and contradiction.*1

From the non-falsifiability and non-verifiability of probability
statements it can be inferred that they have no falsifiable consequences,
and that they cannot themselves be consequences of verifiable state-
ments. But the converse possibilities are not excluded. For it may be (a)
that they have unilaterally verifiable consequences (purely existential
consequences, or there-is-consequences) or (b) that they are them-
selves consequences of unilaterally falsifiable universal statements (all-
statements).

Possibility (b) will scarcely help to clarify the logical relation
between probability statements and basic statements: it is only too
obvious that a non-falsifiable statement, i.e. one which says very little,
can belong to the consequence class of one which is falsifiable, and
which thus says more.

What is of greater interest for us is possibility (a) which is by no
means trivial, and which in fact turns out to be fundamental for our
analysis of the relation between probability statements and basic state-
ments. For we find that from every probability statement, an infinite
class of existential statements can be deduced, but not vice versa. (Thus
the probability statement asserts more than does any of these existential
statements.) For example, let p be a probability which has been esti-
mated, hypothetically, for a certain alternative (and let 0 ≠ p ≠ 1); then
we can deduce from this estimate, for instance, the existential con-
sequence that both ones and zeros will occur in the sequence. (Of
course many far less simple consequences also follow—for example,
that segments will occur which deviate from p only by a very small
amount.)

But we can deduce much more from this estimate; for example that
there will ‘over and over again’ be an element with the property ‘1’ and
another element with the property ‘o’; that is to say, that after any
element x there will occur in the sequence an element y with the

*1 Although I do not disagree with this, I now believe that the probabilistic concepts
‘almost deducible’ and ‘almost contradictory’ are extremely useful in connection with
our problem; see appendix *ix, and chapter *iii of the Postscript.
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property ‘1’, and also an element z with the property ‘o’. A statement of
this form (‘for every x there is a y with the observable, or extensionally
testable, property β’) is both non-falsifiable—because it has no falsifi-
able consequences—and non-verifiable—because of the ‘all’ or ‘for
every’ which made it hypothetical.*2 Nevertheless, it can be better, or
less well ‘confirmed’—in the sense that we may succeed in verifying
many, few, or none of its existential consequences; thus it stands to the
basic statement in the relation which appears to be characteristic of
probability statements. Statements of the above form may be called
‘universalized existential statements’ or (universalized) ‘existential
hypotheses’.

My contention is that the relation of probability estimates to basic
statements, and the possibility of their being more, or less, well
‘confirmed’, can be understood by considering the fact that from all
probability estimates, existential hypotheses are logically deducible. This
suggests the question whether the probability statements themselves
may not, perhaps, have the form of existential hypotheses.

Every (hypothetical) probability estimate entails the conjecture that
the empirical sequence in question is, approximately, chance-like or
random. That is to say, it entails the (approximate) applicability, and
the truth, of the axioms of the calculus of probability. Our question is,

*2 Of course, I never intended to suggest that every statement of the form ‘for every x,
there is a y with the observable property β’ is non-falsifiable and thus non-testable:
obviously, the statement ‘for every toss with a penny resulting in 1, there is an immediate
successor resulting in 0’ is both falsifiable and in fact falsified. What creates non-
falsifiability is not just the form ‘for every x there is a y such that . . . ’ but the fact that the
‘there is’ is unbounded—that the occurrence of the y may be delayed beyond all bounds: in
the probabilistic case, y may, as it were, occur as late as it pleases. An element ‘0’ may occur at
once, or after a thousand tosses, or after any number of tosses: it is this fact that is
responsible for non-falsifiability. If, on the other hand, the distance of the place of
occurrence of y from the place of occurrence of x is bounded, then the statement ‘for every
x there is a y such that . . .’ may be falsifiable.

My somewhat unguarded statement in the text (which tacitly presupposed section 15)
has led, to my surprise, in some quarters to the belief that all statements—or ‘most’
statements, whatever this may mean—of the form ‘for every x there is a y such that . . .’
are non-falsifiable; and this has then been repeatedly used as a criticism of the falsifi-
ability criterion. See, for example, Mind 54, 1945, pp. 119 f. The whole problem of these
‘all-and-some statements’ (this term is due to J. W. N. Watkins) is discussed more fully in
my Postscript; see especially sections *24 f.
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therefore, equivalent to the question whether these axioms represent
what I have called ‘existential hypotheses’.

If we examine the two requirements proposed in section 64 then we
find that the requirement of randomness has in fact the form of an
existential hypothesis.2 The requirement of uniqueness, on the other
hand, has not this form; it cannot have it, since a statement of the form
‘There is only one . . .’ must have the form of a universal statement. (It
can be translated as ‘There are not more than one . . .’ or ‘All . . . are
identical’.)

Now it is my thesis here that it is only the ‘existential constituent’, as
it might be called, of probability estimates, and therefore the require-
ment of randomness, which establishes a logical relation between them
and basic statements. Accordingly, the requirement of uniqueness, as a
universal statement, would have no extensional consequences what-
ever. That a value p with the required properties exists, can indeed be
extensionally ‘confirmed’—though of course only provisionally; but
not that only one such value exists. This latter statement, which is uni-
versal, could be extensionally significant only if basic statements could
contradict it; that is to say, if basic statements could establish the existence
of more than one such value. Since they cannot (for we remember that
non-falsifiability is bound up with the binomial formula), the
requirement of uniqueness must be extensionally without
significance.*3

This is the reason why the logical relations holding between a prob-
ability estimate and basic statements, and the graded ‘confirmability’ of
the former, are unaffected if we eliminate the requirement of unique-
ness from the system. By doing this we could give the system the form
of a pure existential hypothesis.3 But we should then have to give up

2 It can be put in the following form: For every positive ε, for every predecessor n-tuple,
and every element with the ordinal number x there is an element, selected according to
predecessor selection, with the ordinal number y > x such that the frequency up to the
term y deviates from a fixed value p by an amount less than ε.
*3 The situation is totally different if the requirement (+ 2) of note *2 to section 64 is
adopted: this is empirically significant, and renders the probability hypotheses falsifiable
(as asserted in note *1 to section 65).
3 The formulae of the probability calculus are also derivable in this axiomatization, only
the formulae must be interpreted as existential formulae. The theorem of Bernoulli, for
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the uniqueness of probability estimates,*4 and thereby (so far as
uniqueness is concerned) obtain something different from the usual
calculus of probability.

Therefore the requirement of uniqueness is obviously not
superfluous. What, then, is its logical function?

Whilst the requirement of randomness helps to establish a relation
between probability statements and basic statements, the requirement
of uniqueness regulates the relations between the various probability
statements themselves. Without the requirement of uniqueness some
of these might, as existential hypotheses, be derivable from others, but
they could never contradict one another. Only the requirement of
uniqueness ensures that probability statements can contradict one
another; for by this requirement they acquire the form of a conjunction
whose components are a universal statement and an existential
hypothesis; and statements of this form can stand to one another in
exactly the same fundamental logical relations (equivalence, deriv-
ability, compatibility, and incompatibility) as can ‘normal’ universal
statements of any theory—for example, a falsifiable theory.

If we now consider the axiom of convergence, then we find that
it is like the requirement of uniqueness in that it has the form of a
non-falsifiable universal statement. But it demands more than our
requirement does. This additional demand, however, cannot have any
extensional significance either; moreover, it has no logical or formal
but only an intensional significance: it is a demand for the exclusion of all
intensionally defined (i.e. mathematical) sequences without frequency
limits. But from the point of view of applications, this exclusion proves
to be without significance even intensionally, since in applied prob-
ability theory we do not of course deal with the mathematical
sequences themselves but only with hypothetical estimates about
empirical sequences. The exclusion of sequences without frequency
limits could therefore only serve to warn us against treating those

example, would no longer assert that the single probability value for a particular n of
αnF(∆p) lies near to 1, but only that (for a particular n) among the various probability
values of αnF(∆p) there is at least one which lies near to 1.

*4 As has been shown in the new footnote *2 to section 64, any special requirement of
uniqueness can be eliminated, without sacrificing uniqueness.
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empirical sequences as chance-like or random of which we hypo-
thetically assume that they have no frequency limit. But what possible
action could we take in response to this warning?4 What sort of con-
siderations or conjectures about the possible convergence or
divergence of empirical sequences should we indulge in or abstain
from, in view of this warning, seeing that criteria of convergence are
no more applicable to them than are criteria of divergence? All these
embarrassing questions5 disappear once the axiom of convergence has
been got rid of.

Our logical analysis thus makes transparent both the form and the
function of the various partial requirements of the system, and shows
what reasons tell against the axiom of randomness and in favour of the
requirement of uniqueness. Meanwhile the problem of decidability
seems to be growing ever more menacing. And although we are not
obliged to call our requirements (or axioms) ‘meaningless’,6 it looks
as if we were compelled to describe them as non-empirical. But does
not this description of probability statements—no matter what words
we use to express it—contradict the main idea of our approach?

67 A PROBABILISTIC SYSTEM OF
SPECULATIVE METAPHYSICS

The most important use of probability statements in physics is this:
certain physical regularities or observable physical effects are
4 Both the axiom of randomness and the axiom of uniqueness can properly be regarded
as such (intensional) warnings. For example, the axiom of randomness cautions us not to
treat sequences as random if we suppose (no matter on what grounds) that certain
gambling systems will be successful for them. The axiom of uniqueness cautions us
not to attribute a probability q (with q ≠ p) to a sequence which we suppose can be
approximately described by means of the hypothesis that its probability equals p.
5 Similar misgivings made Schlick object to the limit axiom (Die Naturwissenschaften 19,
1931, p. 158).
6 Here the positivist would have to recognize a whole hierarchy of ‘meaninglessnesses’.
To him, non-verifiable natural laws appear ‘meaningless’ (cf. section 6, and quotations in
notes 1 and 2), and thus still more so probability hypotheses, which are neither verifiable
nor falsifiable. Of our axioms, the axiom of uniqueness, which is not extensionally
significant, would be more meaningless than the meaningless axiom of irregularity,
which at least has extensional consequences. Still more meaningless would be the limit
axiom, since it is not even intensionally significant.
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interpreted as ‘macro laws’; that is to say, they are interpreted, or
explained, as mass phenomena, or as the observable results of hypo-
thetical and not directly observable ‘micro events’. The macro laws are
deduced from probability estimates by the following method: we show
that observations which agree with the observed regularity in question
are to be expected with a probability very close to 1, i.e. with a prob-
ability which deviates from 1 by an amount which can be made
as small as we choose. When we have shown this, then we say that by
our probability estimate we have ‘explained’ the observable effect in
question as a macro effect.

But if we use probability estimates in this way for the ‘explanation’
of observable regularities without introducing special precautions, then we may
immediately become involved in speculations which in accordance
with general usage can well be described as typical of Speculative
metaphysics.

For since probability statements are not falsifiable, it must always be
possible in this way to ‘explain’, by probability estimates, any regularity
we please. Take, for example, the law of gravity. We may contrive hypo-
thetical probability estimates to ‘explain’ this law in the following way.
We select events of some kind to serve as elementary or atomic events;
for instance the movement of a small particle. We select also what is to
be a primary property of these events; for instance the direction and
velocity of the movement of a particle. We then assume that these
events show a chance-like distribution. Finally we calculate the prob-
ability that all the particles within a certain finite spatial region, and
during a certain finite period of time—a certain ‘cosmic period’—will
with a specified accuracy move, accidentally, in the way required by the
law of gravity. The probability calculated will, of course, be very small;
negligibly small, in fact, but still not equal to zero. Thus we can raise
the question how long an n-segment of the sequence would have to be,
or in other words, how long a duration must be assumed for the whole
process, in order that we may expect, with a probability close to 1 (or
deviating from 1 by not more than an arbitrarily small value ε) the
occurrence of one such cosmic period in which, as the result of an
accumulation of accidents, our observations will all agree with the law
of gravity. For any value as close to 1 as we choose, we obtain a definite,
though extremely large, finite number. We can then say: if we assume
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that the segment of the sequence has this very great length—or in
other words, that the ‘world’ lasts long enough—then our assumption
of randomness entitles us to expect the occurrence of a cosmic period
in which the law of gravity will seem to hold good, although ‘in
reality’ nothing ever occurs but random scattering. This type of
‘explanation’ by means of an assumption of randomness is applicable
to any regularity we choose. In fact we can in this way ‘explain’ our
whole world, with all its observed regularities, as a phase in a random
chaos—as an accumulation of purely accidental coincidences.

It seems clear to me that speculations of this kind are ‘metaphysical’,
and that they are without any significance for science. And it seems
equally clear that this fact is connected with their nonfalsifiability—
with the fact that we can always and in all circumstances indulge in
them. My criterion of demarcation thus seems to agree here quite well
with the general use of the word ‘metaphysical’.

Theories involving probability, therefore, if they are applied without
special precautions, are not to be regarded as scientific. We must rule
out their metaphysical use if they are to have any use in the practice of
empirical science.*1

68 PROBABILITY IN PHYSICS

The problem of decidability troubles only the methodologist, not the
physicist.*1 If asked to produce a practically applicable concept of

*1 When writing this, I thought that speculations of the kind described would be easily
recognizable as useless, just because of their unlimited applicability. But they seem to be
more tempting than I imagined. For it has been argued, for example by J. B. S. Haldane
(in Nature 122, 1928, p. 808; cf. also his Inequality of Man, pp. 163 f.) that if we accept the
probability theory of entropy, we must regard it as certain, or as almost certain, that the
world will wind itself up again accidentally if only we wait long enough. This argument
has of course been frequently repeated since by others. Yet it is, I think, a perfect example
of the kind of argument here criticized, and one which would allow us to expect, with
near certainty, anything we liked. Which all goes to show the dangers inherent in the
existential form shared by probability statements with most of the statements of meta-
physics. (Cf. section 15.)
*1 The problem here discussed has been treated in a clear and thorough way long ago by
the physicists P. and T. Ehrenfest, Encycl. d. Math, Wiss. 4th Teilband, Heft 6 (12.12.1911)
section 30. They treated it as a conceptual and epistemological problem. They introduced the
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probability, the physicist might perhaps offer something like a physical
definition of probability, on lines such as the following: There are certain
experiments which, even if carried out under controlled conditions,
lead to varying results. In the case of some of these experiments—those
which are ‘chance-like’, such as tosses of a coin—frequent repetition
leads to results with relative frequencies which, upon further repeti-
tion, approximate more and more to some fixed value which we may
call the probability of the event in question. This value is ‘ . . . empirically
determinable through long series of experiments to any degree of
approximation’;1 which explains, incidentally, why it is possible to
falsify a hypothetical estimate of probability.

Against definitions on these lines both mathematicians and logicians
will raise objections; in particular the following:

(1) The definition does not agree with the calculus of probability
since, according to Bernoulli’s theorem, only almost all very long seg-
ments are statistically stable, i.e. behave as if convergent. For that reason,
probability cannot be defined by this stability, i.e. by quasi-convergent
behaviour. For the expression ‘almost all’—which ought to occur in the
definiens—is itself only a synonym for ‘very probable’. The definition is
thus circular; a fact which can be easily concealed (but not removed)
by dropping the word ‘almost’. This is what the physicist’s definition
did; and it is therefore unacceptable.

(2) When is a series of experiments to be called ‘long’? Without

idea of ‘probability hypotheses of first, second, . . . k th order’: a probability hypothesis
of second order, for example, is an estimate of the frequency with which certain fre-
quencies occur in an aggregate of aggregates. However, P. and T. Ehrenfest do not operate
with anything corresponding to the idea of a reproducible effect which is here used in a
crucial way in order to solve the problem which they expounded so well. See especially
the opposition between Boltzmann and Planck to which they refer in notes 247 f., and
which can, I believe, be resolved by using the idea of a reproducible effect. For under
appropriate experimental conditions, fluctuations may lead to reproducible effects, as
Einstein’s theory of Brownian movement showed so impressively. See also note *1 to
section 65, and appendices *vi and *ix.
1 The quotation is from Born-Jordan Elementare Quantenmechanik, 1930, p. 306, cf. also the
beginning of Dirac’s Quantum Mechanics, p. 10 of the 1st edition, 1930. A parallel passage
(slightly abbreviated) is to be found on p. 14 of the 3rd edition, 1947. See also Weyl,
Gruppentheorie und Quantenmechanik, 2nd edition, 1931, p. 66; English translation by H. P.
Robertson: The Theory of Groups and Quantum Mechanics, 1931, p. 74 f.
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being given a criterion of what is to be called ‘long’, we cannot know
when, or whether, we have reached an approximation to the
probability.

(3) How can we know that the desired approximation has in fact been
reached?

Although I believe that these objections are justified, I nevertheless
believe that we can retain the physicist’s definition. I shall support this
belief by the arguments outlined in the previous section. These showed
that probability hypotheses lose all informative content when they are
allowed unlimited application. The physicist would never use them in
this way. Following his example I shall disallow the unlimited applica-
tion of probability hypotheses: I propose that we take the methodological
decision never to explain physical effects, i.e. reproducible regularities, as accumulations of
accidents. This decision naturally modifies the concept of probability: it
narrows it.*2 Thus objection (1) does not affect my position, for I do
not assert the identity of the physical and the mathematical concepts of
probability at all; on the contrary, I deny it. But in place of (1), a new
objection arises.

(1′) When can we speak of ‘accumulated accidents’? Presumably in
the case of a small probability. But when is a probability ‘small’? We
may take it that the proposal which I have just submitted rules out the
use of the method (discussed in the preceding section) of manufactur-
ing an arbitrarily large probability out of a small one by changing the
formulation of the mathematical problem. But in order to carry out the
proposed decision, we have to know what we are to regard as small.

In the following pages it will be shown that the proposed method-
ological rule agrees with the physicist’s definition, and that the objec-
tions raised by questions (1′), (2), and (3) can be answered with its
help. To begin with, I have in mind only one typical case of the applica-
tion of the calculus of probability: I have in mind the case of certain
reproducible macro effects which can be described with the help of
precise (macro) laws—such as gas pressure—and which we interpret,
or explain, as due to a very large accumulation of micro processes, such

*2 The methodological decision or rule here formulated narrows the concept of
probability—just as it is narrowed by the decision to adopt shortest random-like sequences
as mathematical models of empirical sequences, cf. note *1 to section 65.
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as molecular collisions. Other typical cases (such as statistical fluctu-
ations or the statistics of chance-like individual processes) can be
reduced without much difficulty to this case.*3

Let us take a macro effect of this type, described by a well-
corroborated law, which is to be reduced to random sequences of
micro events. Let the law assert that under certain conditions a physical
magnitude has the value p. We assume the effect to be ‘precise’, so that
no measurable fluctuations occur, i.e. no deviations from p beyond that
interval, ± φ (the interval of imprecision; cf. section 37) within which
our measurements will in any case fluctuate, owing to the imprecision
inherent in the prevailing technique of measurement. We now propose
the hypothesis that p is a probability within a sequence α of micro
events; and further, that n micro events contribute towards producing
the effect. Then (cf. section 61) we can calculate for every chosen value
δ, the probability αn

F(∆p), i.e. the probability that the value measured
will fall within the interval ∆p. The complementary probability may be
denoted by ‘ε’. Thus we have αn

F(∆p) = ε. According to Bernoulli’s
theorem, ε tends to zero as n increases without limit.

We assume that ε is so ‘small’ that it can be neglected. (Question
(1′) which concerns what ‘small’ means, in this assumption, will be
dealt with soon.) The ∆p is to be interpreted, clearly, as the interval
within which the measurements approach the value p. From this we see
that the three quantities: ε, n, and ∆p correspond to the three questions
(1′), (2), and (3). ∆p or δ can be chosen arbitrarily, which restricts the
arbitrariness of our choice of ε and n. Since it is our task to deduce the
exact macro effect p (± φ) we shall not assume δ to be greater than φ.
As far as the reproducible effect p is concerned, the deduction will be
satisfactory if we can carry it out for some value δ � φ. (Here φ is given,
since it is determined by the measuring technique.) Now let us choose
δ so that it is (approximately) equal to φ. Then we have reduced
question (3) to the two other questions, (1′) and (2).

By the choice of δ (i.e. of ∆p) we have established a relation between
n and ε, since to every n there now corresponds uniquely a value of ε.

*3 I am now a little dubious about the words ‘without much difficulty’; in fact, in all
cases, except those of the extreme macro effects discussed in this section, very subtle
statistical methods have to be used. See also appendix *ix, especially my ‘Third Note’.
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Thus (2), i.e. the question When is n sufficiently long? has been
reduced to (1′), i.e. the question When is ε small? (and vice versa).

But this means that all three questions could be answered if only we
could decide what particular value of ε is to be neglected as ‘negligibly
small’. Now our methodological rule amounts to the decision to
neglect small values of ε; but we shall hardly be prepared to commit
ourselves for ever to a definite value of ε.

If we put our question to a physicist, that is, if we ask him what ε he
is prepared to neglect—0.001, or 0.000001, or . . . ? he will presum-
ably answer that ε does not interest him at all; that he has chosen not ε
but n; and that he has chosen n in such a way as to make the correlation
between n and ∆p largely independent of any changes of the value ε which we
might choose to make.

The physicist’s answer is justified, because of the mathematical pecu-
liarities of the Bernoullian distribution: it is possible to determine for
every n the functional dependence between ε and ∆p.*4 An examin-
ation of this function shows that for every (‘large’) n there exists a
characteristic value of ∆p such that in the neighbourhood of this value
∆p is highly insensitive to changes of ε. This insensitiveness increases
with increasing n. If we take an n of an order of magnitude which we
should expect in the case of extreme mass-phenomena, then, in the
neighbourhood of its characteristic value, ∆p is so highly insensitive
to changes of ε that ∆p hardly changes at all even if the order of

*4 The remarks that follow in this paragraph (and some of the discussions later in this
section) are, I now believe, clarified and superseded by the considerations in appendix
*ix; see especially points 8 ff of my Third Note. With the help of the methods there used,
it can be shown that almost all possible statistical samples of large size n will strongly
undermine a given probabilistic hypothesis, that is to say give it a high negative degree of
corroboration; and we may decide to interpret this as refutation or falsification. Of the
remaining samples, most will support the hypothesis, that is to say, give it a high positive
degree of corroboration. Comparatively few samples of large size n will give a probabil-
istic hypothesis an undecisive degree of corroboration (whether positive or negative).
Thus we can expect to be able to refute a probabilistic hypothesis, in the sense here
indicated; and we can expect this perhaps even more confidently than in the case of a
non-probabilistic hypothesis. The methodological rule or decision to regard (for a large
n) a negative degree of corroboration as a falsification is, of course, a specific case of the
methodological rule or decision discussed in the present section—that of neglecting
certain extreme improbabilities.
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magnitude of ε changes. Now the physicist will attach little value to
more sharply defined boundaries of ∆p. And in the case of typical mass
phenomena, to which this investigation is restricted, ∆p can, we
remember, be taken to correspond to the interval of precision ± φ
which depends upon our technique of measurement; and this has
no sharp bounds but only what I called in section 37 ‘condensation
bounds’. We shall therefore call n large when the insensitivity of ∆p
in the neighbourhood of its characteristic value, which we can
determine, is at least so great that even changes in order of magni-
tude of ε cause the value of ∆p to fluctuate only within the conden-
sation bounds of ± φ. (If n → ∞, then ∆p becomes completely
insensitive.) But if this is so, then we need no longer concern our-
selves with the exact determination of ε: the decision to neglect a small ε
suffices, even if we have not exactly stated what has to be regarded
as ‘small’. It amounts to the decision to work with the characteristic
values of ∆p above mentioned, which are insensitive to changes
of ε.

The rule that extreme improbabilities have to be neglected (a rule
which becomes sufficiently explicit only in the light of the above)
agrees with the demand for scientific objectivity. For the obvious objection
to our rule is, clearly, that even the greatest improbability always
remains a probability, however small, and that consequently even the
most improbable processes—i.e. those which we propose to neglect—
will some day happen. But this objection can be disposed of by
recalling the idea of a reproducible physical effect—an idea which is closely
connected with that of objectivity (cf. section 8). I do not deny the
possibility that improbable events might occur. I do not, for example,
assert that the molecules in a small volume of gas may not, perhaps, for
a short time spontaneously withdraw into a part of the volume, or that
in a greater volume of gas spontaneous fluctuations of pressure will
never occur. What I do assert is that such occurrences would not be
physical effects, because, on account of their immense improbability,
they are not reproducible at will. Even if a physicist happened to observe such
a process, he would be quite unable to reproduce it, and therefore
would never be able to decide what had really happened in this case,
and whether he may not have made an observational mistake. If,
however, we find reproducible deviations from a macro effect which has
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been deduced from a probability estimate in the manner indicated,
then we must assume that the probability estimate is falsified.

Such considerations may help us to understand pronouncements like
the following of Eddington’s in which he distinguishes two kinds of
physical laws: ‘Some things never happen in the physical world because
they are impossible; others because they are too improbable. The laws which
forbid the first are primary laws; the laws which forbid the second are
secondary laws.’2 Although this formulation is perhaps not beyond
criticism (I should prefer to abstain from non-testable assertions about
whether or not extremely improbable things occur), it agrees well with
the physicist’s application of probability theory.

Other cases to which probability theory may be applied, such as
statistical fluctuations, or the statistics of chance-like individual events,
are reducible to the case we have been discussing, that of the precisely
measurable macro effect. By statistical fluctuations I understand
phenomena such as the Brownian movement. Here the interval
of precision of measurement (± φ) is smaller than the interval ∆p
characteristic of the number n of micro events contributing to the
effect; hence measurable deviations from p are to be expected as highly
probable. The fact that such deviations occur will be testable, since the
fluctuation itself becomes a reproducible effect; and to this effect my
earlier arguments apply: fluctuations beyond a certain magnitude
(beyond some interval ∆p) must not be reproducible, according to my
methodological requirements, nor long sequences of fluctuations in
one and the same direction, etc. Corresponding arguments would hold
for the statistics of chance-like individual events.

I may now summarize my arguments regarding the problem of
decidability.

Our question was: How can probability hypotheses—which, we
have seen, are non-falsifiable—play the part of natural laws in empirical
science? Our answer is this: Probability statements, in so far as they are
not falsifiable, are metaphysical and without empirical significance;
and in so far as they are used as empirical statements they are used as
falsifiable statements.

2 Eddington, The Nature of the Physical World, 1928, p. 75.
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But this answer raises another question: How is it possible that prob-
ability statements—which are not falsifiable—can be used as falsifiable
statements? (The fact that they can be so used is not in doubt: the
physicist knows well enough when to regard a probability assumption
as falsified.) This question, we find, has two aspects. On the one hand,
we must make the possibility of using probability statements under-
standable in terms of their logical form. On the other hand, we must
analyse the rules governing their use as falsifiable statements.

According to section 66, accepted basic statements may agree more
or less well with some proposed probability estimate; they may repre-
sent better, or less well, a typical segment of a probability sequence.
This provides the opportunity for the application of some kind of
methodological rule; a rule, for instance, which might demand that the
agreement between basic statements and the probability estimate
should conform to some minimum standard. Thus the rule might draw
some arbitrary line and decree that only reasonably representative seg-
ments (or reasonably ‘fair samples’) are ‘permitted’, while atypical or
non-representative segments are ‘forbidden’.

A closer analysis of this suggestion showed us that the dividing line
between what is permitted and what is forbidden need not be drawn
quite as arbitrarily as might have been thought at first. And in particu-
lar, that there is no need to draw it ‘tolerantly’. For it is possible to
frame the rule in such a way that the dividing line between what is
permitted and what is forbidden is determined, just as in the case of
other laws, by the attainable precision of our measurements.

Our methodological rule, proposed in accordance with the criterion
of demarcation, does not forbid the occurrence of atypical segments;
neither does it forbid the repeated occurrence of deviations (which, of
course, are typical for probability sequences). What this rule forbids is
the predictable and reproducible occurrence of systematic deviations;
such as deviations in a particular direction, or the occurrence of seg-
ments which are atypical in a definite way. Thus it requires not a mere
rough agreement, but the best possible one for everything that is reproducible
and testable; in short, for all reproducible effects.
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69 LAW AND CHANCE

One sometimes hears it said that the movements of the planets obey
strict laws, whilst the fall of a die is fortuitous, or subject to chance. In
my view the difference lies in the fact that we have so far been able
to predict the movement of the planets successfully, but not the
individual results of throwing dice.

In order to deduce predictions one needs laws and initial conditions;
if no suitable laws are available or if the initial conditions cannot be
ascertained, the scientific way of predicting breaks down. In throwing
dice, what we lack is, clearly, sufficient knowledge of initial conditions.
With sufficiently precise measurements of initial conditions it would
be possible to make predictions in this case also; but the rules for
correct dicing (shaking the dice-box) are so chosen as to prevent us
from measuring initial conditions. The rules of play and other rules
determining the conditions under which the various events of a ran-
dom sequence are to take place I shall call the ‘frame conditions’. They
consist of such requirements as that the dice shall be ‘true’ (made from
homogeneous material), that they shall be well shaken, etc.

There are other cases in which prediction may be unsuccessful. Per-
haps it has not so far been possible to formulate suitable laws; perhaps
all attempts to find a law have failed, and all predictions have been
falsified. In such cases we may despair of ever finding a satisfactory law.
(But it is not likely that we shall give up trying unless the problem does
not interest us much—which may be the case, for example, if we are
satisfied with frequency predictions.) In no case, however, can we say
with finality that there are no laws in a particular field. (This is a
consequence of the impossibility of verification.) This means that my
view makes the concept of chance subjective.*1 I speak of ‘chance’ when
our knowledge does not suffice for prediction; as in the case of dicing,
where we speak of ‘chance’ because we have no knowledge of the initial
conditions. (Conceivably a physicist equipped with good instruments
could predict a throw which other people could not predict.)

In opposition to this subjective view, an objective view has some-
times been advocated. In so far as this uses the metaphysical idea that

*1 This does not mean that I made any concession here to a subjective interpretation of
probability, or of disorder or randomness.
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events are, or are not, determined in themselves, I shall not examine it
further here. (Cf. section 71 and 78.) If we are successful with our
prediction, we may speak of ‘laws’; otherwise we can know nothing
about the existence or non-existence of laws or of irregularities.*2

Perhaps more worth considering than this metaphysical idea is the
following view. We encounter ‘chance’ in the objective sense, it may be
said, when our probability estimates are corroborated; just as we
encounter causal regularities when our predictions deduced from laws
are corroborated.

The definition of chance implicit in this view may not be altogether
useless, but it should be strongly emphasized that the concept so
defined is not opposed to the concept of law: it was for this reason that
I called probability sequences chance-like. In general, a sequence of
experimental results will be chance-like if the frame conditions which
define the sequence differ from the initial conditions; when the indi-
vidual experiments, carried out under identical frame conditions, will
proceed under different initial conditions, and so yield different
results. Whether there are chance-like sequences whose elements are in
no way predictable, I do not know. From the fact that a sequence is
chance-like we may not even infer that its elements are not predictable,
or that they are ‘due to chance’ in the subjective sense of insufficient
knowledge; and least of all may we infer from this fact the ‘objective’
fact that there are no laws.*3

*2 In this paragraph, I dismissed (because of its metaphysical character) a metaphysical
theory which I am now, in my Postscript, anxious to recommend because it seems to me to
open new vistas, to suggest the resolution of serious difficulties, and to be, perhaps, true.
Although when writing this book I was aware of holding metaphysical beliefs, and
although I even pointed out the suggestive value of metaphysical ideas for science, I was
not alive to the fact that some metaphysical doctrines were rationally arguable and, in
spite of being irrefutable, criticizable. See especially the last section of my Postscript.
*3 It would have been clearer, I think, had I argued as follows. We can never repeat an
experiment precisely—all we can do is to keep certain conditions constant, within certain
limits. It is therefore no argument for objective fortuity, or chance, or absence of law, if
certain aspects of our results repeat themselves, while others vary irregularly; especially if
the conditions of the experiment (as in the case of spinning a penny) are designed with a
view to making conditions vary. So far, I still agree with what I have said. But there may
be other arguments for objective fortuity; and one of these, due to Alfred Landé (‘Landé’s
blade’) is highly relevant in this context. It is now discussed at length in my Postscript,
sections *90, f.
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Not only is it impossible to infer from the chance-like character of
the sequence anything about the conformity to law, or otherwise, of
the individual events: it is not even possible to infer from the corroboration
of probability estimates that the sequence itself is completely irregular. For
we know that chance-like sequences exist which are constructed
according to a mathematical rule. (Cf. appendix iv.) The fact that a
sequence has a Bernoullian distribution is not a symptom of the
absence of law, and much less identical with the absence of law ‘by
definition’.1 In the success of probability predictions we must see no
more than a symptom of the absence of simple laws in the structure of
the sequence (cf. sections 43 and 58)—as opposed to the events constitut-
ing it. The assumption of freedom from after-effect, which is equiva-
lent to the hypothesis that such simple laws are not discoverable, is
corroborated, but that is all.

70 THE DEDUCIBILITY OF MACRO LAWS
FROM MICRO LAWS

There is a doctrine which has almost become a prejudice, although it
has recently been criticized severely—the doctrine that all observable
events must be explained as macro events; that is to say, as averages
or accumulations or summations of certain micro events. (The doc-
trine is somewhat similar to certain forms of materialism.) Like other
doctrines of its kind, this seems to be a metaphysical hypostatization
of a methodological rule which in itself is quite unobjectionable. I
mean the rule that we should see whether we can simplify or gener-
alize or unify our theories by employing explanatory hypotheses of
the type mentioned (that is to say, hypotheses explaining observable
effects as summations or integrations of micro events). In evaluating
the success of such attempts, it would be a mistake to think that non-
statistical hypotheses about the micro events and their laws of inter-
action could ever be sufficient to explain macro events. For we
should need, in addition, hypothetical frequency estimates, since stat-
istical conclusions can only be derived from statistical premises.
These frequency estimates are always independent hypotheses which

1 As Schlick says in Die Kausalität in der gegenwärtigen Physik, Naturwissenschaften 19, 1931, p. 157.

some structural components of a theory of experience200



at times may indeed occur to us whilst we are engaged in studying
the laws pertaining to micro events, but which can never be derived
from these laws. Frequency estimates form a special class of hypoth-
eses: they are prohibitions which, as it were, concern regularities in
the large.1 Von Mises has stated this very clearly: ‘Not even the
tiniest little theorem in the kinetic theory of gases follows from
classical physics alone, without additional assumptions of a statistical
kind.’2

Statistical estimates, or frequency statements, can never be derived
simply from laws of a ‘deterministic’ kind, for the reason that in order
to deduce any prediction from such laws, initial conditions are needed.
In their place, assumptions about the statistical distribution of initial
conditions—that is to say specific statistical assumptions—enter into
every deduction in which statistical laws are obtained from micro
assumptions of a deterministic or ‘precise’ character.*1

It is a striking fact that the frequency assumptions of theoretical
physics are to a great extent equal-chance hypotheses, but this by no means
implies that they are ‘self-evident’ or a priori valid. That they are far from
being so may be seen from the wide differences between classical
statistics, Bose-Einstein statistics, and Fermi-Dirac statistics. These show

1 A. March well says (Die Grundlagen der Quantenmechanik 1931, p. 250) that the particles of a
gas cannot behave ‘ . . . as they choose; each one must behave in accordance with the
behaviour of the others. It can be regarded as one of the most fundamental principles of
quantum theory that the whole is more than the mere sum of the parts’.
2 Von Mises, Über kausale und statistische Gesetzmässigkeiten in der Physik, Erkenntnis 1, 1930, p. 207
(cf. Naturwissenschaften 18, 1930).
*1 The thesis here advanced by von Mises and taken over by myself has been con-
tested by various physicists, among them P. Jordan (see Anschauliche Quantentheorie, 1936,
p. 282, where Jordan uses as argument against my thesis the fact that certain forms of
the ergodic hypothesis have recently been proved). But in the form that probabilistic
conclusions need probabilistic premises—for example, measure-theoretical premises into
which certain equiprobabilistic assumptions enter—my thesis seems to me supported
rather than invalidated by Jordan’s examples. Another critic of this thesis was Albert
Einstein who attacked it in the last paragraph of an interesting letter which is here
reprinted in appendix *xii. I believe that, at that time, Einstein had in mind a subject-
ive interpretation of probability, and a principle of indifference (which looks in the
subjective theory as if it were not an assumption about equiprobabilities). Much later
Einstein adopted, at least tentatively, a frequency interpretation (of the quantum
theory).
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how special assumptions may be combined with an equal-chance
hypothesis, leading in each case to different definitions of the reference
sequences and the primary properties for which equal distribution is
assumed.

The following example may perhaps illustrate the fact that frequency
assumptions are indispensable even when we may be inclined to do
without them.

Imagine a waterfall. We may discern some odd kind of regularity:
the size of the currents composing the fall varies; and from time to
time a splash is thrown off from the main stream; yet throughout all
such variations a certain regularity is apparent which strongly sug-
gests a statistical effect. Disregarding some unsolved problems of
hydrodynamics (concerning the formation of vortices, etc.) we can,
in principle, predict the path of any volume of water—say a group
of molecules—with any desired degree of precision, if sufficiently
precise initial conditions are given. Thus we may assume that it
would be possible to foretell of any molecule, far above the water-
fall, at which point it will pass over the edge, where it will reach
bottom, etc. In this way the path of any number of particles may, in
principle, be calculated; and given sufficient initial conditions we
should be able, in principle, to deduce any one of the individual
statistical fluctuations of the waterfall. But only this or that individual
fluctuation could be so obtained, not the recurring statistical regular-
ities we have described, still less the general statistical distribution as
such. In order to explain these we need statistical estimates—at
least the assumption that certain initial conditions will again and
again recur for many different groups of particles (which amounts
to a universal statement). We obtain a statistical result if, and only if,
we make such specific statistical assumptions—for example, assump-
tions concerning the frequency distribution of recurring initial
conditions.

71 FORMALLY SINGULAR PROBABILITY STATEMENTS

I call a probability statement ‘formally singular’ when it ascribes a
probability to a single occurrence, or to a single element of a certain
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class of occurrences;*1 for example, ‘the probability of throwing five
with the next throw of this die is 1/6′ or ‘the probability of throwing
five with any single throw (of this die) is 1/6′. From the standpoint of
the frequency theory such statements are as a rule regarded as not quite
correct in their formulation, since probabilities cannot be ascribed to
single occurrences, but only to infinite sequences of occurrences or
events. It is easy, however, to interpret these statements as correct, by
appropriately defining formally singular probabilities with the help of
the concept of objective probability or relative frequency. I use ‘αPk(β)’
to denote the formally singular probability that a certain occurrence k
has the property β, in its capacity as an element of a sequence α—in
symbols:1 k ε α—and I then define the formally singular probability as
follows:

αPk(β) = αF(β) (k ε α) (Definition)

This can be expressed in words as: The formally singular probability
that the event k has the property β—given that k is an element of the
sequence α—is, by definition, equal to the probability of the property
β within the reference sequence α.

This simple, almost obvious, definition proves to be surprisingly
useful. It can even help us to clarify some intricate problems of modern
quantum theory. (Cf. sections 75–76.)

As the definition shows, a formally singular probability statement
would be incomplete if it did not explicitly state a reference-class. But
although α is often not explicitly mentioned, we usually know in such
cases which α is meant. Thus the first example given above does not
specify any reference sequence α, but it is nevertheless fairly clear that
it relates to all sequences of throws with true dice.

In many cases there may be several different reference sequences for
an event k. In these cases it may be only too obvious that different
formally singular probability statements can be made about the same

*1 The term ‘formalistisch’ in the German text was intended to convey the idea of a
statement which is singular in form (or ‘formally singular’) although its meaning can in
fact be defined by statistical statements.
1 The sign ‘. . . ε . . .’, called the copula, means ‘. . . is an element of the class . . .’; or
else, ‘. . . is an element of the sequence . . .’.
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event. Thus the probability that an individual man k will die within a
given period of time may assume very different values according to
whether we regard him as a member of his age-group, or of his occu-
pational group, etc. It is not possible to lay down a general rule as to
which out of several possible reference-classes should be chosen. (The
narrowest reference-class may often be the most suitable, provided that
it is numerous enough to allow the probability estimate to be based
upon reasonable statistical extrapolation, and to be supported by a
sufficient amount of corroborating evidence.)

Not a few of the so-called paradoxes of probability disappear once
we realize that different probabilities may be ascribed to one and the
same occurrence or event, as an element of different reference-classes.
For example, it is sometimes said that the probability αPk(β) of an event
before its occurrence is different from the probability of the same event after
it has occurred: before, it may equal 1/6, while afterwards it can only
be equal to 1 or 0. This view is, of course, quite mistaken. αPk(β) is
always the same, both before and after the occurrence. Nothing has
changed except that, on the basis of the information k ε β (or k ε β

-
)—

information which may be supplied to us upon observing the
occurrence—we may choose a new reference-class, namely β (or β

-
),

and then ask what is the value of βPk(β). The value of this probability is
of course 1; just as β-Pk(β) = 0. Statements informing us about the actual
outcome of single occurrences—statements which are not about some
frequency but rather of the form ‘k ε φ’—cannot change the prob-
ability of these occurrences; they may, however, suggest to us the
choice of another reference-class.

The concept of a formally singular probability statement provides a
kind of bridge to the subjective theory, and thereby also, as will be shown
in the next section, to the theory of range. For we might agree to
interpret formally singular probability as ‘degree of rational belief’
(following Keynes)—provided we allow our ‘rational beliefs’ to be
guided by an objective frequency statement. This then is the information
upon which our beliefs depend. In other words, it may happen that
we know nothing about an event except that it belongs to a
certain reference-class in which some probability estimate has been
successfully tested. This information does not enable us to predict what
the property of the event in question will be; but it enables us to
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express all we know about it by means of a formally singular prob-
ability statement which looks like an indefinite prediction about the particular
event in question.*2

Thus I do not object to the subjective interpretation of probability
statements about single events, i.e. to their interpretation as indefinite
predictions—as confessions, so to speak, of our deficient knowledge
about the particular event in question (concerning which, indeed,
nothing follows from a frequency statement). I do not object, that is to
say, so long as we clearly recognize that the objective frequency statements are
fundamental, since they alone are empirically testable. I reject, however, any inter-
pretation of these formally singular probability statements—these
indefinite predictions—as statements about an objective state of affairs,
other than the objective statistical state of affairs. What I have in mind is
the view that a statement about the probability 1/6 in dicing is not a
mere confession that we know nothing definite (subjective theory),
but rather an assertion about the next throw—an assertion that its
result is objectively both indeterminate and undetermined—
something which as yet hangs in the balance.*3 I regard all attempts at
this kind of objective interpretation (discussed at length by Jeans,
among others) as mistaken. Whatever indeterministic airs these inter-
pretations may give themselves, they all involve the metaphysical idea
that not only can we deduce and test predictions, but that, in addition,
nature is more or less ‘determined’ (or ‘undetermined’); so that the
success (or failure) of predictions is to be explained not by the laws
from which they are deduced, but over and above this by the fact that

*2 At present I think that the question of the relation between the various interpretations
of probability theory can be tackled in a much simpler way—by giving a formal system
of axioms or postulates and proving that it is satisfied by the various interpretations. Thus
I regard most of the considerations advanced in the rest of this chapter (sections 71 and
72) as being superseded. See appendix *iv, and chapters *ii, *iii, and *v of my Postscript.
But I still agree with most of what I have written, provided my ‘reference classes’ are
determined by the conditions defining an experiment, so that the ‘frequencies’ may be
considered as the result of propensities.
*3 I do not now object to the view that an event may hang in the balance, and I even
believe that probability theory can best be interpreted as a theory of the propensities of events to
turn out one way or another. (See my Postscript.) But I should still object to the view that
probability theory must be so interpreted. That is to say, I regard the propensity interpret-
ation as a conjecture about the structure of the world.
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nature is actually constituted (or not constituted) according to these
laws.*4

72 THE THEORY OF RANGE

In section 34 I said that a statement which is falsifiable to a higher
degree than another statement can be described as the one which is
logically more improbable; and the less falsifiable statement as the one
which is logically more probable. The logically less probable statement
entails1 the logically more probable one. Between this concept of logical
probability and that of objective or formally singular numerical probability
there are affinities. Some of the philosophers of probability (Bolzano,
von Kries, Waismann) have tried to base the calculus of probability
upon the concept of logical range, and thus upon a concept which (cf.
section 37) coincides with that of logical probability; and in doing so,
they also tried to work out the affinities between logical and numerical
probability.

Waismann2 has proposed to measure the degree of interrelatedness
between the logical ranges of various statements (their ratios, as it
were) by means of the relative frequencies corresponding to them, and
thus to treat the frequencies as determining a system of measurement for
ranges. I think it is feasible to erect a theory of probability on this
foundation. Indeed we may say that this plan amounts to the same
thing as correlating relative frequencies with certain ‘indefinite predic-
tions’ —as we did in the foregoing section, when defining formally
singular probability statements.

It must be said, however, that this method of defining probability is
only practicable when a frequency theory has already been constructed.
Otherwise one would have to ask how the frequencies used in defining
the system of measurement were defined in their turn. If, however, a
frequency theory is at our disposal already, then the introduction of the
theory of range becomes really superfluous. But in spite of this objec-

*4 This somewhat disparaging characterization fits perfectly my own views which I now
submit to discussion in the ‘Metaphysical Epilogue’ of my Postscript, under the name of
‘the propensity interpretation of probability’.
1 Usually (cf. section 35).
2 Waismann, Logische Analyse des Wahrscheinlichkeitsbegriffes, Erkenntnis 1, 1930, p. 128 f.
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tion I regard the practicability of Waismann’s proposal as significant.
It is satisfactory to find that a more comprehensive theory can bridge
the gaps—which at first appeared unbridgeable—between the vari-
ous attempts to tackle the problem, especially between the subjective
and the objective interpretations. Yet Waismann’s proposal calls for
some slight modification. His concept of a ratio of ranges (cf. note 2
to section 48) not only presupposes that ranges can be compared
with the help of their subclass relations (or their entailment rela-
tions); but it also presupposes, more generally, that even ranges
which only partially overlap (ranges of non-comparable statements)
can be made comparable. This latter assumption, however, which
involves considerable difficulties, is superfluous. It is possible to
show that in the cases concerned (such as cases of randomness) the
comparison of subclasses and that of frequencies must lead to analo-
gous results. This justifies the procedure of correlating frequencies to
ranges in order to measure the latter. In doing so, we make the
statements in question (non-comparable by the subclass method)
comparable. I will indicate roughly how the procedure described
might be justified.

If between two property classes γ and β the subclass relation

γ ⊂ β

holds, then we have:

(k)[Fsb(k ε γ) � Fsb(k ε β)] (cf. section 33)

so that the logical probability or the range of the statement (k ε γ) must
be smaller than, or equal to, that of (k ε β). It will be equal only if there
is a reference class α (which may be the universal class) with respect to
which the following rule holds which may be said to have the form of
a ‘law of nature’:

(x) {[x ε (α.β)] → (x ε γ)}.

If this ‘law of nature’ does not hold, so that we may assume random-
ness in this respect, then the inequality holds. But in this case we
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obtain, provided α is denumerable, and acceptable as a reference
sequence:

αF(γ) < αF(β).

This means that, in the case of randomness, a comparison of ranges
must lead to the same inequality as a comparison of relative frequen-
cies. Accordingly, if we have randomness, we may correlate relative
frequencies with the ranges in order to make the ranges measurable.
But this is just what we did, although indirectly, in section 71, when
we defined the formally singular probability statement. Indeed, from
the assumptions made, we might have inferred immediately that

αPk(γ) < αPk(β).

So we have come back to our starting point, the problem of the
interpretation of probability. And we now find that the conflict
between objective and subjective theories, which at first seemed so
obdurate, may be eliminated altogether by the somewhat obvious
definition of formally singular probability.
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9
SOME OBSERVATIONS ON

QUANTUM THEORY

Our analysis of the problem of probability has placed instruments at
our disposal which we may now put to the test, by applying them to
one of the topical problems of modern science; and I will try, with
their help, to analyse, and to clarify, some of the more obscure points
of modern quantum theory.

My somewhat audacious attempt to tackle, by philosophical or
logical methods, one of the central problems of physics, is bound to
arouse the suspicion of the physicist. I admit that his scepticism is
healthy and his suspicions well-founded; yet I have some hope that I
may be able to overcome them. Meanwhile it is worth remembering
that in every branch of science, questions may crop up which are
mainly logical. It is a fact that quantum physicists have been eagerly
participating in epistemological discussions. This may suggest that they
themselves feel that the solution of some of the still unsolved problems
in quantum theory has to be sought in the no-man’s-land that lies
between logic and physics.

I will begin by setting down in advance the main conclusions which
will emerge from my analysis.

(1) There are some mathematical formulae in quantum theory
which have been interpreted by Heisenberg in terms of his uncertainty



principle; that is, as statements about ranges of uncertainty due to the
limits of precision which we may attain in our measurements. These
formulae, as I shall try to show, are to be interpreted as formally singu-
lar probability statements (cf. section 71); which means that they in
their turn must be interpreted statistically. So interpreted the formulae
in question assert that certain relations hold between certain ranges of statistical
‘dispersion’ or ‘variance’ or ‘scatter’. (They will be here called ‘statistical
scatter relations’.)

(2) Measurements of a higher degree of precision than is permitted
by the uncertainty principle are not, I shall try to show, incompatible
with the system of formulae of quantum theory, or with its statistical
interpretation. Thus quantum theory would not necessarily be refuted
if measurements of such a degree of precision should ever become
possible.

(3) The existence of limits of attainable precision which was
asserted by Heisenberg would therefore not be a logical consequence
deducible from the formulae of the theory. It would be, rather, a
separate or an additional assumption.

(4) Moreover this additional assumption of Heisenberg’s actually
contradicts, as I shall try to show, the formulae of quantum theory if they
are statistically interpreted. For not only are more precise measure-
ments compatible with the quantum theory, but it is even possible to
describe imaginary experiments which show the possibility of more
exact measurements. In my view it is this contradiction which creates
all those difficulties by which the admirable structure of modern quan-
tum physics is beset; so much so that Thirring could say of quantum
theory that it ‘has remained an impenetrable mystery to its creators, on
their own admission’.1

What follows here might be described, perhaps, as an inquiry into
the foundations of quantum theory.2 In this, I shall avoid all mathe-
matical arguments and, with one single exception, all mathematical

1 H. Thirring, Die Wandlung des Begriffssystems der Physik (essay in Krise und Neuaufbau in den exakten
Wissenschaften, Fünf Wiener Vorträge, by Mark, Thirring, Hahn, Nobeling, Menger; Verlag
Deuticke, Wien und Leipzig, 1933, p. 30).
2 In what follows I confine myself to discussing the interpretation of quantum physics,
but I omit problems concerning wave-fields (Dirac’s theory of emission and absorption;
‘second quantization’ of the Maxwell-Dirac field-equations). I mention this restriction
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formulae. This is possible because I shall not question the correctness
of the system of the mathematical formulae of quantum theory. I
shall only be concerned with the logical consequences of its physical
interpretation which is due to Born.

As to the controversy over ‘causality’, I propose to dissent from
the indeterminist metaphysic so popular at present. What distin-
guishes it from the determinist metaphysic until recently in vogue
among physicists is not so much its greater lucidity as its greater
sterility.

In the interests of clarity, my criticism is often severe. It may there-
fore be just as well to say here that I regard the achievement of the
creators of modern quantum theory as one of the greatest in the whole
history of science.*1

73 HEISENBERG’S PROGRAMME AND THE
UNCERTAINTY RELATIONS

When he attempted to establish atomic theory on a new basis, Heisen-
berg started with an epistemological programme:1 to rid the theory of
‘unobservables’, that is, of magnitudes inaccessible to experimental
observation; to rid it, one might say, of metaphysical elements. Such
unobservable magnitudes did occur in Bohr’s theory, which preceded
Heisenberg’s own: nothing observable by experiment corresponded to
the orbits of the electrons or even to the frequencies of their revolu-
tions (for the emitted frequencies which could be observed as spectral

because there are problems here, such as the interpretation of the equivalence between a
quantized wave-field and a corpuscular gas, to which my arguments apply (if at all) only
if they are adapted to these problems with great care.

*1 I have not changed my mind on this point, nor on the main points of my criticism. But
I have changed my interpretation of quantum theory together with my interpretation of
probability theory. My present views are to be found in my Postscript where I argue,
independently of the quantum theory, in favour of indeterminism. Yet with the exception of
section 77 (which is based upon a mistake) I still regard the present chapter as
important—especially section 76.
1 W. Heisenberg, Zeitschrift für Physik 33, 1925, p. 879; in what follows I mainly refer to
Heisenberg’s work Die physikalischen Prinzipien der Quantentheorie, 1930. English translation by
C. Eckart and F. C. Hoyt: The Physical Principles of the Quantum Theory, Chicago, 1930.
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lines could not be identified with the frequencies of the electron’s
revolutions). Heisenberg hoped that by eliminating these unobservable
magnitudes, he might manage to cure Bohr’s theory of its
shortcomings.

There is a certain similarity between this situation and the one with
which Einstein was confronted when trying to re-interpret the
Lorentz-Fitzgerald hypothesis of contraction. This hypothesis tried to
explain the negative result of the experiments of Michelson and Morley
by making use of unobservable magnitudes such as the movements
relative to Lorentz’s immobile ether; i.e. of magnitudes inaccessible to
experimental testing. Both in this case and in that of Bohr’s theory, the
theories needing reform explained certain observable natural pro-
cesses; but both made use of the unsatisfactory assumption that
physical events and physically defined magnitudes exist which nature
succeeds in hiding from us by making them for ever inaccessible to
observational tests.

Einstein showed how the unobservable events involved in Lorentz’s
theory could be eliminated. One might be inclined to say the same of
Heisenberg’s theory, or at least of its mathematical content. However
there still seems to be room for improvement. Even from the point of
view of Heisenberg’s own interpretation of his theory, it does not seem
that his programme has been fully carried out. Nature still succeeds in
hiding from us most cunningly some of the magnitudes embodied
in the theory.

This state of affairs is connected with the so-called uncertainty principle
enunciated by Heisenberg. It may, perhaps, be explained as follows.
Every physical measurement involves an exchange of energy between
the object measured and the measuring apparatus (which might be the
observer himself). A ray of light, for example, might be directed upon
the object, and part of the dispersed light reflected by the object might
be absorbed by the measuring apparatus. Any such exchange of energy
will alter the state of the object which, after being measured, will be in
a state different from before. Thus the measurement yields, as it were,
knowledge of a state which has just been destroyed by the measuring
process itself. This interference by the measuring process with the
object measured can be neglected in the case of macroscopic objects,
but not in the case of atomic objects; for these may be very strongly
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affected, for example by irradiation with light. It is thus impossible to
infer from the result of the measurement the precise state of an atomic
object immediately after it has been measured. Therefore the measurement
cannot serve as basis for predictions. Admittedly, it is always possible to ascer-
tain, by means of new measurements, the state of the object after the
previous measurement, but the system is thereby again interfered with
in an incalculable way. And admittedly, it is always possible to arrange
our measurements in such a way that certain of the characteristics of
the state to be measured—for example the momentum of the
particle—are not disturbed. But this can only be done at the price of
interfering the more severely with certain other characteristic magni-
tudes of the state to be measured (in this case the position of the
particle). If two magnitudes are mutually correlated in this way then
the theorem holds for them that they cannot simultaneously be meas-
ured with precision, although each may be separately so measured.
Thus if we increase the precision of one of the two measurements—say
the momentum px, thereby reducing the range or interval of error
∆px—then we are bound to decrease the precision of the measurement
of the position co-ordinate x, i.e. to expand the interval ∆x. In this way,
the greatest precision attainable is, according to Heisenberg, limited by
the uncertainty relation,2

∆x . ∆px �
h

4π
 .

Similar relations hold for the other co-ordinates. The formula tells us
that the product of the two ranges of error is at least of the order of
magnitude of h, where h is Planck’s quantum of action. It follows from
this formula that a completely precise measurement of one of the two
magnitudes will have to be purchased at the price of complete
indeterminacy in the other.

According to Heisenberg’s uncertainty relations, every measurement
of the position interferes with the measurement of the corresponding
component of the momentum. Thus it is in principle impossible to

2 For the derivation of this formula cf. note 2 to section 75.
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predict the path of a particle. ‘In the new mechanics, the concept “path”
has no definite meaning whatever. . . .’3

But here the first difficulty arises. The uncertainty relations apply
only to the magnitudes (characteristic of physical states) which belong
to the particle after the measurement has been made. The position and
momentum of an electron up to the instant of measuring can be ascertained
in principle with unlimited precision. This follows from the very fact
that it is after all possible to carry out several measuring operations in
succession. Accordingly, by combining the results of (a) two meas-
urements of position, (b) measurement of position preceded by meas-
urement of momentum, and (c) measurement of position followed by
measurement of momentum, it would be possible to calculate, with
the help of the data obtained, the precise position and momentum co-
ordinates for the whole period of time between the two measurements.
(To start with, we may confine our considerations only to this period.4)
But these precise calculations are, according to Heisenberg, useless for
prediction: it is therefore impossible to test them. This is so because the
calculations are valid for the path between the two experiments only if
the second is the immediate successor of the first in the sense that no
interference has occurred between them. Any test that might be
arranged for the purpose of checking the path between the two
experiments is bound to disturb it so much that our calculations of the
exact path become invalid. Heisenberg says about these exact calcula-
tions: ‘ . . . whether one should attribute any physical reality to the
calculated past history of the electron is a pure matter of taste’.5 By this
he clearly wishes to say that such untestable calculations of paths are
from the physicist’s point of view without any significance. Schlick
comments on this passage of Heisenberg’s as follows: ‘I would have
expressed myself even more strongly, in complete agreement with the
fundamental views of both Bohr and Heisenberg themselves, which I

3 March, Die Grundlagen der Quantenmechanik, 1931, p. 55.
4 I shall show in detail in section 77 and in appendix vi that the case (b) will in certain
circumstances also enable us to calculate the past of the electron before the first measure-
ment was taken. (The next quotation from Heisenberg seems to allude to this fact.) *I
now regard this footnote, like section 77, as mistaken.
5 Heisenberg, Die Physikalischen Prinzipien der Quantentheorie (1930), p. 15. (The English transla-
tion, p. 20, puts it very well: ‘is a matter of personal belief’.)
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believe to be incontestable. If a statement concerning the position of an
electron in atomic dimensions is not verifiable then we cannot attribute
any sense to it; it becomes impossible to speak of the “path” of a
particle between two points at which it has been observed.’6 (Similar
remarks are to be found in March7, Weyl,8 and others.)

Yet as we have just heard, it is possible to calculate such a ‘senseless’ or
metaphysical path in terms of the new formalism. And this shows that
Heisenberg has failed to carry through his programme. For this state of
affairs only allows of two interpretations. The first would be that the
particle has an exact position and an exact momentum (and therefore
also an exact path) but that it is impossible for us to measure them both
simultaneously. If this is so then nature is still bent on hiding certain
physical magnitudes from our eyes; not indeed the position, nor yet
the momentum, of the particle, but the combination of these two
magnitudes, the ‘position-cum-momentum’, or the ‘path’. This interpret-
ation regards the uncertainty principle as a limitation of our know-
ledge; thus it is subjective. The other possible interpretation, which is an
objective one, asserts that it is inadmissible or incorrect or metaphysical
to attribute to the particle anything like a sharply defined ‘position-
cum-momentum’ or ‘path’: it simply has no ‘path’, but only either an
exact position combined with an inexact momentum, or an exact
momentum combined with an inexact position. But if we accept this
interpretation then, again, the formalism of the theory contains meta-
physical elements; for a ‘path’ or ‘position-cum-momentum’ of the
particle, as we have seen, is exactly calculable—for those periods of
time during which it is in principle impossible to test it by
observation.

It is illuminating to see how the champions of the uncertainty rela-
tion vacillate between a subjective and an objective approach. Schlick
for instance writes, immediately after upholding the objective view, as
we have seen: ‘Of natural events themselves it is impossible to assert

6 Schlick, Die Kausalität in der gegenwärtigen Physik, Die Naturwissenschaften 19, 1931, p. 159.
7 March, op. cit. passim (e.g. pp. 1 f. and p. 57).
8 Weyl, Gruppentheorie und Quantenmechanik, 2nd edition 1931, p. 68 (cf. the last quotation in
section 75, below: ‘. . . the meaning of these concepts. . . .’). *The paragraph referred to
seems to have been omitted in the English translation, The Theory of Groups and Quantum
Mechanics, 1931.
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meaningfully any such thing as “haziness” or “inaccuracy”. It is only to
our own thoughts that anything of this sort can apply (more especially,
if we do not know which statements . . . are true)’: a remark which is
obviously directed against that very same objective interpretation which
assumes that it is not our knowledge, but the momentum of the par-
ticle, which gets ‘blurred’ or ‘smeared’, as it were, by having its pos-
ition precisely measured.*1 Similar vacillations are shown by many
other authors. But whether one decides in favour of the objective or the
subjective view, the fact remains that Heisenberg’s programme has not
been carried out and that he has not succeeded in his self-imposed task
of expelling all metaphysical elements from atomic theory. Nothing
whatever is therefore to be gained by attempting, with Heisenberg, to
fuse the two opposing interpretations by a remark such as ‘. . . an
“objective” physics in this sense, i.e. a sharp division of the world into
object and subject has indeed ceased to be possible’.9 Heisenberg has
not so far accomplished his self-imposed task: he has not yet purged
quantum theory of its metaphysical elements.

74 A BRIEF OUTLINE OF THE STATISTICAL
INTERPRETATION OF QUANTUM THEORY

In his derivation of the uncertainty relations, Heisenberg follows Bohr
in making use of the idea that atomic processes can be just as well
represented by the ‘quantum-theoretical image of a particle’ as by the
‘quantum-theoretical image of a wave’.

This idea is connected with the fact that modern quantum theory
has advanced along two different roads. Heisenberg started from the
classical particle theory of the electron which he re-interpreted accord-
ing to quantum theory; whilst Schrödinger started from the (likewise
‘classical’) wave-theory of de Broglie: he co-ordinated with each elec-
tron a ‘wave-packet’, i.e. a group of oscillations which by interference
strengthen each other within a small region and extinguish each other

*1 The expression ‘smeared’ is due to Schrödinger. The problem of the objective exist-
ence or non-existence of a ‘path’—whether the path is ‘smeared’, or whether it is merely
not fully known—is, I believe, fundamental. Its importance has been enhanced by the
experiment of Einstein, Podolsky and Rosen, discussed in appendices *xi and *xii.
9 Heisenberg, Physikalische Prinzipien, p. 49.
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outside it. Schrödinger later showed that his wave-mechanics led to
results mathematically equivalent to those of Heisenberg’s particle
mechanics.

The paradox of the equivalence of two so fundamentally different
images as those of particle and wave was resolved by Born’s statistical
interpretation of the two theories. He showed that the wave theory too
can be taken as a particle theory; for Schrödinger’s wave equation can
be interpreted in such a way that it gives us the probability of finding the
particle within any given region of space. (The probability is determined
by the square of the amplitude of the wave; it is great within the wave-
packet where the waves reinforce each other, and vanishes outside it.)

That the quantum theory should be interpreted statistically was sug-
gested by various aspects of the problem situation. Its most important
task—the deduction of the atomic spectra—had to be regarded as a
statistical task ever since Einstein’s hypothesis of photons (or light-
quanta). For this hypothesis interpreted the observed light-effects as
mass-phenomena, as due to the incidence of many photons. ‘The
experimental methods of atomic physics have, . . . under the guidance
of experience, become concerned, exclusively, with statistical ques-
tions. Quantum mechanics, which furnishes the systematic theory of
the observed regularities, corresponds in every way to the present state
of experimental physics; for it confines itself, from the outset, to
statistical questions and to statistical answers.’1

It is only in its application to problems of atomic physics that quan-
tum theory obtains results which differ from those of classical mechan-
ics. In its application to macroscopic processes its formulae yield with
close approximation those of classical mechanics. ‘According to quan-
tum theory, the laws of classical mechanics are valid if they are
regarded as statements about the relations between statistical averages’,
says March.2 In other words, the classical formulae can be deduced as
macro-laws.

In some expositions the attempt is made to explain the statistical
interpretation of the quantum theory by the fact that the precision
attainable in measuring physical magnitudes is limited by Heisenberg’s

1 Born-Jordan, Elementare Quantenmechanik, 1930, pp. 322 f.
2 March, Die Grundlagen der Quantenmechanik, 1931, p. 170.
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uncertainty relations. It is argued that, owing to this uncertainty of meas-
urements in any atomic experiments, ‘. . . the result will not in general
be determinate, i.e. if the experiment is repeated several times under
identical conditions several different results may be obtained. If the
experiment is repeated a large number of times it will be found that
each particular result will be obtained in a definite fraction of the total
number of times, so that one can say there is a definite probability of its
being obtained any time the experiment is performed’ (Dirac).3

March too writes with reference to the uncertainty relation: ‘Between
the present and the future there hold . . . only probability relations;
from which it becomes clear that the character of the new mechanics
must be that of a statistical theory.’4

I do not think that this analysis of the relations between the
uncertainty formulae and the statistical interpretation of the quantum
theory is acceptable. It seems to me that the logical relation is just the
other way round. For we can derive the uncertainty formulae from
Schrödinger’s wave equation (which is to be interpreted statistically),
but not this latter from the uncertainty formulae. If we are to take due
account of these relations of derivability, then the interpretation of the
uncertainty formulae will have to be revised.

75 A STATISTICAL RE-INTERPRETATION OF
THE UNCERTAINTY FORMULAE

Since Heisenberg it is accepted as an established fact that any simul-
taneous measurements of position and momentum with a precision
exceeding that permitted by his uncertainty relations would contradict
quantum theory. The ‘prohibition’ of exact measurements, it is
believed, can be logically derived from quantum theory, or from wave

3 Dirac, Quantum Mechanics, 1930, p. 10. *(From the 1st edition.) A parallel passage,
slightly more emphatic, occurs on p. 14 of the 3rd edition. ‘. . . in general the result will
not be determinate, i.e., if the experiment is repeated several times under identical
conditions several different results may be obtained. It is a law of nature, though, that if
the experiment is repeated a large number of times, each particular result will be
obtained in a definite fraction of the total number of times, so that there is a definite
probability of its being obtained.’
4 March, Die Grundlagen der Quantenmechanik, p. 3.
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mechanics. On this view, the theory would have to be regarded as
falsified if experiments resulting in measurements of ‘forbidden
accuracy’ could be carried out.1

I believe this view to be false. Admittedly, it is true that Heisenberg’s

formulae (∆x∆px�
h

4π
 etc.) result as logical conclusions from the the-

ory;2 but the interpretation of these formulae as rules limiting attainable
precision of measurement, in Heisenberg’s sense, does not follow from
the theory. Therefore measurements more exact than those permissible
according to Heisenberg cannot logically contradict the quantum the-
ory, or wave mechanics. I shall accordingly draw a sharp distinction
between the formulae, which I shall call the ‘Heisenberg formulae’ for
short, and their interpretation—also due to Heisenberg—as uncertainty
relations; that is, as statements imposing limitations upon the attainable
precision of measurement.

When working out the mathematical deduction of the Heisenberg
formulae one has to employ the wave-equation or some equivalent
assumption, i.e. an assumption which can be statistically interpreted (as we
saw in the preceding section). But if this interpretation is adopted, then
the description of a single particle by a wave-packet is undoubtedly
nothing else but a formally singular probability statement (cf. section 71). The
wave-amplitude determines, as we have seen, the probability of detect-
ing the particle at a certain place; and it is just this kind of probability
statement—the kind that refers to a single particle (or event)—which
we have called ‘formally singular’. If one accepts the statistical inter-
pretation of quantum theory, then one is bound to interpret those
statements—such as the Heisenberg formulae—which can be derived

1 I refrain from criticizing here the very widespread and rather naïve view that Heisen-
berg’s arguments furnish conclusive proof of the impossibility of all such measurements;
cf. for instance, Jeans, The New Background of Science, 1933, p. 233; 2nd edition, 1934, p. 237:
‘Science has found no way out of this dilemma. On the contrary, it has proved that there
is no way out.’ It is clear, of course, that no such proof can ever be furnished, and that the
principle of uncertainty could, at best, be deducible from the hypotheses of quantum
and wave mechanics and could be empirically refuted together with them. In a question
like this, we may easily be misled by plausible assertions such as the one made by Jeans.
2 Weyl supplies a strict logical deduction: Gruppentheorie und Quantenmechanik, 2nd edition,
1931, pp. 68 and 345; English translation, pp. 77 and 393 f.
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from the formally singular probability statements of the theory, as
probability statements in their turn, and again as formally singular, if
they apply to a single particle. They too must therefore be interpreted,
ultimately, as statistical assertions.

As against the subjective interpretation, ‘The more precisely we
measure the position of a particle the less we can know about its
momentum’, I propose that an objective and statistical interpretation of
the uncertainty relations should be accepted as being the fundamental
one; it may be phrased somewhat as follows. Given an aggregate of
particles and a selection (in the sense of a physical separation) of those
which, at a certain instant, and with a certain given degree of precision,
have a certain position x, we shall find that their momenta px will show
random scattering; and the range of scatter, ∆px, will thereby the
greater, the smaller we have made ∆x, i.e. the range of scatter or
imprecision allowed to the positions. And vice versa: if we select, or
separate, those particles whose momenta px all fall within a prescribed
range ∆px, then we shall find that their positions will scatter in a ran-
dom manner, within a range ∆x which will be the greater, the smaller
we have made ∆px, i.e. the range of scatter or imprecision allowed to the
momenta. And finally: if we try to select those particles which have
both the properties ∆x and ∆px, then we can physically carry out such a
selection—that is, physically separate the particles—only if both ranges

are made sufficiently great to satisfy the equation ∆x . ∆px �
h

4π
. This

objective interpretation of the Heisenberg formulae takes them as
asserting that certain relations hold between certain ranges of scatter;
and I shall refer to them, if they are interpreted in this way, as the
‘statistical scatter relations’.*1

In my statistical interpretation I have so far made no mention of

*1 I still uphold the objective interpretation here explained, with one important change,
however. Where, in this paragraph, I speak of ‘an aggregate of particles’ I should now
speak of ‘an aggregate—or of a sequence—of repetitions of an experiment undertaken
with one particle (or one system of particles)’. Similarly, in the following paragraphs; for
example, the ‘ray’ of particles should be re-interpreted as consisting of repeated experi-
ments with (one or a few) particles—selected by screening off, or by shutting out,
particles which are not wanted.
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measurement; I have referred only to physical selection.3 It is now necessary
to clarify the relation between these two concepts.

I speak of physical selection or physical separation if, for example,
we screen off, from a stream of particles, all except those which pass
through a narrow aperture ∆x, that is, through a range ∆x allowed
to their position. And I shall say of the particles belonging to the ray
thus isolated that they have been selected physically, or technically,
according to their property ∆x. It is only this process, or its result, the
physically or technically isolated ray of particles, which I describe as
a ‘physical selection’—in contradistinction to a merely ‘mental’ or
‘imagined’ selection, such as we make when speaking of the class of
all those particles which have passed, or will pass, through the range
∆p; that is, of a class within a wider class of particles from which it
has not been physically screened off.

Now every physical selection can of course be regarded as a measure-
ment, and can actually be used as such.4 If, say, a ray of particles is
selected by screening off or shutting out all those which do not pass
through a certain positional range (‘place-selection’) and if later the
momentum of one of these particles is measured, then we can regard
the place-selection as a measurement of position, because we learn
from it that the particle has passed through a certain position (though
when it was there we may sometimes not know, or may only learn from
another measurement). On the other hand, we must not regard every
measurement as a physical selection. Imagine, for example, a mono-
chromatic ray of electrons flying in the direction x. By using a Geiger
counter, we can then record those electrons that arrive at a certain
position. By the time-intervals between the impacts upon the counter,
we may also measure spatial intervals; that is to say, we measure their
positions in the x direction up to the moment of impact. But in taking
these measurements we do not make a physical selection of the par-
ticles according to their positions in the x direction. (And indeed, these

3 Weyl too, among others, writes of ‘selections’; see Gruppentheorie und Quantenmechanik,
p. 67 ff., English translation p. 76 ff.; but unlike me he does not contrast measurement
and selection.
4 By a ‘measurement’ I mean, in conformity with linguistic usage accepted by physicists,
not only direct measuring operations but also measurements obtained indirectly by
calculation (in physics these are practically the only measurements that occur).
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measurements will generally yield a completely random distribution of
the positions in the x direction.)

