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Causal Inference Without Counterfactuals 
A. I? DAWID 

A popular approach to the framing and answering of causal questions relies on the idea of counterfactuals: outcomes that would 
have been observed had the world developed differently; for example, if the patient had received a different treatment. By definition, 
one can never observe such quantities, nor assess empirically the validity of any modeling assumptions made about them, even 
though one’s conclusions may be sensitive to these assumptions. Here I argue that for making inference about the likely effects of 
applied causes, counterfactual arguments are unnecessary and potentially misleading. An alternative approach, based on Bayesian 
decision analysis, is presented. Properties of counterfactuals are relevant to inference about the likely causes of observed effects, 
but close attention then must be given to the nature and context of the query, as well as to what conclusions can and cannot be 
supported empirically. In particular, even in the absence of statistical uncertainty, such inferences may be subject to an irreducible 
degree of ambiguity. 
KEY WORDS: Average causal effect; Causes of effects; Causation; Determinism; Effects of causes; Metaphysical model; Potential 

response; Treatment-unit additivity. 

PART I: INTRODUCTION 

1. CAUSAL MODELING 
Association is not causation. Many have held that statis- 

tics, though well suited to investigate the former, strays into 
treacherous waters when it makes claims to say anything 
meaningful about the latter. Yet others have proceeded as if 
inference about the causes of observed phenomena were in- 
deed a valid object of statistical enquiry; and it is certainly 
a great temptation for statisticians to attempt such “causal 
inference.” Among those who have taken the logic of causal 
statistical inference seriously, I mention in particular Rubin 
(1974, 1978), Holland (1986), Robins (1986, 1987), Pearl 
(1995a), and Shafer (1996). This article represents my own 
attempt to contribute to the debate as to the appropriate 
statistical models and methods to use for causal inference, 
and what causal conclusions can be justified by statistical 
analysis. 

There are many philosophical and statistical approaches 
to understanding and uncovering causation, and here I do 
not attempt to attack the problem on a broad front. I con- 
tinue my attention to a simple decision-based understanding 
of causation, wherein an external agent can make interven- 
tions in, and observe various properties of, some system. 
Rubin (1978) and Heckerman and Shachter (1993, among 
others, have emphasized the importance of a clear decision- 
theoretic description of a causal problem. Understanding of 
the “causal effects” of intervention will come through the 
building, testing, and application of causal models, relating 
interventions, responses, and other variables. 

In my view, the enterprise of causal statistical modeling 
is not essentially different from any other kind of statistical 
modeling, and is most satisfactorily understood from a Pop- 
perian hypothetico-deductive viewpoint. A model is not a 
straightforward reflection of external reality, and to propose 

A. P. Dawid is Professor of Statistics, Department of Statistical Sci- 
ence, University College London, London, WClE 6BT, U.K. (E-mail: 
dawid@stats.ucZ.ac.uk). The ideas finally presented in this article have 
been festering for many years, in the course of which the author has 
had valuable discussions (and often heated arguments) with many people. 
The author particularly wishes to acknowledge the major contributions of 
Don Rubin, Judea Pearl, Glenn Shafer, Jamie Robins, Ross Shachter, and 
Volodya Vovk. 

a model is not to assert or to believe that nature behaves in 
a particular way. (Nature is surely utterly indifferent to our 
attempts to ensnare her in our theories.) Rather, a model is a 
construct within the mental universe, through which we at- 
tempt somehow to describe certain, more or less restricted, 
aspects of the empirical universe. To do this, we need to 
have a clear understanding of the semantics of such a de- 
scription. This involves setting up a clear correspondence 
between the very different features of these two universes. 
In particular, we require very clear (if possibly implicit) 
understandings of 

what the system modeled is (and so in particular how 
to distinguish a valid from an invalid instance of the 
system) 
what real world quantities are represented by variables 
appearing in the model 
what an intervention involves (for example, “setting” 
a patient’s treatment to “none” by (a) withholding it 
from him, (b) wiring his jaw shut, or (c) killing him are 
all very different interventions, with different effects, 
and must be modeled as such. We must also be clear 
as to what variables are affected by the intervention, 
directly or indirectly, and how.) 
what is meant by replication (in time, space, etc.). 

Also vital are clearly defined methods for understanding, 
assessing, and measuring the empirical success of any such 
attempt at description of the real world by a mathematical 
model. (One approach to such understanding and assess- 
ment in the case of ordinary probability modeling, based 
on the concept of probability calibration, may be found in 
Dawid 1985.) 

As long as a model appears to describe the relevant as- 
pects of the world satisfactorily, we may continue, cau- 
tiously, to use it; when it fails to do so, we need to search for 
a better one. In particular, any causal understandings that 
we may feel we have attained must always be treated as 
tentative and subject to revision should further observation 
of the world require it. 
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To be fully general, I should consider models for complex 
problems, such as those discussed by Robins (1986) and 
Pearl (1995a), wherein interventions of various kinds are 
possible at various points in a system, with effects that can 
cascade through a collection of variables. Although such 
problems can be modeled and analyzed (using structures 
such as influence diagrams) within the general philosophical 
and methodological framework of this article, that would 
involve additional theoretical development. To keep things 
simple, I restrict attention here to systems on which it is 
possible to make a single external intervention, which I re- 
fer to as treatment, and observe a single eventual response. 
I also suppose, with no further real loss of generality, that 
just two treatments are available. Another restriction, that 
could again be relaxed at the cost of further elaboration, is 
that I do not address the important and challenging prob- 
lems arising from nonignorable treatment assignment or ob- 
servational studies (e.g., Rubin 1974, 1978); see, however, 
Section 8.1 for some related analysis. 

2. COUNTERFACTUALS 
Much recent analysis of causal inference is grounded 

in the manipulation of counrelfactuals. Philosophically, a 
counterfactual statement is an assertion of the form “if X 
had been the case, then Y would have happened,” made 
when it is known to be false that X is the case. In a famous 
historical counterfactual, Pascal (1669, sec. 162), opined: 

Le nez de CICopitre: s’il eut it6 plus court, toute la face de 
la terre aurait changC. 

(If Cleopatra’s nose had been shorter, the whole face of the 
world would have been altered.) More recently, an intrigu- 
ing, seemingly self-referring, assertion was made by Shafer 
(1996, p. 108): 

Were counterfactuals to have objective meaning, we might 
take them as basic, and define probability and causality in 
terms of them. 

One of the aims of this article is to persuade the reader of 
the genuinely counterfactual nature of this claim. 

An archetype of the use of counterfactuals in a causal sta- 
tistical context is the assertion “if only I had taken aspirin, 
my headache would have gone by now.” It is implicit that I 
did not take aspirin, and I still have the headache. Such an 
assertion, if true, could be regarded as justifying an infer- 
ence that not taking aspirin has “caused” my headache to 
persist this long; and that if I had taken aspirin, that would 
have “caused” my headache to disappear by now. The as- 
signment of cause is thus based on a comparison of the real 
and the counterfactual outcomes. 

If YA denotes the duration of my headache when I take 
aspirin, and YA its duration when I don’t, then the foregoing 
assertion is of the form “YA > y, YA < y” and relates jointly 
to the pair of values for (YA, YA). An important question, 
which motivates much of the development in this article, 
is to what extent such assertions can be validated or re- 
futed by empirical observation. My approach is grounded 
in a Popperian philosophy, in which the meaningfulness of a 
purportedly scientific theory, proposition, quantity, or con- 
cept is related to the implications it has for what is or could 
be observed, and, in particular, to the extent to which it is 

possible to conceive of data that would be affected by the 
truth of the proposition or the value of the quantity. When 
this is the case, assertions are empirically refutable and are 
considered “scientific.” When this is not so, they may be 
branded “metaphysical.” I argue that counterfactual theories 
are essentially metaphysical. This in itself might not be au- 
tomatic grounds for rejection of such a theory, if the causal 
inferences that it led to were unaffected by the metaphys- 
ical assumptions embodied in it. Unfortunately, this is not 
so, and the answers that the approach delivers to its inferen- 
tial questions are seen, on closer analysis, to be dependent 
on the validity of assumptions that are entirely untestable, 
even in principle. This can lead to distorted understandings 
and undesirable practical consequences. 

3. TWO PROBLEMS 
There are several different problems of causal inference, 

which are often conflated. In particular, I consider it impor- 
tant to distinguish between causal queries of the two types 
(Holland, 1986): 

I. “I have a headache. Will it help if I take aspirin?’ 
11. “My headache has gone. Is it because I took aspirin?’ 
Query I requires inference about the effects ofcauses; that 

is, comparisons among the expected consequences of var- 
ious possible interventions in a system. Such queries have 
long been the focus of the bulk of the standard statistical 
theory of experimental design (which, it is worth remark- 
ing, has in general displayed little eagerness for counter- 
factual analyses). Query 11, in contrast, relates to causes 
of effects; one seeks to understand the causal relationship 
between an already observed outcome and an earlier in- 
tervention. Queries of this second kind might arise in legal 
inquiries; for example, into whether responsibility for a par- 
ticular claimant’s leukemia can be attributed to the fact that 
her father worked in a nuclear power station for 23 years. 
The distinction between queries I and I1 is closely related to 
that sometimes made between problems of general and of 
singular causation (Hitchcock 1997), although in our for- 
mulation both queries relate to singular circumstances. 

I consider both types of query valid and important, but 
they are different, and require different, though related treat- 
ments. Evidence, (e.g., findings from epidemiological sur- 
veys) that is directly relevant to query I, is often used, in- 
appropriately, to address query 11, without careful attention 
to the difference between the queries. 

4. PREVIEW 
In Part I1 I consider the problem of “effects of causes.” 

Section 5 introduces the essential ingredients of the prob- 
lem and distinguish two varieties of model: a metaphysical 
model, which allows direct formulation of counterfactual 
quantities and queries, and a physical model, which does 
not. By means of a simple running example, I illustrate how 
certain inferences based on a metaphysical model are not 
completely determined by the data, however extensive, but 
remain sensitive to untestable additional assumptions. I also 
delimit the extent of the resulting arbitrariness. Section 6 
describes an entirely different approach, based on physical 
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modeling and decision analysis, and shows how it delivers 
an unambiguous conclusion, avoiding the above problems. 
Section 7 questions the role of an implicit attitude of “fa- 
talism” in some counterfactual causal models and methods. 
Section 8 extends the discussion to cases in which addi- 
tional covariate information is available on individual sys- 
tems. Section 9 investigates whether certain analyses stem- 
ming from a counterfactual approach nevertheless might be 
acceptable for “physical” purposes; examples are given of 
both possible answers. Section 10 asks whether it might 
ever be strictly advantageous to base physical analyses on 
a metaphysical structure. This appears to be sometimes the 
case for causal modeling, but arguably not so for causal 
inference. 

In Part I11 I address the distinct problem of “causes of 
effects.” For this, purely physical modeling appears inade- 
quate, and the arbitrariness already identified in metaphys- 
ical modeling becomes a much more serious problem. Sec- 
tion 11 explains how this arbitrariness can be reduced by 
taking account of concomitant variables. Section 12 intro- 
duces a convention of conditional independence across al- 
ternative universes, which helps clarify the counterfactual 
inference and possibly reduce the intrinsic ambiguity. Sec- 
tion 13 considers the possibility of using underlying deter- 
ministic relations to clarify causal questions and inferences. 
I argue that to be useful, these must involve genuine con- 
comitant variables. A contrast is drawn with “pseudodeter- 
ministic models,” which are always available in the counter- 
factual framework. These have a deterministic mathemati- 
cal structure, but need not involve true concomitants. Such 
a purely formal structure, I argue, is not enough to support 
meaningful inferences about the causes of effects. Section 
14 discusses in more detail the meaning of concomitance 
and argues that this is partly a matter of convention, rela- 
tive to a specific causal inquiry, rather than a property of 
the physical world. 

