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Connecting the Analog and Digital Worlds 

Semantic mismatch: 
 
Cyber: 
•  Digital 
•  Discrete in time 
•  Sequential 

 
 
Physical: 
•  Continuum 
•  Continuous in time 
•  Concurrent 
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Practical Issues 

•  Analog vs. digital 
•  Wired vs. wireless 
•  Serial vs. parallel 
•  Sampled or event triggered 
•  Bit rates 
•  Access control, security, authentication 
•  Physical connectors 
•  Electrical requirements (voltages and currents) 
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A Typical Microcomputer Board 
Beaglebone Black from Texas Instruments 

This board 
has analog 
and digital 
inputs and 
outputs. 
What are 
they? How 
do they 
work? 

ARM 
Cortex-
A8 

Power 
management 

Flash 
memory 
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A Typical Microcomputer Board 
Beaglebone Black from Texas Instruments 

A “cape” is a daughter card that 
fits on the board. Arduino 
“shields” are similar. This one 
provides an accelerometer, 
gyro, and magnetometer. 
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A Typical Microcomputer Board 
Beaglebone Black from Texas Instruments 

More interestingly, this one 
provides a protoboard to attach 
your own hardware. How to do 
that? 
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Beaglebone Black 
Header Configuration 

One of eight configurations 
with SPI buses, analog I/O, 
etc. 

Many GPIO 
pins can be 
reconfigured 
to be PWM 
drivers, 
timers, etc. 
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Memory-Mapped  
Peripherals on the  
“Berkeley Personality” 

DIO158_OUT is a C 
preprocessor macro defined in a 
header file in your IDE project. It 
defines the memory address of 
this register. 
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Simple Digital I/O: GPIO 

Open collector circuits are 
often used on GPIO 
(general-purpose I/O) pins 
of a microcontroller. 
 
The same pin can be used 
for input and output. And 
multiple users can connect 
to the same bus. 
 
Why is the current limited? 

GPIO pins configured for 
bus output. Any one 
controller can pull the bus 
voltage down. 
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Example: Turn on an LED 

Assume GPIO pins can sink 
up to 18 mA. Assume the 
LED, when forward biased 
(turned on), has a voltage 
drop of 2 volts.  
 
What resistor should you 
use? 

3V VDD 
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Example: Turn on an LED 

Ohm’s law: 
 V = IR 

When LED is on, V = 1 volt. 
 
To limit to 18mA, 

 R ≥ 1/0.018 ≈ 56 ohms  

3V VDD 
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Wired Connections 
Parallel vs. Serial Digital Interfaces 

¢  Parallel (one wire per bit) 
l  ATA: Advanced Technology Attachment  
l  PCI: Peripheral Component Interface  
l  SCSI: Small Computer System Interface 
l … 

¢  Serial (one wire per direction) 
l  RS-232 
l  SPI: Serial Peripheral Interface bus 
l  I2C: Inter-Integrated Circuit 
l  USB: Universal Serial Bus 
l  SATA: Serial ATA 
l … 

¢  Mixed (one or more “lanes”) 
l  PCIe: PCI Express  

PCI 

SCSI 

USB 

RS-232 
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Wired Connections 
Parallel vs. Serial Digital Interfaces 

Parallel connectors have been largely replaced by serial 
ones. 
 
Why? 
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Serial Interfaces 

The old but persistent RS-232 standard 
supports asynchronous serial 
connections (no common clock). 
How does it work? 

Many uses of RS-232 are 
being replaced by USB, 
which is electrically simpler 
but with a more complex 
protocol, or bluetooth, which 
is wireless. 

Uppercase ASCII "K" character (0x4b) 
with 1 start bit, 8 data bits, 1 stop bit. 
Image license: Creative Commons 
ShareAlike 1.0 License 
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UART: Universal Asynchronous  
Receiver-Transmitter 

 
 
•  Convert serial data to 

parallel data, and vice 
versa.  