Thus in their physical application, our statistical scatter relations
come to this. If one tries, by whatever physical means, to obtain as
homogeneous an aggregate of particles as possible, then this attempt will
encounter a definite barrier in these scatter-relations. For example, we
can obtain by means of physical selection a plane monochromatic
ray—say, a ray of electrons of equal momentum. But if we attempt to
make this aggregate of electrons still more homogeneous—perhaps by
screening off part of it—so as to obtain electrons which not only have
the same momentum but have also passed through some narrow slit
determining a positional range ∆x, then we are bound to fail. We fail
because any selection according to the position of the particles
amounts to an interference with the system which will result in
increased scattering of the momentum components px, so that the scat-
tering will increase (in accordance with the law expressed by the
Heisenberg formula) with the narrowing of the slit. And conversely: if
we are given a ray selected according to position by being passed
through a slit, and if we try to make it ‘parallel’ (or ‘plane’) and
monochromatic, then we have to destroy the selection according to
position since we cannot avoid increasing the width of the ray. (In the
ideal case—for example, if the px, components of the particles are all to
become equal to o—the width would have to become infinite.) If the
homogeneity of a selection has been increased as far as possible (i.e. as
far as the Heisenberg formulae permit, so that the sign of equality in
these formulae becomes valid) then this selection may be called a pure
case.5

Using this terminology, we can formulate the statistical scatter

5 The term is due to Weyl (Zeitschrift fur Physik 46, 1927, p. 1) and J. von Neumann
(Göttinger Nachrichten, 1927, p. 245). If, following Weyl (Gruppentheorie und Quanten-
mechanik, p. 70; English translation p. 79; cf. also Born-Jordan, Elementare Quanten-mechanik,
p. 315), we characterize the pure case as one ‘. . . which it is impossible to produce
by a combination of two statistical collections different from it’, then pure cases
satisfying this description need not be pure momentum or place selections. They could
be produced, for example, if a place-selection were effected with some chosen degree
of precision, and the momentum with the greatest precision still attainable.
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relations thus: There is no aggregate of particles more homogeneous
than a pure case.*2

It has not till now been taken sufficiently into account that to the
mathematical derivation of the Heisenberg formulae from the funda-
mental equations of quantum theory there must correspond, precisely,
a derivation of the interpretation of the Heisenberg formulae from the
interpretation of these fundamental equations. March for instance has
described the situation just the other way round (as indicated in the
previous section): the statistical interpretation of quantum theory
appears in his presentation as a consequence of the Heisenberg limita-
tion upon attainable precision. Weyl on the other hand gives a strict
derivation of the Heisenberg formulae from the wave equation—an
equation which he interprets in statistical terms. Yet he interprets the
Heisenberg formulae—which he has just derived from a statistically
interpreted premise—as limitations upon attainable precision. And he
does so in spite of the fact that he notices that this interpretation of the
formulae runs counter in some respects to the statistical interpretation
of Born. For according to Weyl, Born’s interpretation is subject to ‘a
correction’ in the light of the uncertainty relations. ‘It is not merely the
case that position and velocity of a particle are just subject to statistical
laws, while being precisely determined in every single case. Rather, the
very meaning of these concepts depends on the measurements needed
to ascertain them; and an exact measurement of the position robs us of
the possibility of ascertaining the velocity.’6

The conflict perceived by Weyl between Born’s statistical interpret-
ation of quantum theory and Heisenberg’s limitations upon attainable
precision does indeed exist; but it is sharper than Weyl thinks. Not only
is it impossible to derive the limitations of attainable precision from
the statistically interpreted wave-equation, but the fact (which I have
still to demonstrate) that neither the possible experiments nor the
actual experimental results agree with Heisenberg’s interpretation can

*2 In the sense of note *1, this should, of course, be re-formulated: ‘There is no experi-
mental arrangement capable of producing an aggregate or sequence of experiments with
results more homogeneous than a pure case.’
6 Weyl, Gruppentheorie und Quantenmechanik, p. 68. *The paragraph here cited seems to be
omitted in the English translation.
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be regarded as a decisive argument, as a kind of experimentum crucis, in
favour of the statistical interpretation of the quantum theory.

76 AN ATTEMPT TO ELIMINATE METAPHYSICAL
ELEMENTS BY INVERTING HEISENBERG’S
PROGRAMME; WITH APPLICATIONS

If we start from the assumption that the formulae which are peculiar to
quantum theory are probability hypotheses, and thus statistical state-
ments, then it is difficult to see how prohibitions of single events could
be deduced from a statistical theory of this character (except perhaps in
the cases of probabilities equal to one or to zero). The belief that single
measurements can contradict the formulae of quantum physics seems
logically untenable; just as untenable as the belief that a contradiction
might one day be detected between a formally singular probability
statement αPk(β) = p (say, ‘the probability that the throw k will be a five
equals 1/6’) and one of the following two statements: k ε β (‘the throw
is in fact a five’) or k ε β

-
 (‘the throw is in fact not a five’).

These simple considerations provide us with the means of refute any
of the alleged proofs which have been designed to show that exact
measurements of position and momentum would contradict the quan-
tum theory; or which have been designed, perhaps, to show that the
mere assumption that any such measurements are physically possible
must lead to contradictions within the theory. For any such proof must
make use of quantum-theoretical considerations applied to single par-
ticles; which means that it has to make use of formally singular prob-
ability statements, and further, that it must be possible to translate the
proof—word for word, as it were—into the statistical language. If we
do this then we find that there is no contradiction between the single
measurements which are assumed to be precise, and the quantum
theory in its statistical interpretation. There is only an apparent contra-
diction between these precise measurements and certain formally sin-
gular probability statements of the theory. (In appendix v an example
of this type of proof will be examined.)

But whilst it is wrong to say that the quantum theory rules out exact
measurements, it is yet correct to say that from formulae which are
peculiar to the quantum theory—provided they are interpreted
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statistically—no precise singular predictions can be derived. (I do not count either
the law of conservation of energy nor the law of conservation of
momentum among the formulae peculiar to quantum theory.)

This is so because in view of the scatter relations, we must fail, more
especially, to produce precise initial conditions, by experimentally
manipulating the system (i.e. by what we have called physical selec-
tion). Now it is indeed true that the normal technique of the experi-
menter is to produce or to construct initial conditions; and this allows us to
derive from our statistical scatter relations the theorem—which, how-
ever, only holds for this ‘constructive’ experimental technique—that from
quantum theory we cannot obtain any singular predictions, but only
frequency predictions.1

This theorem sums up my attitude to all those imaginary experi-
ments discussed by Heisenberg (who here largely follows Bohr) with
the object of proving that it is impossible to make measurements of a
precision forbidden by his uncertainty principle. The point is in every
case the same: the statistical scatter makes it impossible to predict what
the path of the particle will be after the measuring operation.

It might well seem that not much has been gained by our reinterpre-
tation of the uncertainty principle. For even Heisenberg asserts in the
main (as I have tried to show) no more than that our predictions are
subject to this principle; and as in this matter I agree with him up to a
point, it might be thought that I am only quarrelling about words
rather than debating any substantial issue. But this would hardly do
justice to my argument. Indeed I think that Heisenberg’s view and
mine are diametrically opposed. This will be shown at length in my
next section. Meanwhile I shall attempt to resolve the typical difficul-
ties inherent in Heisenberg’s interpretation; and I shall try to make
clear how, and why, these difficulties arise.

First we must examine the difficulty over which, as we have seen,
Heisenberg’s programme comes to grief. It is the occurrence, in the
formalism, of precise statements of position-cum-momentum; or in
other words, of exact calculations of a path (cf. section 73) whose

1 The term ‘constructive experimental technique’ is used by Weyl, Gruppentheorie und
Quantenmechanik, p. 67; English translation p. 76.
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physical reality Heisenberg is obliged to leave in doubt, while others,
such as Schlick, deny it outright. But the experiments in question, (a),
(b), and (c)—see section 73—can all be interpreted in statistical terms.
For example, combination (c), i.e. a measurement of position followed
by a measurement of momentum, may be realized by an experiment
such as the following. We select a ray according to position with the
help of a diaphragm with a narrow slit (position-measurement). We
then measure the momentum of those particles which were travelling
from the slit in a definite direction. (This second measurement will of
course produce a new scatter of positions.) The two experiments
together will then determine precisely the path of all those particles
which belong to the second selection, in so far as this path lies between
the two measurements: both position and momentum between the
two measurements can be precisely calculated.

Now these measurements and calculations, which correspond pre-
cisely to the elements regarded as superfluous in Heisenberg’s inter-
pretation, are on my interpretation of the theory anything but
superfluous. Admittedly, they do not serve as initial conditions or as a
basis for the derivation of predictions; but they are indispensable never-
theless: they are needed for testing our predictions, which are statistical predictions.
For what our statistical scatter relations assert is that the momenta must
scatter when positions are more exactly determined, and vice versa. This
is a prediction which would not be testable, or falsifiable, if we were
not in a position to measure and calculate, with the help of experi-
ments of the kind described, the various scattered momenta which
occur immediately after any selection according to position has been
made.*1

*1 I consider this paragraph (and also the first sentence of the next paragraph) as one of
the most important in this discussion, and as one with which I can still agree completely.
Since misunderstandings continue, I will explain the matter more fully. The scatter relations
assert that, if we arrange for a sharp selection of the position (by a slit in a screen, say),
the momenta will scatter as a consequence. (Rather than becoming ‘indeterminate’, the
single momenta become ‘unpredictable’ in a sense which allows us to predict that they
will scatter.) This is a prediction which we must test by measuring the single momenta, so as to
determine their statistical distribution. These measurements of the single momenta
(which will lead to a new scatter—but this we need not discuss) will give in each single
case results as precise as we like, and at any rate very much more precise than ∆p, i.e. the
mean width of the region of the scatter. Now these measurements of the various single
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The statistically interpreted theory, therefore, not only does not rule
out the possibility of exact single measurements, but would be untest-
able, and thus ‘metaphysical’, if these were impossible. So the fulfil-
ment of Heisenberg’s programme, the elimination of metaphysical
elements, is here achieved, but by a method the very opposite of his.
For while he tried to exclude magnitudes which he regarded as
inadmissible (though without entirely succeeding), I invert the
attempt, so to speak, by showing that the formalism which contains
these magnitudes is correct just because the magnitudes are not metaphysical.
Once we have given up the dogma embodied in Heisenberg’s limita-
tion upon attainable precision, there is no longer any reason why we
should doubt the physical significance of these magnitudes. The scatter
relations are frequency predictions about paths; and therefore these
paths must be measurable—in precisely the same way as, say, throws of
five must be empirically ascertainable—if we are to be able to test our
frequency predictions about these paths, or about these throws.

Heisenberg’s rejection of the concept of path, and his talk of ‘non-
observable magnitudes’, clearly show the influence of philosophical
and especially of positivistic ideas. Under the same influence, March
writes: ‘One may say perhaps without fear of being misunderstood . . .
that for the physicist a body has reality only in the instant in which he
observes it. Naturally nobody is so mad as to assert that a body ceases to
exist the moment we turn our backs to it; but it does cease, in that
moment, to be an object of inquiry for the physicist, because there
exists no possibility of saying anything about it which is based on
experiment.’2 In other words, the hypothesis that a body moves in this
or that path whilst it is not being observed is non-verifiable. This, of

momenta allow us to calculate their values back to the place where the position was
selected, and measured, by the slit. And this ‘calculation of the past history’ of the
particle (cf. note 3 to section 73) is essential; without it, we could not assert that we were
measuring the momenta immediately after the positions were selected; and thus we
could not assert that we were testing the scatter relations—which we do in fact with any
experiment which shows an increase of scatter as a consequence of a decrease of the
width of a slit. So it is only the precision of the prediction which becomes ‘blurred’ or
‘smeared’ in consequence of the scatter relations, but never the precision of a measurement.
2 March, Die Grundlagen der Quantenmechanik, p. 1. *Reichenbach’s position is similar; it is
criticized in my Postscript, section *13.
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course, is obvious, but uninteresting. What is important, however, is
that this and similar hypotheses are falsifiable: on the basis of the
hypothesis that it moves along a certain path we are able to predict
that the body will be observable in this or that position; and this is a
prediction which can be refuted. That the quantum theory does not
exclude this kind of procedure will be seen in the next section. But in
fact what we have said here is quite sufficient;*2 for it disposes of all
the difficulties connected with the ‘meaninglessness’ of the concept of
path. How much this helps to clear the air will best be realized if we
remember the drastic conclusions which were drawn from the alleged
failure of the concept of path. Schlick formulates them thus: ‘Perhaps
the most concise way of describing the situation under review is to
say (as the most eminent investigators of quantum problems do) that
the validity of the ordinary spatio-temporal concepts is confined to
the sphere of the macroscopically observable, and that they are not
applicable to atomic dimensions.’3 Here Schlick is probably alluding
to Bohr who writes: ‘Therefore one may assume that where the
general problem of quantum theory is concerned, it is not a mere
question of a change of mechanical and electro-dynamic theories,
a change which may be described in terms of ordinary physical
concepts, but the deep-seated failure of our spatio-temporal images
which till now have been used in the description of natural phenom-
ena.’4 Heisenberg adopted this idea of Bohr’s, namely the renunci-
ation of spatio-temporal descriptions, as the basis of his programme
of research. His success seemed to show that this was a fruitful
renunciation. But in fact, the programme was never carried through.
The frequent and unavoidable, if surreptitious, use of spatio-temporal
concepts now seems justifiable in the light of our analysis. For this has
shown that the statistical scatter relations are statements about the

*2 The beginning of this sentence (from ‘But in fact’ to ‘sufficient’) was not in the
original text. I have inserted it because I do no longer believe in the argument of ‘the next
section’ (77), referred to in the previous sentence, and because what follows is in fact
completely independent of the next section: it is based upon the argument just given
according to which calculations of the past path of the electron are needed for testing the
statistical predictions of the theory, so that these calculations are far from ‘meaningless’.
3 Schlick, Die Kausalität in der gegenwärtigen Physik, Die Naturwissenschaften 19, 1931, p. 159.
4 Bohr, Die Naturwissenschaften 14, 1926, p. 1.
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scatter of position-cum-momentum, and therefore statements about
paths.

Now that we have shown that the uncertainty relations are formally
singular probability statements, we can also unravel the tangled web of
their objective and subjective interpretations. We learned in section 71
that every formally singular probability statement can also be inter-
preted subjectively, as an indefinite prediction, a statement concerning
the uncertainty of our knowledge. We have also seen under what
assumptions the justified and necessary attempt to interpret a statement
of this kind objectively is bound to fail. It is bound to fail if one tries to
substitute for the statistical objective interpretation a singular objective
interpretation, by attributing the uncertainty directly to the single
event.*3 Yet if one interprets the Heisenberg formulae (directly) in a
subjective sense, then the position of physics as an objective science is
imperilled; for to be consistent one would also have to interpret
Schrödinger’s probability waves subjectively. This conclusion is drawn
by Jeans5 who says: ‘In brief, the particle picture tells us that our
knowledge of an electron is indeterminate; the wave picture that the
electron itself is indeterminate, regardless of whether experiments are
performed upon it or not. Yet the content of the uncertainty principle
must be exactly the same in the two cases. There is only one way of
making it so: we must suppose that the wave picture provides a repre-
sentation not of objective nature, but only of our knowledge of
nature. . . .’ Schrödinger’s waves are thus for Jeans subjective probability
waves, waves of our knowledge. And with this, the whole subjectivist
probability theory invades the realm of physics. The arguments I have
rejected—the use of Bernoulli’s theorem as a ‘bridge’ from nescience
to statistical knowledge, and similar arguments (cf. section 62)—
become inescapable. Jeans formulates the subjectivist attitude of

*3 This is one of the points on which I have since changed my mind. Cf. my Postscript,
chapter *v. But my main argument in favour of an objective interpretation remains
unaffected. According to my present view, Schrödinger’s theory may and should be
interpreted not only as objective and singular but, at the same time, as probabilistic.
5 Jeans, The New Background of Science (1933, p. 236; 2nd edition 1934, p. 240). In Jeans’s
text, a new paragraph begins with the second sentence, i.e. with the words, ‘Yet the
content’. For the quotation that follows at the end of this paragraph, see op. cit., p. 237
(2nd edition, p. 241).
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modern physics as follows: ‘Heisenberg attacked the enigma of the
physical universe by giving up the main enigma—the nature of
the objective universe—as insoluble, and concentrating on the minor
puzzle of co-ordinating our observations of the universe. Thus it
is not surprising that the wave picture which finally emerged should
prove to be concerned solely with our knowledge of the universe as
obtained through our observations.’

Such conclusions will no doubt appear highly acceptable to the posi-
tivists. Yet my own views concerning objectivity remain untouched.
The statistical statements of quantum theory must be inter-subjectively
testable in the same way as any other statements of physics. And my
simple analysis preserves not only the possibility of spatio-temporal
descriptions, but also the objective character of physics.

It is interesting that there exists a counterpart to this subjective
interpretation of the Schrödinger waves: a non-statistical and thus a
directly (i.e. singular) objective interpretation. Schrödinger himself in
his famous Collected Papers on Wave-Mechanics has proposed some such
interpretation of his wave equation (which as we have seen is a for-
mally singular probability statement). He tried to identify the particle
immediately with the wave-packet itself. But his attempt led straight to
those difficulties which are so characteristic of this kind of interpret-
ation: I mean the ascription of uncertainty to the physical objects
themselves (objectivized uncertainties). Schrödinger was forced to
assume that the charge of the electron was ‘blurred’ or ‘smeared’ in
space (with a charge density determined by the wave amplitude); an
assumption which turned out to be incompatible with the atomic
structure of electricity.6 Born’s statistical interpretation solved the
problem; but the logical connection between the statistical and the
non-statistical interpretations remained obscure. Thus it happened that
the peculiar character of other formally singular probability
statements—such as the uncertainty relations—remained
unrecognized and that they could continue to undermine the physical
basis of the theory.

I may conclude perhaps with an application of what has been said in
6 Cf. for instance Weyl, Gruppentheorie und Quantenmechanik, p. 193; English translation
pp. 216 f.
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this section to an imaginary experiment proposed by Einstein7 and
called by Jeans8 ‘one of the most difficult parts of the new quantum
theory’; though I think that our interpretation makes it perfectly clear,
if not trivial.*4

Imagine a semi-translucent mirror, i.e. a mirror which reflects part of
the light, and lets part of it through. The formally singular probability
that one given photon (or light quantum) passes through the mirror,

αPk(β), may be taken to be equal to the probability that it will be
reflected; we therefore have

αPk(β) = αPk(β
-
) = 1

2.

This probability estimate, as we know, is defined by objective statistical
probabilities; that is to say, it is equivalent to the hypothesis that one
half of a given class α of light quanta will pass through the mirror
whilst the other half will be reflected. Now let a photon k fall upon the
mirror; and let it next be experimentally ascertained that this photon
has been reflected: then the probabilities seem to change suddenly, as it
were, and discontinuously. It is as though before the experiment they
had both been equal to 1

2, while after the fact of the reflection became
known, they had suddenly turned into 0 and to 1, respectively. It is
plain that this example is really the same as that given in section 71.*5

And it hardly helps to clarify the situation if this experiment is
described, as by Heisenberg,9 in such terms as the following: ‘By the
experiment [i.e. the measurement by which we find the reflected

7 Cf. Heisenberg, Physikalische Prinzipien, p. 29 (English translation by C. Eckart and
F. C. Hoyt: The Physical Principles of the Quantum Theory, Chicago, 1930, p. 39).
8 Jeans, The New Background of Science (1933, p. 242; 2nd edition, p. 246).
*4 The problem following here has since become famous under the name ‘The problem
of the (discontinuous) reduction of the wave packet’. Some leading physicists told me in 1934
that they agreed with my trivial solution, yet the problem still plays a most bewildering
role in the discussion of the quantum theory, after more than twenty years. I have
discussed it again at length in sections *100 and *115 of the Postscript.
*5 That is to say, the probabilities ‘change’ only in so far as α is replaced by β

-
. Thus αP(β)

remains unchanged 12; but β-P(β), of course, equals 0, just as β-P(β
-
) equals 1.

9 Heisenberg, Physikalische Prinzipien, p. 29 (English translation: The Physical Principles of
the Quantum Theory, Chicago, 1930, p. 39). Von Laue, on the other hand, in Korpuskular-
und Wellentheorie, Handbuch d. Radiologie 6 (2nd edition, p. 79 of the offprint) says quite
rightly: ‘But perhaps it is altogether quite mistaken to correlate a wave with one single
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photon], a kind of physical action (a reduction of wave packets) is
exerted from the place where the reflected half of the wave packet is
found upon another place—as distant as we choose—where the other
half of the packet just happens to be’; a description to which he adds:
‘this physical action is one which spreads with super-luminal velocity.’
This is unhelpful since our original probabilities, αPk(β) and αPk(β

-
),

remain equal to 1
2. All that has happened is the choice of a new refer-

ence class—β or β
-
, instead of α—a choice strongly suggested to us by

the result of the experiment, i.e. by the information k ε β or k ε β
-
,

respectively. Saying of the logical consequences of this choice (or, per-
haps, of the logical consequences of this information) that they ‘spread
with super-luminal velocity’ is about as helpful as saying that twice two
turns with super-luminal velocity into four. A further remark of Heisen-
berg’s, to the effect that this kind of propagation of a physical action
cannot be used to transmit signals, though true, hardly improves matters.

The fate of this imaginary experiment is a reminder of the urgent
need to distinguish and to define the statistical and the formally singu-
lar probability concepts. It also shows that the problem of interpretation
to which quantum theory has given rise can only be approached by way
of a logical analysis of the interpretation of probability statements.

77 DECISIVE EXPERIMENTS**

I have now carried out the first two parts of my programme outlined in
the introduction preceding section 73. I have shown (1) that the

corpuscle. If we assume that the wave is, as a matter of principle, related to an aggregate
of equal but mutually independent bodies, the paradoxical conclusion vanishes.’
*Einstein adopted in some of his last papers a similar interpretation: cf. the note ** below.

** The imaginary experiment described in the present section, pp. 238 to 242, is
based on a mistake. (See also notes *3 and *4, below.) The mistake was first noted by von
Weizsäcker (Naturwissenschaften 22, 1934, p. 807); by Heisenberg (in letters), and by
Einstein in a letter here reprinted in appendix *xii. I therefore have withdrawn this
experiment; yet I do not any longer regard it as ‘decisive’. Not only are my arguments
down to p. 238 unaffected, but we can also replace my invalid experiment by the famous
imaginary experiment described by A. Einstein, B. Podolsky, and N. Rosen, Physical Review
47, pp. 777–780. Niels Bohr’s reply to this experiment seems to me to shift the problem:
see appendix *ix below, and also my paper ‘Quantum Mechanics Without “The
Observer” ’, in Quantum Theory and Reality, edited by Mario Bunge, 1967, pp. 7–44.
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Heisenberg formulae can be statistically interpreted, and therefore (2)
that their interpretation as limitations upon attainable precision does
not follow logically from the quantum theory, which therefore could
not be contradicted merely by our attaining a higher degree of
precision in our measurements.*1

‘So far, so good,’ someone might retort. ‘I won’t deny that it may be
possible to view quantum mechanics in this way. But it still does not
seem to me that the real physical core of Heisenberg’s theory, the
impossibility of making exact singular predictions, has even been touched
by your arguments’.

If asked to elaborate his thesis by means of a physical example, my
opponent might proceed as follows: ‘Imagine a beam of electrons, like
one in a cathode tube. Assume the direction of this beam to be the x-
direction. We can obtain various physical selections from this beam.
For example, we may select or separate a group of electrons according to
their position in the x-direction (i.e. according to their x-co-ordinates
at a certain instant); this could be done, perhaps, by means of a shutter
which we open for a very short time. In this way we should obtain a
group of electrons whose extension in the x-direction is very small.
According to the scatter relations, the momenta of the various electrons
of this group would differ widely in the x-direction (and therefore also
their energies). As you rightly stated, we can test such statements about
scattering. We can do this by measuring the momenta or the energies
of single electrons; and as we know the position, we shall thus obtain
both position and momentum. A measurement of this kind may be
carried out, for example, by letting the electrons impinge upon a plate
whose atoms they would excite: we shall then find, among other
things, some excited atoms whose excitation requires energy in excess
of the average energy of these electrons. Thus I admit that you were
quite right in stressing that such measurements are both possible and
significant. But—and now comes my objection—in making any such
measurement we must disturb the system we are examining, i.e. either
the single electrons, or if we measure many (as in our example), the
whole electron beam. Admittedly, the theory would not be logically
contradicted if we could know the momenta of the various electrons of

*1 Point (3) of my programme has, in fact, been covered also.

some observations on quantum theory 233



the group before disturbing it (so long, of course, as this would not
enable us to use our knowledge so as to effect a forbidden selection).
But there is no way of obtaining any such knowledge concerning the
single electrons without disturbing them. To conclude, it remains true
that precise single predictions are impossible.’

To this objection I should first reply that it would not be surprising if
it were correct. It is after all obvious that from a statistical theory exact
singular predictions can never be derived, but only ‘indefinite’ (i.e.
formally singular) single predictions. But what I assert at this stage is
that although the theory does not supply any such predictions, it does not
rule them out either. One could speak of the impossibility of singular
predictions only if it could be asserted that disturbing the system or
interfering with it must prevent every kind of predictive measurement.

‘But that is just what I assert’, my opponent will say. ‘I assert, pre-
cisely, the impossibility of any such measurement. You assume that it is
possible to measure the energy of one of these moving electrons with-
out forcing it out of its path and out of the electron group. This is the
assumption which I regard as untenable. For assuming that I possessed
any apparatus with which I could make such measurements, then I
should with this or some similar apparatus be able to produce aggregates
of electrons which all (a) were limited as to their position, and (b) had
the same momentum. That the existence of such aggregates would
contradict the quantum theory is, of course, your view too, since it is
ruled out by your own ‘scatter relations’, as you call them. Thus you
could only reply that it is possible to conceive of an apparatus which
would allow us to take measurements but not to make selections. I
admit that this answer is logically permissible; but as a physicist I can
only say that my instincts revolt against the idea that we could measure
the momenta of electrons while being unable to eliminate, for instance,
all those whose momentum exceeds (or falls short of) some given
amount.’

My first answer to this would be that it all sounds quite convincing.
But a strict proof of the contention that, if a predictive measurement is
possible, the corresponding physical selection or separation would also
be possible, has not been given (and it cannot be given, as will be seen
soon). None of these arguments prove that the precise predictions
would contradict the quantum theory. They all introduce an additional
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hypothesis. For the statement (which corresponds to Heisenberg’s view)
that exact single predictions are impossible, turns out to be equivalent
to the hypothesis that predictive measurements and physical selections are insepar-
ably linked. With this new theoretical system—the conjunction of the
quantum theory with this auxiliary ‘hypothesis of linkage’—my conception
must indeed clash.1

With this, point (3) of my programme has been carried out. But
point (4) has still to be established; that is, we have still to show that
the system which combines the statistically interpreted quantum the-
ory (including, we assume, the conservation laws for momentum and
energy) with the ‘hypothesis of linkage’, is self-contradictory. There is,
I suppose, a deep-seated presumption that predictive measurement and
physical selection are always linked. The prevalence of this presump-
tion may explain why the simple arguments which would establish the
opposite have never been worked out.

I wish to stress that the mainly physical considerations now to be
presented do not form part of the assumptions or premises of my
logical analysis of the uncertainty relations although they might be
described as its fruit. In fact, the analysis so far carried out is quite
independent of what follows; especially of the imaginary physical experi-
ment described below,*2 which is intended to establish the possibility
of arbitrarily precise predictions of the path of single particles.

By way of introduction to this imaginary experiment I will first
discuss a few simpler experiments. These are intended to show that we
can without difficulty make arbitrarily precise path predictions, and
also test them. At this stage I only consider predictions which do not
refer to definite single particles, but refer to (all) particles within a
definite small space-time region (∆x.∆y.∆z.∆t). In each case there is
only a certain probability that particles are present in that region.

We again imagine a beam (an electron or light beam) of particles

1 The auxiliary hypothesis here discussed can of course appear in a different form. My
reason for choosing this particular form for critical analysis and discussion is that the
objection which asserts the linkage of measurement and physical selection was actually
(in conversations as well as in letters) raised against the view here advanced.
*2 Those of my critics who rightly rejected the idea of this imaginary experiment appear
to have believed that they had thereby also refuted the preceding analysis, in spite of the
warning here given.
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travelling in the x-direction. But this time we assume it to be mono-
chromatic, so that all the particles are travelling along parallel paths in
the x-direction with the same known momentum. The components in
the other directions of the momentum will then also be known, that is,
known to be equal to zero. Now instead of determining the position in
the x-direction of a group of particles by means of a physical selection—
instead, that is, of isolating the group of particles from the rest of the
beam by technical means (as we did above)—we shall be content to
differentiate this group from the rest merely by focusing our attention
upon it. For example, we may focus our attention upon all those par-
ticles which have (with a given precision) in a given instant the place
co-ordinate x, and which therefore do not spread beyond an arbitrarily
small range ∆x. Of each of these particles we know the momentum
precisely. We therefore know for each future instant precisely where
this group of particles is going to be. (It is clear that the mere existence
of such a group of particles does not contradict quantum theory; only
its separate existence, that is, the possibility of selecting it physically,
would contradict the theory.) We can carry out the same kind of
imaginary selection in connection with the other space co-ordinates.
The physically selected monochromatic beam would have to be very
wide in the y and z-directions (infinitely wide in the case of an ideal
monochromatic beam) because in these directions the momentum is
supposed to be selected with precision, i.e. to be equal to o; so that
positions in these directions must be widely spread. Nevertheless we
can again focus our attention upon a very narrow partial ray. Again, we
shall not only know the position but also the momentum of every
particle of this ray. We shall therefore be able to predict for every
particle of this narrow ray (which we have, as it were, selected in
imagination) at which point, and with what momentum, it will
impinge upon a photographic plate set in its path, and of course we can
test this prediction empirically (as with the former experiment).

Imaginary selections, analogous to the one just made from a ‘pure
case’ of a particular type, can be made from other types of aggregates.
For example, we may take a monochromatic beam from which a phys-
ical selection has been made by means of a very small slit ∆y (thus
taking as our physical starting point a physical selection corresponding
to the merely imagined selection of the preceding example). We do not
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know of any of the particles in which direction it will turn after passing
through the slit; but if we consider one definite direction we can calcu-
late precisely the momentum component of all particles that did turn
in this particular direction. Thus the particles which after having passed
through the slit travel in one definite direction again form an imagined
selection. We are able to predict their position and their momentum, or
in short, their paths; and again, by putting a photographic plate in their
path, we can test our predictions.

The situation is in principle the same (even though empirical tests
are somewhat more difficult) in the case of the first example we con-
sidered, namely the selection of particles according to their position in
the direction of travel. If we produce a physical selection correspond-
ing to this case, then different particles will travel with different veloci-
ties, because of the spread of the momenta. The group of particles will
thus spread over an increasing range in the x-direction as it proceeds.
(The packet will get wider.) We can then work out the momentum of a
partial group of these particles (selected in imagination) which, in a
given moment, will be at a given position in the x-direction: the
momentum will be the greater the farther ahead is the selected partial
group (and vice versa). The empirical test of the prediction made in this
way could be carried out by substituting for the photographic plate a
moving strip of photographic film. As we could know of each point in
the band the time of its exposure to the impact of the electrons we
could also predict for each point on the band with what momentum the
impacts would occur. These predictions we could test, for example by
inserting a filter in front of the moving band or perhaps in front of the
Geiger-counter (a filter in the case of light rays; in the case of electrons
an electric field at right angles to the direction of the ray) followed by a
selection according to direction, allowing only those particles to pass
which possess a given minimum momentum. We could then ascertain
whether these particles really did arrive at the predicted time or not.

The precision of the measurements involved in these tests is not
limited by the uncertainty relations. These are meant to apply, as we
have seen, mainly to those measurements which are used for the
deduction of predictions, and not for testing them. They are meant to
apply, that is to say, to ‘predictive measurements’ rather than to ‘non-predictive
measurements’. In sections 73 and 76 I examined three cases of such
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‘non-predictive’ measurements, namely (a) measurement of two posi-
tions, (b) measurement of position preceded or (c) succeeded by a
measurement of momentum. The above discussed measurement by
means of a filter in front of a film strip of a Geiger-counter exemplifies
(b), i.e. a selection according to momentum followed by a measure-
ment of position. This is presumably just that case which, according to
Heisenberg (cf. section 73), permits ‘a calculation about the past of the
electron’. For while in cases (a) and (c) only calculations for the time
between the two measurements are possible, it is possible in case (b) to
calculate the path prior to the first measurement, provided this meas-
urements was a selection according to a given momentum; for such a
selection does not disturb the position of the particle.*3 Heisenberg, as
we know, questions the ‘physical reality’ of this measurement, because
it permits us to calculate the momentum of the particle only upon its
arrival at a precisely measured position and at a precisely measured
time: the measurement seems to lack predictive content because no
testable conclusion can be derived from it. Yet I shall base my imagin-
ary experiment, intended to establish the possibility of precisely pre-
dicting the position and momentum of a definite particle, upon this
particular measuring arrangement which at first sight is apparently
non-predictive.

As I am about to derive such far-reaching consequences from the
assumption that precise ‘non-predictive’ measurements of this type
are possible, it seems proper to discuss the admissibility of this
assumption. This is done in appendix vi.

With the imaginary experiment that follows here, I directly chal-
lenge the method of arguing which Bohr and Heisenberg have used
in order to justify the interpretation of the Heisenberg formulae as

*3 This statement (which I tried to base upon my discussion in appendix vi) was
effectively criticized by Einstein (cf. appendix *xii), is false and so my imaginary experi-
ment collapses. The main point is that non-predictive measurements determine the path
of a particle only between two measurements, such as a measurement of momentum
followed by one of position (or vice versa); it is not possible, according to quantum theory,
to project the path further back, i.e. to the region of time before the first of these
measurements. Thus the last paragraph of appendix vi is mistaken; and we cannot know,
of the particle arriving at x (see below) whether it did come from P, or from somewhere
else. See also note **on p. 232.
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limitations upon attainable precision. For they tried to justify this
interpretation by showing that no imaginary experiment can be
devised which will produce more exact predictive measurements. But
this method of arguing can clearly not exclude the possibility that an
imaginary experiment might some day be devised which (using
known physical effects and laws) would show that such measure-
ments are possible after all. It was taken for granted that any such
experiment would contradict the formalism of the quantum theory
and it appears that this idea determined the direction of the search
for such experiments. My analysis—the carrying out of the points of
my programme (I) and (2)—has however cleared the way for an
imaginary experiment to be devised which shows, in full agreement
with quantum theory, that the precise measurements in question are
possible.

To carry out this experiment, I shall make use of ‘imaginary selec-
tion’, as before; but shall choose an arrangement such that, if a particle
which is characterized by the selection really exists, we shall be able to
ascertain the fact.

My experiment, in a way, forms a kind of idealization of the
experiments of Compton-Simon and Bothe-Geiger.2 Since we wish to
obtain singular predictions, we cannot operate with statistical assump-
tions only. The non-statistical laws of the conservation of energy and
momentum will have to be used. We can exploit the fact that these
laws permit us to calculate what occurs when the particles collide,
provided we are given two of the four magnitudes which described
the collision (i.e. of the momenta a1 and b1 before, and a2 and b2 after
the collision) and one component3 of a third one. (The method of
calculation is well known as part of the theory of the Compton-
effect.4)

Let us now imagine the following experimental arrangement. (See
figure 2.) We cross two particle beams (of which one at most may be a

2 Compton and Simon, Physical Review 25, 1924, p. 439; Bothe und Geiger, Zeitschrift für
Physik 32, 1925, p. 639; cf. also Compton, X-Rays and Electrons, 1927; Ergebnisse der exakten
Naturwissenschaft 5, 1926, p. 267 ff.; Haas, Atomtheorie, 1929, p. 229 ff.
3 ‘Component’ to be understood here in the widest sense (either as the direction or as
the absolute magnitude).
4 Cf. Haas, op. cit.
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light-ray, and one at most may be electrically non-neutral5) which are
both ‘pure cases’ in the sense that the beam A is monochromatic, that is, a
selection according to the momentum a1, whilst the beam B passes
through a narrow slit Sl and is thereby subjected to a physical selection
according to position. The B-particles may be supposed to have the
(absolute) momentum b1. Some of the particles of these two beams
will collide. We now imagine two narrow partial rays [A] and [B] which
intersect at the place P. The momentum of [A] is known; it is a1. The
momentum of the partial ray [B] becomes calculable as soon as we have
decided upon a definite direction for it; let it be b1. We now choose a
direction PX. Attending to those particles of the partial ray [A] which
after the collision travel in the direction PX, we can calculate their
momentum a2, and also b2, i.e. the momentum after collision of the
particles with which they collided. To every particle of [A] which was
deflected at the point P with the momentum a2, in the direction X,

Figure 2

5 I am thinking of a light ray and any kind of corpuscular ray (negaton, position, or
neutron); in principle, however, two corpuscular rays could be used of which at least one
is a neutron ray. (Incidentally, the words ‘negatron’ and ‘position’, now becoming
current usage, seem to me linguistic monstrosities—after all, we neither say ‘positrive’
nor ‘protron’.)
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there must correspond a second particle, of [B], which was deflected at
P with the momentum b2, in the calculable direction PY. We now place
an apparatus at X—for instance a Geiger-counter or a moving film
strip—which records the impacts of particles arriving from P at the
arbitrarily restricted region X. Then we can say: as we note any such
recording of a particle, we learn at the same time that a second particle
must be travelling from P with the momentum b2 towards Y. And we
also learn from the recording where this second particle was at any
given moment; for we can calculate from the time of the impact of the
first particle at X, and from its known velocity, the moment of its
collision at P. By using another Geiger-counter at Y (or the moving film
band), we can test our predictions for the second particle.*4

The precision of these predictions as well as that of the measure-
ments undertaken to test them is in principle not subject to any of the limitations
due to the uncertainty principle, as regards both the position co-ordinate and
the component of the momentum in the direction PY. For my imagin-
ary experiment reduces the question of the precision with which pre-
dictions can be made about a B-particle deflected in P to the question of
the precision attainable in taking measurements at X. These, at first,
seemed to be non-predictive measurements of the time, position and
momentum of the corresponding first particle [A]. The momentum of
this particle in the PX direction as well as the time of its impact at X, i.e.
of its position in the PS direction, can be measured with any desirable
degree of precision (cf. appendix vi) if we make a momentum selection

*4 Einstein, Podolsky, and Rosen use a weaker but valid argument: let Heisenberg’s inter-
pretation be correct, so that we can only measure at will either the position or the
momentum of the first particle at X. Then if we measure the position of the first particle, we
can calculate the position of the second particle; and if we measure the momentum of the
first particle, we can calculate the momentum of the second particle. But since we can make
our choice—as to whether we measure position or momentum—at any time, even after
the collision of the two particles has taken place, it is unreasonable to assume that the
second particle was in any way affected, or interfered with, by the change in the experi-
mental arrangements resulting from our choice. Accordingly, we can calculate, with any
precision we like, either the position or the momentum of the second particle without
interfering with it; a fact which may be expressed by saying that the second particle ‘has’ both
a precise position and a precise momentum. (Einstein said that both position and
momentum are ‘real’; whereupon he was attacked as ‘reactionary’.) See also the note on
p. 232 and appendices *xi and *xii.
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by interposing, for instance, an electrical field or a filter in front of the
Geiger-counter, before we measure the position. But in consequence of
this (as will be shown more fully in appendix vii) we can make predic-
tions with any degree of precision about the B-particle travelling in the
PY direction.

This imaginary experiment allows us to see not only that precise
single predictions can be made, but also under what conditions they
can be made, or better, under what conditions they are compatible
with the quantum theory. They can be made only if we can obtain
knowledge about the state of the particle without being able to create
this state at will. Thus we really obtain our knowledge after the event,
as it were, since at the time when we obtain it the particle will already
have assumed its state of motion. Yet we can still make use of this
knowledge to deduce from it testable predictions. (If the B-particle in
question is a photon, for instance, we might be able to calculate the
time of its arrival on Sirius.) The impacts of particles arriving at X will
succeed each other at irregular time-intervals; which means that the
particles of the partial ray B about which we are making predictions
will also succeed each other after irregular time-intervals. It would
contradict the quantum theory if we could alter this state of things by,
for example, making these time-intervals equal. Thus we are able, as it
were, to take aim and to predetermine the force of the bullet; we can
also (and this before the bullet hits the target Y) calculate the exact time
at which the shot was fired at P. Yet we cannot freely choose the
moment of firing, but have to wait till the gun goes off. Nor can we
prevent uncontrolled shots being fired in the direction of our target
(from the neighbourhood of P).

It is clear that our experiment and Heisenberg’s interpretation are
incompatible. But since the possibility of carrying out this experiment
can be deduced from the statistical interpretation of quantum physics
(with the addition of the laws of energy and momentum), it appears
that Heisenberg’s interpretation, in contradicting it, must also contra-
dict the statistical interpretation of quantum theory. In view of the
experiments of Compton-Simon and Bothe-Geiger, it would seem that
it is possible to carry out our experiment. It can be regarded as a kind
of experiment crucis to decide between Heisenberg’s conception and a
consistently statistical interpretation of quantum theory.
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78 INDETERMINIST METAPHYSICS

It is the task of the natural scientist to search for laws which will enable
him to deduce predictions. This task may be divided into two parts. On
the one hand, he must try to discover such laws as will enable him to
deduce single predictions (‘causal’ or ‘deterministic’ laws or ‘precision
statements’). On the other hand, he must try to advance hypotheses
about frequencies, that is, laws asserting probabilities, in order to deduce
frequency predictions. There is nothing in these two tasks to make them
in any way mutually incompatible. It is clearly not the case that whenever
we make precision statements we shall make no frequency hypotheses;
for some precision statements are, as we have seen, macro laws which
are derivable from frequency assumptions. Nor is it the case that when-
ever in a particular field frequency statements are well confirmed, we
are entitled to conclude that in this field no precision statements can be
made. This situation seems plain enough. Yet the second of the two
conclusions we have just rejected has been drawn again and again. Again
and again we meet with the belief that where fortuity rules, regularity
is ruled out. I have critically examined this belief in section 69.

The dualism of macro and micro laws—I mean the fact that we
operate with both—will not be easily overcome, to judge by the pres-
ent state of scientific development. What might be logically possible,
however, is a reduction of all known precision statements—by inter-
preting them as macro laws—to frequency statements. The converse
reduction is not possible. Frequency statements can never be deduced
from precision statements, as we have seen in section 70. They need
their own assumptions which must be specifically statistical. Only from
probability estimates can probabilities be calculated.*1

This is the logical situation. It encourages neither a deterministic nor
an indeterministic view. And should it ever become possible to work in
physics with nothing but frequency statements, then we should still
not be entitled to draw indeterminist conclusions; which is to say that
we should still not be entitled to assert that ‘there are no precise laws
in nature, no laws from which predictions about the course of single
or elementary processes can be deduced’. The scientist will never let

*1 This view is opposed by Einstein at the end of his letter here printed in appendix *xii.
But I still think that it is true.
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anything stop him searching for laws, including laws of this kind. And
however successfully we might operate with probability estimates, we
must not conclude that the search for precision laws is vain.

These reflections are not by any means the outcome of the imaginary
experiment described in section 77; quite the contrary. Let us assume
that the uncertainty relations are not refuted by this experiment (for
whatever reason—say, because the experimentum crucis described in
appendix vi would decide against the quantum theory): even then
they could only be tested as frequency statements and could only be
corroborated as frequency statements. Thus in no case should we be
entitled to draw indeterministic conclusions from the fact that they are
well corroborated.*2

Is the world ruled by strict laws or not? This question I regard as
metaphysical. The laws we find are always hypotheses; which means
that they may always be superseded, and that they may possibly be
deduced from probability estimates. Yet denying causality would be the
same as attempting to persuade the theorist to give up his search; and
that such an attempt cannot be backed by anything like a proof has just
been shown. The so-called ‘causal principle’ or ‘causal law’, however it
may be formulated, is very different in character from a natural law;
and I cannot agree with Schlick when he says, ‘ . . . the causal law can
be tested as to its truth, in precisely the same sense as any other natural
law’.1

*2 I still believe that this analysis is essentially correct: we cannot conclude from the
success of frequency predictions about penny tosses that the single penny tosses are
undetermined. But we may argue in favour of, say, an inderministic metaphysical view by
pointing out difficulties and contradictions which this view might be able to dissolve.
1 Schlick, Die Kausalität in der gegenwärtigen Physik, Die Naturwissenschaften 19, 1931, p. 155,
writes as follows: (I quote the passage in full; cf. also my notes 7 and 8 to Section 4) ‘Our
attempts to find a testable statement equivalent to the principle of causality have failed;
our attempts to formulate one have only led to pseudo-statements. This result, however,
does not after all come as a surprise, for we have already remarked that the truth of the
causal law can be tested in the same sense as that of any other natural law; but we have also
indicated that these natural laws in their turn, when strictly analysed, do not seem to have
the character of statements that are true or false, but turn out to be nothing but rules for
the (trans-) formation of such statements.’ Schlick had already earlier held that the causal
principle should be placed on a par with natural laws. But as at that time he regarded
natural laws as genuine statements he also regarded ‘the causal principle . . . as an
empirically testable hypothesis’. Cf. Allgemeine Erkenntnislehre, 2nd edition, 1925, p. 374.
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The belief in causality is metaphysical.*3 It is nothing but a typical
metaphysical hypostatization of a well justified methodological rule—
the scientist’s decision never to abandon his search for laws. The meta-
physical belief in causality seems thus more fertile in its various
manifestations than any indeterminist metaphysics of the kind advo-
cated by Heisenberg. Indeed we can see that Heisenberg’s comments
have had a crippling effect on research. Connections which are not far
to seek may easily be overlooked if it is continually repeated that the
search for any such connections is ‘meaningless’.

Heisenberg’s formulae—like similar statements which can only be
corroborated by their statistical consequences—do not necessarily lead
to indeterminist conclusions. But this in itself does not prove that there
can be no other empirical statement which justifies these or similar
conclusions: for example the conclusion that the methodological rule
mentioned—the decision never to abandon the search for laws—
cannot fulfill its purpose, perhaps because it is futile or meaningless or
‘impossible’ (cf. note 2 to section 12) to search for laws and for singu-
lar predictions. But there could not be an empirical statement having
methodological consequences which could compel us to abandon the
search for laws. For a statement supposed to be free from metaphysical
elements can have indeterminist conclusions only if these are
falsifiable.*4 But they can be shown to be false only if we succeed in
formulating laws, and in deducing predictions from them which are
corroborated. Accordingly, if we assume that these indeterminist con-
clusions are empirical hypotheses, we ought to try hard to test them, i.e. to
falsify them. And this means that we ought to search for laws and predic-
tions. Thus we cannot obey an exhortation to abandon this search
without repudiating the empirical character of these hypotheses. This
shows that it would be self-contradictory to think that any empirical
hypothesis could exist which might compel us to abandon the search
for laws.

I do not intend to show here in detail how so many attempts to

*3 Compare with the views expressed here, and in the rest of this section, chapter *iv of
the Postscript.
*4 This, though valid as a reply to a positivist, is misleading as it stands; for a falsifiable
statement may have all kinds of logically weak consequences, including nonfalsifiable
ones. (Cf. the fourth paragraph of section 66.)
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establish indeterminism reveal a mode of thought which can only be
described as determinist, in the metaphysical sense. (Heisenberg for
instance tries to give a causal explanation why causal explanations are
impossible.*5) I may just remind the reader of the attempts to demon-
strate that the uncertainty relations close some avenues of possible
research, as does the principle of the constancy of light velocity: the
analogy between the two constants c and h, the velocity of light and
Planck’s constant, was interpreted by saying that both set a limit, in
principle, to the possibilities of research. Questions raised in the
attempt to grope beyond these barriers were dismissed by the well-
known method of dismissing unpalatable problems as ‘pseudo’. In my
view there is indeed an analogy between the two constants c and h; one
which, incidentally, ensures that the constant h is no more a barrier to
research than the constant c. The principle of the constancy of light
velocity (and of the impossibility of exceeding this velocity) does not
forbid us to search for velocities which are greater than that of light; for
it only asserts that we shall not find any; that is to say, that we shall be
unable to produce signals that travel faster than light. And similarly, the
Heisenberg formulae ought not to be interpreted as forbidding the
search for ‘super-pure’ cases; for they only assert that we shall not find
any; and, in particular, that we cannot produce any. The laws forbid-
ding velocities greater than that of light and ‘super-pure’ cases chal-
lenge the investigator, as do other empirical statements, to search for
the forbidden. For he can test empirical statements only by trying to
falsify them.

From an historical point of view, the emergence of indeterminist
metaphysics is understandable enough. For a long time, physicists
believed in determinist metaphysics. And because the logical situation
was not fully understood, the failure of the various attempts to deduce
the light spectra—which are statistical effects—from a mechanical
model of the atom was bound to produce a crisis for determinism.
Today we see clearly that this failure was inevitable, since it is impos-
sible to deduce statistical laws from a non-statistical (mechanical)
model of the atom. But at that time (about 1924, the time of the theory

*5 His argument is, in brief, that causality breaks down owing to our interference with
the observed object, i.e. owing to a certain causal interaction.
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of Bohr, Kramers, and Slater) it could not but seem as if in the mechan-
ism of each single atom, probabilities were taking the place of strict
laws. The determinist edifice was wrecked—mainly because prob-
ability statements were expressed as formally singular statements. On
the ruins of determinism, indeterminism rose, supported by Heisen-
berg’s uncertainty principle. But it sprang, as we now see, from
that same misunderstanding of the meaning of formally-singular
probability statements.

The lesson of all this is that we should try to find strict laws—
prohibitions—that can founder upon experience. Yet we should
abstain from issuing prohibitions that draw limits to the possibilities of
research.*6

*6 I have restated my views on these matters more recently (after 33 years) in my paper
‘Quantum Mechanics Without “The Observer” ’, in Quantum Theory and Reality, edited by
Mario Bunge, 1967, pp. 7–44.
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10
CORROBORATION, OR HOW A
THEORY STANDS UP TO TESTS

Theories are not verifiable, but they can be ‘corroborated’.
The attempt has often been made to describe theories as being nei-

ther true nor false, but instead more or less probable. Inductive logic, more
especially, has been developed as a logic which may ascribe not only
the two values ‘true’ and ‘false’ to statements, but also degrees of
probability; a type of logic which will here be called ‘probability logic’.
According to those who believe in probability logic, induction should
determine the degree of probability of a statement. And a principle of
induction should either make it sure that the induced statement is ‘prob-
ably valid’ or else it should make it probable, in its turn—for the principle
of induction might itself be only ‘probably valid’. Yet in my view, the
whole problem of the probability of hypotheses is misconceived.
Instead of discussing the ‘probability’ of a hypothesis we should try to
assess what tests, what trials, it has withstood; that is, we should try to
assess how far it has been able to prove its fitness to survive by standing
up to tests. In brief, we should try to assess how far it has been
‘corroborated’.*1

*1 I introduced the terms ‘corroboration’ (‘Bewährung’) and especially ‘degree of corroboration’
(‘Grad der Bewährung’, ‘Bewährungsgrad’) in my book because I wanted a neutral term to 



79 CONCERNING THE SO-CALLED
VERIFICATION OF HYPOTHESES

The fact that theories are not verifiable has often been overlooked.
People often say of a theory that it is verified when some of the predic-
tions derived from it have been verified. They may perhaps admit that
the verification is not completely impeccable from a logical point of
view, or that a statement can never be finally established by establishing
some of its consequences. But they are apt to look upon such objec-
tions as due to somewhat unnecessary scruples. It is quite true, they
say, and even trivial, that we cannot know for certain whether the sun
will rise tomorrow; but this uncertainty may be neglected: the fact that
theories may not only be improved but that they can also be falsified by
new experiments presents to the scientist a serious possibility which may at
any moment become actual; but never yet has a theory had to be
regarded as falsified owing to the sudden breakdown of a well-
confirmed law. It never happens that old experiments one day yield

describe the degree to which a hypothesis has stood up to severe tests, and thus ‘proved
its mettle’. By ‘neutral’ I mean a term not prejudging the issue whether, by standing up
to tests, the hypothesis becomes ‘more probable’, in the sense of the probability calculus.
In other words, I introduced the term ‘degree of corroboration’ mainly in order to be
able to discuss the problem whether or not ‘degree of corroboration’ could be indenti-
fied with ‘probability’ (either in a frequency sense or in the sense of Keynes, for
example).

Carnap translated my term ‘degree of corroboration’ (‘Grad der Bewährung’), which I had
first introduced into the discussions of the Vienna Circle, as ‘degree of confirmation’.
(See his ‘Testability and Meaning’, in Philosophy of Science 3, 1936; especially p. 427); and so
the term ‘degree of confirmation’ soon became widely accepted. I did not like this term,
because of some of its associations (‘make firm’; ‘establish firmly’; ‘put beyond doubt’;
‘prove’; ‘verify’: ‘to confirm’ corresponds more closely to ‘erhärten’ or ‘bestätigen’ than to
‘bewähren’). I therefore proposed in a letter to Carnap (written, I think, about 1939) to use
the term ‘corroboration’. (This term had been suggested to me by Professor H. N.
Parton.) But as Carnap declined my proposal, I fell in with his usage, thinking that words
do not matter. This is why I myself used the term ‘confirmation’ for a time in a number
of my publications.

Yet it turned out that I was mistaken: the associations of the word ‘confirmation’ did
matter, unfortunately, and made themselves felt: ‘degree of confirmation’ was soon
used—by Carnap himself—as a synonym (or ‘explicans’) of ‘probability’. I have there-
fore now abandoned it in favour of ‘degree of corroboration’. See also appendix *ix, and
section *29 of my Postscript.
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new results. What happens is only that new experiments decide against
an old theory. The old theory, even when it is superseded, often retains
its validity as a kind of limiting case of the new theory; it still applies, at
least with a high degree of approximation, in those cases in which it
was successful before. In short, regularities which are directly testable
by experiment do not change. Admittedly it is conceivable, or logically
possible, that they might change; but this possibility is disregarded by
empirical science and does not affect its methods. On the contrary,
scientific method presupposes the immutability of natural processes, or the
‘principle of the uniformity of nature’.

There is something to be said for the above argument, but it does not
affect my thesis. It expresses the metaphysical faith in the existence of
regularities in our world (a faith which I share, and without which
practical action is hardly conceivable).*1 Yet the question before us—
the question which makes the non-verifiability of theories significant
in the present context—is on an altogether different plane. Consistently
with my attitude towards other metaphysical questions, I abstain from
arguing for or against faith in the existence of regularities in our world.
But I shall try to show that the non-verifiability of theories is methodologically
important. It is on this plane that I oppose the argument just advanced.

I shall therefore take up as relevant only one of the points of this
argument—the reference to the so-called ‘principle of the uniformity
of nature’. This principle, it seems to me, expresses in a very superficial
way an important methodological rule, and one which might be
derived, with advantage, precisely from a consideration of the
non-verifiability of theories.*2

Let us suppose that the sun will not rise tomorrow (and that we shall
nevertheless continue to live, and also to pursue our scientific inter-
ests). Should such a thing occur, science would have to try to explain it,
i.e. to derive it from laws. Existing theories would presumably require
to be drastically revised. But the revised theories would not merely have
to account for the new state of affairs: our older experiences would also have to be
derivable from them. From the methodological point of view one sees that

*1 Cf. appendix *x, and also section *15 of my Postscript.
*2 I mean the rule that any new system of hypotheses should yield, or explain, the old,
corroborated, regularities. See also section *3 (third paragraph) of my Postscript.
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the principle of the uniformity of nature is here replaced by the postu-
late of the invariance of natural laws, with respect to both space and time. I
think, therefore, that it would be a mistake to assert that natural regu-
larities do not change. (This would be a kind of statement that can
neither be argued against nor argued for.) What we should say is,
rather, that it is part of our definition of natural laws if we postulate that
they are to be invariant with respect to space and time; and also if we
postulate that they are to have no exceptions. Thus from a method-
ological point of view, the possibility of falsifying a corroborated law
is by no means without significance. It helps us to find out what
we demand and expect from natural laws. And the ‘principle of the
uniformity of nature’ can again be regarded as a metaphysical inter-
pretation of a methodological rule—like its near relative, the ‘law
of causality’.

One attempt to replace metaphysical statements of this kind by prin-
ciples of method leads to the ‘principle of induction’, supposed to
govern the method of induction, and hence that of the verification of
theories. But this attempt fails, for the principle of induction is itself
metaphysical in character. As I have pointed out in section 1, the
assumption that the principle of induction is empirical leads to an
infinite regress. It could therefore only be introduced as a primitive
proposition (or a postulate, or an axiom). This would perhaps not
matter so much, were it not that the principle of induction would have
in any case to be treated as a non-falsifiable statement. For if this principle—
which is supposed to validate the inference of theories—were itself
falsifiable, then it would be falsified with the first falsified theory,
because this theory would then be a conclusion, derived with the help
of the principle of induction; and this principle, as a premise, will of
course be falsified by the modus tollens whenever a theory is falsified
which was derived from it.*3 But this means that a falsifiable principle
of induction would be falsified anew with every advance made by
science. It would be necessary, therefore, to introduce a principle of
induction assumed not to be falsifiable. But this would amount to the

*3 The premises of the derivation of the theory would (according to the inductivist view
here discussed) consist of the principle of induction and of observation statements. But
the latter are here tacitly assumed to be unshaken and reproducible, so that they cannot
be made responsible for the failure of the theory.
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misconceived notion of a synthetic statement which is a priori valid, i.e.
an irrefutable statement about reality.

Thus if we try to turn our metaphysical faith in the uniformity of
nature and in the verifiability of theories into a theory of knowledge
based on inductive logic, we are left only with the choice between an
infinite regress and apriorism.

80 THE PROBABILITY OF A HYPOTHESIS AND
THE PROBABILITY OF EVENTS: CRITICISM OF
PROBABILITY LOGIC

Even if it is admitted that theories are never finally verified, may we not
succeed in making them secure to a greater or lesser extent—more
probable, or less so? After all, it might be possible that the question of
the probability of a hypothesis could be reduced, say, to that of the probability of
events, and thus be made susceptible to mathematical and logical
handling.*1

Like inductive logic in general, the theory of the probability of
hypotheses seems to have arisen through a confusion of psychological
with logical questions. Admittedly, our subjective feelings of convic-
tion are of different intensities, and the degree of confidence with
which we await the fulfilment of a prediction and the further corro-
boration of a hypothesis is likely to depend, among other things, upon
the way in which this hypothesis has stood up to tests so far—upon its
past corroboration. But that these psychological questions do not
belong to epistemology or methodology is pretty well acknowledged
even by the believers in probability logic. They argue, however, that it
is possible, on the basis of inductivist decisions, to ascribe degrees of
probability to the hypotheses themselves; and further, that it is possible to
reduce this concept to that of the probability of events.

The probability of a hypothesis is mostly regarded as merely a spe-
cial case of the general problem of the probability of a statement; and this in

*1 The present section (80) contains mainly a criticism of Reichenbach’s attempt to
interpret the probability of hypotheses in terms of a frequency theory of the probability of events. A
criticism of Keynes’s approach is contained in section 83. *Note that Reichenbach is
anxious to reduce the probability of a statement or hypothesis (what Carnap many years later
called ‘probability1’) to a frequency (‘probability2’).
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turn is regarded as nothing but the problem of the probability of an event,
expressed in a particular terminology. Thus we read in Reichenbach,
for example: ‘Whether we ascribe probability to statements or to events
is only a matter of terminology. So far we have regarded it as a case of
the probability of events that the probability of 1/6 has been assigned
to the turning up of a certain face of a die. But we might just as well say
that it is the statement “the face showing the I will turn up” which has
been assigned the probability of 1/6.’1

This identification of the probability of events with the probability
of statements may be better understood if we recall what was said in
section 23. There the concept ‘event’ was defined as a class of singular
statements. It must therefore also be permissible to speak of the prob-
ability of statements in place of the probability of events. So we can regard
this as being merely a change of terminology: the reference-sequences
are interpreted as sequences of statements. If we think of an ‘alterna-
tive’, or rather of its elements, as represented by statements, then we
can describe the turning up of heads by the statement ‘k is heads’, and
its failure to turn up by the negation of this statement. In this way we
obtain a sequence of statements of the form pj, pk, p̄l, pm, p̄n, . . . , in which
a statement pi is sometimes characterized as ‘true’, and sometimes (by
placing a bar over its name) as ‘false’. Probability within an alternative
can thus be interpreted as the relative ‘truth-frequency’2of statements within a
sequence of statements (rather than as the relative frequency of a property).

If we like, we can call the concept of probability, so transformed, the
‘probability of statements’ or the ‘probability of propositions’. And we
can show a very close connection between this concept and the con-
cept of ‘truth’. For if the sequence of statements becomes shorter and
shorter and in the end contains only one element, i.e. only one single
statement, then the probability, or truth-frequency, of the sequence
can assume only one of the two values 1 and 0, according to whether
the single statement is true or false. The truth or falsity of a statement
can thus be looked upon as a limiting case of probability; and con-
versely, probability can be regarded as a generalization of the concept

1 Reichenbach, Erkenntnis 1, 1930, pp. 171 f.
2 According to Keynes, A Treatise on Probability, 1921, p. 101 ff., the expression ‘truth-
frequency’ is due to Whitehead; cf. the next note.
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of truth, in so far as it includes the latter as a limiting case. Finally, it is
possible to define operations with truth-frequencies in such a way that
the usual truth-operations of classical logic become limiting cases of
these operations. And the calculus of these operations can be called
‘probability logic’.3

But can we really identify the probability of hypotheses with the prob-
ability of statements, defined in this manner, and thus indirectly with
the probability of events? I believe that this identification is the result of
a confusion. The idea is that the probability of a hypothesis, since it is
obviously a kind of probability of a statement, must come under the
head of ‘probability of statements’ in the sense just defined. But this conclu-
sion turns out to be unwarranted; and the terminology is thus highly
unsuitable. Perhaps after all it would be better never to use the expres-
sion ‘probability of statements’ if we have the probability of events in
mind.*2

However this may be, I assert that the issues arising from the concept
of a probability of hypotheses are not even touched by considerations based
on probability logic. I assert that if one says of a hypothesis that it is not
true but ‘probable’, then this statement can under no circumstances be
translated into a statement about the probability of events.

For if one attempts to reduce the idea of a probability of hypotheses
to that of a truth-frequency which uses the concept of a sequence of
statements, then one is at once confronted with the question: with
reference to what sequence of statements can a probability value be assigned

3 I am giving here an outline of the construction of the probability logic developed by
Reichenbach (Wahrscheinlichkeitslogik, Sitzungsberichte der Preussischen Akademie der Wissenschaften,
Physik-mathem. Klasse 29, 1932, p. 476 ff.) who follows E. L. Post (American Journal of
Mathematics 43, 1921, p. 184), and, at the same time, the frequency theory of von Mises.
Whitehead’s form of the frequency theory, discussed by Keynes, op. cit. p. 101 ff. is
similar.
*2 I still think (a) that the so-called ‘probability of hypotheses’ cannot be interpreted by a
truth-frequency; (b) that it is better to call a probability defined by a relative frequency—
whether a truth-frequency or the frequency of an event—the ‘probability of an event’;
(c) that the so-called ‘probability of a hypothesis’ (in the sense of its acceptability) is not a
special case of the ‘probability of statements’. And I should now regard the ‘probability
of statements’ as one interpretation (the logical interpretation) among several possible
interpretations of the formal calculus of probability, rather than as a truth-frequency. (Cf.
appendices *ii, *iv, and *ix, and my Postscript.)
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to a hypothesis? Reichenbach identifies an ‘assertion of natural
science’—by which he means a scientific hypothesis—itself with a
reference-sequence of statements. He says, ‘. . . the assertions of nat-
ural science, which are never singular statements, are in fact sequences
of statements to which, strictly speaking, we must assign not the
degree of probability I but a smaller probability value. It is therefore
only probability logic which provides the logical form capable of
strictly representing the concept of knowledge proper to natural sci-
ence.’4 Let us now try to follow up the suggestion that the hypotheses
themselves are sequences of statements. One way of interpreting it
would be to take, as the elements of such a sequence, the various
singular statements which can contradict, or agree with, the hypoth-
esis. The probability of this hypothesis would then be determined by
the truth-frequency of those among these statements which agree with
it. But this would give the hypothesis a probability of 1

2 if, on the
average, it is refuted by every second singular statement of this
sequence! In order to escape from this devastating conclusion, we
might try two more expedients.*3 One would be to ascribe to the
hypothesis a certain probability—perhaps not a very precise one—on
the basis of an estimate of the ratio of all the tests passed by it to all the
tests which have not yet been attempted. But this way too leads
nowhere. For this estimate can, as it happens, be computed with preci-
sion, and the result is always that the probability is zero. And finally, we
could try to base our estimate upon the ratio of those tests which led to
a favourable result to those which led to an indifferent result—i.e. one
which did not produce a clear decision. (In this way one might indeed
obtain something resembling a measure of the subjective feeling of
confidence with which the experimenter views his results.) But this
last expedient will not do either, even if we disregard the fact that with
this kind of estimate we have strayed a long way from the concept of a
truth-frequency, and that of a probability of events. (These concepts
are based upon the ratio of the true statements to those which are false,

4 Reichenbach, Wahrscheinlichkeitslogik (op. cit. p. 488), p. 15 of the reprint.
*3 It is here assumed that we have by now made up our minds that whenever there is a
clear-cut falsification, we will attribute to the hypothesis the probability zero, so that the
discussion is now confined to those cases in which no clear-cut falsification has been
obtained.
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and we must not, of course, equate an indifferent statement with one
that is objectively false.) The reason why this last attempt fails too is
that the suggested definition would make the probability of a hypoth-
esis hopelessly subjective: the probability of a hypothesis would
depend upon the training and skill of the experimenter rather than
upon objectively reproducible and testable results.

But I think it is altogether impossible to accept the suggestion that a
hypothesis can be taken to be a sequence of statements. It would be
possible if universal statements had the form: ‘For every value hf k it is
true that at the place k so-and-so occurs.’ If universal statements had
this form, then we could regard basic statements (those that contradict,
or agree with, the universal statement) as elements of a sequence of
statements—the sequence to be taken for the universal statement. But
as we have seen (cf. sections 15 and 28), universal statements do not
have this form. Basic statements are never derivable from universal
statements alone.*4 The latter cannot therefore be regarded as
sequences of basic statements. If, however, we try to take into consider-
ation the sequence of those negations of basic statements which are
derivable from universal statements, then the estimate for every self-
consistent hypothesis will lead to the same probability, namely I. For
we should then have to consider the ratio of the non-falsified negated
basic statements which can be derived (or other derivable statements)
to the falsified ones. This means that instead of considering a truth
frequency we should have to consider the complementary value of a
falsity frequency. This value however would be equal to 1. For the class
of derivable statements, and even the class of the derivable negations of
basic statements, are both infinite; on the other hand, there cannot be
more than at most a finite number of accepted falsifying basic

*4 As explained in section 28 above, the singular statements which can be deduced from a
theory—the ‘instantial statements’—are not of the character of basic statements or of
observation statements. If we nevertheless decide to take the sequence of these statements
and base our probability upon the truth frequency within this sequence, then the prob-
ability will be always equal to 1, however often the theory may be falsified; for as has been
shown in section 28, note *1, almost any theory is ‘verified’ by almost all instances (i.e.
by almost all places k). The discussion following here in the text contains a very similar
argument—also based upon ‘instantial statements’ (i.e. negated basic statements)—
designed to show that the probability of a hypothesis, if based upon these negated basic
statements, would always be equal to one.
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statements. Thus even if we disregard the fact that universal statements
are never sequences of statements, and even if we try to interpret them
as something of the kind and to correlate with them sequences of
completely decidable singular statements, even then we do not reach an
acceptable result.

We have yet to examine another, quite different, possibility of
explaining the probability of a hypothesis in terms of sequences of
statements. It may be remembered that we have called a given singular
occurrence ‘probable’ (in the sense of a ‘formally singular probability
statement’) if it is an element of a sequence of occurrences with a certain
probability. Similarly one might try to call a hypothesis ‘probable’ if it
is an element of a sequence of hypotheses with a definite truth-frequency. But
this attempt again fails—quite apart from the difficulty of determining
the reference sequence (it can be chosen in many ways; cf. section 71).
For we cannot speak of a truth-frequency within a sequence of hypoth-
eses, simply because we can never know of a hypothesis whether it is
true. If we could know this, then we should hardly need the concept of
the probability of a hypothesis at all. Now we might try, as above, to
take the complement of the falsity-frequency within a sequence of
hypotheses as our starting point. But if, say, we define the probability
of a hypothesis with the help of the ratio of the non-falsified to the
falsified hypotheses of the sequence, then, as before, the probability of
every hypothesis within every infinite reference sequence will be equal to
1. And even if a finite reference sequence were chosen we should be in
no better position. For let us assume that we can ascribe to the elements
of some (finite) sequence of hypotheses a degree of probability between
0 and 1 in accordance with this procedure—say, the value 3/4. (This
can be done if we obtain the information that this or that hypothesis
belonging to the sequence has been falsified.) In so far as these falsified
hypotheses are elements of the sequence, we thus would have to
ascribe to them, just because of this information, not the value o, but 3/4.
And in general, the probability of a hypothesis would decrease by 1/n
in consequence of the information that it is false, where n is the num-
ber of hypothesis in the reference sequence. All this glaringly contra-
dicts the programme of expressing, in terms of a ‘probability of hypotheses’,
the degree of reliability which we have to ascribe to a hypothesis in
view of supporting or undermining evidence.
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This seems to me to exhaust the possibilities of basing the concept of
the probability of a hypothesis on that of the frequency of true state-
ments (or the frequency of false ones), and thereby on the frequency
theory of the probability of events.*5

I think we have to regard the attempt to identify the probability of a

*5 One might summarize my foregoing attempts to make sense of Reichenbach’s some-
what cryptic assertion that the probability of a hypothesis is to be measured by a truth
frequency, as follows. (For a similar summary, with criticism, see the penultimate
paragraph of appendix *i.)

Roughly, we can try two possible ways of defining the probability of a theory. One is
to count the number of experimentally testable statements belonging to the theory, and
to determine the relative frequency of those which turn out to be true; this relative
frequency can then be taken as a measure of the probability of a theory. We may call this
a probability of the first kind. Secondly, we can consider the theory as an element of a class of
ideological entities—say, of theories proposed by other scientists—and we can then
determine the relative frequencies within this class. We may call this a probability of the
second kind.

In my text I tried, further, to show that each of these two possibilities of making
sense of Reichenbach’s idea of truth frequency leads to results which must be quite
unacceptable to adherents of the probability theory of induction.

Reichenbach replied to my criticism, not so much by defending his views as by
attacking mine. In his paper on my book (Erkenntnis 5, 1935, pp. 267–284), he said that
‘the results of this book are completely untenable’, and explained this by a failure of my
‘method’—by my failure ‘to think out all the consequences’ of my conceptual system.

Section iv of his paper (pp. 274 f.) is devoted to our problem—the probability of
hypotheses. It begins: ‘In this connection, some remarks may be added about the prob-
ability of theories—remarks which should render more complete my so far all too brief
communications of the subject, and which may remove a certain obscurity which still
surrounds the issue.’ After this follows a passage which forms the second paragraph of
the present note, headed by the word ‘Roughly’ (the only word which I have added to
Reichenbach’s text).

Reichenbach remained silent about the fact that his attempt to remove ‘the obscurity
which still surrounds the issue’ is but a summary—a rough one, admittedly—of some
pages of the very book which he is attacking. Yet in spite of this silence I feel that I may
take it as a great compliment from so experienced a writer on probability (who at
the time of writing his reply to my book had two books and about a dozen papers on the
subject to his credit) that he did accept the results of my endeavours to ‘think out the
consequences’ of his ‘all too brief communications on the subject’. This success of my
endeavours was due, I believe, to a rule of ‘method’: that we should always try to clarify
and to strengthen our opponent’s position as much as possible before criticizing him, if
we wish our criticism to be worth while.
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hypothesis with the probability of events as a complete failure. This
conclusion is quite independent of whether we accept the claim (it is
Reichenbach’s) that all hypotheses of physics are ‘in reality’, or ‘on closer
examination’ nothing but probability statements (about some average
frequencies within sequences of observations which always show
deviations from some mean value), or whether we are inclined to
make a distinction between two different types of natural laws—
between the ‘deterministic’ or ‘precision’ laws on the one hand, and
the ‘probability laws’ or ‘hypotheses of frequency’ on the other. For
both of these types are hypothetical assumptions which in their turn
can never become ‘probable’: they can only be corroborated, in the
sense that they can ‘prove their mettle’ under fire—the fire of our
tests.