The general message of this article is that inferences 
based on counterfactual assumptions and models are gen- 
erally unhelpful and frequently plain misleading. Alterna- 
tive approaches can avoid these problems, while continu- 
ing to address meaningful causal questions. For inference 
about the effects of causes, a straightforward “black box” 
decision-analytic approach, based on models and quantities 
that are empirically testable and discoverable, is perfectly 
adequate. For inference about the causes of effects, causal 
models must be suited to the questions addressed as well as 
to the empirical world, and understanding of the relation- 
ships between observed variables and possibly unobserved, 
but empirically meaningful, concomitant variables becomes 
important. The causal inferences justified by empirical find- 
ings will still in general retain a degree of arbitrariness and 
convention, which should be fully admitted. 

PART II: EFFECTS OF CAUSES 

5. COMPARISON OF TREATMENTS: 
COUNTERFACTUAL APPROACH 

As a simple and familiar setting to discuss and contrast 
different approaches to inference about the effects of causes, 

I investigate the problem of making comparisons between 
two treatments, t and c (e.g., aspirin and placebo control) 
on the basis of an experiment. In this section I consider 
counterfactual approaches to this problem and show how 
they can produce ambiguous answers, unless arbitrary and 
unverifiable assumptions are imposed. 

Consider a large homogeneous population U of clearly 
distinguishable individuals, or systems, or (as we shall gen- 
erally call them) units, u, to each of which one can choose 
to apply any one treatment, i ,  out of the treatment set 
7 = { t , ~ } ,  and observe the resulting response, Y .  Once 
one treatment has been applied, the other treatment can 
no longer be applied. This property can be ensured by ap- 
propriate definition of experimental unit u (e.g., headache 
episode rather than patient) and treatment (combinations of 
treatments, if available, being redefined as new treatments). 

Experimentation consists in selecting disjoint sets of 
units Ui C U (i = t , c ) ,  applying treatment i to each unit 
in Ui, and observing the ensuing responses (e.g., time for 
the headache to disappear). The experimental units might 
be selected for treatment by some form of randomization, 
but this is inessential to my argument. For further clarifica- 
tion of the argument, I assume that the treatment groups are 
sufficiently large so that all inferential problems associated 
with finite sampling can be ignored. 

Homogeneity of the population is an intuitive concept, 
which can be formalized in a number of ways. From a clas- 
sical standpoint, the individuals might be regarded as drawn 
randomly and independently from some large population; a 
Bayesian might regard them as exchangeable. In this con- 
text, homogeneity is also taken to imply that no specific 
information is available on the units that might serve to 
distinguish one from another (this constraint is relaxed in 
Sec. 8). In particular, the experimenter is unable to take any 
such information into account, either deliberately or inad- 
vertently, in deciding which treatment a particular unit is 
to receive. To render this scenario more realistic and ver- 
satile, suppose that he did in fact have additional measured 
covariate information on each unit, determined by (but not 
uniquely identifying) that unit. Then one would confine at- 
tention to a subpopulation having certain fixed covariate 
values, and this subpopulation might then be reasonably re- 
garded as homogeneous. That is, this discussion should be 
understood as applying at the level of the residual variation, 
after all relevant observed covariates have been allowed for. 
(One can then also allow treatment assignment to take these 
observed covariates into account.) 

Counte$actual Framework. The counterfactual ap- 
proach to causal analysis for this problem focuses on the 
collection of potential responses Y := (yZ(u): i E 7, u E 
U ) ,  where K ( u )  is intended to denote “the response that 
would be observed if treatment i were assigned to unit u.” 
One can consider Y as arranged in a two-way layout of 
treatments by units, with yZ(u) occupying the cell for row 
i and column u. Note that many of the variables in Y are 
(to borrow a term from quantum physics) comphnentary, 
in that they are not simultaneously observable. Specifically, 
for any unit u, one can observe yZ(u) for at most one treat- 
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ment i. Assignment of treatments to units will determine 
just which (if any) of these complementary variables are to 
be observed, yielding a collection X of responses that I call 
a physical array-in contrast to the metaphysical array Y .  
Although the full collection Y is intrinsically unobservable, 
counterfactual analyses are based on consideration of all 
of the (yZ(u)) simultaneously. Current interest in the coun- 
terfactual approach was instigated by Rubin (1974, 197% 
although it can be traced back at least to Neyman (1935; 
see also Neyman 1923). 

5.1 Metaphysical Model 
What kind of models can be reasonably entertained 

for the metaphysical array Y? The assumption of homo- 
geneity essentially requires us to model the various pairs 
(yt(u),Y,(u)) for u E U as iid, given their (typically 
unknown) bivariate distribution P. I denote the implied 
marginal distributions for yt and Y, by Pt and P,. It is 
important to note that the full bivariate distribution P is 
not completely specified by these marginals, without fur- 
ther specification of the dependence between yt and y,. 

Although the major points of the discussion apply to a 
general model of the foregoing form, for definiteness I con- 
centrate on the following specific bivariate normal model. 

The pairs {(yt(u) ,  Yc(u)): u E U} are mod- 
eled as iid, each with the bivariate normal distribution with 
means ( Q t ,  Q,), common variance & - ,  and correlation p. 

When p 2 0, which seems .a reasonable judgment (see 
section 12), one can also represent this structure by means 
of the mixed model 

Example 1. 

where all of the (@(u)) and (ri(u)) are mutually indepen- 
dent normal random variables, with mean 0 and variances 
$0 := p 4 y  and & := (1 - p)q+. One can also regard 
(1)  as a (fictitious) representation of the bivariate normal 
model even when p < 0, in which case we must have 
-q5y 5 40 5 0 and 0 5 & 5 2 4 ~ .  Then the calculations 
below, though based on this fictitious representation, are 
still valid. Inversely, one could start with (1 )  as the model, 
in which case 

and 

(3) 

In the usual parlance of the analysis of variance, (1 )  ex- 
presses yZ (u) as composed of a fixed treatment effect Oi as- 
sociated with the applied treatment i, common to all units; 
a random unit effect P(u), unique to unit u, but common to 
both treatments; and a random unit-treatment interaction, 
yi (u) ,  varying from one treatment application to another, 
even on the same unit. [This last term could also be inter- 
preted as incorporating intrinsic random variation, which 
can not be distinguished from interaction because replicate 
observations on yZ(u) are impossible.] 

5.2 Causal Effect 
The counterfactual approach typically takes as the fun- 

damental object of causal inference the individual causal 
effect: a suitable numerical comparison, for a given unit, 
between the various potential responses it would exhibit, 
under the various treatments that might be applied. Note 
that such a quantity is meaningless unless one regards the 
several potential responses, complementary though they are, 
as having simultaneous existence. 

Here the individual causal effect (ICE) for unit u is iden- 
tified with the difference 

T ( U )  := & ( U )  - Y c ( U ) .  (4) 

Alternative possibilities might be log yt(u) - logY,(u) and 
yt(u)/Y,(u). There seems no obvious theoretical reason, 
within this framework, to prefer any one such compari- 
son to any other, the choice perhaps being made according 
to one’s understanding of the applied context and the type 
of inferential conclusion desired. But however defined, an 
ICE involves direct comparison of complementary quanti- 
ties and is thus intrinsically unobservable. 

In most studies, the specific units used in the experiment 
are of no special interest in themselves, but merely provide 
a basis for inference about generic properties of units under 
the influence of the various treatments. For this purpose, 
it is helpful to conceive of an entirely new test unit, uo, 
from the same population, that has not yet been treated, 
and to regard the purpose of the experiment as to assist in 
making the decision as to which treatment to apply to it. 
If one decides on treatment t ,  then one obtains response 
yt(uo); if c, one obtains Y,(uo). Thus inference needs to 
be made about these two quantities, and they need to be 
compared somehow. Note that although yt(u0) and Yc(uo) 
are complementary, neither is (as yet) counterfactual. 

The counterfactual approach might focus on the ICE 
r(uo) = yt(u0) - Y,(uo), or a suitable variation thereon. 
Under ( l ) ,  

( 5 )  

with r := Qt - O,, the average causal effect (ACE), and 
X(u) := -yt(u) - -yc(u), the residual causal effect, having 
distribution 

X(u) - “0,245). (6) 

r(u) = 7 + X(u), 

(7) 

This model holds in particular for the inferential target 
7(u0).  Becausp r(u0) is probabilistically independent of any 
data on the units in the experiment, inference about 7(u0)  
essentially reduces to inference about the pair (7, &). 

5.3 Physical Model 
Suppose that a particular experimental assignment has 

been specified. Label, arbitrarily, the units receiving treat- 
ment i as u,1,21,2 . . . , uzn,. Then the observed response 
on unit uZ3 is XZJ := yZ(uZJ). The collection ( X t 3 :  i = 
t ,  c ; j  = 1,. . . ,n,) constitutes the physical array X. The 
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mean response on all units receiving treatment i is Xi := 
(lllzi) c;& xi,. 

It follows trivially from the model assumptions of Exam- 
ple 1 that the joint distribution over X is described by 

independently for all (i, j). Equivalently, from (I), 

with E ~ ,  := p(ui j )  + ri(uij) - N(O,4y) independently for 
all (i ,j).  

Now to the extent that the (1) says anything about the 
empirical world, this must be fully captured in the im- 
plied models (8) (one such for each possible physical ar- 
ray). Clearly, from extensive data having the structure (8), 
one can identify d t ,  d,, and q5y, but the individual compo- 
nents 40 and q& in ( 2 ) 4 r ,  equivalently, the correlation p 
satisfying (3)-are not identifiable; one has intrinsic alias- 
ing (McCullagh and Nelder 1989, sec. 3.5) of unit effect 
and unit-treatment interaction. As far as the desired infer- 
ence about ~(210) is concerned, one can identify its mean, 
T = ACE, in (7). However, its variance, 245, is not identi- 
fiable from the data, beyond the requirement & I & (if 
one restricts to p 2 0) or q!~, 5 24y (for p unrestricted). 

5.4 A Quandary 
This poses an inferential quandary. Consider two statis- 

ticians, both of whom believe in (1). However, statistician 
S1 further assumes that = 0 ( p  = 0), and statistician S2 
assumes that q!x7 = 0 ( p  = 1). Both S1 and S2 accept (8) for 
the physical array, with no further constraints on its param- 
eters. Extensive data, assumed to be fully consistent with 
(8) for the physical array, lead to essentially exact estimates 
of d t ,  d,, and 4 ~ .  However, S 1 infers q5p = 0 and & = 4y, 
whereas S2 has 40 = 4 y  and qi-, = 0. When they come to 
inference about T ( U O ) ,  from (7), they will agree on its mean, 
T ,  but differ about its variance, 2&. A third statistician, 
making different assumptions (e.g., q5p = qL,, equivalent to 
p = l/2) will come to yet another distinct conclusion. Is 
it not worrisome that models that are intrinsically indis- 
tinguishable, on the basis of any data that could ever be 
observed, can lead to such different inferences? How can 
one possibly choose between these inferences? 

The aforementioned state of affairs is clearly in violation 
of what, in another context (Dawid 1984, sec. 5.21, I have 
called Jeflreys S law: the requirement that mathematically 
distinct models that cannot be distinguished on the basis of 
empirical observation should lead to indistinguishable infer- 
ences. This property can be demonstrated mathematically 
in cases where those inferences concern future observables, 
and I consider it to have just as much intuitive force in the 
present context of causal inference. 