•  Uses shift registers to 
load store data 

•  Can raise interrupt 
when data is ready  

•  Commonly used with 
RS-232 interface  

Variant: USART: Universal Synchronous/Asynchronous 
Receiver-Transmitter 
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Speed Limitations 

RS-232 relies on the clock in the transmitter being close 
enough in frequency to the clock on the receiver that upon 
detecting the start bit, it can just sample 8 more times and will 
see the remaining bits. 

USB achieves higher 
speeds by beginning 
every packet with 
synchronization 
sequence of 8 bits. The 
receiver clock locks to 
this for the rest of the 
packet. 
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Input/Output Mechanisms in Software 

¢  Polling 
l  Main loop uses each I/O device periodically. 
l  If output is to be produced, produce it. 
l  If input is ready, read it. 

¢  Interrupts 
l  External hardware alerts the processor that input is ready. 
l  Processor suspends what it is doing. 
l  Processor invokes an interrupt service routine (ISR). 
l  ISR interacts with the application concurrently. 
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Polling  

Processor Setup Code 

Processor checks I/O control register  
for status of peripheral 1 

Processor services I/O 1 

Processor checks I/O control register  
for status of peripheral 2 

Processor checks I/O control register  
for status of peripheral 3 

Processor services I/O 2 

Processor services I/O 3 

Ready 

Ready 

Ready 

Not Ready 

Not Ready 

Not Ready 
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Example Using a Serial Interface 

In an Atmel AVR 8-bit microcontroller, to send a byte over 
a serial port, the following C code will do: 
 

 while(!(UCSR0A & 0x20)); 
 UDR0 = x; 

 
•  x is a variable of type uint8. 
• UCSR0A and UDR0 are variables defined in a header. 
• They refer to memory-mapped registers in the UART 

(Universal Asynchronous Receiver-Transmitter)  
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Send a Sequence of Bytes 

for(i = 0; i < 8; i++) { 
 while(!(UCSR0A & 0x20)); 
 UDR0 = x[i]; 

} 
How long will this take to execute? Assume: 
•  57600 baud serial speed. 
•  8/57600 =139 microseconds.  
•  Processor operates at 18 MHz. 
Each for loop iteration will consume about 2502 cycles. 



EECS 149/249A, UC Berkeley: 21 

Receiving via UART 

Again, on an Atmel AVR: 
 while(!(UCSR0A & 0x80)); 
 return UDR0; 

 
•  Wait until the UART has received an incoming byte. 
•  The programmer must ensure there will be one! 
•  If reading a sequence of bytes, how long will this take? 

Under the same assumptions as before, it will take about 
2502 cycles to receive each byte. 
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Input Mechanisms in Software 

¢  Polling 
l  Main loop uses each I/O device periodically. 
l  If output is to be produced, produce it. 
l  If input is ready, read it. 

¢  Interrupts 
l  External hardware alerts the processor that input is ready. 
l  Processor suspends what it is doing. 
l  Processor invokes an interrupt service routine (ISR). 
l  ISR interacts with the application concurrently. 
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Interrupts 

¢  Interrupt Service Routine 
Short subroutine that handles the interrupt 

Processor Setup Code 

Register the Interrupt Service Routine 

Processor executes task code Run Interrupt Service Routine 

Interrupt! 
Context switch 

Resume 
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Interrupts 

Triggers: 
¢  A level change on an interrupt request pin 
¢  Writing to an interrupt pin configured as an output (“software 

interrupt”) or executing special instruction 
 
Responses: 
¢  Disable interrupts. 
¢  Push the current program counter onto the stack. 
¢  Execute the instruction at a designated address in program memory. 
 
Design of interrupt service routine: 
¢  Save and restore any registers it uses. 
¢  Re-enable interrupts before returning from interrupt. 