How are we to explain the fact that the believers in probability logic
have reached an opposite view? Wherein lies the error made by Jeans
when he writes—at first in a sense with which I can fully agree—
that ‘. . . we can know nothing . . . for certain’, but then goes on to say:
‘At best we can only deal in probabilities. [And] the predictions of the
new quantum theory agree so well [with the observations] that
the odds in favour of the scheme having some correspondence with
reality are enormous. Indeed, we may say the scheme is almost certain to be
quantitatively true . . .’?5

Undoubtedly the commonest error consists in believing that hypo-
thetical estimates of frequencies, that is to say, hypotheses regarding
probabilities, can in their turn be only probable; or in other words, in
ascribing to hypotheses of probability some degree of an alleged probability of
hypotheses. We may be able to produce a persuasive argument in favour of
this erroneous conclusion if we remember that hypotheses regarding
probabilities are, as far as their logical form is concerned (and without
reference to our methodological requirement of falsifiability), neither
verifiable nor falsifiable. (Cf. sections 65 to 68.) They are not verifiable
because they are universal statements, and they are not strictly
falsifiable because they can never be logically contradicted by any
basic statements. They are thus (as Reichenbach puts it) completely

5 Jeans, The New Background of Science, 1934, p. 58. (Only the words ‘for certain’ are italicized
by Jeans.)
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undecidable.6 Now they can, as I have tried to show, be better, or less well,
‘confirmed’, which is to say that they may agree more, or less, with
accepted basic statements. This is the point where, it may appear, prob-
ability logic comes in. The symmetry between verifiability and falsifi-
ability accepted by classical inductivist logic suggests the belief that it
must be possible to correlate with these ‘undecidable’ probability
statements some scale of degrees of validity, something like ‘continu-
ous degrees of probability whose unattainable upper and lower limits
are truth and falsity’,7 to quote Reichenbach again. According to my
view, however, probability statements, just because they are completely
undecidable, are metaphysical unless we decide to make them falsifiable
by accepting a methodological rule. Thus the simple result of their
non-falsifiability is not that they can be better, or less well corrobor-
ated, but that they cannot be empirically corroborated at all. For otherwise—
seeing that they rule out nothing, and are therefore compatible with
every basic statement—they could be said to be ‘corroborated’ by every
arbitrarily chosen basic statement (of any degree of composition) provided it
describes the occurrence of some relevant instance.

I believe that physics uses probability statements only in the way
which I have discussed at length in connection with the theory of
probability; and more particularly that it uses probability assumptions,
just like other hypotheses, as falsifiable statements. But I should decline
to join in any dispute about how physicists ‘in fact’ proceed, since this
must remain largely a matter of interpretation.

We have here quite a nice illustration of the contrast between my
view and what I called, in section 10, the ‘naturalistic’ view. What can
be shown is, first, the internal logical consistency of my view, and
secondly, that it is free from those difficulties which beset other views.
Admittedly it is impossible to prove that my view is correct, and a
controversy with upholders of another logic of science may well be
futile. All that can be shown is that my approach to this particular

6 Reichenbach, Erkenntnis 1, 1930, p. 169 (cf. also Reichenbach’s reply to my note in
Erkenntnis 3, 1933, pp. 426 f.). Similar ideas about the degrees of probability or certainty
of inductive knowledge occur very frequently (cf. for instance Russell, Our Knowledge of the
External World, 1914, pp. 225 f., and The Analysis of Matter, 1927, pp. 141 and 398).
7 Reichenbach, Erkenntnis 1, 1930, p. 186 (cf. note 4 to section 1).
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problem is a consequence of the conception of science for which I have
been arguing.*6

81 INDUCTIVE LOGIC AND PROBABILITY LOGIC

The probability of hypotheses cannot be reduced to the probability of
events. This is the conclusion which emerges from the examination
carried out in the previous section. But might not a different approach
lead to a satisfactory definition of the idea of a probability of hypotheses?

I do not believe that it is possible to construct a concept of the
probability of hypotheses which may be interpreted as expressing a
‘degree of validity’ of the hypothesis, in analogy to the concepts ‘true’
and ‘false’ (and which, in addition, is sufficiently closely related to the
concept ‘objective probability’, i.e. to relative frequency, to justify the
use of the word ‘probability’).1 Nevertheless, I will now, for the sake of
argument, adopt the supposition that such a concept has in fact been
successfully constructed, in order to raise the question: how would this
affect the problem of induction?

Let us suppose that a certain hypothesis—say Schrödinger’s theory
—is recognized as ‘probable’ in some definite sense; either as ‘prob-
able to this or that numerical degree’, or merely as ‘probable’, without
specification of a degree. The statement that describes Schrödinger’s
theory as ‘probable’ we may call its appraisal.

*6 The last two paragraphs were provoked by the ‘naturalistic’ approach sometimes
adopted by Reichenbach, Neurath, and others; cf. section 10, above.
1 (Added while the book was in proof.) It is conceivable that for estimating degrees of
corroboration, one might find a formal system showing some limited formal analogies
with the calculus of probability (e.g. with Bayes’s theorem), without however having
anything in common with the frequency theory. I am indebted to Dr. J. Hosiasson for
suggesting this possibility to me. I am satisfied, however, that it is quite impossible to
tackle the problem of induction by such methods with any hope of success. *See also note 3 to
section *57 of my Postscript.

* Since 1938, I have upheld the view that ‘to justify the use of the word probability’, as
my text puts it, we should have to show that the axioms of the formal calculus are
satisfied. (Cf. appendices *ii to *v, and especially section *28 of my Postscript.) This would
of course include the satisfaction of Bayes’s theorem. As to the formal analogies between
Bayes’s theorem on probability and certain theorems on degree of corroboration, see appendix
*ix, point 9 (vii) of the first note, and points (12) and (13) of section *32 of my Postscript.
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An appraisal must, of course, be a synthetic statement—an assertion
about ‘reality’—in the same way as would be the statement
‘Schrödinger’s theory is true’ or ‘Schrödinger’s theory is false’. All
such statements obviously say something about the adequacy of the
theory, and are thus certainly not tautological.*1 They say that a theory
is adequate or inadequate, or that it is adequate in some degree. Fur-
ther, an appraisal of Schrödinger’s theory must be a non-verifiable syn-
thetic statement, just like the theory itself. For the ‘probability’ of a
theory—that is, the probability that the theory will remain
acceptable—cannot, it appears, be deduced from basic statements with
finality. Therefore we are forced to ask: How can the appraisal be justi-
fied? How can it be tested? (Thus the problem of induction arises
again; see section 1.)

As to the appraisal itself, this may either be asserted to be ‘true’, or it
may, in its turn, be said to be ‘probable’. If it is regarded as ‘true’ then
it must be a true synthetic statement which has not been empirically
verified—a synthetic statement which is a priori true. If it is regarded as

*1 The probability statement ‘p(S,e) = r’, in words, ‘Schrödinger’s theory, given the evi-
dence e, has the probability r’—a statement of relative or conditional logical
probability—may certainly be tautological (provided the values of e and r are chosen so
as to fit each other: if e consists only of observational reports, r will have to equal zero in a
sufficiently large universe). But the ‘appraisal’, in our sense, would have a different form
(see section 84, below, especially the text to note *2)—for example, the following:
Pk(S) = r, where k is today’s date; or in words: ‘Schrödinger’s theory has today (in view of
the actual total evidence now available) a probability of r.’ In order to obtain this assess-
ment, pk(S) = r, from (i) the tautological statement of relative probability p(S,e) = r, and
(ii) the statement ‘e is the total evidence available today’, we must apply a principle of
inference (called the ‘rule of absolution’ in my Postscript, sections *43 and *51). This
principle of inference looks very much like the modus ponens, and it may therefore seem
that it should be taken as analytic. But if we take it to be analytic, then this amounts to the
decision to consider pk as defined by (i) and (ii), or at any rate as meaning no more than do
(i) and (ii) together; but in this case, pk cannot be interpreted as being of any practical
significance: it certainly cannot be interpreted as a practical measure of acceptability. This
is best seen if we consider that in a sufficiently large universe, pk(t,e) ≈ o for every universal
theory t, provided e consists only of singular statements. (Cf. appendices, *vii and *viii.)
But in practice, we certainly do accept some theories and reject others.

If, on the other hand, we interpret pk as degree of adequacy or acceptability, then the principle
of inference mentioned—the ‘rule of absolution’ (which, on this interpretation,
becomes a typical example of a ‘principle of induction’)—is simply false, and therefore
clearly non-analytic.
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‘probable’, then we need a new appraisal: an appraisal of the appraisal,
as it were, and therefore an appraisal on a higher level. But this means
that we are caught up in an infinite regress. The appeal to the prob-
ability of the hypothesis is unable to improve the precarious logical
situation of inductive logic.

Most of those who believe in probability logic uphold the view that
the appraisal is arrived at by means of a ‘principle of induction’ which
ascribes probabilities to the induced hypotheses. But if they ascribe a
probability to this principle of induction in its turn, then the infinite
regress continues. If on the other hand they ascribe ‘truth’ to it then
they are left with the choice between infinite regress and a priorism.
‘Once and for all’, says Heymans, ‘the theory of probability is incapable
of explaining inductive arguments; for precisely the same problem
which lurks in the one also lurks in the other (in the empirical applica-
tion of probability theory). In both cases the conclusion goes beyond
what is given in the premises.’2 Thus nothing is gained by replacing the
word ‘true’ by the word ‘probable’, and the word ‘false’ by the word
‘improbable’. Only if the asymmetry between verification and falsification is taken
into account—that asymmetry which results from the logical relation
between theories and basic statements—is it possible to avoid the
pitfalls of the problem of induction.

Believers in probability logic may try to meet my criticism by assert-
ing that it springs from a mentality which is ‘tied to the frame-work of
classical logic’, and which is therefore incapable of following the
methods of reasoning employed by probability logic. I freely admit
that I am incapable of following these methods of reasoning.

2 Heymans, Gesetze und Elemente des wissenschaftlichen Denkens (1890, 1894), pp. 290 f.; *third
edition, 1915, p. 272. Heymans’s argument was anticipated by Hume in his anonymous
pamphlet. An Abstract of a Book lately published entitled A Treatise of Human Nature, 1740. I have little
doubt that Heymans did not know this pamphlet which was re-discovered and attributed
to Hume by J. M. Keynes and P. Sraffa, and published by them in 1938. I knew neither of
Hume’s nor of Heymans’s anticipation of my arguments against the probabilistic theory
of induction when I presented them in 1931 in an earlier book, still unpublished, which
was read by several members of the Vienna Circle. The fact that Heymans’s passage had
been anticipated by Hume was pointed out to me by J. O. Wisdom; cf. his Foundations of
Inference in Natural Science, 1952, p. 218. Hume’s passage is quoted below, in appendix *vii,
text to footnote 6 (p. 386).
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82 THE POSITIVE THEORY OF CORROBORATION: HOW
A HYPOTHESIS MAY ‘PROVE ITS METTLE’

Cannot the objections I have just been advancing against the prob-
ability theory of induction be turned, perhaps, against my own view? It
might well seem that they can; for these objections are based on the
idea of an appraisal. And clearly, I have to use this idea too. I speak of the
‘corroboration’ of a theory; and corroboration can only be expressed as an
appraisal. (In this respect there is no difference between corroboration
and probability.) Moreover, I too hold that hypotheses cannot be
asserted to be ‘true’ statements, but that they are ‘provisional con-
jectures’ (or something of the sort); and this view, too, can only be
expressed by way of an appraisal of these hypotheses.

The second part of this objection can easily be answered. The
appraisal of hypotheses which indeed I am compelled to make use of,
and which describes them as ‘provisional conjectures’ (or something
of the sort) has the status of a tautology. Thus it does not give rise to
difficulties of the type to which inductive logic gives rise. For this
description only paraphrases or interprets the assertion (to which it is
equivalent by definition) that strictly universal statements, i.e. theories,
cannot be derived from singular statements.

The position is similar as regards the first part of the objection which
concerns appraisals stating that a theory is corroborated. The appraisal
of the corroboration is not a hypothesis, but can be derived if we are
given the theory as well as the accepted basic statements. It asserts the
fact that these basic statements do not contradict the theory, and it does
this with due regard to the degree of testability of the theory, and to
the severity of the tests to which the theory has been subjected, up to a
stated period of time.

We say that a theory is ‘corroborated’ so long as it stands up to these
tests. The appraisal which asserts corroboration (the corroborative
appraisal) establishes certain fundamental relations, viz. compatibility
and incompatibility. We regard incompatibility as falsification of the
theory. But compatibility alone must not make us attribute to the the-
ory a positive degree of corroboration: the mere fact that a theory has
not yet been falsified can obviously not be regarded as sufficient. For
nothing is easier than to construct any number of theoretical systems
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which are compatible with any given system of accepted basic state-
ments. (This remark applies also to all ‘metaphysical’ systems.)

It might perhaps be suggested that a theory should be accorded
some positive degree of corroboration if it is compatible with the
system of accepted basic statements, and if, in addition, part of this
system can be derived from the theory. Or, considering that basic
statements are not derivable from a purely theoretical system (though
their negations may be so derivable), one might suggest that the fol-
lowing rule should be adopted: a theory is to be accorded a positive
degree of corroboration if it is compatible with the accepted basic
statements and if, in addition, a non-empty sub-class of these basic
statements is derivable from the theory in conjunction with the other
accepted basic statements.*1

I have no serious objections to this last formulation, except that it
seems to me insufficient for an adequate characterization of the posi-
tive degree of corroboration of a theory. For we wish to speak of
theories as being better, or less well, corroborated. But the degree of
corroboration of a theory can surely not be established simply by counting
the number of the corroborating instances, i.e. the accepted basic
statements which are derivable in the way indicated. For it may happen

*1 The tentative definition of ‘positively corroborated’ here given (but rejected as insuf-
ficient in the next paragraph of the text because it does not explicitly refer to the results
of severe tests, i.e. of attempted refutations) is of interest in at least two ways. First, it is
closely related to my criterion of demarcation, especially to that formulation of it to
which I have attached note *1 to section 21. In fact, the two agree except for the
restriction to accepted basic statements which forms part of the present definition. Thus if
we omit this restriction, the present definition turns into my criterion of demarcation.

Secondly, if instead of omitting this restriction we restrict the class of the derived
accepted basic statements further, by demanding that they should be accepted as the
results of sincere attempts to refute the theory, then our definition becomes an adequate
definition of ‘positively corroborated’, though not, of course, of ‘degree of corrobora-
tion’. The argument supporting this claim is implicit in the text here following. More-
over, the basic statements so accepted may be described as ‘corroborating statements’ of
the theory.

It should be noted that ‘instantial statements’ (i.e. negated basic statements; see section
28) cannot be adequately described as corroborating or confirming statements of the
theory which they instantiate, owing to the fact that we know that every universal law is
instantiated almost everywhere, as indicated in note *1 to section 28. (See also note *4 to
section 80, and text.)
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that one theory appears to be far less well corroborated than another
one, even though we have derived very many basic statements with its
help, and only a few with the help of the second. As an example we
might compare the hypothesis ‘All crows are black’ with the hypoth-
esis (mentioned in section 37) ‘the electronic charge has the value
determined by Millikan’. Although in the case of a hypothesis of the
former kind, we have presumably encountered many more corrobora-
tive basic statements, we shall nevertheless judge Millikan’s hypothesis
to be the better corroborated of the two.

This shows that it is not so much the number of corroborating
instances which determines the degree of corroboration as the severity of
the various tests to which the hypothesis in question can be, and has been,
subjected. But the severity of the tests, in its turn, depends upon the
degree of testability, and thus upon the simplicity of the hypothesis: the
hypothesis which is falsifiable in a higher degree, or the simpler
hypothesis, is also the one which is corroborable in a higher degree.1

Of course, the degree of corroboration actually attained does not
depend only on the degree of falsifiability: a statement may be falsifiable
to a high degree yet it may be only slightly corroborated, or it may in
fact be falsified. And it may perhaps, without being falsified, be super-
seded by a better testable theory from which it—or a sufficiently close
approximation to it—can be deduced. (In this case too its degree of
corroboration is lowered.)

The degree of corroboration of two statements may not be compar-
able in all cases, any more than the degree of falsifiability: we cannot
define a numerically calculable degree of corroboration, but can speak
only roughly in terms of positive degree of corroboration, negative
degrees of corroboration, and so forth.*2 Yet we can lay down various

1 This is another point in which there is agreement between my view of simplicity and
Weyl’s; cf. note 7 to section 42. *This agreement is a consequence of the view, due to
Jeffreys, Wrinch, and Weyl (cf. note 7 to section 42), that the paucity of the parameters of
a function can be used as a measure of its simplicity, taken in conjunction with my view
(cf. sections 38 ff.) that the paucity of the parameters can be used as a measure of
testability or improbability—a view rejected by these authors. (See also notes *1 and *2
to sections 43.)
*2 As far as practical application to existing theories goes, this seems to me still correct;
but I think now that it is possible to define ‘degree of corroboration’ in such a way that
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rules; for instance the rule that we shall not continue to accord a
positive degree of corroboration to a theory which has been falsified
by an inter-subjectively testable experiment based upon a falsifying
hypothesis (cf. sections 8 and 22). (We may, however, under certain
circumstances accord a positive degree of corroboration to another
theory, even though it follows a kindred line of thought. An example
is Einstein’s photon theory, with its kinship to Newton’s corpuscular
theory of light.) In general we regard an inter-subjectively testable
falsification as final (provided it is well tested): this is the way in
which the asymmetry between verification and falsification of theor-
ies makes itself felt. Each of these methodological points contributes
in its own peculiar way to the historical development of science as a
process of step by step approximations. A corroborative appraisal
made at a later date—that is, an appraisal made after new basic state-
ments have been added to those already accepted—can replace a posi-
tive degree of corroboration by a negative one, but not vice versa. And
although I believe that in the history of science it is always the theory
and not the experiment, always the idea and not the observation,
which opens up the way to new knowledge, I also believe that it is
always the experiment which saves us from following a track that
leads nowhere: which helps us out of the rut, and which challenges
us to find a new way.

Thus the degree of falsifiability or of simplicity of a theory enters
into the appraisal of its corroboration. And this appraisal may be
regarded as one of the logical relations between the theory and the
accepted basic statements: as an appraisal that takes into consider-
ation the severity of the tests to which the theory has been
subjected.

we can compare degrees of corroboration (for example, those of Newton’s and of Ein-
stein’s theory of gravity). Moreover, this definition makes it even possible to attribute
numerical degrees of corroboration to statistical hypotheses, and perhaps even to other
statements provided we can attribute degrees of (absolute and relative) logical probability
to them and to the evidence statements. See also appendix *ix.
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83 CORROBORABILITY, TESTABILITY,
AND LOGICAL PROBABILITY*1

In appraising the degree of corroboration of a theory we take into
account its degree of falsifiability. A theory can be the better corrobor-
ated the better testable it is. Testability, however, is converse to the
concept of logical probability, so that we can also say that an appraisal of
corroboration takes into account the logical probability of the state-
ment in question. And this, in turn, as was shown in section 72, is
related to the concept of objective probability—the probability of
events. Thus by taking logical probability into account the concept of
corroboration is linked, even if perhaps only indirectly and loosely,
with that of the probability of events. The idea may occur to us that
there is perhaps a connection here with the doctrine of the probability
of hypotheses criticized above.

When trying to appraise the degree of corroboration of a theory we
may reason somewhat as follows. Its degree of corroboration will
increase with the number of its corroborating instances. Here we usu-
ally accord to the first corroborating instances far greater importance
than to later ones: once a theory is well corroborated, further instances
raise its degree of corroboration only very little. This rule however does
not hold good if these new instances are very different from the earlier
ones, that is if they corroborate the theory in a new field of application. In
this case, they may increase the degree of corroboration very consider-
ably. The degree of corroboration of a theory which has a higher degree
of universality can thus be greater than that of a theory which has a
lower degree of universality (and therefore a lower degree of falsifi-
ability). In a similar way, theories of a higher degree of precision can be
better corroborated than less precise ones. One of the reasons why we
do not accord a positive degree of corroboration to the typical
prophecies of palmists and soothsayers is that their predictions are so
cautious and imprecise that the logical probability of their being cor-
rect is extremely high. And if we are told that more precise and thus

*1 If the terminology is accepted which I first explained in my note in Mind, 1938, then
the word ‘absolute’ should be inserted here throughout (as in section 34, etc.) before
‘logical probability’ (in contradistinction to ‘relative’ or ‘conditional’ logical
probability); cf. appendices *ii, *iv, and *ix.
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logically less probable predictions of this kind have been successful, then
it is not, as a rule, their success that we are inclined to doubt so much as
their alleged logical improbability: since we tend to believe that such
prophecies are non-corroborable, we also tend to argue in such cases
from their low degree of corroborability to their low degree of testability.

If we compare these views of mine with what is implicit in (induct-
ive) probability logic, we get a truly remarkable result. According to
my view, the corroborability of a theory—and also the degree of cor-
roboration of a theory which has in fact passed severe tests, stand both,
as it were,*2 in inverse ratio to its logical probability; for they both
increase with its degree of testability and simplicity. But the view implied by
probability logic is the precise opposite of this. Its upholders let the probability of
a hypothesis increase in direct proportion to its logical probability—
although there is no doubt that they intend their ‘probability of a
hypothesis’ to stand for much the same thing that I try to indicate by
‘degree of corroboration’.*3

*2 I said in the text ‘as it were’: I did so because I did not really believe in numerical
(absolute) logical probabilities. In consequence of this, I wavered, when writing the text,
between the view that the degree of corroborability is complementary to (absolute) logical
probability and the view that it is inversely proportional; or in other words, between
a definition of C(g), i.e. the degree of corroborability, by C(g) = 1 − P(g) which would
make corroborability equal to content, and by C(g) = 1/P(g), where P(g) is the absolute logical
probability of g. In fact, definitions may be adopted which lead to either of these con-
sequences, and both ways seem fairly satisfactory on intuitive grounds; this explains,
perhaps, my wavering. There are strong reasons in favour of the first method, or else of a
logarithmic scale applied to the second method. See appendix *ix.
*3 The last lines of this paragraph, especially from the italicized sentence on (it was not
italicized in the original) contain the crucial point of my criticism of the probability
theory of induction. The point may be summarized as follows.

We want simple hypotheses—hypotheses of a high content, a high degree of testability.
These are also the highly corroborable hypotheses, for the degree of corroboration of a
hypothesis depends mainly upon the severity of its tests, and thus upon its testability.
Now we know that testability is the same as high (absolute) logical improbability, or low
(absolute) logical probability.

But if two hypotheses, h1 and h2, are comparable with respect to their content, and
thus with respect to their (absolute) logical probability, then the following holds: let the
(absolute) logical probability of h1 be smaller than that of h2. Then, whatever the evidence
e, the (relative) logical probability of h1 given e can never exceed that of h2 given e. Thus
the better testable and better corroborable hypothesis can never obtain a higher probability, on the given evidence,
than the less testable one. But this entails that degree of corroboration cannot be the same as probability.
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Among those who argue in this way is Keynes who uses the expres-
sion ‘a priori probability’ for what I call ‘logical probability’. (See note 1
to section 34.) He makes the following perfectly accurate remark1

regarding a ‘generalization’ g (i.e. a hypothesis) with the ‘condition’ or
antecedent or protasis φ and the ‘conclusion’ or consequent or
apodosis f: ‘The more comprehensive the condition φ and the less
comprehensive the conclusion f, the greater à priori*4 probability do we
attribute to the generalization g. With every increase in φ this prob-
ability increases, and with every increase in f it will diminish.’ This, as I
said, is perfectly accurate, even though Keynes does not draw a sharp
distinction*5 between what he calls the ‘probability of a
generalization’—corresponding to what is here called the ‘probability
of a hypothesis’—and its ‘a priori probability’. Thus in contrast to my
degree of corroboration, Keynes’s probability of a hypothesis increases with its a
priori logical probability. That Keynes nevertheless intends by his ‘prob-
ability’ the same as I do by my ‘corroboration’ may be seen from the
fact that his ‘probability’ rises with the number of corroborating
instances, and also (most important) with the increase of diversity

This is the crucial result. My later remarks in the text merely draw the conclusion from
it: if you value high probability, you must say very little—or better still, nothing at all:
tautologies will always retain the highest probability.
1 Keynes, A Treatise on Probability, 1921, pp. 224 f. Keynes’s condition φ and conclusion f
correspond (cf. note 6 to section 14) to our conditioning statement function φ and our
consequence statement function f; cf. also section 36. It should be noticed that Keynes
called the condition or the conclusion more comprehensive if its content, or its intension, rather
than its extension, is the greater. (I am alluding to the inverse relationship holding
between the intension and the extension of a term.)
*4 Keynes follows some eminent Cambridge logicians in writing ‘à priori’ and ‘à posteriori’;
one can only say, à propos de rien—unless, perhaps, apropos of ‘à propos’.
*5 Keynes does, in fact, allow for the distinction between the a priori (or ‘absolute
logical’, as I now call it) probability of the ‘generalization’ g and its probability with
respect to a given piece of evidence h, and to this extent, my statement in the text needs
correction. (He makes the distinction by assuming, correctly though perhaps only
implicitly—see p. 225 of the Treatise—that if φ = φ1φ2, and f = f1f2, then the a priori prob-
abilities of the various g are: g(φ, f1) � g(φ, f) � g(φ1, f).) And he correctly proves that the
a posteriori probabilities of these hypotheses g (relative to any given piece of evidence h)
change in the same way as their a priori probabilities. Thus while his probabilities change
like (absolute) logical probabilities, it is my cardinal point that degrees of corroborability
(and of corroboration) change in the opposite way.
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among them. But Keynes overlooks the fact that theories whose
corroborating instances belong to widely different fields of application
will usually have a correspondingly high degree of universality. Hence
his two requirements for obtaining a high probability—the least pos-
sible universality and the greatest possible diversity of instances—will
as a rule be incompatible.

Expressed in my terminology, Keynes’s theory implies that corro-
boration (or the probability of hypotheses) decreases with testability.
He is led to this view by his belief in inductive logic.*6 For it is the
tendency of inductive logic to make scientific hypotheses as certain as
possible. Scientific significance is assigned to the various hypotheses
only to the extent to which they can be justified by experience. A
theory is regarded as scientifically valuable only because of the close
logical proximity (cf. note 2 to section 48 and text) between the theory
and empirical statements. But this means nothing else than that the
content of the theory must go as little as possible beyond what is empirically
established.*7 This view is closely connected with a tendency to deny
the value of prediction. ‘The peculiar virtue of prediction’ Keynes
writes2 ‘. . . is altogether imaginary. The number of instances exam-
ined and the analogy between them are the essential points, and the
question as to whether a particular hypothesis happens to be
propounded before or after their examination is quite irrelevant.’ In
reference to hypotheses which have been ‘a priori proposed’—that is,
proposed before we had sufficient support for them on inductive
grounds—Keynes writes: ‘. . . if it is a mere guess, the lucky fact of its
preceding some or all of the cases which verify it adds nothing what-
ever to its value.’ This view of prediction is certainly consistent. But it
makes one wonder why we should ever have to generalize at all. What
possible reason can there be for constructing all these theories and
hypotheses? The standpoint of inductive logic makes these activities
quite incomprehensible. If what we value most is the securest

*6 See my Postscript, chapter *ii. In my theory of corroboration—in direct opposition to
Keynes’s, Jeffreys’s, and Carnap’s theories of probability—corroboration does not decrease
with testability, but tends to increase with it.
*7 This may also be expressed by the unacceptable rule: ‘Always choose the hypothesis
which is most ad hoc!’
2 Keynes, op. cit., p. 305.
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knowledge available—and if predictions as such contribute nothing
towards corroboration—why then may we not rest content with our
basic statements?*8

Another view which gives rise to very similar questions is that of
Kaila.3 Whilst I believe that it is the simple theories, and those which
make little use of auxiliary hypotheses (cf. section 46) which can be
well corroborated, just because of their logical improbability, Kaila
interprets the situation in precisely the opposite way, on grounds simi-
lar to Keynes’s. He too sees that we usually ascribe a high probability
(in our terminology, a high ‘probability of hypotheses’) to simple theor-
ies, and especially to those needing few auxiliary hypotheses. But his
reasons are the opposite of mine. He does not, as I do, ascribe a high
probability to such theories because they are severely testable, or logic-
ally improbable; that is to say because they have, a priori as it were, many
opportunities of clashing with basic statements. On the contrary he ascribes this
high probability to simple theories with few auxiliary hypotheses
because he believes that a system consisting of few hypotheses will, a
priori, have fewer opportunities of clashing with reality than a system
consisting of many hypotheses. Here again one wonders why we
should ever bother to construct these adventurous theories. If we
shrink from conflict with reality, why invite it by making assertions?
The safest course is to adopt a system without any hypotheses. [‘Speech is
silvern, silence is golden.’]

My own rule which requires that auxiliary hypotheses shall be used
as sparingly as possible (the ‘principle of parsimony in the use of
hypotheses’) has nothing whatever in common with considerations

*8 Carnap, in his Logical Foundations of Probability, 1950, believes in the practical value of
predictions; nevertheless, he draws part of the conclusion here mentioned—that we
might be content with our basic statements. For he says that theories (he speaks of ‘laws’)
are ‘not indispensable’ for science—not even for making predictions: we can manage
throughout with singular statements. ‘Nevertheless’, he writes (p. 575) ‘it is expedient,
of course, to state universal laws in books on physics, biology, psychology, etc.’ But the
question is not one of expediency—it is one of scientific curiosity. Some scientists want to
explain the world: their aim is to find satisfactory explanatory theories—well testable, i.e.
simple theories—and to test them. (See also appendix *x and section *15 of my
Postscript.)
3 Kaila, Die Principien der Wahrscheinlichkeitslogik (Annales Universitatis Aboensis, Turku 1926),
p. 140.
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such as Kaila’s. I am not interested in merely keeping down the number
of our statements: I am interested in their simplicity in the sense of high
testability. It is this interest which leads, on the one hand, to my rule that
auxiliary hypotheses should be used as sparingly as possible, and on
the other hand, to my demand that the number of our axioms—of our
most fundamental hypotheses—should be kept down. For this latter
point arises out of the demand that statements of a high level of univer-
sality should be chosen, and that a system consisting of many ‘axioms’
should, if possible, be deduced from (and thus explained by) one with
fewer ‘axioms’, and with axioms of a higher level of universality.

84 REMARKS CONCERNING THE USE OF THE
CONCEPTS ‘TRUE’ AND ‘CORROBORATED’

In the logic of science here outlined it is possible to avoid using the
concepts ‘true’ and ‘false’.*1 Their place may be taken by logical

*1 Not long after this was written, I had the good fortune to meet Alfred Tarski who
explained to me the fundamental ideas of his theory of truth. It is a great pity that this
theory—one of the two great discoveries in the field of logic made since Principia
Mathematica—is still often misunderstood and misrepresented. It cannot be too strongly
emphasized that Tarski’s idea of truth (for whose definition with respect to formalized
languages Tarski gave a method) is the same idea which Aristotle had in mind and indeed
most people (except pragmatists): the idea that truth is correspondence with the facts (or with
reality). But what can we possibly mean if we say of a statement that it corresponds with
the facts (or with reality)? Once we realize that this correspondence cannot be one of
structural similarity, the task of elucidating this correspondence seems hopeless; and as a
consequence, we may become suspicious of the concept of truth, and prefer not to use it.
Tarski solved (with respect to formalized languages) this apparently hopeless problem by
making use of a semantic metalanguage, reducing the idea of correspondence to that of
‘satisfaction’ or ‘fulfilment’.

As a result of Tarski’s teaching, I no longer hesitate to speak of ‘truth’ and ‘falsity’. And
like everybody else’s views (unless he is a pragmatist), my views turned out, as a matter
of course, to be consistent with Tarski’s theory of absolute truth. Thus although my views
on formal logic and its philosophy were revolutionized by Tarski’s theory, my views on
science and its philosophy were fundamentally unaffected, although clarified.

Some of the current criticism of Tarski’s theory seems to me wide of the mark. It is
said that his definition is artificial and complex; but since he defines truth with respect to
formalized languages, it has to be based on the definition of a well-formed formula in
such a language; and it is of precisely the same degree of ‘artificiality’ or ‘complexity’ as
this definition. It is also said that only propositions or statements can be true or false, but
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considerations about derivability relations. Thus we need not say: ‘The
prediction p is true provided the theory t and the basic statement b are
true.’ We may say, instead, that the statement p follows from the (non-
contradictory) conjunction of t and b. The falsification of a theory may
be described in a similar way. We need not say that the theory is ‘false’,
but we may say instead that it is contradicted by a certain set of
accepted basic statements. Nor need we say of basic statements that
they are ‘true’ or ‘false’, for we may interpret their acceptance as the
result of a conventional decision, and the accepted statements as results
of this decision.

This certainly does not mean that we are forbidden to use the con-
cepts ‘true’ and ‘false’, or that their use creates any particular difficulty.
The very fact that we can avoid them shows that they cannot give rise to
any new fundamental problem. The use of the concepts ‘true’ and
‘false’ is quite analogous to the use of such concepts as ‘tautology’,
‘contradiction’, ‘conjunction’, ‘implication’ and others of the kind. These are
non-empirical concepts, logical concepts.1 They describe or appraise a
statement irrespective of any changes in the empirical world. Whilst
we assume that the properties of physical objects (of ‘genidentical’
objects in Lewin’s sense) change with the passage of time, we decide to
use these logical predicates in such a way that the logical properties of
statements become timeless: if a statement is a tautology, then it is a
tautology once and for all. This same timelessness we also attach to the
concepts ‘true’ and ‘false’, in agreement with common usage. It is not
common usage to say of a statement that it was perfectly true yesterday
but has become false today. If yesterday we appraised a statement as
true which today we appraise as false, then we implicitly assert today

not sentences. Perhaps ‘sentence’ was not a good translation of Tarski’s original ter-
minology. (I personally prefer to speak of ‘statement’ rather than of ‘sentence’; see for
example my ‘Note on Tarski’s Definition of Truth’, Mind 64, 1955, p. 388, footnote 1.)
But Tarski himself made it perfectly clear that an uninterpreted formula (or a string of
symbols) cannot be said to be true or false, and that these terms only apply to interpreted
formulae—to ‘meaningful sentences’ (as the translation has it). Improvements in termin-
ology are always welcome; but it is sheer obscurantism to criticize a theory on termino-
logical grounds.
1 (Added in 1934 in proof.) Carnap would probably say ‘syntactical concepts’ (cf. his
Logical Syntax of Language).
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that we were mistaken yesterday; that the statement was false even
yesterday—timelessly false—but that we erroneously ‘took it for true’.

Here one can see very clearly the difference between truth and
corroboration. The appraisal of a statement as corroborated or as not
corroborated is also a logical appraisal and therefore also timeless; for it
asserts that a certain logical relation holds between a theoretical system
and some system of accepted basic statements. But we can never simply
say of a statement that it is as such, or in itself, ‘corroborated’ (in the
way in which we may say that it is ‘true’). We can only say that it is
corroborated with respect to some system of basic statements—a system accepted up
to a particular point in time. ‘The corroboration which a theory has
received up to yesterday’ is logically not identical with ‘the corroboration
which a theory has received up to today’. Thus we must attach a sub-
script, as it were, to every appraisal of corroboration—a subscript char-
acterizing the system of basic statements to which the corroboration
relates (for example, by the date of its acceptance).*2

Corroboration is therefore not a ‘truth value’; that is, it cannot be
placed on a par with the concepts ‘true’ and ‘false’ (which are free
from temporal subscripts); for to one and the same statement there
may be any number of different corroboration values, of which indeed
all can be ‘correct’ or ‘true’ at the same time. For they are values which
are logically derivable from the theory and the various sets of basic
statements accepted at various times.

The above remarks may also help to elucidate the contrast between
my views and those of the pragmatists who propose to define ‘truth’ in
terms of the success of a theory—and thus of its usefulness, or of its confirmation or of its
corroboration. If their intention is merely to assert that a logical appraisal
of the success of a theory can be no more than an appraisal of its
corroboration, I can agree. But I think that it would be far from ‘useful’
to identify the concept of corroboration with that of truth.*3 This is
also avoided in ordinary usage. For one might well say of a theory
that it has hardly been corroborated at all so far, or that it is still

*2 Cf. note *1 to section 81.
*3 Thus if we were to define ‘true’ as ‘useful’ (as suggested by some pragmatists), or else
as ‘successful’ or ‘confirmed’ or ‘corroborated’, we should only have to introduce a new
‘absolute’ and ‘timeless’ concept to play the role of ‘truth’.
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uncorroborated. But we should not normally say of a theory that it is
hardly true at all so far, or that it is still false.

85 THE PATH OF SCIENCE

One may discern something like a general direction in the evolution of
physics—a direction from theories of a lower level of universality to
theories of a higher level. This is usually called the ‘inductive’ direc-
tion; and it might be thought that the fact that physics advances in this
‘inductive’ direction could be used as an argument in favour of the
inductive method.

Yet an advance in the inductive direction does not necessarily consist
of a sequence of inductive inferences. Indeed we have shown that it
may be explained in quite different terms—in terms of degree of test-
ability and corroborability. For a theory which has been well corrobor-
ated can only be superseded by one of a higher level of universality;
that is, by a theory which is better testable and which, in addition,
contains the old, well corroborated theory—or at least a good approxi-
mation to it. It may be better, therefore, to describe that trend—the
advance towards theories of an ever higher level of universality—as
‘quasi-inductive’.

The quasi-inductive process should be envisaged as follows. Theor-
ies of some level of universality are proposed, and deductively tested;
after that, theories of a higher level of universality are proposed, and in
their turn tested with the help of those of the previous levels of univer-
sality, and so on. The methods of testing are invariably based on
deductive inferences from the higher to the lower level;*1 on the other
hand, the levels of universality are reached, in the order of time, by
proceeding from lower to higher levels.

The question may be raised: ‘Why not invent theories of the highest
level of universality straight away? Why wait for this quasi-inductive
evolution? Is it not perhaps because there is after all an inductive elem-
ent contained in it?’ I do not think so. Again and again suggestions are

*1 The ‘deductive inferences from the higher to the lower level’ are, of course, explanations
(in the sense of section 12); thus the hypotheses on the higher level are explanatory with
respect to those on the lower level.
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put forward—conjectures, or theories—of all possible levels of univer-
sality. Those theories which are on too high a level of universality, as it
were (that is, too far removed from the level reached by the testable
science of the day) give rise, perhaps, to a ‘metaphysical system’. In this
case, even if from this system statements should be deducible (or only
semi-deducible, as for example in the case of Spinoza’s system), which
belong to the prevailing scientific system, there will be no new testable
statement among them; which means that no crucial experiment can
be designed to test the system in question.*2 If, on the other hand, a
crucial experiment can be designed for it, then the system will contain,
as a first approximation, some well corroborated theory, and at the
same time also something new—and something that can be tested.
Thus the system will not, of course, be ‘metaphysical’. In this case, the
system in question may be looked upon as a new advance in the quasi-
inductive evolution of science. This explains why a link with the sci-
ence of the day is as a rule established only by those theories which are
proposed in an attempt to meet the current problem situation; that is,
the current difficulties, contradictions, and falsifications. In proposing a
solution to these difficulties, these theories may point the way to a
crucial experiment.

To obtain a picture or model of this quasi-inductive evolution of
science, the various ideas and hypotheses might be visualized as par-
ticles suspended in a fluid. Testable science is the precipitation of these
particles at the bottom of the vessel: they settle down in layers (of
universality). The thickness of the deposit grows with the number of
these layers, every new layer corresponding to a theory more universal
than those beneath it. As the result of this process ideas previously
floating in higher metaphysical regions may sometimes be reached by
the growth of science, and thus make contact with it, and settle.
Examples of such ideas are atomism; the idea of a single physical
‘principle’ or ultimate element (from which the others derive);
the theory of terrestrial motion (opposed by Bacon as fictitious); the

*2 It should be noted that I mean by a crucial experiment one that is designed to refute a
theory (if possible) and more especially one which is designed to bring about a decision
between two competing theories by refuting (at least) one of them—without, of course,
proving the other. (See also note x to section 22, and appendix *ix.)
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age-old corpuscular theory of light; the fluid-theory of electricity
(revived as the electron-gas hypothesis of metallic conduction). All
these metaphysical concepts and ideas may have helped, even in their
early forms, to bring order into man’s picture of the world, and in
some cases they may even have led to successful predictions. Yet an idea
of this kind acquires scientific status only when it is presented in falsifi-
able form; that is to say, only when it has become possible to decide
empirically between it and some rival theory.

My investigation has traced the various consequences of the
decisions and conventions—in particular of the criterion of
demarcation—adopted at the beginning of this book. Looking back,
we may now try to get a last comprehensive glimpse of the picture of
science and of scientific discovery which has emerged. (What I have
here in mind is not a picture of science as a biological phenomenon, as
an instrument of adaptation, or as a roundabout method of production:
I have in mind its epistemological aspects.)

Science is not a system of certain, or well-established, statements;
nor is it a system which steadily advances towards a state of finality.
Our science is not knowledge (epistēmē): it can never claim to have
attained truth, or even a substitute for it, such as probability.

Yet science has more than mere biological survival value. It is not
only a useful instrument. Although it can attain neither truth nor prob-
ability, the striving for knowledge and the search for truth are still the
strongest motives of scientific discovery.

We do not know: we can only guess. And our guesses are guided by the
unscientific, the metaphysical (though biologically explicable) faith in
laws, in regularities which we can uncover—discover. Like Bacon, we
might describe our own contemporary science—‘the method of rea-
soning which men now ordinarily apply to nature’—as consisting of
‘anticipations, rash and premature’ and of ‘prejudices’.1

But these marvellously imaginative and bold conjectures or ‘antici-
pations’ of ours are carefully and soberly controlled by systematic tests.
Once put forward, none of our ‘anticipations’ are dogmatically upheld.
Our method of research is not to defend them, in order to prove how

1 Bacon, Novum Organum I, 26.
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right we were. On the contrary, we try to overthrow them. Using all
the weapons of our logical, mathematical, and technical armoury, we
try to prove that our anticipations were false—in order to put forward,
in their stead, new unjustified and unjustifiable anticipations, new ‘rash
and premature prejudices’, as Bacon derisively called them.*3

It is possible to interpret the ways of science more prosaically. One
might say that progress can ‘. . . come about only in two ways: by
gathering new perceptual experiences, and by better organizing those
which are available already’.2 But this description of scientific pro-
gress, although not actually wrong, seems to miss the point. It is too
reminiscent of Bacon’s induction: too suggestive of his industrious
gathering of the ‘countless grapes, ripe and in season’,3 from which
he expected the wine of science to flow: of his myth of a scientific
method that starts from observation and experiment and then proceeds
to theories. (This legendary method, by the way, still inspires some of
the newer sciences which try to practice it because of the prevalent
belief that it is the method of experimental physics.)

*3 Bacon’s ‘anticipation’ (‘anticipatio’; Novum Organum I, 26) means almost the same as ‘hypothesis’
(in my usage). Bacon held that, to prepare the mind for the intuition of the true essence or nature of a thing,
it has to be meticulously cleansed of all anticipations, prejudices, and idols. For the
source of all error is the impurity of our own minds: Nature itself does not lie. The main
function of eliminative induction is (as with Aristotle) to assist the purification of the
mind. (See also my Open Society, chapter 24; note 59 to chapter 10; note 33 to chapter 11,
where Aristotle’s theory of induction is briefly described). Purging the mind of preju-
dices is conceived as a kind of ritual, prescribed for the scientist who wishes to prepare
his mind for the interpretation (the unbiassed reading) of the Book of Nature: just as the
mystic purifies his soul to prepare it for the vision of God. (Cf. the Introduction to my
Conjectures and Refutations (1963) 1965.)
2 P. Frank, Das Kausalgesetz und seine Grenzen, 1932. *The view that the progress of science is
due to the accumulation of perceptual experiences is still widely held (cf. my second
Preface, 1958). My denial of this view is closely connected with the rejection of the
doctrine that science or knowledge is bound to advance since our experiences are bound to
accumulate. As against this, I believe that the advance of science depends upon the free
competition of thought, and thus upon freedom, and that it must come to an end if
freedom is destroyed (though it may well continue for some time in some fields, espe-
cially in technology). This view is more fully expounded in my Poverty of Historicism
(section 32). I also argue there (in the Preface) that the growth of our knowledge is
unpredictable by scientific means, and that, as a consequence, the future course of our
history is also unpredictable.
3 Bacon, Novum Organum I, 123.
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The advance of science is not due to the fact that more and more
perceptual experiences accumulate in the course of time. Nor is it due
to the fact that we are making ever better use of our senses. Out of
uninterpreted sense-experiences science cannot be distilled, no matter
how industriously we gather and sort them. Bold ideas, unjustified
anticipations, and speculative thought, are our only means for inter-
preting nature: our only organon, our only instrument, for grasping
her. And we must hazard them to win our prize. Those among us who
are unwilling to expose their ideas to the hazard of refutation do not
take part in the scientific game.

Even the careful and sober testing of our ideas by experience is in its
turn inspired by ideas: experiment is planned action in which every
step is guided by theory. We do not stumble upon our experiences, nor
do we let them flow over us like a stream. Rather, we have to be active:
we have to ‘make’ our experiences. It is we who always formulate the
questions to be put to nature; it is we who try again and again to put
these question so as to elicit a clear-cut ‘yes’ or ‘no’ (for nature does
not give an answer unless pressed for it). And in the end, it is again we
who give the answer; it is we ourselves who, after severe scrutiny,
decide upon the answer to the question which we put to nature—after
protracted and earnest attempts to elicit from her an unequivocal ‘no’.
‘Once and for all’, says Weyl,4 with whom I fully agree, ‘I wish to
record my unbounded admiration for the work of the experimenter in
his struggle to wrest interpretable facts from an unyielding Nature who
knows so well how to meet our theories with a decisive No—or with an
inaudible Yes.’

The old scientific ideal of epistēmē—of absolutely certain, demon-
strable knowledge—has proved to be an idol. The demand for scientific
objectivity makes it inevitable that every scientific statement must
remain tentative for ever. It may indeed be corroborated, but every cor-
roboration is relative to other statements which, again, are tentative.
Only in our subjective experiences of conviction, in our subjective
faith, can we be ‘absolutely certain’.5

4 Weyl, Gruppentheorie und Quantenmechanik, 1931, p. 2. English translation by H. P. Robert-
son: The Theory of Groups and Quantum Mechanics, 1931, p. xx.
5 Cf. for example note 3 to section 30. This last remark is of course a psychological
remark rather than an epistemological one; cf. sections 7 and 8.
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With the idol of certainty (including that of degrees of imperfect
certainty or probability) there falls one of the defences of obscurantism
which bar the way of scientific advance. For the worship of this idol
hampers not only the boldness of our questions, but also the rigour
and the integrity of our tests. The wrong view of science betrays itself
in the craving to be right; for it is not his possession of knowledge, of
irrefutable truth, that makes the man of science, but his persistent and
recklessly critical quest for truth.

Has our attitude, then, to be one of resignation? Have we to say that
science can fulfil only its biological task; that it can, at best, merely
prove its mettle in practical applications which may corroborate it? Are
its intellectual problems insoluble? I do not think so. Science never
pursues the illusory aim of making its answers final, or even probable.
Its advance is, rather, towards an infinite yet attainable aim: that of ever
discovering new, deeper, and more general problems, and of subjecting
our ever tentative answers to ever renewed and ever more rigorous
tests.

This is the end of the text of the original book.
The Appendices i–vii which are here printed on

pp. 285–310 were also part of that original edition.

Addendum, 1972

In the preceding chapter of my book (which was the final chapter) I
tried to make clear that by the degree of corroboration of a theory I mean a
brief report that summarizes the way in which the theory has stood up
to tests, and how severe these tests were.

I have never deviated from this view; see for example the beginnings
of the new Appendices *vii, p. 378; *ix, p. 406; and especially the last
section (*14) of *ix, pp. 441 f. Here I wish to add the following points:

(1) The logical and methodological problem of induction is not
insoluble, but my book offered a negative solution: (a) We can never
rationally justify a theory, that is to say, our belief in the truth of a theory, or
in its being probably true. This negative solution is compatible with the
following positive solution, contained in the rule of preferring theories
which are better corroborated than others: (b) We can sometimes rationally
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justify the preference for a theory in the light of its corroboration, that is, of
the present state of the critical discussion of the competing theories,
which are critically discussed and compared from the point of view of
assessing their nearness to the truth (verisimilitude). The current state
of this discussion may, in principle, be reported in the form of their
degrees of corroboration. The degree of corroboration is not, however,
a measure of verisimilitude (such a measure would have to be timeless)
but only a report of what we have been able to ascertain up to a certain
moment of time, about the comparative claims of the competing theor-
ies by judging the available reasons which have been proposed for and
against their verisimilitude.

(2) A metaphysical problem raised by the idea of verisimilitude is:
are there genuine regularities in nature? My reply is ‘yes’. One of the
arguments (non-scientific but perhaps ‘transcendental’; see pp. 384–5)
in favour of this reply is: if no regularities were apparent in nature then
neither observations nor language could exist: neither a descriptive nor
an argumentative language.

(3) The force of this reply depends on some kind of commonsense
realism.

(4) The pragmatic problem of induction solves itself: the practical
preference for the theory which in the light of the rational discussion
appears to be nearer to the truth is risky but rational.

(5) The psychological problem (why do we believe that the theory so
chosen will continue to be worthy of our trust?) is, I suggest, trivial: a
belief or trust is always irrational, but it may be important for action.

(6) Not all possible ‘problems of induction’ are solved in this way.
(See also my forthcoming book: Objective Knowledge: An Evolutionary
Approach.)
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APPENDIX i

Definition of the Dimension of a
Theory (cf. sections 38 and 39)

The definition which follows here should be regarded as only pro-
visional.*1 It is an attempt to define the dimension of a theory so as to
make it agree with the dimension of the set of curves which results if
the field of application of the theory is represented by a graph paper. A
difficulty arises from the fact that we should not assume that either a
metric or even a topology is defined for the field, to begin with; in
particular, we should not assume that any neighbourhood relations are
defined. And I admit that this difficulty is circumvented rather than
overcome by the definition proposed. The possibility of circumventing

*1 A simplified and slightly more general definition is this. Let A and X be two sets of
statements. (Intuitively, A is a set of universal laws, X a set—usually infinite—of singular
test statements.) Then we say that X is a (homogeneous) field of application with respect
to A (in symbols: X = FA) if and only if for every statement a in A, there exists a natural
number d(a) = n which satisfies the following two conditions: (i) any conjunction cn of n
different statements of X is compatible with a; (ii) for any such conjunction cn there exist
two statements x and y in X such that x.cn is incompatible with a and y.cn is derivable from
a.cn, but neither from a nor from cn.

d(a) is called the dimension of a, or the degree of composition of a, with respect to
X = FA; and 1/d(a) or, say, 1/(d(a) + 1), may be taken as a measure of the simplicity of a.

The problem is further developed in appendix *viii.



it is connected with the fact that a theory always prohibits some ‘homo-
typic’ events, as we have called them (i.e. a class of occurrences which
differ only in their spatio-temporal co-ordinates; cf. sections 23 and
31). For this reason, spatio-temporal co-ordinates will, in general,
appear in the schema which generates the field of application, and
consequently the field of the relatively atomic statements will, in
general, show a topological and even a metrical order.

The proposed definition says: A theory t is called ‘d-dimensional
with respect to the field of application F’ if and only if the following
relation holds between t and F: there is a number d such that (a) the
theory does not clash with any d-tuple of the field and (b) any given
d-tuple in conjunction with the theory divides all the remaining
relatively atomic statements uniquely into two infinite sub-classes A
and B, such that the following conditions are satisfied: (α) every
statement of the class A forms, when conjoined with the given d-
tuple, a ‘falsifying d + 1-tuple’ i.e. a potential falsifier of the theory;
(β) the class B on the other hand is the sum of one or more, but
always a finite number, of infinite sub-classes [Bi] such that the con-
junction of any number of statements belonging to any one of these
subclasses [Bi] is compatible with the conjunction of the given
d-tuple and the theory.

This definition is intended to exclude the possibility of a theory’s
having two fields of application such that the relatively atomic state-
ments of one field result from the conjunction of the relatively
atomic statements of the other (this must be prevented if the field of
application is to be identifiable with that of its graphic representa-
tion; cf. section 39). I may add that by means of this definition the
problem of atomic statements (cf. note 2 to section 38) is solved in a
manner which might be described as ‘deductivist’, since the theory
itself determines which singular statements are relatively atomic (with
respect to the theory). For it is the theory itself through which the
field of application is defined—and with it the statements which
because of their logical form have equal status with respect to the
theory. Thus the problem of the atomic statements is not solved by
the discovery of statements of some elementary form out of which
the other, more composite, statements are built up inductively, or
composed by the method of truth-functions. On the contrary, the

appendices284



relatively atomic statements—and along with them the singular
statements—appear as a sort of precipitation, as it were, or as a
(relatively) solid deposit, laid down by the universal statements of
the theory.
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APPENDIX ii

The General Calculus of Frequency
in Finite Classes (cf. sections 52

and 53)*1

The General Multiplication Theorem: We denote the finite reference class by
‘α’, and the two property classes by ‘β’ and ‘γ’. Our first problem is to
determine the frequency of those elements which belong both to β
and to γ.
The solution is given by the formula

αF″(β.γ) = αF″(β).α.βF″(γ)(1)

or, since β and γ may be commuted:

αF″(β.γ) = α.γF″(β).αF″(γ)(1′)

The proof results immediately from the definition given in section
52. From (1) we obtain, by substitution in accordance with this
definition:

*1 This appendix has since been developed by me into an axiomatic treatment of
probability. See appendices *iii to *v.



N(α.β.γ)

N(α)
=

N(α.β)

N(α)
·

N(α.β.γ)

N(α.β)
(1,1)

which proves to be an identity after cancellation of ‘N(α.β)’. (Contrast
with this proof, and with the proof of (2s), by Reichenbach in
Mathematische Zeitschrift 34, p. 593.)

If we assume independence (cf. section 53), i.e.

α.βF″(γ) = αF″(γ)(1s)

we obtain from (1) the special multiplication theorem

αF″(β.γ) = αF″(β).αF″(γ)(1s)

With the help of the equivalence of (1) and (1′), the symmetry of the
relation of independence can be proved (cf. note 4 to section 53).

The addition theorems deal with the frequency of those elements which
belong either to β or to γ. If we denote the disjunctive combination
bination of these classes by the symbol ‘β + γ’, where the sign ‘ + ’, if
placed between class designations, signifies not arithmetical addition but the
non-exclusive ‘or’, then the general addition theorem is:

αF″(β + γ) = αF″(β) + αF″(γ) − αF″(β.γ)(2)

This statement follows from the definition in section 52 if we use
the universally valid formula of the calculus of classes

α.(β + γ) = (α.β) + (α.γ),(2,2)

and the formula (which is also universally valid)

N(β + γ) = N(β) + N(γ) − N(β.γ)(2,1)

Under the assumption that, within α, β and γ have no member in
common—a condition which can be symbolized by the formula

N(α.β.γ) = 0(2s)

appendix ii 287



—we obtain from (2) the special addition theorem

αF″(β + γ) = αF″(β) + αF″(γ).(2s)

The special addition theorem holds for all properties which are
primary properties within a class α, since primary properties are mutually
exclusive. The sum of the relative frequencies of these primary
properties is of course always equal to 1.

The division theorems state the frequency of a property γ within a class
selected from α with respect to the property β. The general formula is
obtained immediately by inversion of (1).

α.βF″(γ) = αF″(β.γ)/αF″(β)(3)

If we transform the general division theorem (3) with the help of the
special multiplication theorem we obtain

α.βF″(γ) = αF″(γ)(3s)

In this formula we recognize again the condition (1s); thus we see
that independence may be described as a special case of selection.

The various theorems which may be connected with the name
of Bayes are all special cases of the division theorem. Under the
assumption that (α.γ) is a sub-class of β, or in symbols

α.γ ⊂ β(3bs)

we obtain from (3) the first (special) form of Bayes’s rule

α.βF″(γ) = αF″(γ)/αF″(β).(3bs)

We can avoid the assumption (3bs) by introducing, in place of ‘β’,
the sum of the classes β1, β2, . . . βn. We shall, in analogy to our use of
the sign ‘ + ’ between class designations, use the sign ‘�’ in front of class
designations; we can then write a second (universally valid) form of Bayes’s
theorem as follows:

α.�βi
F″(βi) = αF″(βi)/αF″(�βi).(3b)
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To the numerator of this formula we can apply the special addition
theorem (2s) if we assume that the βi have no members in common in
α. This assumption can be written:

N(α.βi.βj) = 0. (i≠ j)(3/2s)

Under this assumption we obtain the third (special) form of Bayes’s
theorem, which is always applicable to primary properties βi:

α.�βi
F″(βi) = αF″(βi)/(� αF″(βi)).(3/2s)

The fourth and most important special form of Bayes’s theorem may
be obtained from the last two formulae together with its constituent
assumptions (3/2s) and 4bs):

α.γ ⊂ �βi(4bs)

which is always satisfied if γ ⊂ �βi is satisfied.
Substituting in (3/2s) ‘βiγ’ for ‘βi’, we apply to the left side of the

result the formula

α.�βi.γ = α.γ.(4bs.1) (4bs)

To the right side of the result we apply (1′), both to the denumerator
and denominator. Thus we obtain:

α,γF″(βi) = α.βiF″(γ).αF″(βi)/�(α.βi
F″ (γ).αF″(βi))(4s)

Thus if βi is an exclusive system of property classes, and any property
class which is (within α) part of βi, then (4s) gives the frequency of
every one of the properties βi within a selection with respect to γ.
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APPENDIX iii

Derivation of the First Form of
the Binomial Formula (for finite

sequences of overlapping segments,
cf. section 56)

The first binomial formula*1

α(n)
F″(m) = nCmpmqn − m(1)

where p = αF″(1), q = αF″(0), m � n, may be said to be proved under the
assumption that α is (at least) n − I-free (neglecting errors arising at the
last term; cf. section 56), if we can show that

α(n)
F″(σm) = pmqn − m(2)

where ‘σm’ denotes one particular n-tuple (although an arbitrarily
chosen one) which contains m ones. (The symbol is intended to indi-
cate that what is given is the complete arrangement of this n-tuple, i.e.
not only the number of ones but also their positions in the n-tuple.) For

*1 Note that ( n
m) is an alternative way of writing the binomial coefficient nCm, i.e. the

number of ways in which m things may be arranged in n places, provided m � n.



assume that (2) holds for all n, m and σ (i.e. the various arrangements
of the ones). Then there will be, according to a well-known combina-
torial theorem, nCm distinct ways of distributing m ones in n places; and
in view of the special addition theorem, we could then assert (1).

Now suppose (2) to be proved for any one n, i.e. for one particular n
and for every m and every σ which are compatible with this n. We now
show that given this assumption it must also hold for n + 1, i.e. we shall
prove

α(n + 1)
F″(σm + 0) = pmqn + 1 − m(3,0)

and

α(n + 1)
F″(σm + 1) = pm + 1q(n + 1) − (m + 1)(3,1)

where ‘σm + 0’ or ‘σm + 1’ respectively signify those sequences of the n + 1
length which result from σm by adding to its end a zero or a one.

Let it be assumed, for every length n of the n-tuples (or segments)
considered, that α is (at least) n − 1-free (from after-effect); thus for a
segment of the length n + 1, α has to be regarded as being at least n-
free. Let ‘σ́m’ denote the property of being a successor of an n-tuple σm.
Then we can assert

αF″(σ́m.0) = αF″(σ́m).αF″(0) = αF″(σ́m)·q(4,0)

αF″(σ́m.1) = αF″(σ́m).αF″(1) = αF″ (σ́m)·p(4,1)

We now consider that there must obviously be just as many σm, i.e.
successors of the sequence ‘σm’ in α, as there are sequences σm in α(n),
and hence that

αF″(σ́m) = α(n)
F″(σm)(5)

With this we can transform the right hand side of (4). For the same
reason we have

αF″(σ́m.0) = α(n + 1)
F″(σm + 0)(6,0)

appendix iii 291



αF″(σ́m.1) = α(n + 1)
F″(σm + 1).(6,1)

With these we can transform the left hand side of (4). That is to say, we
obtain by substituting (5) and (6) in (4)

α(n + 1)
F″(σm + 0) = α(n)

F″(σm)·q(7,0)

α(n + 1)
F″(σm + 1) = α(n)

F″(σm)·p(7,1)

Thus we see that, assuming that (2) holds for some one n (and all the
arrangements σm belonging to it), we can derive (3) by mathematical
induction. That (2) is in fact valid for n = 2 and for all σm (where m �
2) is seen by assuming first m = 1 and then m = 0. Thus we can assert
(3) and consequently (2) and (1).
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APPENDIX iv

A Method of Constructing Models of
Random Sequences (cf. sections 58,

64, and 66)

We assume (as in section 55) that for every given finite number n a
generating period can be constructed which is n-free (from after
effect) and which shows equal distribution. In every such period, every
combinatorially possible x-tuple (for x � n + 1) of ones and zeros will
appear at least once.*1

(a) We construct a model sequence which is ‘absolutely free’ (from

*1 There are various construction methods applicable to the task of constructing a gener-
ating period for an n-free sequence with equidistribution. A simple method is the follow-
ing. Putting x = n + 1, we first construct the table of all the 2x possible x-tuples of ones and
zeros (ordered by some lexicographic rule—say, according to magnitude). Then we
commence our period by writing down the last of these x-tuples, consisting of x ones,
checking it off our table. We then proceed according to the following rule: always add a
zero to the commencing segment if permissible; if not, add a one instead; and always check
off the table whatever is the last created x-tuple of the commencing period. (Here ‘if
permissible’ means ‘if the thereby created last x-tuple of the commencing period has not yet
occurred, and thus not yet been checked off the table’.) Proceed in this manner until all
the x-tuples of the list have been checked off: the result is a sequence of the length
2x + x − 1, consisting of (a) a generating period, of the length 2x = 2n + 1, of an n-free
alternative to which (b) the first n elements of the next period have been added. A
sequence constructed in this way may be called a ‘shortest’ n-free sequence, since it is easily



after effect) in the following way. We write down an n-free period for
an arbitrarily chosen n. This period will have a finite number of
terms—say n1. We now write down a new period which is at least
n1 − 1-free. Let the new period have the length n2. In this new period, at
least one sequence must occur which is identical with the previously
given period of length n1; and we rearrange the new period in such a
way that it begins with this sequence (this is always possible, in accord-
ance with the analysis of section 55). This we call the second period.
We now write down another new period which is at least n2 − 1-free
and seek in this third period that sequence which is identical with the
second period (after rearrangement), and then so rearrange the third
period that it begins with the second, and so on. In this way we obtain
a sequence whose length increases very quickly and whose com-
mencing period is the period which was written down first. This
period, in turn, becomes the commencing sequence of the second
period, and so on. By prescribing a particular commencing sequence
together with some further conditions, e.g. that the periods to be writ-
ten down must never be longer than necessary (so that they must be
exactly ni − 1-free, and not merely at least ni − 1-free), this method of
construction may be so improved as to become unambiguous and to
define a definite sequence, so that we can calculate for every term of
the sequence whether it is a one or a zero.*2 We thus have a
(definite) sequence, constructed according to a mathematical rule,
with frequencies whose limits are,

seen that there can be no shorter generating period of a periodic n-free sequence than
one of the length 2n + 1.

Proofs of the validity of the rule of construction here given were found by Dr. L.R.B.
Elton and myself. We intend to publish jointly a paper on the subject.

*2 To take a concrete example of this construction—the construction of a shortest random-
like sequence, as I now propose to call it—we may start with the period

01(0)

of the length n0 = 2. (We could say that this period generates a 0-free alternative). Next
we have to construct a period which is n0 − 1-free, that is to say, 1-free. The method of
note *1, above, yields ‘1100’ as generating period of a 1-free alternative; and this has
now to be so re-arranged as to begin with the sequence ‘01’ which I have here called (0).
The result of the arrangement is

0 1 1 0(1)
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αF′(1) = αF′(0) = 1
2.

By using the procedure employed in the proof of the third form of
the binomial formula (section 60) or of the theorem of Bernoulli
(section 61), it can be shown (with any degree of approximation) for
whatever frequency value we may choose that there exist sequences which are
‘absolutely free’—provided only that we make the assumption (which
we have just proved) that at least one sequence exists which is abso-
lutely free.

with n1 = 4. We next construct the n1 − 1-free (i.e. 3-free) period determined by the
method of note *1. It is

1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0

We re-arrange this so that it begins with our commencing sequence (1), which yields

0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0(2)

Since n2 = 16, we have next to construct, by the method of note *1, a 15-free period
(3) of the length 216 = 65,536. Once we have constructed this 15-free period (3), we
must be able to discover where, in this long period, our sequence (2) occurs. We then
re-arrange (3) so that it commences with (2), and proceed to construct (4), of the
length 265,536.

A sequence constructed in this way may be called a ‘shortest random-like sequence’ (i)
because every step of its construction consists in the construction, for some n, of a
shortest n-free period (cf. note *1 above), and (ii) because the sequence is so constructed
that, whatever the stage of its construction, it always begins with a shortest n-free period.
As a consequence, this method of construction ensures that every beginning piece of the
length

is a shortest n-free period for the largest possible n (i.e. for n = (log2m) − 1).
This property of ‘shortness’ is very important; for we can always obtain n-free, or

absolutely free, sequences with equidistribution which commence with a finite segment
of any chosen length m such that this finite segment has no random character but consists
of say, only zeros, or only ones, or of any other intuitively ‘regular’ arrangement; which
shows that for applications, the demand for n-freedom, or even absolute freedom, is not
enough, and must be replaced by something like a demand for n-freedom, becoming
manifest from the beginning; which is, precisely, what a ‘shortest’ random-like sequence
achieves, in the most radical fashion possible. Thus they alone can set an ideal standard
for randomness. For these ‘shortest’ sequences, convergence can be proved immediately, as
opposed to the examples under (b) and (c) below. See also appendix *vi.
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(b) An analogous method of construction can now be used to show
that sequences exist which possess an ‘absolutely free’ middle frequency
(cf. section 64) even though they have no frequency-limit. We need only
change procedure (a) in such a way that after some given number of
increases in length, we always add to the sequence a finite ‘block’ (or
‘iteration’)—of ones, for example. This block is made so long that some
given frequency p which is different from 1

2 is reached. After attaining
this frequency the whole sequence now written down (it may now have
the length mi) is regarded as the commencing sequence of a period
which is mi − 1-free (with equal distribution), and so on.

(c) Finally, it is possible to construct in an analogous way a model
of a sequence which has more than one ‘absolutely free’ middle fre-
quency. According to (a), there are sequences which do not have equal
distribution and are ‘absolutely free’. Thus all we have to do is to
combine two such sequences, (A) and (B) (with the frequencies p and
q), in the following way. We write down some commencing sequence
of (A), then search (B) until we find in it this sequence, and rearrange
the period of (B) preceding this point in such a way that it begins with
the sequence written down; we then use this whole rearranged period
of (B) as commencing sequence. Next we search (A) until we find this
new written-down sequence, rearrange (A), and so on. In this way we
obtain a sequence in which again and again terms occur up to which it
is ni-free for the relative frequency p of the sequence (A), but in which
also again and again terms occur up to which the sequence is ni-free for
the frequency q of (B). Since in this case the numbers ni increase with-
out limit, we obtain a mode of construction for a sequence which has
two distinct ‘middle frequencies’ both of which are ‘absolutely free’.
(For we did determine (A) and (B) in such a way that their frequency
limits are distinct.)

Note. The applicability of the special multiplication theorem to the
classical problem of throwing two dice X and Y at a time (and related
problems) is assured if, for example, we make the hypothetical estimate
that the ‘combination sequence’ (as we may call it)—i.e. the sequence
α that has the throws with X as its odd terms and the throws with Y as
its even terms—is random.
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APPENDIX v

Examination of an Objection. The
Two-Slit Experiment (cf.

section 76)*1

The imaginary experiment described below under (a) is intended to
refute my assertion that arbitrarily exact simultaneous (non-predictive)
measurements of the position and momentum of a particle are compat-
ible with the quantum theory.

(a) Let A be a radiating atom, and let light from it fall on a screen S
after passing through two slits, Sl1 and Sl2. According to Heisenberg we
can in this case measure exactly either the position of A or the
momentum of the radiation (but not both). If we measure the position
exactly (an operation that ‘blurs’ or ‘smears’ the momentum) then we
can assume that light is emitted from A in spherical waves. But if we
measure the momentum exactly, for example by measuring the recoils
due to the emission of photons (thereby ‘blurring’ or ‘smearing’ the

*1 See also appendix *xi and my Postscript, chapter *v, section *110. My present view is
that the two-slit experiment is to be treated differently, but that the interpretation pro-
posed in this appendix is still of some interest. The remarks under (e) seem to me still to
contain a valid criticism of the attempt to explain the dualism of particle and wave in
terms of ‘complementarity’—an attempt which, it seems, has been abandoned by some
physicists more recently.



position), then we are able to calculate the exact direction and the
momentum of the emitted photons. In this case we shall have to regard
the radiation as corpuscular (‘needle-radiation’). Thus to the two
measuring operations there correspond two different kinds of radi-
ation, so that we obtain two different experimental results. For if we
measure the position exactly we obtain an interference-pattern on the
screen: a point-like source of light—and one whose position can be
exactly measured is point-like—emits coherent light. If on the other
hand we measure the momentum exactly, we get no interference pat-
tern. (Flashes of light, or scintillations, without interference pattern,
appear on the screen after the photons have passed through the slits,
consonantly with the fact that the position is ‘blurred’ or ‘smeared’ and
that a non-point-like source of light does not emit coherent light.) If
we were to suppose that we could measure both the position and the
momentum exactly, then the atom would have to emit, on the one
hand, according to the wave theory, continuous spherical waves that
would produce interference patterns; and it would have to emit, on the
other hand, an incoherent corpuscular beam of photons. (If we were
able to calculate the path of each photon we should never get anything
like ‘interference’, in view of the fact that photons neither destroy one
another nor otherwise interact.) The assumption of exact measure-
ments of position and momentum taken simultaneously leads thus to
two mutually contradictory predictions. For on the one hand it leads to
the prediction that interference patterns will appear, and on the other
hand to the prediction that no interference patterns will appear.

(b) I shall now re-interpret this imaginary experiment statistically. I
shall deal first with the attempt to measure position exactly. I replace
the single radiating atom by a cluster of atoms in such a way that coher-
ent light is emitted by them, and propagated in the form of spherical
waves. This result is obtained by the use of a second screen pierced by a
very small aperture A so placed between the atomcluster and the first
screen that the aperture A is in exactly the place previously occupied by
the single radiating atom A. The atomcluster emits light which, after
undergoing selection according to a given position by passing through
the aperture A, spreads in the form of continuous spherical waves. Thus
we replace the single atom, whose position is exactly determined, by a
statistical case of pure positional selection.
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(c) In a similar way, the atom with exactly measured momentum
but blurred or smeared position will be replaced by a pure selection
according to a given momentum; or, in other words, by a mono-
chromatic beam of photons travelling along parallel lines from some
(non-point-like) source of light.

In each of the two cases we obtain the correct experimental result:
interference patterns in case (b), and no interference patterns in
case (c).

(d) How are we to interpret the third case, which is supposed to
lead to two mutually contradictory predictions? To discover this we
imagine that we have exactly observed the path of the atom A, which
means both its position and its momentum. We should then find that
the atom emits single photons, and recoils with each emission. Each
recoil shifts it to another position, and each time the shift is in a new
direction. Assuming that the atom radiates in this way for a period of
time (we do not raise the question whether it also absorbs energy
during this period), it will take up a number of different positions
during this period, ranging over a considerable volume of space. For
this reason we are not allowed to replace the atom by a point-like
cluster of atoms: we can only replace it by a cluster of atoms distributed
over a considerable volume of space. Furthermore, since the atom radi-
ates in all directions, we have to replace it by a cluster of atoms radiat-
ing in all directions. Thus we do not obtain a pure case; nor do we get
coherent radiation. And we do not get interference patterns.

Objections similar to the one here examined may be re-interpreted
statistically along the lines of this example.