There is one important, but very special, case where the 
foregoing ambiguity vanishes: when 4~ is essentially 0, and 
hence so are both 4 p  and &. In this case the units are not 
merely homogeneous, but uniform, in that for each i, K ( u )  
is the same for all units u. The property q5y A 0 can, of 

course, be investigated empirically, and might be regarded 
as a distinguishing feature of at least some problems in the 
“hard” sciences. When it holds, one can in effect observe 
both yt(u) and Yc(u) simultaneously, by using distinct units, 
thus enabling direct measurement of causal effects. I fur- 
ther consider this case of uniformity, and its extensions, in 
Section 13. 

5.5 Additional Constraints 
How should one proceed if one does not have uniformity? 

It is common in studies based on counterfactual models to 
impose additional constraints. In the present context, a com- 
mon additional constraint is that of treatrnent-unit additiv- 
ity (TUA), which asserts that T ( U )  in (4) is the same for all 
u E 24. In terms of (l), this is equivalent to &, = 0 ( p  = 1) 
and leads to a simple inference: 7(u0)  = 7, with no further 
uncertainty (T having been identified, from a large experi- 
ment, as X, - XJ. However, as pointed out earlier, there is 
simply no way that TUA can be tested on the basis of any 
empirically observable data in the context of (l), and it is 
intuitively clear that the same holds for any other models 
that might be considered. When for each pair (y t (u) ,  Yc(u)),  
it is never possible to observe both components, how can 
one ever assess empirically the assertion that &(u) - Yc(u) 
(unobservable for each u)  is the same for all u? If I had used 
a more general model in Example 1, whereby I allowed the 
variance to be different for two responses, say 4t and &, 
then TUA does have the testable implication qht = &, and 
so could be rejected on the basis of data casting doubt on 
this property. But such data would still not distinguish be- 
tween TUA and any of the other models considered earlier, 
all of which would likewise be rejected. I have assumed 
throughout that the data are consistent with the physical 
model (8), so that this issue does not arise. 

A similar untestable assumption commonly made in the 
case of binary responses (Imbens and Angrist 1994) is 
monotonicity, which requires that P (Y, = 1, yt = 0) = 0 
(where the response 1 represents a successful, and 0 an un- 
successful, outcome). 

5.6 What Can Be Said? 

If inferences are restricted to those that are justified by 
the data, without the imposition of untestable additional 
constraints, then the most that can be said about ~ ( 2 ~ 0 )  [as- 
suming (l)]  is 

T ( U 0 )  N(T,2&)? (10) 

with T estimated precisely but q57 subject only to the in- 
equality 0 < & < q5y (or 0 < & < 24y if one allows 
p < 0), whose right side only is estimated precisely. Only 
if one is fortunate enough to find that c$y is negligible (the 
situation of uniformity) can one obtain an unambiguous in- 
ference for ~ ( u o ) .  

A very similar analysis can be conducted for other meta- 
physical models. Although the physical model only al- 
lows one to identify the marginal distributions Pt and Pc 
of the joint distribution P, the distribution of an individ- 
ual causal effect (however defined) will depend further on 
the dependence structure of P. (There is a large literature 
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on properties and inequalities for joint distributions with 
known marginals; see, e.g., Ruschendorf, Schweizer, and 
Taylor 1996.) Consequently, even when very large experi- 
ments have been conducted, unambiguous inferences about 
such causal effects cannot be made without making further 
untestable assumptions, such as TUA or monotonicity. 

Two contrasting morals may be drawn from the forego- 
ing analysis, both grounded in the principle that one should 
be careful not to make “metaphysical inferences” sensitive 
to assumptions that can not be put to empirical test. Moral 
1 is that inference about individual causal effects should 
be carefully circumscribed, as following ( 10). Alternatively, 
one might draw the more revolutionary Moral 2, that if one 
cannot get a sensible answer to the question, then perhaps 
the question itself, with its focus on inference for ~ ( u o ) ,  is 
not well posed. In the next section I reformulate the ques- 
tion in an entirely different manner that allows a clear and 
unambiguous answer. 

6. DECISION-ANALYTIC APPROACH 
As demonstrated in the foregoing example, the princi- 

pal difficulty with the counterfactual approach is that the 
desired inference depends on the joint probability structure 
of the complementary variables ( yt (u )  , Y, (u)  ) , whereas one 
is only ever able to observe (at most) one of these for each 
u. One can, however, consistently estimate both marginal 
distributions Pt, and P,. Can these separate marginal distri- 
butions be put to good use? 

I take a straightforward Bayesian decision-analytic ap- 
proach (see, e.g., Raiffa 1968). One has to decide whether 
to apply treatment t or treatment c to a new unit u g .  The 
marginal distributions Pt and P, of Yt and of Y, having 
been identified, from extensive experimental data on each 
separate treatment group, these now express the appropri- 
ate predictive uncertainty about the response on 210, con- 
ditional on its being given t or c. The consequence (loss) 
of the decision may be measured by some function L(.)  of 
the eventual yield Y .  The decision tree for this problem is 
given in Figure 1. 

At node vt, Y - Pt, and the (negative) value of being at 
vt is measured by the expected loss Ep,(L(Y)} .  Similarly, 
v, has value Epc{L(Y)} .  The principles of Bayesian deci- 

Figure 7. Decision Tree. 

sion analysis now require that at the decision node vo, that 
treatment i leading to the smaller expected loss be chosen. 

Note that whatever loss function is used, this solution in- 
volves only the two identifiable marginal distributions, P, 
and Pt. In particular, our statisticians S1 and S2 of Sec- 
tion 5.4, who agree on (1) and obtain common estimates 
of O t ,  B,, and + Y ,  while disagreeing about p, will be led to 
the identical decision. It simply does not matter that S2 be- 
lieves that the time for a headache to disappear if aspirin is 
taken will be exactly 10 minutes less than if it is not taken, 
whereas S1 regards the difference of these times as uncer- 
tain, although again with expectation 10 minutes; there is 
no way in which such differences in beliefs can affect the 
decision problem. 

It is only for simplicity of the argument that I have as- 
sumed that the experiment is large enough to allow full 
identification of Pt and P,. With a more limited experi- 
ment, one could either replace these with suitable estimates 
or, for a wholeheartedly Bayesian approach, use the appro- 
priate predictive distributions for the response on u g  (under 
either hypothetical treatment application, separately), given 
the experimental data. 

My analysis extends readily to the case where one wants 
to decide how to apply treatments to a number of future 
units. In a quality control setting, the loss might be a combi- 
nation of the sample mean and variance of all the responses, 
for example. 

One can also consider models for more complex prob- 
lems, involving nonhomogeneous populations. For exam- 
ple, in earlier work (Dawid 1988) I used symmetry argu- 
ments to justify the construction of certain random-effects- 
type models for complex experimental layouts, generalizing 
models such as those of (1) for the metaphysical array or (9) 
for the physical array. In the general case, one again needs 
to use the data of the experiment to make appropriate pre- 
dictive inferences for test units, under varying hypothetical 
treatment assignments; but these predictive inferences will 
now be more complex and will also depend on the rela- 
tionship assumed between the test units and the experimen- 
tal units. For example, if the experiment involved planting 
different varieties of cereal on plots (units) nested within 
blocks nested within fields, and recording their yields, then 
one might wish to consider predictions for the yield of each 
variety if planted on a new plot in an old (i.e., experimental) 
block in an old field, a plot in a new block in an old field, 
or (more usefully) a plot in a new field. As long as one’s 
models relate the responses of the new and the old units 
(under arbitrary treatment assignments), and so support the 
required predictive inferences, one can conduct whatever 
decision-analytic analysis appears most relevant to one’s 
purpose, eschewing counterfactuals entirely. 

7. FATALISM 
Many counterfactual analyses are based, explicitly or im- 

plicitly, on an attitude that I term fatalism. This considers 
the various potential responses yZ(u), when treatment i is 
applied to unit u, as predetermined attributes of unit u, wait- 
ing only to be uncovered by suitable experimentation. (It is 
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implicit that that the unit u and its properties and propensi- 
ties exist independently of, and are unaffected by, any treat- 
ment that may be applied.) Note that because each unit label 
u is regarded as individual and unrepeatable, there is never 
any possibility of empirically testing this assumption of fa- 
talism, which thus can be categorized as metaphysical. 

The fatalistic worldview runs very much counter to the 
philosophy underlying statistical modeling and inference in 
almost every other setting. For example, it leaves no scope 
for introducing realistic stochastic effects of external influ- 
ences acting between the times of application of treatment 
and of the response. Any account of causation that requires 
one to jettison all of the familiar statistical framework and 
machinery should be treated with the utmost suspicion, un- 
less and until it has shown itself completely indispensable 
for its purpose. 

7.1 Some Fatalistic Concepts 
I do not wish to give the impression that all counterfac- 

tual analyses must be fatalistic; there are notable excep- 
tions (e.g., Robins and Greenland 1989). However, it is a 
very natural bedfellow of counterfactual inference, much of 
which can not proceed without it. For example, only if one 
takes a fatalistic attitude does it make sense even to talk of 
such properties as treatment-unit additivity or monotonicity 
(Sec. 8). 

A fundamental use of fatalism underlies certain coun- 
terfactual analyses of treatment non-compliance (see, e.g., 
Imbens and Rubin 1997), where each patient is supposed 
categorizable as a complier (who would take the treatment 
if prescribed, and not take it if not prescribed), a defier 
(not take it if prescribed, take it if not prescribed), an al- 
ways taker (take it whether or not prescribed), or a never 
taker (not take it whether or not prescribed). Some causal 
inferences are based on consideration of the responses to 
treatment of, say, the group of compliers. However, it is 
only under the unrealistic assumption of fatalism that this 
group has any meaningful identity, and thus only in this 
case could such inferences even begin to have any useful 
content. 

7.1.1 Stable Unit-Treatment Value Assumption. An 
assumption that has often been considered essential to use- 
ful causal inferences is the stable unit-treatment value as- 
sumption (SUTVA) (Rubin 1980, 1986). To describe this, 
one has to start from a more general metaphysical model 
of the effect of experimentation on responses, wherein the 
response Y<(u) of unit u could in principle depend on the 
full treatment assignment over all units, not just on the 
specific treatment i applied to u. Then SUTVA requires that 
in fact this potential complicating feature be absent, so that 
one can replace Yc(u) by K ( u ) ,  thus returning to the sit- 
uation already considered. But again, without the fatalistic 
assumption of preexisting values of the (Y<(u)), for any 
assignment c ,  it is not possible to make sense of SUTVA 
(but see Sec. 10.1.1 for a nonfatalistic reinterpretation of 
SUTVA). 

7.1.2 Decision Analysis and Fatalism. By contrast, 
the decision-analytic approach requires no commitment to 

(or, for that matter, against) fatalism. There is no concep- 
tual or mathematical difficulty in regarding the probability 
distributions of the response (i.e., Pt and P, in Example 1) 
as incorporating further uncontrollable influences over and 
above effects attributable directly to treatment. As far as 
SUTVA is concerned, the decision analyst has no need of 
it. In the context of Example 1, SUTVA can be replaced by 
the much weaker assumption that the application of treat- 
ments does not destroy the homogeneity of the units, be- 
yond the obvious difference that some will now have one 
treatment and some will have another. Then one will still 
have complete homogeneity of the responses for all units 
(experimental or future) receiving the same treatment, and 
can thus use the experimental data to identify the distribu- 
tion, Pi, of response within treatment group i, which also 
expresses the uncertainty about the response Y,(uo) of a 
new unit uo, if it were given treatment i. Hence one is still 
in a position to set up, and solve, the basic decision problem 
for U O .  