Source: ATmega168 Reference Manual 

Program memory addresses,  
not data memory addresses. 
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Berkeley Microblaze 
Personality Memory Map 

0xFFFFFFFF 

0x0000004F 

0x0000FFFF 

Unmapped	Area	

ADC	subsystem	

Memory	for	
Instructions	and	Data		

Interrupt	controller	
0x81800000 

MicroBlaze	
50MHz	

MEMORY	
DRAM	

UART0	
UART1	

ADC	
Subsystem	

TIMER	

Debugger	

Interrupt	
controller	

0x8180FFFF 

Unmapped	Area	

Timer	
0x83C00000 

0x83C0FFFF 

Unmapped	Area	

UARTs	
Unmapped	Area	

0x84000000 

0x8402FFFF 

Debugger	
Unmapped	Area	

Unmapped	Area	

0x84400000 

0x8440FFFF 
0xC2200000 

0xC220FFFF 

Reset,	interrupt,	…	 0x00000000 
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Microblaze Interrupt Policy 

“MicroBlaze supports one external interrupt source (connected 
to the Interrupt input port). The processor only reacts to 
interrupts if the Interrupt Enable (IE) bit in the Machine Status 
Register (MSR) is set to 1. On an interrupt, the instruction in 
the execution stage completes while the instruction in the 
decode stage is replaced by a branch to the interrupt vector 
(address 0x10). The interrupt return address (the PC 
associated with the instruction in the decode stage at the time 
of the interrupt) is automatically loaded into general purpose 
register R14. In addition, the processor also disables future 
interrupts by clearing the IE bit in the MSR. The IE bit is 
automatically set again when executing the RTID instruction.” 
Source: Microblaze datasheet 
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Interrupts are Evil 

[I]n one or two respects modern machinery is basically 
more difficult to handle than the old machinery. Firstly, we 
have got the interrupts, occurring at unpredictable and 
irreproducible moments; compared with the old 
sequential machine that pretended to be a fully 
deterministic automaton, this has been a dramatic 
change, and many a systems programmer’s grey hair 
bears witness to the fact that we should not talk lightly 
about the logical problems created by that feature.  
 

 (Dijkstra, “The humble programmer” 1972)  
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Timed Interrupt 

Timer 

Update Tick / Sample 

When timer expires,  
interrupt processor 

Reset timer 

Processor jumps to ISR 

Resumes 

Processor Setup 

Register Interrupt Service Routine 

Initialize Timer 

Execute Task Code 
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Example: Set up a timer on an ATmega168 to 
trigger an interrupt every 1ms. 

¢  TCCR: Timer/Counter Control Register 
¢  OCR: output compare register 
¢  TIMSK: Timer Interrupt Mask 

 The “prescaler” value divides the system 
clock to drive the timer. 

 
 Setting a non-zero bit in the timer 
interrupt mask causes an interrupt to 
occur when the timer resets. 

Source: iRobot Command Module Reference Manual v6 
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Setting up the timer interrupt hardware in C 

#include <avr/io.h> 
 

int main (void) { 

  TCCR1A = 0x00; 

  TCCR1B = 0x0C; 

  OCR1A = 71; 

  TIMSK1 = 0x02; 

  ... 

} 

This code sets the hardware up 
to trigger an interrupt every 1ms. 
How do we handle the interrupt? Source: ATmega168 Reference Manual 

memory-
mapped 
register. 
 
But how is this 
proper C code? 
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void initialize(void) { 
  cli(); 
 
  // Set I/O pins 
  DDRB = 0x10; 
  PORTB = 0xCF; 
  ……. 
 
  // Set up timer 1 to generate an interrupt every 1 ms 
  TCCR1A = 0x00; 
  TCCR1B = (_BV(WGM12) | _BV(CS12)); 
  OCR1A = 71; 
  TIMSK1 = _BV(OCIE1A); 
 
  // Set up the serial port with rx interrupt 
  ……. 
 