(e) In connection with our analysis of this imaginary experiment I
should like to say that argument (a), contrary to what might be sup-
posed at first, would be in any case quite insufficient to elucidate the
so-called problem of complementarity (or the dualism of wave and
particle). It tries to do so by showing that the atom is able to emit only
either coherent waves or incoherent photons, and that therefore no contra-
diction arises, because the two experiments are mutually exclusive. But
it is simply not true that the two experiments are mutually exclusive,
for we can of course combine a not too exact measurement of position
with a not too exact measurement of momentum; and in this case the
atom neither emits completely coherent waves nor completely
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incoherent photons. My own statistical interpretation has, clearly, no
difficulty whatever in treating such intermediate cases, even though it
was never intended to solve the problem of the dualism of waves and
particles. I suppose that a really satisfactory solution of this problem
will hardly be possible within the framework of statistical quantum
physics (Heisenberg’s and Schrödinger’s particle theory as interpreted
by Born in 1925–1926), but I think it might perhaps be solved within
the framework of the quantum physics of wave-fields or the ‘second
quantization’ (Dirac’s emission and absorption theory and the wave-
field theory of matter by Dirac, Jordan, Pauli, Klein, Mie, Wigner,
1927–1928. Cf. note 2 to my introduction to section 73).
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APPENDIX vi

Concerning a Non-Predictive
Procedure of Measuring (cf.

section 77)*1

We suppose that a non-monochromatic beam of particles—for
instance a beam of light—moving along parallel paths in the
x-direction is subjected to selection of their momenta by the

*1 Heisenberg—who speaks of measuring or observing rather than of selecting—presents the
situation, in form of a description of an imaginary experiment, as follows: if we wish to
observe the position of the electron, we must use high frequency light which will strongly
interact with it, and thus disturb its momentum. If we wish to observe its momentum,
then we must use low frequency light which does leave its momentum (practically)
unchanged, but cannot help us to determine its position. It is important that in this
discussion the uncertainty of the momentum is due to disturbance, while the uncertainty of the position is not
due to anything of the sort. Rather it is the result of avoiding any strong disturbance of the
system. (See appendix *xi, point 9.)

My old argument (which was based upon this observation) proceeded now as follows.
Since a determination of the momentum leaves the momentum unchanged because it
interacts weakly with the system, it must also leave its position unchanged, although it
fails to disclose this position. But the undisclosed position may later be disclosed by a
second measurement; and since the first measurement left the state of the electron
(practically) unchanged, we can calculate the past of the electron not only between the two
measurements, but also before the first measurement.

I do not see how Heisenberg can avoid this conclusion without essentially modifying



interposition of a filter. (If the beam consists of electrons we shall have
to use instead of a filter an electric field perpendicular to the direction
of the beam in order to analyse its spectrum.) We assume with Heisen-
berg that this procedure leaves unaltered the momenta (or, more pre-
cisely, their components in the x-direction) and consequently also the
velocities (or their x-components) of the selected particles.

Behind the filter we put a Geiger-counter (or a moving strip of
photographic film) in order to measure the time of arrival of the
particles; and this allows us—since the velocities of the particles are
known—to calculate their x-co-ordinates for any instant preceding
their time of arrival. Now we may consider two possible assumptions.
If, on the one hand, it is assumed that the x-co-ordinates of the posi-
tions of the particles were not interfered with by the measuring of their
momenta, then the measurement of position and momentum can be
validly extended to the time before the momentum was selected (by
the filter). If, on the other hand, it is assumed that a selection according
to the momentum does interfere with the x-co-ordinates of the posi-
tions of the particles, then we can calculate their paths exactly only for
the time-interval between the two measurements.

Now the assumption that the position of the particles in the direc-
tion of their flight might be disturbed in some unpredictable way by a
selection according to a given momentum means the same as that the
position co-ordinate of a particle would be altered in some incalculable
way by this selection. But since the velocity of the particle has remained
unchanged, this assumption must be equivalent to the assumption that,
owing to that selection, the particle must have jumped discontinuously
(with super-luminal velocity) to a different point of its path.

his argument. (In other words, I still believe that my argument and my experiment of
section 77 can be used to point out an inconsistency in Heisenberg’s discussion of the
observation of an electron.) But I now believe that I was wrong in assuming that what
holds for Heisenberg’s imaginary ‘observations’ or ‘measurements’ would also hold for
my ‘selections’. As Einstein shows (in appendix *xii), it does not hold for a filter acting
upon a photon. Nor does it hold for the electric field perpendicular to the direction of a
beam of electrons, mentioned (like the filter) in the first paragraph of the present appen-
dix. For the width of the beam must be considerable if the electrons are to move parallel
to the x-axis, and as a consequence, their position before their entry into the field cannot
be calculated with precision after they have been deflected by the field. This invalidates
the argument of this appendix and the next, and of section 77.
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This assumption, however, is incompatible with the quantum theory as at present
accepted. For although the theory permits discontinuous jumps, it per-
mits them only in the case of particles within an atom (within the
range of discontinuous Eigen-values, but not in the case of free particles
within the range of continuous Eigen-values).

It is possible, presumably, to design a theory (in order to escape the
conclusions reached above, or to preserve the principle of indetermin-
acy) which alters the quantum theory in such a way that the assump-
tion of a disturbance of the position by selecting the momentum is
compatible with it; but even this theory—which I might call a ‘theory
of indeterminacy’—could derive only statistical consequences from
the principle of indeterminacy, and could therefore be corroborated
only statistically. Within this theory, the principle of indeterminacy
would only be a formally singular probability statement, although its
content would go beyond what I have called the ‘statistical scatter
relations’. For, as will be shown below with the help of an example,
these are compatible with the assumption that selecting the
momentum does not disturb the position. Thus this latter assumption does not
allow us to infer the existence of a ‘super-pure case’ such as is forbidden by the scatter
relations. This statement shows that the method of measuring I have
examined does not affect the statistically interpreted formulae of
Heisenberg. It may thus be said to occupy, within my statistical inter-
pretation, the same ‘logical place’, as it were, as (within his interpret-
ation) Heisenberg’s statement denying the ‘physical reality’ of exact
measurements; in fact one might regard my statement as the translation
of Heisenberg’s statement into the statistical language.

That the statement in question is correct may be seen from the
following considerations. We might try to obtain a ‘super-pure case’ by
reversing the order of the steps in the experiment; by first selecting,
say, a position in the x-direction (the flight direction) with the help of
a fast shutter, and only afterwards selecting the momentum with the
help of a filter. This might be thought feasible; for as a result of the
position-measurement, all sorts of momenta would appear, out of
which the filter—without disturbing the position—will select only
those which happened to fall within some small range. But these con-
siderations would be mistaken. For if a group of particles is selected by
an ‘instantaneous shutter’, in the way indicated, then Schrödinger’s
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wave-packets (obtained by superimposition of waves of various fre-
quencies) give us only probabilities, to be interpreted statistically, of the
occurrence of particles in this group which have the given momentum.
For any given finite range of momenta ∆px, this probability tends
towards to provided we make the length of the wavetrain infinitely
short, i.e. measure the position with arbitrary precision (by opening
the instantaneous shutter for an arbitrarily short time). In the same
way, the probability tends towards o for any finite period during which
the instantaneous shutter is open, i.e. for any value of the position
range ∆x, provided ∆px tends towards 0. The more exactly we select the
position and the momentum, the more improbable it will be that we
shall find any particles at all behind the filter. But this means that only
among a very great number of experiments will there be some in
which any particles are found behind the filter—and this without our
being able to predict in advance in which of the experiments particles
will be found there. Thus we cannot by any means prevent these par-
ticles from appearing only at intervals scattered at random; and con-
sequently we shall not be able to produce in this way an aggregate of
particles which is more homogeneous than a pure case.

There appears to be a comparatively simple crucial experiment for
deciding between the ‘theory of indeterminacy’ (described above) and
the quantum theory. According to the former theory, photons would
arrive on a screen behind a highly selective filter (or spectrograph)
even after the extinction of the source of light, for a period of time; and
further, this ‘after-glow’ produced by the filter would last the longer
the more highly selective the filter was.*2

*2 This is precisely what will happen, according to Einstein’s remarks printed here in
appendix *xii. See also C. F. von Weizsäcker’s criticism of my imaginary experiment in Die
Naturwissenschaften 22, 1934, p. 807.
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APPENDIX vii

Remarks Concerning an Imaginary
Experiment (cf. section 77)*1

We may start from the assumption that a1 and |b1| are measured, or
selected, with an arbitrary degree of precision. In view of the result
obtained in appendix vi, we may assume that the absolute momentum
|a2| of the particle arriving at X from the direction PX can be meas-
ured with an arbitrary degree of precision. Accordingly, |b2| may
also be determined as precisely as we choose (by using the principle of
conservation of energy). Moreover, the position of Sl and X, and the
instants of the arrival of the [A]-particles at X, can be measured with
arbitrary precision. Thus we need only investigate the situation with
respect to the indeterminacies ∆a2 and ∆b2, which arise in con-
sequences of indeterminacies of the corresponding directions, and the
vector ∆P connected with the indeterminacy of the position of P which
also arises in consequence of the indeterminacy of a direction, viz. the
direction PX.

If the beam PX passes through a slit at X, then a directional
indeterminacy φ will occur, in consequence of the diffraction at the

*1 For a criticism of some of the assumptions underlying section 77 and this appendix,
see note *1 to appendix vi.



slit. This angle φ can be made as small as we like by making |a2|
sufficiently large; for we have

φ ≅
h

r.|a2|
(1)

where r is the width of the slit. But it is impossible by this method to
decrease|∆a2|; it would decrease only by increasing r which would
lead to an increase of|∆P|; for we have

|∆a2|≅ φ|a2|(2)

which in view of (1) leads to

|∆a2|≅
h

r
(3)

showing that|∆a2|does not depend upon|a2|.
Owing to the fact that for any chosen r we can make φ as small as we

like by increasing |a2|, we can also make the component ∆a2 in the
PX-direction, which we denote by ‘(∆a2)x’, as small as we like; and we
can do this without interfering with the precision of the measurement
of the position of P, since this position too becomes more precise with
increasing |a2|, and decreasing r. Now we wish to show that a
corresponding argument holds for (∆b2)y, i.e. for the PY-component of
∆b2.

Since we may put ∆a1 = 0 (according to our assumption), we obtain
from the conservation of momenta

∆b2 = ∆b1 − ∆a2(4)

For any given a1, |b1| and |a2|, ∆b1 depends directly upon φ,
which means that we can have an arrangement such that

|∆b1| ≅ |∆a2| ≅
h

r
(5)
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holds, and therefore also

|∆b1| − |∆a2| ≅
h

r
(6)

Moreover, we obtain, in analogy to (2),

|∆b2| ≅ ψ.|b2|,(7)

where ‘ψ’ denotes the indeterminacy of the direction of b2. Accord-
ingly we obtain in view of (4) and (5)

ψ ≅
|∆b1 − ∆a2|

b2

≅
h

r.|b2|
;(8)

But this means: however small we make r, we always can make ψ and
with it (∆b2)y as small as we like by using sufficiently high values for
the momentum |b2|; and this, again, without interfering with the
precision of the measurement of the position P.

This shows that it is possible to make each of the two factors of the
product (∆P)y.(∆b2)y as small as we like, independently of the other.
But for the refutation of Heisenberg’s assertion as to the limits of
attainable precision, it would have been sufficient to show that one of
these two factors can be made as small as we like without making the
other grow beyond all bounds.

In addition it may be noted that by an appropriate choice of the PX-
direction it is possible to determine the distance PX in such a way that ∆P
and ∆b2 are parallel, and thus (for sufficiently small φ) normal to PY.1

In consequence, the precision of the momentum in this direction, and
moreover the precision of the position (in the same direction), both
become independent of the precision of the measurement of the position of P. (The

1 The fact that an examination of the degree of the exactness of measurement taken in a
direction perpendicular to ∆s can be relevant, was pointed out to me by Schiff during a
discussion of my imaginary experiment.

I wish to offer here my warmest thanks to Dr. K. Schiff for fruitfully collaborating
throughout the better part of a year.
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latter, if we use high values of |a2|, depends mainly upon the small-
ness of r.) They are both dependent only upon the precision of the measurements of
position and momentum of the particle arriving at X from the direction PX, and upon
the smallness of ψ. (This corresponds to the fact that the precision
(∆a2)x, of the particle arriving at X depends upon the smallness of φ.)

One sees that with respect to the precision of the measurements,
the situation of the apparently non-predictive measurement of the [A]-
particle arriving at X and of the prediction of the path of the
[B]-particle leaving P are completely symmetrical.
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NOTE TO NEW APPENDICES,
1959 EDITION

Although I found, to my surprise, that I could still agree with almost all
the philosophical views expressed in the book, and even with most of
those on probability—a field in which my ideas have changed more
than in any other—I felt that I had to append to it some of the new
material accumulated through the years. There was a considerable
amount of this, for I never stopped working on the problems raised in
the book; and it was therefore not possible to include in these new
appendices all my relevant results. I must mention especially one result
that is missing here. It is the propensity interpretation of probability (as I call it).
The exposition and discussion of this interpretation grew, quite against
my intentions, until it became the main part of a new book.

The title of this new book is Postscript: After Twenty Years. It is a sequel to
the present book, and it contains much that is closely related to it, quite
apart from probability theory. In this connection I may also refer to two
papers of mine which I might have included among these appendices
had I not been reluctant to add to them any further. They are ‘Three
Views Concerning Human Knowledge’, and ‘Philosophy of Science: A
Personal Report’.1

1 Published respectively in Contemporary British Philosophy 3, ed. by H. D. Lewis, 1956, pp.
355–388, and in British Philosophy in the Mid-Century, ed. by C. A. Mace, 1957, pp. 153–191.
Both are now in my Conjectures and Refutations, 1963, 1965 (chs. 1 and 3).



The first two of my new appendices contain three short notes, pub-
lished between 1933 and 1938, and closely connected with the book.
They do not read well, I am afraid: they are unduly compressed, and I
was unable to make them more readable without changes that would
have diminished their value as documents.

Appendices *ii to *v are somewhat technical—too much so for my
taste, at least. But these technicalities are necessary, it seems to me, in
order to solve the following philosophical problem. Is the degree of corrobor-
ation or acceptability of a theory a probability, as so many philosophers have
thought? Or in other words, Does it obey the rules of the probability calculus?

I had answered this question in my book and my answer was, ‘No’.
To this some philosophers replied, ‘But I mean by probability (or by
corroboration, or by confirmation) something different from what
you mean’. To justify my rejection of this evasive reply (which
threatens to reduce the theory of knowledge to mere verbalism), it was
necessary to go into technicalities: the rules (‘axioms’) of the prob-
ability calculus had to be formulated, and the part played by each of
them had to be found. For in order not to prejudge the issue whether
or not degree of corroboration is one of the possible interpretations of
the calculus of probability, this calculus had to be taken in its widest
sense, and only such rules admitted as were essential to it. I began these
investigations in 1935, and a brief report of some of my earlier investi-
gations is contained in appendix *ii. An outline of my more recent
results is given in appendices *iv and *v. In all these appendices it is
asserted that, apart from the classical, the logical, and the frequency
interpretations of probability, which were all dealt with in the book,
there are many different interpretations of the idea of probability, and of the mathematical
calculus of probability. They thus prepare the way for what I have later
called the propensity interpretation of probability.2

2 Cf. my paper, ‘The Propensity Interpretation of Probability and the Quantum Theory’ in
Observation and Interpretation, ed. by S. Körner, 1957, pp. 65–70, and 88 f. See also the two
papers mentioned in the foregoing footnote, especially pp. 388 and 188, respectively.

* Since the first English edition of this book, two further papers of mine on propensity
have been published:

‘The Propensity Interpretation of Probability’ in The British Journal for the Philosophy of
Science 10, 1959, pp. 25–42.

‘Quantum Mechanics without “The Observer” ’, in Quantum Theory and Reality, edited by
Mario Bunge, 1967, pp. 7–44. (See especially pp. 28–44.)
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Yet I had not only to examine the rules of the probability calculus: I
had also to formulate rules for the evaluation of tests—that is, for degree of
corroboration. This was done in a series of three papers, here reprinted
in appendix *ix. Appendices *vii and *viii form a kind of link between
my treatment of probability and of corroboration.

The remaining appendices will be, I hope, of interest to both philo-
sophers and scientists; especially those on objective disorder, and on
imaginary experiments. Appendix *xii consists of a letter from Albert
Einstein, here published for the first time, with the kind permission of
his literary executors.

new appendices 311



APPENDIX *i

Two Notes on Induction and
Demarcation, 1933–1934

The first of the two notes here republished is a Letter to the Editor of
Erkenntnis. The second is a contribution to a discussion at a philosophical
conference in Prague, 1934. It was published in Erkenntnis in 1935, as
part of the report on the conference.

1

The letter to the Editor was first published in 1933, in Erkenntnis, 3 (i.e.
Annalen der Philosophie, 11) no. 4–6, pp. 426 f. I have broken up some of the
paragraphs, for easier reading.

The letter was evoked by the fact that my views, at the time, were
being widely discussed by members of the Vienna Circle, even in print
(cf. note 3), although none of my own manuscripts (which had been
read by some members of the Circle) had been published, partly
because of their length: my book, Logik der Forschung, had to be cut to a
fraction of its original length, to be acceptable for publication. The
emphasis, in my letter, upon the difference between the problem of a
criterion of demarcation and the pseudo-problem of a criterion of meaning
(and upon the contrast between my views and those of Schlick and
Wittgenstein) was provoked by the fact that even in those days my



views were discussed, by the Circle, under the misappre-hension that I
was advocating the replacement of the verifiability criterion of mean-
ing by a falsifiability criterion of meaning, whereas in fact I was not
concerned with the problem of meaning, but with the problem of demar-
cation. As my letter shows, I tried to correct this misinterpretation of my
views as early as 1933. I have tried to do the same in my Logik der
Forschung, and I have been trying ever since. But it appears that my
positivist friends still cannot quite see the difference. These misunder-
standings led me, in my letter, to point out, and to dwell upon, the
contrast between my views and those of the Vienna Circle; and as a
consequence, some people were led to assume, wrongly, that I had
developed my views originally as a criticism of Wittgenstein. In fact,
I had formulated the problem of demarcation and the falsifiability
or testability criterion in the autumn of 1919, years before Wittgen-
stein’s views became a topic of discussion in Vienna. (Cf. my paper
‘Philosophy of Science: A Personal Report’, now in my Conjectures and
Refutations.) This explains why, as soon as I heard of the Circle’s new
verifiability criterion of meaning, I contrasted this with my falsi-
fiability criterion—a criterion of demarcation, designed to demarcate
systems of scientific statements from perfectly meaningful systems of
metaphysical statements. (As to meaningless nonsense, I do not
pretend that my criterion is applicable to it.)

Here is the letter of 1933:

A criterion of the empirical character of theoretical systems

(1) Preliminary Question. Hume’s Problem of Induction—the question of the
validity of natural laws—arises out of an apparent contradiction
between the principle of empiricism (the principle that only ‘experi-
ence’ can decide about the truth or falsity of a factual statement), and
Hume’s realization that inductive (or generalizing) arguments are
invalid.

Schlick,1 influenced by Wittgenstein, believes that this contradiction
could be resolved by adopting the assumption that natural laws ‘are
not genuine statements’ but, rather, ‘rules for the transformation of

1 Schlick, Die Naturwissenschaften 19, 1931, No. 7, p. 156.
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statements’;*1 that is to say, that they are a particular kind of ‘pseudo-
statement’.

This attempt to solve the problem (the solution seems to me to be
verbal anyway) shares with all the older attempts, such as apriorism,
conventionalism, etc. a certain unfounded assumption; it is the assump-
tion that all genuine statements must be, in principle, completely
decidable, i.e. verifiable and falsifiable; more precisely, that for all genu-
ine statements, an (ultimate) empirical verification, and an (ultimate)
empirical falsification must both be logically possible.

If this assumption is dropped, then it becomes possible to resolve in
a simple way the contradiction which constitutes the problem of
induction. We can, quite consistently, interpret natural laws or theories
as genuine statements which are partially decidable, i.e. which are, for
logical reasons, not verifiable but, in an asymmetrical way, falsifiable only: they
are statements which are tested by being submitted to systematic
attempts to falsify them.

The solution suggested here has the advantage of preparing the way
also for a solution of the second and more fundamental of two prob-
lems of the theory of knowledge (or of the theory of the empirical
method); I have in mind the following:

(2) Main Problem. This, the problem of demarcation (Kant’s problem of the
limits of scientific knowledge) may be defined as the problem of find-
ing a criterion by which we can distinguish between assertions (state-
ments, systems of statements) which belong to the empirical sciences,
and assertions which may be described as ‘metaphysical’.

According to a solution proposed by Wittgenstein,2 this demarca-
tion is to be achieved with the help of the idea of ‘meaning’ or ‘sense’:
every meaningful or senseful proposition must be a truth function of
‘atomic’ propositions, i.e., it must be logically completely reducible to
(or deducible from) singular observation statements. If some alleged

*1 In order to get Schlick’s intended meaning, it might be better to say ‘rules for the
formation or transformation of statements’. The German reads: ‘Anweisungen zur Bildung von
Aussagen’. Here ‘Anweisungen’ may be translated, clearly, by ‘rules’; but ‘Bildung’ had, at that
time, hardly yet any of the technical connotations which have since led to the clear
differentiation between the ‘formation’ and the ‘transformation’ of statements.
2 Wittgenstein, Tractatus Logico-Philosophicus (1922).
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statement turns out not to be so reducible, then it is ‘meaningless’
or ‘nonsensical’ or ‘metaphysical’ or a ‘pseudo-proposition’. Thus
metaphysics is meaningless nonsense.

It may appear as if the positivists, by drawing this line of demarca-
tion, had succeeded in annihilating metaphysics more completely than
the older anti-metaphysicists. However, it is not only metaphysics
which is annihilated by these methods, but natural science as well. For
the laws of nature are no more reducible to observation statements
than metaphysical utterances. (Remember the problem of induction!)
They would seem, if Wittgenstein’s criterion of meaning is applied
consistently, to be ‘meaningless pseudo-propositions’, and con-
sequently to be ‘metaphysical’. Thus this attempt to draw a line of
demarcation collapses.

The dogma of meaning or sense, and the pseudo-problems to which
it has given rise, can be eliminated if we adopt, as our criterion of
demarcation, the criterion of falsifiability, i.e. of an (at least) unilateral or
asymmetrical or one-sided decidability. According to this criterion,
statements, or systems of statements, convey information about the
empirical world only if they are capable of clashing with experience; or
more precisely, only if they can be systematically tested, that is to say, if
they can be subjected (in accordance with a ‘methodological
decision’) to tests which might result in their refutation.3

In this way, the recognition of unilaterally decidable statements
allows us to solve not only the problem of induction (note that there is
only one type of argument which proceeds in an inductive direction:
the deductive modus tollens), but also the more fundamental problem of
demarcation, a problem which has given rise to almost all the other
problems of epistemology. For our criterion of falsifiability dis-
tinguishes with sufficient precision the theoretical systems of the
empirical sciences from those of metaphysics (and from conventional-
ist and tautological systems), without asserting the meaninglessness of
metaphysics (which from a historical point of view can be seen to

3 This testing procedure is reported by Carnap in Erkenntnis 3, pp. 223 ff., ‘procedure B’.—
See also Dubislav, Die Definition, 3rd edition, pp. 100 ff.*Added 1957: This reference will be
found not to be one to Carnap’s but to some of my own work which Carnap reported
and accepted in the article referred to. Carnap made full acknowledgment of the fact that
I was the author of what he there described as ‘procedure B’ (‘Verfahren B’).
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be the source from which the theories of the empirical sciences
spring).

Varying and generalizing a well-known remark of Einstein’s,4 one
might therefore characterize the empirical sciences as follows: In so far as
a scientific statement speaks about reality, it must be falsifiable: and in so far as it is not
falsifiable, it does not speak about reality.

A logical analysis would show that the rôle of (one-sided) falsifiability
as a criterion for empirical science is formally analogous to that of non-
contradictoriness for science in general. A contradictory system fails to single
out, from the set of all possible statements, a proper sub-set; similarly, a
non-falsifiable system fails to single out, from the set of all possible
‘empirical’ statements (of all singular synthetic statements), a proper
sub-set.5

2

The second note consists of some remarks which I made in a discus-
sion of a paper read by Reichenbach at a philosophical conference in
Prague, in the summer of 1934 (when my book was in page proofs). A
report on the conference was later published in Erkenntnis, and my con-
tribution, here published in translation, was printed in Erkenntnis 5,
1935, p. 170 ff.

On the so-called ‘Logic of Induction’ and the
‘Probability of Hypotheses’

I do not think that it is possible to produce a satisfactory theory of what
is traditionally—and also by Reichenbach, for example—called ‘induc-
tion’. On the contrary, I believe that any such theory—whether it uses
classical logic or a probability logic—must for purely logical reasons

4 Einstein, Geometrie und Erfahrung, 1921, pp. 3f. *Added 1957: Einstein said: ‘In so far as the
statements of mathematics speak about reality, they are not certain, and in so far as they
are certain, they do not speak about reality.’
5 A fuller exposition will be published soon in book form (in: Schriften zur wissenschaftlichen
Weltauffassung, ed. by Frank and Schlick, and published by Springer in Vienna). *Added
1957: The reference was to my book, Logik der Forschung, then in process of being printed.
(It was published in 1934, but—in accordance with a continental custom—with the
imprint ‘1935’; and I myself have, therefore, often quoted it with this imprint.)
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either lead to an infinite regress, or operate with an aprioristic principle
of induction, a synthetic principle which cannot be empirically tested.

If we distinguish, with Reichenbach, between a ‘procedure of find-
ing’ and a ‘procedure of justifying’ a hypothesis, then we have to say
that the former—the procedure of finding a hypothesis—cannot be
rationally reconstructed. Yet the analysis of the procedure of justifying
hypotheses does not, in my opinion, lead us to anything which may be
said to belong to an inductive logic. For a theory of induction is
superfluous. It has no function in a logic of science.

Scientific theories can never be ‘justified’, or verified. But in spite of
this, a hypothesis A can under certain circumstances achieve more than
a hypothesis B—perhaps because B is contradicted by certain results of
observations, and therefore ‘falsified’ by them, whereas A is not falsi-
fied; or perhaps because a greater number of predictions can be derived
with the help of A than with the help of B. The best we can say of a
hypothesis is that up to now it has been able to show its worth, and that
it has been more successful than other hypotheses although, in prin-
ciple, it can never be justified, verified, or even shown to be probable.
This appraisal of the hypothesis relies solely upon deductive con-
sequences (predictions) which may be drawn from the hypothesis.
There is no need even to mention induction.

The mistake usually made in this field can be explained historically:
science was considered to be a system of knowledge—of knowledge as
certain as it could be made. ‘Induction’ was supposed to guarantee the
truth of this knowledge. Later it became clear that absolutely certain
truth was not attainable. Thus one tried to get in its stead at least some
kind of watered-down certainty or turth; that is to say, ‘probability’.

But speaking of ‘probability’ instead of ‘truth’ does not help us to
escape either from the infinite regress or from apriorism.1

From this point of view, one sees that it is useless and misleading to
employ the concept of probabiliy in connection with scientific
hypotheses.

The concept of probability is used in physics and in the theory of
games of chance in a definite way which may be satisfactorily defined

1 Cf. Popper, Logik der Forschung, for example pp. 188 and 195 f. *(of the original edition);
that is, sections 80 and 81.
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with the help of the concept of relative frequency (following von
Mises).2 Reichenbach’s attempts to extend this concept so as to include
the so-called ‘inductive probability’ or the ‘probability of hypotheses’
are doomed to failure, in my opinion, although I have no objection
whatever against the idea of a ‘truth-frequency’ within a sequence of
statements3 which he tries to invoke. For hypotheses cannot be satis-
factorily interpreted as sequences of statements;4 and even if one
accepts this interpretation, nothing is gained: one is only led to various
utterly unsatisfactory definitions of the probability of a hypothesis. For
example, one is led to a definition which attributes the probability 1/2
—instead of 0—to a hypothesis which has been falsified a thousand
times; for this attribution would have to be made if the hypothesis is
falsified by every second result of its tests. One might perhaps consider
the possibility of interpreting the hypothesis not as a sequence of
statements but rather as an element of a sequence of hypotheses,5 and of
attributing to it a certain probability value qua element of such a
sequence (though not on the basis of a ‘truth-frequency’, but rather on
the basis of a ‘falsity-frequency’ within that sequence). But this attempt
is also quite unsatisfactory. Simple considerations lead to the result that
it is impossible in this way to arrive at a probability concept which
would satisfy even the very modest demand that a falsifying observa-
tion should produce a marked decrease in the probability of the
hypothesis.

I think that we shall have to get accustomed to the idea that we must
not look upon science as a ‘body of knowledge’, but rather as a system
of hypotheses; that is to say, as a system of guesses or anticipations
which in principle cannot be justified, but with which we work as long
as they stand up to tests, and of which we are never justified in saying
that we know that they are ‘true’ or ‘more or less certain’ or even
‘probable’.

2 Op. cit., pp. 94 ff. *(that is, sections 47 to 51).
3 This concept is due to Whitehead.
4 Reichenbach interprets ‘the assertions of the natural sciences’ as sequences of state-
ments in his Wahrscheinlichkeitslogik, p. 15. (Ber. d. Preuss. Akad., phys.-math. Klasse, 29, 1932,
p. 488.)
5 This would correspond to the view upheld by Grelling in our present discussion; cf.
Erkenntnis 5, pp. 168 f.
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APPENDIX *ii

A Note on Probability, 1938

The following note, ‘A Set of Independent Axioms for Probability’, was
first published in Mind, N.S., 47, 1938, p. 275 ff. It is brief, but,
unfortunately, it is badly written. It was my first publication in the
English language; moreover, the proofs never reached me. (I was then
in New Zealand.)

The introductory text of the note, which alone is here reprinted,
clearly states—and I believe for the first time—that the mathematical
theory of probability should be constructed as a ‘formal’ system; that is to
say, a system which should be susceptible of many different interpret-
ations, among them, for example, (1) the classical interpretation, (2)
the frequency interpretation, and (3) the logical interpretation (now
sometimes called the ‘semantic’ interpretation).

One of the reasons why I wanted to develop a formal theory which
would not depend upon any particular choice of an interpretation was
that I hoped later to show that what I had called in my book ‘degree of
corroboration’ (or of ‘confirmation’ or of ‘acceptability’) was not a
‘probability’: that its properties were incompatible with the formal
calculus of probability. (Cf. appendix *ix, and my Postscript, sections *27
to *32).

Another of my motives for writing this note was that I wanted to
show that what I had called in my book ‘logical probability’ was the



logical interpretation of an ‘absolute probability’; that is to say, of a
probability p(x, y), with tautological y. Since a tautology may be written
not-(x and not-x), or xx̄, in the symbols used in my note, we can define
the absolute probability of x (for which we may write ‘p(x)’ or ‘pa(x)’)
in terms of relative probability as follows:

p(x) = p(x, xx̄), or pa(x) = p(x, xx̄) = p(x, yȳ)

A similar definition is given in my note.
When I wrote this note I did not know Kolmogorov’s book Founda-

tions of Probability, although it had been first published in German in
1933. Kolmogorov had very similar aims; but his system is less ‘for-
mal’ than mine, and therefore susceptible to fewer interpretations. The
main point of difference is this. He interprets the arguments of the
probability functor as sets; accordingly, he assumes that they have
members (or ‘elements’). No corresponding assumption was made in
my system: in my theory, nothing whatever is assumed concerning these arguments
(which I call ‘elements’) except that their probabilities behave in the manner required by
the axioms. Kolmogorov’s system can be taken, however, as one of
the interpretations of mine. (See also my remarks on this topic in
appendix *iv.)

The actual axiom system at the end of my note is somewhat clumsy,
and very shortly after its publication I replaced it by a simpler and more
elegant one. Both systems, the old and the new, were formulated in
terms of product (or conjunction) and complement (negation), as were also
my later systems. At that time, I had not succeeded in deriving the
distributive law from simpler ones (such as A1 to A3 and B2 below),
and I therefore stated it as an axiom. But, written in terms of product
and complement, the distributive law is very clumsy. I have therefore
here omitted the end of the note, with the old axiom system; instead I
will restate here my simpler system (cf. Brit. Journal Phil. Sc., loc. cit.), based,
like the old system, on absolute probability. It is, of course, derivable
from the system based on relative probability given in appendix *iv. I
am stating the system here in an order corresponding to that of my old
note.

p(xy) � p(yx) (Commutation)A1

p((xy)z) � p(x(yz)) (Association)A2

new appendices320



p(xx) � p(x). (Tautology)A3

There are at least one x and one y such thatA4

p(x) ≠ p(y). (Existence)

p(x) � p(xy) (Monotony)B1

p(x) = p(xy) + p(xȳ). (Complement)B2

For every x there is a y such thatB3

p(y) � p(x), and p(xy) = p(x)p(y). *1(Independence)

Here follows my old note of 1938, with a few slight stylistic
corrections.

A set of independent axioms for probability

From the formal point of view of ‘axiomatics’, probability can be
described as a two-termed functor1 (i.e., a numerical function of two
arguments which themselves need not have numerical values), whose
arguments are variable or constant names (which can be interpreted, e.g.,
as names of predicates or as names of statements1 according to the
interpretation chosen). If we desire to accept for both of the arguments
the same rules of substitution and the same interpretation, then this
functor can be denoted by

‘p(x1, x2)’

which can be read as ‘the probability of x1 with regard to x2’.

*1 Without B3 the upper bound of p(x) is not fixed: p(xx̄) = k, where k may be arbitrarily
chosen. Then we get: x is independent of y if and only if p(xy) = p(x)p(y)/k; but this is
clumsy unless we choose k = 1. B3, which leads to k = 1, indicates this motive for
choosing k = 1. If in B3 we put ‘p(y) ≠ o’ instead of ‘p(y) � p(x)’, then A4 becomes
redundant.
1 For the terminology see Carnap, Logical Syntax of Language (1937); and Tarski, Erkenntnis 5,
175 (1935).
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It is desirable to construct a system of axioms, s1, in which ‘p(x1, x2)’
appears as (undefined) primitive functors and which is constructed in
such a way that it can be equally well interpreted by any of the pro-
posed interpretations. The three interpretations which have been most
widely discussed are: (1) the classical definition2 of probability as the
ratio of the favourable to the equally possible cases, (2) the frequency
theory3 which defines probability as the relative frequency of a certain
class of occurrences within a certain other class, and (3) the logical
theory4 which defines probability as the degree of a logical relation
between statements (which equals 1 if x1 is a logical consequence of x2,
and which equals 0 if the negation of x1 is a logical consequence of x2).

In constructing such a system s1, capable of being interpreted by any
of the interpretations mentioned (and by some others too), it is advis-
able to introduce, with the help of a special group of axioms (see
below, Group A), certain undefined functions of the arguments, e.g., the
conjunction (‘x1 and x2’, symbolized here by ‘x1x2’) and the negation
(‘non-x1’, symbolized by ‘x̄1’). Thus we can express symbolically an
idea like ‘x1 and not x1’ with the help of ‘x1x̄1’, and its negation by ‘x1x1’.
(If (3), i.e., the logical interpretation, is adopted, ‘x1x̄1’ is to be inter-
preted as the name of the statement which is the conjunction of the
statement named ‘x1’ and its negation.)

Supposing the rules of substitution are suitably formulated it can be
proved for any x1, x2, and x3:

p(x1, x2x̄2) = p(x1, x3x̄3).

Thus the value of p(x1, x2x̄2) depends on the one real variable x1 only.
This justifies5 the following explicit definition of a new one-termed
functor ‘pa(x1)’, which I may call ‘absolute probability’:

pa(x1) = p(x1, x2x̄2)Df1

2 See e.g., Levy-Roth, Elements of Probability, p. 17 (1936).
3 See Popper, Logik der Forschung, 94–153 (1935).
4 See Keynes, A Treatise on Probability (1921); a more satisfactory system has been given
recently by Mazurkiewicz, C.R. Soc. d. Sc. et de L., Varsovie, 25, Cl. III (1932); see Tarski, l.c.
5 See Carnap, l.c., 24. *It would have been simpler to write Df1 (without ‘justification’) as
follows: pa(x1) = p(x1, x1x̄1).
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(An example of an interpretation of ‘pa(x1)’ in the sense of (3), i.e. of
the logical interpretation, is the concept ‘logical probability’ as used by
me in a previous publication.1)

Now it is possible to proceed with the whole construction from the
other end: instead of introducing ‘p(x1, x2)’ as primitive concept
(primitive functor) of an axiom system s1 and defining ‘pa(x1)’
explicitly, we can construct another axiom system s2 in which ‘pa(x1)’
appears as (undefined) primitive variable, and we can then proceed to
define ‘pa(x1,x2)’ explicitly, with the help of ‘pa(x1)’; as follows.

p(x1, x2) =
pa(x1x2)

pa(x2)
Df2

The formulae adopted in s1 as axioms (and Df1) now become theorems
within s2, i.e. they can be deduced with the help of the new system of
axioms s2.

It can be shown that the two methods described—the choice of s1

and Df1, or s2 and Df2 respectively—are not equally convenient from
the viewpoint of formal axiomatics. The second method is superior to
the first in certain respects, the most important of which is that it is
possible to formulate in s2 an axiom of uniqueness which is much
stronger than the corresponding axiom of s1 (if the generality of s1 is
not restricted). This is due to the fact that if pa(x2) = 0, the value of
p(x1, x2) becomes indeterminate.*2

A system of independent axioms, s2, as described above, is here
subjoined. (It is easy to construct a system s1 with the help of it.)
Combined with definition Df2 it is sufficient for the deduction of the
mathematical theory of probability. The axioms can be divided into
two groups. Group A is formed by the axioms for the junctional

6 See Popper, l.c., 71, 151.
*2 The absolute system (s2) has an advantage over the relative system (s1) only as long as
the relative probability p(x, y) is considered as indeterminate if pa(y) = 0. I have since
developed a system (see appendix *iv) in which relative probabilitiés are determinate
even in case pa(y) = 0. This is why I now consider the relative system superior to the
absolute system. (I may also say that I now consider the term ‘axiom of uniqueness’ as
badly chosen. What I intended to allude to was, I suppose, something like postulate 2 or
axiom A2 of the system of appendix *iv.)
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operations—conjunction and negation—of the argument, and is prac-
tically an adaptation of the system of postulates for the so-called ‘Alge-
bra of Logic’.7 Group B gives the axioms peculiar to the measurement
of probability. The axioms are:

[Here followed—with several misprints—the complicated axiom
system which I have since replaced by the simpler one given above.]
Christchurch, N.Z., November 20th, 1937.

7 See Huntington, Trans. Amer. Mathem. Soc., 5, 292 (1904), and Whitehead-Russell, Principia
Mathematica, I, where the five propositions 22.51, 22.52, 22.68, 24.26, 24.1 correspond
to the five axioms of Group A, as given here.
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APPENDIX *iii

On the Heuristic Use of the Classical
Definition of Probability, Especially

for Deriving the General
Multiplication Theorem

The classical definition of probability as the number of favourable cases
divided by the number of equally possible cases has considerable heur-
istic value. Its main drawback is that it is applicable to homogeneous or
symmetrical dice, say, but not to biased dice; or in other words, that it
does not make room for unequal weights of the possible cases. But in some
special cases there are ways and means of getting over this difficulty;
and it is in these cases that the old definition has its heuristic value:
every satisfactory definition will have to agree with the old definition
where the difficulty of assigning weights can be overcome, and there-
fore, a fortiori, in those cases in which the old definition turns out to be
applicable.

(1) The classical definition will be applicable in all cases in
which we conjecture that we are faced with equal weights, or equal
possibilities, and therefore with equal probabilities.

(2) It will be applicable in all cases in which we can transform
our problem so as to obtain equal weights or possibilities or
probabilities.



(3) It will be applicable, with slight modifications, whenever we
can assign a weight function to the various possibilities.

(4) It will be applicable, or it will be of heuristic value, in most
cases where an over-simplified estimate that works with equal possi-
bilities leads to a solution approaching to the probabilities zero or one.

(5) It will be of great heuristic value in cases in which weights can
be introduced in the form of probabilities. Take, for example, the fol-
lowing simple problem: we are to calculate the probability of throwing
with a die an even number when the throws of the number six are not
counted, but considered as ‘no throw’. The classical definition leads, of course,
to 2/5. We may now assume that the die is biased, and that the
(unequal) probabilities p(1), p(2), . . . , p(6) of its sides are given. We
can then still calculate the required probability as equal to

p(2) + p(4)

p(1) + p(2) + p(3) + p(4) + p(5)
=

p(2) + p(4)

1 − p(6)

That is to say, we can modify the classical definition so as to yield the
following simple rule:

Given the probabilities of all the (mutually exclusive) possible cases,
the required probability is the sum of the probabilities of all the
(mutually exclusive) favourable cases, divided by the sum of the
probabilities of all the (mutually exclusive) possible cases.

It is clear that we can also express this rule, for exclusive or
non-exclusive cases, as follows.

The required probability is always equal to the probability of the
disjunction of all the (exclusive or non-exclusive) favourable cases,
divided by the probability of the disjunction of all the (exclusive or
non-exclusive) possible cases.

(6) These rules can be used for a heuristic derivation of the defini-
tion of relative probability, and of the general multiplication theorem.

For let us symbolize, in the last example, ‘even’ by ‘a’ and ‘other than
a six’ by ‘b’. Then our problem of determining the probability of an
even throw if we disregard throws of a six is clearly the same as the
problem of determining p(a, b), that is to say, the probability of a, given
b, or the probability of finding an a among the b’s.

The calculation can then proceed as follows. Instead of writing
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‘p(2) + p(4)’ we can write, more generally, ‘p(ab)’, that is to say, the
probability of an even throw other than a six. And instead of writing
‘p(1) + p(2) + . . . + p(5)’ or, what amounts to the same, ‘1 − p(6)’, we
can write ‘p(b)’, that is to say, the probability of throwing a number
other than six. It is clear that these calculations are quite general, and
assuming p(b) ≠ 0, we are led to the formula,

p(a, b) = p(ab)/p(b)(1)

or to the formula (more general because it remains meaningful even if
p(b) = 0),

p(ab) = p(a, b) p(b).(2)

This is the general multiplication theorem for the absolute prob-
ability of a product ab.

By substituting ‘bc’ for ‘b’, we obtain from (2):1

p(abc) = p(a, bc) p(bc)

and therefore, by applying (2) to p(bc):

p(abc) = p(a, bc) p(b, c) p(c)

or, assuming p(c) ≠ 0,

p(abc) / p(c) = p(a, bc) p(b, c).

This, in view of (1), is the same as

p(ab, c) = p(a, bc) p(b, c).(3)

This is the general multiplication theorem for the relative probability
of a product ab.

1 I omit brackets round ‘bc’ because my interest is here heuristic rather than formal, and
because the problem of the law of association is dealt with at length in the next two
appendices.
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(7) The derivation here sketched can be easily formalized. The for-
malized proof will have to proceed from an axiom system rather than
from a definition. This is a consequence of the fact that our heuristic
use of the classical definition consisted in introducing weighted
possibilities—which is practically the same as probabilities—into what
was the classical definiens. The result of this modification cannot any
longer be regarded as a proper definition; rather it must establish rela-
tions between various probabilities, and it therefore amounts to the
construction of an axiom system. If we wish to formalize our
derivation—which makes implicit use of the laws of association and of
the addition of probabilities—then we must introduce rules for these
operations into our axiom system. An example is our axiom system for
absolute probabilities, as described in appendix *ii.

If we thus formalize our derivation of (3), we can get (3) at best
only with the condition ‘provided p(c) ≠ 0’, as will be clear from our
heuristic derivation.

But (3) may be meaningful even without this proviso, if we can
construct an axiom system in which p(a, b) is generally meaningful,
even if p(b) = 0. It is clear that we cannot, in a theory of this kind,
derive (3) in the way here sketched; but we may instead adopt (3) itself
as an axiom, and take the present derivation (see also formula (1) of
my old appendix ii) as a heuristic justification for introducing this
axiom. This has been done in the system described in the next
appendix (appendix *iv).
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APPENDIX *iv

The Formal Theory of Probability

In view of the fact that a probability statement such as ‘p(a, b) = r’ can
be interpreted in many ways, it appeared to me desirable to construct a
purely ‘formal’ or ‘abstract’ or ‘autonomous’ system, in the sense that
its ‘elements’ (represented by ‘a’, ‘b’, . . . ) can be interpreted in many
ways, so that we are not bound to any particular one of these interpret-
ations. I proposed first a formal axiom system of this kind in a Note in
Mind in 1938 (here re-printed in appendix *ii). Since then, I have
constructed many simplified systems.1

1 In Brit. Journ. Phil. of Science 6, 1955, pp. 53 and 57 f., and in the first footnote to the
Appendix to my paper ‘Philosophy of Science: A Personal Report’, in British Philosophy in
Mid-Century, ed. by C. A. Mace, 1956.

It should be noted that the systems here discussed are ‘formal’ or ‘abstract’ or
‘autonomous’ in the sense explained, but that for a complete ‘formalization’, we should
have to embed our system in some mathematical formalism. (Tarski’s ‘elementary
algebra’ would suffice.)

The question may be asked whether a decision procedure might exist for a system
consisting, say, of Tarski’s elementary algebra and our system of formulae A1, B, and C + .
The answer is, no. For formulae may be added to our system which express how many
elements a, b, . . . there are in S. Thus we have in our system a theorem:

There exists an element a in S such that p(a, ā) ≠ p(ā, a).

To this we may now add the formula:

For every element a in S, p(a, ā) ≠ p(ā, a).(0)



There are three main characteristics which distinguish a theory of
this kind from others. (i) It is formal; that is to say, it does not assume
any particular interpretation, although allowing for at least all known
interpretations. (ii) It is autonomous; that is to say, it adheres to the
principle that probability conclusions can be derived only from prob-
ability premises; in other words, to the principle that the calculus of
probabilities is a method of transforming probabilities into other prob-
abilities. (iii) It is symmetrical; that is to say, it is so constructed that
whenever there is a probability p(b, a)—i.e. a probability of b given a—
then there is always a probability p(a, b) also—even when the absolute
probability of b, p(b), equals zero; that is, even when p(b) = p(b, aā) = 0.

Apart from my own attempts in this field, a theory of this kind,
strange to say, does not seem to have existed hitherto. Some other
authors have intended to construct an ‘abstract’ or ‘formal’ theory—
for example Kolmogorov—but in their constructions they have always
assumed a more or less specific interpretation. For example, they assumed
that in an equation like

p(a, b) = r

the ‘elements’ a and b are statements, or systems of statements; or they
assumed that a and b are sets, or systems of sets; or perhaps properties;
or perhaps finite classes (ensembles) of things.

Kolmogorov writes2 ‘The theory of probability, as a mathematical
discipline, can and should be developed from axioms in exactly the
same way as geometry and algebra’; and he refers to ‘the introduction
of basic geometric concepts in the Foundations of Geometry by Hilbert’, and
to similar abstract systems.

And yet, he assumes that, in ‘p(a, b)’—I am using my own symbols,
not his—a and b are sets; thereby excluding, among others, the logical

But if this formula is added to our system, then it can be proved that there are exactly two
elements in S. The examples by which we prove, below, the consistency of our axioms
show however that there may be any number of elements in S. This shows that (0), and
all similar formulae determining the number of elements in S, cannot be derived; nor can
the negations of these formulae be derived. Thus our system is incomplete.
2 The quotations here are all from p. 1 of A. Kolmogorov, Foundation of the Theory of Probability,
1950. (First German edition 1933.)
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interpretation according to which a and b are statements (or ‘proposi-
tions’, if you like). He says, rightly, ‘what the members of this set
represent is of no importance’; but this remark is not sufficient to
establish the formal character of the theory at which he aims; for in
some interpretations, a and b have no members, nor anything that might
correspond to members.

All this has grave consequences in connection with the actual
construction of the axiom system itself.

Those who interpret the elements a and b as statements or proposi-
tions very naturally assume that the calculus of statement-composition
(the propositional calculus) holds for these elements. Similarly,
Kolmogorov assumes that the operations of addition, multiplication,
and complementation of sets hold for his elements, since they are
interpreted as sets.

More concretely, it is always presupposed (often only tacitly), that
such algebraic laws as the law of association

(ab)c = a(bc)(a)

or the law of commutation

ab = ba(b)

or the law of indempotence

a = aa(c)

hold for the elements of the system; that is to say, for the arguments of
the function p( . . . , . . . ).

Having made this assumption either tacitly or explicitly, a number of
axioms or postulates are laid down for relative probability,

p(a, b)

that is to say for the probability of a, given the information b; or else for
absolute probability,

p(a)
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that is to say, for the probability of a (given no information, or only
tautological information).

But this procedure is apt to veil the surprising and highly important
fact that some of the adopted axioms or postulates for relative prob-
ability, p(a, b), alone guarantee that all the laws of Boolean algebra hold for the
elements. For example, a form of the law of association is entailed by the
following two formulae (cf. the preceding appendix *iii),

p(ab) = p(a, b)p(b)(d)

p(ab, c) = p(a, bc)p(b, c)(e)

of which the first, (d), also gives rise to a kind of definition of relative
probability in terms of absolute probability,

If p(b) ≠ 0 then p(a, b) = p(ab)/p(b),(d′)

while the second, the corresponding formula for relative probabilities,
is well known as the ‘general law of multiplication’.

These two formulae, (d) and (e), entail, without any further
assumption (except substitutivity of equal probabilities) the following
form of the law of association:

p((ab)c) = p(a(bc)).(f)

But this interesting fact3 remains unnoticed if (f ) is introduced by
way of assuming the algebraic identity (a)—the law of association—
before even starting to develop the calculus of probability; for from

(ab)c = a(bc)(a)

we may obtain (f) merely by substitution into the identity

3 The derivation is as follows:

(1) p((ab)c) = p(ab, c)p(c) d
(2) p((ab)c) = p(a, bc)p(b, c)p(c) 1, e
(3) p(a(bc)) = p(a, bc)p(bc) d
(4) p(a(bc)) = p(a, bc)p(b, c)p(c) 3, d
(5) p((ab)c) = p(a(bc)) 2, 4
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p(x) = p(x).

Thus the derivability of (f) from (d) and (e) remains unnoticed. Or
in other words, it is not seen that the assumption (a) is completely
redundant if we operate with an axiom system which contains, or
implies, (d) and (e); and that by assuming (a), in addition to (d) and
(e), we prevent ourselves from finding out what kind of relations are implied
by our axioms or postulates. But to find this out is one of the main points of
the axiomatic method.

In consequence, it has also not been noticed that (d) and (e),
although implying (f), i.e. an equation in terms of absolute probability,
do not alone imply (g) and (h), which are the corresponding formulae
in terms of relative probability:

p((ab)c, d) = p(a(bc), d)(g)

p(a, (bc)d) = p(a, b(cd)).(h)

In order to derive these formulae (see appendix *v, (41) to (62)),
much more is needed than (d) and (e); a fact which is of considerable
interest from an axiomatic point of view.

I have given this example in order to show that Kolmogorov fails to
carry out his programme. The same holds for all other systems known
to me. In my own systems of postulates for probability, all theorems of
Boolean algebra can be deduced; and Boolean algebra, in its turn, can
of course be interpreted in many ways: as an algebra of sets, or of
predicates, or of statements (or propositions), etc.

Another point of considerable importance is the problem of
a ‘symmetrical’ system. As mentioned above, it is possible to define
relative probability in terms of absolute probability by (d′), as follows:

If p(b) ≠ 0 then p(a, b) = p(ab)/p(b).(d′)

Now the antecedent ‘If p(b) ≠ 0’ is unavoidable here since division
by 0 is not a defined operation. As a consequence, most formulae of relative
probability can be asserted, in the customary systems, only in con-
ditional form, analogous to (d′). For example, in most systems, (g) is
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invalid, and should be replaced by the much weaker conditional
formula (g − ):

If p(d) ≠ 0 then p((ab)c, d) = p(a(bc), d)(g − )

and an analogous condition should be prefixed to (h).
This point has been overlooked by some authors (for example,

Jeffreys, and von Wright; the latter uses conditions amounting to b ≠ 0,
but this does not ensure p(b) ≠ 0, especially since his system contains
an ‘axiom of continuity’). Their systems, accordingly, are inconsistent
as they stand, although they can sometimes be mended. Other authors
have seen the point. But as a consequence, their systems are (at least as
compared with my system) very weak: it can occur in their systems
that

p(a, b) = r

is a meaningful formula, while at the same time, and for the same
elements

p(b, a) = r

is not meaningful, i.e. not properly defined, and not even definable,
because p(a) = 0.

But a system of this kind is not only weak; it is also for many
interesting purposes inadequate: it cannot, for example, be properly
applied to statements whose absolute probability is zero, although this
application is very important: universal laws, for example, have, we
may here assume (cf. appendices *vii and *viii), zero probability. If we
take two universal theories, s and t, say, such that s is deducible from t,
then we should like to assert that

p(s, t) = 1

But if p(t) = 0, we are prevented from doing so, in the customary
systems of probability. For similar reasons, the expression

p(e, t)
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where e is evidence in favour of the theory t, may be undefined; but this
expression is very important. (It is Fisher’s ‘likelihood’ of t on the
given evidence e; see also appendix *ix.)

Thus there is a need for a probability calculus in which we may
operate with second arguments of zero absolute probability. It is, for
example, indispensable for any serious discussion of the theory of
corroboration or confirmation.

This is why I have tried for some years to construct a calculus of
relative probability in which, whenever

p(a, b) = r

is a well-formed formula i.e. true or false,

p(b, a) = r

is also a well formed formula, even if p(a) = 0. A system of this kind
may be labelled ‘symmetrical’. I published the first system of this kind
only in 1955.4 This symmetrical system turned out to be much simpler
than I expected. But at that time, I was still pre-occupied with the
peculiarities which every system of this kind must exhibit. I am allud-
ing to such facts as these: in every satisfactory symmetrical system,
rules such as the following are valid:

p(a, bb̄) = 1

If p(b̄, b) ≠ 0 then p(a, b) = 1

If p(a, āb) ≠ 0 then p(a, b) = 1

These formulae are either invalid in the customary systems, or else
(the second and third) vacuously satisfied, since they involve second
arguments with zero absolute probabilities. I therefore believed, at that
time, that some of them would have to appear in my axioms. But I
found later that my axiom system could be simplified; and in simplify-
ing it, I found that all these unusual formulae could be derived from
formulae having a completely ‘normal’ look. I published the resulting

4 In the British Journal for the Philosophy of Science, 6, 1955, pp. 56 f.
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simplified system first in my paper ‘Philosophy of Science: A Personal
Report’.5 It is the same system of six axioms which is more fully
presented in the present appendix.

The system is surprisingly simple and intuitive, and its power, which
far surpasses that of any of the customary systems, is merely due to the
fact that I omit from all the formulae except one (axiom C), any condi-
tion like ‘If p(b) ≠ 0 then . . . ’. (In the customary systems, these condi-
tions either are present, or they ought to be present, in order to avoid
inconsistencies.)

I intend to explain, in the present appendix, first the axiom system,
with proofs of consistency and independence, and afterwards a few
definitions based upon the system, among them that of a Borel field of
probabilities.

First the axiom system itself.
Four undefined concepts appear in our postulates: (i) S, the universe of

discourse, or the system of admissible elements; the elements of S are
denoted by lower case italics, ‘a’, ‘b’, ‘c’, . . . etc.; (ii) a binary numerical
function of these elements, denoted by ‘p(a, b)’, etc.; that is to say, the
probability a given b; (iii) a binary operation on the elements, denoted
by ‘ab’, and called the product (or meet or conjunction) of a and b; (iv)
the complement of the element a, denoted by ‘ā’.

To these four undefined concepts we may add a fifth—one that
can be treated, according to choice, as an undefined or as a defined
concept. It is the ‘absolute probability of a’, denoted by ‘p(a)’.

Each of the undefined concepts is introduced by a Postulate. For an
intuitive understanding of these postulates, it is advisable to keep in
mind that p(a, a) = 1 = p(b, b) for all elements a and b of S, as can of
course be formally proved with the help of the postulates.

Postulate 1. The number of elements in S is at most denumerably
infinite.

Postulate 2. If a and b are in S, then p(a, b) is a real number, and the
following axioms hold:

5 In British Philosophy in the Mid-Century, ed. by C.A. Mace, 1956, p. 191; now ch. 1 of
my Conjectures and Refutations. The six axioms given there are B1, C, B2, A3, A2, and A1
of the present appendix; they are there numbered B1, B2, B3, C1, D1, and E1,
respectively.
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There are elements c and d in S such that p(a, b) ≠ p(c, d)A1
(Existence)

If p(a, c) = p(b, c) for every c in S, then p(d, a) = p(d, b) for every dA2
in S. (Substitutivity)
p(a, a) = p(b, b) (Reflexivity)A3

Postulate 3. If a and b are in S, then ab is in S; and if, moreover, c is in S
(and therefore also bc) then the following axioms hold:

p(ab, c) � p(a, c) (Monotony)B1
p(ab, c) = p(a, bc) p(b, c) (Multiplication)B2

Postulate 4. If a is in S, then ā is in S; and if, moreover, b is in S, then the
following axiom holds:

p(a, b) + p(ā, b) = p(b, b), unless p(b, b) = p(c, b) for every cC
in S. (Complementation).

This concludes the ‘elementary’ system (‘elementary’ as opposed to
its extension to Borel fields). We may, as indicated, add here the
definition of absolute probability as a fifth postulate, called ‘Postulate AP’;
alternatively, we may regard this as an explicit definition rather than as
a postulate.

Postulate AP. If a and b are in S, and if p(b, c) � p(c, b) for every c in S,
then p(a) = p(a, b) (Definition of Absolute Probability6)

The system of postulates and axioms given here will be shown
below to be consistent and independent.7

6 AP is based on the theorem: If p(b, c) = 1, then p(a, bc) = p(a, c).
7 An alternative system would be the following: the postulates are the same as in the text,
and so are axioms A1 and A2, but the axioms A3 and B1 are replaced by

p(a, a) = 1A3′

p(a, b) � 0A4′

If p(ab, c) > p(a, c), then p(ab, c) > p(b, c)B1′

Axiom B2 remains as in the text, and axiom C is replaced by

If p(a, b) ≠ 1, then p(c, b) + p(c̄, b) = 1C′
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The following comments may be made upon this system of
postulates:

The six axioms—A1, A2, A3, B1, B2, and B3—are explicitly used
in the actual operations of deriving the theorems. The remaining
(existential) parts of the postulates can be taken for granted, as in the
paper in which I first published this system of axioms. (Cf. note 1,
above.)

At the price of introducing a fourth variable, ‘d’, in Postulates 3 and
4, these six axioms may be replaced by a system of only four axioms,
consisting of A1, A2, and the following two:

If p(a, bc)p(b, c) ≠ p(d, c) provided that p(a, c) � p(d, c), thenB+

p(ab, c) ≠ p(d, c)
If p(a, b) + p(ā, b) ≠ p(c, c) then p(c, c) = p(d, b)C+

In this system, B +  is equivalent to the conjunction of B1 and B2, and

This system looks very much like some of the customary systems (except for the omis-
sion of antecedents in the axioms other than C′, and the form of the antecedent of C′);
and it is remarkable that it yields for the elements a, b, . . . , as does the system in the text,
the theorems of Boolean algebra which ordinarily are separately assumed. Nevertheless it
is unnecessarily strong; not only because it introduces the numbers 1 and 0 (thus hiding
the fact that these need not be mentioned in the axioms) but also because A3, B1, and
C follow immediately from A3′, A4′, and C′, while for the opposite derivations, all
the axioms of the system given in the text except A2 are indispensable. (For these
derivations, see appendix *v.)

Within the system of axioms here described, and also within the system given in
the text, the conjunction of the axioms A4′ and B1′ is replaceable by B1, and vice
versa. My independence proofs (given below) are applicable to the system here
described.

The derivation of B1 from A4′ and B1′, in the presence of the axioms A3 or A3′, C or
C′, and B2, is as follows:

(1) 0 � p(a, b) � p(a, a) A4′; C or C′; A3 or A3′
(2) p(a, a) � p((aa)a, a) = p(aa, aa)p(a, a) = p(a, a)2 1, A3′; B2; A3 or A3′
(3) 0 � p(a, b) � p(a, a) � 1 1, 2
(4) p(ba, c) � p(a, c) B2, 3

Now we apply B1′

(5) p(ab, c) � p(a, c) 4. B1′

For the derivation of A4′ and B1′ from B1, see appendix *v.
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C + , similarly, to that of A3 and C.8 The resulting system of four axioms
is very brief, and shares many of the advantages of the longer
system: product and complement occur separately, so that all the
axioms except those lettered ‘B’ are free of the product, and the com-
plement occurs once only. But personally I prefer the longer system of
six axioms.9

The following comments may be made upon the various postulates
and axioms of the system.

Postulate 1 (which only belongs to the elementary theory) may be
dispensed with. This is shown by the fact that, in order to prove its
independence, we may construct a system S which is non-
denumerable. (All other postulates are satisfied if we interpret S as the
set of all finite sums of half-open sub-intervals [x, y) of the unit interval
[0, 1), where x and y are real numbers rather than rational numbers; we
may then interpret p(a) as the length of these intervals, and p(a, b) as
equal to p(ab)/p(b) provided p(b) ≠ 0, and as equal to 1 provided b = 0;
or else as lim p(ab)/p(b), provided this limit exists). The function of
Postulate 1 is merely to characterize the elementary systems: a postulate
of this kind is often assumed in an axiomatic treatment of Boolean
algebra or the logic of statements or propositions; and we wish to be

8 C +  follows immediately from A3 and C. The converse can be shown by deriving A3
from C +  as follows:

(1) p(c, b) + p(c̄, b) ≠ p(b, b) → p(b, b) = p(d, b) = p(c, b) = p(c̄, b) C +

(2) p(a, a) ≠ p(b, b) → p(a, a) = p(c, b) + p(c̄, b) ≠ p(b, b) = p(c, b) = p(c̄, b) C + , 1
(3) p(a, a) ≠ p(b, b) → p(a, a) = 2p(b, b) 2
(4) p(b, b) ≠ p(a, a) → p(b, b) = 2p(a, a) = 4p(b, b) = 0 = p(a, a) 3
(5) p(a, a) = p(b, b). 4

C +  may also be replaced, for example, by the slightly stronger formula

CS p(a, a) ≠ p(b, c) → p(a, c) + p(ā, c) = p(d, d)

B +  is merely an ‘organic’ way of writing the simpler but ‘inorganic’ formula

BS p(ab, c) = p(a, bc)p(b, c) � p(a, c)
9 Three of the reasons why I prefer the system of six axioms to the system of four are
these: (i) the axioms of the longer system are a little less unusual and thus a little more
intuitive, especially in the form mentioned in footnote 7, above; (ii) introducing an
additional variable is too high a price to pay for a reduction in the number of axioms;
(iii) The ‘organicity’ of B +  is achieved by a kind of mechanical trick and is therefore of
little value.
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able to show that, in the elementary theory, S is a (denumerable) Boolean
algebra. (For another example see appendix *vi, point 15.)

In Postulate 2, A1 is needed to establish that not all probabilities are equal
(say, equal to 0 or equal to 1). The function of A2 is to allow us to
prove ‘p(x, a) = p(x, b)’ for all elements a and b whose probabilities,
given any condition c, are equal. This can be done without A2, but only
under the assumption p(a) ≠ 0 ≠ p(b). Thus A2 is to enable us to extend
the probabilistic equivalence of a and b to the second argument even in
those cases in which a and b have zero absolute probability.

A2 may be replaced by the following stronger formula:

If p(a, a) = p(b, c) = p(c, b), then p(a, b) = p(a, c);A2 +

or by either of the formulae (the weaker of which is B3 − ):

If p(ab, c) = p(ba, c), then p(c, ab) = p(c, ba).B3
If p(ab, ac) = p(ab, c), then p(ba, ca) = p(ba, c).B3 −

Obviously, it can therefore also be replaced by the formula (which is
simpler but much stronger):

p(a, bc) = p(a, cb).B3 +

But since B3 +  is stronger than necessary—in fact, p(a,(bc)(cb)) =
p(a, (cb)(bc)), though weaker, would suffice—it is a little misleading: its
adoption would veil the fact that with the help of the other axioms
alone, the law of commutation can be proved for the first argument.
A2 +  is preferable to the other formulae here mentioned in so far as it
avoids (like the much weaker A2) using the product of a and b.

However, we can make use of the facts here stated in order to reduce
the number of our axioms to three, viz. A1, C + , and the following
axiom B which combines B3 +  with B + :

If p(ab, c) ≠ p(a, d)p(b, c) provided that p(a, c) � p(a, d)p(b, c) andB
p(a, d) = p(a, bc), then p(a, cb) ≠ p(a, d).

Apart from being stronger than one might wish it to be, this system
of only three axioms has all the advantages of the system of four
axioms A1, A2, B + , and C + .
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A3 is needed to prove that p(a, a) = 1, for every element a of S, as has
been indicated. But it may be omitted if we strengthen C: as may be
seen from axiom C + , A3 becomes redundant if we replace in C the two
occurrences of ‘p(b, b)’ by ‘p(d, d)’ (or only the second occurrence).

Postulate 3 demands the existence of a product (or meet, or intersec-
tion) of any elements a and b in S. It characterizes exhaustively all the
properties of the product (such as idempotence, commutation, and
association) by two simple axioms of which the first is intuitively
obvious; the second has been discussed in appendix *iii.

Axiom B1 is, in my opinion, the intuitively most obvious of all our
axioms. It is preferable to both A4′ and B1′ (cf. note 7 above) which
together may replace it. For A4′ may be mistaken for a convention, as
opposed to B1; and B1′ does not, as does B1, characterize an intuitive
metrical aspect of probability, but rather the product or conjunction ab.

As shown by formula B above, axiom B2 can be combined with B1
and A2 + ; there are other possible combinations, among them some in
which the product appears only once. They are very complicated, but
have the advantage that they may be given a form analogous to that of a
definition. One such definitional form may be obtained from the fol-
lowing axiom BD (which, like B, may replace A2, B1, and B2) by
inserting the symbol ‘(a)’ twice, once at the beginning and a
second time before ‘(Eb)’, and by replacing the first arrow (con-
ditional) by a double arrow (for the bi-conditional). I am using here
the abbreviations explained in the beginning of appendix *v.*1

p(xy, a) = p(z, a) → (Eb) (c) (d) (Ee) (Ef) (Eg) (p(x, a) � p(z, a) =BD
= p(x, b)p(y, a) & p(a, c) � p(b, c) � p(y, c) & (p(a, e) � p(c, e)
� p(y,e) → p(c,d) � p(b,d)) & (p(a, f) = p(y, f) → p(x,a) = p(x,b) =
= p(x, y)) & (p(x, g) � p(c, g) � p(y, g) → p(c, a) � p(z, a))).

Postulate 4 demands the existence of a complement, ā, for every a in
S, and it characterizes this complement by (a weakened conditional
form of) what appears to be an obvious formula, ‘p(a, c) + p(ā, c) = 1’,
considering that 1 = p(a, a). The condition which precedes this formula
is needed, because in case c is, say aā, (the ‘empty element’: aā = 0) we

*1 An improved and shorter version of BD will be found on p. 367.
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obtain p(a, c) = 1 = p(ā, c) so that, in this limiting case, the apparently
‘obvious’ formula breaks down.

This postulate, or the axiom C, has the character of a definition of
p(ā, b), in terms of p(a, b) and p(a, a), as can be easily seen if we write C
as follows. (Note that (ii) follows from (i).)

p(ā, b) = p(a, a) − p(a, b), provided there is a c such that p(c, b) ≠(i)
p(a, a)
p(ā, b) = p(a, a), provided there is no such c.(ii)

A formula CD analogous to an improved version of BD will be found
in an Addendum on p. 367.

The system consisting of A1, BD, and CD is, I think, slightly
preferable to A1, B, and C + , in spite of the complexity of BD.

Postulate AP, ultimately, can be replaced by the simple definition

p(a) = p(a, āa)(.)

which, however, uses complementation and the product, and accord-
ingly presupposes both Postulates 3 and 4. Formula (.) will be derived
below in appendix *v as formula 75.

Our axiom system can be proved to be consistent: we may construct
systems of elements S (with an infinite number of different elements:
for a finite S, the proof is trivial) and a function p(a, b) such that all the
axioms are demonstrably satisfied. Our system of axioms may also be
proved to be independent. Owing to the weakness of the axioms, these
proofs are quite easy.

A trivial first consistency proof for a finite S is obtained by assuming that
S = {1, 0}; that is to say, that S consists of the two elements, 1 and
0; product or meet and complement are taken to be equal to
arithmetical product and complement (with respect to 1). We define
p(0, 1) = 0, and in all other cases put p(a, b) = 1. Then all the axioms
are satisfied.

Two further finite interpretations of S will be given before proceed-
ing to a denumerably infinite interpretation. Both of these satisfy not
only our axiom system but also, for example, the following existential
assertion (E).
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There are elements a, b, and c in S such that(E)

p(a, b) = 1 and p(a, bc) = 0.

A similar assertion would be

There is an element a in S such that(E′)

p(a) = p(a, ā) = p(ā, a) = 0 ≠ p(a, a) = 1.

This assertion (E) is not satisfied by our first example, nor can it be
satisfied in any system of probability known to me (except, of course,
some of my own systems).

The first example satisfying our system and (E) consists of four elem-
ents. S = {0, 1, 2, 3}. Here ab is defined as the smaller of the two
numbers a and b, except that 1.2 = 2.1 = 0. We define: ā = 3 − a, and
p(a) = p(a, 3) = 0 whenever a = 0 or 1, and p(a) = p(a, 3) = 1 whenever
a = 2 or 3; p(a, 0) = 1; p(a, 1) = 0 unless a = 1 or a = 3, in which case
p(a, 1) = 1. In the remaining cases p(a, b) = p(ab)/p(b). Intuitively, the
element 1 may be identified with a universal law of zero absolute
probability, and 2 with its existential negation. In order to satisfy (E),
we take a = 2, b = 3, and c = 1.

The example just described may be represented by way of the
following two ‘matrices’. (This method, I believe, was first introduced
by Huntington in 1904.)

ab 0 1 2 3 ā p(a, b) 0 1 2 3

0 0 0 0 0 3 0 1 0 0 0

1 0 1 0 1 2 1 1 1 0 0

2 0 0 2 2 1 2 1 0 1 1

3 0 1 2 3 0 3 1 1 1 1
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The second example is a generalization of the first, showing that the idea
underlying the first example can be extended to a number of elements
exceeding any chosen number, provided these elements form a
Boolean Algebra, which means that the number of elements has to be
equal to 2n. Here n may be taken to be the number of the smallest
exclusive areas or classes into which some universe of discourse is
divided. We can freely correlate with each of these classes some posi-
tive fraction, 0 � r � 1, as its absolute probability, taking care that
their sum equals 1. With any of the Boolean sums, we correlate the
arithmetical sum of their probabilities, and with any Boolean comple-
ment, the arithmetical complement with respect to 1. We may assign to
one or several of the smallest (non-zero) exclusive areas or classes the
probability 0. If b is such an area or class, we put p(a, b) = 0 in case
ab = 0; otherwise p(a, b) = 1. We also put p(a, 0) = 1; and in all other
cases, we put p(a, b) = p(ab)/p(b).

In order to show that our system is consistent even under the
assumption that S is denumerably infinite, the following interpretation
may be chosen. (It is of interest because of its connection with the
frequency interpretation.) Let S be the class of rational fractions in
diadic representation, so that, if a is an element of S, we may write a as a
sequence, a = a1, a2 . . . , where ai is either 0 or 1. We interpret ab as the
sequence ab = a1b1, a2b2, . . . so that (ab)i = aibi and ā as the sequence
ā = 1− a1, 1− a2, . . . , so that āi = 1 − ai. In order to define p(a, b), we
introduce an auxiliary expression, An, defined as follows:

An = �
n

ai

so that we have

(AB)n = �
n

aibi;

moreover, we define an auxiliary function, q:

q(an, bn) = 1 whenever Bn = 0

q(an, bn) = (AB)n/Bn, whenever Bn ≠ 0.
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Now we can define,

p(a, b) = lim q(an, bn).

This limit exists for all elements a and b of S, and it can be easily shown
to satisfy all our axioms. (See also appendix *vi, points 8 to 14.)

So much about the consistency of our axiom systems.
In order to show the independence of A1 we may take p(a, b) = 0 for

every a and b in S. Then all the axioms except A1 are satisfied.
In order to show the independence of A2 we10 take S to consist of

three elements, S = {0, 1, 2}. We can easily show that the product ab
must be non-commutative; it may be defined as follows: 1.2 = 2; and
in all other cases, including 2.1, ab is equal to min(a, b), i.e. to the
smallest of its two components a and b. We also define: ā = 1 if and only
if a = 0; otherwise ā = 0; and we define p(0, 2) = 0; in all other cases,
p(a, b) = 1. It is now easy to show that for every b, p(1, b) = p(2, b) while
p(0, 1) = 1 and p(0, 2) = 0. Thus A2 is not satisfied. But all the other
axioms are.