8. USE OF ADDITIONAL INFORMATION 
Now suppose that it is possible to gather, or at least to 

conceive of gathering, additional information about individ- 
ual units, which might be used to refine uncertainties about 
their responses to treatments. Any such information can be 
described in terms of a generic variable K ,  determined by a 
measurement protocol that, when applied to unit u, leads to 
a measurement K(u) .  For the analysis of effects of causes 
I restrict attention to generic variables that are covariates; 
that is, features of units that can be observed prior to exper- 
imentation. Nevertheless, before it is observed, each K(u)  
must be treated as a random variable. 

There are several cases to consider, according as whether 
or not the covariates are observed on the experimental units 
and/or on test units: 

1. Covariates on experimental and test units. Suppose 
that a covariate K is measured on all experimental units, 
and also that for a test unit u ~ , K ( u ~ )  will be measured 
before the treatment decision has to be made. 

If K takes values in a finite set, then one can simply 
restrict attention to the subset (assumed large) of the exper- 
imental units for which K(u)  = K(uo) .  Then one essen- 
tially recovers the homogeneous population problem that 
has already been analyzed. 

Otherwise, or if the aforementioned restricted subset is 
not sufficiently large, one can conduct appropriate statis- 
tical modeling. A counterfactual treatment would need to 
model a joint conditional distribution of (Yc, y t )  given K ;  
for the decision-analytic treatment, one only needs to use 
the data to assess and compare the associated predictive dis- 
tributions of Y(uo)  given K(uO) ,  for each treatment. Again, 
the decision-analytic approach, in contrast to the counter- 
factual approach, is essentially insensitive to any further 
assumptions about, or modeling of, the joint distribution of 
potential responses. 

2. Covariates on experimental units only. In this case it is 
appropriate to ignore altogether the covariate information 
on the experimental units-except that when the experiment 
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is not large, modeling this more detailed information might 
enhance the accuracy of estimation of the required marginal 
predictive distributions of Y ( u o )  for each treatment. 

3. Covariate on test unit only. This is more problematic, 
because even for the less demanding decision-analytic ap- 
proach, the experiment gives no direct information about 
the required predictive distributions of response given co- 
variate and treatment. Whichever approach one takes, there 
is no escape from the fact that the solution will be highly de- 
pendent on untested (though in principle testable) assump- 
tions about these distributions. One possibility would be to 
ignore K(u0) altogether, but this is itself tantamount to an 
empirically untested assumption of independence between 
K and Y for each treatment. In any event, however one 
proceeds, there is no advantage to be gained from the intro- 
duction of counterfactuals. Similar comments appiy when 
information of differing extents is available on the experi- 
mental and test units. 

8.1 Alternatives to Additivity 

One argument that can be made for the need for a meta- 
physical assumption such as treatment-unit additivity (Sec. 
5.5) is the following. An experiment (e.g., a clinical trial) 
will often have very specific inclusion criteria that render 
the experimental units nonrepresentative of the population 
to which it is intended to generalize the findings. Then, al- 
though one may still have homogeneity of units within the 
experiment, it might no longer be reasonable to regard the 
test unit uo as exchangeable with the experimental units. 
But if we can assume TUA, so that yt(u) - Yc(u) = T for 
all units, experimental and test, then an estimate of the treat- 
ment effect T from the experiment will still be applicable 
to uo. Thus counterfactual analysis based on TUA appears 
unaffected by this modification to the framework. For the 
decision-analytic approach, however, the required separate 
predictive inferences about the response Y(uo) ,  given either 
treatment, for a test unit uo would be simultaneously more 
complicated and less reliable when the experimental units 
cannot be regarded as representative of the test units. 

An alternative way of proceeding avoids metaphysical 
assumptions. For each unit u, let Q(u)  be a variable tak- 
ing values 0, t ,  and c, generated by the experimenter as part 
of the process of designing his experiment. He intends to 
include u in the experiment and apply treatment t to it if 
Q(u)  = t ,  to include u in the experiment and apply treat- 
ment c to it if Q(u) = c, and to exclude u from the ex- 
periment if Q(u) = 0. These intentions do not, however, 
preclude one from considering other possibilities; one can, 
for example, meaningfully assess probabilistic uncertainty 
about Y(u) ,  given that the assignment Q(u) = t has been 
made, on the hypothesis that u will receive treatment c. 

I assume that, for some covariate K ,  the distribution of 
Q(u) given K ( u )  is the same for all units u. Thus K is 
the information that the experimenter takes into account 
in generating Q, and so embodies the inclusion and treat- 
ment criteria. The distribution of Q given K is assumed 
unaffected by further conditioning on the applied treat- 
ment i and the eventual response Y .  Using the notation 
and properties of conditional independence (Dawid 1979), 

Qli ( i ,  Y ) l K ,  whence 

Yl i  QIK, i .  (11) 

Consider now the model assumption 

E(YIK ,  i) = Oi + y(K) ( i  = t ,  c), (12) 

for some unknown parameters Ot and Oc and parametric 
function y(.). If this holds, define T = Ot - Oc.  

Note that by (111, the left side of (12) is unaffected 
by further conditioning on Q. In particular, (12) implies 
E { Y I K , i , Q = i } = O i + y ( K )  ( i = t , c ) , s o t h a t f o r a n y k ,  

E {YIK = k , t , Q  = t }  - E {YIK = ~ , c , Q  = C} = T .  (13) 

Conversely, (13) with (11) implies (12). But E {YIK = 
k , i ,Q  = i }  can be estimated straightforwardly from the 
measurements of covariate K and outcome Y on the set of 
experimental units to which treatment i has been applied. 
Consequently, property (12) is testable from the experimen- 
tal data, and, if it can be assumed to hold, the parameter T 

is estimable. (A simple unbiased estimator of T is given by 
the difference of the mean responses for the two treated 
groups.) 

Also, one can compare hypothetical treatment applica- 
tions on a test unit U O ,  with observed K(u0) = k and, by 
construction, Q(u0) = 0, as follows: 

E {Y(uo)lK(.o) = k, t }  - {Y(uo)lK(.o) = k ,  c }  
= E {YIK = k , t , Q  = 0) - E  {YIK = k,c,Q = 0) 
= E{YIK=lc , t } -E(YI I (= lc , c } ,  

once again using (12). But this is just T ,  as identified from 
the experiment. (If K(u0) is not observed, then one must 
take a further expectation over K ,  but this clearly has no 
effect.) 

The foregoing approach, based on the testable assumption 
(12) rather than the metaphysical assumption of TUA, thus 
allows one to generalize readily from the experiment to the 
target population, even in the face of differential selection 
and treatment criteria. 

It has been assumed in the foregoing that it is appropriate 
to focus directly on the expected response. In the general 
framework of Section 6, with a loss function L, one could 
replace E ( Y )  by E { L ( Y ) }  throughout. (A counterfactual 
analysis would similarly require that TUA be modified to 
L{yt (u)}  - L{Yc(u)}  = T ,  all u.) 

9. SHEEP AND GOATS 

I have argued that any elements of a theory that have 
no observable or testable consequences (e.g., TUA) are to 
be regarded as metaphysical, and, in accordance with Jef- 
freys’s law, should not be permitted to have any inferential 
consequences either. Causal analyses can be classified into 
sheep (those obeying this dictum) and gouts (the rest). I 
have shown that the decision-analytic approach is a sheep. 

What of the counterfactual approach? It certainly has the 
potential to generate goats. In particular, any inference de- 
pendent on assumptions requiring the acceptance of fatal- 
ism (e.g., TUA, or monotonicity, or assertions about the 
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group of compliers in clinical trial) must be a goat. How- 
ever, specific inferential uses of counterfactual models may 
turn out to be sheep. The following section describes one 
such use. 

9.1 Average Causal Effect 
Suppose that in the counterfactual approach, one were to 

define the ICE for unit u as f { & ( u ) }  - f{Y,(u)}, for some 
function f .  For example, one might use the linear form 
yt(u) - Yc(u), or the logarithmic form log{yt(u)/Y,(u)}. 
If U is effectively infinite, then the ACE [population av- 
erage of ICE(u)] is Ep{f(&) - f(Yc)}. But this is just 
EPt{f(Y)} - Epc{f(Y)} and thus depends only on the 
marginal distributions P, and Pt (and is exactly the criterion 
determining the solution of the decision problem having 
L = f). Hence this particular use of counterfactual anal- 
ysis, focusing on an infinite-population ACE, is consistent 
with the decision-analytic approach and involves only terms 
subject to empirical scrutiny. It is fortunate that many of 
the superficially counterfactual analyses in the literature, 
from Rubin (1978) onward, have in fact confined attention 
to ACE and thus lead to acceptable conclusions. 

However, seemingly minor variations of the foregoing 
form for ICE, such as Yt(u)/Y,(u), can not be handled in 
this way. Ep(yt/Y,) is not determined by the marginals 
Pt and P, alone, although these can be used to set bounds 
(Rachev 1985). So any form of inference focusing on such 
causal effects, at either the individual or the population av- 
erage level, would be a metaphysical goat, dependent on 
untestable ingredients of the metaphysical model and hence 
likely to be misleading. 

9.2 Neyrnan and Fisher 
Here is a variation on ACE, using even the simple def- 

inition (4), that is nevertheless a goat. It is the basis of 
the approach introduced by Neyman (1935) and followed 
through by Wilk and Kempthorne (1955, 1956, 1957). 

Let U* := Ut uU, be the set of experimental units, say 
N in total. (In the literature, the units are not completely 
homogeneous, but are classified in an experimental lay- 
out; e.g., a row-column structure with treatments imposed 
to form a latin square. However, this does not affect the 
essential logic.) Neyman expressed the null hypothesis of 
“no treatment effect” as asserting that yt* = Y,*, where 
y,* := N-’ CUEu* X ( u )  is the average response that would 
have been observed in the experiment had all units been 
given treatment i (thus both Y: and Y: are genuinely coun- 
terfactual quantities). Wilk and Kempthorne (1955) consid- 
ered averages over a larger, but still finite, population U 
from which U* was drawn. In these approaches, inference 
is based on the distribution generated by random treatment 
assignment (and, where appropriate, random sampling of 
the levels used for the experiment), under assumed values 
for the metaphysical array of all potential responses (Yz(u)), 
these values playing the role of parameters in the random- 
ization model. Such an approach (even when extended by 
introducing random errors of observation) is clearly based 
on a fatalistic worldview. 

Neyman showed that for the latin square, the usual t 
test was an unbiased test of his null hypothesis only if 
TUA could be assumed; similarly, the analyses of Wilk and 
Kempthorne give different answers, according to whether 
or not one assumes TUA. These workers concluded that 
one needs to think very carefully, in each particular con- 
text, about the validity of the TUA assumption, and tailor 
one’s inferences accordingly. However, because there are no 
conceivable data that could shed any light on this validity, it 
is not clear how to act on this advice. Two statisticians with 
observationally equivalent models could arrive at discrepant 
conclusions. This suggests very strongly that Neyman’s ap- 
proach is not a helpful one, and that his metaphysical null 
hypothesis is misguided. 