  // Turn on interrupts 
  sei(); 
} 

// Global variables 
volatile uint16_t timer_cnt = 0; 
volatile uint8_t timer_on = 0; 
 
// Timer 1 interrupt to time delays in ms 
SIGNAL(SIG_OUTPUT_COMPARE1A) { 
  if(timer_cnt) { 
    timer_cnt--; 
  } else { 
    timer_on = 0; 
  } 
} 

void delayMs(uint16_t time_ms) { 
  timer_on = 1; 
  timer_cnt = time_ms; 
  while(timer_on) ; 
} 

//Enable interrupts (interrupt.h) 
# define sei()  __asm__ __volatile__ ("sei" ::) 
//Disable interrupts (interrupt.h) 
# define cli()  __asm__ __volatile__ ("cli" ::) 
#define SIGNAL(signame)       \ 
void signame (void) __attribute__ ((signal)); \ 
void signame (void) 

#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr)) 
#define _SFR_IO8(io_addr) _MMIO_BYTE((io_addr) + 0x20) 
#define _SFR_MEM8(mem_addr) _MMIO_BYTE(mem_addr) 
#define _BV(bit) (1 << (bit)) 

//Timer defines (iomx8.h) 
#define TCCR1A  _SFR_MEM8 (0x80) 
#define TCCR1B  _SFR_MEM8 (0x81) 
/* TCCR1B */ 
#define WGM12   3 
#define CS12    2 
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void initialize(void) { 
  cli(); 
 
  // Set I/O pins 
  DDRB = 0x10; 
  PORTB = 0xCF; 
  ……. 
 
  // Set up timer 1 to generate an interrupt every 1 ms 
  TCCR1A = 0x00; 
  TCCR1B = (_BV(WGM12) | _BV(CS12)); 
  OCR1A = 71; 
  TIMSK1 = _BV(OCIE1A); 
 
  // Set up the serial port with rx interrupt 
  ……. 
 
  // Turn on interrupts 
  sei(); 
} 

// Global variables 
volatile uint16_t timer_cnt = 0; 
volatile uint8_t timer_on = 0; 
 
// Timer 1 interrupt to time delays in ms 
SIGNAL(SIG_OUTPUT_COMPARE1A) { 
  if(timer_cnt) { 
    timer_cnt--; 
  } else { 
    timer_on = 0; 
  } 
} 

void delayMs(uint16_t time_ms) { 
  timer_on = 1; 
  timer_cnt = time_ms; 
  while(timer_on) ; 
} 

//Enable interrupts (interrupt.h) 
# define sei()  __asm__ __volatile__ ("sei" ::) 
//Disable interrupts (interrupt.h) 
# define cli()  __asm__ __volatile__ ("cli" ::) 
#define SIGNAL(signame)       \ 
void signame (void) __attribute__ ((signal)); \ 
void signame (void) 

#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr)) 
#define _SFR_IO8(io_addr) _MMIO_BYTE((io_addr) + 0x20) 
#define _SFR_MEM8(mem_addr) _MMIO_BYTE(mem_addr) 
#define _BV(bit) (1 << (bit)) 

//Timer defines (iomx8.h) 
#define TCCR1A  _SFR_MEM8 (0x80) 
#define TCCR1B  _SFR_MEM8 (0x81) 
/* TCCR1B */ 
#define WGM12   3 
#define CS12    2 
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Setting up the timer interrupt hardware in C 

#include <avr/io.h> 
 

int main (void) { 

  TCCR1A = 0x00; 

  TCCR1B = 0x0C; 

  OCR1A = 71; 

  TIMSK1 = 0x02; 

  ... 

} 

Source: ATmega168 Reference Manual 

(*(volatile uint8_t *) (0x80)) = 0x00; 
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Example 2: Set up a timer on a Luminary Micro 
board to trigger an interrupt every 1ms. 

// Setup and enable SysTick with interrupt every 1ms 

void initTimer(void) { 
 SysTickPeriodSet(SysCtlClockGet() / 1000); 

 SysTickEnable(); 

 SysTickIntEnable(); 

} 

 
// Disable SysTick 

void disableTimer(void) { 

 SysTickIntDisable(); 

 SysTickDisable(); 

} 

Source: Stellaris Peripheral Driver Library User’s Guide 

Number of cycles per sec. 