We can illustrate this interpretation by writing the non-commutative
matrix as follows:

In order to show that A3 is independent, we take, as in our trivial

ab 0 1 2 ā

0 0 0 0 1 p(0, 2) = 0;
in all other cases 

1 0 1 2 0 p(a, b) = 1

2 0 1 2 0

10 In view of what has been said above about A2 it is clear that the problem of proving its
independence amounts to that of constructing an example (a matrix) which is non-
commutative, combined with a numerical rule about the p-values which ensures that the
law of commutation is violated only for the second argument. The independence proof
for A2 here described, designed to satisfy these conditions, was found at the same time
by Dr. J. Agassi and by myself. (The example satisfies Postulate AP only if in AP a bar is
placed over the letters ‘b’; but it satisfies (.) on p. 342). *Cf. Addendum on pp. 367 f.
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first consistency proof, S = {0, 1}, with logical products and comple-
ments equal to the arithmetical ones. We define p(1, 1) = 1, and in all
other cases p(a, b) = 0. Then p(1, 1) ≠ p(0, 0), so that A3 fails. The other
axioms are satisfied.

In order to show that B1 is independent, we take S = { − 1, 0, + 1};
we take ab to be the arithmetical product of a and b; ā = − a; and
p(a, b) = a.(1 − |b|). Then all axioms are satisfied except B1 which
fails for a = − 1, b ≠ + 1, and c = 0. The matrices may be written:

This example also proves the independence of A4′ (cf. note 7,
above). A second example, proving the independence of B1 and also of
B1′, is based upon the following non-commutative matrix:

B1 fails for a = 0, b = 1, and c = 2.
In order to show that B2 is independent, we take the same S as for

A3, and define p(0, 1) = 0; in all other cases, p(a, b) = 2. B2 fails
because 2 = p(1.1, 1) ≠ p(1, 1.1)p(1, 1) = 4, but all other axioms are
satisfied.

(Another example showing the independence of B2 can be obtained

ab −1 0 +1 ā p(a, b) −1 0 +1

−1 +1 0 −1 +1 −1 0 −1 0

0 0 0 0 0 0 0 0 0

+1 −1 0 +1 −1 +1 0 +1 0

ab 0 1 2 ā

0 0 1 0 2 p(0, 2) = 0;
in all other cases 

1 0 1 1 0 p(a, b) = 1

2 0 1 2 0
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if we consider that B2 is needed to prove ‘p(ba, c) � p(a, c)’, that is to
say, the dual of B1. This suggests that we may use the second example
for B1, changing only the value of 1.0 from 0 to 1, and that of 0.1 from
1 to 0. Everything else may be left unchanged. B2 fails for a = 1, b = 0,
and c = 2.)

Ultimately, for showing that C is independent, we take again the
same S, but assume that ā = a. If we now take p (0, 1) = 0 and in all
other cases p(a, b) = 1, then C fails, because p(0̄, 1) ≠ p(1, 1). The other
axioms are satisfied.

This concludes the proofs of the independence of the operational
axioms.

As to the non-operational parts of the postulates, a proof of the
independence of postulate 1 has been given above (when I commented
upon this postulate).

Postulate 2 requires (in its non-operational part) that whenever a
and b are in S, p(a, b) is a real number. In order to show the independ-
ence of this requirement—which we may briefly refer to as ‘postulate
2’—we first consider a non-numerical Boolean interpretation of S. To this end,
we interpret S as an at most denumerable and non-numerical Boolean
algebra (such as a set of statements, so that ‘a’, ‘b’, etc. are variable names
of statements). And we stipulate that ‘x̄’ is to denote, if x is a number, the
same as ‘ − x’; and if x is a Boolean element (say, a statement) then ‘x̄’ is
to denote the Boolean complement (negation) of x. Similarly, we stipu-
late that ‘xy’; ‘x + y’; ‘x = y’; ‘x ≠ y’; and ‘x � y’, have their usual arith-
metical meaning if x and y are numbers, and their well-known Boolean
meanings whenever x and y are Boolean elements. (If x and y are
statements, ‘x � y’ should be interpreted as ‘x entails y’.) In order to
prove the independence of postulate 2, we now merely add one more
stipulation: we interpret ‘p(a, b)’ as synonymous with ‘a + b̄’ in the
Boolean sense. Then postulate 2 breaks down while A1, A2, A3 and all
the other axioms and postulates turn into well-known theorems of
Boolean algebra.11

The proofs of the independence of the existential parts of postulates
3 and 4 are almost trivial. We first introduce an auxiliary system

11 A slight variant of this interpretation transforms all the axioms into tautologies of the
propositional calculus, satisfying all the postulates except postulate 2.
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S′ = {0, 1, 2, 3} and define product, complement, and absolute
probability by the matrix:

Relative probability is defined by

p(a, b) = 0 whenever p(a) ≠ 1 = p(b);
p(a, b) = 1 in all other cases.

This system S′ satisfies all our axioms and postulates. In order to
show the independence of the existential part of postulate 3, we now
take S to be confined to the elements 1 and 2 of S′, leaving everything
else unchanged. Obviously, postulate 3 fails, because the product of the
elements 1 and 2 is not in S; everything else remains valid. Similarly, we
can show the independence of postulate 4 by confining S to the elem-
ents 0 and 1 of S′. (We may also choose 2 and 3, or any combination
consisting of three of the four elements of S′ except the combination
consisting of 1, 2, and 3.)

The proof of the independence of postulate AP is even more trivial:
we only need to interpret S and p(a, b) in the sense of our first consist-
ency proof and take p(a) = constant (a constant such as 0, or 1/2, or 1, or
2) in order to obtain an interpretation in which postulate AP fails.

Thus we have shown that every single assertion made in our axiom
system is independent. (To my knowledge, no proofs of
independence for axiom systems of probability have been published
before. The reason, I suppose, is that the known systems—provided
they are otherwise satisfactory—are not independent.)

ab 0 1 2 3 ā p(a)

0 0 0 0 0 3 0

1 0 1 0 1 2 0

2 0 0 2 2 1 1

3 0 1 2 3 0 1
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The redundancy of the usual systems is due to the fact that they all
postulate, implicitly or explicitly, the validity of some or all of the rules
of Boolean algebra for the elements of S; but as we shall prove at the
end of appendix *v, these rules are all derivable from our system if we
define Boolean equivalence, ‘a = b’, by the formula

(*) a = b if, and only if, p(a, c) = p(b, c) for every c in S.

The question may be asked whether any axioms of our system
become redundant if we postulate that ab is a Boolean product and ā a
Boolean complement; that they both obey all the laws of Boolean alge-
bra; and that (*) is valid. The answer is: none of the axioms (except
B1′) becomes redundant. (Only if we were to postulate, in addition, that
any two elements for which Boolean equivalence can be proved may be
substituted for each other in the second argument of the p-function, then one
of our axioms would become redundant, i.e. our axiom of substitutiv-
ity, A2, which serves precisely the same purpose as this additional
postulate.) That our axioms remain non-redundant can be seen from
the fact that their independence (except that of A2, of course, and B1′)
can be proved with the help of examples that satisfy Boolean algebra. I
have given such examples for all except B1 and C1, for which simpler
examples have been given. An example of a Boolean algebra that shows
the independence of B1 (and A4′) and of C is this. (0 and 1 are the
Boolean zero and universal elements, and ā = 1-a; the example is,
essentially, the same as the last one, but with the probabilities −1 and 2
attached to the elements other than 0 or 1.)

ab −1 0 1 2 ā
B1 (and A4′ ):

−1 −1 0 −1 0 2 p(a) = a; p(a, 0) = 1;
in all other cases,

0 0 0 0 0 1 p(a, b) = p(ab)/p(b) = ab/b
C: p(a, b) = 0 if ab = 0 ≠ b;

1 −1 0 1 2 0
in all other cases,

2 0 0 2 2 −1 p(a, b) = 1.
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B1 is violated because 2 = p(1.2, 1) > p(1, 1) = 1
C is violated because p(2̄, 1) + p(2, 1) = 2, though p(0, 1) ≠ p(1, 1)
The fact that our system remains independent even if we postulate

Boolean algebra and (*) may be expressed by saying that our system is
‘autonomously independent’. If we replace our axiom B1 by A4′ and
B1′ (see note 7 above), then our system ceases, of course, to be
autonomously independent. Autonomous independence seems to me
an interesting (and desirable) property of axiom systems for the
calculus of probability.

In conclusion I wish to give a definition, in the ‘autonomous’ i.e.
probabilistic terms of our theory, of an ‘admissible system’ S, and of a
‘Borel field of probabilities’ S. The latter term is Kolmogorov’s; but I am
using it in a sense slightly wider than his. I will discuss the difference
between Kolmogorov’s treatment of the subject and mine in some
detail because it seems to me illuminating.

I first define, in probabilistic terms, what I mean by saying that a is a
super-element of b (and wider than, or equal to, b) or that b is a sub-
element of a (and logically stronger than, or equal to, a). The definition
is as follows. (See also the end of appendix *v.)

a is a super-element of b, or b is a sub-element of a—in symbols,
a � b—if, and only if, p(a, x) � p(b, x) for every x in S.

Next I define what I mean by the product-element a of an infinite
sequence, A = a1, a2, . . . , all of whose members an are elements of S.

Let some or perhaps all elements of S be ordered in an infinite sequence
A = a1, a2, . . . , such that any element of S is permitted to recur in the
sequence. For example, let S consist only of the two elements, 0 and 1;
then A = 0, 1, 0, 1, . . . , and B = 0, 0, 0, . . . , will both be infinite
sequences of elements of S, in the sense here intended. But the more
important case is of course that of an infinite sequence A such that
all, or almost all, of its members are different elements of S which,
accordingly, will contain infinitely many elements.

A case of special interest is a decreasing (or rather non-increasing)
infinite sequence, that is to say, a sequence A = a1, a2, . . . , such that
an � an + 1 for every consecutive pair of members of A.

We can now define the (Boolean, as opposed to set-theoretical)
product element a of the infinite sequence A = a1, a2, . . . , as the widest
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among those elements of S which are sub-elements of every element an

belonging to the sequence A; or in symbols:

a = πan if, and only if, a satisfies the following two conditions

p(an, x) � p(a, x) for all elements an of A, and for every element x(i)
of S.
p(a, x) � p(b, x) for all elements x of S and for every element b of S(ii)
that satisfies the condition p(an, y) � p(b, y) for all elements an and
for every element y of S.

In order to show the difference between our (Boolean) product
element a of A and the set-theoretical (inner) product or meet of A, we
will now confine our discussion to examples S, satisfying our postu-
lates 2 to 5, whose elements x, y, z, . . . are sets, such that xy is their
set-theoretic product.

Our main example S1 to which I shall refer as ‘the example of the
missing half-interval’ is the following.

S1 is a system of certain half-open sub-intervals of the universal
interval u = (0, 1]. S1 contains, precisely, (a) the decreasing sequence A
such that an = (0, 1

2 + 2 − n], and in addition (b) the set-theoretic prod-
ucts of any two of its elements and the set-theoretic complements of
any one of its elements.

Thus S1 does not contain the ‘half-interval’ h = (0, 1
2], nor any

non-empty sub-interval of h.
Since the missing half-interval h = (0, 1

2] is the set-theoretic product
of the sequence A, it is clear that S1 does not contain the set-theoretic
product of A. But S1 does contain the (Boolean) ‘product-element’ of A,
as here defined. For the empty interval trivially satisfies condition (i);
and since it is the widest interval satisfying (i), it also satisfies (ii).

It is clear, moreover, that if we add to S1, say any of the intervals
b1 = (0, 1

8], or b2 = (0, 3
16], etc., then the largest of these will be the

product element of A in the (Boolean) sense of our definition,
although none of them will be the set-theoretic product of A.

One might think, for a moment, that owing to the presence of an
empty element in every S, every S will contain, like S1, a product elem-
ent (in the sense of our definition) of any A in S; for if it does not
contain any wider element satisfying (i), the empty element will
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always fill the bill. That this is not so is shown by an example S2

containing, in addition to the elements of S1, the elements (plus the set-
theoretic products of any two elements and the set-theoretic comple-
ment of any one element) of the sequence B = b1, b2, where bn =
(0, (2n − 1)/2n + 2]. It will be easily seen that, although each bn satisfies
condition (i) for the product-element of A, none of them satisfies condi-
tion (ii); so that in fact, there is no widest element in S2 that satisfies the
condition (i) for the product-element of A.

Thus S2 contains neither the set-theoretic product of A, nor a
product-element in our (Boolean) sense. But S1, and all the systems
obtained by adding to S1 a finite number of new intervals (plus prod-
ucts and complements) will contain a product-element of A in our
sense but not in the set-theoretic sense, unless, indeed, we add to S1 the
missing half-interval h = (0, 12].

Remembering that the emptiness of an element a may be character-
ized in our system by p(ā, a) ≠ 0, we can now define an ‘admissible
system S’ and a ‘Borel field of probabilities S’, as follows.

(i) A system S that satisfies our postulates 2 to 4 is called an admissible
system if, and only if, S satisfies our set of postulates and in addition
the following defining condition.

Let bA = a1b, a2b, . . . be any decreasing sequence of elements of S.
(We say in this case that A = a1, a2, . . . is ‘decreasing relative to b’.) Then
if the product element ab of this sequence is in S,12 then

lim p(an, b) = p(a, b)

12 I might have added here ‘and if p(ab, ab) ≠ 0, so that ab is empty’: this would have
approximated my formulation still more closely to Kolmogorov’s. But this condition is
not necessary. I wish to point out here that I have received considerable encouragement
from reading A. Rényi’s most interesting paper ‘On a New Axiomatic Theory of Prob-
ability’, Acta Mathematica Acad. Scient. Hungaricae 6, 1955, pp. 286–335. Although I had
realized for years that Kolmogorov’s system ought to be relativized, and although I had
on several occasions pointed out some of the mathematical advantages of a relativized
system, I only learned from Rényi’s paper how fertile this relativization could be. The
relative systems published by me since 1955 are more general still than Rényi’s system
which, like Kolmogorov’s, is set-theoretical, and non-symmetrical; and it can be easily
seen that these further generalizations may lead to considerable simplifications in the
mathematical treatment.
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(ii) An admissible system S is called a Borel field of probabilities if, and only
if, there is in S a product-element of any (absolutely or relatively)
decreasing sequence of elements of S.

Of these two definitions, (i) corresponds precisely to Kolmogorov’s
so-called ‘axiom of continuity’, while (ii) plays a part in our
system analogous to Kolmogorov’s definition of Borel fields of
probability.

It can now be shown that whenever S is a Borel field of probabilities in
Kolmogorov’s sense, it is also one in the sense here defined, with probability as a countably
additive measure function of the sets which are the elements of S.

The definitions of admissible systems and Borel fields of prob-
abilities are framed in such a way that all systems S satisfying our
postulates and containing only a finite number of different elements
are admissible systems and Borel fields; accordingly, our definitions are
interesting only in connection with systems S containing an infinite number
of different elements. Such infinite systems may, or may not, satisfy the one
or the other or both of our defining conditions; in other words, for
infinite systems our defining conditions are non-redundant or
independent.

This non-redundancy can be proved for (i) most easily in that form
of it which is mentioned in footnote 12, with the help of the example
of the missing half-interval, S1, given above. All we have to do is to
define probability p(x) as equal to l(x), that is to say, the length of the
interval x. Our first definition, (i), is then violated since lim p(an) = 1

2

while for the product-element (in S) of A, p(a) = 0. Definition (ii) is
violated by our example S2 (which vacuously satisfies the first
definition).

While the first of these examples establishes the independence or
more precisely the non-redundancy of our first definition—by violat-
ing it—it does not, as it stands, establish the independence of
Kolmogorov’s ‘axiom of continuity’ which is clearly satisfied by our
example. For the missing half-interval, h = (0, 12], whether in S or not, is
the only set-theoretic product of A, so that a = h is true for the set-
theorist, whether or not a is in S. And with a = h, we have
lim p(an) = p(a). Thus Kolmogorov’s axiom is satisfied (even if we omit
the condition p(ā, a) ≠ 0; cf. footnote 12).
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It should be mentioned, in this connection, that Kolmogorov fails,
in his book, to offer an independence proof for his ‘axiom of continu-
ity’ although he claims independence for it. But it is possible to re-
frame our proof of independence so that it becomes applicable to
Kolmogorov’s axiom and his set-theoretic approach. This may be
done by choosing, instead of our S1 a system of intervals S3, exactly
like S1 but based upon a sequence C = c1, c2, . . . , defined by cn = (0,
2 − n] rather than upon the sequence A = a1, a2, . . . , with an = (0,
1
2 + 2 − n]. We can now show the independence of Kolmogorov’s axiom
by defining the probabilities of the elements of the sequence A as
follows:

p(cn) = l(cn) + 1
2 = p(an)

Here l(cn) is the length of the interval cn. This definition is highly
counter-intuitive, since, for example, it assigns to both the intervals (0,
1
2] and (0, 1] the probability one, and therefore to the interval (1

2, 1] the
probability zero; and the fact that it violates Kolmogorov’s axiom
(thereby establishing its independence) is closely connected with its
counter-intuitive character. For it violates the axiom because lim
p(cn) = 1

2, even though p(c) = 0. Because of its counter-intuitive char-
acter, the consistency of this example is far from self-evident; and so the
need arises to prove its consistency in order to establish the validity of
this independence proof of Kolmogorov’s axiom.

But this consistency proof is easy in view of our previous independ-
ence proof—the proof of the independence of our own first definition
with the help of the example S1. For the probabilities p(an) and p(cn) of
the two examples S1 and S3 coincide. And since by correlating the two
sequences, A and C, we may establish a one-one correspondence
between the elements of S1 and S3, the consistency of S1 proves that of S3.

It is clear that any example proving the independence of Kol-
mogorov’s axiom must be equally counter-intuitive, so that its consist-
ency will be in need of proof by some method similar to ours. In other
words, the proof of the independence of Kolmogorov’s axiom will
have to utilize an example which is, essentially, based upon a
(Boolean) definition of product such as ours, rather than upon the
set-theoretic definition.

new appendices354



Although every Borel field of probabilities in Kolmogorov’s sense is
also one in our sense, the opposite is not the case. For we can construct
a system S4 which is exactly like S1, with h = (a,1

2] still missing and
containing in its stead the open interval g = (a, 1

2), with p(g) = 1
2. We

define, somewhat arbitrarily, ḡ = u − g = (1
2, 1], and u − (g + ḡ) = uū

(rather than the point 1
2). It is easily seen that S4 is a Borel field in our

sense, with g as the product-element of A. But S4 is not a Borel field in
Kolmogorov’s sense since it does not contain the set-theoretic product
of A: our definition allows an interpretation by a system of sets which is not a
Borel system of sets, and in which product and complement are not
exactly the set-theoretic product and complement. Thus our definition
is wider than Kolmogorov’s.

Our independence proofs of (i) and (ii) seem to me to shed some
light upon the functions performed by (i) and (ii). The function of (i)
is to exclude systems such as S1, in order to ensure measure-theoretical
adequacy of the product (or limit) of a decreasing sequence: the limit
of the measures must be equal to the measure of the limit. The function
of (ii) is to exclude systems such as S2, with increasing sequences
without limits. It is to ensure that every decreasing sequence has a
product in S and every increasing sequence a sum.
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APPENDIX *v

Derivations in the Formal Theory
of Probability

In this appendix I propose to give the most important derivations from
the system of postulates which has been explained in appendix *iv. I
am going to show how the laws of the upper and lower bounds, of
idempotence, commutation, association, and distribution are obtained,
as well as a simpler definition of absolute probability. I will also indi-
cate how Boolean algebra is derivable in the system. A fuller treatment
will be given elsewhere.

As an abbreviation for ‘if . . . then . . .’, I am going to use an arrow
‘. . . → . . .’; a double arrow ‘. . . ↔ . . .’, for ‘ . . . if and only
if . . .’; ‘&’ for ‘and’; ‘(Ea) . . .’ for ‘there is an a in S such that . . .’;
and ‘(a) . . .’ for ‘for all a in S, . . .’.

I first re-state postulate 2 and the six operational axioms which will
all be cited in the proofs. (The other postulates will be used implicitly;
even postulate 2 will be cited only once, in the proof of 5.) In reading
the axioms A3 and C, it should be kept in mind that I shall soon
prove—see formula 25—that p(a, a) = 1.

Postulate 2. If a and b are in S, then p(a, b) is a real number.

(Ec)(Ed) p(a, b) ≠ p(c, d),A1

((c)(p(a, c) = p(b, c)) → p(d, a) = p(d, b),A2



p(a, a) = p(b, b).A3

p(ab, c) � p(a, c),B1

p(ab, c) = p(a, bc)p(b, c).B2

p(a, a) ≠ p(b, a) → p(a, a) = p(c, a) + p(c̄, a).C

I now proceed to the derivations.

(1) p(a, a) = p(b, b) = k Abbreviation based upon A3
(2) p((aa)a, a) � p(aa, a) � p(a, a) = k B1, 1
(3) p((aa)a, a) = p(aa, aa)p(a, a) = k2 B2, 1
(4) k2 � k 2, 3
(5) 0 � k � 1 4 (and Postulate 2)
(6) k ≠ p(a, b) → k = k + p(b̄, b) C, 1
(7) k ≠ p(a, b) → p(b̄, b) = 0 6

(8) p(ab̄, b) = p(a, b̄b)p(b̄, b) B2
(9) k ≠ p(a, b) → 0 = p(ab̄, b) � p(a, b) 7, 8, B1

(10) k ≠ p(a, b) → 0 � p(a, b) 9
(11) 0 > p(a, b) → k = p(a, b) 10
(12) k = p(a, b) → 0 � p(a, b) 5
(13) 0 > p(a, b) → 0 � p(a, b) 11, 12
(14) 0 � p(a, b) 13 (or 10, 12)

(15) 0 � p(ā, b) 14
(16) k ≠ p(a, b) → k � p(a, b) C, 1, 15
(17) p(a, b) � k � 1 16, 5

(18) 0 � p(a, b) � k � 1 14, 17

(19) k = p(aa, aa) � p(a, aa) � k 1, B1, 17
(20) k = p(a(aa), a(aa)) � p(a, a(aa)) � k 1, B1, 17
(21) k = p(aa, aa) = p(a, a(aa))p(a, aa) = k2 1, B2, 19, 20
(22) k = k2 21
(23) (Ea) (Eb) p(a, b) ≠ 0 → k = 1 18, 22

(24) (Ea) (Eb) p(a, b) ≠ 0 A1
(25) p(a, a) = k = 1 1, 23, 24
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(26) (Eb) (Ea) p(b, a) ≠ k A1, 1
(27) (Ea) p(ā, a) = 0 7, 26

We have now established all the laws of the upper and lower bounds:
(14) and (17), summed up in (18), show that probabilities are
bounded by 0 and 1. (25) and (27) show that these bounds are actually
reached. We now turn to the derivation of the various laws usually
taken either from Boolean algebra or from the propositional calculus.
First we derive the law of idempotence.

(28) 1 = p(ab, ab) � p(a, ab) = 1 25, B1, 17
(29) p(aa, b) = p(a, ab)p(a, b) B2
(30) p(aa, b) = p(a, b) 28, 29

This is the law of idempotence, sometimes also called the ‘law of
tautology’. We now turn to the derivation of the law of commutation.

(31) p(a, bc) � 1 17
(32) p(ab, c) � p(b, c) B2, 31, 14

This is the second law of monotony, analogous to B1.

(33) p(a(bc), a(bc)) = 1 25
(34) p(bc, a(bc)) = 1 33, 32, 17
(35) p(b, a(bc)) = 1 34, B1, 17
(36) p(ba, bc) = p(a, bc) 35, B2
(37) p((ba)b, c) = p(ab, c) 36, B2
(38) p(ba, c) � p(ab, c) 37, B1
(39) p(ab, c) � p(ba, c) 38 (subst.)
(40) p(ab, c) = p(ba, c) 38, 39

This is the law of commutation for the first argument. (In order to
extend it to the second argument, we should have to use A2.) It has
been derived from (25), merely by using the two laws of monotony
(B1 and 32) and B2. We now turn to the derivation of the law of
association.

(41) p(ab, d((ab)c)) = 1 35 (subst.)
(42) p(a, d((ab)c)) = 1 = p(b, d((ab)c)) 41, B1, 17, 32
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(43) p(a, (bc)((ab)c)) = 1 42 (subst.)
(44) p(a(bc), (ab)c) = p(bc, (ab)c) 43, B2
(45) p(bc, (ab)c) = p(b, c((ab)c))p(c, (ab)c) B2
(46) p(b, c((ab)c)) = 1 42 (subst.)
(47) p(c, (ab)c) = 1 25, 32, 17
(48) p(a(bc), (ab)c) = 1 44 to 47

This is a preliminary form of the law of association. (62) follows
from it by A2 +  (and B2), but I avoid where possible using A2 or A2 + .

(49) p(a(b(cd)), d) = p(cd, b(ad))p(b, ad)p(a, d) 40, B2
(50) p(a(bc), d) = p(c, b(ad))p(b, ad)p(a, d) 40, B2
(51) p(a(bc), d) � p(a(b(cd)), d) 49, 50 B1

This is a kind of weak generalization of the first monotony law, B1.

(52) p(a(b(cd)), (ab)(cd)) = 1 48 (subst.)
(53) p((a(b(cd))(ab), cd) = p(ab, cd) 52, B2
(54) p(a(b(cd)), cd) � p(ab, cd) 53, B1
(55) p((a(b(cd)))c, d) � p((ab)c, d) 54, B2
(56) p(a(b(cd)), d) � p((ab)c, d) 55, B1
(57) p(a(bc), d) � p((ab)c, d) 51, 56

This is one half of the law of association.

(58) p((bc)a, d) � p((ab)c, d) 57, 40
(59) p((ab)c, d) � p(b(ca), d) 58 (subst.), 40
(60) p((bc)a, d) � p(b(ca), d) 58, 59
(61) p((ab)c, d) � p(a(bc), d) 60 (subst.)

This the second half of the law of association.

(62) p((ab)c, d) = p(a(bc), d) 57, 61

This is the complete form of the law of association, for the
first argument (see also formula (g) at the beginning of appendix *iv).
The law for the second argument can be obtained by applying A2.
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(Applying B2 twice to each side of (62) only leads to a conditional
form with ‘p(bc, d)≠0 → ’ as antecedent.)

I now turn to a generalization of the axiom of complementation, C. I
shall be a little more concise in my derivations from now on.

(63) p(b̄, b) ≠ 0 ↔ (c)p(c, b) = 1 7, 25
(64) p(a, b) + p(ā, b) = 1 + p(b̄, b) C, 25, 63

This is an unconditional form of the principle of complementation,
C, which I am now going to generalize.

In view of the fact that (64) is unconditional, and that ‘a’ does not
occur on the right-hand side, we can substitute ‘c’ for ‘a’ and assert

(65) p(a, b) + p(ā, b) = p(c, b) + p(c̄, b) 64
(66) p(a, bd) + p(ā, bd) = p(c, bd) + p(c̄, bd) 65

By multiplying with p(b, d) we get:

(67) p(ab, d) + p(āb, d) = p(cb, d) + p(c̄b, d) B2, 66

This is a generalization of (65). By substitution, we get:

(68) p(ab, c) + p(āb, c) = p(cb, c) + p(c̄b, c). 67

In view of

(69) p(c̄b, c) = p(c̄, c), 7, B1, 25, 63

we may also write (68) more briefly, and in analogy to (64),

(70) p(ab, c) + p(āb, c) = p(b, c) + p(c̄, c). 68, 691

1 In the derivation of (70) we also need the following formula

p(cb, c) = p(b, c),

which may be called ‘(29′)’. Its derivation, in the presence of (40) and (32) is analogous
to the steps (28) and (29):
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This is the generalization of the unconditional form of C and of
formula (64).

(71) p(aa, b) + p(āa, b) = p(a, b) + p(b̄, b) 70
(72) p(āa, b) = p(aā, b) = p(b̄, b) 40, 71, 30
(73) p(āa, b) + p(āa, b) = p(aā, b) + p(aā, b) = 1 + p(b̄, b) 64
(74) p(āa, b) = 1 = p(aā, b) 72, 73

This establishes the fact that the elements aā satisfy the condition of
Postulate AP. We obtain, accordingly,

(75) p(a) = p(a, aā) = p(a, āa) = p(a, bb̄) = p(a, b̄b); 25, 74, AP

that is, a definition of absolute probability in a more workable form.

We next derive the general law of addition.

(76) p(ab̄, c) = p(a, c) − p(ab, c) + p(c̄, c) 70, 40
(77) p(āb̄, c) = p(ā, c) − p(āb, c) + p(c̄, c) 76
(78) p(āb̄, c) = 1 − p(a, c) − p(b, c) + p(ab, c) + p(c̄, c) 77, 76, 64, 40
(79) p(āb̄, c) = p(a, c) + p(b, c) − p(ab, c) 78, 64

This is a form of the general law of addition, as will be easily seen if
it is remembered that ‘āb̄’ means the same in our system as ‘a + b’
in the Boolean sense. It is worth mentioning that (79) has the usual

(28′) p(ab, ab) = 1 = p(b, ab) 25, 32, 17
(29′) p(ba, b) = p(b, ab)p(a, b) = p(a, b). B2, 28′
To this we may add the law of idempotence for the second argument
(30′) p(ab, b) = p(a, bb) = p(a, b). B2, 25, 29′, 40

Moreover, from (28) we obtain by substitution
(31′) p(a, aā) = 1 28
and likewise from (28′)
(32′) p(ā, aā) = 1 28′

This yields, by C,
(33′) p(a, b̄b) = 1 31′, 32′, C

We therefore have
(34′) (Eb)(a) p(a, b) = 1 33′
(35′) (Ea) p(ā, a) = 1 34′

See also (27). Formulae (31′) to (35′) do not belong to the theorems of the usual systems.
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form: it is unconditional and free of the unusual ‘ + p(c̄, c)’. (79) can be
further generalized:

(80) p(b̄c̄, ad) = p(b, ad) + p(c, ad) − p(bc, ad) 79
(81) p(a b̄c̄, d) = p(ab, d) + p(ac, d) − p(a(bc), d) 80, B2, 40

This is a generalization of (79).
We now proceed to the derivation of the law of distribution. It may

be obtained from (79), (81), and a simple lemma (84) which I pro-
pose to call the ‘distribution lemma’, and which is a generalization of
(30):

(82) p(a(bc), d) = p(a, (bc)d)p(bc, d) = p((aa)(bc),d) B2, 30
(83) p(((aa)b)c, d) = p(a(ab), cd)p(c, d) = p(((ab)a)c, d) B2, 62, 40
(84) p(a(bc), d) = p((ab)(ac), d) 82, 83, 62

This is the ‘distribution lemma’.

(85) p(ab ac, d) = p(ab, d) + p(ac, d) − p((ab)(ac), d) 79 (subst.)

To this formula and (81) we can now apply the ‘distribution lemma’;
and we obtain:

(86) p(a b̄c̄, d) = p(ab ac, d) 81, 85, 84

This is a form of the first law of distribution. It can be applied to the
left side of the following formula

(87) p(b̄b̄a, c) = p(b̄b̄, ac)p(a, c) = p(a, c) B2, 74

We then obtain,

(88) p(ab ab̄, c) = p(a, c). 86, 87, 40

It may be noted that

(89) p(ā̄b, c) = p(ab, c), 68 (subst.)
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(90) p(a, c) = p(b, c) → p(ā, c) = p(b̄, c) 64

Consequently, we have

(91) p(ā b̄ c̄, d) = p(ā b̄ c̄, d) 62, 89, 40

(92) p(ā b̄ c̄, d) = p(ā b̄ c̄, d) 90, 91

This is the law of association for the Boolean sum. By substituting in
(40) the complements of a and b, we find

(93) p(ā b̄, c) = p(b̄ ā, c) 40, 90

This is the law of commutation for the Boolean sum. In the same way
we get

(94) p(ā ā, b) = p(a, b) 30, 89, 90

This is the law of idempotence for the Boolean sum. From (87) we
obtain

(95) p(a, b) = p(a, bcc̄), 87, 40, A2
(96) p(a, b)p(b) = p(ab) 95, B2, 75

This may also be written

(97) p(b) ≠ 0 → p(a, b) = p(ab)/p(b) 96

This formula shows that our generalized concept of relative probability
coincides, for p(b) ≠ 0, with the usual concept, and that our calculus is
a generalization of the usual calculus. That the generalization is a genu-
ine one can be seen from the examples, given in the preceding appen-
dix *iv, showing the consistency of our system with the following
formula (E):

(Ea)(Eb)(Ec) p(a, b) = 1 & p(a, bc) = 0(E)

—a formula which is invalid in many finite interpretations of our S but
valid in its normal infinite interpretations.
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In order to prove now that, in any consistent interpretation, S must
be a Boolean algebra, we note that

(98) ((x)p(a, x) = p(b, x)) → p(ay, z) = p(by, z) B2
(99) ((x)p(a, x) = p(b, x)) → p(y, az) = p(y, bz) 98, A2

It is interesting that (99) needs A2: it does not follow from 98, 40, and
B2, since it is possible that p(a, z) = p(b, z) = 0. (This will be the case, for
example, if ā = z ≠ xx̄.)

(100) ((x)(p(a, x) = p(b, x) & p(c, x) = p(d, x))) → p(ac, y) = p(bd, y)
99, B2

With the help of (90), of (100), and of A2, it can now easily be
shown at once that whenever the condition

p(a, x) = p(b, x) for every x in S(*)

is satisfied, any name of the element a may be substituted for some or
all occurrences of names of the element b in any well-formed formula
of the calculus without changing its truth value; or in other words, the
condition (*) guarantees the substitutional equivalence of a and b.

In view of this result, we now define the Boolean equivalence of two
elements, a and b, as follows.

(D1) a = b ↔ (x)p(a, x) = p(b, x)

From this definition we obtain at once the formulae

(A) a = a
(B) a = b → b = a
(C) (a = b & b = c) → a = c
(D) a = b → a may replace b in some or all places of any formula

without affecting its truth value. A2, 90, 100

We may also introduce a second definition

(D2) a = b + c ↔ a = b c̄
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Then we obtain:

(i) If a and b are in S, then a + b is in S
(Postulate 3, D2, D1, 90, 100)

(ii) If a is in S then ā is in S (Postulate 4)
(iii) a + b = b + a 93, D2
(iv) (a + b) + c = a + (b + c) 92, D2
(v) a + a = a 94, D2
(vi) ab + ab̄ = a 88, D2
(vii) (Ea)(Eb) a ≠ b 27, 74, 90, D1

But the system (A) to (D2) and (i) to (vi) is a well-known axiom
system for Boolean algebra, due to Huntington;2 and it is known that
all valid formulae of Boolean algebra are derivable from it.

Thus S is a Boolean algebra. And since a Boolean algebra may be
interpreted as a logic of derivation, we may assert that in its logical
interpretation, the probability calculus is a genuine generalization of the logic of
derivation.

More particularly, we may interpret

a � b

which is definable by ‘ab = b’, to mean, in logical interpretation, ‘a
follows from b’ (or ‘b entails a’). It can be easily proved that

a � b → p(a, b) = 1(+)

This is an important formula3 which is asserted by many authors, but

2 Cf. E. V. Huntington, Transactions Am. Math. Soc. 35, 1933, pp. 274–304. The system (i) to
(vi) is Huntington’s ‘fourth set’, and is described on p. 280. On the same page may be
found (A) to (D), and (D2). Formula (v) is redundant, as Huntington showed on pp. 557 f.
of the same volume. (vii) is also assumed by him.
3 It is asserted, for example, by H. Jeffreys, Theory of Probability, § 1.2 ‘Convention 3’. But if
it is accepted, his Theorem 4 becomes at once contradictory, since it is asserted without a
condition such as our ‘p(b) ≠ 0’. Jeffreys improved, in this respect, the formulation of
Theorem 2 in his second edition, 1948: but as shown by Theorem 4 (and many others)
his system is still inconsistent (even though he recognized, in the second edition, p. 35,
that two contradictory propositions entail any proposition; cf. note *2 to section 23, and
my answer to Jeffreys in Mind 52, 1943, pp. 47 ff.).
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which is nevertheless invalid in the usual systems—provided they are
consistent. For in order to make it valid, we must make allowance for4

p(a, aā) + p(ā, aā) = 2,

even though we have

p(a + ā, aā) = 1.

That is to say, such formulae as p(a + ā, b) = p(a, b) + p(ā, b) must not be
unconditionally asserted in the system. (Cf. our axiom C; see also foot-
note 1, above.)

The converse of (+), that is to say,

p(a, b) = 1 → a � b

must not be demonstrable, of course, as our second and third examples
proving consistency show. (Cf. also the formula (E) in the present and
in the preceding appendices.) But there are other valid equivalences in
our system such as

a � b ↔ p(a, āb) ≠ 0(‡)

a � b ↔ p(a, āb) = 1

None of these can hold in the usual systems in which p(a, b) is
undefined unless p(b) ≠ 0. It seems to be quite clear, therefore, that the
usual systems of probability theory are wrongly described as general-
izations of logic: they are formally inadequate for this purpose, since
they do not even entail Boolean algebra.

The formal character of our system makes it possible to interpret it,
for example, as a many-valued propositional logic (with as many
values as we choose—either discrete, or dense, or continuous), or as a
system of modal logic. There are in fact many ways of doing this; for
example, we may define ‘a necessarily implies b’ by ‘p(b, ab̄) ≠ 0’, as just
indicated, or ‘a is logically necessary’ by ‘p(a, ā) = 1’. Even the problem

4 See formulae 31′ ff. in footnote 1, above
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whether a necessary statement is necessarily necessary finds a natural
place in probability theory: it is closely connected with the relation
between primary and secondary probability statements which plays an
important part in probability theory (as shown in appendix *ix, point
*13 of the Third Note). Roughly, writing ‘� x’ for ‘x is necessary (or
demonstrable)’ and ‘h’ for ‘p(a, ā) = 1’, we may show that

� a ↔ � h,

and therefore we find that

� a → � ‘p(h, h̄) = 1’,

which may be taken to mean that � a entails that a is necessarily
necessary; and since this means something like

� a → � ‘p(‘p(a, ā) = 1’, ‘p(a, ā) = 1’) = 1’,

we obtain (secondary) probability statements about (primary)
probability statements.

But there are of course other possible ways of interpreting the
relation between a primary and a secondary probability statement.
(Some interpretations would prevent us from treating them as
belonging to the same linguistic level, or even to the same language.)

Addendum, 1964

I have found since that the following system of three axioms, A, BD,
and CD, is equivalent to the six axioms on pp. 337 and 356–7.

(Ea) (Eb)p(a, a) ≠ p(a, b)A
((d)p(ab, d) = p(c, d)) ↔ (e) (f) (p(a, b) � p(c, b) & p(a, e) �BD
� p(c, e) � p(b, c) & ((p(b, e) � p(f, e) & p(b, f) � p(f, f) �
� p(e, f)) → p(a, f)p(b, e) = p(c, e)))
p(ā, b) = p(b, b) − p(a, b) ↔ (Ec)p(b, b) ≠ p(c, b)CD

I also have found since an example not satisfying A2 but satisfying all
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the other axioms and Postulate AP (see note 10 on p. 345).—The
example on p. 348 can be modified (putting p(2) = 1

2, p(a, b) = 1 when-
ever p(b) = 0, p(a, b) = p(ab)/p(b) whenever p(b) ≠ 0) so as to obtain a
Boolean Algebra proving the independence of C.

See also my Conjectures and Refutations, 1963, pp. 388ff.; the third and
later German editions of my Logik der Forschung; and Synthese 15, 1963, pp.
107–186, and 21, 1970, p. 107.
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APPENDIX *vi

On Objective Disorder
or Randomness

It is essential for an objective theory of probability and its application
to such concepts as entropy (or molecular disorder) to give an
objective characterization of disorder or randomness, as a type of order.

In this appendix, I intend to indicate briefly some of the general
problems this characterization may help to solve, and the way in which
they may be approached.

(1) The distribution of velocities of the molecules of a gas in equi-
librium is supposed to be (very nearly) random. Similarly, the distribu-
tion of nebulae in the universe appears to be random, with a constant
over-all density of occurrence. The occurrence of rain on Sundays is
random: in the long run, each day of the week gets equal amounts of
rain, and the fact that there was rain on Wednesday (or any other day)
may not help us to predict whether or not there will be rain on Sunday.

(2) We have certain statistical tests of randomness.
(3) We can describe randomness as ‘absence of regularity’; but this

is not, as we shall see, a helpful description. For there are no tests for
presence or absence of regularity in general, only tests for presence or
absence of some given or proposed specific regularity. Thus our tests
of randomness are never tests which exclude the presence of all regu-
larity: we may test whether or not there is a significant correlation



between rain and Sundays, or whether a certain given formula for
predicting rain on Sundays works, such as ‘at least once in three weeks’;
but though we may reject this formula in view of our tests, we cannot
determine, by our tests, whether or not there exists some better
formula.

(4) Under these circumstances, it seems tempting to say that ran-
domness or disorder is not a type of order which can be described
objectively and that it must be interpreted as our lack of knowledge as to
the order prevailing, if any order prevails. I think that this tempta-
tion should be resisted, and that we can develop a theory which
allows us actually to construct ideal types of disorder (and of course
also ideal types of order, and of all degrees in between these
extremes).

(5) The simplest problem in this field, and the one which, I believe,
I have solved, is the construction of a one-dimensional ideal type of disorder—
an ideally disordered sequence.

The problem of constructing a sequence of this kind arises immedi-
ately from any frequency theory of probability which operates with
infinite sequences. This may be shown as follows.

(6) According to von Mises, a sequence of 0’s and 1’s with equi-
distribution is random if it admits of no gambling system, that is to say, of
no system which would allow us to select in advance a sub-sequence in
which the distribution is unequal. But of course, von Mises admits that
any gambling system may, ‘accidentally’, work for some time; it is only
postulated that it will break down in the long run—or more precisely, in
an infinite number of trials.

Accordingly, a Mises collective may be extremely regular in its com-
mencing segment: provided they become irregular in the end, von Mises’s
rule is incapable of excluding collectives which start off very regularly,
say with

00 11 00 11 00 11 . . .

and so on, for the first five hundred million places.
(7) It is clear that we cannot empirically test this kind of deferred

randomness; and it is clear that whenever we do test randomness in a
sequence, we have a different type of randomness in mind: a sequence
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which from the very beginning behaves in a ‘reasonably random-like’
fashion.

But this phrase, ‘from the very beginning’, creates its own problem.
Is the sequence 010110 random-like? Clearly, it is too short for us to say
yes or no. But if we say that we need a long sequence for deciding a
question of this kind then, it seems, we unsay what we have said
before: it seems that we retract the phrase ‘from the very beginning’.

(8) The solution of this difficulty is the construction of an ideally
random sequence—one which for each beginning segment, whether short
or long, is as random as the length of the segment permits; or in other
words, a sequence whose degree n of randomness (that is, its n-
freedom from after-effects) grows with the length of the sequence as
quickly as is mathematically possible.

How to construct a sequence of this kind has been shown in appen-
dix iv of the book. (See especially note *1 to appendix iv, with a
reference to an as yet unpublished paper by Dr. L. R. B. Elton and
myself.)

(9) The infinite set of all sequences answering this description may
be called the ideal type of random alternatives with equal distribution.

(10) Although no more is postulated of these sequences than that
they are ‘strongly random’—in the sense that the finite commencing
segments would pass all tests of randomness—they can easily be shown to
possess frequency limits, in the sense usually demanded by frequency
theories. This solves in a simple manner one of the central problems of
my chapter on probability—elimination of the limit axiom, by way of
a reduction of the limit-like behaviour of the sequences to their
random-like behaviour in finite segments.

(11) The construction may quite easily be extended into both direc-
tions of the one-dimensional case, by correlating the first, second, . . .
of the odd numbered elements with the first, second, . . . place of the
positive direction, and the first, second, . . . of the even numbered
elements with the first, second, . . . place of the negative direction; and
by similar well-known methods, we can extend our construction to the
cells of an n-dimensional space.

(12) While other frequency theorists—especially von Mises, Cope-
land, Wald, and Church—were mainly interested in defining random
sequences in the most severe way by excluding ‘all’ gambling systems
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in the widest possible sense of the word ‘all’ (that is, in the widest
sense compatible with a proof that random sequences so defined exist),
my aim has been quite different. I wished from the beginning to
answer the objection that randomness is compatible with any finite com-
mencing segment; and I wished to describe sequences that arise from
random-like finite sequences, by a transition to infinity. I hoped by this
method to achieve two things: to keep close to that type of sequence
which would pass statistical tests of randomness, and to prove the limit
theorem. Both have been done now, as here indicated under point (8),
with the help of the construction given in my old appendix iv. But I
have meanwhile found that the ‘measure-theoretical approach’ to
probability is preferable to the frequency interpretation (see my Post-
script, chapter *iii), both for mathematical and philosophical reasons.
(The decisive point is connected with the propensity interpretation of
probability, fully discussed in my Postscript.) I therefore do not think any
longer that the elimination of the limit axiom from the frequency
theory is very important. Still, it can be done: we can build up the
frequency theory with the help of the ideal type of the random
sequences constructed in appendix iv; and we can say that an empirical
sequence is random to the extent to which tests show its statistical
similarity to an ideal sequence.

The sequences admitted by von Mises, Copeland, Wald, and Church
are not necessarily of this kind, as mentioned above. But it is a fact that
any sequence ever rejected on the basis of statistical tests for being not
random may later turn into an admissible random sequence in the
sense of these authors.

Addendum, 1967

(13) Today, some years after reaching a solution of this old problem
which would have satisfied me in 1934, I no longer believe in the
importance of the fact that a frequency theory can be constructed
which is free from all the old difficulties. Yet I still think it important
that it is possible to characterize randomness as a type of order, and that
we can construct models of random sequences.

(14) It is significant that ideally random sequences, as described here
under (8) to (10), satisfy the formal system of appendices *iv and *v,
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and also of the older appendix *ii. For let S be any set of random
sequences of 0’s and 1’s, such that a = a1, a2, . . . ; b = b1, b2, . . . , and
that, for a ≠ b, a and b are independent (and thus ab random). Let S
contain the two sequences consisting of 0’s and of 1’s only. We put

p (a, b) = lim ((�anbn)/�bn),

p(ab, c) = lim ((�anbncn)/�cn),

p(ā, b) = lim ((�(1 − an) bn)/�bn),

p(a) = lim ((�an)/n);

then all Postulates and Axioms of appendices *iv and *v are satisfied
(except Postulate 1: cf. p. 353).
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APPENDIX *vii

Zero Probability and the
Fine-Structure of Probability

and of Content

In the book, a sharp distinction is made between the idea of the prob-
ability of a hypothesis, and its degree of corroboration. It is asserted that if we
say of a hypothesis that it is well corroborated, we do not say more than
that it has been severely tested (it must be thus a hypothesis with a high
degree of testability) and that it has stood up well to the severest tests
we were able to design so far. And it is further asserted that degree of
corroboration cannot be a probability, because it cannot satisfy the laws of the
probability calculus. For the laws of the probability calculus demand
that, of two hypotheses, the one that is logically stronger, or more
informative, or better testable, and thus the one which can be better
corroborated, is always less probable—on any given evidence—than the
other. (See especially sections 82 and 83.)

Thus a higher degree of corroboration will, in general, be combined
with a lower degree of probability; which shows not only that we must
distinguish sharply between probability (in the sense of the probability
calculus) and degree of corroboration or confirmation, but also that the
probabilistic theory of induction, or the idea of an inductive probability, is untenable.

The impossibility of an inductive probability is illustrated in the



book (sections 80, 81, and 83) by a discussion of certain ideas of
Reichenbach’s, Keynes’s and Kaila’s. One result of this discussion is
that in an infinite universe (it may be infinite with respect to the number of
distinguishable things, or of spatio-temporal regions), the probability of
any (non-tautological) universal law will be zero.

(Another result was that we must not uncritically assume that scien-
tists ever aim at a high degree of probability for their theories. They
have to choose between high probability and high informative content,
since for logical reasons they cannot have both; and faced with this choice, they
have so far always chosen high informative content in preference to
high probability—provided that the theory has stood up well to its
tests.)

By ‘probability’, I mean here either the absolute logical probability of
the universal law, or its probability relative to some evidence; that is to say,
relative to a singular statement, or to a finite conjunction of singular
statements. Thus if a is our law, and b any empirical evidence, I assert
that

p(a) = 0(1)

and also that

p(a, b) = 0(2)

These formulae will be discussed in the present appendix.
The two formulae, (1) and (2), are equivalent. For as Jeffreys and

Keynes observed, if the ‘prior’ probability (the absolute logical prob-
ability) of a statement a is zero, then so must be its probability relative
to any finite evidence b, since we may assume that for any finite
evidence b, we have p(b) ≠ 0. For p(a) = 0 entails p(ab) = 0, and since
p(a, b) = p(ab)/p(b), we obtain (2) from (1). On the other hand, we
may obtain (1) from (2); for if (2) holds for any evidential b, however
weak or ‘almost tautological’, we may assume that it also holds for the
zero-evidence, that is to say, for the tautology t = bb̄; and p(a) may be
defined as equal to p(a, t).

There are many arguments in support of (1) and (2). First, we may
consider the classical definition of probability as the number of the
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favourable possibilities divided by that of all (equal) possibilities. We can
then derive (2), for example, if we identify the favourable possibilities
with the favourable evidence. It is clear that, in this case, p(a,b) = 0; for
the favourable evidence can only be finite, while the possibilities in an
infinite universe must be clearly infinite. (Nothing depends here on
‘infinity’, for any sufficiently large universe will yield, with any desired
degree of approximation, the same result; and we know that our
universe is extremely large, compared with the amount of evidence
available to us.)

This simple consideration is perhaps a little vague, but it can be
considerably strengthened if we try to derive (1), rather than (2), from
the classical definition. We may to this end interpret the universal
statement a as entailing an infinite product of singular statements, each
endowed with a probability which of course must be less than unity. In
the simplest case, a itself may be interpreted as such as infinite product;
that is to say, we may put a = ‘everything has the property A’; or in
symbols, ‘(x)Ax’, which may be read ‘for whatever value of x we may
choose, x has the property A’.1 In this case, a may be interpreted as the
infinite product a = a1a2a3 . . . where ai = Aki, and where ki is the name of
the ith individual of our infinite universe of discourse.

We may now introduce the name ‘an’ for the product of the first n
singular statements, a1a2 . . . an, so that a may be written

1 ‘x’ is here an individual variable ranging over the (infinite) universe of discourse. We
may choose; for example, a = ‘All swans are white’ = ‘for whatever value of x we may
choose, x has the property A’ where ‘A’ is defined as ‘being white or not being a swan’.
We may also express this slightly differently, by assuming that x ranges over the spatio-
temporal regions of the universe, and that ‘A’ is defined by ‘not inhabited by a non-white
swan’. Even laws of more complex form—say of a form like ‘(x)(y)(xRy → xSy)’ may be
written ‘(x)Ax’, since we may define ‘A’ by

Ax ↔ (y)(xRy → xSy).

We may perhaps come to the conclusion that natural laws have another form than the
one here described (cf. appendix *x): that they are logically still stronger than is here
assumed; and that, if forced into a form like ‘(x)Ax’, the predicate A becomes essentially
non-observational (cf. notes *1 and *2 to the ‘Third Note’, reprinted in appendix *ix)
although, of course, deductively testable. But in this case, our considerations remain valid
a fortiori.
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a = lim
n → ∞

an

and (see page 346)

p(a) = lim
n → ∞

p(an)(3)

It is clear that we may interpret an as the assertion that, within the finite
sequence of elements k1, k2, . . . kn, all elements possess the property A. This
makes it easy to apply the classical definition to the evaluation of p(an).
There is only one possibility that is favourable to the assertion an: it is the
possibility that all the n individuals, ki without exception, possess the
property A rather than the property non-A. But there are in all 2n

possibilities, since we must assume that it is possible for any individual
ki, either to possess the property A or the property non-A. Accordingly,
the classical theory gives

p(an) = 1/2n(4c)

But from (3) and (4c), we obtain immediately (1).
The ‘classical’ argument leading to (4c) is not entirely adequate,

although it is, I believe, essentially correct.
The inadequacy lies merely in the assumption that A and non-A are

equally probable. For it may be argued—correctly, I believe—that since
a is supposed to describe a law of nature, the various ai are instantiation
statements, and thus more probable than their negations which are
potential falsifiers. (Cf. note *1 to section 28). This objection however,
relates to an inessential part of the argument. For whatever
probability—short of unity—we attribute to A, the infinite product a
will have zero probability (assuming independence, which will be
discussed later on). Indeed, we have struck here a particularly trivial
case of the one-or-zero law of probability (which we may also call, with an
allusion to neuro-physiology, ‘the all-or-nothing principle’). In this
case it may be formulated thus: if a is the infinite product of a1, a2, . . . ,
where p(ai) = p(aj), and where every ai is independent of all others, then
the following holds:
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p(a) = lim
n → ∞

p(an) = 0, unless p(a) = p(an) = 1(4)

But it is clear that p(a) = 1 is unacceptable (not only from my point
of view but also from that of my inductivist opponents who clearly
cannot accept the consequence that the probability of a universal law
can never be increased by experience). For ‘all swans are black’ would
have the probability 1 as well as ‘all swans are white’—and similarly for
all colours; so that ‘there exists a black swan’ and ‘there exists a white
swan’, etc., would all have zero probability, in spite of their intuitive
logical weakness. In other words, p(a) = 1 would amount to asserting
on purely logical grounds with probability 1 the emptiness of the
universe.

Thus (4) establishes (1).
Although I believe that this argument (including the assumption of

independence to be discussed below) is incontestable, there are a
number of much weaker arguments which do not assume independ-
ence and which still lead to (1). For example we might argue as
follows.

It was assumed in our derivation that for every ki, it is logically
possible that it has the property A, and alternatively, that it has the
property non-A: this leads essentially to (4). But one might also
assume, perhaps, that what we have to consider as our fundamental
possibilities are not the possible properties of every individual in the
universe of n individuals, but rather the possible proportions with
which the properties A and non-A may occur within a sample of indi-
viduals. In a sample of n individuals, the possible proportions with
which A may occur are: 0, 1/n, . . . , n/n. If we consider the occurrences
of any of these proportions as our fundamental possibilities, and thus
treat them as equi-probable (‘Laplace’s distribution’2), then (4) would
have to be replaced by

p(an) = 1/(n + 1); so that lim p(an) = 0.(5)

2 It is the assumption underlying Laplace’s derivation of his famous ‘rule of succession’;
this is why I call it ‘Laplace’s distribution’. It is an adequate assumption if our problem is
one of mere sampling; it seems inadequate if we are concerned (as was Laplace) with a
succession of individual events. See also appendix *ix, points 7 ff. of my ‘Third Note’; and
note 10 to appendix *viii.
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Although from the point of view of a derivation of (1), formula
(5) is much weaker than (4c), it still allows us to derive (1)—and it
allows us to do so without identifying the observed cases as the
favourable ones or assuming that the number of observed cases is
finite.

A very similar argument leading to (1) would be the following. We
may consider the fact that every universal law a entails (and is therefore
at most equally as probable as) a statistical hypothesis h of the form
‘p(x, y) = 1’, and that the absolute probability of h may be calculated
with the help of Laplace’s distribution, with the result p(h) = 0. (Cf.
appendix *ix, the Third Note, especially *13.) But since a entails h, this
leads to p(a) = 0; that is to say, to (1).

To me, this proof appears the simplest and most convincing: it makes
it possible to uphold (4) and (5), by assuming that (4) applies to a and
(5) to h.

So far our considerations were based on the classical definition of
probability. But we arrive at the same result if instead we adopt as our
basis the logical interpretation of the formal calculus of probability. In
this case, the problem becomes one of dependence or independence of
statements.

If we again regard a as the logical product of the singular statements
a1a2, . . . , then the only reasonable assumption seems to be that, in the
absence of any (other than tautological) information, we must con-
sider all these singular statements as mutually independent of one another,
so that ai may be followed by aj or by its negation, āj, with the
probabilities

p(aj, ai) = p(aj)

p(āj, ai) = p(āj) = 1 − p(aj).

Every other assumption would amount to postulating ad hoc a kind
of after-effect; or in other words, to postulating that there is some-
thing like a causal connection between ai and aj. But this would obvi-
ously be a non-logical, a synthetic assumption, to be formulated as a
hypothesis. It thus cannot form part of purely logical theory of
probability.
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The same point may be put a little differently thus: in the presence of
some hypothesis, h say, we may of course have

p(aj, aih) > p(aj, h)(6)

For h may inform us of the existence of a kind of after-effect.
Consequently, we should then have

p(aiaj, h) > p(ai, h)p(aj, h),(7)

since (7) is equivalent to (6). But in the absence of h, or if h is tau-
tologous or, in other words, if we are concerned with absolute logical
probabilities, (7) must be replaced by

p(aiaj) = p(ai)p(aj)(8)

which means that ai and aj are independent, and which is equivalent to

p(aj, ai) = p(aj).(9)

But the assumption of mutual independence leads, together with
p(ai) < 1, as before to p(a) = 0; that is to say, to (1).

Thus (8), that is, the assumption of the mutual independence of the
singular statements ai leads to (1); and mainly for this reason, some
authors have, directly or indirectly, rejected (8). The argument has
been, invariably, that (8) must be false because if it were true, we could
not learn from experience: empirical knowledge would be impossible. But
this is incorrect: we may learn from experience even though p(a) =
p(a, b) = 0; for example, C(a, b)—that is to say, the degree of corrobora-
tion of a by the tests b—may none the less increase with new tests. (Cf.
appendix *ix). Thus this ‘transcendental’ argument fails to hit its target;
at any rate, it does not hit my theory.3

3 An argument which appeals to the fact that we possess knowledge or that we can learn
from experience, and which concludes from this fact that knowledge or learning from
experience must be possible, and further, that every theory which entails the impossibil-
ity of knowledge, or of learning from experience, must be false, may be called a ‘tran-
scendental argument’. (This is an allusion to Kant.) I believe that a transcendental
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But let us now consider the view that (8) is false, or in other words,
that

p(aiaj) > p(ai)p(aj)

is valid, and consequently

p(aj, ai) > p(aj),

and also the following:

p(an, a1a2 . . . an − 1) > p(an)( + )

This view asserts that once we have found some ki to possess the
property A, the probability increases that another kj possesses the same
property; and even more so if we have found the property in a number
of cases. Or in Hume’s terminology, (+) asserts ‘that those instances’ (for
example, kn), ‘of which we have had no experience, are likely to resemble those, of which
we have had experience’.

The quotation, except for the words ‘are likely to’, is taken from
Hume’s criticism of induction.4 And Hume’s criticism fully applies to
(+), or its italicized verbal formulation. For, Hume argues, ‘even after the
observation of the frequent constant conjunction of objects, we have no reason to draw
any inference concerning any object beyond those of which we have had experience’.5

If anybody should suggest that our experience entitles us to draw

argument may indeed be valid if it is used critically—against a theory which entails the
impossibility of knowledge, or of learning from experience. But one must be very careful
in using it. Empirical knowledge in some sense of the word ‘knowledge’, exists. But in other
senses—for example in the sense of certain knowledge, or of demonstrable knowledge—it
does not. And we must not assume, uncritically, that we have ‘probable’ knowledge–
knowledge that is probable in the sense of the calculus of probability. It is indeed my
contention that we do not have probable knowledge in this sense. For I believe that what
we may call ‘empirical knowledge’, including ‘scientific knowledge’, consists of guesses,
and that many of these guesses are not probable (or have a probability zero) even though
they may be very well corroborated. See also my Postscript, sections *28 and *32.
4 Treatise of Human Nature, 1739–40, book i, part iii, section vi (the italics are Hume’s). See
also my Postscript, note 1 to section *2 and note 2 to section *50.
5 loc. cit., section xii (the italics are Hume’s). The next quotation is from loc. cit., section vi.
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inferences from observed to unobserved objects, then, Hume says, ‘I
wou’d renew my question, why from this experience we form any conclusion
beyond those past instances, of which we have had experience’. In other words,
Hume points out that we get involved in an infinite regress if we appeal
to experience in order to justify any conclusion concerning unobserved
instances—even mere probable conclusions, as he adds in his Abstract. For there
we read: ‘It is evident that Adam, with all his science, would never have
been able to demonstrate that the course of nature must continue uni-
formly the same. . . . Nay, I will go farther, and assert that he could not
so much as prove by any probable arguments that the future must be
conformable to the past. All probable arguments are built on the sup-
position that there is conformity betwixt the future and the past, and
therefore can never prove it.’6 Thus ( + ) is not justifiable by experience;
yet in order to be logically valid, it would have to be of the character of
a tautology, valid in every logically possible universe. But this is clearly
not the case.

Thus ( + ), if true, would have the logical character of a synthetic a priori
principle of induction, rather than of an analytic or logical assertion. But
it does not quite suffice even as a principle of induction. For ( + ) may
be true, and p(a) = 0 may be valid none the less. (An example of a
theory which accepts ( + ) as a priori valid—though, as we have seen, ( + )
must be synthetic—and which at the same time accepts p(a) = 0, is
Carnap’s.7)

An effective probabilistic principle of induction would have to be
even stronger than ( + ). It would have to allow us, at least, to conclude
that for some fitting singular evidence b, we may obtain p(a, b) > 1/2,
or in words, that a may be made, by accumulating evidence in its

6 Cf. An Abstract of a Book lately published entitled A Treatise of Human Nature, 1740, ed. by J. M.
Keynes and P. Sraffa, 1938, p. 15. Cf. note 2 to section 81. (The italics are Hume’s.)
7 Carnap’s requirement that his ‘lambda’ (which I have shown to be the reciprocal of a
dependence measure) must be finite entails our ( + ); cf. his Continuum of Inductive Methods,
1952. Nevertheless, Carnap accepts p(a) = 0, which according to Jeffreys would entail the
impossibility of learning from experience. And yet, Carnap bases his demand that his
‘lambda’ must be finite, and thus that ( + ) is valid, on precisely the same transcendental
argument to which Jeffreys appeals—that without it, we could not learn from experi-
ence. See his Logical Foundations of Probability, 1950, p. 565, and my contribution to the
Carnap volume of the Library of Living Philosophers, ed. by P. A. Schilpp, especially note 87.
This is now also in my Conjectures and Refutations, 1963.
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favour, more probable than its negation. But this is only possible if (1)
is false, that is to say, if we have p(a) > 0.

A more direct disproof of ( + ) and a proof of (2) can be obtained
from an argument which Jeffreys gives in his Theory of Probability, § 1.6.8

Jeffreys discusses a formula which he numbers (3) and which in our
symbolism amounts to the assertion that, provided p(bi, a) = 1 for every
i � n, so that p(abn) = p(a), the following formula must hold:

p(a, bn) = p(a)/p(bn) = p(a)/p(b1)p(b2, b1) . . . p(bn, b
n − 1)(10)

Discussing this formula, Jeffreys says (I am still using my symbols in
place of his): ‘Thus, with a sufficient number of verifications, one of
three things must happen: (1) The probability of a on the information
available exceeds 1. (2) it is always 0. (3) p(bn, b

n − 1) will tend to 1.’ To
this he adds that case (1) is impossible (trivially so), so that only (2)
and (3) remain. Now I say that the assumption that case (3) holds
universally, for some obscure logical reasons (and it would have to
hold universally, and indeed a priori, if it were to be used in induction),
can be easily refuted. For the only condition needed for deriving (10),
apart from 0 < p(bi) < 1, is that three exists some statement a such that
p(bn, a) = 1. But this condition can always be satisfied, for any sequence
of statements bi. For assume that the bi are reports on penny tosses; then
it is always possible to construct a universal law a which entails the
reports of all the n − 1 observed penny tosses, and which allows us to
predict all further penny tosses (though probably incorrectly).9 Thus

8 I translate Jeffreys’s symbols into mine, omitting his H since nothing in the argument
prevents us from taking it to be either tautological or at least irrelevant; in any case, my
argument can easily be restated without omitting Jeffreys’s H.
9 Note that there is nothing in the conditions under which (10) is derived which would
demand the bi to be of the form ‘B(ki)’, with a common predicate ‘B’, and therefore
nothing to prevent our assuming that bi = ‘ki is heads’ and bj = ‘kj is tails’. Nevertheless, we
can construct a predicate ‘B’ so that every bi has the form ‘B(ki)’: we may define B as
‘having the property heads, or tails, respectively, if and only if the corresponding elem-
ent of the sequence determined by the mathematical law a is 0, or is 1, respectively’. (It
may be noted that a predicate like this can be defined only with respect to a universe of
individuals which are ordered, or which may be ordered; but this is of course the only case
that is of interest if we have in mind applications to problems of science. Cf. my Preface,
1958, and note 2 to section *49 of my Postscript.)
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the required a always exists; and there always is also another law, a′,
yielding the same first n − 1 results but predicting, for the nth toss, the
opposite result. It would be paradoxical, therefore, to accept Jeffreys’s
case (3), since for a sufficiently large n we would always obtain p(bn,
bn − 1) close to 1, and also (from another law, a′) p(b̄n, b

n − 1) close to 1.
Accordingly, Jeffreys’s argument, which is mathematically inescapable,
can be used to prove his case (2), which happens to coincide with my
own formula (2), as stated at the beginning of this appendix.10

We may sum up our criticism of ( + ) as follows. Some people believe
that, for purely logical reasons, the probability that the next thing we
meet will be red increases in general with the number of red things
seen in the past. But this is a belief in magic—in the magic of human
language. For ‘red’ is merely a predicate; and there will always be
predicates A and B which both apply to all the things so far observed,
but lead to incompatible probabilistic predictions with respect to the
next thing. These predicates may not occur in ordinary languages, but
they can always be constructed. (Strangely enough, the magical belief
here criticized is to be found among those who construct artificial
model languages, rather than among the analysts of ordinary lan-
guage.) By thus criticizing ( + ) I am defending, of course, the principle
of the (absolute logical) independence of the various an from any combination
aiaj . . . ; that is to say, my criticism amounts to a defence of (4) and (1).

There are further proofs of (1). One of them which is fundamentally
due to an idea of Jeffreys and Wrinch11 will be discussed more fully in
appendix *viii. Its main idea may be put (with slight adjustments) as
follows.

Let e be an explicandum, or more precisely, a set of singular facts or data
which we wish to explain with the help of a universal law. There will
be, in general, an infinite number of possible explanations—even an
infinite number of explanations (mutually exclusive, given the data e)
such that the sum of their probabilities (given e) cannot exceed unity.
But this means that the probability of almost all of them must be
zero—unless, indeed, we can order the possible laws in an infinite

10 Jeffreys himself draws the opposite conclusion: he adopts as valid the possibility stated
in case (3).
11 Philos. Magazine 42, 1921, pp. 369 ff.

new appendices384



sequence, so that we can attribute to each a positive probability in such
a way that their sum converges and does not exceed unity. And it
means, further, that to laws which appear earlier in this sequence, a
greater probability must be attributed (in general) than to laws which
appear later in the sequence. We should therefore have to make sure
that the following important consistency condition is satisfied:

Our method of ordering the laws must never place a law before another one if it is
possible to prove that the probability of the latter is greater than that of the former.

Jeffreys and Wrinch had some intuitive reasons to believe that a
method of ordering the laws satisfying this consistency condition may
be found: they proposed to order the explanatory theories according to
their decreasing simplicity (‘simplicity postulate’), or according to
their increasing complexity, measuring complexity by the number of
the adjustable parameters of the law. But it can be shown (and it will be
shown in appendix *viii) that this method of ordering, or any other
possible method, violates the consistency condition.

Thus we obtain p(a, e) = 0 for all explanatory hypotheses, whatever
the data e may be; that is to say, we obtain (2), and thereby indirectly
(1).

(An interesting aspect of this last proof is that it is valid even in a
finite universe, provided our explanatory hypotheses are formulated in
a mathematical language which allows for an infinity of (mutually
exclusive) hypotheses. For example, we may construct the following
universe.12 On a much extended chessboard, little discs or draught
pieces are placed by somebody according to the following rule: there is
a mathematically defined function, or curve, known to him but not to
us, and the discs may be placed only in squares which lie on the curve;
within the limits determined by this rule, they may be placed at ran-
dom. Our task is to observe the placing of the discs, and to find an
‘explanatory theory’, that is to say, the unknown mathematical curve, if
possible, or one very close to it. Clearly, there will be an infinity of
possible solutions any two of which are incompatible, although some
of them will be indistinguishable with respect to the discs placed on
the board. Any of these theories may, of course, be ‘refuted’ by discs
placed on the board after the theory was announced. Although the

12 A similar example is used in appendix *viii, text to note 2.
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‘universe’—that of possible positions—may here be chosen to be a
finite one, there will be nevertheless an infinity of mathematically
incompatible explanatory theories. I am aware, of course, that instru-
mentalists or operationalists might say that the differences between any
two theories determining the same squares would be ‘meaningless’.
But apart from the fact that this example does not form part of my argument—so
that I need really not reply to this objection—the following should be
noted. It will be possible, in many cases, to give ‘meaning’ to these
‘meaningless’ differences by making our mesh sufficiently fine, i.e.
subdividing our squares.)

The detailed discussion of the fact that my consistency condition
cannot be satisfied will be found in appendix *viii. I will now leave the
problem of the validity of formulae (1) and (2), in order to proceed to
the discussion of a formal problem arising from the fact that these
formulae are valid, so that all universal theories, whatever their
content, have zero probability.

There can be no doubt that the content or the logical strength of two
universal theories can differ greatly. Take the two laws a1 = ‘All planets
move in circles’ and a2 = ‘All planets move in ellipses’. Owing to the
fact that all circles are ellipses (with eccentricity zero), a1 entails a2, but
not vice versa. The content of a1 is greater by far than the content of a2.
(There are, of course, other theories, and logically stronger ones, than
a1; for example, ‘All planets move in concentric circles round the sun’.)

The fact that the content of a1 exceeds that of a2 is of the greatest
significance for all our problems. For example, there are tests of a1—that
is to say, attempts to refute a1 by discovering some deviation from
circularity—which are not tests of a2; but there could be no genuine
test of a2 which would not, at the same time, be an attempt to refute a1.
Thus a1 can be more severely tested than a2, it has the greater degree of
testability; and if it stands up to its more severe tests, it will attain a
higher degree of corroboration than a2 can attain.

Similar relationships may hold between two theories, a1 and a2, even
if a1 does not logically entail a2, but entails instead a theory to which a2

is a very good approximation. (Thus a1 may be Newton’s dynamics and
a2 may be Kepler’s laws which do not follow from Newton’s theory,
but merely ‘follow with good approximation’; see also section *15 of
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my Postscript.) Here too, Newton’s theory is better testable, because its
content is greater.13

Now our proof of (1) shows that these differences in content and in
testability cannot be expressed immediately in terms of the absolute
logical probability of the theories a1 and a2, since p(a1) = p(a2) = 0. And
if we define a measure of content, C(a), by C(a) = 1 − p(a), as suggested
in the book, then we obtain, again, C(a1) = C(a2), so that the differences
in content which interest us here remain unexpressed by these meas-
ures. (Similarly, the difference between a self-contradictory statement
aā and a universal theory a remains unexpressed since p(aā) = p(a) = 0,
and C(aā) = C(a) = 1.14)

13 Whatever C. G. Hempel may mean by ‘confirming evidence’ of a theory, he clearly
cannot mean the result of tests which corroborate the theory. For in his papers on the
subject (Journal of Symbolic Logic 8, 1943, pp. 122 ff., and especially Mind 54, 1945, pp. 1 ff.
and 97 ff.; 55, 1946, pp. 79 ff.), he states (Mind 54, pp. 102 ff.) among his conditions
for adequacy the following condition (8.3): if e is confirming evidence of several
hypotheses, say h1 and h2, then h1 and h2 and e must form a consistent set of statements.

But the most typical and interesting cases tell against this. Let h1 and h2 be Einstein’s
and Newton’s theories of gravitation. They lead to incompatible results for strong gravi-
tational fields and fast moving bodies, and therefore contradict each other. And yet, all
the known evidence supporting Newton’s theory is also evidence supporting Einstein’s,
and corroborates both. The situation is very similar for Newton’s and Kepler’s theories,
or Newton’s and Galileo’s. (Also, any unsuccessful attempt to find a red or yellow swan
corroborates both the following two theories which contradict each other in the pres-
ence of the statement ‘there exists at least one swan’: (i) ‘All swans are white’ and (ii) ‘All
swans are black’.)