Fisher, in the rapporteur’s account of his comments on 
Neyman (1935), rejected this approach, arguing instead that 
the appropriate null hypothesis was 

ffo: T = 0, 

for which the standard t test is valid. 
Fisher’s null hypothesis is often taken to have been 

H;: .(u) = 0; 

that is, T = 0 and d,., = 0, implying &(u) = Ye(.) for all 
u. This, too, is a metaphysical hypothesis. However, it is 
not certain that this was Fisher’s intention. In any case, as 
far as the observable structure (8) is concerned, these two 
hypotheses are indistinguishable, as are the resulting tests. 
This identity extends to more complex layouts; in earlier 
work (Dawid 1988), I showed how the standard tests may be 
justified purely on the basis of a hypothesis of invariance of 
the joint distribution of responses under suitable relabelling 
of units, which is very much weaker than H,* (see also Cox 
1958). The broader hypothesis HO is equivalent to Pt = P,, 
which is all that is needed for indifference in the decision 
problem-and is, of course, a sheep, being testable from 
the data. 

10. INSTRUMENTAL USE OF COUNTERFACTUALS 
Even if one accepts that the output of a causal analysis 

should not involve any direct assertions about counterfac- 
tuals, the example of Section 9.1 demonstrates that it is at 
least possible to, use counterfactual models for acceptable 
purposes. However, that example also shows no obvious ad- 
vantage to doing so, and the use of counterfactual models 
always lays one open to the danger of producing “goat-like” 
inferences, without signalling when that is the case (as for 
the variant forms of ACE considered at the end of Sec. 9.1). 

It nevertheless remains conceivable that purely mathe- 
matical use of the richer structure inherent in the model- 
ing of the metaphysical array might actually simplify some 
derivations and analyses of acceptable “sheep-like” infer- 
ences. An analogy might be the fruitfulness of coupling 
arguments in probability theory, or of complex analysis in 
number theory. 

In my view, there may be a limited place for such in- 
strumental use of counterfactuals in the context of causal 
model-building. However, I remain to be persuaded of the 
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usefulness of counterfactuals, even in a purely instrumental 
role, for causal inference. 

10.1 Counterfactuals for Modeling 

The model (9) for the physical array was derived by 
marginalizing the metaphysical model of Example 1, so as 
to focus on the subcollection of variables picked out by the 
experimental design. This may be regarded as an instru- 
mental use of counterfactuals for the purposes of modeling. 
However, in this simple example this looks like overkill; (9) 
is itself a very natural structure to impose on the physical 
array directly. 

In more complicated problems, there may be some gen- 
uine advantage to modeling at the metaphysical level. Thus, 
suppose that the experimental units are laid out in a row- 
column structure. One way to build appropriate models 
for outcomes is to apply the ideas of symmetry modeling 
(Dawid 1988). If one associates with each plot the full vec- 
tor of (complementary) potential responses it would exhibit 
under the various different possible treatment applications, 
then it might be reasonable to regard the joint distribution 
for all of these vectors as invariant under separate rela- 
bellings of rows and columns. If (less compellingly, and 
purely for simplicity of exposition) we also impose invari- 
ance under relabellings of the treatments, symmetry argu- 
ments imply that we can represent the probability structure 
of the metaphysical array y = (YtTC) (where i labels treat- 
ments, T labels rows, and c labels columns) by the random- 
effects model 
K c  = I*. + Qz + P T  + Yc + ( 4 z r  

+ (QYIzc + ( P Y ) T C  + ( m ) z r c ,  (14) 
with all the terms uncorrelated, var(~,)  = ~ 2 ,  and so on. 

If one considers the implications of this model for the 
marginal joint distribution of some physical array X = 
(XJ, in which a specified treatment i = Z ( T , C )  is applied 
to the unit in row T and column c, then one finds a simi- 
lar representation, but with the last two terms intrinsically 
confounded, just as the separate terms p(u) and rz(u) in (1) 
are confounded in the term E , ~  of (9). If one further con- 
fines attention to latin square designs, so that no treatment 
appears more than once in any row or column, then there is 
additional (extrinsic) confounding, resulting in the model 

(15) XTC = I*. + + PI. + Yc + Eve, 

where, with i = i ( ~ ,  c) ,  

Erc = (a& + (crr)zc + ( P 7 ) I . C  + (QPY),,,. (16) 
This is of course the (random-effects version of) the usual 
model for the observables in the latin square design. The 
extrinsic confounding between the (ap), (cry), and (BY) + 
(aPr) terms in (16) will, however, make predictive infer- 
ences, which depend on these terms individually, especially 
sensitive to assumptions that cannot be tested with such a 
design. 

On the other hand, one could initially restrict attention to 
the physical array X and consider the group of symmetries 
that preserve its structure. Such a symmetry is represented 
by the combination of a row permutation and a column 

permutation having the additional property that any two 
units receiving identical treatments before permutation also 
receive identical treatments after permutation. This group 
will depend very specifically on the way in which treat- 
ments are assigned to units, and can have highly variable 
structure for different latin square layouts (Bailey 1991, ex. 
4). Because of these additional restrictions on the symme- 
try of the physical array X, the implied symmetry model 
constructed directly for X can be considerably more com- 
plex than that expressed by (15). In such a case, modeling 
the metaphysical array directly, for the purely instrumental 
use of deriving an appropriate model for the physical array, 
appears to be the more fruitful approach. 

Another example of the usefulness (or at least conve- 
nience), for constructing models of the physical domain, of 
direct modeling of the metaphysical domain (using “pseu- 
dostructural nested distribution models”) was given by 
Robins and Wasserman (1997). 

10.1.1 Compatibility. Taking the approach of model- 
ing each possible physical array by marginalising from a 
single joint model for the metaphysical array, the result- 
ing collection of physical models will have a property that 
I term Compatibility: For two different experimental lay- 
outs that both result in unit u receiving treatment i, the 
marginal models for the associated response on that unit 
are identical. This identity extends to the joint model for 
the responses of a collection of units that happen to be 
treated in the same way in both experiments. This property 
can be regarded as a noncounterfactual counterpart of the 
counterfactual SUTVA (see Sec. 7). 

I further distinguish two forms, strong and weak, of com- 
patibility for a collection of physical models under varying 
treatment assignments. Weak compatibility (which seems 
the more natural, and makes no reference whatsoever to 
counterfactuals) simply requires the earlier stated property 
of identity of common marginal models. Strong compat- 
ibility requires the existence of a single joint model for 
the metaphysical array that can be used to generate, by 
appropriate marginalization, the various different physical 
models. To extend the analogy with quantum theory, strong 
compatibility requires the existence of “hidden variables,” 
underlying all observations that might be made. Although 
strong compatibility always implies weak compatibility, in 
full generality the converse need not hold. Consider, for ex- 
ample, variables (Yl, Y2, Ys), where Y, is either 1 or -1 and 
where one can observe any of the pairs (Yl,Y2), (Y2,Y3), 
and (Y3, YI)  but cannot observe all three variables simulta- 
neously. The corresponding bivariate distributions are spec- 
ified by Yl = Y2, Yz = Y3, and Y3 = -Yl, with either 1 
or -1, each with probability 1/2. Then these distributions 
are weakly, but not strongly, compatible. (I am grateful to 
Steffen Lauritzen for this example.) Although the structure 
of this example is not quite the same as that of the current 
problem, it is conceivable that causal models also could 
have weak compatibility without strong compatibility. This 
opens up the possibility of a still deeper analogy with quan- 
tum theory, where observable behavior cannot be explained 
by means of a “hidden variable” theory. 
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In the decision-analytic approach, the property of com- 
patibility, although possibly very useful in streamlining the 
modeling, has no fundamental role to play. All that is 
needed is to construct appropriate models relating the out- 
comes on the experimental units, according to the treatment 
assignments actually made, with those on as-yet untreated 
units, under various assumptions about how those new units 
might be treated. Then these can be used to make predictive 
inferences under the varying assumptions, and so assess the 
relative value of future interventions. 

10.2 Counterfactuals for Inference? 
There are many problems where workers who have 

grown familiar and comfortable with counterfactual mod- 
eling and analysis evidently consider that it forms the only 
satisfactory basis for causal inference. However, I have not 
as yet encountered any use of counterfactual models for in- 
ference about the effects of causes that is not either (a) a 
goat, delivering misleading inferences of no empirical con- 
tent, or (b) interpretable, or readily reinterpretable, in non- 
counterfactual terms. I have already given examples of (a) 
and also, in Section 9.1, of (b). Here are some more cases 
of (b). 

Robins (1 986) initially developed causal inferential meth- 
ods on the basis of a counterfactual model. However, in 
recent work (Robins and Wasserman 1997), both the un- 
derlying model and the associated methods are reexpressed 
in noncounterfactual terms. 

Conversely, Pearl (1993), in introducing a semantics for 
graphical models of causal structures, did so in a way that 
avoided counterfactuals. Later (Pearl 1995a), he translated 
this into a counterfactual language, based on functional 
models, but to no obvious advantage; his specific analyses 
(e.g., in Pearl 1995a, app.) make no necessary use of this 
additional structure. 

An interesting problem that did initially appear to re- 
quire a counterfactual model is the development of inequal- 
ities for (sheep-like) causal effects in clinical trials with 
imperfect treatment compliance (Balke and Pearl 1994b). 
However, I have been able to derive the identical inequali- 
ties without the additional baggage of functional models or 
counterfactuals (indeed, an example of just such a deriva- 
tion was given in Pearl 1995b). 

Another interesting recent example of (b) given by Green- 
land, Robins, and Pearl (1999) purports to define confound- 
ing in terms of counterfactuals, but explicitly introduces an 
alternative interpretation based on exchangeability. Most 
of its analyses make no essential use of counterfactuals. 
Two appendixes, considering carefully the interpretation of 
counterfactual assertions in a number of cases, represent to 
me convincing demonstrations of their meaninglessness and 
pointlessness (although the authors themselves stop short of 
this conclusion). 

PART 111: CAUSES OF EFFECTS 

11. 
I now address the problem of inference about the causes 

INFERENCE ABOUT CAUSES OF EFFECTS 

of effects. As I demonstrate, this is still more problematic 
than inference about the effects of causes, and it may be 
impossible to avoid a degree of ambiguity in the resulting 
inferences. 

The major new ingredient is that, along with having the 
experimental data, one now has a further unit U O ,  of indi- 
vidual interest, to which treatment t has already been ap- 
plied and the response yt(uo) = yo observed. (One may 
also have further relevant information about uo or its en- 
vironment, perhaps even gathered between the application 
of treatment and observation of response. I consider this 
possibility later but for the moment assume that this is 
not so.) Interest centers on whether, for the specific unit 
uo, the application of t “caused” the observed response. 
It appears that, to address this question, there is no al- 
ternative but to somehow compare the observed valued yo 
with the counterfactual quantity Y, (u0), the response that 
would have resulted from application of c to UO.  Equiva- 
lently, inference about the individual causal effect T ( u ~ )  = 
yo - Y,(uo) is required. However, the fact that such an in- 
ference may be desirable does not, in itself, render it possi- 
ble. I now explore what can be justified scientifically from 
data. 

Example 2. Consider again the bivariate normal coun- 
terfactual model of Example 1. Suppose that there is no 
possibility of ever measuring any other relevant informa- 
tion on any unit, beyond its response to treatment. 