Start SysTick counter 

Enable SysTick timer interrupt 
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volatile uint timer_count; 
void ISR(void) { 
  timer_count--; 
} 
 
 
int main(void) { 
  // initialization code 
  SysTickIntRegister(&ISR);   
  ... // other init (prev slide) 
  timer_count = 2000; 
  while(timer_count != 0) { 
    ... code to run for 2 seconds 
  } 
} 

Example: Do something for 2 seconds then stop 

volatile: C keyword to tell the 
compiler that this variable may 
change at any time, not (entirely) 
under the control of this program. 

static variable: declared outside 
main() puts them in statically 
allocated memory (not on the 
stack) 

Interrupt service routine 

Registering the ISR to be invoked 
on every SysTick interrupt 
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volatile uint timer_count; 
void ISR(void) { 
  timer_count--; 
} 
 
 
int main(void) { 
  // initialization code 
  SysTickIntRegister(&ISR);   
  ... // other init 
  timer_count = 2000; 
  while(timer_count != 0) { 
    ... code to run for 2 seconds 
  } 
} 

Concurrency 

concurrent code: 
logically runs at the 
same time. In this case, 
between any two 
machine instructions in 
main() an interrupt can 
occur and the upper 
code can execute. 

What could go wrong? 
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volatile uint timer_count; 
void ISR(void) { 
  timer_count--; 
} 
 
 
int main(void) { 
  // initialization code 
  SysTickIntRegister(&ISR);   
  ... // other init 
  timer_count = 2000; 
  while(timer_count != 0) { 
    ... code to run for 2 seconds 
  } 
} 

Concurrency 

What could go wrong? 

what if the interrupt 
occurs twice during 
the execution of this 
code? 
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volatile uint timer_count = 0; 
void ISR(void) { 
  if(timer_count != 0) {  
    timer_count--; 
  } 
} 
int main(void) { 
  // initialization code 
  SysTickIntRegister(&ISR);   
  ... // other init 
  timer_count = 2000; 
  while(timer_count != 0) { 
    ... code to run for 2 seconds 
  } 
} 

Improved Example 



EECS 149/249A, UC Berkeley: 39 

volatile uint timer_count = 0; 
void ISR(void) { 
  if(timer_count != 0) {  
    timer_count--; 
  } 
} 
int main(void) { 
  // initialization code 
  SysTickIntRegister(&ISR);   
  ... // other init 
  timer_count = 2000; 
  while(timer_count != 0) { 
    ... code to run for 2 seconds 
  } 
} 

Reasoning about concurrent code 

can an interrupt 
occur here? If it can, 
what happens? 
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Issues to Watch For 

 
•  Interrupt service routine execution time 
•  Context switch time 
•  Nesting of higher priority interrupts 
•  Interactions between ISR and the application 
•  Interactions between ISRs 
•  … 
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A question: 

What’s the difference between 
 

Concurrency 
and 

Parallelism 
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Concurrency and Parallelism 

 A program is said to be concurrent if different parts of 
the program conceptually execute simultaneously.  

 
 A program is said to be parallel if different parts of the 
program physically execute simultaneously on distinct 
hardware. 

 
A parallel program is concurrent, but a concurrent 
program need not be parallel.  
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Concurrency in Computing 

¢  Interrupt Handling 
l  Reacting to external events (interrupts) 
l  Exception handling (software interrupts) 

¢  Processes 
l  Creating the illusion of simultaneously running 

different programs (multitasking) 
¢  Threads 

l  How is a thread different from a process? 
¢  Multiple processors (multi-cores) 
. . . 
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Summary 

 
Interrupts introduce a great deal of nondeterminism into a 
computation. Very careful reasoning about the design is 
necessary. 