Quite generally, let there be a hypothesis h, corroborated by the result e of severe tests,
and let h1, and h2 be two incompatible theories each of which entails h. (h1 may be ah, and
h2 may be āh.) Then any test of h is one of both h1 and h2, since any successful refutation of
h would refute both h1 and h2; and if e is the report of unsuccessful attempts to refute h,
then e will corroborate both h1 and h2. (But we shall, of course, look for crucial tests
between h1 and h2.) With ‘verifications’ and ‘instantiations’, it is, of course, otherwise.
But these need not have anything to do with tests.

Yet quite apart from this criticism, it should be noted that in Hempel’s model language
identity cannot be expressed; see his paper in The Journal of Symbolic Logic 8, 1943, the last
paragraph on p. 143, especially line 5 from the end of the paper, and p. 21 of my Preface,
1958. For a simple (‘semantical’) definition of instantiation, see the last footnote of my note in
Mind 64, 1955, p. 391.
14 That a self-contradictory statement may have the same probability as a consistent
synthetic statement is unavoidable in any probability theory if applied to some infinite universe
of discourse: this is a simple consequence of the multiplication law which demands that

appendix *vii 387



All this does not mean that we cannot express the difference in
content between a1 and a2 in terms of probability, at least in some
cases. For example, the fact that a1 entails a2 but not vice versa would give
rise to

p(a1, a2) = 0; p(a2, a1) = 1

even though we should have, at the same time, p(a1) = p(a2) = 0.

Thus we should have

p(a1, a2) < p(a2, a1)

which would be an indication of the greater content of a1.
The fact that there are these differences in content and in absolute

logical probability which cannot be expressed immediately by the cor-
responding measures may be expressed by saying that there is a ‘fine
structure’ of content, and of logical probability, which may allow us to
differentiate between greater and smaller contents and absolute prob-
abilities even in cases where the measures C(a) and p(a) are too coarse,
and insensitive to the differences; that is, in cases where they yield
equality. In order to express this fine structure, we may use the symbols
‘ ’ (‘is higher’) and ‘ ’ (‘is lower’), in place of the ordinary symbols
‘ > ’ and ‘ < ’. (We may also use ‘ ’, or ‘is higher or equally high’,

p(a1a2 . . . an) must tend to zero provided all the ai are mutually independent. Thus the
probability of tossing n successive heads is, according to all probability theories, 1/2n,
which becomes zero if the number of throws becomes infinite.

A similar problem of probability theory is this. Put into an urn n balls marked with the
numbers 1 to n, and mix them. What is the probability of drawing a ball marked with a
prime number? The well-known solution of this problem, like that of the previous one,
tends to zero when n tends to infinity; which means that the probability of drawing a ball
marked with a divisible number becomes 1, for n → ∞, even though there is an infinite
number of balls with non-divisible numbers in the urn. This result must be the same in
any adequate theory of probability. One must not, therefore, single out a particular theory
of probability, such as the frequency theory, and criticize it as ‘at least mildly para-
doxical’ because it yields this perfectly correct result. (A criticism of this kind will be
found in W. Kneale’s Probability and Induction, 1949, p. 156). In view of our last ‘problem of
probability theory’—that of drawing numbered balls—Jeffrey’s attack on those who
speak of the ‘probability distribution of prime numbers’ seems to me equally unwar-
ranted. (Cf. Theory of Probability, 2nd edition, p. 38, footnote.)
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and ‘ ’.) The use of these symbols can be explained by the following
rules:

(1) ‘C(a)  C(b)’ and thus its equivalent ‘p(b)  p(a)’ may be used
to state that the content of a is greater than that of b—at least in the sense
of the fine structure of content. We shall thus assume that C(a)  C(b)
entails C(a)  C(b), and that this in turn entails C(a) � C(b), that is to
say, the falsity of C(a) < C(b). None of the opposite entailments hold.

(2) C(a)  C(b) and C(a)  C(b) together entail C(a) = C(b), but
C(a) = C(b) is compatible with C(a)  C(b), or with C(a)  C(b) and,
of course, also with C(a)  C(b) and with C(a)  C(b).

(3) C(a) > C(b) always entails C(a)  C(b).
(4) Corresponding rules will hold for p(a)  p(b), etc.

The problem now arises of determining the cases in which we may
say that C(a)  C(b) holds even though we have C(a) = C(b). A number
of cases are fairly clear; for example, unilateral entailment of b by a.
More generally, I suggest the following rule:

If for all sufficiently large finite universes (that is, for all universes
with more than N members, for some sufficiently large N), we have
C(a) > C(b), and thus, in accordance with rule (3), C(a)  C(b), we
retain C(a)  C(b) for an infinite universe even if, for an infinite
universe, we obtain C(a) = C(b).

This rule seems to cover most cases of interest, although perhaps not
all.15

The problem of a1 = ‘All planets move in circles’ and a2 = ‘All planets
move in ellipses’ is clearly covered by our rule, and so is even the case
of comparing a1 and a3 = ‘All planets move in ellipses with an eccen-
tricity other than zero’; for p(a3) > p(a1) will hold in all sufficiently
large finite universes (of possible observations, say) in the simple sense
that there are more possibilities compatible with a3 than with a1.

*
15 Related problems are discussed in considerable detail in John Kemeny’s very stimulat-
ing paper ‘A Logical Measure Function’, Journal of Symb. Logic 18, 1953, pp. 289 ff.
Kemeny’s model language is the second of three to which I allude on p. xxiv of my
Preface, 1958. It is, in my opinion, by far the most interesting of the three. Yet as he
shows on p. 294, his language is such that infinitistic theorems—such as the principle
that every number has a successor—must not be demonstrable in it. It thus cannot
contain the usual system of arithmetic.
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The fine-structure of content and of probability here discussed not
only affects the limits, 0 and 1, of the probability interval, but it affects
in principle all probabilities between 0 and 1. For let a1 and a2 be
universal laws with p(a2) = 0 and p(a1)  p(a2), as before; let b be not
entailed by either a1 or a2 or their negations; and let 0 < p(b) = r < 1.
Then we have

p(a1 v b) = p(a2 v b) = r

and at the same time

p(a1 v b)  p(a2 v b).

Similarly we have

p(ā1b) = p(ā2b) = r

and at the same time

p(ā1b) = p(ā2b),

since p(ā1) p(ā2), although of course p(ā1) = p(ā2) = 1. Thus we may
have for every b such that p(b) = r, a c1 such that p(c1) = p(b) and
p(c1)  p(b), and also a c2 such that p(c2) = p(b) and p(c2)  p(b).

The situation here discussed is important for the treatment of the
simplicity or the dimension of a theory. This problem will be further discussed
in the next appendix.

Addendum, 1972

In the last paragraph of the preceding Appendix, I hinted that the idea
of a fine-structure of probability may be of significance for the com-
parison of the simplicity and dimension of theories. But the opposite
also holds. The simplicity and especially the dimension of a theory are
significant for the theory of its fine-structure, as emerges from the first
pages of the following Appendix.

The dimension of a theory is relative to a field of application and

new appendices390



thus to a set of problems for which the theory offers some solution. (The
same relativization will be relevant to the fine-structure of theories, and
thus to their ‘goodness’.)
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APPENDIX *viii

Content, Simplicity, and Dimension

As indicated earlier,1 I do not believe in hampering scientific language
by preventing the scientist from using freely, whenever it is conveni-
ent, new ideas, predicates, ‘occult’ concepts, or anything else. For this
reason, I cannot support the various recent attempts to introduce into
the philosophy of science the method of artificial calculi or ‘language
systems’—systems supposed to be models of a simplified ‘language of
science’. I believe that these attempts have not only been useless so far,
but that they have even contributed to the obscurity and confusion
prevalent in the philosophy of science.

It has been briefly explained in section 38 and in appendix i that,
had we (absolutely) atomic statements at our disposal—or what
amounts to the same, (absolutely) atomic predicates—then we might
introduce, as a measure of the content of a theory, the reciprocal of the
minimum number of atomic statements needed for refuting that theory.
For since the degree of content of a theory is the same as its degree of
testability or refutability, the theory which is refutable by fewer atomic
statements would also be the one which is the more easily refutable or
testable, and thus the one with the greater content. (In brief, the

1 See section 38, especially the text after note 2 and my appendix i; also my second
Preface, 1958.



smaller the number of atomic statements needed to compose a poten-
tial falsifier, the greater the content of the theory.)

But I do not want to operate either with the fiction of atomic state-
ments, or with an artificial language system in which atomic state-
ments are available to us. For it seems to me quite clear that there are no
‘natural’ atomic predicates available in science. To some older logicians,
the predicates ‘man’ and ‘mortal’ seem to have presented themselves as
examples of something like atomic predicates. Carnap uses ‘blue’ or
‘warm’ as examples—presumably because ‘man’ and ‘mortal’ are
highly complex ideas which (some may think) can be defined in terms
of simpler ideas such as ‘blue’ or ‘warm’. Yet it is characteristic of
scientific discussions that neither these nor any other predicates are
treated as (absolutely) atomic. Depending upon the problem under
consideration, not only ‘man’ and ‘mortal’ but also ‘blue’ or ‘warm’
may be treated as highly complex; ‘blue’, say, as the colour of the sky,
explicable in terms of atomic theory. Even the phenomenal term ‘blue’
may be treated, in certain contexts, as definable—as a character of
visual images correlated with certain physiological stimuli. It is charac-
teristic of scientific discussion that it proceeds freely; and the attempt
to take away its freedom, by tying it down upon the Procrustean bed of
a pre-established language system would, if successful, be the end of
science.

For these reasons I rejected in advance the idea of using atomic
statements for the purpose of measuring the degree of content or simplicity
of a theory; and I suggested that we might use, instead, the idea of
relative-atomic statements; and further, the idea of a field of statements which
are relative-atomic with respect to a theory or a set of theories to the
testing of which they are relevant; a field F which could be interpreted
as a field of application of the theory, or of the set of theories.

If we take as our example again, as in the preceding appendix, the
two theories a1 = ‘All planets move in circles’ and a2 = ‘All planets move
in ellipses’, then we can take as our field all the statements of the form
‘At the time x the planet y was in the position z’, which will be our
relative atomic statements. And if we assume that we already know that
the track of the planet is a plane curve, then we can take a graphpaper
that represents the field and enter on it the various positions, marking
in each case the time, and the name of the planet in question, so that
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each entry represents one of the relative-atomic statements. (We can, of
course, make the representation three-dimensional, by marking the
position with a pin whose length represents the time, measured from
some assumed zero instant; and variations in the colour of the pinhead
may be used to indicate the names of the various planets.)

It has been explained, mainly in sections 40 to 46, and in my old
appendix i, how the minimum number of the relative-atomic state-
ments needed to refute a certain theory could be used as a measure of
the complexity of the theory. And it was shown that the formal simplicity
of a theory might be measured by the paucity of its parameters, in so far as
this paucity was not the result of a ‘formal’ rather than a ‘material’
reduction in the number of the parameters. (Cf. especially sections 40,
44, f., and appendix i.)

Now all these comparisons of the simplicity of theories, or of their
contents, will, clearly, amount to comparisons of the ‘fine-structure’ of
their contents, in the sense explained in the preceding appendix,
because their absolute probabilities will all be equal (that is, equal to
zero). And I wish first to show that the number of the parameters of a
theory (with respect to a field of application) can indeed be interpreted
as measuring the fine-structure of its content.

What I have to show, to this end, is that for a sufficiently large finite universe,
the theory with the greater number of parameters will always be more probable (in the
classical sense) than the theory with the smaller number of parameters.

This can be shown as follows. In the case of a continuous geo-
metrical field of applications, our universe of possible events, each
described by a possible relative-atomic statement, is of course infinite.
As shown in sections 38 f., we can in this case compare two theories
with respect to the dimension, rather than the number, of the possibilities
which they leave open; that is, the possibilities which are favourable to
them. The dimension of these possibilities turns out to be equal to the
number of parameters. We now replace the infinite universe of relative-
atomic statements by a finite (although very large) universe of relative-
atomic statements, corresponding to the chessboard example in the
preceding appendix.2 That is to say, we assume that every relative-
atomic statement refers to a little square with the side ε as the position of

2 Cf. appendix *vii, text to note 12.
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a planet rather than to a point of the plane, and that the possible
positions do not overlap.3 Somewhat differently from the example of
the preceding appendix, we now replace the various curves which are
the usual geometrical representations of our theories by ‘quasi curves’
(of a width approximately equal to ε); that is to say, by sets, or chains,
of squares. As a result of all this, the number of the possible theories
becomes finite.

We now consider the representation of a theory with d parameters
which in the continuous case was represented by a d-dimensional con-
tinuum whose points (d-tuples) each represented a curve. We find that
we can still use a similar representation, except that our d-dimensional
continuum will be replaced by a d-dimensional arrangement of d-
dimensional ‘cubes’ (with the side ε). Each chain of these cubes will
now represent one ‘quasi curve’, and thus one of the possibilities
favourable to the theory; and the d-dimensional arrangement will rep-
resent the set of all ‘quasi-curves’ compatible with, or favourable to, the
theory.

But we can now say that the theory with fewer parameters—that is
to say, the set of quasi curves which is represented by an arrangement
of fewer dimensions—will not only have fewer dimensions, but will
also contain a smaller number of ‘cubes’; that is, of favourable
possibilities.

Thus we are justified in applying the results of the preceding section:
if a1 has fewer parameters than a2, we can assert that, in a sufficiently
large but finite universe, we shall have

p(a1) < p(a2)

and therefore

p(a1) p(a2).(*)

3 The assumption that the possible positions do not overlap is made in order to simplify
the exposition. We could just as well assume that any two neighbouring squares partly
overlap—say, for a quarter of their area; or we could replace the squares by overlapping
circles (overlapping so as to enable us to cover the whole area with them). This last
assumption would be a little closer to an interpretation of the ‘positions’ as the never
absolutely sharp results of possible measurements of positions.
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But formula (*) remains valid when we assume that ε tends to zero,
which in the limit amounts to replacing the finite universe by an
infinite one. We arrive, therefore, at the following theorem.

(1) If the number of parameters of a1 is smaller than the number of
parameters of a2, then the assumption

p(a1) > p(a2)

contradicts the laws of the calculus of probability.
Writing ‘dF(a)’, or more simply ‘d(a)’, for the dimension of the

theory a (with respect to the field of application F) we can formulate
our theorem as follows.

If d(a1) < d(a2) then p(a1) p(a2);(1)

consequently, ‘p(a1) > p(a2)’ is incompatible with ‘d(a1) < d(a2)’.
This theorem (which is implied in what has been said in the body of

the book) is in keeping with the following considerations. A theory a
requires a minimum of d(a) + 1 relative-atomic statements for its refu-
tation. Its ‘weakest falsifiers’, as we may call them, consist of a conjunction
of d(a) + 1 relative-atomic statements. This means that if n � d(a), then
no conjunction of n relative-atomic statements is logically strong
enough for deriving from them ā, that is, the negation of a. The
strength or content of ā, accordingly, can be measured by d(a) + 1,
since a will be stronger than any conjunction of d(a) relative-atomic
statements but certainly not stronger than some conjunctions of
d(a) + 1 such statements. But from the probability rule

p(ā) = 1 − p(a)

we know that the probability of a theory a decreases with increasing
probability of its negation ā, and vice versa, and that the same relations
hold between the contents of a and of ā. From this we see, again, that
d(a1) < d(a2) means that the content of a1 is greater than that of a2, so
that d(a1) < d(a2) entails p(a1) p(a2), and is thus incompatible with
p(a1) > p(a2). But this result is nothing but the theorem (1) derived
above.
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Our theorem has been derived by considering finite universes, and it
is indeed quite independent of the transition to infinite universes. It is
therefore independent of the formulae (1) and (2) of the preceding
appendix, that is to say, of the fact that in an infinite universe, we have
for any universal law a and any finite evidence e,

p(a) = p(a, e) = 0.(2)

We may therefore legitimately use (1) for another derivation of (2);
and this can indeed be done, if we utilize an idea due to Dorothy
Wrinch and Harold Jeffreys.

As briefly indicated in the preceding appendix,4 Wrinch and Jeffreys
observed that if we have an infinity of mutually incompatible or
exclusive explanatory theories, the sum of the probabilities of these
theories cannot exceed unity, so that almost all of these probabilities
must be zero, unless we can order the theories in a sequence, and
assign to each, as its probability, a value from a convergent sequence of
fractions whose sum does not exceed 1. For example, we may make the
following assignments: we may assign the value 1/2 to the first theory,
1/22 to the second, and, generally, 1/2n to the nth. But we may also
assign to each of the first 25 theories the value 1/50, that is to say,
1/(2.25); to each of the next 100, say, the value 1/400, that is to
say, 1/(22.100) and so on.

However we may construct the order of the theories and however we
may assign our probabilities to them, there will always be some greatest
probability value, P say (such as 1/2 in our first example, or 1/50), and
this value P will be assigned to at most n theories (where n is a finite
number, and n.P < 1). Each of these n theories to which the maximum
probability P has been assigned, has a dimension. Let D be the largest
dimension present among these n theories, and let a1 be one of them,
with d(a1) = D. Then, clearly, none of the theories with dimensions
greater than D will be among our n theories with maximum prob-
ability. Let a2 be a theory with a dimension greater than D, so that
d(a2) > D = d(a1). Then the assignment leads to:

4 Cf. appendix *vii, text to footnote 11.
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d(a1) < d(a2); and p(a1) > p(a2).(−)

This result shows that our theorem (1) is violated. But an assignment
of the kind described which leads to this result is unavoidable if we
wish to avoid assigning the same probability—that is, zero—to all
theories. Consequently our theorem (1) entails the assignment of zero
probabilities to all theories.

Wrinch and Jeffreys themselves arrived at a very different result.
They believed that the possibility of empirical knowledge required the
possibility of raising the probability of a law by accumulating evidence
in its favour. From this they concluded that (2) must be false, and
further, that a legitimate method must exist of assigning non-zero
probabilities to an infinite sequence of explanatory theories. Thus
Wrinch and Jeffreys drew very strong positive conclusions from the
‘transcendental’ argument (as I called it in the preceding appendix).5

Believing, as they did, that an increase in probability means an increase
in knowledge (so that obtaining a high probability becomes an aim of
science), they did not consider the possibility that we may learn from
experience more and more about universal laws without ever increasing their probability;
that we may test and corroborate some of them better and better,
thereby increasing their degree of corroboration without altering their prob-
ability whose value remains zero.

Jeffreys and Wrinch never described the sequence of theories, and
the assignment of probability values, in a sufficiently clear way. Their
main idea, called the ‘simplicity postulate’,6 was that the theories
should be so ordered that their complexity, or number of parameters,
increases, while the probabilities which they assign to them decrease;
this, incidentally, would mean that any two theories of the sequence
would violate our theorem (1). But this way of ordering cannot be
carried through, as Jeffreys himself noticed. For there may be theories

5 Cf. note 3 to appendix *vii.
6 In his Theory of Probability, § 3.0, Jeffreys says of the ‘simplicity postulate’ that it ‘is not . . .
a separate postulate but an immediate application of rule 5’. But all that rule 5 contains,
by way of reference to rule 4 (both rules are formulated in § 1.1) is a very vague form of
the ‘transcendental’ principle. Thus it does not affect our argument.
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with the same number of parameters. Jeffreys himself gives as examples
y = ax and y = ax2; and he says of them: ‘laws involving the same num-
ber of parameters can be taken as having the same prior probability.’7

But the number of laws having the same prior probability is infinite, for
Jeffreys’s own examples can be continued to infinity: y = ax3, y = ax4,
. . . y = axn, and so on, with n → ∞. Thus for each number of parament-
ers, the same problem would recur as for the whole sequence.

Moreover, Jeffreys himself recognizes, in the same § 3.0,8 that a law,
a1, say, may be obtained from a law a2 with one additional parameter,
by assuming that parameter to be equal to zero; and that in this case,
p(a1) < p(a2), since a1 is a special case of a2, so that fewer possibilities
belong to a1.

9 Thus in this special case, he recognizes that a theory with
fewer parameters will be less probable than one with more
parameters—in agreement with our theorem (1). But he recognizes
this fact only in this special case; and he does not comment at all on the
fact that a contradiction may well arise between his simplicity postulate
and this case. Altogether, he nowhere tries to show that the simplicity
postulate is consistent with his axiom system; but in view of the special
case mentioned (which of course follows from his axiom system) it
should have been clear that a proof of consistency was urgently needed.

Our own considerations show that a consistency proof cannot be
given, and that the ‘simplicity postulate’ must contradict every
adequate axiom system for probability; for it must violate our
theorem (1).

In concluding this appendix, I wish to attempt something like an
explanation why Wrinch and Jeffreys may have regarded their
‘simplicity postulate’ as harmless—as unable to create trouble.

It should be kept in mind that they were the first to identify sim-
plicity and paucity of parameters. (I do not simply identify these two: I
distinguish between a formal and a material reduction in the number
of the parameters—cf. sections 40, 44, 45—and intuitive simplicity

7 Theory of Probability, § 3.0 (1st edition, p. 95; 2nd edition, p. 100).
8 Op. cit., 1st edition, p. 96; 2nd edition, p. 101.
9 Jeffreys, loc. cit., remarks that ‘half the prior probability [of a2] is concentrated
at αm + 1 = 0’, which seems to mean that p(a1) = p(a2)/2; but this rule may lead to
contradictions if the number of parameters of a2 is greater than 2.
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thus becomes something like formal simplicity; but otherwise my
theory of simplicity agrees with that of Wrinch and Jeffreys in this
point.) They also saw clearly that simplicity is one of the things aimed
at by scientists—that these prefer a simpler theory to a more com-
plicated one, and that they therefore try the simplest theories first. On
all these points, Wrinch and Jeffreys were right. They were also right in
believing that there are comparatively few simple theories, and many
complex ones whose numbers increase with the number of their
parameters.

This last fact may have led them to believe that the complex theories
were the less probable ones (since the available probability was some-
how to be divided among the various theories). And since they also
assumed that a high degree of probability was indicative of a high
degree of knowledge and therefore was one of the scientist’s aims, they
may have thought that it was intuitively evident that the simpler (and
therefore more desirable) theory was to be identified with the more
probable (and therefore more desirable) theory; for otherwise the aims
of the scientist would become inconsistent. Thus the simplicity postu-
late appeared to be necessary on intuitive grounds and therefore a
fortiori consistent.

But once we realize that the scientist does not and cannot aim at a
high degree of probability, and that the opposite impression is due to
mistaking the intuitive idea of probability for another intuitive idea
(here labelled ‘degree of corroboration’),10 it will also become clear to
us that simplicity, or paucity of parameters, is linked with, and tends to
increase with, improbability rather than probability. And so it will also

10 It is shown in point 8 of my ‘Third Note’, reprinted in appendix *ix, that if h is a
statistical hypothesis asserting ‘p(a,b) = 1’, then after n severe tests passed by the hypoth-
esis h, its degree of corroboration will be n/(n + 2) = 1 − (2/(n + 2)). There is a striking
similarity between this formula and Laplace’s ‘rule of succession’ according to which the
probability that h will pass its next test is (n + 1)/(n + 2) = 1 − (1/(n + 2)). The numer-
ical similarity of these results, together with the failure to distinguish between prob-
ability and corroboration, may explain why Laplace’s and similar results were intuitively
felt to be satisfactory. I believe Laplace’s result to be mistaken because I believe that his
assumptions (I have in mind what I call the ‘Laplacean distribution’) do not apply to the
cases he has in mind; but these assumptions apply to other cases; they allow us to
estimate the absolute probability of a report on a statistical sample. Cf. my ‘Third Note’
(appendix *ix).
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become clear to us that a high degree of simplicity is nevertheless
linked with a high degree of corroboration. For a high degree of test-
ability or corroborability is the same as a high prior improbability or
simplicity.

The problem of corroboration will be discussed in the next
appendix.

Addendum, 1967

If we remember what has been said in the old appendix i (p. 283)
about the dimension of a theory, a, relative to a field F, that is, dF(a), and what has
been said in the present appendix about the ‘weakest falsifiers’ of a theory,
we can introduce a measure of the simplicity or the content of a relative to F,
CtF (a), as follows:

CtF(a) = 1/(dF(a) + 1)

This is a measure of the fine structure of the content of a theory (relative to
F); for it may be applicable where the probabilities become indis-
tinguishable, because p(a) = 0.

Incidentally, simplicity should always be regarded as relative to a given
problem of explanation. (See note 24 to chapter 10, p. 241, of my Conjectures
and Refutations, in the (revised) second edition, 1965 (and later).)

Addendum, 1972

We sometimes discover a new connection between scientific problems.
Thus if the simplicity of a theory is relative to the problems which the
theory tries to solve, then it is, to some degree, also relative to the
historical problem-situation. With this it becomes clear that the prob-
lems of the content and simplicity of a theory may change in the
course of the historical development of a science.
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APPENDIX *ix

Corroboration, the Weight of
Evidence, and Statistical Tests

The three notes reprinted below in the present appendix were origin-
ally published in The British Journal for the Philosophy of Science.1

Even before my book was published, I felt that the problem of
degree of corroboration was one of those problems which should be
further investigated. By ‘the problem of degree of corroboration’ I
mean the problem (i) of showing that there exists a measure (to be
called degree of corroboration) of the severity of tests to which a theory
has been subjected, and of the manner in which it has passed these
tests, or failed them; and (ii) of showing that this measure cannot be a
probability, or more precisely, that it does not satisfy the formal laws of
the probability calculus.

An outline of the solution of both of these tasks—especially the
second—was contained in my book. But I felt that a little more was
needed. It was not quite enough to show the failure of the existing
theories of probability—of Keynes and of Jeffreys, for example, or of
Kaila, or of Reichenbach, none of whom could establish even their
central doctrine: that a universal law, or a theory, could ever reach a

1 B.J.P.S. 5, 1954, pp. 143 ff. (see also corrections on pp. 334 and 359); 7, 1957,
pp. 350 ff., and 8, 1958, pp. 294 ff.



probability > 1/2. (They even failed to establish that a universal law, or
a theory, could ever have a probability other than zero.) What was
needed was a perfectly general treatment. I therefore aimed at con-
structing a formal probability calculus which could be interpreted in
various senses. I had in mind (i) the logical sense, outlined in my book
as (absolute) logical probability of statements; (ii) the sense of relative
logical probability of statements or propositions, as envisaged by Key-
nes; (iii) the sense of a calculus of relative frequencies in sequences;
(iv) the sense of a calculus of a measure of ranges, or of predicates,
classes, or sets.

The ultimate aim was, of course, to show that degree of corroboration was
not a probability; that is to say that it was not one of the possible interpretations of the
probability calculus. Yet I realized that the task of constructing a formal
calculus was not only needed for this purpose, but was interesting in
itself.

This led to my paper in Mind, reprinted here as appendix *ii, and to
other work extending over many years and aimed both at simplifying
my axiom systems and at producing a probability calculus in which
p(a, b)—the probability of a given b—could have definite values, rather
than 0/0, even if p(b) was equal to zero. The problem arises, of course,
because the definition.

p(a, b) = p(ab)/p(b)

breaks down if p(b) = 0.
A solution of this last problem was needed because I soon found

that, in order to define C(x, y)—the degree of corroboration of the
theory x by the evidence y—I had to operate with some converse p(y,
x), called by Fisher the ‘likelihood of x’ (in the light of the evidence y, or
given y; note that both, my ‘corroboration’ and Fisher’s likelihood, are
intended to measure the acceptability of the hypothesis x; it is thus x
which is important, while y represents merely the changing empirical
evidence or, as I prefer to say, the reports of the results of tests). Now I was
convinced that, if x is a theory, p(x) = 0. I saw therefore that I had to
construct a new probability calculus in which the likelihood, p(y, x),
could be a definite number, other than 0/0, even if x was a universal
theory with p(x) = 0.
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I will now briefly explain how the problem of p(y, x)—of the likeli-
hood of x—arises.

If we are asked to give a criterion of the fact that the evidence y
supports or corroborates or confirms a statement x, the most obvious
reply is: ‘that y increases the probability of x’. We can put this in symbols
if we write ‘Co(x, y)’ for ‘x is supported or corroborated or confirmed
by y’. We then can formulate our criterion as follows.

Co(x, y) if, and only if, p(x, y) > p(x).(1)

This formulation, however, has a defect. For if x is a universal theory
and y some empirical evidence, then, as we have seen in the two
preceding appendices,2

p(x) = 0 = p(x, y).(2)

But from this it would follow that, for a theory x and evidence y,
Co(x, y) is always false; or in other words, that a universal law can never
be supported, or corroborated, or confirmed by empirical evidence.

(This holds not only for an infinite universe but also for any
extremely large universe, such as ours; for in this case, p(x, y) and p(x)
will be both immeasurably small, and thus practically equal.)

This difficulty however can be got over, as follows. Whenever p(x) ≠
0 ≠ p(y), we have

p(x, y) > p(x) if, and only if, p(y, x) > p(y),(3)

so that we can transform (1) into

Co(x, y) if, and only if, p(x, y) > p(x) or p(y, x) > p(y).(4)

Now let x be again a universal law, and let y be empirical evidence
which, say, follows from x. In this case, that is whenever y follows from
x, we shall say, intuitively, that p(y, x) = 1. And since y is empirical, so
that p(y) will certainly be less than 1, we find that (4) can be applied,

2 See, especially, appendix *vii, formulae (1) and (2), and appendix *viii, formula (2).
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and that the assertion Co(x, y) will be true. That is to say, x may be
corroborated by y if y follows from x, provided only that p(y) < 1. Thus
(4) is intuitively perfectly satisfactory; but in order to operate freely
with (4), we have to have a calculus of probability in which p(y, x) is a
definite number—in our case, 1—rather than 0/0, even if p(x) = 0. In
order to achieve this, a generalization of the usual calculus has to be
provided, as explained above.

Although I had realized this by the time my note in Mind appeared
(cf. appendix *ii), the pressure of other work which I considered more
urgent prevented me from completing my researches in this field. It
was only in 1954 that I published my results concerning degree of
corroboration, in the first of the notes here reprinted; and another six
months elapsed before I published an axiom system of relative prob-
ability3 (equivalent to, though less simple than, the one which will be
found in appendix *iv) which satisfied the demand that p(x, y) should
be a definite number even if p(y) was equal to zero. This paper provided
the technical prerequisites for a satisfactory definition of likelihood and
of degree of corroboration or confirmation.

My first note ‘Degree of Confirmation’, published in 1954 in the
B.J.P.S., contains a mathematical refutation of all those theories of induc-
tion which identify the degree to which a statement is supported or
confirmed or corroborated by empirical tests with its degree of
probability in the sense of the calculus of probability. The refutation
consists in showing that if we identify degree of corroboration or
confirmation with probability, we should be forced to adopt a
number of highly paradoxical views, among them the following clearly
self-contradictory assertion:
(*) There are cases in which x is strongly supported by z and y is
strongly undermined by z while, at the same time, x is confirmed by z to
a lesser degree than is y.

A simple example, showing that this devastating consequence
would follow if we were to identify corroboration or confirmation
with probability, will be found under point 6 of my first note.4 In view

3 See B.J.P.S. 6, 1955, pp. 56–57.
4 As opposed to the example here given in the text, the example given under points 5 and
6 of my first note are the simplest possible examples, that is to say, they operate with the
smallest possible number of equiprobable exclusive properties. This holds also for the
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of the brevity of that passage, I may perhaps explain this point here
again.

Consider the next throw with a homogeneous die. Let x be the
statement ‘six will turn up’; let y be its negation, that is to say, let y = x̄;
and let z be the information ‘an even number will turn up’.

We have the following absolute probabilities:

p(x) = 1/6; p(y) = 5/6; p(z) = 1/2.

Moreover, we have the following relative probabilities:

p(x, z) = 1/3; p(y, z) = 2/3.

We see that x is supported by the information z, for z raises the
probability of x from 1/6 to 2/6 = 1/3. We also see that y is under-
mined by z, for z lowers the probability of y by the same amount from
5/6 to 4/6 = 2/3. Nevertheless, we have p(x, z) < p(y, z). This example
proves the following theorem:
(5) There exist statements, x, y, and z, which satisfy the formula,

p(x, z) > p(x) & p(y, z) < p(y) & p(x, z) < p(y, z).

Obviously, we may replace here ‘p(y, z) < p(y)’ by the weaker
‘p(y, z) � p(y)’.

This theorem is, of course, far from being paradoxical. And the same
holds for its corollary (6) which we obtain by substituting for
‘p(x, z) > p(x)’ and ‘p(y, z) � p(y)’ the expressions ‘Co(x, z)’ and
‘∼Co(y, z)’—that is to say ‘non-Co(y, z)’—respectively, in accordance
with formula (1) above:
(6) There exist statements x, y and z which satisfy the formula

Co(x, z) & ∼ Co(y, z) & p(x, z) < p(y, z).

example given in the footnote to point 5. (As far as point 5 is concerned, there seems to
be an equivalent, though more complicated, example in Carnap’s Logical Foundations of
Probability, 1950, § 71; I have been unable to follow it, because of its complexity. As to my
point 6, I have found neither there, not anywhere else an example corresponding to it.)

new appendices406



Like (5), theorem (6) expresses a fact we have established by our
example: that x may be supported by z, and y undermined by z, and that
nevertheless x, given z, may be less probable than y, given z.

There at once arises, however, a clear self-contradiction if we now
identify in (6) degree of confirmation C(a, b) and probability p(a, b). In
other words, the formula

Co(x, z) & ∼ Co(y, z) & C(x, z) < C(y, z)(**)

(that is, ‘z confirms x but not y, yet z also confirms x to a lesser degree
than y’) is clearly self-contradictory.

Thus we have proved that the identification of degree of corrobora-
tion or confirmation with probability (and even with likelihood) is
absurd on both formal and intuitive grounds: it leads to self-
contradiction.

Here ‘degree of corroboration or confirmation’ may be taken in a
sense wider than the one I usually have in mind. While I usually take it
to be a synonym for ‘degree of severity of the tests which a theory has
passed’, it is here used merely as ‘degree to which a statement x is
supported by a statement y’.

If we look at this proof, then we see that it depends upon two
assumptions only:

(a) Formula (1);
(b) The assumption that any assertion of the following form is self-

contradictory:

(***) x has the property P (for example, the property ‘warm’) and y
has not the property P and y has the property P in a higher degree than
x (for example, y is warmer than x).

Every careful reader of my first note, and especially of the example
given under point 6, will find that all this is clearly implied there,
except perhaps the general formulation (***) of the contradictions (*)
and (**). Admittedly it is put here in a more explicit form; but the
purpose of my note was not so much to criticize as to give a definition
of degree of corroboration.

The criticism contained in my note was directed against all those
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who identify, explicitly or implicitly, degree of corroboration, or of
confirmation, or of acceptability, with probability; the philosophers I
had in mind were especially Keynes, Jeffreys, Reichenbach, Kaila,
Hosiasson and, more recently, Carnap.

As to Carnap, I wrote a critical footnote which, I believe, speaks for
itself. It was motivated by the fact that Carnap, in stating adequacy
criteria for degree of confirmation, speaks of the consensus of ‘practic-
ally all modern theories of degree of confirmation’, but does not men-
tion my dissent, in spite of the fact that he introduced the English term
‘degree of confirmation’ as a translation of my term ‘Grad der Bewährung’.
(Cf. the footnote before section 79, above.) Moreover, I wished to point
out that his division of probability into probability1 (= his degree of
confirmation) and probability2 (= statistical frequency) was insuffi-
cient: that there were at the very least two interpretations of the calcu-
lus of probability (the logical and the statistical) and that, in addition,
there was my degree of corroboration which was not a probability (as has
now been shown here, and as was shown in my note).

It seems that this ten-line footnote of mine has drawn more atten-
tion to itself than the rest of my note. It led to a discussion in the B.J.P.S.5

in which Bar-Hillel asserted that my criticism of what he termed ‘the
current theory of confirmation’ (i.e. Carnap’s theory) was purely verbal
and that all I had to say was anticipated by Carnap; and it led to a review
of my paper in the Journal of Symbolic Logic6 in which Kemeny summed up
my note by the words: ‘The principal thesis of this paper is that
Carnap’s proposed measurers of degree of confirmation, or any other
assignment of logical probability, are not suited to measure degrees of
confirmation.’

This was certainly not my principal thesis. My note was a continu-
ation of some work of mine published fifteen years before Carnap’s
book was written; and as far as criticism is concerned, the point at
issue—the identification of corroboration or confirmation or accept-
ability with probability—though it is of course the main thesis of
Carnap’s book, is far from being an original thesis of Carnap’s; for he is

5 See B.J.P.S. 6, 1955, pp. 155 to 163; and 7, 1956, pp. 243 to 256.
6 See J.S.L. 20, 1955, p. 304. The following is an error of fact in Kemeny’s review: in line
16 from the bottom of the page, ‘measure of support given by y to x’ should read
‘measure of the explanatory power of x with respect to y’.
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here merely following the tradition of Keynes, Jeffreys, Reichenbach,
Kaila, Hosiasson, and others. Moreover, both Bar-Hillel and Kemeny
suggest that this criticism, as far as it applies to Carnap’s theory, is
purely verbal, and that there is no reason why Carnap’s theory should
be given up; and I therefore feel compelled to say now quite clearly that
Carnap’s theory is self-contradictory, and that its contradictoriness is
not a minor matter which can be easily repaired, but is due to mistakes
in its logical foundations.

First, both the assumptions (a) and (b) which, as we have seen,
suffice for the proof that degree of confirmation must not be identified
with probability, are explicitly asserted in Carnap’s theory: (a), that is
to say our formula (1), can be found in Carnap’s book as formula (4)
on p. 464;7 (b), that is to say (***), or the assumption that our (**) is
self-contradictory, can be found on p. 73 of Carnap’s book where he
writes: ‘If the property Warm and the relation Warmer were designated
by . . . , say, ‘P’ and ‘R’, then ‘Pa.∼Pb.Rba’ would be self-contradictory.’
But this is our (***). Of course, in a way it is quite irrelevant to my
argument that shows the absurdity of the identification of C and p
whether or not (a) and (b) are explicitly admitted in a book; but it so
happens that in Carnap’s book, they are.

Moreover, the contradiction here explained is crucial for Carnap: by
accepting (1), or more precisely, by defining on pp. 463 f. ‘x is con-
firmed by y’ with the help of ‘p(x, y) > p(x)’ (in our symbolism),
Carnap shows that the intended meaning of ‘degree of confirmation’
(his ‘explicandum’) is, roughly, the same as the one intended by myself. It is
the intuitive idea of degree of support by empirical evidence. (Kemeny
loc. cit. is mistaken when he suggests the opposite. In fact, ‘a careful
reading’ of my paper—and, I should add, of Carnap’s book—will not
‘show that Popper and Carnap have two different explicanda in mind’, but
it will show that Carnap had inadvertently two different and incompat-
ible ‘explicanda’ in mind with his probability1, one of them my C, the
other my p; and it will show that I have repeatedly pointed out the
dangers of this confusion—for example in the paper reviewed by

7 See also formula (6) on p. 464. Carnap’s formula (4) on p. 464 is written as an
equivalence, but this does not make any difference. Note that Carnap writes ‘t’ for
tautology; a usage which would allow us to write p(x, t) instead of p(x).
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Kemeny.) Therefore, any change of assumption (a) would be ad hoc. It
is not my criticism that is ‘purely verbal’, but the attempts to rescue the
‘current theory of confirmation’.

For further details, I must refer to the discussion in the pages of the
B.J.P.S. I may say that I was a little disappointed both by this discussion
and by Kemeny’s review in the Journal of Symbolic Logic. From a rational
point of view, the situation appears to me quite serious. In this post-
rationalist age of ours, more and more books are written in symbolic
languages, and it becomes more and more difficult to see why: what it
is all about, and why it should be necessary, or advantageous, to allow
oneself to be bored by volumes of symbolic trivialities. It almost seems
as if the symbolism were becoming a value in itself, to be revered for its
sublime ‘exactness’: a new expression of the old quest for certainty, a
new symbolic ritual, a new substitute for religion. Yet the only possible
value of this kind of thing—the only possible excuse for its dubious
claim to exactness—seems to be this. Once a mistake, or a contradic-
tion, is pin-pointed, there can be no verbal evasion: it can be proved,
and that is that. (Frege did not try evasive manœuvres when he
received Russell’s criticism.) So if one has to put up with a lot of
tiresome technicalities, and with a formalism of unnecessary complex-
ity, one might at least hope to be compensated by the ready acceptance
of a straight-forward proof of contradictoriness—a proof consisting of
the simplest of counter-examples. It was disappointing to be met,
instead, by merely verbal evasions, combined with the assertion that
the criticism offered was ‘merely verbal’.

Still, one must not be impatient. Since Aristotle, the riddle of induc-
tion has turned many philosophers to irrationalism—to scepticism or
to mysticism. And although the philosophy of the identity of C and p
seems to have weathered many a storm since Laplace, I still think that it
will be abandoned one day. I really cannot bring myself to believe that
the defenders of the faith will be satisfied for ever with mysticism and
Hegelianism, upholding ‘C = p’ as a self-evident axiom, or as the daz-
zling object of an inductive intuition. (I say ‘dazzling’ because it seems
to be an object whose beholders are smitten with blindness when
running into its logical contradictions.)

I may perhaps say here that I regard the doctrine that degree of
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corroboration or acceptability cannot be a probability as one of the more
interesting findings of the philosophy of knowledge. It can be put very
simply like this. A report of the result of testing a theory can be
summed up by an appraisal. This can take the form of assigning some
degree of corroboration to the theory. But it can never take the form
of assigning to it a degree of probability; for the probability of a statement
(given some test statements) simply does not express an appraisal of the severity of the
tests a theory has passed, or of the manner in which it has passed these tests. The main
reason for this is that the content of a theory—which is the same as its
improbability—determines its testability and its corroborability.

I believe that these two ideas—content and degree of corroboration—are the
most important logical tools developed in my book.8

So much by way of introduction. In the three notes which follow
here I have left the word ‘confirmation’ even where I should now only
write ‘corroboration’. I have also left ‘P(x)’ where I now usually write
‘p(x)’. But I have corrected some misprints;9 and I have added a few
footnotes, preceded by stars, and also two new points, *13 and *14, to
the end of the Third Note.

8 As far as I am aware, the recognition of the significance of the empirical content or assertive
power of a theory; the suggestion that this content increases with the class of the poten-
tial falsifiers of the theory—that is to say, the states of affairs which it forbids, or excludes
(see sections 23, and 31); and the idea that content may be measured by the improbabil-
ity of the theory, were not taken by me from any other source but were ‘all my own
work’. I was therefore surprised when I read in Carnap’s Introduction to Semantics, 1942, p.
151, in connection with his definition of ‘content’: ‘. . . the assertive power of a sentence
consists in its excluding certain states of affairs (Wittgenstein); the more it excludes, the
more it asserts.’ I wrote to Carnap, asking for details and reminding him of certain
relevant passages in my book. In his reply he said that his reference to Wittgenstein was
due to an error of memory, and that he actually had a passage from my book in mind;
and he repeated this correction in his Logical Foundations of Probability, 1950, p. 406. I
mention this here because in a number of papers published since 1942, the idea of
content—in the sense of empirical or informative content—has been attributed, without
definite reference, to Wittgenstein, or to Carnap, and sometimes to Wittgenstein and
myself. But I should not like anybody to think that I have taken it without acknowledge-
ment from Wittgenstein or anybody else: as a student of the history of ideas, I think that
it is quite important to refer to one’s sources. (See also my discussion in section 35 of
the distinction between logical content and empirical content, with references to Carnap in
footnotes 1 and 2.)
9 I have also, of course, incorporated the corrections mentioned in B.J.P.S. 5, pp. 334
and 359.
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DEGREE OF CONFIRMATION

1. The purpose of this note is to propose and to discuss a definition, in
terms of probabilities, of the degree to which a statement x is confirmed by a
statement y. (Obviously this may be taken to be identical with the degree to
which a statement y confirms a statement x.) I shall denote this degree by the
symbol ‘C(x, y)’, to be pronounced ‘the degree of confirmation of x by y’. In
particular cases, x may be a hypothesis, h; and y may be some empirical
evidence, e, in favour of h, or against h, or neutral with respect to h. But
C(x, y) will be applicable to less typical cases also.

The definition is to be in terms of probabilities. I shall make use of
both, P(x, y), i.e. the (relative) probability of x given y, and P(x), i.e. the
(absolute) probability of x.1 But either of these two would be
sufficient.

2. It is often assumed that the degree of confirmation of x by y must
be the same as the (relative) probability of x given y, i.e. that
C(x, y) = P(x, y). My first task is to show the inadequacy of this view.

3. Consider two contingent statements, x and y. From the point of
view of the confirmation of x by y, there will be two extreme cases: the
complete support of x by y or the establishment of x by y, when x
follows from y; and the complete undermining or refutation or
disestablishment of x by y, when x̄ follows from y. A third case of
special importance is that of mutual independence or irrelevance,
characterized by P(xy) = P(x)P(y). Its value of C(x, y) will lie below
establishment and above disestablishment.

Between these three special cases—establishment, independence,
and disestablishment—there will be intermediate cases: partial support
(when y entails part of the content of x); for example, if our contingent
y follows from x but not vice versa, then it is itself part of the content of x

1 ‘P(x)’ may be defined, in terms of relative probability, by the definiens ‘P(x, zz̄)’ or,
more simply, ‘P(x, xx̄)’. (I use throughout ‘xy’ to denote the conjunction of x and y, and
‘x̄’ to denote the negation of x.) Since we have, generally, P(x, y zz̄) = P(x, y), and P(x,
yz) = P(xy, z)/P(y, z), we obtain P(x, y) = P(xy)/P(y)—a serviceable formula for defining
relative probability in terms of absolute probability. (See my note in Mind, 1938, 47,
275, f., where I identified absolute probability with what I called ‘logical probability’ in
my Logik der Forschung, Vienna, 1935, esp. sects. 34 f. and 83, since the term ‘logical
probability’ is better used for the ‘logical interpretation’ of both P(x) and P(x, y), as
opposed to their ‘statistical interpretation’ which may be ignored here.)
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and thus entails part of the content of x, supporting x; and partial under-
mining of x by y (when y partially supports x̄); for example, if y follows
from x̄. We shall say, then, that y supports x, or that it undermines x,
whenever P(xy), or P(x̄y), respectively, exceed their values for
independence. (The three cases—support, undermining, inde-
pendence—are easily seen to be exhaustive and exclusive in view of
this definition.)

4. Consider now the conjecture that there are three statements, x1,
x2, and y, such that (i) x1 and x2 are each independent of y (or under-
mined by y) while (ii) y supports their conjunction x1x2. Obviously, we
should have to say in such a case that y confirms x1x2 to a higher degree
than it confirms either x1 or x2; in symbols,

C(x1, y) < C(x1x2, y) > C(x2, y)(4.1)

But this would be incompatible with the view that C(x, y) is a
probability, i.e. with

C(x, y) = P(x, y)(4.2)

since for probabilities we have the generally valid formula

P(x1, y) � P(x1x2, y) � P(x2, y)(4.3)

which, in the presence of (4.1) contradicts (4.2). Thus we should have
to drop (4.2). But in view of 0 � P(x, y) � 1, (4.3) is an immediate
consequence of the general multiplication principle for probabilities.
Thus we should have to discard such a principle for the degree of
confirmation. Moreover, it appears that we should have to drop the
special addition principle also. For a consequence of this principle is,
since P(x, y) � 0,

P(x1x2 or x1x̄2, y) � P(x1x2, y)(4.4)

But for C(x, y), this could not remain valid, considering that the
alternative, x1x2 or x1x̄2, is equivalent to x1, so that we obtain by
substitution on the left-hand side of (4.1):
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C(x1x2 or x1x̄2, y) < C(x1x2, y)(4.5)

In the presence of (4.4), (4.5) contradicts (4.2).2

5. These results depend upon the conjecture that statements x1, x2,
and y exist such that (i) x1 and x2 are each independent of y (or under-
mined by y) while (ii) y supports x1x2. I shall prove this conjecture by
an example.3

Take coloured counters, called ‘a’, ‘b’, . . . , with four exclusive and
equally probable properties, blue, green, red, and yellow. Let x1 be the
statement ‘a is blue or green’; x2 = ‘a is blue or red’; y = ‘a is blue or
yellow’. Then all our conditions are satisfied. (That y supports x1x2 is
obvious: y follows from x1x2, and its presence raises the probability of
x1x2 to twice the value it has in the absence of y.)

6. But we may even construct a more striking example to show the
inadequacy of identifying C(x, y) and P(x, y). We choose x1 so that it is
strongly supported by y, and x2 so that it is strongly undermined by y.
Thus we shall have to demand that C(x1, y) > C(x2, y). But x1 and x2 can
be so chosen that P(x1, y) < P(x2, y). The example is this: take x1 = ‘a is
blue’; x2 = ‘a is not red’; and y = ‘a is not yellow’. Then P(x1) = 1/4;
P(x2) = 3/4; and 1/3 = P(x1, y) < P(x2, y) = 2/3. That y supports x1 and
undermines x2 is clear from these figures, and also from the fact that y
follows from x1 and also from x̄2.*

1

2 In his Logical Foundations of Probability, Chicago, 1950, p. 285, Carnap uses the multiplica-
tion and addition principles as ‘conventions on adequacy’ for degree of confirmation. The only
argument he offers in favour of the adequacy of these principles is that ‘they are generally
accepted in practically all modern theories of probability1’, i.e. our P(x, y) which Carnap
identifies with ‘degree of confirmation’. But the very term ‘degree of confirmation’
(‘Grad der Bewährung’) was introduced by me in sections 82 f. of my Logik der Forschung (a
book to which Carnap sometimes refers), in order to show that both logical and stat-
istical probability are inadequate to serve for a degree of confirmation, since confirmability
must increase with testability, and thus with (absolute) logical improbability and con-
tent. (See below.)
3 The example satisfies (i) for independence rather than undermining. (To obtain one
for undermining, add amber as a fifth colour, and put y = ‘a is amber or blue or
yellow’.)
*1 This fact—that is to say, p(y, x1) = p(y, x̄2) = 1—means that Fisher’s ‘likelihood’ of x1,
and thus of x̄2, in the light of y, is maximal. See the introduction to the present appendix
in which the argument here outlined in the text is elaborated.
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7. Why have C(x, y) and P(x, y) been confounded so persistently?
Why has it not been seen that it is absurd to say that some evidence y of
which x is completely independent can yet strongly ‘confirm’ x? And
that y can strongly ‘confirm’ x, even if y undermines x? And this even if
y is the total available evidence? I do not know the answer to these
questions, but I can make a few suggestions. First, there is the powerful
tendency to think that whatever may be called the ‘likelihood’ or
‘probability’ of a hypothesis must be a probability in the sense of the
calculus of probabilities. In order to disentangle the various issues here
involved, I distinguished twenty years ago what I then called the
‘degree of confirmation’ from both, the logical and the statistical prob-
ability. But unfortunately, the term ‘degree of confirmation’ was soon
used by others as a new name for (logical) probability; perhaps under
the influence of the mistaken view that science, unable to attain cer-
tainty, must aim at a kind of ‘Ersatz’—at the highest attainable
probability.

Another suggestion is this. It seems that the phrase ‘the degree of
confirmation of x by y’ was turned round into ‘the degree to which y
confirms x’, or ‘the power of y to support x’. Yet in this form it would have
been quite obvious that, in a case in which y supports x1 and under-
mines x2, C(x1, y) < C(x2, y) is absurd—although P(x1, y) < P(x2, y) may
be quite in order, indicating, in such a case, that we had P(x1) < P(x2) to
start with. Furthermore, there seems to be a tendency to confuse meas-
ures of increase or decrease with the measures that increase and decrease
(as shown by the history of the concepts of velocity, acceleration, and
force). But the power of y to support x, it will be seen, is essentially a
measure of the increase or decrease due to y, in the probability of x. (See also 9
(vii), below.)

8. It will perhaps be said, in reply to all this, that it is in any case
legitimate to call P(x, y) by any name, and also by the name
‘degree of confirmation’. But the question before us is not a verbal
one.

The degree of confirmation of a hypothesis x by empirical evidence y
is supposed to be used for estimating the degree to which x is backed by
experience. But P(x, y) cannot serve this purpose, since P(x1, y) may be
higher than P(x2, y) even though x1 is undermined by y and x2 sup-
ported by y, and since this is due to the fact that P(x, y) depends very
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strongly upon P(x), i.e. the absolute probability of x, which has nothing
whatever to do with the empirical evidence.

Furthermore, the degree of confirmation is supposed to have an
influence upon the question whether we should accept, or choose, a
certain hypothesis x, if only tentatively; a high degree of confirm-
ation is supposed to characterise a hypothesis as ‘good’ (or ‘accept-
able’), while a disconfirmed hypothesis is supposed to be ‘bad’. But
P(x, y) cannot help here. Science does not aim, primarily, at high probabilities.
It aims at a high informative content, well backed by experience. But a hypothesis
may be very probable simply because it tells us nothing, or very little. A high
degree of probability is therefore not an indication of ‘goodness’—it
may be merely a symptom of low informative content. On the other
hand, C(x, y) must, and can, be so defined that only hypotheses with
a high informative content can reach high degrees of confirmation.
The confirmability of x (i.e. the maximum degree of confirmation
which a statement x can reach) should increase with C(x), i.e. the
measure of the content of x, which is equal to P(x̄), and therefore to
the degree of testability of x. Thus, while P(xx̄, y) = 1, C(xx̄, y) should be
zero.

9. A definition of C(x, y) that satisfies all these and other desiderata
indicated in my Logik der Forschung, and stronger ones besides, may be
based upon E(x, y), i.e. a non-additive measure of the explanatory power of x
with respect to y, designed so as to have − 1 and + 1 as its lower and upper
bounds. It is defined as follows:

(9.1) Let x be consistent,4 and P(y) ≠ 0; then we define,

E(x, y) =
P(y, x) − P(y)

P(y, x) + P(y)

E(x, y) may also be interpreted as a non-additive measure of the
dependence of y upon x, or the support given to y by x (and vice versa). It
satisfies the most important of our desiderata, but not all: for example, it
violates (viii, c) below, and satisfies (iii) and (iv) only approximately in

4 This condition may be dropped if we accept the general convention that P(x, y) = 1
whenever y is inconsistent.
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special cases. To remedy these defects, I propose to define C(x, y) as
follows.*2

(9.2) Let x be consistent and P(y) ≠ 0; then we define,

C(x, y) = E(x, y)(1 + P(x)P(x, y))

This is less simple than, for example, E(x, y)(1 + P(xy)), which satisfies
most of our desiderata but violates (iv), while for C(x, y) the theorem
holds that it satisfies all of the following desiderata:

(i) C(x, y) � 0 respectively if and only if y supports x, or is
independent of x, or undermines x.

(ii) − 1 = C(ȳ, y) � C(x, y) � C(x, x) � 1
(iii) 0 � C(x, x) = C(x) = P(x̄) � 1

Note that C(x), and therefore C(x, x), is an additive measure of the
content of x, definable by P(x̄), i.e. the absolute probability of x to be
false, or the a priori likelihood of x to be refuted. Thus confirmability equals
refutability or testability.5

(iv) If y entails x, then C(x, y) = C(x, x) = C(x)
(v) If y entails x̄, then C(x, y) = C(ȳ, y) = − 1
(vi) Let x have a high content—so that C(x, y) approaches E(x, y)—

and let y support x. (We may, for example, take y to be the total
available empirical evidence.) Then for any given y, C(x, y) increases
with the power of x to explain y (i.e. to explain more and more of the
content of y), and therefore with the scientific interest of x.

*2 The following is a somewhat simpler alternative definition which also satisfies all my
adequacy conditions or desiderata. (I first stated it in the B.J.P.S. 5, p. 359.)

C(x, y) =
P(y, x) − P(y)

P(y, x) − P(xy) + P(y)
(9.2*)

Similarly, I now put

C(x, y, z) =
P(y, xz) − P(y, z)

P(y, xz) − P(xy, z) + P(y, z)
(10.1*)

5 See section 83 of my L.d.F., which bears the title ‘Confirmability, Testability, Logical
Probability’. (Before ‘logical’, ‘absolute’ should be inserted, in agreement with the
terminology of my note in Mind, loc. cit.)
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(vii) If C(x) = C(y) ≠ 1, then C(x, u) � C(y, w) whenever P(x, u) �
P(y, w).*3

(viii) If x entails y, then: (a) C(x, y) � 0; (b) for any given x, C(x, y) and
C(y) increase together; and (c) for any given y, C(x, y) and P(x)
increase together.6

(ix) If x̄ is consistent and entails y, then: (a) C(x, y) � 0; (b) for any
given x, C(x, y) and P(y) increase together; and (c) for any given
y, C(x, y) and P(x) increase together.

10. All our considerations, without exception, may be relativized
with respect to some initial information z; adding at the appropriate
places phrases like ‘in the presence of z, assuming P(z, zz̄) ≠ 0’. The
relativized definition of the degree of confirmation becomes:

C(x, y, z) = E(x, y, z) (1 + P (x, z) P(x, yz))(10.1)

where

E(x, y, z) =
P(y, xz) − P(y, z)

P(y, xz) + P(y, z)
(10.2)

E(x, y, z) is the explanatory power of x with respect to y, in the presence
of z.7

11. There are, I believe, some intuitive desiderata which cannot be
satisfied by any formal definition. For example, a theory is the better
confirmed the more ingenious our unsuccessful attempts at its refuta-
tion have been. My definition incorporates something of this idea—if

*3 The condition ‘≠ 1’ was printed neither in the original text, nor in the published
corrections.
6 (vii) and (viii) contain the only important desiderata which are satisfied by P(x, y).
7 Let x1 be Einstein’s gravitational theory; x2 Newton’s; y the (interpreted) empirical
evidence available today, including ‘accepted’ laws (it does not matter if none or one or
both of the theories in question are included, provided our conditions for y are satisfied);
and z a part of y, for example, a selection from the evidence available one year ago. Since
we may assume that x1 explains more of y than x2, we obtain C(x1, y, z) � C(x2, y, z) for
every z, and C(x1, y, z) > C(x2, y, z) for any suitable z containing some of the relevant initial
conditions. This follows from (vi)—even if we have to assume that P(x1, yz) = P(x2,
yz) = P(x1) = P(x2) = 0.
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not as much as can be formalized. But one cannot completely formalize
the idea of a sincere and ingenious attempt.8

The particular way in which C(x, y) is here defined I consider
unimportant. What may be important are the desiderata, and the fact that
they can be satisfied together.

A SECOND NOTE ON DEGREE OF CONFIRMATION

1 The suggestion has been made by Professor J. G. Kemeny1 (with a
reference to my definition of content), and independently by Dr. C. L.
Hamblin2 that the content of x, denoted by ‘C(x)’, should be measured
by—log2P(x) instead of 1—P(x), as I originally suggested. (I am
here using my own symbols.) If this suggestion is adopted, then my
desiderata3 for degree of confirmation of x by y, denoted by C(x, y), have

8 There are many ways of getting nearer to this idea. For example, we may put a
premium on crucial experiments by defining

Ca, b(h) = (C(h, eb) �
n

i=1

C(h, ci, ea))
1/(n + 1)

where c1, c2, . . . , is the sequence of experiments made between the moments of time, ta

and tb. We have ta < t1 � ti � tn = tb. ea and eb are the total evidence (which may include
laws) accepted at ta and tb. We postulate P(ci, eb) = 1 and (to ensure that only new experi-
ments are counted) P(ci, ea) ≠ 1 and P(ci, Ucj) ≠ 1, whenever j < i. (‘Ucj’ is the spatio-temporal
universalization of cj.)

* Today, I should be inclined to treat this question in a different way. We may, very
simply, distinguish between the formula ‘C(x, y)’ (or ‘C(x, y, z)’) and the applications of this
formula to what we mean, intuitively, by corroboration, or acceptability. Then it suffices
to say that C(x, y) must not be interpreted as degree of corroboration, and must not be
applied to problems of acceptability, unless y represents the (total) results of sincere
attempts to refute x. See also point *14 of my ‘Third Note’, below.

I have here put ‘total’ in brackets, because there is another possibility to be considered:
we may confine our tests to a certain field of application F (cf. the old appendix i, and
appendix *viii), we may thus relativize C, and write ‘CF (x, y)’. The total corroboration of
a theory may then be said, simply, to be the sum of its corroborations in its various
(independent) fields of application.
1 John G. Kemeny, Journal of Symbolic Logic, 1953, 18, p. 297. (Kemeny’s reference is to my
Logik der Forschung.)
2 C. L. Hamblin, ‘Language and the Theory of Information’, a thesis submitted to the
University of London in May 1955 (unpublished); see p. 62. Dr. Hamblin produced this
definition independently of Professor Kemeny’s paper (to which he refers in his thesis).
3 ‘Degree of Confirmation’, this Journal, 1954, 5, 143 sqq.; see also p. 334.
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to be slightly amended: in (ii) and in (v), we must replace ± 1 by ± ∞;
and (iii) becomes:

0 � C(x, xy) = C(x, x) = C(x) = − log2P(x) � + ∞.(iii)

The other desiderata remain as they were.
Dr. Hamblin suggests4 that we define degree of confirmation by

C(x, y) = log2(P(xy)/P(x)P(y))(1)

which for finite systems, but not necessarily for infinite systems, is the
same as

C(x, y) = log2(P(y, x)/P(y)),(2)

a formula which has the advantage of remaining determinate even if
P(x) = 0, as may be the case if x is a universal theory. The corresponding
relativized formula would be

C(x, y, z) = log2(P(y, xz)/P(y, z)).(3)

The definition (1) does not, however, satisfy my desideratum viii (c),
as Dr. Hamblin observes; and the same holds for (2) and (3). Desiderata
ix (b) and (c) are also not satisfied.

Now my desideratum viii (c) marks, in my opinion, the difference
between a measure of explanatory power and one of confirmation. The
former may be symmetrical in x and y, the latter not. For let y follow
from x (and support x) and let x be unconfirmed by y. In this case it
does not seem satisfactory to say that ax is always as well confirmed by y
as is x. (But there does not seem to be any reason why ax and x should
not have the same explanatory power with respect to y, since y is
completely explained by both.) This is why I feel that viii(c) should not
be dropped.

4 C. L. Hamblin, op. cit., p. 83. A similar suggestion (without, however, specifying 2 as
basis of the logarithm) is made in Dr. I. J. Good’s review of my ‘Degree of Confirmation’;
cf. Mathematical Review, 16, 1955, 376.
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Thus I prefer to look upon (2) and (3) as highly adequate definitions
of explanatory power—of E(x, y) and E(x, y, z)—rather than of degree of
confirmation. The latter may be defined, on the basis of explanatory
power, in many different ways so as to satisfy viii(c). One way is as
follows (I think that better ways may be found):

C(x, y) = E(x, y)/((1 + nP(x))P(x̄, y))(4)

C(x, y, z) = E(x, y, z)/((1 + nP(x, z)) P(x̄, yz))(5)

Here we may choose n � 1. And if we wish viii(c) to have a marked
effect, we can make n a large number.

In case x is a universal theory with P(x) = 0 and y is empirical evi-
dence, the difference between E and C disappears, as in my original
definitions, and as demanded by desideratum (vi). It also disappears if
x follows from y. Thus at least some of the advantages of operating with
a logarithmic measure remain: as explained by Hamblin, the concept
defined by (1) becomes closely related to the fundamental idea
of information theory. Good also comments on this point (see
footnote 4).

The transition from the old to the new definitions is order-
preserving. (This holds also for explanatory power, as Hamblin’s
observations imply.) Thus the difference is metrical only.

2. The definitions of explanatory power, and even more of degree of
confirmation (or corroboration or acceptability or attestation, or what-
ever name may be chosen for it) give of course full weight to the ‘weight
of evidence’ (or the ‘weight of an argument’ as Keynes called it in his
chapter vi).*1 This becomes obvious with the new definitions, based
upon Hamblin’s suggestions, which seem to have considerable
advantages if we are at all interested in metrical questions.

3. However, we must realize that the metric of our C will depend
entirely upon the metric of P. But there cannot be a satisfactory metric of P; that is
to say, there cannot be a metric of logical probability which is based upon purely logical
considerations. To show this we consider the logical probability of any
measurable physical property (non-discrete random variable) such as

*1 See the ‘Third Note’, below.
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length, to take the simplest example. We make the assumption (favour-
able to our opponents) that we are given some logically necessary finite
lower and upper limits, I and u, to its values. Assume that we are given a
distribution function for the logical probability of this property; for
example, a generalized equidistribution function between l and u. We
may discover that an empirically desirable change of our theories leads
to a non-linear correction of the measure of our physical property
(based, say, on the Paris metre). Then ‘logical probability’ has to be
corrected also; which shows that its metric depends upon our empiri-
cal knowledge, and that it cannot be defined a priori, in purely logical
terms. In other words, the metric of the ‘logical probability’ of a meas-
urable property would depend upon the metric of the measurable
property itself; and since this latter is liable to correction on the basis
of empirical theories, there can be no purely ‘logical’ measure of
probability.

These difficulties can be largely, but not entirely, overcome by mak-
ing use of our ‘background knowledge’ z. But they establish, I think,
the significance of the topological approach to the problem of both
degree of confirmation and logical probability.*2

But, even if we were to discard all metric considerations, we should
still adhere, I believe, to the concept of probability, as defined, impli-
citly, by the usual axiom systems for probability. These retain their full
significance, exactly as pure metrical geometry retains its significance
even though we may not be able to define a yardstick in terms of pure
(metrical) geometry. This is especially important in view of the need to
identify logical independence with probabilistic independence (special multiplication
theorem). If we assume a language such as Kemeny’s (which, however,
breaks down for continuous properties) or a language with relative-

*2 I now believe that I have got over these difficulties, as far as a system S (in the sense of
appendix *iv) is concerned whose elements are probability statements; that is to say, as far as
the logical metric of the probability of probability statements is concerned or, in other words,
the logical metric of secondary probabilities. The method of the solution is described in my
Third Note, points 7 ff.; see especially point *13.

As far as primary properties are concerned, I believe that the difficulties described here
in the text are in no way exaggerated. (Of course, z may help, by pointing out, or
assuming, that we are confronted, in a certain case, with a finite set of symmetrical
or equal possibilities.)
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atomic statements (as indicated in appendix in of my Logic of Scientific
Discovery), then we shall have to postulate independence for the atomic,
or relative-atomic, sentences (of course, as far as they are not ‘logically
dependent’, in Kemeny’s sense). On the basis of a probabilistic theory of induc-
tion, it then turns out that we cannot learn if we identify logical and
probabilistic independence in the way here described; but we can
learn very well in the sense of my C-functions; that is to say, we can
corroborate our theories.

Two further points may be mentioned in this connection.
4. The first point is this. On the basis of my axiom systems for

relative probability,5 P(x, y) can be considered as defined for any value
of x and y, including such values for which P(y) = 0. More especially, in
the logical interpretation of the system, whenever x follows from y,
P(x, y) = 1, even if P(y) = 0. There is thus no reason to doubt that our
definition works for languages containing both singular statements and
universal laws, even if all the latter have zero probability, as is the case,
for example, if we employ Kemeny’s measure function m, by postulat-
ing P(x) = m(x). (In the case of our definitions of E and C, there is no
need whatever to depart from the assignment of equal weight to the
‘models’; cf. Kemeny, op. cit p. 307. On the contrary, any such departure
must be considered as a deviation from a logical interpretation, since it
would violate the equality of logical and probabilistic independence
demanded in 3, above.)

5. The second point is this. Among the derived desiderata, the fol-
lowing is not satisfied by all definitions of ‘x is confirmed by y’ which
have been proposed by other authors. It might therefore be mentioned
separately as a tenth desideratum:6

(x) If x is confirmed or corroborated or supported by y so that
C(x, y) > 0, then (a) x̄ is always undermined by y, i.e. C(x̄, y) < 0, and
(b) x is always undermined by ȳ, i.e. C(x, ȳ) < 0.

It seems to me clear that this desideratum is an indispensable
adequacy condition, and that any proposed definition which does not
satisfy it is intuitively paradoxical.

5 This Journal, 6, pp. 56 sq, (see also pp. 176 and 351). Simplified versions are given in
British Philosophy in the Mid-Century (ed. by C. A. Mace), p. 191; and in my Logic Scientific
Discovery, appendix *iv.
6 Compare the remark in this Journal, 1954, 5, end of the first paragraph on p. 144.
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A THIRD NOTE ON DEGREE OF
CORROBORATION OR CONFIRMATION

In this note I wish to make a number of comments on the problem of
the weight of evidence, and on statistical tests.

1. The theory of corroboration or ‘confirmation’ proposed in my
two previous notes on ‘Degree of Confirmation’1 is able to solve with
ease the so-called problem of the weight of evidence.

This problem was first raised by Peirce, and discussed in some detail
by Keynes who usually spoke of the ‘weight of an argument’ or of the
‘amount of evidence’. The term ‘the weight of evidence’ is taken from
J. M. Keynes and from I. J. Good.2 Considerations of the ‘weight of
evidence’ lead, within the subjective theory of probability, to para-
doxes which, in my opinion, are insoluble within the framework of
this theory.

2. By the subjective theory of probability, or the subjective inter-
pretation of the calculus of probability, I mean a theory that interprets
probability as a measure of our ignorance, or of our partial knowledge,
or, say, of the degree of the rationality of our beliefs, in the light of the
evidence available to us.

(I may mention, in parentheses, that the more customary term,
‘degree of rational belief’, may be a symptom of a slight confusion,
since what is intended is ‘degree of rationality of a belief’. The confu-
sion arises as follows. Probability is first explained as a measure of the
strength or intensity of a belief or conviction—measurable, say, by our
readiness to accept odds in betting. Next it is realized that the intensity
of our belief often depends, in fact, upon our wishes or fears rather

1 This Journal, 1954, 5, 143, 324, and 359; and 1957, 7, 350. See also 1955, 6, and 1956,
7, 244, 249. To the first paragraph of my ‘Second Note’, a reference should be added to a
paper by R. Carnap and Y. Bar-Hillel, ‘Semantic Information’, this Journal, 1953, 4, 147 sqq.
Moreover, the first sentence of note 1 on p. 351 should read, ‘Op. cit., p. 83’, rather than as
at present, because the reference is to Dr. Hamblin’s thesis. *(This last correction has been
made in the version printed in this book).
2 Cf. C. S. Peirce, Collected Papers, 1932, Vol. 2, p. 421 (first published 1878); J. M. Keynes, A
Treatise on Probability, 1921, pp. 71 to 78 (see also 312 sq., ‘the amount of evidence’, and the
Index); I. J. Good, Probability and the Weight of Evidence, 1950, pp. 62f. See also C. I. Lewis, An
Analysis of Knowledge and Valuation, 1946, pp. 292 sq.; and R. Carnap, Logical Foundations of
Probability, 1950, pp. 554 sq.
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than upon rational arguments; thus, by a slight change, probability is
then interpreted as the intensity, or the degree, of a belief in so far as it is
rationally justifiable. But at this stage, the reference to the intensity of a
belief, or to its degree, clearly becomes redundant; and ‘degree of
belief’ should therefore be replaced by ‘degree of the rationality of
a belief’. These remarks should not be taken to mean that I am prepared
to accept any form of the subjective interpretation; see point 12, below,
and chapter *ii of my Postscript: After Twenty Years.)

3. In order to save space, I shall explain the problem of the weight
of evidence merely by giving one instance of the paradoxes to which I
referred above. It may be called the ‘paradox of ideal evidence’.

Let z be a certain penny, and let a be the statement ‘the nth (as yet
unobserved) toss of z will yield heads’. Within the subjective theory,
it may be assumed that the absolute (or prior) probability of the
statement a is equal to 1/2, that is to say,

P(a) = 1/2(1)

Now let e be some statistical evidence; that is to say, a statistical report,
based upon the observation of thousands or perhaps millions of
tosses of z; and let this evidence e be ideally favourable to the hypothesis
that z is strictly symmetrical—that it is a ‘good’ penny, with equidis-
tribution. (Note that here e is not the full, detailed report about the
results of each of these tosses—this report we might assume to have
been lost—but only a statistical abstract from the full report; for
example, e may be the statement, ‘among a million of observed tosses
of z, heads occurred in 500,000 ± 20 cases’. It will be seen, from
point 8, below, that an evidence e′ with 500,000 ± 1,350 cases would
still be ideal, if my functions C and E are adopted; indeed, from the
point of view of these functions, e is ideal precisely because it entails
e′.) We then have no other option concerning P(a, e) than to assume
that

P(a, e) = 1/2(2)

This means that the probability of tossing heads remains unchanged,
in the light of the evidence e; for we now have
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P(a) = P(a, e).(3)

But according to the subjective theory, (3) means that e is, on the whole,
(absolutely) irrelevant information with respect to a.