The conditional distribution of T ( U O )  = yt(u0) - Y,(uo), 
given Yt(u0) = yo, is normal, with mean and variance 

:= E { ~ ( u o ) l Y t ( u o )  = yo} = 90 - 0, - p(yo - 0,) (17) 
and 

6’ := Var{T(Uo)l~(Uo) = yo} = (1 - p2)4y .  (18) 

Now, as already emphasised, from the extensive exper- 
imental data [even when extended with the additional ob- 
servation yt(ug) = yo], only d t ,  d,, and 4 y  can be learned. 
The correlation p cannot be identified. Hence, even with 
extensive data, residual arbitrariness remains. When p = 0 
(40 = 0, or independence of yt and Y,), X = yo - 0, 
and S2 = 4y. The value p = 1 (& = 0, or TUA) yields 
X = dt - 0, and S2 = 0 (or, at the other extreme, if p = -1, 
then X = 2y0 - dt - d,, and S2 = 0 again). Assuming p 2 0, 
only the inequalities 

X lies between dt - 0, and yo - 0, 

and 

S2 I 4 Y  
can be inferred. Thus only when yo is sufficiently close to 
dt will one get an unambiguous conclusion about A, insen- 
sitive to empirically untestable assumptions about p; and 
only when 4~ is sufficiently small will one be able to say 
anything empirically supportable and unambiguous about 
S2. If one takes p = 1, equivalent to TUA, then one ob- 
tains a seemingly deterministic inference, T ( U O )  = dt - 0,, 
but this is of little real value when the data give no reason 
to choose any particular value of p over any other. (The 
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inequalities developed here rely on the assumption, itself 
untestable, of joint normality. Even though the data may 
support marginal normality for each of yt and Y,, any fur- 
ther aspects of the joint distribution must remain unknow- 
able, and, in principle, the distribution of Yc, given the ob- 
served value yt = y, could be anything so long as q5y > 0. 
Thus a complete skeptic could hold that inference about 
the causes of effects, on the basis of empirical evidence, is 
impossible.) 

Note that, if one does assume TUA, but not otherwise, 
then the retrospective inference about ‘ (210) is not affected 
by the additional information Yt(uO) = yo on the new unit, 
and thus is the same as for the case of arguing about effects 
of causes. Because the TUA assumption is so prevalent in 
the literature, the essential distinction between inference 
about the effects of causes and inference about the causes 
of effects has not usually been noted. 

The aforementioned sensitivity to assumptions extends 
to, for example, Bayesian inference, which would re- 
quire integration of the distribution defined by (17) and 
(18) over the posterior distribution of all the parameters. 
In this posterior, Ot,Oc, and 4y will be essentially de- 
generate at their sample estimates, so that one can sub- 
stitute these in (17) and (18), and just integrate over 
the conditional distribution of the nonidentified parame- 
ter p, given (Ot,0c,q5y). However, this will be exactly the 
same in the posterior as in the prior, and thus the in- 
ference will remain sensitive to the assumed form of the 
prior. 

No amount of wishful thinking, clever analysis, or ar- 
bitrary untestable assumptions can license unambiguous in- 
ference about causes of effects, even when the model is sim- 
ple and the data are extensive (unless one is lucky enough 
to discover uniformity among units). 

11.1 Concomitants 

It appears from the foregoing that there is an inherent 
ambiguity in inference about the causes of effects. How- 
ever, some progress toward reducing this may be possible 
if one can probe more deeply into the hidden workings of 
the units, by observing suitable additional variables. This is 
the basis and purpose of scientific investigation. As demon- 
strated in Sections 6 and 8, such deeper scientific under- 
standing is not essential for assessing “effects of causes,” 
which can proceed by essentially a “black box” approach, 
simply modeling dependence of the response on whatever 
covariate information happens to be observed for the test 
unit. However, it is vital for any study of inference about 
“causes of effects,” which must take into account what has 
been learned from experiments about the inner workings of 
the black box. 

Thus suppose that it is possible to measure concornitant 
variables associated with a unit. These might be covariates, 
as already considered. However, other quantities can also be 
allowed, as long as they can be assumed to be unaffected by 
the treatment applied (although use of the term “unaffected” 
itself begs many causal and counterfactual questions; see 
sec. 14). An example might be the weather between the 

times of planting and of harvesting a crop. Typically the 
variation in the response conditional on concomitants will 
be smaller than that unconditionally. 

Example 3. Suppose that, in the context of Example 1, 
detailed experiments have measured a concomitant K and 
have found that, conditional on K ( u )  = k and the appli- 
cation of treatment i, the response Y ( u )  is normally dis- 
tributed with residual variance $ K ,  say, and mean Oi + k.  
From these experiments, the values of $K and the 0’s have 
been calculated. 

Define 4~ := var(K) and $0 := q5y = 4~ + $ K .  Then 
cov(K,Y,) = cov(K,K) = q 5 ~ .  Combining these with the 
covariance structure for the complementary pair (Y,, yt) im- 
plied by (11, the full dispersion matrix of ( K ,  Yc, yt) is seen 
to be 

( i ;  pE g) 
Thus the conditional correlation between Y, and y t ,  given 
K.  is 

In parallel to Example 2, the arbitrary parameter &t.K E 
[-1,1] cannot be identified from these more refined exper- 
iments (although it might be reasonable to take P&K 2 0). 

Now consider inference about “causes of effects” on a 
test unit uO. I again distinguish between the cases where 
concomitant information is, or is not, available for uO: 

1. If one observed K(u0) = k ,  say, then one could con- 
duct an analysis very similar to that of Example 2. In 
particular, (17) would be replaced by E { ~ ( ~ ~ ) l y t ( u o )  = 
y, K(u0) = k }  = (y - 0, - k )  - p c t . ~ ( y  - Ot - k ) ,  which, 
because the final term in parentheses is now of order 
rather than d$0 as before, should be less sensitive to the 
arbitrariness in the correlation, now &.K. Similarly, (1 8) 
would be replaced by var{.r(uo)Iyt(uo) = y, K(uo)  = k }  = 
( ~ - P $ . ~ ) $ K ,  now bounded above by $K < $0, rather than 
by q5y = $0. Clearly these improvements are more substan- 
tial with smaller residual variance $K of Y given K .  

2. Now suppose that one does not observe K(uO) ,  or any 
other concomitant variable, on uO. In this case-in contrast 
to case 2 of in Section 8 for effects of causes-the analysis 
is affected by the more detailed findings in the experiments 
performed. 

Define Y K  := q 5 ~ / q 5 ~  = 1 - $ ~ / $ 0 .  By (19), one has 
(assuming that Pct.K 2 0) 

Y K S P S 1  (20) 

(or, for Pct.K unrestricted, 27K - 1 5 p 5 1). Consequently, 
the experimental identification of K ,  even though it can not 
be observed on u0, has reduced the “interval of ambiguity” 
for p from [O, 11 to [ Y K ,  11 (or, for &t.K unrestricted, from 
[-1,1] to [2YK - 1,111, and thus yields tighter limits on X 
and h2 in (17) and (18). 
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From this perspective, the ultimate aim of scientific re- 
search may be seen as discovery of a concomitant variable, 
K* say, that yields the smallest achievable residual vari- 
ance $* := $ p ,  and thus, with y* := Y K -  = 1 - $*/Go, 
the shortest possible interval of ambiguity, [y*, 11, for p .  (I 
am here assuming, for simplicity, that the model of Example 
3 applies for any Concomitant K that might be considered. 
Although the mathematics are more complicated if this as- 
sumption is dropped, the essential logic continues to apply.) 
I term such a variable a sufSlcient concomitant. (The collec- 
tion of all concomitants is always sufficient in this sense, 
but one would hope to be able to reduce it without explana- 
tory loss.) However, unless $* = 0, and rarely even then, it 
will not usually be possible to know whether this goal has 
been attained. 

Nonetheless, using (20) with (17) and (18), one can still 
make scientifically sound (though imprecise) inferences on 
the basis of whatever current level of understanding, in 
terms of discovered explanatory concomitant variables K ,  
has been attained. This will take into account that there is a 
nonstatistical component of uncertainty or arbitrariness in 
the inferences, expressed by interval bounds on the quanti- 
tative causal conclusions. 

I have assumed that the experiments performed have been 
sufficiently large that purely statistical uncertainty can be 
ignored. In practice this will rarely be the case. However, 
an appropriate methodology for combining such statistical 
uncertainty with the intrinsic ambiguity that still remains in 
the limit is not yet available. Techniques for dealing with 
this problem are urgently needed. 

12. CONDITIONAL INDEPENDENCE 
Suppose that K* is a sufficient concomitant. Assuming 

that pct.K* > 0, one has, from (19), the ultimate residual 
variance $* > (1 - P ) $ ~ .  In particular, p < 1 implies that 
$* > 0. If $* = 0 (and thus p = l), then the value of 
K* determines both potential responses yt and Y,, without 
error, and so, once K* is identified, the ambiguity in the 
inferences entirely disappears. I call such a situation deter- 
ministic, and consider it further in Section 13. 

However, for reasons discussed in Section 14, I regard 
determinism as exceptional, rather than routine. In this sec- 
tion I consider further the nondeterministic case, having 
$* > 0, and, by (19), p constrained only to the interval of 
ambiguity [y*, 11 (as pct .K* ranges from 0 to l), with p* = 1 
- $*/Go. 

As far as any empirical evidence is concerned, there is 
no constraint whatsoever on pct .K' .  However, it would seem 
odd to hypothesize, for example, pct .K* = 1, because this 
would imply p = 1, complete dependence between real and 
counterfactual responses, at the same time as asserting non- 
determinism, in the sense that there is no concomitant in- 
formation one could gather that would allow one to predict 
the response perfectly. Likewise, to hypothesize any other 
value of pct .K* > 0 would appear to leave open the pos- 
sibility of finding a more powerful set of predictors that 
would explain away this residual dependence, thus further 
reducing the residual variance. 

To limit the arbitrariness in the value of p ,  one could 
attempt to give p further meaning by requiring that P&K' = 
0; the totally inexplicable components of variation of the 
response, in the real and in the counterfactual universes, 
should be independent. Extending this, one might require 
that all variables be treated as conditionally independent 
across complementary universes, given all the concomitants 
(which are, of course, constant across universes). Under this 
assumption, the interval of ambiguity for p shrinks to the 
point y* = 1 - $*/$o. 

The foregoing conditional independence assumption is 
best regarded as a convention, providing an interpretation 
of just what one intends by a counterfactual query. It leads 
to a factor-analysis-type decomposition of the joint prob- 
abilistic structure of complementary variables, into (a) a 
part fully explained by the concomitants, and common to 
all the complementary universes, and (b) residual "purely 
random" errors, modeled as independent (for any given 
unit) across universes. In this way, one can at last give a 
clear structure and meaning (albeit partly conventional) to 
a metaphysical probability model for the collection of all 
potential responses. Note that if one accepts this conditional 
independence convention, then one obtains, on using (191, 
p = yK* 2 0-providing some justification for imposing 
this condition. (Without the convention, and with no con- 
straints on pct .K*,  one can only assert p > 2 y K *  - 1.) 

Once a sufficient concomitant K* is identified, leaving 
aside for the moment the question of how one could know 
this, the conditional independence convention renders coun- 
terfactual inference in principle straightforward and un- 
ambiguous. In the context of Example 3, one can take 
p = y* = $*/qb0, thus eliminating the ambiguity. More 
generally, from detailed experiments on treated and un- 
treated units, we can discover the joint distribution of K* 
and Yt, and of K* and Y,. For a new unit u g  on which 
no concomitants are observed, on observing yt(uo) = y 
one can condition (using, e.g., Bayes's theorem) in the joint 
distribution of ( K * , Y , )  to find the revised distribution of 
K * ,  and then combine this with the conditional distribu- 
tion of Y, given K* to obtain the appropriate distribu- 
tion of the counterfactual Y,. This two-stage procedure is 
valid if and only if one accepts the conditional indepen- 
dence property. Alternatively (and equivalently), one can 
use this property to combine the two experimentally de- 
termined distributions into a single joint distribution for 
( K * ,  yt, Y,) and marginalize to obtain that of (K,  Yc), then 
finally condition on Yt(uo) = y in this bivariate distri- 
bution. Minor variations will handle the case where one 
has also observed the value of some concomitant variables 
on uo. 