Now this is a little startling; for it means, more explicitly, that our
so-called ‘degree of rational belief’ in the hypothesis, a, ought to be completely
unaffected by the accumulated evidential knowledge, e; that the absence of any
statistical evidence concerning z justifies precisely the same ‘degree of
rational belief’ as the weighty evidence of millions of observations
which, prima facie, support or confirm or strengthen our belief.

4. I do not think that this paradox can be solved within the frame-
work of the subjective theory, for the following reason.

The fundamental postulate of the subjective theory is the postulate that degrees
of the rationality of beliefs in the light of evidence exhibit a linear order:
that they can be measured, like degrees of temperature, on a one-
dimensional scale. But from Peirce to Good, all attempts to solve the
problem of the weight of evidence within the framework of the sub-
jective theory proceed by introducing, in addition to probability, another
measure of the rationality of belief in the light of evidence. Whether this new
measure is called ‘another dimension of probability’, or ‘degree of
reliability in the light of the evidence’, or ‘weight of evidence’ is quite
irrelevant. What is relevant is the (implicit) admission that it is not
possible to attribute linear order to degrees of the rationality of beliefs
in the light of the evidence: that there may be more than one way in which
evidence may affect the rationality of a belief. This admission is sufficient to
overthrow the fundamental postulate on which the subjective theory is
based.

Thus the naïve belief that there really are intrinsically different kinds
of entities, some to be called, perhaps, ‘degree of the rationality of
belief’ and others ‘degree of reliability’ or of ‘evidential support’, is no
more able to rescue the subjective theory than the equally naïve belief
that these various measures ‘explicate’ different ‘explicanda’; for the
claim that there exists an ‘explicandum’ here—such as ‘degree of rational
belief—capable of ‘explication’ in terms of probability stands or falls
with what I have called the ‘fundamental postulate’.

5. All these difficulties disappear as soon as we interpret our
probabilities objectively. (It does not matter, in the context of the
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present paper, whether the objective interpretation is a purely statistical
interpretation or a propensity interpretation.3) According to the
objective interpretation, we have to introduce b, the statement of
the conditions of the experiment (the conditions defining the
sequence of the experiments from which we take our example); for
instance, b may be the information: ‘the toss in question will be a toss
of z, randomized by spinning.’ Moreover, we have to introduce
the objective probabilistic hypothesis h, that is to say, the hypothesis,
‘P(a, b) = 1/2’.4

From the point of view of the objective theory, what we are mainly
interested in is the hypothesis h, that is to say, the statement

‘P(a, b) = 1/2’.

6. If we now consider the ideally favourable statistical evidence e
which led to the ‘paradox of ideal evidence’, it is quite obvious that
from the point of view of the objective theory, e is to be considered as
evidence bearing upon h rather than evidence bearing upon a: it is
ideally favourable to h, and quite neutral to a. Upon the assumption that
the various tosses are independent, or random, the objective theory yields for
any statistical evidence e quite naturally P(a, be) = P(a, b); thus e is indeed
irrelevant to a, in the presence of b.

Since e is evidence in favour of h, our problem turns, as a matter of
course, into the question of how the evidence e corroborates h (or
‘confirms’ h). The answer is that if e is ideally favourable evidence, then
both E(h, e) and C(h, e), i.e. the degree of corroboration of h, given e,
will approach 1, if the size of the sample upon which e is based goes to
infinity.5 Thus ideal evidence produces a correspondingly ideal

3 For the ‘propensity interpretation’ of probability, see my five papers (especially ‘Three
Views Concerning Human Knowledge’; ‘Philosophy of Science: A Personal Report’, both
now in my Conjectures and Refutations) referred to in the notes on pp. 313 and 314, above.
4 Note that ‘b’ may be interpreted, alternatively, not as a name of a statement but as a
name of the sequence of tosses—in which case we should have to interpret ‘a’ as a name
of a class of events rather than as a name of a statement; but ‘h’ remains the name of a
statement in any case.
5 Both E and C are defined in my first note. It is sufficient here to remember that
E(h, e) = (P(e, h) − P(e))/(P(e, h) + P(e)), and that C approaches E in most cases of
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behaviour of E and C. Consequently, no paradox arises; and we may
quite naturally measure the weight of the evidence e with respect to the hypothesis h
by either E(h, e), or C(h, e), or else—keeping more closely to Keynes’
idea—by the absolute values of either of these functions.

7. If, as in our case, h is a statistical hypothesis, and e the report of
the results of statistical tests of h, then C(h, e) is a measure of the degree
to which these tests corroborate h, exactly as in the case of a non-
statistical hypothesis.

It should be mentioned, however, that as opposed to the case of a
non-statistical hypothesis, it might sometimes be quite easy to estimate
the numerical values of E(h, e) and even of C(h, e), if h is a statistical
hypothesis.6 (In 8 I will briefly indicate how such numerical calcula-
tions might proceed in simple cases, including, of course, the case of
h = ‘p(a, b) = 1’.)

The expression

P(e, h) − P(e)(4)

is crucial for the functions E(h, e) and C(h, e); indeed, these functions
are nothing but two different ways of ‘normalizing’ the expression (4);
they thus increase and decrease with (4). This means that in order to
find a good test-statement e—one which, if true, is highly favourable to
h—we must construct a statistical report e such that (i) e makes P(e,
h)—which is Fisher’s ‘likelihood’ of h given e—large, i.e. nearly equal
to 1, and such that (ii) e makes P(e) small, i.e. nearly equal to o. Having
constructed a test statement e of this kind, we must submit e itself to
empirical tests. (That is to say, we must try to find evidence refuting e.)

importance. In this Journal, 1954, 5, 324, I suggested that we define

C(x, y, z) = (P(y, xz) − P(y, z))/(P(y, xz) − P(xy, z) + P(y, z)).

From this we obtain C(x, y) by assuming z (the ‘background knowledge’) to be tauto-
logical, or non-existent (if this manner of expression is preferred).
6 It is quite likely that in numerically calculable cases, the logarithmic functions sug-
gested by Hamblin and Good (see my ‘Second Note’) will turn out to be improvements
upon the functions which I originally suggested. Moreover, it should be noted that from
a numerical point of view (but not from the theoretical point of view underlying our
desiderata) my functions and the ‘degree of factual support’ of Kemeny and Oppenheim
will in most cases lead to similar results.
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Now let h be the statement

P(a, b) = r(5)

and let e be the statement ‘In a sample which has the size n and which
satisfies the condition b (or which is taken at random from the popula-
tion b), a is satisfied in n(r ± δ) of the instances’.*1 Then we may put,
especially for small values of δ,

P(e) ≈ 2 δ*2(6)

We may even put P(e) = 2δ; for this would mean that we assign equal
probabilities—and therefore, the probabilities 1/(n + 1)—to each of
the n + 1 proportions, 0/n, 1/n, . . . n/n, with which a property a may
occur in a sample of the size n. It follows that we should have to assign
the probability, P(e) = (2d + 1)/(n + 1), to a statistical report e telling
us that m ± d members of a population of the size n have the property a;
so that putting δ = (d + (1/2))/(n + 1), we obtain P(e) = 2δ. (The
equidistribution here described is the one which Laplace assumes in
the derivation of his rule of succession. It is adequate for assessing the
absolute probability, P(e), if e is a statistical report about a sample. But it is
inadequate for assessing the relative probability P(e, h) of the same
report, given a hypothesis h according to which the sample is the
product of an n times repeated experiment whose possible results occur
each with a certain probability. For in this case, it is adequate to assume
a combinatoric, i.e. a Bernoullian rather than a Laplacean, distribution.)
We see from (6) that, if we wish to make P(e) small, we have to make
δ small.

On the other hand, P(e, h)—the likelihood of h—will be close to 1

*1 It is here assumed that if the size of the sample is n, the frequency within this sample
can be determined at best with an imprecision of ± 1/2n; so that for a finite n, we have
δ � 1/2n. (For large samples, this simply leads to δ > 0.)
*2 Formula (6) is a direct consequence of the fact that the informative content of a
statement increases with its precision, so that its absolute logical probability increases
with its degree of imprecision; see sections 34 to 37. (To this we have to add the fact that
in the case of a statistical sample, the degree of imprecision and the probability have the
same minima and maxima, 0 and 1.)
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either if δ is comparatively large (roughly, if δ ≈ 1/2) or—in case δ is
small—if n, the sample size, is a large number. We therefore find that
P(e, h) − P(e), and thus our functions E and C, can only be large if δ is
small and n large; or in other words, if e is a statistical report asserting a good fit
in a large sample.

Thus the test-statement e will be the better the greater its precision
(which will be inverse to 2δ) and consequently its refutability or con-
tent, and the larger the sample size n, that is to say, the statistical
material required for testing e. And the test-statement e so constructed
may then be confronted with the results of actual observations.

We see that accumulating statistical evidence will, if favourable,
increase E and C. Accordingly, E or C may be taken as measures of the
weight of the evidence in favour of h; or else, their absolute values may
be taken as measuring the weight of the evidence with respect to h.

8. Since the numerical value of P(e, h) can be determined with the
help of the binomial theorem (or of Laplace’s integral), and since
especially for a small δ we can, by (6), put P(e) equal to 2δ, it is
possible to calculate P(e, h)—P(e) numerically, and also E.

Moreover, we can calculate for any given n a value δ = P(e)/2 for
which P(e, h)—P(e) would become a maximum. (For n = 1,000,000,
we obtain δ = 0.0018.) Similarly, we can calculate another value, of
δ = P(e)/2, for which E would become a maximum. (For the same n,
we obtain δ = 0.00135, and E(h, e) = 0.9946).

For a universal law h such that h = ‘P(a, b) = 1’ which has passed
n severe tests, all of them with the result a, we obtain, first, C(h, e) =
E(h, e), in view of P(h) = 0; and further, evaluating P(e) with the help
of the Laplacean distribution and d = o, we obtain C(h, e) = n/
(n + 2) = 1 − (2/(n + 2)). It should be remembered, however, that
non-statistical scientific theories have as a rule a form totally different
from that of the h here described; moreover, if they are forced into this
form, then any instance a, and therefore the ‘evidence’ e, would
become essentially non-observational.*3

*3 One might, however, speak of the degree of corroboration of a theory with respect to a
field of application, in the sense of appendices i and *viii; and one might then use the method
of calculation here described. But since this method ignores the fine-structure of content
and probability, it is very crude, as far as non-statistical theories are concerned. Thus in
these cases, we may rely upon the comparative method explained in footnote 7 to the
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9. One may see from all this that the testing of a statistical
hypothesis is deductive—as is that of all other hypotheses: first a
test-statement is constructed in such a way that it follows (or almost
follows) from the hypothesis, although its content or testability is high;
and afterwards it is confronted with experience.

It is interesting to note that if e were chosen so as to be a full report
of our observations—say, a full report about a long sequence of tosses,
head, head, tail, . . . , etc., a sequence of one thousand elements—then
e would be useless as evidence for a statistical hypothesis; for any actual
sequence of the length n has the same probability as any other
sequence (given h). Thus we should arrive at the same value for P(e, h),
and thus for E and C—viz. E = C = 0—whether e contains, say only
heads, or whether it contains exactly half heads and half tails. This
shows that we cannot use, as evidence for or against h, our total obser-
vational knowledge, but that we must extract, from our observational
knowledge, such statistical statements as can be compared with state-
ments which either follow from h, or which have at least a high
probability, given h. Thus if e consists of the complete results of a long
sequence of tosses, then e is, in this form, completely useless as a test-
statement of a statistical hypothesis. But a logically weaker statement of
the average frequency of heads, extracted from the same e, could be used.
For a probabilistic hypothesis can explain only statistically interpreted find-
ings, and it can therefore be tested and corroborated only by statistical
abstracts—and not, for example, by the ‘total available evidence’, if
this consists of a full observation report; not even if its various

‘First Note’ above. It should be stressed that by formulating a theory in the form ‘(x)Ax’,
we are in general forced to make ‘A’ a highly complex and non-observational predicate.
(See also appendix *vii, especially footnote 1.)

I believe that it is of some interest to mention here that the method developed in the
text allows us to obtain numerical results—that is, numerical degrees of corroboration—in
all cases envisaged either by Laplace or by those modern logicians who introduce arti-
ficial language systems, in the vain hope of obtaining in this way an a priori metric for the
probability of their predicates, believing as they do that this is needed in order to get
numerical results. Yet I get numerical degrees of corroboration in many cases far beyond
those language systems, since measurable predicates do not create any new problem for
our method. (And it is a great advantage that we do not have to introduce a metric for the
logical probability of any of the ‘predicates’ dealt with; see my criticism in point 3 of the
‘Second Note’, above. See also my second Preface, 1958.)
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statistical interpretations may be used as excellent and weighty
test-statements.*4

Thus our analysis shows that statistical methods are essentially
hypothetical-deductive, and that they proceed by the elimination of
inadequate hypotheses—as do all other methods of science.

10. If δ is very small, and therefore also P(e)—which is possible
only for large samples—then we have, in view of (6),

P(e, h) ≈ P(e, h) − P(e).(7)

In this case, and only in this case, it will therefore be possible to
accept Fisher’s likelihood function as an adequate measure of degree
of corroboration. We can interpret, vice versa, our measure of degree of
corroboration as a generalization of Fisher’s likelihood function; a generalization
which covers cases, such as a comparatively large δ, in which Fisher’s
likelihood function would become clearly inadequate. For the likeli-
hood of h in the light of the statistical evidence e should certainly not
reach a value close to its maximum merely because (or partly because)
the available statistical evidence e was lacking in precision.

It is unsatisfactory, not to say paradoxical, that statistical evidence e,
based upon a million tosses and δ = 0.00135, may result in numerically

*4 This point is of considerable interest in connection with the problem of the numerical
value of the absolute probabilities needed for the determination of C(x, y), i.e. the
problem discussed under point 3 of the ‘Second Note’, and also in the present note (see
especially footnote *1). Had we to determine the absolute probability of the ‘total
available evidence’ consisting of the conjunction of a large number of observational
reports, then we should have to know the absolute probability (or ‘width’) of each of
these reports, in order to form their product, under the assumption (discussed in appen-
dix *vii above) of the absolute independence of these reports. But in order to determine
the absolute probability of a statistical abstract, we do not have to make any assumptions
concerning either the absolute probability of the observational reports or their
independence. For it is clear, even without assuming a Laplacean distribution, that (6)
must hold for small values of δ, simply because the content of e must be always a measure
of its precision (cf. section 36), and thus absolute probability must be measured by the width
of e, which is 2δ. A Laplacean distribution, then, may be accepted merely as the simplest
equiprobability assumption leading to (6). It may be mentioned, in this context, that the
Laplacean distribution may be said to be based upon a universe of samples, rather than a
universe of things or events. The universe of samples chosen depends, of course, upon
the hypothesis to be tested. It is within each universe of samples that an assumption of
equiprobability leads to a Laplacean (or ‘rectangular’) distribution.
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the same likelihood—i.e.P(e, h) = 0.9930—as would statistical evidence e′,
based on only a hundred tosses and δ = 0.135.*5 (But it is quite
satisfactory to find that E(h, e) = 0.9946 while E(h, e′) = 0.7606.)

11. It should be noticed that the absolute logical probability of a
universal law h—that is, P(h)—will be in general zero, in an infinite
universe. For this reason, P(e, h)—that is, the likelihood of h—will
become indefinite, in most systems of probability, since in most sys-
tems P(e, h) is defined as P(eh)/P(h) = 0/0. We therefore need a formal
calculus of probability which yields definite values for P(e, h) even if
P(h) = 0, and which will always and unambiguously yield P(e, h) = 1
whenever e follows (or ‘almost follows’) from h. A system answering
these demands was published by me some time ago.7

12. Our E(h, e) may be adequately interpreted as a measure of the
explanatory power of h with respect to e, even if e is not a report
of genuine and sincere attempts to refute h. But our C(h, e) can be
adequately interpreted as degree of corroboration of h—or of the
rationality of our belief in h, in the light of tests—only if e consists of
reports of the outcome of sincere attempts to refute h, rather than of
attempts to verify h.

As hinted in the preceding sentence, I suggest that, while it is a
mistake to think that probability may be interpreted as a measure of the
rationality of our beliefs (this interpretation is excluded by the paradox
of perfect evidence), degree of corroboration may be so interpreted.8

As to the calculus of probability, it has a very large number of different
interpretations.9 Although ‘degree of rational belief’ is not among

*5 Fisher’s ‘likelihood’ turns out to be in many cases intuitively unsatisfactory. Let x be
‘the next throw with this die is a six’. Then the likelihood of x in the light of the evidence
y will be 1, and thus at its maximal value, if we take y to mean, for example, ‘the next
throw is even’, or ‘the next throw is a number > 4’ or even ‘the next throw is a number
other than 2’. (The values of C(x, y) are satisfactory, it seems: they are, respectively, 3/8;
4/7; and 1/10.)
7 This Journal, 1955, 6; see esp. 56 sq. A simplified form of this axiom system may be
found in my papers ‘Philosophy of Science: A Personal Report’ (p. 191) and ‘The Pro-
pensity Interpretation’, etc., referred to in note 3 above. (In the latter paper, p. 67, note 3,
the last occurrence of ‘ < ’ should be replaced by ‘≠’, and in (B) and (C) a new line
should commence after the second arrows.) *See the new appendices *iv and *v.
8 Cf. this Journal, 1955, 6, 55 (the title of the section).
9 Cf. my note in Mind, 1938, 47, 275 sq.
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them, there is a logical interpretation which takes probability as a general-
ization of deducibility. But this probability logic has little to do with
our hypothetical estimates of chances or of odds; for the probability
statements in which we express these estimates are always hypothetical
appraisals of the objective possibilities inherent in the particular situation—
in the objective conditions of the situation, for example in the experi-
mental set-up. These hypothetical estimates (which are not derivable from
anything else, but freely conjectured, although they may be suggested
by symmetry considerations, or by statistical material) can in many
important cases be submitted to statistical tests. They are never esti-
mates of our own nescience: the opposite view, as Poincaré saw so
clearly, is the consequence of a (possibly unconscious) determinist
view of the world.10

From this point of view, a ‘rational gambler’ always tries to estimate
the objective odds. The odds which he is ready to accept do not represent a
measure of his ‘degree of belief’ (as is usually assumed), but they are,
rather, the object of his belief. He believes that there are, objectively,
such odds: he believes in a probabilistic hypothesis h. If we wish to
measure, behaviouristically, the degree of his belief (in these odds or in
anything else) then we might have to find out, perhaps, what propor-
tion of his fortune he is ready to risk on a one-to-one bet that his
belief—his estimate of the odds—was correct, provided that this can
be ascertained.

As to degree of corroboration, it is nothing but a measure of the
degree to which a hypothesis h has been tested, and of the degree to
which it has stood up to tests. It must not be interpreted, therefore, as a
degree of the rationality of our belief in the truth of h; indeed, we know
that C(h, e) = 0 whenever h is logically true. Rather, it is a measure of
the rationality of accepting, tentatively, a problematic guess, knowing
that it is a guess—but one that has undergone searching examinations.

*13. The foregoing twelve points constitute the ‘Third Note’, as
published in the B.J.P.S. Two further remarks may be added, in order to
make more explicit some of the more formal considerations which are
implicit in this note.

10 Cf. H. Poincaré, Science and Method, 1914, IV, 1. (This chapter was first published in La
Revue du mois, 1907, 3, pp. 257–276, and in The Monist, 1912, 22, pp. 31–52.)
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The first problem I have in mind is, again, that of the metric of logical
probability (cf. the second note, point 3), and its relation to the distinc-
tion between what I am going to call primary and secondary prob-
ability statements. My thesis is that on the secondary level, Laplace’s
and Bernoulli’s distribution provide us with a metric.

We may operate with a system S1 = {a, b, c, a1, b1, c1, . . . } of elements
(in the sense of our system of postulates in appendix *iv). These elem-
ents will give rise to probability statements of the form ‘p(a, b) = r’. We
may call them ‘primary probability statements’. These primary prob-
ability statements may now be considered as the elements of a second-
ary system of elements, S2 = {e, f, g, h, . . . }; so that ‘e’, ‘f’, etc., are now
names of statements of the form ‘p(a, b) = r’.

Now Bernoulli’s theorem tells us, roughly, the following: let h be
‘p(a, b) = r’; then if h is true, it is extremely probable that in a long
sequence of repetitions of the conditions b, the frequency of the occur-
rence of a will be equal to r, or very nearly so. Let ‘δr(a)n’ denote the
statement that a will occur in a long sequence of n repetitions with a
frequency r ± δ. Then Bernoulli’s theorem says that the probability of
δr(a)n will approach 1, with growing n, given h, i.e. given that p(a, b) = r.
(It also says that this probability will approach 0, given that p(a, b) = s,
wheever s falls outsider r ± δ; which is important for the refutation of
probabilistic hypotheses.)

Now this means that we may write Bernoulli’s theorem in the form
of a (secondary) statement of relative probability about elements g and h
of S2; that is to say, we can write it in the form

lim
n → ∞

p(g, h) = 1

where g = δr(a)n and where h is the information that p(a, b) = r; that is to
say, h is a primary probability statement and g is a primary statement of
relative frequency.

These considerations show that we have to admit, in S2, frequency
statements such as g, that is to say, δr(a)n, and probabilistic assumptions,
or hypothetical probabilistic estimates, such as h. It seems for this rea-
son proper, in the interest of a homogeneous S2, to identify all the
probability statements which form the elements of S2, with frequency
statements, or in other words, to assume, for the primary probability
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statements e, f, g, h, . . . which form the elements of S2, some kind of
frequency interpretation of probability. At the same time, we may assume the
logical interpretation of probability for the probability statements of the form

P(g, h) = r

that is to say, for the secondary probability statements which make
assertions about the degree of probability of the primary probability
statements, g and h.

Although we may not have a logical (or absolute) metric of the
primary probability statements, that is to say, although we may have no
idea of the value of p(a) or of p(b), we may have a logical or absolute
metric of the secondary probability statements: this is provided by the
Laplacean distribution, according to which P(g), the absolute prob-
ability of g, that is to say of δr (a)n, equals 2δ, whether g is empirically
observed, or a hypothesis; so that the typical probabilistic hypothesis, h,
gets P(h) = 0, because h has the form ‘p(a, b) = r’, with δ = 0. Since
Bernoulli’s methods allow us to calculate the value of the relative prob-
ability P(g, h), by pure mathematical analysis, we may consider the
relative probabilities P(g, h) as likewise determined on purely logical
grounds. It therefore seems entirely adequate to adopt, on the
secondary level, the logical interpretation of the formal calculus of
probability.

To sum up, we may consider the methods of Bernoulli and Laplace as
directed towards the establishment of a purely logical metric of prob-
abilities on the secondary level, independently of whether or not there
exists a logical metric of probabilities on the primary level. Bernoulli’s
methods determine thereby the logical metric of relative probabilities
(secondary likelihood of primary hypotheses, in the main), and
Laplace’s the logical metric of absolute probabilities (of statistical
reports upon samples, in the main).

Their efforts were, no doubt, directed to a large extent towards
establishing a probabilistic theory of induction; they certainly tended
to identify C with p. I need not say that I believe they were mistaken in
this: statistical theories are, like all other theories, hypotheticodeduc-
tive. And statistical hypotheses are tested, like all other hypotheses,
by attempts to falsify them—by attempts to reduce their secondary
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likelihood to zero, or to almost zero. Their ‘degree of corroboration’, C,
is of interest only if it is the result of such tests; for nothing is easier
than to select statistical evidence so that it is favourable to a statistical
hypothesis—if we wish to do so.

*14. It might well be asked at the end of all this whether I have not,
inadvertently, changed my creed. For it may seem that there is nothing
to prevent us from calling C(h, e) ‘the inductive probability of h, given
e’ or—if this is felt to be misleading, in view of the fact that C does not
obey the laws of the probability calculus—‘the degree of the rationality
of our belief in h, given e’. A benevolent inductivist critic might even
congratulate me on having solved, with my C function, the age-old
problem of induction in a positive sense—on having finally established,
with my C function, the validity of inductive reasoning.

My reply would be as follows. I do not object to calling C(h, e) by any
name whatsoever, suitable or unsuitable: I am quite indifferent to ter-
minology, so long as it does not mislead us. Nor do I object—so long
as it does not mislead us—to an extension (inadvertent or otherwise)
of the meaning of ‘induction’. But I must insist that C(h, e) can be
interpreted as degree of corroboration only if e is a report on the severest tests
we have been able to design. It is this point that marks the difference between
the attitude of the inductivist, or verificationist, and my own attitude.
The inductivist or verificationist wants affirmation for his hypothesis. He
hopes to make it firmer by his evidence e and he looks out for ‘firmness’—
for ‘confirmation’. At best, he may realize that we must not be based in
our selection of e: that we must not ignore unfavourable cases; and that
e must comprise reports on our total observational knowledge,whether
favourable or unfavourable. (Note that the inductivist’s requirement
that e must comprise our total observational knowledge cannot be rep-
resented in any formalism. It is a non-formal requirement, a condition
of adequacy which must be satisfied if we wish to interpretp(h, e) as degree
of our imperfect knowledge of h.)

In opposition to this inductivist attitude, I assert that C(h, e) must not
be interpreted as the degree of corroboration of h by e, unless e reports
the results of our sincere efforts to overthrow h. The requirement of sincerity
cannot be formalized—no more than the inductivist requirement that e
must represent our total observational knowledge. Yet if e is not a report
about the results of our sincere attempts to overthrow h, then we shall
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simply deceive ourselves if we think we can interpret C(h, e) as degree
of corroboration, or anything like it.

My benevolent critic might reply that he can still see no reason why
my C function should not be regarded as a positive solution to the
classical problem of induction. For my reply, he might say, should be
perfectly acceptable to the classical inductivist, seeing that it merely
consists in an exposition of the so-called ‘method of eliminative
induction’—an inductive method which was well known to Bacon,
Whewell, and Mill, and which is not yet forgotten even by some of the
probability theorists of induction (though my critic may well admit
that the latter were unable to incorporate it effectively into their
theories).

My reaction to this reply would be regret at my continued failure to
explain my main point with sufficient clarity. For the sole purpose of
the elimination advocated by all these inductivists was to establish as
firmly as possible the surviving theory which, they thought, must be the true
one (or perhaps only a highly probable one, in so far as we may not have
fully succeeded in eliminating every theory except the true one).

As against this, I do not think that we can ever seriously reduce, by
elimination, the number of the competing theories, since this number
remains always infinite. What we do—or should do—is to hold on, for the
time being, to the most improbable of the surviving theories or, more precisely, to
the one that can be most severely tested. We tentatively ‘accept’ this
theory—but only in the sense that we select it as worthy to be
subjected to further criticism, and to the severest tests we can design.

On the positive side, we may be entitled to add that the surviving
theory is the best theory—and the best tested theory—of which we
know.

Addendum, 1972

(1) A comment may be added on the last three lines of the text. By the
‘best’ theory I mean the one of the competing and surviving theories
which has the greatest explanatory power, content, and simplicity, and
is least ad hoc. It will also be the best testable theory; but the best theory
in this sense need not always be the best tested theory.

(2) A most important contribution to the problem of the
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falsifiability of probabilistic or statistical theories and of falsifying stat-
istical tests has just been published as this new edition goes to the press.
It is Donald A. Gillies, ‘A Falsifying Rule for Probability Statements’,
B.J.P.S. 22, 1971, pp. 231–261.
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APPENDIX *x

Universals, Dispositions, and
Natural or Physical Necessity

(1) The fundamental doctrine which underlies all theories of induc-
tion is the doctrine of the primacy of repetitions. Keeping Hume’s attitude in
mind, we may distinguish two variants of this doctrine. The first
(which Hume criticized) may be called the doctrine of the logical
primacy of repetitions. According to this doctrine, repeated instances
furnish a kind of justification for the acceptance of a universal law. (The
idea of repetition is linked, as a rule, with that of probability.) The
second (which Hume upheld) may be called the doctrine of the tem-
poral (and psychological) primacy of repetitions. According to this
second doctrine, repetitions, even though they should fail to furnish
and kind of justification for a universal law and for the expectations and
beliefs which it entails, nevertheless induce and arouse these expect-
ations and beliefs in us, as a matter of fact—however little ‘justified’ or
‘rational’ this fact (or these beliefs) may be.

Both variants of this doctrine of the primacy of repetitions, the
stronger doctrine of their logical primacy and the weaker doctrine of
their temporal (or causal or psychological) primacy, are untenable.
This may be shown with the help of two entirely different arguments.

My first argument against the primacy of repetitions is the following.
All the repetitions which we experience are approximate repetitions; and by



saying that a repetition is approximate I mean that the repetition B of an
event A is not identical with A, or indistinguishable from A, but only
more or less similar to A. But if repetition is thus based upon mere similar-
ity, it must share one of the main characteristics of similarity; that is, its
relativity. Two things which are similar are always similar in certain
respects. The point may be illustrated by a simple diagram.

If we look at this diagram, we find that some of the figures are
similar with respect to shading (hatching) or to its absence; others are
similar with respect to shape; and others are similar with respect to
size. The table might be extended like this.
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One can easily see that there is no end to the possible kinds of
similarity.

These diagrams show that things may be similar in different respects, and
that any two things which are from one point of view similar may be
dissimilar from another point of view. Generally, similarity, and with it
repetition, always presuppose the adoption of a point of view: some simi-
larities or repetitions will strike us if we are interested in one problem,
and others if we are interested in another problem. But if similarity and
repetition presuppose the adoption of a point of view, or an interest, or
an expectation, it is logically necessary that points of view, or interests,
or expectations, are logically prior, as well as temporally (or causally or
psychologically) prior, to repetition. But this result destroys both the
doctrines of the logical and of the temporal primacy of repetitions.1

The remark may be added that for any given finite group or set of
things, however variously they may be chosen, we can, with a little
ingenuity, find always points of view such that all the things belonging
to that set are similar (or partially equal) if considered from one of
these points of view; which means that anything can be said to be a
‘repetition’ of anything, if only we adopt the appropriate point of view.
This shows how naïve it is to look upon repetition as something ultim-
ate, or given. The point here made is closely related to the fact (men-
tioned in appendix *vii, footnote 9; cf. the property B) that we can find,
for any given finite sequence of noughts and ones, a mathematical rule
or ‘law’ for constructing an infinite sequence such that it commences
with the given finite sequence.

I now come to my second argument against the primacy of repeti-
tions. It is this. There are laws and theories of a character altogether
different from ‘All swans are white’, even though they may be formu-
lated in a similar way. Take ancient atomic theory. Admittedly, it may
be expressed (in one of its simplest forms) as ‘All material bodies are
composed of corpuscles’. Yet clearly, the ‘all’-form is comparatively
unimportant in the case of this law. What I mean is this. The problem of

1 Some illustrations of this argument, so far as it is directed against the doctrine of
temporal primacy of repetitions (that is, against Hume) may be found in sections iv and
v of my paper ‘Philosophy of Science: A Personal Report’, now included under a different
title as chapter 1 in my Conjectures and Refutations, 1963, 1965.
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showing that one single physical body—say, a piece of iron—is com-
posed of atoms or ‘corpuscles’ is at least as difficult as that of showing
that all swans are white. Our assertions transcend, in both cases, all
observational experience. It is the same with almost all scientific theor-
ies. We cannot show, directly, even of one physical body that, in the
absence of forces, it moves along a straight line; or that it attracts, and is
attracted by, one other physical body in accordance with the inverse
square law. All these theories describe what we may call structural proper-
ties of the world; and they all transcend all possible experience. The dif-
ficulty with these structural theories is not so much to establish the
universality of the law from repeated instances as to establish that it
holds even for one single instance.

This difficulty has been seen by many inductivists. Most of those
who saw it tried, like Berkeley, to make a sharp distinction between
pure observational generalizations and more ‘abstract’ or ‘occult’ the-
ories, such as the corpuscular theory, or Newton’s theory; and they
tried, as a rule, to resolve the problem by saying, as did Berkeley, that
abstract theories are not genuine assertions about the world, but that
they are nothing but instruments—instruments for the prediction of observ-
able phenomena. I have called this view ‘instrumentalism’, and I have
criticized it in some detail elsewhere.2 Here I will only say that I reject
instrumentalism, and I will give only one reason for rejecting it: that it
does not solve the problem of the ‘abstract’ or ‘occult’ or ‘structural’
properties. For such properties do not only occur in the ‘abstract’
theories which Berkeley and his successors had in mind. They are
mentioned all the time, by everybody, and in ordinary speech. Almost
every statement we make transcends experience. There is no sharp
dividing line between an ‘empirical language’ and a ‘theoretical
language’: we are theorizing all the time, even when we make the most trivial
singular statement. With this remark, we have arrived at the main
problem which I intend to examine in this appendix.

(2) Admittedly, if we say ‘All swans are white’, then the whiteness
we predicate is an observable property; and to this extent, a singular

2 Cf. my papers ‘A Note on Berkeley as a Precursor of Mach’, B.J.P.S. 4, 1953, and ‘Three
Views Concerning Human Knowledge’ in Contemporary British Philosophy iii, ed. by H. D.
Lewis, 1956. Both are now in my Conjectures and Refutations, 1963, 1965.
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statement such as ‘This swan here is white’ may be said to be based on
observation. Yet it transcends experience—not because of the word
‘white’, but because of the word ‘swan’. For by calling something a
‘swan’, we attribute to it properties which go far beyond mere
observation—almost as far as when we assert that it is composed of
‘corpuscles’.

Thus not only the more abstract explanatory theories transcend
experience, but even the most ordinary singular statements. For even
ordinary singular statements are always interpretations of ‘the facts’ in the light
of theories. (And the same holds even for ‘the facts’ of the case. They
contain universals; and universals always entail a law-like behaviour.)

I explained briefly at the end of section 25 how it is that the use of
universals such as ‘glass’ or ‘water’, in a statement like ‘here is a glass of
water’, necessarily transcends experience. It is due to the fact that
words like ‘glass’ or ‘water’ are used to characterize the law-like behaviour
of certain things; which may be expressed by calling them ‘disposi-
tional words’. Now since every law transcends experience—which is
merely another way of saying that it is not verifiable—every predicate
expressing law-like behaviour transcends experience also: this is why
the statement ‘this container contains water’ is a testable but non-
verifiable hypothesis, transcending experience.3 It is for this reason
impossible to ‘constitute’ any true universal term (as Carnap tried to
do) that is to say, to define it in purely experimental or observational
terms—or to ‘reduce’ it to purely experiential or observational terms:
since all universals are dispositional, they cannot be reduced to experience.
We must introduce them as undefined terms, except those which we
may define in terms of other non-experiential universals (such as
‘water’ if we choose to define it as ‘a compound of two atoms of
hydrogen and one of oxygen’).

(3) That all universals are dispositional is often overlooked, owing

3 Since it is a singular statement, it is less incorrect to speak here of a symmetry between
non-verifiability and non-falsifiability than in a case of universal statements; for in order
to falsify it, we have to accept another singular statement, similarly non-verifiable, as true.
But even here, a certain asymmetry remains. For quite generally in assuming the truth, or
the falsity, of some test-statement, we can only establish the falsity of the statement under
test, but not its truth. The reason is that the latter entails an infinite number of test
statements. See also section 29 of the book, and section *22 of my Postscript.
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to the fact that universals can be dispositional in varying degrees. Thus
‘soluble’ or ‘breakable’ are clearly dispositional in a higher degree than
‘dissolved’ or ‘broken’. But it is sometimes not realized that even ‘dis-
solved’ and ‘broken’ are dispositional. A chemist would not say that
sugar or salt has dissolved in water if he did not expect that he could get
the sugar or the salt back, by evaporating the water. Thus ‘dissolved’
denotes a dispositional state. And as to ‘broken’, we need only consider
how we proceed if we are in doubt whether or not a thing is broken—
something we have dropped, perhaps, or say, a bone in our body: we
test the behaviour of the thing in question, trying to find out whether it
does not show a certain undue mobility. Thus ‘broken’, like ‘dis-
solved’, describes dispositions to behave in a certain regular or law-like
manner. Similarly, we say of a surface that it is red, or white, if it has the
disposition to reflect red, or white, light, and consequently the dis-
position to look in daylight red, or white. In general, the dispositional
character of any universal property will become clear if we consider
what tests we should undertake if we are in doubt whether or not the
property is present in some particular case.

Thus the attempt to distinguish between dispositional and non-
dispositional predicates is mistaken, just as is the attempt to distinguish
between theoretical terms (or languages) and non-theoretical or
empirical or observational or factual or ordinary terms (or languages).
It is, perhaps, somewhat like this. What people have learnt before
reaching a certain critical age, they are inclined to regard as factual, or
‘ordinary’, and what they hear later, as theoretical or perhaps as ‘merely
instrumental’. (The critical age seems to depend on the psychological
type.)

(4) Universal laws transcend experience, if only because they are
universal and thus transcend any finite number of their observable
instances; and singular statements transcend experience because the
universal terms which normally occur in them entail dispositions to
behave in a law-like manner, so that they entail universal laws (of some
lower order of universality, as a rule). Accordingly, universal laws tran-
scend experience in at least two ways: because of their universality, and
because of the occurrence of universal or dispositional terms in them.
And they transcend experience in a higher degree if the dispositional
terms which occur in them are dispositional in a higher degree or
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more abstract. There are layers of higher and higher degrees of univer-
sality, and thus of transcendence. (In section *15 of the Postscript, an
attempt is made to explain the sense in which these are also layers of
what may be called ‘depth’.)

It is of course because of this transcendence that scientific laws or
theories are non-verifiable, and that testability or refutability is the only
thing that distinguishes them, in general, from metaphysical theories.

If it is asked why we use these transcendent universal laws instead of
keeping more closely to ‘experience’, two kinds of answer may be
given.

(a) Because we need them: because there is no such thing as
‘pure experience’, but only experience interpreted in the light of
expectations or theories which are ‘transcendent’.

(b) Because a theorist is a man who wishes to explain experiences, and
because explanation involves the use of explanatory hypotheses which
(in order to be independently testable; see section *15 of the Postscript)
must transcend what we hope to explain.

The reason given under (a) is a pragmatic or instrumentalist one,
and although I believe that it is true, I do not think that it is comparable
in importance with the reason given under (b); for even if a pro-
gramme of eliminating explanatory theories for practical purposes
(say, for prediction) were to succeed, the aim of the theorist would be
unaffected.4

4 That it is possible to do without theories is asserted by Carnap, Logical Foundations of
Probability, pp. 574 f. Yet there is no reason whatever for the belief that Carnap’s analysis,
even if it were otherwise defensible, could be legitimately transferred from his model
language to ‘the language of science’; see my Preface, 1958. In two very interesting articles
W. Craig has discussed certain reduction programmes. (See Journal of Symb. Logic 18, 1953,
pp. 30 f., and Philosophical Review 65, 1956, pp. 38 ff.) To his own excellent critical com-
ments on his method of eliminating ‘auxiliary’ (or ‘transcendent’) ideas, the following
might be added. (i) He achieves the elimination of explanatory theories, essentially, by
promoting infinitely many theorems to the rank of axioms (or by replacing the defin-
ition of ‘theorem’ by a new definition of ‘axiom’ which is co-extensive with it as far as
the ‘purified’ sub-language goes). (ii) In the actual construction of the purified system,
he is of course guided by our knowledge of the theories to be eliminated. (iii) The purified system
is no longer an explanatory system, and no longer testable in the sense in which
explanatory systems may be testable whose testability is, essentially, related to their
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(5) That theories transcend experience in the sense here indicated
was asserted in many places in the book. At the same time, theories
were described as strictly universal statements.

A most penetrating criticism of the view that theories, or laws
of nature, can be adequately expressed by a universal statement, such
as ‘All planets move in ellipses’, has been advanced by William
Kneale. I have found Kneale’s criticism difficult to understand. Even
now I am not entirely sure whether I understand him properly; but
I hope I do.5

I believe that Kneale’s point can be put as follows. Although uni-
versal statements are entailed by statements of natural law, the latter are
logically stronger than the former. They do not only assert ‘All planets
move in ellipses’, but rather something like ‘All planets move necessarily
in ellipses.’ Kneale calls a statement of this kind a ‘principle of neces-
sitation’. I do not think that he succeeds in making quite clear what the
difference is between a universal statement and a ‘principle of neces-
sitation’. He speaks of ‘the need for a more precise formulation of the
notions of contingency and necessity’.6 But a little later, one reads to
one’s surprise: ‘In fact, the word “necessity” is the least troublesome of
those with which we have to deal in this part of philosophy.’7 Admit-
tedly, between these two passages, Kneale tries to persuade us that ‘the
sense of this distinction’—the distinction between contingency and
necessity—‘can be easily understood from examples’.8 But I found his
examples perplexing. Always assuming that I have succeeded in my
endeavours to understand Kneale, I must say that his positive theory of

informative content and depth. (One might well say that the axioms of the purified system
have zero depth in the sense of section *15 of my Postscript.)
5 Cf. William Kneale, Probability and Induction, 1949. One of my minor difficulties in under-
standing Kneale’s criticism was connected with the fact that he gives in some places very
good outlines of some of my views, while in others he seems to miss my point
completely. (See for example note 17, below.)
6 Op. cit., p. 32.
7 Op. cit., p. 80.
8 Op. cit., p. 32. One of the difficulties is that Kneale at times seems to accept Leibniz’s
view (‘A truth is necessary when its negation implies a contradiction; and when it is not
necessary, it is called contingent.’ Die philosophischen Schriften, ed. by Gerhardt, 3, pp. 400;
see also 7, pp. 390 ff.), while at other times he seems to use ‘necessary’ in a wider sense.
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natural laws seems to me utterly unacceptable. Yet his criticism seems
to me most valuable.

(6) I am now going to explain, with the help of an example, what I
believe to be essentially Kneale’s criticism of the view that a character-
ization of laws of nature as universal statements is logically sufficient and
also intuitively adequate.

Consider some extinct animal, say the moa, a huge bird whose
bones abound in some New Zealand swamps. (I have there dug for
them myself.) We decide to use the name ‘moa’ as a universal name
(rather than as a proper name; cf. section 14) of a certain biological
structure; but we ought to admit that it is of course quite possible—
and even quite credible—that no moas have ever existed in the uni-
verse, or will ever exist, apart from those which once lived in New
Zealand; and we will assume that this credible view is correct.

Now let us assume that the biological structure of the moa organism
is of such a kind that under very favourable conditions, a moa might
easily live sixty years or longer. Let us further assume that the condi-
tions met by the moa in New Zealand were far from ideal (owing,
perhaps, to the presence of some virus), and that no moa ever reached
the age of fifty. In this case, the strictly universal statement ‘All moas
die before reaching the age of fifty’ will be true; for according to our
assumption, there never is, was, or will be a moa in the universe more
than fifty years of age. At the same time, this universal statement will
not be a law of nature; for according to our assumptions, it would be
possible for a moa to live longer, and it is only due to accidental or contingent
conditions—such as the co-presence of a certain virus—that in fact no
moa did live longer.

The example shows that there may be true, strictly universal statements
which have an accidental character rather than the character of true
universal laws of nature. Accordingly, the characterization of laws
of nature as strictly universal statements is logically insufficient and
intuitively inadequate.

(7) The example may also indicate in what sense natural laws may
be described as ‘principles of necessity’ or ‘principles of impossibility’,
as Kneale suggests. For according to our assumptions—assumptions
which are perfectly reasonable—it would be possible, under favourable
conditions, for a moa to reach a greater age than any moa has actually

new appendices448



reached. But were there a natural law limiting the age of any moa-like
organism to fifty years, then it would not be possible for any moa to live
longer than this. Thus natural laws set certain limits to what is possible.

I think that all this is intuitively acceptable; in fact, when I said, in
several places in my book, that natural laws forbid certain events to
happen, or that they have the character of prohibitions, I gave expression
to the same intuitive idea. And I think that it is quite possible and
perhaps even useful to speak of ‘natural necessity’ or of ‘physical neces-
sity’, in order to describe this character of natural laws, and of their
logical consequences.

(8) But I think it is a mistake to underrate the differences between
this natural or physical necessity, and other kinds of necessity, for
example, logical necessity. We may, roughly, describe as logically
necessary what would hold in any conceivable world. But although
Newton’s inverse square law may conceivably be a true law of nature in
some world, and to that extent naturally necessary in that world, a
world in which it is not valid is perfectly conceivable.

Kneale has criticized this kind of argument by pointing out that
Goldbach’s conjecture (according to which any even number greater
than two is the sum of two primes) may conceivably be true, or conceiv-
ably be false, even though it may well be demonstrable (or refutable),
and in this sense mathematically or logically necessary (or impossible);
and he argues that ‘the conceivability of the contradictory is not to be
taken as a disproof of necessity in mathematics’.9 But if so, why, he
asks, ‘should it be supposed to furnish . . . a disproof in natural sci-
ence?’10 Now I think that this argument lays too much stress on the word
‘conceivable’; moreover, it operates with a sense of ‘conceivable’ dif-
ferent from the one intended: once we have a proof of Goldbach’s
theorem, we may say that this proof establishes precisely that an even
number (greater than two) which is not the sum of two primes is
inconceivable—in the sense that it leads to inconsistent results: to the
assertion, among others, that 0 = 1, which is ‘inconceivable’. In
another sense, 0 = 1 may be quite conceivable: it may even be used, like
any other mathematically false statement, as an assumption in an

9 Op. cit., p. 80.
10 Ibid.
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indirect proof. Indeed, an indirect proof may well be put thus: ‘Conceive
that a is true. Then we should have to admit that b is true. But we
know that b is absurd. Thus it is inconceivable that a is true.’ It is clear
that although this use of ‘conceivable’ and ‘inconceivable’ is a little
vague and ambiguous, it would be misleading to say that this way of
arguing must be invalid since the truth of a cannot be inconceivable,
considering that we did start by conceiving, precisely, the truth of a.

Thus ‘inconceivable’ in logic and mathematics is simply another
word for ‘leading to an obvious contradiction’. Logically possible or
‘conceivable’ is everything that does not lead to an obvious contradic-
tion, and logically impossible or ‘inconceivable’ is everything that
does. When Kneale says that the contradictory of a theorem may be
‘conceivable’, he uses the word in another sense—and in a very good
sense too.

(9) Thus an assumption is logically possible if it is not self-
contradictory; it is physically possible if it does not contradict the laws
of nature. The two meanings of ‘possible’ have enough in common to
explain why we use the same word; but to gloss over their difference
can only lead to confusion.

Compared with logical tautologies, laws of nature have a contingent,
an accidental character. This is clearly recognized by Leibniz who
teaches (cf. Philos. Schriften, Gerhardt, 7, p. 390) that the world is the work
of God, in a sense somewhat similar to that in which a sonnet, or a
rondeau, or a sonata, or a fugue, is the work of an artist. The artist may
freely choose a certain form, voluntarily restricting his freedom by this
choice: he imposes certain principles of impossibility upon his cre-
ation, for example upon his rhythm, and, to a lesser extent, his words
which, as compared to the rhythm, may appear contingent, accidental.
But this does not mean that his choice of form, or of rhythm, was not
contingent also. For another form or rhythm could have been chosen.

Similarly with natural laws. They restrict the (logically) possible
choice of singular facts. They are thus principles of impossibility with
respect to these singular facts; and the singular facts seem highly con-
tingent as compared with the natural laws. But the natural laws, though
necessary as compared with singular facts, are contingent as compared
with logical tautologies. For there may be structurally different worlds—
worlds with different natural laws.
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Thus natural necessity or impossibility is like musical necessity or
impossibility. It is like the impossibility of a four-beat rhythm in a
classical minuet, or the impossibility of ending it on a diminished
seventh or some other dissonance. It imposes structural principles upon
the world. But it still leaves a great deal of freedom to the more
contingent singular facts—the initial conditions.

If we compare the situation in music with that of our example of the
moa, we can say: there is no musical law prohibiting the writing of a
minuet in G flat minor, but it is nevertheless quite possible that no
minuet has ever been, or will ever be, written in this unusual key. Thus
we can say that musically necessary laws may be distinguished from true
universal statements about the historical facts of musical composition.

(10) The opposite view—the view that natural laws are in no sense
contingent—seems to be the one which Kneale is advancing, if I
understand him well. To me it seems quite as mistaken as the view
which he justly criticizes—the view that laws of nature are nothing but
true universal statements.

Kneale’s view that laws of nature are necessary in the same sense in
which logical tautologies are necessary may perhaps be expressed in
religious terms thus: God may have faced the choice between creating a
physical world and not creating a physical world, but once this choice
was made, He was no longer free to choose the form, or the structure
of the world; for since this structure—the regularities of nature,
described by the laws of nature—is necessarily what it is, all He could
freely choose were the initial conditions.

It seems to me that Descartes held a view very similar to this. Accord-
ing to him, all the laws of nature follow with necessity from the one
analytic principle (the essential definition of ‘body’) according to
which ‘to be a body’ means the same as ‘to be extended’; which is
taken to imply that two different bodies cannot take up the same exten-
sion, or space. (Indeed, this principle is similar to Kneale’s standard
example—‘that nothing which is red is also green’.11) But it is by
going beyond these ‘truisms’ (as Kneale calls them, stressing their
similarity to logical tautologies12) that, beginning with Newton,

11 Cf. Kneale, op. cit., p. 32; see also, for example, p. 80.
12 Op. cit., p. 33.
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physical theory has reached a depth of insight utterly beyond the
Cartesian approach.

It seems to me that the doctrine that the laws of nature are in no sense
contingent is a particularly severe form of a view which I have described
and criticized elsewhere as ‘essentialism’.13 For it entails the doctrine of
the existence of ultimate explanations; that is to say, of the existence of
explanatory theories which in their turn are neither in need of any
further explanation nor capable of being further explained. For should
we succeed in the task of reducing all the laws of nature to the true
‘principles of necessitation’—to truisms, such as that two essentially
extended things cannot take up the same extension, or that nothing
which is red is also green—further explanation would become both
unnecessary and impossible.

I see no reason to believe that the doctrine of the existence of ultim-
ate explanations is true, and many reasons to believe that it is false. The
more we learn about theories, or laws of nature, the less do they
remind us of Cartesian self-explanatory truisms or of essentialist def-
initions. It is not truisms which science unveils. Rather, it is part of the
greatness and the beauty of science that we can learn, through our own
critical investigations, that the world is utterly different from what we
ever imagined—until our imagination was fired by the refutation of
our earlier theories. There does not seem any reason to think that this
process will come to an end.14

All this receives the strongest support from our considerations about
content and (absolute) logical probability. If laws of nature are not
merely strictly universal statements, they must be logically stronger than
the corresponding universal statements, since the latter must be
deducible from them. But the logical necessity of a, as we have seen (at the
end of appendix *v) can be defined by the definiens

p(a) = p(a, ā) = 1.

For universal statements a, on the other hand, we obtain (cf. the same
appendix and appendices *vii and *viii):

13 Cf. my Poverty of Historicism, section 10; The Open Society, chapter 3, section vi; chapter 11;
‘Three Views Concerning Human Knowledge’ (now in my Conjectures and Refutations, 1965,
chapter 3) and my Postscript, for example section *15 and *31.
14 Cf. my Postscript, especially section *15.
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p(a) = p(a, ā) = 0;

and the same must hold for any logically stronger statement. Accord-
ingly, a law of nature is, by its great content, as far removed from a
logically necessary statement as a consistent statement can be; and it is
much nearer, in its logical import, to a ‘merely accidentally’ universal
statement than to a logical truism.

(11) The upshot of this discussion is that I am prepared to accept
Kneale’s criticism in so far as I am prepared to accept the view that
there exists a category of statements, the laws of nature, which are
logically stronger than the corresponding universal statements. This
doctrine is, in my opinion, incompatible with any theory of induction.
To my own methodology it makes little or no difference, however. On
the contrary, it is quite clear that a proposed or conjectured principle
which declares the impossibility of certain events would have to be
tested by trying to show that these events are possible; that is to say, by
trying to bring them about. But this is precisely the method of testing
which I advocate.

Thus from the point of view here adopted, no change whatever is
needed, as far as methodology is concerned. The change is entirely on
an ontological, a metaphysical level. It may be described by saying that
if we conjecture that a is a natural law, we conjecture that a expresses a
structural property of our world; a property which prevents the occurrence of
certain logically possible singular events, or states of affairs of a certain
kind—very much as explained in sections 21 to 23 of the book, and
also in sections 79, 83, and 85.

(12) As Tarski has shown, it is possible to explain logical necessity in
terms of universality: a statement may be said to be logically necessary
if and only if it is deducible (for example, by particularization) from a
‘universally valid’ statement function; that is to say, from a statement
function which is satisfied by every model.15 (This means, true in all possible
worlds.)

I think that we may explain by the same method what we mean by
natural necessity; for we may adopt the following definition, (N°):

(N°) A statement may be said to be naturally or physically necessary if, and only if, it

15 Cf. my ‘Note on Tarski’s Definition of Truth’, Mind 64, 1955, especially p. 391.
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is deducible from a statement function which is satisfied in all worlds that differ from our
world, if at all, only with respect to initial conditions. (*See the Addendum to the
present appendix.)

We can never know, of course, whether a supposed law is a genuine
law or whether it only looks like a law but depends, in fact, upon
certain special initial conditions prevailing in our region of the uni-
verse. (Cf. section 79.) We cannot, therefore ever find out of any
given non-logical statement that it is in fact naturally necessary: the
conjecture that it is remains a conjecture for ever (not merely
because we cannot search our whole world in order to ensure that
no counter instance exists, but for the even stronger reason that we
cannot search all worlds that differ from ours with respect to initial
conditions.) But although our proposed definition excludes the pos-
sibility of obtaining a positive criterion of natural necessity, we can in
practice apply our definition of natural necessity in a negative way: by
finding initial conditions under which the supposed law turns out to
be invalid, we can show that it was not necessary; that is to say, not a
law of nature. Thus the proposed definition fits our methodology
very well indeed.

The proposed definition would, of course, make all laws of nature,
together with all their logical consequences, naturally or physically
necessary.16

It will be seen at once that the proposed definition is in perfect
agreement with the results reached in our discussion of the moa
example (cf. points 6 and 7 above): it was precisely because we thought
that moas would live longer under different conditions—under more
favourable ones—that we felt that a true universal statement about their
actual maximal age was of an accidental character.

(13) We now introduce the symbol ‘N’ as a name of the class of
statements which are necessarily true, in the sense of natural or physi-
cal necessity; that is to say, true whatever the initial conditions may be.

With the help of ‘N’, we can define ‘a→N b’ (or in words, ‘If a then
necessarily b’) by the following somewhat obvious definition:

16 Incidentally, logically necessary statements would (simply because they follow from
any statement) become physically necessary also; but this does not matter, of course.
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a→N b is true if, and only if, (a → b) ε N.(D)

In words, perhaps: ‘If a then necessarily b’ holds if, and only if, ‘If a
then b’ is necessarily true. Here ‘a → b’ is, of course, the name of an
ordinary conditional with the antecedent a and the consequent b. If it
were our intention to define logical entailment or ‘strict implication’,
then we could also use (D), but we should have to interpret ‘N’ as
‘logically necessary’ (rather than as ‘naturally or physically necessary’).

Owing to the definition (D), we can say of ‘a→N b’ that it is the name
of a statement with the following properties.

(A) a→N b is not always true if a is false, in contradistinction to a → b.

(B) a→N b is not always true if b is true, in contradistinction to a → b.

(A′) a→N b is always true if a is impossible or necessarily false, or if its
negation, ā, is necessarily true whether by logical or by physical
necessity. (Cf. the last three pages of the present appendix, and
note 26, below.)

(B′) a→N b is always true if b is necessarily true (whether by logical or
physical necessity).

Here a and b may be either statements or statement functions.
a→N b may be called a ‘necessary conditional’ or a ‘nomic con-

ditional’. It expresses, I believe, what some authors have called
‘subjunctive conditionals’, or ‘counterfactual conditionals’. (It seems,
however, that other authors—for example Kneale—meant something
else by a ‘counterfactual conditional’: they took this name to imply
that a is, in fact, false.17 I do not think that this usage is to be
recommended.)

17 In my ‘Note on Natural Laws and so-called Contrary-to-Fact Conditionals’ (Mind 58,
N.S., 1949, pp. 62–66) I used the term ‘subjunctive conditional’ for what I here call
‘necessary’ or ‘nomic conditional’; and I explained repeatedly that these subjunctive
conditionals must be deducible from natural laws. It is therefore difficult to understand
how Kneale (Analysis 10, 1950, p. 122) could attribute to me even tentatively the
view that a subjunctive conditional or a ‘contrary to fact conditional’ was of the form
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A little reflection will show that the class N of naturally necessary
statements comprises not only the class of all those statements
which, like true universal laws of nature, can be intuitively described
as being unaffected by changes of initial conditions, but also all
those statements which follow from true universal laws of nature, or
from the true structural theories about the world. There will be
statements among these that describe a definite set of initial condi-
tions; for example, statements of the form ‘if in this phial under
ordinary room temperature and a pressure of 1000 g per cm2,
hydrogen and oxygen are mixed . . . then . . .’. If conditional state-
ments of this kind are deducible from true laws of nature, then their
truth will be also invariant with respect to all changes of initial
conditions: either the initial conditions described in the antecedent
will be satisfied, in which case the consequent will be true (and
therefore the whole conditional); or the initial conditions described
in the antecedent will not be satisfied and therefore factually untrue
(‘counter-factual’). In this case the conditional will be true as vacu-
ously satisfied. Thus the much discussed vacuous satisfaction plays its
proper part to ensure that the statements deducible from naturally
necessary laws are also ‘naturally necessary’ in the sense of our
definition.

Indeed, we could have defined N simply as the class of natural
laws and their logical consequences. But there is perhaps a slight
advantage in defining N with the help of the idea of initial condi-
tions (of a simultaneity class of singular statements). If we define N
as, for example, the class of statements which are true in all worlds
that differ from our world (if at all) only with respect to initial
conditions, then we avoid the use of subjunctive (or counter-factual)
wording, such as ‘which would remain true even if different
initial conditions held (in our world) than those which actually do
hold’.

Nevertheless, the phrase in (N°) ‘all worlds which differ (if at all)
from our world only with respect to the initial conditions’ undoubt-

‘∼�(a). (�(a) ⊃ ψ(a))’. I wonder whether Kneale realized that this expression of his was
only a complicated way of saying ‘∼� (a)’; for who would ever think of asserting that
‘∼� (a)’ was deducible from the law ‘(x) (�(x) ⊃ ψ (x))’?
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edly contains implicitly the idea of laws of nature. What we mean is ‘all
worlds which have the same structure—or the same natural laws—as
our own world’. In so far as our definiens contains implicitly the idea of
laws of nature, (N°) may be said to be circular. But all definitions must
be circular in this sense—precisely as all derivations (as opposed to
proofs18), for example, all syllogisms, are circular: the conclusion must
be contained in the premises. Our definition is not, however, circular in
a more technical sense. Its definiens operates with a perfectly clear intui-
tive idea—that of varying the initial conditions of our world; for
example, the distances of the planets, their masses, and the mass of the
sun. It interprets the result of such changes as the construction of a
kind of ‘model’ of our world (a model or ‘copy’ which does not need
to be faithful with respect to the initial conditions); and it then imitates
the well-known device of calling those statements ‘necessary’ which
are true in (the universe of) all these models (i.e. for all logically possible
initial conditions).

(14) My present treatment of this problem differs, intuitively, from
a version previously published.19 I think that it is a considerable
improvement, and I gladly acknowledge that I owe this improvement,
in a considerable measure, to Kneale’s criticism. Nevertheless, from a
more technical (rather than an intuitive) point of view the changes are
slight. For in that paper, I operate (a) with the idea of natural laws, (b)
with the idea of conditionals which follow from natural laws; but (a)
and (b) together have the same extension as N, as we have seen. (c) I
suggest that ‘subjunctive conditionals’ are those that follow from (a),
i.e. are just those of the class (b). And (d) I suggest (in the last para-
graph) that we may have to introduce the supposition that all logically
possible initial conditions (and therefore all events and processes
which are compatible with the laws) are somewhere, at some time,
realized in the world; which is a somewhat clumsy way of saying more
or less what I am saying now with the help of the idea of all worlds that

18 The distinction between derivation and proof is dealt with in my paper ‘New
Foundations for Logic’, Mind 56, 1947, pp. 193 f.
19 Cf. ‘A Note on Natural Laws and So-Called Contrary-to Fact Conditionals’, Mind 58,
N.S., 1949, pp. 62–66. See also my Poverty of Historicism, 1957 (first published 1945), the
footnote on p. 123.
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differ (if at all) from our world only with respect to the initial
conditions.20

My position of 1949 might indeed be formulated with the help of
the following statement. Although our world may not comprise all
logically possible worlds, since worlds of another structure—with dif-
ferent laws—may be logically possible, it comprises all physically pos-
sible worlds, in the sense that all physically possible initial conditions
are realized in it—somewhere, at some time. My present view is that it
is only too obvious that this metaphysical assumption may possibly be
true—in both senses of ‘possible’—but that we are much better off

without it.
Yet once this metaphysical assumption is adopted, my older and my

present views become (except for purely terminological differences)
equivalent, as far as the status of laws is concerned. Thus my older view is,
if anything, more ‘metaphysical’ (or less ‘positivistic’) than my present
view, even though it does not make use of the word ‘necessary’ in
describing the status of laws.

(15) To a student of method who opposes the doctrine of induction
and adheres to the theory of falsification, there is not much difference
between the view that universal laws are nothing but strictly universal
statements and the view that they are ‘necessary’: in both cases, we can
only test our conjecture by attempted refutations.

To the inductivist, there is a crucial difference here: he ought to
reject the idea of ‘necessary’ laws, since these, being logically stronger,
must be even less accessible to induction than mere universal
statements.

Yet inductivists do not in fact always reason in this way. On the
contrary, some seem to think that a statement asserting that laws
of nature are necessary may somehow be used to justify

20 I call my older formulation ‘clumsy’ because it amounts to introducing the assumption
that somewhere moas have once lived, or will one day live, under ideal conditions; which
seems to me a bit far-fetched. I prefer now to replace this supposition by another—that
among the ‘models’ of our world—which are not supposed to be real, but logical
constructions as it were—there will be at least one in which moas live under ideal
conditions. And this, indeed, seems to me not only admissible, but obvious. Apart from
terminological changes, this seems to be the only change in my position, as compared
with my note in Mind of 1949. But I think that it is an important change.
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induction—perhaps somewhat on the lines of a ‘principle of the
uniformity of nature’.

But it is obvious that no principle of this kind could ever justify
induction. None could make inductive conclusions valid or even
probable.

It is quite true, of course, that a statement like ‘there exist laws of
nature’ might be appealed to if we wished to justify our search for laws
of nature.21 But in the context of this remark of mine, ‘justify’ has a
sense very different from the one it has in the context of the question
whether we can justify induction. In the latter case, we wish to estab-
lish certain statements—the induced generalizations. In the former
case, we merely wish to justify an activity, the search for laws. More-
over, even though this activity may, in some sense, be justified by the
knowledge that true laws exist—that there are structural regularities in
the world—it could be so justified even without that knowledge: the
hope that there may be some food somewhere certainly ‘justifies’ the
search for it—especially if we are starving—even if this hope is far
removed from knowledge. Thus we can say that, although the know-
ledge that true laws exist would add something to the justification of
our search for laws, this search is justified, even if we lack knowledge,
by our curiosity, and by the mere hope that we may succeed.

Moreover, the distinction between ‘necessary’ laws and strictly uni-
versal statements does not seem to be relevant to this problem: whether
necessary or not, the knowledge that laws exist would add something
to the ‘justification’ of our search, without being needed for this kind
of ‘justification’.

(16) I believe, however, that the idea that there are necessary laws of
nature, in the sense of natural or physical necessity explained under
point (12), is metaphysically or ontologically important, and of great
intuitive significance in connection with our attempts to understand

21 Cf. Wittgenstein’s Tractatus, 6.36: ‘If there were a law of causality, it might run: “There
are natural laws”. But that can clearly not be said; it shows itself.’ In my opinion, what
shows itself, if anything, is that this clearly can be said: it has been said by Wittgenstein, for
example. What can clearly not be done is to verify the statement that there are natural laws
(or even to falsify it). But the fact that a statement is not verifiable (or even that it is not
falsifiable) does not mean that it is meaningless, or that it cannot be understood, or that it
‘can clearly not be said’, as Wittgenstein believed.
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the world. And although it is impossible to establish this metaphysical
idea either on empirical grounds (because it is not falsifiable) or on
other grounds, I believe that it is true, as I indicated in section 79, and
83 to 85. Yet I am now trying to go beyond what I said in these sections
by emphasizing the peculiar ontological status of universal laws (for
example, by speaking of their ‘necessity’, or their ‘structural char-
acter’), and also by emphasizing the fact that the metaphysical char-
acter or the irrefutability of the assertion that laws of nature exist need
not prevent us from discussing this assertion rationally—that is to say,
critically. (See my Postscript, especially sections *6, *7, *15, and *120.)

Nevertheless, I regard, unlike Kneale, ‘necessary’ as a mere word—as
a label useful for distinguishing the universality of laws from ‘accidental’
universality. Of course, any other label would do just as well, for there
is not much connection here with logical necessity. I largely agree with
the spirit of Wittgenstein’s paraphrase of Hume: ‘A necessity for one
thing to happen because another has happened does not exist. There is
only logical necessity.’22 Only in one way is a→N b connected with
logical necessity: the necessary link, between a and b is neither to be
found in a nor in b, but in the fact that the corresponding ordinary
conditional (or ‘material implication’, a → b without ‘N’) follows with
logical necessity from a law of nature—that it is necessary, relative to a law
of nature.23 And it may be said that a law of nature is necessary in its
turn because it is logically derivable from, or explicable by, a law of a
still higher degree of universality, or of greater ‘depth’. (See my Post-
script, section *15.) One might suppose that it is this logically necessary
dependence upon true statements of higher universality, conjectured
to exist, which suggested in the first instance the idea of ‘necessary
connection’ between cause and effect.24

(17) So far as I can understand the modern discussions of ‘sub-
junctive conditionals’ or ‘contrary-to-fact conditionals’ or ‘counterfac-
tual conditionals’, they seems to have arisen mainly out of the problem

22 Cf. Tractatus, 6.3637.
23 I pointed this out in Aristotelian Society Supplementary Volume 22, 1948, pp. 141 to 154,
section 3; see especially p. 148. In this paper I briefly sketched a programme which I have
largely carried out since.
24 Cf. my paper quoted in the foregoing footnote.
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situation created by the inherent difficulties of inductivism or
positivism or operationalism or phenomenalism.

The phenomenalist, for instance, wishes to translate statements
about physical objects into statements about observations. For example,
‘There is a flower-pot on the window sill’ should be translatable into
something like ‘If anybody in an appropriate place looks in the
appropriate direction, he will see what he has learned to call a flower-
pot’. The simplest objection (but by no means the most important
one) to regarding the second statement as a translation of the first is to
point out that while the second will be (vacuously) true when nobody
is looking at the window sill, it would be absurd to say that whenever
nobody is looking at some window sill, there must be a flower-pot on
it. The phenomenalist is tempted to reply to this that the argument
depends on the truth-table definition of the conditional (or of
‘material implication’), and that we have to realize the need for a
different interpretation of the conditional—a modal interpretation
which makes allowance for the fact that what we mean is something
like ‘If anybody looks, or if anybody were looking, then he will see, or
would see, a flower-pot’.25

One might think that our a→N b could provide the desired modal
conditional, and in a way it does do this. Indeed, it does it as well as
one can possibly expect. Nevertheless, our original objection stands,
because we know that if ā is necessary—that is, if ā εN—then a→N b
holds for every b. This means that, if for some reason or other the place
where a flower-pot is (or is not) situated is such that it is physically
impossible for anybody to look at it, then ‘If anybody looks, or if anybody
were looking, at that place, then he will, or would, see a flower-pot’
will be true, merely because nobody can look at it.26 But this means that

25 It was R. B. Braithwaite who replied along similar lines as these to my objection
of vacuous satisfaction after a paper he read on phenomenalism in Professor Susan
Stebbing’s seminar, in the spring of 1936. It was the first time that I heard, in a context
like this, of what is nowadays called a ‘subjunctive conditional’. For a criticism of
phenomenalist ‘reduction programmes’, see note 4 and text, above.
26 A somewhat fuller statement of this view of subjunctive conditionals may be found in
my note ‘On Subjunctive Conditionals with Impossible Antecedents’, Mind N.S. 68, 1959,
pp. 518–520.
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the phenomenalist modal translation of ‘At the place x is a flower-pot’
will be true for all those places x which, for some physical reason or
other, nobody can look at. (Thus there is a flower-pot—or whatever else
you like—in the centre of the sun.) But this is absurd.

For this reason, and for many other reasons, I do not think that there
is any chance of rescuing phenomenalism by this method.

As to the doctrine of operationalism—which demands that scientific
terms, such as length, or solubility, should be defined in terms of the
appropriate experimental procedure—it can be shown quite easily that
all so-called operational definitions will be circular. I may show this
briefly in the case of ‘soluble’.27

The experiments by which we test whether a substance such as
sugar is soluble in water involve such tests as the recovery of dissolved
sugar from the solution (say, by evaporation of the water; cf. point 3
above). Clearly, it is necessary to identify the recovered substance, that
is to say, to find out whether it has the same properties as sugar. Among
these properties, solubility in water is one. Thus in order to define ‘x is
soluble in water’ by the standard operational test, we should at least
have to say something like this:

‘x is soluble in water if and only if (a) when x is put into water then it
(necessarily) disappears, and (b) when after the water evaporates, a
substance is (necessarily) recovered which, again, is soluble in water.’

The fundamental reason for the circularity of this kind of definition
is very simple: experiments are never conclusive; and they must, in
their turn, be testable by further experiments.

Operationalists seem to have believed that once the problem of sub-
junctive conditionals was solved (so that the vacuous satisfaction of the
defining conditional could be avoided) there would be no further ob-
stacle in the way of operational definitions of dispositional terms. It
seems that the great interest shown in the so-called problem of sub-
junctive (or counter-factual) conditionals was mainly due to this belief.

27 The argument is contained in a paper which I contributed in January 1955 to the
Carnap volume of the Library of Living Philosophers, ed. by P. A. Schilpp. It is now in my
Conjectures and Refutations, 1965, ch. II, p. 278. As to the circularity of the operational
definition of length, this may be seen from the following two facts: (a) the operational
definition of length involves temperature corrections, and (b) the (usual) operational defin-
ition of temperature involves measurements of length.
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But I think I have shown that even if we have solved the problem of
logically analysing subjunctive (or ‘nomic’) conditionals, we cannot
hope to define dispositional terms, or universal terms, operationally.
For universals, or dispositional terms, transcend experience, as
explained here under points 1 and 2, and in section 25 of the book.

Addendum, 1968

Since this appendix was first published in 1959, there has been a very
interesting reply from William Kneale, B.J.P.S. 12, 1961, p. 99 ff.,
and a criticism by G. C. Nerlich and W. A. Suchting, B.J.P.S. 18, 1967,
p. 233 ff., to which I replied, B.J.P.S. 18, 1967, p. 316 ff. I do not now
think that my reply is very good. In fact, it is only after reconsidering
Kneale’s criticism that I realised what is at the bottom of our
disagreement.

It is, I now think, the fact that most philosophers regard definitions
as important, and that they have never taken my assurance seriously
that I do regard them as unimportant. I neither believe that definitions
can make the meaning of our words definite, nor do I think it worth
bothering about whether or not we can define a term (though it may
sometimes be moderately interesting that a term can be defined with
the help of terms of a certain kind); for we do need undefined primitive
terms in any case.

I may perhaps sum up my position by saying that, while theories and
the problems connected with their truth are all-important, words and
the problems connected with their meaning are unimportant. (Cp.
Conjectures and Refutations, 3rd edition, 1968, point (9) on p. 28.)

For this reason I am not really very interested in either the definition
or in the definability of ‘natural necessity’; though I am interested in
the fact (for I believe that it is a fact) that the idea is not meaningless.

Least of all am I interested in establishing the fact (if it is a fact,
which I regard as doubtful) that a modal term can be defined with the
help of non-modal terms. If I have given the impression that this is
what I wanted to show, I have certainly given the wrong impression.
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APPENDIX *xi

On the Use and Misuse of
Imaginary Experiments, Especially

in Quantum Theory

The criticisms presented in the later parts of this appendix are logical in
character. My point is not to refute certain arguments, some of which,
for all I know, may have long been discarded by their originators. I try,
rather, to show that certain methods of argument are inadmissible—
methods which have been used, without being challenged, for many
years in the discussions about the interpretation of quantum theory. It
is, in the main, the apologetic use of imaginary experiments which I am
criticizing here, rather than any particular theory in whose defence
these experiments were propounded.1 Least of all do I wish to create
the impression that I am doubting the fruitfulness of imaginary
experiments.

(1) One of the most important imaginary experiments in the
history of natural philosophy, and one of the simplest and most
ingenious arguments in the history of rational thought about our
universe, is contained in Galileo’s criticism of Aristotle’s theory of

1 More especially, I do not wish to criticize the quantum theory here, or any particular
interpretation of it.



motion.2 It disproves the Aristotelian supposition that the natural
velocity of a heavier body is greater than that of a lighter body. ‘If
we take two moving bodies’, Galileo’s spokesman argues, ‘such that
their natural velocities are unequal, it is manifest that if we join them
together, the slower and the faster one, then the latter will be partly
retarded by the slower one, and the slower partly sped up by the
faster one’. Thus ‘if a big stone moves, for example, with a velocity
of eight steps and a smaller one with a velocity of four, then, after
being joined together, the composite system will move with a
velocity of less than eight steps. But the two stones joined together
make a stone bigger than the first one which moved with a velocity
of eight steps. Thus the composite body (although bigger than the first alone) will
nevertheless move more slowly than the first alone; which is contrary to your
supposition.’3 And since this Aristotelian supposition was the one
from which the argument started, it is now refuted: it is shown to be
absurd.

I see in Galileo’s imaginary experiment a perfect model for the best
use of imaginary experiments. It is the critical use. I do not wish to
suggest, however, that there is no other way of using them. There
is, especially, a heuristic use which is very valuable. But there are less
valuable uses also.

An old example of what I call the heuristic use of imaginary experi-
ments is one that forms the heuristic basis of atomism. We imagine that
we take a piece of gold, or some other substance, and cut it into smaller
and smaller parts ‘until we arrive at parts so small that they cannot be
any longer subdivided’: a thought experiment used in order to explain
‘indivisible atoms’. Heuristic imaginary experiments have become par-
ticularly important in thermodynamics (Carnot’s cycle); and they have
lately become somewhat fashionable owing to their use in relativity
and in quantum theory. One of the best examples of this kind is
Einstein’s experiment of the accelerated lift: it illustrates the local
equivalence of acceleration and gravity, and it suggests that light rays in

2 Galileo himself proudly says of his argument (he puts the words into the mouth of
Simplicio): ‘In truth, your argument has proceeded exceedingly well.’ Cf. Dialogues Concern-
ing Two New Sciences, 1638, First Day, p. 109 (p. 66 of vol. xiii, 1855, of the Opere Complete;
pp. 64 and 62 of the English edition of Crew and Salvio, 1914).
3 Op. cit., p. 107 (1638); p. 65 (1855); p. 63 (1914).
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a gravitational field may proceed on curved paths. This use is important
and legitimate.

The main purpose of this note is to issue a warning against what
may be called the apologetic use of imaginary experiments. This use goes back, I
think, to the discussion of the behaviour of measuring rods and clocks
from the point of view of special relativity. At first these experiments
were used in an illustrative and expository way—a perfectly legitimate
usage. But later, and in the discussion of quantum theory, they were
also used, at times, as arguments, both in a critical and in a defensive or
apologetic mood. (In this development, an important part was played
by Heisenberg’s imaginary microscope through which one could
observe electrons; see points 9 and 10 below.)

Now the use of imaginary experiments in critical argumentation is,
undoubtedly, legitimate: it amounts to an attempt to show that certain
possibilities were overlooked by the author of a theory. Clearly, it must
also be legitimate to counter such critical objections, for example, by
showing that the proposed imaginary experiment is in principle
impossible, and that here, at least no possibility was overlooked.4 An
imaginary experiment designed in a critical spirit—designed in order
to criticize a theory by showing that certain possibilities have been
overlooked—is usually permissible, but great care must be taken with
the reply: in a reconstruction of the controversial experiment, under-
taken in defence of the theory, it is, more particularly, important not to
introduce any idealizations or other special assumptions unless they are
favourable to an opponent, or unless any opponent who uses the
imaginary experiment in question would have to accept them.

(2) More generally, I think that the argumentative use of imagin-
ary experiments is legitimate only if the views of the opponent in the
argument are stated with clarity, and if the rule is adhered to that the
idealizations made must be concessions to the opponent, or at least acceptable to
the opponent. For example, in the case of Carnot’s cycle all idealizations
introduced increase the efficiency of the machine, so that the opponent
to the theory—who asserts that a heat machine can produce

4 For example, my own experiment of section 77 has been shown to be in principle
impossible (from the quantum-theoretical point of view) by Einstein in his letter printed
in appendix *xii; see the note on p. 232 and notes *3 and *4 to section 77.
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mechanical work without transferring heat from a higher temperature
to a lower temperature—must agree that they are concessions. Idealiza-
tions, clearly, become impermissible for the purpose of critical
argumentation whenever this rule is violated.

(3) This rule may be applied, for example, to the discussion
initiated by the imaginary experiment of Einstein, Podolsky, and
Rosen. (Their argument is briefly re-stated by Einstein in a letter here
reproduced in appendix *xii; and this discussion is further commented
upon in my Postscript, section *109.) Einstein, Podolsky, and Rosen
attempt, in their critical argument, to make use of idealizations accept-
able to Bohr; and in his reply, Bohr does not challenge the legitimacy of
their idealizations. They introduce (cf. section *109 and appendix *xii)
two particles, A and B, which interact in such a way that by measuring
the position (or momentum) of B, the theory allows us to calculate the
position (or momentum) of A which has meanwhile moved far away
and cannot be any longer disturbed by the measurement of B. Thus A’s
momentum (or position) cannot become blurred—or ‘smeared’, to
use a term of Schrödinger’s—as Heisenberg would have it.5 Bohr, in his
reply, operates with the idea that measurement of a position can be
achieved only by ‘some instrument rigidly fixed to the support which defines the
space frame of reference’ while measurement of the momentum would be
done by a movable ‘diaphragm’ whose ‘momentum . . . is measured
before as well as after the passing of the particle’.6 Bohr operates with
the argument that in choosing one of these two systems of reference
‘we . . . cut ourselves off from any . . . possibility’ of using the other, in
connection with the same physical system under investigation. He sug-
gests, if I understand him properly, that though A is not interfered

5 Heisenberg thought, of course, of the smearing of one particle only, the one which is
being measured. Einstein, Podolsky, and Rosen show that it must be extended to another
particle—one with which the measured particle had interacted at some time, perhaps
years ago. But if so, how can we avoid having everything ‘smeared’—the whole world—
by one single observation? The answer is, presumably, that owing to the ‘reduction of the
wave packet’, the observation does destroy the old picture of the system, and at the same
time creates a new one. Thus the interference is not with the world, but merely with our
way of representing it. This situation is illustrated, as will be seen, by Bohr’s reply which
follows in the text.
6 Bohr, Physical Review 48, 1935, pp. 696–702. The quotations are from pp. 700 and 699.
(The italics are mine.) See also the note on p. 232, above.
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with, its co-ordinates may become smeared by the smearing of the
frame of reference.

(4) Bohr’s reply seems to me unacceptable for at least three
different reasons.

First, prior to the proposed imaginary experiment of Einstein,
Podolsky, and Rosen, the reason given for the smearing of the position
or momentum of a system was that by measuring it, we had interfered
with the system. It seems to me that Bohr, surreptitiously, dropped this
argument, and replaced it by saying (more or less clearly) that the
reason is that we interfere with our frame of reference, or with the
system of co-ordinates, rather than with the physical system. This is too
big a change to be allowed to pass unnoticed. It would have to be
explicitly acknowledged that the older position was refuted by the
imaginary experiment; and it would have to be shown why this does
not destroy the principle on which it was built.

We must not forget, in this connection, what the imaginary experi-
ment of Einstein, Podolsky, and Rosen, was intended to show. It was
intended merely to refute certain interpretations of the indeterminacy formu-
lae; it was certainly not intended to refute these formulae. In a sense,
Bohr’s reply, though not explicitly, acknowledged that the imaginary
experiment succeeded in its purpose, for Bohr merely tried to defend
the indeterminacy relations as such: he gave up the view that the meas-
urement would interfere with the system A which it was supposed to
smear. Moreover, the argument of Einstein, Podolsky, and Rosen could
be carried a little further by the assumption that we measure the pos-
ition A (accidentally) at the same instant of time at which we measure
the momentum of B. We then obtain, for that instant of time, positions and
momenta of both A and B. (Admittedly, the momentum of A and the
position of B will have been destroyed or smeared by these measure-
ments.) But this is sufficient to establish the point which Einstein,
Podolsky, and Rosen wanted to make: that it is incorrect to interpret
the indeterminacy formulae as asserting that the system cannot have
both a sharp position and a sharp momentum at the same time—even
though it must be admitted that we cannot predict both at the same time.
(For an interpretation which takes account of all this, see my Postscript.)

Secondly, Bohr’s argument that we have ‘cut ourselves off’ from the
other frame of reference seems to be ad hoc. For it is clearly possible to
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measure the momentum spectroscopically (either in a direct manner,
or by using the Doppler effect), and the spectroscope will be rigidly
fixed to the same frame as the first ‘instrument’. (The fact that the
spectroscope absorbs the particle B is irrelevant to the argument which
concerns the fate of A.) Thus an arrangement with a movable frame of
reference cannot be accepted as an essential part of the experiment.

Thirdly, Bohr does not explain here how to measure the momentum
of B with the help of his movable diaphragm. In a later paper of his, a
method of doing this is described; but this method seems to me again
impermissible.7 For the method described by Bohr consists in measur-
ing (twice) the position of a ‘diaphragm with a slit . . . suspended by
weak springs from a solid yoke’;8 and since the measurement of the
momentum with an arrangement of this kind depends on position
measurements, it does not support Bohr’s argument against Einstein,
Podolsky, and Rosen; nor does it succeed otherwise. For in this way we
cannot get the momentum ‘accurately before as well as after the pass-
ing’ of B:9 the first of these measurements of momentum (since it
utilizes a position measurement) will interfere with the momentum of
the diaphragm; it thus will be retrospective only, and will not be of any
use for calculating the momentum of the diaphragm at the time
immediately before the interaction with B.

It does not seem, therefore, that Bohr in his reply adhered to the
principle of making only such idealizations or special assumptions
which favour his opponents (quite apart from the fact that it is far from
clear what he wanted to contest).

(5) This shows that there is a grave danger, in connection with
imaginary experiments of this kind, of carrying the analysis just as far
as it serves one’s purpose, and no further; a danger which can be
avoided only if the above principles are strictly adhered to.

There are three similar cases which I wish to refer to, because I find
them instructive.

(6) In order to meet a critical imaginary experiment of Einstein’s,

7 See Bohr, in Albert Einstein: Philosopher-Scientist, ed. by P. A. Schilpp, 1949; see especially the
diagram on p. 220.
8 Op. cit., p. 219.
9 Bohr, Physical Review 48, 1935, p. 699.
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based upon his famous formula E = mc2, Bohr had recourse to argu-
ments from Einstein’s gravitational theory (that is to say, from general
relativity).10 But E = mc2 can be derived from special relativity, and even
from non-relativistic arguments. In any case, in assuming E = mc2, we
certainly do not assume the validity of Einstein’s theory of gravitation.
If, therefore, as Bohr suggests, we must assume certain characteristic
formulae of Einstein’s gravitational theory in order to rescue the con-
sistency of quantum theory (in the presence of E = mc2), then this
amounts, I hold, to the strange assertion that quantum theory contra-
dicts Newton’s gravitational theory, and further to the still stranger
assertion that the validity of Einstein’s gravitational theory (or at least
the characteristic formulae used, which are part of the theory of the
gravitational field) can be derived from quantum theory. I do not think
that even those who are prepared to accept this result will be happy
about it.

Thus we have again an imaginary experiment which makes
extravagant assumptions, with an apologetic purpose.

(7) David Bohm’s reply to the experiment of Einstein, Podolsky,
and Rosen seems to me also highly unsatisfactory.11 He believes that he
has to show that Einstein’s particle A which has run far away from B
and from the measuring apparatus does nevertheless become smeared
in its position (or momentum) when the momentum (or position) of
B is measured, and he tries, to this end, to show that A, in spite of
having run away, is still interfered with in an unpredictable way. In this
way he tries to show that his own theory agrees with Heisenberg’s
interpretation of the indeterminacy relations. But he does not succeed.
This becomes manifest if we consider that the ideas of Einstein,
Podolsky, and Rosen allow us, by a slight extension of their experi-
ment, to determine simultaneously positions and momenta of both A
and B—although the result of this determination will have predictive

10 Bohr, in Albert Einstein: Philosopher-Scientist, ed. by P. A. Schilpp; the case is discussed on
pp. 225–228. Dr. J. Agassi has drawn my attention to the invalidity of the argument.
*We must remember that the ‘equivalence’ mi = mg is part of Newton’s theory.
11 See D. Bohm, Phys. Rev. 85, 1952, pp. 166 ff., 180 ff; see especially pp. 186 f. (I under-
stand that Bohm does not any longer uphold some of the views expressed in the papers
here criticized. But it seems to me that at least part of my argument may still be applicable
to his later theories.)
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significance only for the position of the one particle and the
momentum of the other. For as explained under point (4) above, we
may measure the position of B, and somebody far away may measure
the momentum of A accidentally at the same instant, or at any rate
before any smearing effect of our measurement of B could possibly
reach A. Yet this is all that is needed to show that Bohm’s attempt to
save Heisenberg’s idea of our interference with A is misplaced.

Bohm’s reply to this objection is implicit in his assertion that the
smearing effect proceeds with super-luminal velocity, or perhaps even
instantaneously (cf. Heisenberg’s super-luminal velocity commented
on in section 76), an assumption to be supported by the further
assumption that this effect cannot be used to transmit signals. But what
does happen if the two measurements are carried out simultaneously?
Does the particle you are supposed to observe in your Heisenberg
microscope begin to dance under your very eyes? And if it does, is this
not a signal? (This particular smearing effect of Bohm’s, like the
‘reduction of the wave packet’, is not part of his formalism, but of its
interpretation.)

(8) A similar example is a reply of Bohm’s to another critical
imaginary experiment proposed by Einstein (who thereby revived
Pauli’s criticism of de Broglie’s pilot wave theory).12

Einstein proposes to consider a macroscopic ‘particle’ (it may be
quite a big thing, say a billiard ball) moving with a certain constant
velocity to and fro between two parallel walls by which it is elastically
reflected. Einstein shows that this system can be represented in
Schrödinger’s theory by a standing wave; and he shows further that the
pilot wave theory of de Broglie, or Bohm’s so-called ‘causal interpre-
tation of quantum theory’ leads to the paradoxial result (first pointed
out by Pauli) that the velocity of the particle (or billiard ball) vanishes;
or in other words, our original assumption that the particle moves with
some arbitrarily chosen velocity leads in this theory, for every chosen
velocity, to the conclusion that the velocity is zero, and that it does not
move.

Bohm accepts this conclusion, and replies on the following lines:
‘The example considered by Einstein’, he writes, ‘is that of a particle

12 See A. Einstein in Scientific Papers Presented to Max Born, 1953, pp. 33 ff; see especially p. 39.
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moving freely between perfectly reflecting and smooth walls.’13 (We need
not go into the finer peculiarities of the arrangement.) ‘Now, in the
causal interpretation of the quantum theory’—that is, in Bohm’s
interpretation—‘. . . the particle is at rest’, Bohm writes; and he goes on
to say that, if we wish to observe the particle, we shall ‘trigger’ a process
which will make the particle move.14 But this argument about observa-
tion, whatever its merits, is no longer interesting. What is interesting is
that Bohm’s interpretation paralyses the freely moving particle: his
argument amounts to the assertion that it cannot move between these
two walls, as long as it is unobserved. For the assumption that it so moves
leads Bohm to the conclusion that it is at rest, until triggered off by an
observation. This paralysing effect is noted by Bohm, but simply not
discussed. Instead, he proceeds to the assertion that though the particle
does not move, our observations will show it to us moving (but this was
not the point at issue); and further, to the construction of an entirely
new imaginary experiment describing how our observation—the
radar signal or photon used to observe the velocity of the particle—
could trigger off the desired movement. But first, this again was not the
problem. And secondly, Bohm fails to explain how the triggering pho-
ton could reveal to us the particle in its full, proper speed, rather than
in a state of acceleration towards its proper speed. For this seems to
demand that the particle (which may be as fast and as heavy as we
like) acquires and reveals its full speed during the exceedingly short
time of its interaction with the triggering photon. All these are ad hoc
assumptions which few of his opponents will accept.

But we may elaborate Einstein’s imaginary experiment by operating
with two particles (or billiard balls) of which the one moves to and fro
between the left wall and the centre of the box while the other moves
between the right wall and the centre; in the centre, the particles col-
lide elastically with one another. This example leads again to standing
waves, and thus to the disappearance of the velocity; and the Pauli-
Einstein criticism of the theory remains unchanged. But Bohm’s trig-
gering effect now becomes even more precarious. For let us assume we
observe the left particle by shooting at it a triggering photon from the

13 D. Bohm, in the same volume, p. 13; the italics are mine.
14 Op. cit., p. 14; see also the second footnote on that page.
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left. This will (according to Bohm) overthrow the balance of forces
which keep the particle at rest; and the particle will start moving—
presumably from left to right. But although we triggered only the left
particle, the right particle will have to start simultaneously, and in the
opposite direction. It is asking much of a physicist to acquiesce in the
possibility of all these processes—all assumed ad hoc, in order to avoid
the consequences of the argument of Pauli and Einstein.

Einstein might have answered Bohm as follows, I think.
In the case considered, our physical system was a big macroscopic

ball. No reason has been given why in such a case the usual classical
view of measurement should be inapplicable. And this is a view that
conforms, after all, as well with experience as one can desire.

But leaving measurement aside, is it seriously asserted that an oscil-
lating ball (or two oscillating balls in a symmetric arrangement here
described) simply cannot exist while unobserved? Or, what amounts to
the same, is it seriously asserted that the assumption that it does move,
or oscillate, while unobserved, must lead to the conclusion that it does
not? And what happens if, once our observation has set the ball in
motion, it is then no longer asymmetrically interfered with so that the
system again becomes stationary? Does the particle then stop as sud-
denly as it started? And is its energy transformed into field energy? Or
is the process irreversible?

Even assuming that all these questions may be answered somehow,
they illustrate, I think, the significance of Pauli’s and of Einstein’s criti-
cism, and of the critical use of imaginary experiments, especially the
experiment of Einstein, Podolsky, and Rosen. And I think that they also
illustrate the danger of an apologetic use of imaginary experiments.

(9) So far I have discussed the problem of pairs of particles, introduced
into the discussion by Einstein, Podolsky, and Rosen. I now turn to
some of the older imaginary experiments with single particles, such as
Heisenberg’s famous imaginary microscope through which one could
‘observe’ electrons, and ‘measure’ either their positions or their
momenta. Few imaginary experiments have exerted a greater influence
on thought about physics than this one.

With the help of his imaginary experiment, Heisenberg tried to
establish various points of which I may mention three: (a) the interpreta-
tion of the Heisenberg indeterminacy formulae as stating the existence
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of insuperable barriers to the precision of our measurements; (b) the disturbance of the
measured object by the process of measurement, whether of position or of
momentum; and (c) the impossibility of testing the spatio-temporal ‘path’ of the
particle. I believe that Heisenberg’s arguments tending to establish these
points are all clearly invalid, whatever the merits of the three points in
themselves may be. The reason is that Heisenberg’s discussion fails to
establish that measurements of position and of momentum are symmetrical; sym-
metrical, that is, with respect to the disturbance of the measured object
by the process of measurement. For Heisenberg does show with the help
of his experiment that in order to measure the position of the electron we
should have to use light of a high frequency, that is to say, high energy
photons, which means that we transfer an unknown momentum to the
electron and thus disturb it, by giving it a severe knock, as it were. But
Heisenberg does not show that the situation is analogous if we wish to
measure the momentum of the electron, rather than its position. For in
this case, Heisenberg says, we must observe it with a low frequency
light—so low that we may assume that we do not disturb the electron’s
momentum by our observation. The resulting observation (though revealing
the momentum) will fail to reveal the electron’s position, which will
thus remain indeterminate.

Now consider this last argument. There is no assertion here that we
have disturbed (or ‘smeared’) the electron’s position. For Heisenberg
merely asserts that we have failed to disclose it. In fact, his argument
implies that we have not disturbed the system at all (or only so slightly
that we can neglect the disturbance): we have used photons of so low
an energy level that there simply was not enough energy available to
disturb the electron. Thus the two cases—the measurement of position and that of
momentum—are far from analogous or symmetrical, according to Heisenberg’s
argument. This fact is veiled, however, by the customary talk (positivist
or operationalist or instrumentalist talk) about the ‘results of measurement’
whose uncertainty is admittedly symmetrical with respect to position
and momentum. Yet in countless discussions of the experiment,
beginning with Heisenberg’s own, it is always assumed that his argu-
ment establishes the symmetry of the disturbances. (In the formalism, the
symmetry between position and momentum is complete, of course,
but this does not mean that it is accounted for by Heisenberg’s imagin-
ary experiment.) Thus it is assumed—quite wrongly—that we disturb the
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electron’s position if we measure its momentum with Heisenberg’s
microscope, and that this ‘smearing’ effect has been established by
Heisenberg’s discussion of his imaginary experiment.

My own imaginary experiment of section 77 was largely based on
this asymmetry in Heisenberg’s experiment. (Cf. note *1 to appendix
vi.) Yet my experiment is invalid just because the asymmetry invali-
dates Heisenberg’s whole discussion of measurement: only measure-
ments resulting from physical selection (as I call it) can be used to illustrate
Heisenberg’s formulae, and a physical selection, as I quite correctly
pointed out in the book, must always satisfy the ‘scatter relations’.
(Physical selection does disturb the system.)

Were Heisenberg’s ‘measurements’ possible we could even check
the momentum of an electron between two position measurements
without disturbing it, which would also allow us—contrary to point
(c), above—to check (part of) its spatio-temporal ‘path’ which is
calculable from these two position measurements.

That the inadequacy of Heisenberg’s argument has remained
unnoticed for so long is no doubt due to the fact that the
indeterminacy formulae clearly follow from the formalism of the
quantum theory (the wave equation), and that the symmetry
between position (q) and momentum (p) is also implicit in this
formalism. This may explain why many physicists have failed to
scrutinize Heisenberg’s imaginary experiment with sufficient care:
they did not take it seriously, I suppose, but merely as an illustration
of a derivable formula. My point is that it is a bad illustration—just
because it fails to account for the symmetry between position and
momentum. And being a bad illustration, it is quite inadequate as a
basis for interpreting these formulae—let alone the whole quantum
theory.

(10) The immense influence of Heisenberg’s imaginary experi-
ment is, I am convinced, due to the fact that he managed to convey
through it a new metaphysical picture of the physical world, whilst at
the same time disclaiming metaphysics. (He thus ministered to a curi-
ously ambivalent obsession of our post-rationalist age: its preoccupa-
tion with killing the Father—that is, Metaphysics—while keeping Him
inviolate, in some other form, and beyond all criticism. With some
quantum physicists it sometimes looks almost as if the father was
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Einstein.) The metaphysical picture of the world, somehow conveyed
through Heisenberg’s discussion of his experiment although never
really implied in it, is this. The thing in itself is unknowable: we can only
know its appearances which are to be understood (as pointed out by
Kant) as resulting from the thing in itself, and from our own perceiv-
ing apparatus. Thus the appearances result from a kind of interaction
between the things in themselves and ourselves. This is why one thing
may appear to us in different forms, according to our different ways of
perceiving it—of observing it, and of interacting with it. We try to
catch, as it were, the thing in itself, but we never succeed: we only find
appearances in our traps. We can set either a classical particle trap or a
classical wave trap (‘classical’ because we can build them and set them
like a classical mouse trap); and in the process of triggering off the trap,
and thus interacting with it, the thing is induced to assume the appear-
ance of a particle or a wave. There is a symmetry between these two
appearances, or between the two ways of trapping the thing. Moreover,
we not only, by setting the trap, have to supply a stimulus for the thing
in order to induce it to assume one of its two classical physical appear-
ances, but we also have to bait the trap with energy—the energy
needed for a classical physical realization or materialization of the
unknowable thing in itself. In this way, we preserve the conservation
laws.

This is the metaphysical picture conveyed by Heisenberg, and
perhaps also by Bohr.

Now I am far from objecting to metaphysics of this kind (though I
am not much attracted by this particular blend of positivism and tran-
scendentalism). Nor do I object to its being conveyed to us through
metaphors. What I do object to is the almost unconscious dissemina-
tion of this metaphysical picture, often combined with antimetaphysi-
cal disclaimers. For I think that it should not be allowed to sink in
unnoticed, and thus uncriticized.

It is interesting, I think, that much of David Bohm’s work seems to
be inspired by the same metaphysics. One might even describe his
work as a valiant attempt to construct a physical theory that shall make
this metaphysics clear and explicit. This is admirable. But I wonder
whether this particular metaphysical idea is good enough, and really
worth the trouble, considering that it cannot be supported (as we have
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seen) by Heisenberg’s imaginary experiment which is the intuitive
source of it all.

There seems to me a fairly obvious connection between Bohr’s
‘principle of complementarity’ and this metaphysical view of an
unknowable reality—a view that suggests the ‘renunciation’ (to use a
favourite term of Bohr’s) of our aspirations to knowledge, and the
restriction of our physical studies to appearances and their interrela-
tions. But I will not discuss this obvious connection here. Instead, I will
confine myself to the discussion of certain arguments in favour of
complementarity which have been based upon further imaginary
experiments.

(11) In connection with this ‘principle of complementarity’ (dis-
cussed more fully in my Postscript; cf. also my paper ‘Three Views Con-
cerning Human Knowledge’, now in my Conjectures and Refutations, 1963,
chapter 3) Bohr has analysed a large number of subtle imaginary
experiments in a similarly apologetic vein. Since Bohr’s formulations
of the principle of complementarity are vague and difficult to discuss, I
shall have recourse to a well known and in many respects excellent
book, Anschauliche Quantentheorie, by P. Jordan (and a book in which,
incidentally, my Logik der Forschung was briefly discussed).15

Jordan gives a formulation of (part of) the contents of the principle
of complementarity that brings it into the closest relation to the prob-
lem of the dualism between particles and waves. He puts it as follows. ‘Any one
experiment which would bring forth, at the same time, both the wave
properties and the particle properties of light would not only contra-
dict the classical theories (we have got used to contradictions of this
kind), but would, over and above this, be absurd in a logical and
mathematical sense.’16

Jordan illustrates this principle by the famous two-slit experiment.
(See my old appendix v.) ‘Assume that there is a source of light from
which monochromatic light falls upon a black screen with two [paral-
lel] slits which are close to each other. Now assume, on the one hand, that
the slits and their distance are sufficiently small (as compared with
the wave length of the light) to obtain interference fringes on a

15 Jordan, Anschauliche Quantentheorie, 1936, p. 282.
16 Op. cit., p. 115.
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photographic plate which records the light that passes the two slits; and
on the other hand, that some experimental arrangement would make it
possible to find out, of a single photon, which of the two slits it has
passed through.’17

Jordan asserts ‘that these two assumptions contain a contradiction’.18

I am not going to contest this, although the contradiction would not
be a logical or mathematical absurdity (as he suggests in one of the
previous quotations); rather, the two assumptions would, together,
merely contradict the formalism of the quantum theory. Yet I wish to
contest a different point. Jordan uses this experiment to illustrate his
formulation of the contents of the principle of complementarity. But
the very experiment by which he illustrates this principle may be
shown to refute it.

For consider Jordan’s description of the two-slit experiment, omit-
ting at first his last assumption (the one introduced by the words ‘on the
other hand’). Here we obtain interference fringes on the photographic
plate. Thus this is an experiment which ‘brings forth the wave proper-
ties of the light’. Now let us assume that the intensity of the light is
sufficiently low to obtain on the plate distinct hits of the photons; or in
other words, so low that the fringes are analysable as due to the density
distribution of the single photon hits. Then we have here ‘one experi-
ment’ that ‘brings forth, at the same time, both the wave properties and
the particle properties of light’—at least some of them. That is to say, it
does precisely what according to Jordan must be ‘absurd in a logical
and mathematical sense’.

Admittedly, were we able, in addition, to find out through which of
the slits a certain photon has passed, then we should be able to deter-
mine its path; and we might then say that this (presumably impossible)
experiment would bring forth the particle properties of the photon
even more strongly. I grant all this; but it is quite irrelevant. For what
Jordan’s principle asserted was not that some experiments which might
seem at first sight possible turn out to be impossible—which is
trivial—but that there are no experiments whatever which ‘bring forth,
at the same time, both the wave properties and the corpuscle properties of

17 Op. cit., pp. 115 f. (The italics are Jordan’s.)
18 Op. cit., p. 116.
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light’. And this assertion, we have shown, is simply false: it is refuted by
almost all typical quantum mechanical experiments.

But what then did Jordan wish to assert? Perhaps that there was no
experiment which would bring forth all the wave properties and all the
particle properties of light? Clearly this cannot have been his intention
since even an experiment is impossible which would bring forth, at the
same time, all the wave properties—even if we drop the demand that it
should bring forth any of the particle properties. (And the same holds
the other way round.)

What is so disturbing in this argumentation of Jordan’s is its arbi-
trariness. From what has been said it is obvious that there must be
some wave properties and some particle properties which no experi-
ment can combine. This fact is first generalized by Jordan, and formu-
lated as a principle (whose formulation by Jordan, at any rate, we have
refuted). And then it is illustrated by an imaginary experiment which
Jordan shows to be impossible. Yet as we have seen, that part of the
experiment which everybody admits to be possible actually refutes the
principle, at least in Jordan’s formulation.

But let us look a little more closely at the other half of the imaginary
experiment—the one introduced by the words ‘on the other hand’. If
we make arrangements to determine the slit through which the par-
ticle has passed, then, it is said, we destroy the fringes. Good. But do we
destroy the wave properties? Take the simplest arrangement: we close
one of the slits. If we do so, there still remain many signs of the wave
character of light. (Even with one single slit we obtain a wave-like
density distribution.) But it is now admitted, by our opponents, that
the particle properties exhibit themselves very fully, since we can now
trace the path of the particle.

(12) From a rational point of view, all these arguments are
inadmissible. I do not doubt that there is an interesting intuitive idea
behind Bohr’s principle of complementarity. But neither he nor any
other member of his school has been able to explain it, even to
those critics who, like Einstein, tried hard for years to understand
it.19

19 Cf. Albert Einstein: Philosopher-Scientist, ed. by P. A. Schilpp, 1949, p. 674.
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My impression is that it may well be the metaphysical idea described
above under point (10). I may be wrong; but whatever it is, I feel that
Bohr owes us a better explanation.20

20 (Added 1967.) A further discussion of some of these problems will be found in my
paper ‘Quantum Mechanics Without “The Observer” ’, in Quantum Theory and Reality, edited
by Mario Bunge, 1967, pp. 7–44.
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APPENDIX *xii

The Experiment of Einstein,
Podolsky, and Rosen

A LETTER FROM ALBERT EINSTEIN, 1935

The letter from Albert Einstein here printed in translation briefly and
decisively disposes of my imaginary experiment of section 77 of the
book (it also refers to a slightly different version contained in an
unpublished paper), and it goes on to describe with admirable clarity
the imaginary experiment of Einstein, Podolsky, and Rosen (Physical
Review 47, 1935, pp. 777–780; cf. my note on p. 232 and section 3 of
my appendix *xi).

Between these two points, a few remarks will be found on the rela-
tion of theory and experiment in general, and upon the influence of
positivistic ideas upon the interpretation of quantum theory.

The two last paragraphs of the letter also deal with a problem dis-
cussed in my book (and in my Postscript)—the problem of subjective
probabilities, and of drawing statistical conclusions from nescience. In
this I still disagree with Einstein: I believe that we draw these probabil-
istic conclusions from conjectures about equidistribution (often very
natural conjectures, and for this reason perhaps not always consciously
made), and therefore from probabilistic premises.

Einstein’s literary executors requested that, if a translation of the



letter were to be published, the original text should be published at the
same time. This suggested to me the idea of reproducing Einstein’s
letter in his own handwriting (see pp. 489–92).

Old Lyme, 11. IX. 35.
Dear Mr. Popper,

I have looked at your paper, and I largely [weitgehend] agree.x Only I do
not believe in the possibility of producing a ‘super-pure case’ which
would allow us to predict position and momentum (colour) of a pho-
ton with ‘inadmissible’ precision. The means proposed by you (a
screen with a fast shutter in conjunction with a selective set of glass
filters) I hold to be ineffective in principle, for the reason that I firmly
believe that a filter of this kind would act in such a way as to ‘smear’ the
position, just like a spectroscopic grid.

My argument is as follows. Consider a short light signal (precise
position). In order to see more easily the effects of an absorbing filter, I
assume that the signal is analysed into a larger number of quasi-
monochromatic wave-trains Wn. Let the absorbing set of filters cut out
all the colours Wn except one, W1. Now this wave-group will have a
considerable spatial extension (‘smearing’ of its position) because it is
quasi-monochromatic; and this means that the filter will necessarily
‘smear’ the position.

Altogether I really do not at all like the now fashionable [modische]
‘positivistic’ tendency of clinging to what is observable. I regard it as
trivial that one cannot, in the range of atomic magnitudes, make
predictions with any desired degree of precision, and I think (like you,
by the way) that theory cannot be fabricated out of the results of
observation, but that it can only be invented.

I have no copies here of the paper which I wrote jointly with Mr.
Rosen and Mr. Podolski, but I can tell you briefly what it is all about.

The question may be asked whether, from the point of view of
today’s quantum theory, the statistical character of our experimental

x Main point: The ψ-function characterizes a statistical aggregate of systems rather than
one single system. This is also the result of the considerations expounded below.
This view makes it unnecessary to distinguish, more particularly, between “pure” and
“non-pure” cases.

new appendices482



findings is merely the result of interfering with a system from without, which com-
prises measuring it, while the systems in themselves—described by a ψ-
function—behave in a deterministic fashion. Heisenberg flirts [lie-
bäugelt] with this interpretation, without adopting it consistently. But
one can also put the question thus: should we regard the ψ-function
whose time-dependent changes are, according to Schrödinger’s equa-
tion, deterministic, as a complete description of physical reality, and
should we therefore regard the (insufficiently known) interference
with the system from without as alone responsible for the fact that our
predictions have a merely statistical character?

The answer at which we arrive is that the ψ-function should not be
regarded as a complete description of the physical state of a system.

We consider a composite system, consisting of the partial system A
and B which interact for a short time only.

We assume that we know the ψ-function of the composite system
before the interaction—a collision of two free particles, for example—
has taken place. Then Schrödinger’s equation will give us the
ψ-function of the composite system after the interaction.

Assume that now (after the interaction) an optimal [vollständige]
measurement is carried out upon the partial system A, which may be
done in various ways, however, depending upon the variables which
one wants to measure precisely—for example, the momentum or the
position co-ordinate. Quantum mechanics will then give us the ψ-
function for the partial system B, and it will give us various ψ-functions
that differ, according to the kind of measurement which we have
chosen to carry out upon A.

Now it is unreasonable to assume that the physical state of B may
depend upon some measurement carried out upon a system A which
by now is separated from B [so that it no longer interacts with B]; and
this means that two different ψ-functions belong to one and the same
physical state of B. Since a complete description of a physical state must
necessarily be an unambiguous description (apart from superficialities
such as units, choice of the co-ordinates etc.), it is therefore not pos-
sible to regard the ψ-function as the complete description of the state of
the system.

An orthodox quantum theorist will say, of course, that there is no
such thing as a complete description and that there can be only a
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statistical description of an aggregate of systems, rather than a description
of one single system. But first of all, he ought to say so clearly; and
secondly, I do not believe that we shall have to be satisfied for ever with
so loose and flimsy a description of nature.

It should be noticed that some of the precise predictions which I can
obtain for the system B (according to the freely chosen way of measur-
ing A) may well be related to each other in the same way as are
measurements of momentum and of position. One can therefore
hardly avoid the conclusion that the system B has indeed a definite
momentum and a definite position co-ordinate. For if, upon freely
choosing to do so [that is, without interfering with it], I am able to
predict something, then this something must exist in reality.

A [method of] description which, like the one now in use, is
statistical in principle, can only be a passing phase, in my opinion.

I wish to say again* that I do not believe that you are right in your
thesis that it is impossible to derive statistical conclusions from a
deterministic theory. Only think of classical statistical mechanics (gas
theory, or the theory of Brownian movement). Example: a material
point moves with constant velocity in a closed circle; I can calculate the
probability of finding it at a given time within a given part of the
periphery. What is essential is merely this: that I do not know the initial
state, or that I do not know it precisely!

With kind regards,
Yours,

A. Einstein.

* This is an allusion to a previous letter. K. R. P.
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experiment; its use in theoretical
discussion 10, 59, 60–1, 63, 80–1,
section 30, 88–94, 108, 200n,
256, 267, 279–80, 387n;
repeatable 23, 24&n, 60, 67n,
see also Theory, and experiment

Experimental conditions 198, 199,
205n, 224, 226, 427, 434;
Explanation see Causal
explanation

Explanatory power 152n, 416–17t,
420t, 433

Explication 426, see also Adequacy

Facts 37, 53&n, 54, 75, 77, 80, 94&n,
443–4, 445

Fair sample 169t&n, 194n, 196–7,
198, 400n, 430, 432n, see also
Segments, representative
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Falsifiability, degree of see
Testability, degree of; never final
or conclusive 20, 28, 60–7; not
as a criterion of meaning see
Demarcation versus meaning; of
probability statements see
Decidability; as a scientific
characteristic of a theory section
6, 18–20, 28&n, 33, 48, 49n, 51,
55–6, 56, chapter IV, 57, 59, 60,
section 21, 64–6, 72, 82, 89n,
190, 249–50, 251, 278, 313–16,
458–9, see also Asymmetry;
Disproof; Testability

Falsification, evasion of xx, xxiii–xxiv,
13; in probability 194&n, 195; of a
theory 10, 20, 56, 56&n, 61, 63,
section 22, 67, 71, 72, 82, 86, 90,
114–15, 255&n, 265, 279, 315–16,
317, 385n, 452, see also
Asymmetry; Conventionalist
stratagem; Decisions,
concerning conventionalist
stratagem and concerning
outcome of tests; Disproof

Falsity 72, 125n, 249, 256, 257, 260,
274–5, see also Elimination,
method of; Potential falsifiers

Field of application of a theory
113t–15, 268, 283&n, 284, 393–4,
394–6, 419n, 430n–1n

Field of graphical representation
of a theory section 39, 114–17,
394–5, see also Curves

Field of probabilities, Borelian 336,
338, 350, 352–3t, 354–5

Fine structure, of probabilities
388t–91, 394

Fluctuationsprobabilistic 140–1,
165, 169, 193&n, 195–7, 198, 202,

see also Deviations; Statistical
stability

Formalization 328, 329n, 333, see
also Axioms

Frame conditions 198t, 199, see also
Experimental conditions

Frequency see Probability; Relative
frequency

Frequency limit 154n, 157, 160,
173–5, 179, 187&n, 296, 371–2

Fruitfulness xix, 15–16, 28–9, 30–1,
42, 59, 63, 89, see also Evolution
of science; Science, the aim of

Gambling systems, exclusion of
160t, 161&n, 162–3, 166n, 167n,
370–2, see also Randomness;
Selection

Games of chance, classical theory
of see Probability, formal calculus
of, classical

Generalization 45&n, 67n, 89, 123,
158–9, 270, 313, 442–4, 458–9,
see also Induction; Names,
universal; Universal statements;
Universals, problem of

Generating period xxvi, 151t, 152n,
154, 293–4

Geometry 51, 53, 116–19, section 45,
129–30, 316n

Graphic representation see Curves;
Field of graphic representation;
Geometry

Gravitation, corroboration of
Einstein’s and Newton’s theories
of 418n

Heisenberg’s formulae 209, 213–15,
216, 218&n–19, 222, 223, 232–3,
246, 303–4; involves auxiliary
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and ad hoc hypothesis 238–93n,
468, 469–70; orthodox
interpretation of 209, 210–11,
212–16, 216–17, 217–18, 218&n,
224, 226, 232–3, 242, 297–300,
301n–2n, 303, 467&n, 468, 470,
473–6, 482–3; positivist
character of 213–14&n, 227–8,
245, 246, 301n–2n, 303, 473–6,
482–3; propensity interpretation
of 220n, 222n, 229n;
Schrödinger’s tentative
interpretation of 230; statistical
interpretation of 209, 210–11,
218–19, 220–3, 224–6, 230–1,
232–3, 242, 475&n, see also
Heisenberg’s programme;
Imaginary experiment; Meaning,
positivist dogma of, its dogmatic
character; Positivism; Statistical
scatter relations

Heisenberg’s programme section
73, 211–16, 223, 226–7, 245–6&n,
476

Heuristics 116, 325–8, 465–6
History 279n; of philosophy 317; of

science 267, 316, see also
Methods, historical

Hypothesis, Hypothetical character
of scientific statements 3, 4, 6, 51,
53, 53–4, 56, 129, 219n, 227–8,
244, 249–53, 264, 271–2, 278–81,
317–18, 380n, 414–15, 416, 434,
444–5, 454; ad hoc 20, 50, 59–61,
131, 272n, 379; auxiliary 20, 63,
131, 273; decidability of see
Decidability;; existential 185t–8;
falsifying low level 54, 67t&n, 94;
statistical, statistical estimate of
frequency, or statistical

extrapolation section 57, 154n,
157–9&n, 169, 171n, 175, 177,
183–6, 196–200, 201, 202, 205,
244, 259, 293, 379, 400n, 427,
430–1, 434; universal-existential
185t&n, see also Certainty;
Corroboration; Distribution;
Equidistribution; Probability
logic; Testability; Verification

Idealization, its critical use 466–7,
469–70

Idempotence 331–2, 357–9
Imaginary experiments appendix xi,

464, 465–7; author’s 210, 227–8,
section 77, 232–42, 304,
appendix vii, 305–8, 475; Bohm’s
470–3; Bohr’s 238, appendix v,
297–300, 467–8, 470, 477–80;
Carnot’s 465–6; of Einstein and
Pauli 471–3; of Einstein, Podolski
and Rosen 216n, 219n–20n, 467,
468–9, 470, 472, appendix xii,
483; Einstein’s 465–6, 470;
Galileo’s 464&n–5; Heisenberg’s
224–6, 238, 466, 472–4, 475, 477;
invalidity of 216n, 228n, 232n,
238n, 301n–2n, 467n, 475, 481–3;
replaceable by that of Einstein,
Podolski and Rosen 232n

Imagination xvii, see also Boldness;
Content; Intuition

Implication or conditional 41&n,
46&n, 104n, 459–60;
counterfactual, so-called
455t&n–6n, 460, 462; material
56n, 71n; modal or strict 455, 461,
462; necessary or subjunctive, or
nomic 455t&n–6n, 456–7, 461,
462, 463, see also Necessity
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Independence, logical of an axiom
or of a part of a system 56&n, 71t,
89; logical and probabilistic
compared 175, 422–3, 423–4;
probabilistic 145t, 146&n, 160,
163, 377, 379t, 380, 381–2, 383–4,
388n, 412–14; of probability
axioms see Probability, formal,
see also Irrelevance

Indeterminis, metaphysical 205&n,
section 78, 244&n–7;
metaphysical 199&n, 211

Indifference, principle of 158n, see
also Equidistribution

Induction 3–7, 10, 11, 12, 21, 32,
67&n, 89, 123&n, 158–9, 279&n,
284 appendix I, 313–18, 440, 453,
458–9, 461; eliminative 279n,
438n–9n; falsification of 252&n;
mathematical 18n, 145n, 290–2;
principle of 4–5, 6, 31, 123n, 251–2,
262–3, 382–3; problem of section
1, 4–5t, 20, 42, 45, 47, 74, 75, 88,
89, 261&n–5, 313–14, 333–83,
383n, 442–3; solved 20, 315, 316,
437–8; superfluity of 317, see also
Apriorism; Infinite regress;
Transcendental argument

Inductive direction, deductive
movement in, quasi-induction
19t, 56, section 85, 276–8,
315–16, see also Universality,
levels of

Inductive inference see Method,
inductivist view of; Probability
logic

Inference see Deduction;
Deduction, inductive and
probable see Method, inductivist
view of; Probability logic

Infinite regress 6, 25, 67n, 75, 87,
251, 262–3, 317, 381–2

Information, amount of see
Content; Prohibitions

Information theory 421–2
Initial conditions 37t, 38&n, 65,

66&n, 82&n, 103, 111, 118, 150,
198, 199, 201, 225, 226, 451,
454–8&n, see also Experimental
conditions

Insensitivity see Selection
Instantiation 66n, 71, 82n, 126n,

250, 256&n, 266n, 272n, 387nt
Instrumentalism 13n, 37&n, 40n,

82&n, 385–6, 443–4t, 445,
446–7, see also Operation
Pragmatism

Interference by measurement see
Heisenberg’s formula, orthodox
interpretation of; Imaginary
experiment, Bohrs and
Heisenberg’s

Interpretation of axioms 52–4; of
observations in the light of
theories 37&n, 54, 59, 88, 89&n,
116, 279, 280, 431–2, 443–4; of
probability statements see
Probability, formal,
interpretations of; of science
260, 278–81, see also Theory, and
experiment

Intersensuality of scientific
experience 85

Intersubjectivity of scientific
experience 22&n–3&n, 24–5, 34,
64, 67n, 80, 84–5, 86, 94n

Intuition, creative 8, 9, 56n; creative
xvii

Invariance see Transformation
Irrelevance, probabilistic 146t&n,
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150&nt, see also Independence,
probabilistic

Irrefutability see Disproof;
Refutability; Systems

Iterations see Blocks

Judgement, concerning facts 81–2,
91–4

Justification 21, 22, 91–4, 317, 382,
440, 457–60

Justification versus objectivity
72–82, see also Fruitfulness

Kantianism 58, 87n
Knowledge, psychology of 7, 8, 15–16,

23–5, 31, 81, 91–3, 440, 442&n
Knowledge, theory of xxi–xxvi, xviii,

3–7t, 8, 11, 12, 16, 28, 29, 32,
34&n, 61–2, 74, 79–82, 85, 94n,
121, 122–3, 125, 260, 267, 267&n,
278, 314–18, 380&n, 383–4, 410,
459, 460

Kolmogorov’s Programme 323, 333,
353–4

Languages, language systems
xviii–xxv, 37&n, 75, 76, 86,
101–2&n, 113n, 274n, 384, 385n,
389n, 390, 392–3, 443–4, 445–6,
446n–7n, see also Meaning;
Modes of speech; Usage

Lattice 101, 105
Lawlike behaviour 76, 85, 122–7n,

443–4, 445, see also Basic
statements, falsifiability of;
Effect, reproducible;
Observability; Regularity;
Similarity

Laws, of art 449–50, 451, see also
Aesthetics

Laws, juridical 19, 91–2
Laws, natural or universal 4, 13&n,

14&n, 18n, 19, 20, 24, 37–8&n,
41, 42, 48, 58–9n, 89, 122, 123,
127, 205, 245n, 246, 251t, 313–14,
314, 376n, 377–8; as mere rules of
transformation 13&n, 37, 40n, 82,
245&n, 310, 314; micro- and
macro- 188–90, 193, 195–6, 198n,
section 70, 200–1&n, 202, 218,
244; probability 127, 133, section
69, 198–200&n, 259; as
prohibitions 19, 48, 68, 108, 196,
246, 411n, 448–9, 452, see also
Decidability; Instrumentalism;
Necessity, natural; Pragmatism;
Thermodynamics

Likelihood, Bernouillian 436–7;
Fisher’s 334, 403–4, 404–5, 407,
414&n, 428, 430, 432–3&n

Logic xx, 21, 41&n, 46&n, 50, 56&n,
64, 71n, 74–5, 80, 81, 104&n, 184,
275, 323–4, 330–1; and induction
4, 5–6, 10, 11, 12, 158–9; modal
366–8, 453; probability see
Probability, logical; and science
209; of scientific discovery see
Knowledge, theory of; Methods,
deductivist view of, see also
Apriorism; Boolean Algebra;
Consistency; Contradictions;
Deducibility; Implication; Infinite
regress; Necessity, logical;
Probability logic; Propositional
calculus; Tautologies

Mass-Phenomena 216–17, see also
Laws, micro- and macro-;
Thermodynamics

Materialism 85, see also Mechanism

subject index504



Mathematical rules for generating
sequences 154, 161

Mathematics 50–1, 81–2, 122,
385–6, see also Tautologies

Matrix 113t
Meaning, its dogmatic character 15,

29–31&n, 105, 245n, 246, 459n; of
ordinary words 43–4, 45, 64&n,
276; of ordinary words xviii;
positivist dogma of 12–16, 18&n,
29, 31, 32, 42, 105, 188&n, 215,
245&n, 313, 386, 459n; positivist
dogma of xviii; positivist dogma
of xx; of primitive terms 51–4,
63–4; xx–xxi, see also
Demarcation versus meaning;
Metaphysics, positivists’ hatred
of

Measure see Probability formal,
measure theoretical

Measurement in quantum theory
see Heisenberg’s formula,
orthodox interpretation of;
Quantum theory, orthodox
interpretation of; technique of
108&n, 195–6; as test section 37,
14, 101–2n, 108–10, 116, 129, see
also Precision

Mechanism 85, 200
Metaphysical element of quantum

theory see Heisenberg’s
programme

Metaphysical faith in regularities
89, 250–2, 278, 382, 458,
459&n–60, see also Causality;
Laws; Regularities;
Transcendental arguments;
Uniformity of nature

Metaphysical statements,
Metaphysics 11, 12, 13, 14–16, 24,

29, 32n, 34, 49&n, 64, 89, 94n,
199n, 205, 215, 251, 260, 265, 277,
313, 315, 458, 460; the great role
they may play in scientific activity
15–16, 116, 199n, 267–8, 316;
positivists’s hatred of 12–16, 32n,
315, 459n, 475–6; probability
185&n, 187, section 67, 188–90,
250, 251; purely existential
statements 47–8, 49n, 70&n, 84,
186; unfalsifiable 20, 37, 41, 265,
see also Content

Methods 30–1, 33–4, 279–80, 328;
choice of 28; conventionalist
view of 15, 28, 32, section 11, 34,
61–2; critical or rational xx, 22n,
28, 34n, 279; deductivist view of
3–6, 11–13, 16, 18, 30, 42, 58n, 75,
113n, 123, 158–9, 175, 276;
empirical 17, 28, 51, 63, 91–2,
280; historical xixt–xxi; naturalist
view of 12, section 10, 29, 31t, 32,
260; philosophical, nonexistent
xix–xxi; scientific 17, chapter II,
29, 32–3, 279, see also
Discussion; Fruitfulness;
History; Languages; Probability
logic

Metric see Probability, logic, metric of
Middle frequency xx, 176t&n,

179&n, 296
Models 53&n, 453, 458n; languages

see Languages; of random
sequences appendix xiv,
293&n–4n, 295n

Modes of speech, formal and
material 76–7t; realistic 69

Modification or revision 50, 56n, 63,
64, 67n, 78, 90, 250, 251, see also
Approximation
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Modus Ponens 71n, 262n
Modus Tollens 19, section 18, 56,

251, 315
Monism 87n
Multiplication theorem 161, 165,

174, 177n, 286, 296, 325–8, 331–2,
341–2, 422–3

Names 53&n, 118–19; universal
42–7, 53, 64&n, 75–6, 111, 118–19,
see also Concepts; Universals

Natural laws see Laws
Natural selection 91, see also

Elimination
Naturalism 12, section 10, 29, 31t,

32, 41
Necessity, compared 450–2; logical

366–8, 447n, 448–51, 452–3,
454n, 460; natural or physical
446–53, 454t, 455t–60t

Normal numbers, Borel’s 174n

Object 53&n
Objective disorder see Randomness
Objectivity of probability see

Probability theory, subjective
versus objective views of;
scientific 22, section 8, 22–6,
34, section 27, 80, 81, 82, 94&n,
195–6, 205, 256

Observability 85, 93, 108, 185,
431&n, 432–46, see also Effect,
reproducible; Lawlike behaviour;
Regularity; Similarity

Observables 211–12, 228
Observation or perception 4, 11, 21,

24–5, 37, 51, 55, 60–1, 67n,
section 25, 74–9, 82–3n, 85, 86n,
87&n, 93, 108, 123, 124, 159, 279,
315, 317, 445; interpretation of, in

the light of theory 37&n, 55,
59&n, 88, 90&n, 116, 280, 431–2,
443–4; and probability 182, 185,
431–2&n; statements of see Basic
statements; Protocol sentences,
see also Experience

occult effects, Occult phenomena
23t, 24n, 63, 82&n, 196

Occurrences section 23, 68, 69t,
90, 98; sequences of see
Sequences

Operationalism 386, 461, 462n,
see also Instrumentalism;
Pragmatism

Origin of theories 8, 9, 159, 316–17,
473–4

Ostensive definitions see
Definitions

Paradoxes, logical xx
Parameters 116–20, 123&n, 125n,

128&n, 129, 266n, 385, 395,
397–400

Path of an elementary particle
213–15&n, 226&n, 228–30,
233–6, 238&n, 297–300, 302–3,
475

Personal equation 87
Phenomenalism 461&n, 462
Philosophy xix, xv–xvi, xxiii,

xxv–xxvi, 29, 34, see also
Cosmology; Knowledge, theory
of; Metaphysics; Methods;
Problems

Physicalism 81t, 85, 87&n
Physics 50, 56n, 58, 62, 63, 72,

82–3n, 87, 90, 111, 138, 280;
probability in see Laws, micro-
and macro-; Probability and
experience; Probability in
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physics, see also Quantum
theory; Relativity;
Thermodynamics

Points of accumulation 176t&n
Points of view, essential for science

88, 441–2
Positivism, Positivist 11, 12, 13,

14–15, 16&n, 18, 28, 29, 31, 75,
87n, 91–2, 188n, 461, see also
Heisenberg’s formula, orthodox
interpretation, positivist
character of; Meaning, positivist
dogma of; Metaphysics,
positivists’ hatred

Possibilities, weight of 325–8
Potential falsifiers 66t, 69–72,

82–3n, 95, 98, 99–100, 103, 108,
126n, 284, 296n, 396, see also
Field of application

Pragmatism 122, 274n, see also
Instrumentalism;
Operationalism

Precision, quest for xxv, 410
Precision, degree of increases with

testability section 36, 106t, 107,
108–10, 116, 268–9, 430n–1n,
453n; and probability 195, 196

Prediction, as means of testing a
theory 10, 37n, section 12, 38&nt,
40, 63, 111, 124, 138, 150, 158–9,
182–3, 198, 199, 201, 204, 205,
243, 253, 272&n, 317

Prejudice 278–9&n, see also Bias
Primitive or undefined terms or

concepts 51–5, 63
Probability a priori and a posteriori

159n, 201, 270&n; absolute and
relative 103nt, 319–20, 322&n,
328, 331–2, 333, 334, 340, 352n,
375–6, 403–5, 409n, 412nt; fine

structure 388t–91, 396; logical
103t&nt, 135&n, 184n, 205, 261n,
section 83, 268, 269&n, 272,
319–20, 364–5, 434; metric of
97n, 102n, 421–2&n,
428&n–31&n, 432&n, 435–6;
primary and secondary 367,
422n, 435–6; as a range theory
section 37, 108t&nt, 109, 204,
section 72, 206–8, 402–3, see
also Atomic statements; Field of
application

Probability and experience 133,
155n, 158–9, 171n, 175, 246–7,
see also Decidability; Evidence,
paradox of

Probability, formal calculus of
138–9, 144n, 152, 161–2, 186n,
187, 204, 310–11, 319–20, 329,
404; autonomous 350t;
autonomous axiom system of
310–11, appendix ii, iii, 319–24,
329&n ff; classical 135t, 144n,
174&n, 175, 321–2, appendix iii,
325–8, 375–8&n, 388n;
consistence of 342–5; definitions
in 350–5, 364–5; derivaions in
appendix v, 356–68; frequency
133–4, 134n, 144, 201&n, 203,
206–7, 321–2; incompleteness of
329n; independence of 339, 350,
353–5; neoclassical or measure
theoretical 134n, 155n, 174n,
180n, 201n, 319–21, 330–1, 371–2,
see also relative frequency,
axioms of

Probability, interpretations of the
calculus of section 47, 133–7,
147n, 204, 207–8, 319, 320;
games of chance or classical 103,
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319–20; indutive see Probability
logic; logical 134n, 135&n–6, 182,
184n, 254n, 261n, 321–2, 330–1,
422–3, 433, 434, 436–7;
propensity 134n, 137n, 138n,
155n, 163n, 205&n, 205n, 309,
310&n–11, 427&n; statistical or
relative frequence 133–4&n,
137&n, 139–40, 163, 320, 427

Probability logic, Carnap’s view of
272n, 382n, 409, 410; frequency
or Reichenbach’s view of
33–4&n, 259–60, appendix i,
316–18; Hempel’s view of 387n;
or inductive logic 6, 10, 103, 120,
135, 158–9, 174, 182–3, 184, 209t,
251, 265, 374–5, 380, 402–3, 423;
Jeffreys’ and Wrinch’s view of
384–7, 397–400; Laplace’s rule
of succession 381–3&n, 400n,
430, 436–7; logical or Keynes’s
view of 269&n–73; refutation of
405–6, 412–15, 424–5, 426, see
also Zero probability

Probability, mathematical 192–3,
201&n, 310–11, 329n, 352n

Probability metaphysics section 67,
188–90&n, 196

Probability in physics 188, 189,
section 68, 198–205, 200–2;
objective fortuity of 199&n,
200&n, 242, see also Quantum
theory

Probability statements 34, 49, 134,
193–4&n, 201, 205n, 244, 254; as
a bridge to subjectivism 204,
205, 206–7; especially in
quantum theory 219, 225, 229–32,
246–7, 257, 302–3; formally
singular section 71, 202&n–4&n,

206–8; logical form of 183,
section 66,184–8, 190n, 196;
numerical 103, 134–5, 261;
rendered testable 190, 191–5n,
196; untestable 180–3, 184,
185&n, 186, 188, 189, 196, 204,
205, 223, see also Decidability

Probability, theory of, objective
versus subjective views of 483–4

Problem situation xv, xxvi, 277, 461
Problems xix, xxi–xxii, 16, 88, 198,

281
Progress, scientific see Evolution;

Fruitfulness; Universality, levels
of

Prohibitions, universal laws as 19,
48, 96

Propensity interpretation see
Probability, interpretations of

Propositional calculus 331, 333,
347n, 366–8

Propositions see statements
Protocol sentences 12, 25t, section

26, 76t, 77&nt, 78, 86&n, 87&n,
88

Proximity, logical 135&n, 272
Psychologism section 2, 7–9, xxi,

xxvi, 7, section 25, 74t–9, 87, 95,
253

Psychology 62; of knowledge 7, 8,
16, 23–5, 31, 81, 92, 440, 442&n

Pure case 222t&nt, 236, 246,
299–300, 482n; super 302–4

Quantum theory 40n, 41, 58, 90&n,
110–11, 134&n, 201n; author’s
propensity 229n, 270n, 468–9;
author’s statistical 210&n,
section 74, 216–24, 225–8, 475,
482&n; Bohm’s causal 471–2;
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discontinuity in 302–3;
interpretations of 210–11, 231,
236; measurement and precision
in 210–16, 218, 219&n, 221&nt,
225, 226, 233–4, 237, 241n, 297–9,
301&n–2n, 304&n, 309–11, 467n,
468–9, 474–5; the older 211–12,
216–17; orthodox 210–11, 212–15,
225, 229, 230, 297&n–300,
301n–2n, 303; prediction in 213,
214, 225, 226&n, 228&n, 229,
232, 233, 234, 237, 238n, 239–41,
242, 298–9, 301n–2n, 469, 471,
483–4; and probability 209–10,
211n, 223, 229&n, 230–1, 246–7,
302–4; subjective versus
objective 215, 216, 220, 229–30,
483; testability of 211, 226, 228,
see also Heisenberg’s formula’
Imaginary experiments; Path;
Probability statements; statistical
scatter relations; Wave packet

Quasi-induction see Inductive
direction

Randomness or objective disorder
152n, 154n, 155n, 162, 163, 174n,
175, 178, 185–6, 189, 199n,
206–8, 296, appendix vi,
369t–73, 405, see also Relative
frequency, axiom of randomness;
Sample; Selections, insensitivity
to; Sequences, random

Range, logical section 37, 108t&nt,
109, 204, section 72, 206–8, 403

Rational belief see Belief
Rational reconstruction 8–9
Rationalism, Rational philosophy,

Rational attitude, classical xxiii,
51, see also Criticism; Discussion

Rationalism, Rational philosophy,
Rational attitude xviii, xx, xxi, xxiii

Rationalization 37
Realism 241n, 460
Reduction, of dimension see

Dimension
Reduction to observations 95, 444,

445, 446n–7n, 461&n–2, see also
Constitute

Reference class, Reference
sequence or collective 143t–6,
154t, 160t–2, 176, 177, 180n,
202–4&n, 207–8, 231–2, 255, 257,
see also Randomness;
Sequences, random

Refutability see Disproof;
Falsifiability

Refutation see Disproof;
Falsification

Regularity 88, 123, 147, 162, 179–80,
188, 189, 199&n, 200&n, 201,
202, 250, 251, 369–70, 459, see
also Effect, repeatable;
Fluctuations; lawlike behaviour;
Observability; Statistical stability;
Uniformity of nature

Relative frequency 133–4n, 137n,
144, 296, 372–3; axioms of
Mises’ 134, section 50, 139–41t,
175, 180; consistency of 180n,
371–3; convergence or limit
axiom 140–1t, 142, 155, 157,
173–5, 187, 188n; criticism of
141–2, section 58, 160–2, 180n;
of finite classes (F’) 143–5, 164,
174, appendix ii, 286–9; of finite
sequences 146–52, 164, 175;
independence of 173, 296;
modification of (into the
requirement of uniqueness) 139,
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142&n, 154n, 174&n, section 64,
176–81&n, 186&n, 188n;
modification of section 51,
142&n, 154n, 161n, 173–4, 176–91,
180n, 371–3; of random infinite
sequences (F) 144n, 163t, 164,
174, 175, 176, 207, 296;
randomness or the exclusion of
gambling systems axiom
139t–41t, 142–3, 157–8, section
58, 160t–3, 180n, 186, 187&n;
redundancy of 178n, 183n, 192n,
294n–5n, 372n–3; of segments of
finite sequences (F’) 154t, 155,
164, 177, see also After effect;
Randomness; Segments;
Selection; Sequences

Relativism 94n
Relativity, Einstein’s 56n, 63, 90,

129–30, 465–6, 470; and
quantum theory 211–12, 246,
466

Relevance see Irrelevance
Repeatability see Effect, repeatable;

Fluctuations; Observability;
Regularity

Repetitions see Similarity
Rules of Method see Decisions

Sample, statistical 179t, 201n, 204,
205, 385n, 411, 413n, see also
Segments, representative

Science 25–6, 31, 34, 267, 278–81,
380; applied 10, 37n, 40, 88, 92;
as commonsense xxi–xxii; as
commonsense xxvi; empirical see
empirical character; Empiricism;
Theories; and freedom 279n; as a
game with rules 32–3, 298–9; its
aim 15, section 9, 27–9, 28, 31,

34, 37, 42, 59, 88–9, 272&n–3;
and logic 210

Second quantization 210n,
299–300

Segments of sequences 152, 290–1,
291–2; adjoining 153t, 154n, 165,
169; overlapping 153t, 154n,
164&n, 165, 167, 169; probability
of 168, 174–5, 177n, 179;
representative 182–5, 189, 194n,
196, 198, see also Sequence,
shortest random

Selection 140–1, section 53 & 54,
144t–6, 160, 161, 177n, 288;
insensitivity to 149t, 150, 151, 165,
176; neighbourhood 146t, 150,
151t&n, 162, 166–7, 176, 186n;
normal 162t, 165, 167, 169;
ordinal 146t; pure 167t, see also
After effect, freedom from

Selection, physical 220t&n–2, 234,
236, 298–9, 301&n–4, 475, see
also Statistical scatter relations

Self-evidence 24, 51, 201, see also
conviction

Sense data xx, 11, 74–6, 87, see also
Observation

Sense data xx
Sequences 137; alternative 139–40t,

146t, 149, 151, 152, 176, 178, 184,
371–2; empirical 139, 141, 143,
146, 158, 167, 175, 182, 183n, 184,
185–6, 188–90, 192n, 200, 202,
203, 204, 427; finite section 54,
147, 152, 157, 174, 175, 372; infinite
154n, section 57, 155–9, 168, 173,
176, 350; mathematical 155t–6,
159–62, 175, 187, 200, 383n,
442–3; n-free see After effect;
random or chance-like 139–40t,
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143, 151n, 157, 160, 162, section
59, 163t, 164, 169, 170, 174–5,
178, 179, 180n, 182, 199t, 200,
294, 296n, 370–1, 372; of relative
frequencies or properties 140t–1,
176, 190n; of segments section
56, 152–4&n, 165; shortest 174n,
178n, 183n, 293n–4n, 295n,
370–3; of statements 4–5, 255,
257, 317, see also Reference
sequence; Segments; Selection

Similarity 200n, 440–4
Simplicity 58, 60, 92, 98n, chapter

VII, 121, 122, 128, 385, appendix
vii, 393–4, 397&n–400; as
content 395–6, 399; as
improbability 124, 125n, 127, 128,
395–400; mathematical 124–5;
methodological problem of
section 42, 122–6, 400; not
aesthetic or pragmatic section
41, 122, 123; as paucity of
parameters 116n, 126&n,
127–8&n, 266n, 273, 385, 393–4,
398, 399, 400; of probability
statements 200; as testability
section 43, 126–8, 266n, 269,
273, see also Parameters

Singular statements 3–4, 10, 19, 21,
37, 38, 41n, 42, 49n, 63, 64, 70n,
82–3n, 84, 92, 114, 118, 121, 314,
331, 443–4n; lawlike character of
76

Sociology 15; knowledge 26, 279n
Space see Coordinates
Stability see Statistical stability
Statements 12&n, 37, 69, 75, 78,

87n, 97n; distinction between
singular and universal 45–7;
distinction between synthetic

and empirical 29&n–31, 40,
104–5, 251, 261–3&n, 380, 383;
equations and functions 52–3t,
see also All-and-some
statements; Atomic statements;
Basic statements;
Contradictions; Demarcation
versus meaning; Empirical
character; Existential statements;
Metaphysical statements;
Metaphysics; Protocol
sentences; Singular statements;
Synthetic statements;
Tautologies

Statistical estimates, Statistical
hypotheses see Hypothesis

Statistical scatter relations 210,
220, 225–6, 226&n, 229, 233,
234, 302–3

Statistical stability 158–9, 170–1&n,
173, 175, 179–80, 180, see also
Fluctuations; Path; Pure case

Statistics see Probability; Relative
frequency

Stratagem see conventional
stratagem

Strictness, degree of 127t
Sub-systems see Independence
Subclass relation see Testability,

degree of
Support see corroboration,

ungraded
Surreptitious alteration 64
Symbolism, worship of 410
Symmetry 158, 159, 198; in

probability axioms, between the
two arguments 329–31, 333, 334,
336t, 352n; in quantum
theoretical formalism but not in
Heisenberg’s imaginary
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experiment 474–5, see also Zero
probability

Synthetic statements 17, 40, 42, 53,
105; non-empirical 29&n–31, 40,
104–5, 251, 261–2&n, 380, 383,
see also Demarcation versus
meaning; Meaning, positivist
dogma of; Metaphysics

Systems, the logical irrefutability of
partial systems 56&n, 57, 108

Tautologies 19, 53, 56n, 64, 71, 80,
99–100, 101, 104&n, 265, 275,
314, 315, 366–8, 383, 447n,
448–9, 452, 453t

Technology see Science, applied
Terminology 274n, 410–11, 437–8
Test statements see Basic

statements; Potential falsifiers
Testability, Tests 4, section 3, 9–10,

10, 11, 17, 22–6, 32, 33, 37n,
49&n, 50, 56n, 67&n, 77–9&n,
81, 82–3&n, 86, 87, 90, 128n–9,
211, 227, 228, 245n, 255, 256, 262,
265&n, 266&n, 276, 281, 310–11,
314, 315, 369–70, 374–5, 420&n,
433–4, 437–8, 438, 453; with the
aid of field of application and
dimension concepts 113–20; with
the aid of the subclass concept
section 33, 98–101, 104, 110, 114,
206–8; comparison of section
32, 97–9; degree of 63, 91,
chapter VI, 95, 97–100, 266–7;
increases with content section
35, 103–5, 108, 126&n, 127,
128&n, 269n, 272&n, 273, 386–7,
400, 416, 417; increases with
improbability 102–3, 110, 206,
266n, 269, 273, 400; increases

with simplicity section 43, 126–8,
266n, 269n, 273; increases with
universality and precision
section 36, 105–7, 108–10, 127,
268, 273, 430n–1n, 432n, 446; of
probability statements see
Decidability; the two measures
compared 114, see also
Falsifiability

Theory, Theoretical systems 4, 4–5,
9, 11, 18, 28, chapter III, 37&n,
40&n, section 16, 50–1, 55, 56,
60, 63, 66, 68, 72, 88–94, 96,
103, 108, 111, 121, 276, 277,
283–4, 315–16, 386; and
experiment section 30, 88–91,
268, 442–7&n, 463; origin of 8–
9, 159, 316–17, 474, see also
Interpretation; Laws; Universal
statements

Thermodynamics 188–90, 190n,
192–3, 196, 200–1&n, 202, 466,
484

’Tolerance’, Carnap’s principle of
32n

Transcendence 76, 443–4
Transcendental argument 380t&nt,

383n, 398&n
Transformations, probabilistic see

Probability, theory of
Transformations, mathematical,

invariance 129, 130, 422, 423
Translation, from realistic to formal

mode of speech 68–9
True, Truth 40n, 50, 52–3, 53–4,

68–9, 76, 92, 124, 245, 249, 253,
256, 260, 261, 262–3, 264,
section 84, 274&n–7&n, 278, 317,
434, 438, 444n, 448–9, 459, 460

Truth-frequency 253t&nt–9, 317
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Truth-function 113n, 284, 315
Truth-value 275
Two-slit experiment appendix v,

297&n–300, 477–82

Uncertainty see Hypothesis
Uncertainty principle see

Heisenberg’s formula
Uniformity of nature, principle of

70n, 250–1, 381–2, 459&n, 460,
see also Metaphysical faith in
regularities

Uniqueness 24
Universal statements 4, 5, 15, 19, 23,

41, 49n, 70n, 202, 256, 386–91;
existential 185; as prohibitions
48, 96; strict or non-existence
41t–2, 46n, 82–3&n, 84, 186, 447,
452, 460; strict versus numerical
section 13, 40–2, see also Laws;
Names, universal; Zero
probability

Universality, accidental and
necessary 447–8, 453–60; levels
of 25, 55, section 18, 55–6, 64,
section 36, 105–7t&nt, 108, 268,
270, 273, 276, 277, 278, 446, 460

Universals, problems of 45, 47,
53–4, 76, 463, see also Names,
universal

Use or usage of words xviii, 43–4,
45, 47, 64&n, 276

Validity, Bolzano’s concept of 103n
Value of judgements concerning

science, necessary 16, 29, 34, see
also Decisions

Verdict 91–3
Verification of an existential

statement, possible 10, 48–9&n,
70; of a basic statement,
impossible 71, 75, 444&n; or
confirmation in the sense of
weak verification 10, 15n, 16, 28,
32, 59, 249n, 256&n, 259–60,
267n, 272, 278, 314, 317; of
probability statements,
impossible 183&n, 184, 185&n,
188&n; of universal statements,
impossible in one way and too
easy in another 18, 19, 20, 42, 49,
57n, 71, 82–3n, 137n, 159, 199,
228, section 79, 249–52, 255,
262–4, 317, 383–4, 442–6, see
also Instantiation; Zero
probability

Vienna circle 29n, 37n, 264n,
312–13, 313

Wave-packet 216–17t, 219, 230,
304; reduction of 231&nt–2,
467n, 471

Zero probability, of a universal
statement 18n, 255, appendix vii,
374–86, 396–7, 398, 404, 423,
432

Zero probability of the second
argument 334–6, 340, 366n, 404,
405
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