Example 4 (with acknowledgment to V G. Vovk). A cer- 
tain company regularly needs to send some of its work- 
ers into the jungle. It knows that the probability that a 
typical worker will die ( D )  if sent to the jungle ( J )  is 
pr(D1J) = 3/4, compared withpr(D1J) = 1/4 if the worker 
is retained at the head office. Joe is sent to the jungle, and 
dies. What is the probability that Joe would have died if he 
had been kept at the head office? 
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1. Suppose first that all workers are equally robust, and 
that the risk of dying is governed purely by the unspeci- 
fied dangers of the two locations. One might then regard 
the complementary outcomes as independent, so that the 
answer to the question is 1/4. 

2. Now suppose that, in addition to external dangers, the 
fate of a worker depends in part on his natural strength. 
With probability 1/2 each, a worker is either strong (5’) 
or weak (S). A strong worker has probability of dying 
in the jungle pr(DIJ,S) = l /2,  and at the head office 
pr (DJJ ,  S )  = 0. A weak worker has respective probabil- 
ities pr (D(J ,S)  = 1 and pr(DIJ,S) = 1/2. [These val- 
ues are consistent with the earlier probabilities assigned to 
pr(D1.J) and pr(DJj) . ]  Given that Joe died in the jungle, 
the posterior probability that he was strong is 1/3. If one 
assumes conditional independence, given strength, between 
the complementary outcomes, the updated probability that 
he would have died if kept at the head office now becomes 
1/3 x 0 + 2/3 x 1/2 = 1/3. 

3. In fact, Joe was replaced at the head office by Jim, 
who took his desk. Jim died when his filing cabinet fell on 
him. This gives additional information about the dangers 
Joe might have faced had he stayed behind. How should 
one take it into account? There is no right answer. If one 
regards the toppling of the filing cabinet, killing whoever is 
at the desk, as unaffected by who that occupant may be, and 
include it as a concomitant, then the answer becomes 1. Or 
one could elaborate, allowing the probability that the occu- 
pant is killed by the falling cabinet to depend on whether 
he is strong or weak. But it would be equally reasonable to 
consider that had Joe stayed behind, the dangers he would 
have met would have been different from those facing Jim. 
In this case the previous arguments and answers (according 
as whether or not one accounts for strength) could still be 
reasonable. 

As should be clear from the foregoing example, even 
with the conditional independence convention the answer 
to a query about “causes of effects” must depend in part 
on what variables it is considered reasonable to regard as 
concomitants. I consider this issue further in Section 14. 

12.1 Undiscovered Sufficient Concomitants 
What if, as will usually be the case, one has measured 

concomitants K in experiments, but has not yet identified 
a sufficient concomitant K*? In Example 3,  one could then 
only assert +* 5 +K and thus, using the conditional inde- 
pendence property p = y * , p  2 Y K .  Hence the convention 
of conditional independence at the level of the sufficient 
concornitant has not, in this case, resulted in any reduction 
in the interval of ambiguity for p. 

Nevertheless, one can think, in the light of current knowl- 
edge and having regard to the potentially available con- 
comitants (see sec. 14 below), about plausible values of the 
ultimate residual variance $K., and use this in setting rea- 
sonable limits, or distributions, for p = l - $K*/+o. This 
still leaves the inference dependent on (as yet) experimen- 
tally unverified assumptions, but it might at least be possible 
to present reasoned arguments for the assumptions made. 

This approach based on conditional independence also ob- 
viates the need for new methods of statistical inference, 
combining ambiguity and uncertainty. 

13. DETERMINISM 
In certain problems of the ‘hard’ sciences, it can happen 

that, by taking account of enough concomitant variables, the 
residual variation in the response for any treatment can be 
made to disappear completely (at least for all practical pur- 
poses), thus inducing at this more refined level the situation 
of uniformity considered in Section 5.4 when all problems 
of causal inference and prediction disappear. In Example 3, 
this would occur if one found +K = 0, which would imply 
p = 1 and so eliminate all ambiguity. Such problems may 
be termed deterministic, because the response is then given 
as a function Y = f ( i , D )  of the appropriate determining 
concomitant D (which is then necessarily sufficient) and the 
treatment i, without any further variability. This property is 
in principle testable when D is given. (If it is rejected, it 
may be possible to reinstate it, at a deeper level, by refining 
the definition of D.) However, even when such underlying 
determinism does exist, discovering that this is the case and 
identifying the determining concomitant D and the form 
of f may be practically difficult or impossible, requiring a 
large-scale, detailed, and expensive scientific investigation 
and sophisticated statistical analyses. 

If one had a deterministic model, one could use it to 
define potential responses: X ( u )  = f ( i ,  D(u) ) .  (Necessary 
here is the property that D, being a concomitant, is unaf- 
fected by treatment. But because D need not be a covariate, 
this model is not necessarily fatalistic.) One could determine 
the value of any potential response on unit u by measuring 
D(u) .  Thus in this special case one can indeed consider the 
complementary variables (yZ(u)) 3 ( f ( i ,  D ( u ) ) ) ,  for fixed 
unit u but varying treatment i, as having real, rather than 
merely metaphysical, simultaneous existence. 

Note in particular that even in this rare case where one 
can give empirical meaning to counterfactuals, the causal 
modeling is not based on a primitive notion of counterfac- 
tual; rather, the counterfactuals are grounded in, and take 
their meaning from, the model. [In the same way, I con- 
sider that Lewis’s (1973) interpretation of counterfactuals in 
terms of “closest possible worlds” is question-begging, be- 
cause closeness cannot be sensibly defined except in terms 
of an assumed causal model.] 

A deterministic model, when available, can also be used 
to make sense of nonmanipulative accounts of causation. 
Given D, the potential responses, for various real or hypo- 
thetical values of the variable “treatment,” are determined 
and can be compared directly, however the specification of 
treatment may be effected. 

For inference about the causes of effects, assume that one 
has observed Y,(uo) = yo, but not D(uo) ,  and wishes to as- 
sess uncertainty about Yc(uo). In the context of Example 
3,  p = 1, eliminating all ambiguity and (in this rare case) 
justifying TUA and the inference ‘ ( 2 1 0 )  = Ot - Oc.  More 
generally, suppose that detailed experimentation has iden- 
tified a deterministic model X ( u )  = f ( i ,  D(u) ) .  Although 
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one has not observed D(uo), one can assess a distribution 
for it. This should reflect both typical natural variation of D 
across units (as discovered from experiments) and any addi- 
tional concomitant information one may have on uo. From 
this distribution, one can derive the induced joint distribu- 
tion over the collection ( f ( i ,  D(u0)) )  of complementary po- 
tential responses. Then one can condition the distribution of 
D(u0) on the observation f ( t ,  D(u0)) = yo and thus arrive 
at appropriate posterior uncertainty about a genuine coun- 
terfactual such as Yc(u0) = f ( c ,  D(u0)) .  In this way, a fully 
deterministic model (if known) allows an unambiguous so- 
lution to the problem of assessing the “causes of effects.” 
The essential step is generation of the joint distribution over 
the set of complementary responses (together with any ob- 
served concomitants), this being fully grounded in an under- 
standing of their dependence on determining concomitants, 
and a realistic probabilistic assessment of the uncertainty 
about those determining concomitants. 

The foregoing procedure is merely a special case of that 
described in Section 12, but not now dependent on the con- 
vention of conditional independence of residual variation 
across parallel universes-because in this case there is no 
residual variation. 

ExampEe 5. Suppose that a major scientific investiga- 
tion has demonstrated the validity of the model (l), but now 
reinterpreted as a deterministic model, with all of the p’s 
and 7’s identified as concomitant variables that can, with 
suitable instruments, be measured for any unit and have 
been so measured in the experimental studies. Further, from 
these studies, the previously specified independent normal 
distributions for these quantities have been verified, and all 
of the parameters ( O t ,  O,, d p ,  qi , )  have been identified. 

One now examines a new unit uo, which has been given 
treatment t ,  and observes the associated response yt(uo) = 
y. The individual causal effect T(UO) is yt(u0) - rc(uo), 
which is now in principle measurable. In practice, measure- 
ment of the p’s and 7’s for unit uo may not be possible. 
Then (in the absence of any further relevant information) 
one might describe the uncertainty about their values using 
their known joint population distribution. The appropriate 
uncertainty about T ( u ~ )  is then expressed by the normal 
distribution with mean X and variance d2 given by (17) and 
(18); however, because the value of p = 4p/(q5p + &) is 
now available from the scientific study, the ambiguity in 
this inference has been eliminated. 

Note that it is vital for the foregoing analysis that the 
quantities yt (u) and ^/c ( u )  be simultaneously measurable, 
with the specified independent distributions. It is not enough 
only to identify p(u) and define the y’s as error terms, 
yi(u) = Y,(u) - Oi - ,B(u); in that case, because one cannot 
simultaneously observe both yt(u) and Yc(u), one cannot 
verify the required assumption of independence between 
Yt (u) and Yc (21). 

tant D or the function f ,  then one can propose parametric 
forms for f and the distribution of D, and attempt to esti- 
mate these (or integrate out over the posterior distribution 
of their parameters) using the available data. In principle, 
sufficiently detailed experimentation would render such as- 
sumptions empirically testable and identify the parameters. 
In practice, however, this may be far from the case. Thus 
consider Example 2, in which no concomitants have been 
measured. One could propose an underlying deterministic 
model of the form 

Y = ei + D ~ ,  (i = t ,  c ) ,  

with Dt and D, determining concomitants, supposedly mea- 
surable on any unit by further, more refined, experiments. 
In the current state of knowledge, however, one can say no 
more than Di - N(O,#y). Further, one has no information 
on the correlation p between Dt and D,. It is clear that, 
until one is able to conduct the more detailed experiments, 
merely positing such an underlying deterministic structure 
makes no progress toward removing current ambiguities, 
and our inferences remain highly sensitive to our assump- 
tions. In such a case there seems to be no obvious advantage 
in assuming determinism; one might just as well conduct 
analyses such as that of Example 3, basing them only on ex- 
perimentally observed quantities and deriving suitably qual- 
ified inferences encompassing the remaining ambiguity- 
which should not be artificially eliminated by imposing un- 
verified constraints on the model. (Nevertheless, it may be, 
as suggested in sec. 12.1, that thinking about the possibil- 
ities for what one might discover in further experiments 
could aid a reasonable and defensible resolution-subject 
to later empirical confirmation or refutation-f some of 
the ambiguities.) 

13.2 Pseudodeterminism 
It seems to me that behind the popularity of counter- 

factual models lies an implicit view that all problems of 
causal inference can be cast in the deterministic paradigm 
(which in my view is only rarely appropriate), for a suitable 
(generally unobserved) determining concomitant D. If so, 
this would serve to justify the assumption of simultaneous 
existence of complementary potential responses. Hecker- 
man and Shachter (1995), for example, take a lead in this 
from Savage (1954), who based his axiomatic account of 
Bayesian decision theory on the supposed existence of a 
“state of nature,” entirely unaffected by any decisions taken, 
which, together with those decisions, determines all vari- 
ables. Shafer (1986) has pointed up some of the weaknesses 
of this conception. 

The functional graphical model framework of Pearl 
(1995a) posits that underlying observed distributional sta- 
bilities of observed variables are functional relationships, 
involving the treatments and further latent variables. When 
such a deterministic structure can be taken seriously, with 
all its variables in principle observable, it leads to the pos- 
sibility (at least) of well-defined counterfactual inferences, 
as described earlier. These will again, quite reasonably, be 
sensitive to the exact form of the functional relationships in- 

13.1 Undiscovered Determinism 
If one believes that the problem is deterministic, but 

has not yet completely identified the determining concomi- 
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volved, over and above any purely distributional properties 
of the manifest variables; but these functional relationships 
are in principle discoverable. Balke (1995) and Balke and 
Pearl (1994a) investigated the dependence of causal infer- 
ences on the functional assumptions. 

However, often the “latent variables” involved in such 
models are not genuine concomitants (measurable variables, 
unaffected by treatment). Then there is no way, even in prin- 
ciple, of verifying the assumptions made-which will nev- 
ertheless affect the ensuing inferences, in defiance of Jef- 
freys’s law. I term such functional models pseudodetermin- 
istic and regard it as misleading to base analyses on them. In 
particular, I regard it as unscientific to impose intrinsically 
unverifiable assumed forms for functional relationships, in 
a misguided attempt to eliminate the essential ambiguity in 
our inferences. 

Within the counterfactual framework, it is always pos- 
sible to construct, mathematically, a pseudodeterministic 
model: Simply define D(u)  to be the complementary col- 
lection of all potential outcomes on unit u. In Example 1 
one would thus take D = (K,  Yc). One then has the trivial 
deterministic functional relationship Y = f ( i ,  D ) ,  where f 
has the canonical form f ( i ,  (yt,yc)) = yi ( i  = t , c ) .  If a 
joint distribution were now assigned to (X,Yc) ,  then the 
analysis presented earlier for inferring “causes of effects” 
in deterministic models could be formally applied. 

This is not a true deterministic model: D is not a true con- 
comitant, because it is not, even in principle, observable. 
Construction of such a pseudodeterministic model makes 
absolutely no headway toward addressing the nonunique- 
ness problems exposed in Sections 5.4 and 11; it remains the 
case that no amount of scientific investigation will suffice 
to justify any assumed dependence structure for (X, Yc), 
or eliminate the sensitivity to this of the inferences about 
causes of effects. This can be done only by taking into ac- 
count genuine concomitants. 

14. CONTEXT 
In basing inference about the causes of effects on con- 

comitant variables (as in Sec. l l . l ) ,  it appears that I am de- 
parting from my insistence that metaphysical assumptions 
should not be allowed to affect inferences. This is because 
to say that a variable is a concomitant involves an asser- 
tion that it is unaffected by treatment, and hence would 
take the same value, both in the real universe and in par- 
allel counterfactual universes in which different treatments 
were applied. Such an assumption is clearly not empirically 
testable. Nevertheless, one’s causal inferences will depend 
on the assumptions made as to which variables are to be 
treated as concomitants. This arbitrariness is over and above 
the essential inferential ambiguity that I have already iden- 
tified, which remains even after the specification of con- 
comitants has been made. 

My attitude is that there is indeed an arbitrariness in 
the models that one can reasonably use to make inferences 
about causes of effects, and hence in the conclusions that 
are justified. But I would regard this as relating, at least 
in part, to differences in the nature of the questions being 

addressed. The essence of a specific causal inquiry is cap- 
tured in the largely conventional specification of what may 
be termed the context of the inference-namely, the collec- 
tion of variables one considers it appropriate to regard as 
concomitants; see Example 4. Appropriate specification of 
context, relevant to the specific purpose at hand, is vital to 
render causal questions and answers meaningful. It may be 
regarded as providing necessary clarification of the ceteris 
paribus (“other things being equal”) clause often invoked in 
attempts to explicate the idea of cause. Differing purposes 
will demand differing specifications, requiring differing sci- 
entific and statistical approaches and yielding differing an- 
swers. In particular, whether it is reasonable to use a deter- 
ministic model must depend on the context of the problem 
at hand, as this will determine whether it is appropriate to 
regard a putative determining variable D as a genuine con- 
comitant, unaffected by treatment. For varying contexts one 
might have varying models, some deterministic (involving 
varying definitions of D )  and some nondeterministic. 

Example 6. Consider an experiment in which the treat- 
ments are varieties of corn and the units are field plots. 
Suppose that variety 1 has been planted on a particular 
field plot, and its yield measured. One might ask “What 
would the yield have been on this plot if variety 2 had been 
planted?.” Before this question can be addressed, it must be 
made more precise; and this can be done in various ways, 
depending on one’s meaning and purpose. 

First, the answer must depend in part on the treatment 
protocol. For example, this might lay down the weight, or 
alternatively the number, of seeds to be planted. In the for- 
mer case, the counterfactual universe would be one in which 
the weight of variety 2 to be planted would the same as 
the weight of variety 1 actually planted; in the latter case, 
“weight” would need to be changed to “number,” so spec- 
ifying different counterfactual conditions and leading one 
to expect a different answer. (In either case the actual and 
counterfactual responses will depend in part on the particu- 
lar seeds chosen, introducing an irreducibly random element 
into each universe.) One might choose to link the treatments 
in the two universes in further ways; for example, if one 
had happened to choose larger than average seeds of va- 
riety 1, then one might want to consider a counterfactual 
universe in which we also chose larger than average seeds 
of variety 2. This would correspond to a fictitious protocol 
in which the treatment conditions were still more closely 
defined. 

The same counterfactual question might be asked by a 
farmer who had planted variety 1 in nonexperimental condi- 
tions. In this case there was no treatment protocol specified, 
and there is correspondingly still more freedom to specify 
the fictitious protocol linking the real and the counterfac- 
tual universe. But only when one has clearly specified one’s 
hypothetical protocol can one begin to address the counter- 
factual query. 

This done, one must decide what further variables one 
will regard as concomitants, unaffected by treatment. It 
might well be reasonable to include among these certain 
physical properties of the field plot at the time of planting, 
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and perhaps also the weather in its neighbourhood, subse- 
quent to planting. 

One might also want to take into account the effect of 
insect infestation on yield. It would probably not be reason- 
able to treat this as a concomitant, because different crops 
are differentially attractive to insects. Instead, one might 
use some specification of the abundance and whereabouts 
of the insects prior to planting. However, it would be sim- 
ply unreasonable to expect this specification to be in any 
sense complete. Would one really want to consider the ex- 
act initial whereabouts and physical and mental states of 
all insects as identical in both the real and the counterfac- 
tual universe, and so link (though still far from perfectly) 
the insect infestations suffered in the two universes? If one 
did, then one would need a practically unattainable under- 
standing of insect behaviour before one could formulate 
and interpret, let alone answer, the counterfactual query. 
Furthermore, to insist (perhaps in an attempt to justify a de- 
terministic model) on fixing the common properties of the 
two universes at an extremely fine level of detail risks be- 
coming embroiled in unfathomable arguments about deter- 
minism and free will. Would one really have been at liberty 
to apply a different treatment in such a closely determined 
alternative universe? To go down such a path seems to me 
to embark on a quest entirely inappropriate to any realis- 
tic interpretation of the query. Instead, one could imagine 
a counterfactual universe agreeing with the real one at a 
much less refined level of detail (in which initial insect po- 
sitions are perhaps left unspecified). This corresponds to a 
broader view of the relevant context, with fewer variables 
considered constant across universes. It is up to the person 
asking the counterfactual query, or attempting causal infer- 
ence, to be clear about the appropriate specification, explicit 
or implicit, of the relevant context. 

The conditional independence convention further allows 
one to tailor counterfactual inferences to the appropriate 
context, as in Example 4, without embarking on fruitless 
searches for “ultimate causes.” In Example 6, one may wish 
to omit from specification of context any information about, 
or relevant to, the population and behavior of the insects. 
One could then take the amounts of insect infestation, in 
the real and the counterfactual universes, as independent, 
conditionally on whatever concomitants are regarded as de- 
termining context. This choice may be regarded as making 
explicit one’s decision to exclude insect information from 
the context, rather than as saying anything meaningful about 
the behavior of the world. With this understanding, the very 
meaning (and hence the unknown value) of the correlation 
p between yt and Y, (or of any other measure of the depen- 
dence between such complementary quantities) will involve, 
in part, one’s own specification of the context considered 
appropriate to the counterfactual questions. 

The relation between the partly conventional specifica- 
tion of context and general scientific understanding is a 
subtle one. Certainly the latter should inform the former, 
even when it does not determine it; general scientific or 
intuitive understandings of meteorological processes must 
underlie any identification of the weather as a concomitant, 

unaffected by treatment. Moreover, it is always possible that 
further scientific understanding might lead to a refinement 
of what is regarded as the appropriate context; thus the 
discovery of genetics has enabled identification of previ- 
ously unrecognized invariant features of an individual and 
thus discarding of previously adequate, but now superseded, 
causal theories. Causal inference is, even more than other 
forms of inductive inference, only tentative; causal models 
and inferences need to be revised, not only when theories 
and assumptions on which they are based cease to be ten- 
able in the light of empirical data, but also when the speci- 
fication of the relevant context has to be reformulated-be 
this due to changing scientific understanding or to changing 
requirements of the problem at hand. 

15. CONCLUSION 
I have argued that the counterfactual approach to causal 

inference is essentially metaphysical, and full of tempta- 
tions to make “inferences” that cannot be justified on the 
basis of empirical data and are thus unscientific. An alter- 
native approach based on decision analysis, naturally ap- 
pealling and fully scientific, has been presented. This ap- 
proach is completely satisfactory for addressing the prob- 
lem of inference about the effects of causes, and the familiar 
“black box” approach of experimental statistics is perfectly 
adequate for this purpose. 

However, inference about the causes of effects poses 
greater difficulties. A completely unambiguous solution can 
be obtained only in those rare cases where it is possible to 
reach a sufficient scientific understanding of the system un- 
der investigation as to allow the identification of essentially 
deterministic causal mechanisms (relating responses to in- 
terventions and concomitants, appropriately defined). When 
this is not achievable (whether the difficulties in doing so 
be fundamental or merely pragmatic), the inferences jus- 
tified even by extensive data are not uniquely determined, 
and one must be satisfied with inequalities. However, these 
may be refined by modeling the relevant context and con- 
ducting experiments in which concomitants are measured. 
A major and detailed scientific study may be required to re- 
duce the residual ambiguity to its minimal level (and, even 
then, there can be no prior guarantee that it will do so). 

Thus, if one wants to make meaningful and useful asser- 
tions about the causes of effects, then one must be very clear 
about the meaning and context of one’s queries. And then 
there is no magical statistical route that can bypass the need 
to do real science to attain the clearest possible understand- 
ing of the operation of relevant (typically nondeterministic) 
causal mechanisms. 

[Received October 1997. Revised July 1999.1 
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Comment 
D. R. COX 

I very much admire Professor Dawid’s original, lucid, 
and penetrating discussion of causality. And yet: has the 
philosophical coherence, if not thrown the baby out with 
the bathwater, at least left the baby seriously bruised in 
some vital organs? Dawid’s formulation of the purpose of 
causal discussion involves a decision about treatment allo- 
cation to a new individual. Most experiments with which 
I have been involved have as their purpose the gaining 

~~ 

of some understanding of a phenomenon. This may lead 
eventually to recommendations on specific decisions but 
that comes later. The noun “understanding” is probably too 
vague for merciless philosophical discussion, and I realize 
that the decision making does not have to be taken too lit- 
erally, but has something been lost in the decision-oriented 
formulation? 

D. R. Cox, Department of Statistics and Nuffield College, Oxford, 
U.K. 
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