

Universidade de São Paulo - USP

Escola Superior de Agricultura "Luiz de Queiroz" – Esalq Departamento de Agroindústria, Alimentos e Nutrição - LAN

LAN 1458 - Açúcar e Álcool

Operações finais no processo de produção de açúcar

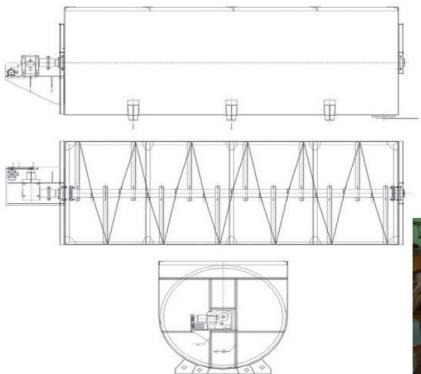
Prof. Antonio Sampaio Baptista

Operações finais no processo de produção de açúcar

Introdução

- ✓ Cristalização;
- ✓ Centrifugação;
- ✓ Secagem;
- ✓ Armazenamento;
- √ Tipos de açúcar
- ✓ Classificação dos tipos de açúcar

Introdução



Cristalização

Introdução

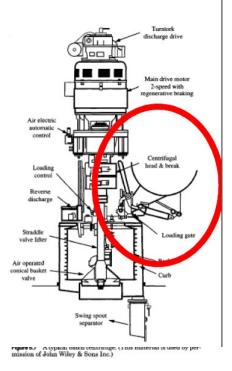
CENTRÍFUGAS DE FLUXO INTERMITENTE

Descrição:

Partes do conjunto:

- misturador de massa

centrífuga

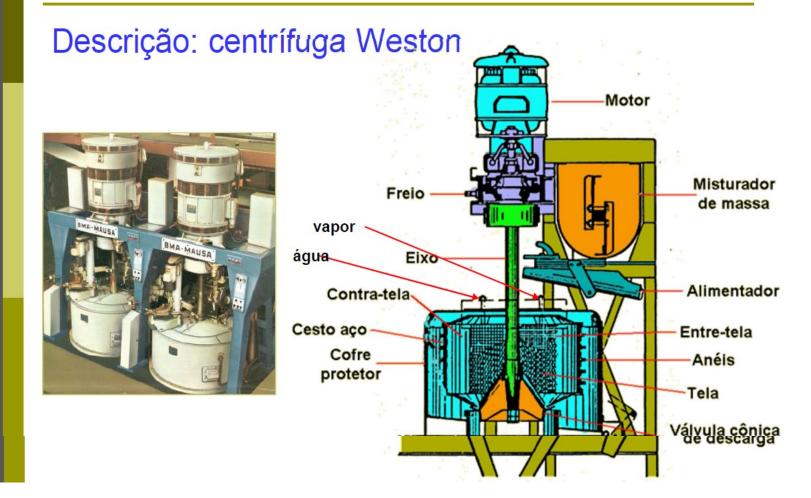

- condutor de açúcar

- caixas de mel

a) Misturador de massa

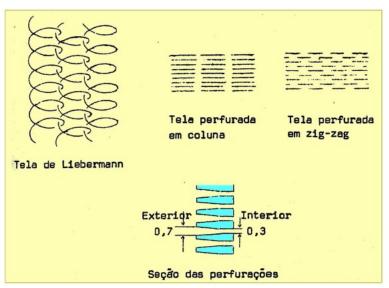
- não deixar os cristais separarem do mel objetivo { aquecer ou manter aquecida a massa
 - alimentar a centrífuga
- Depósito em U com agitador em serpentina

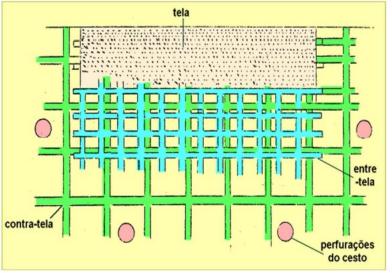
Aquecimento { água vapor



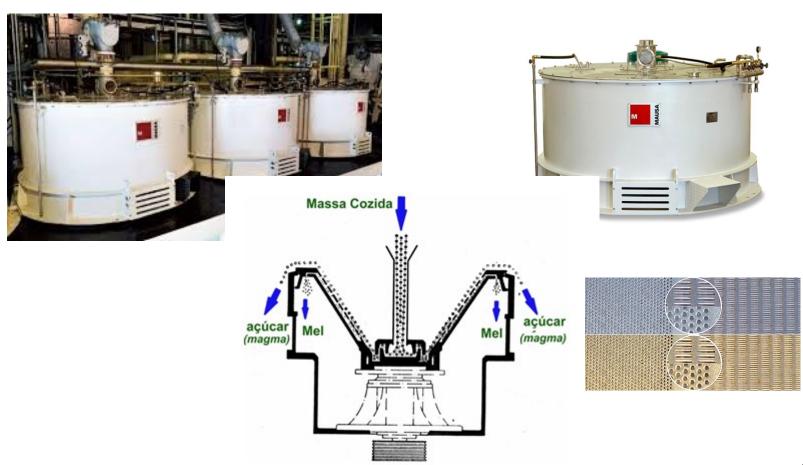
b) Centrífuga

Constituição equipamento


mecânico pneumático elétrico

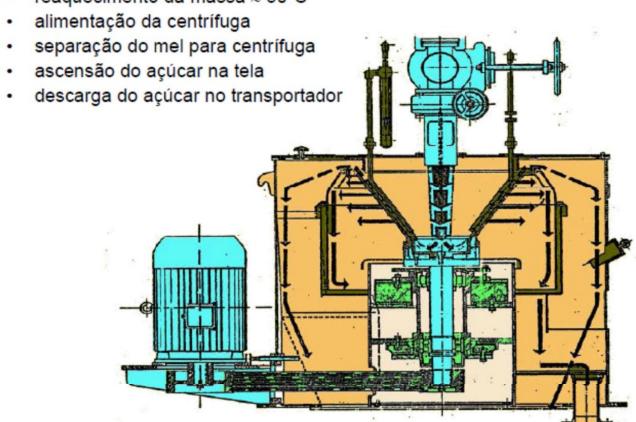


Detalhe das telas:



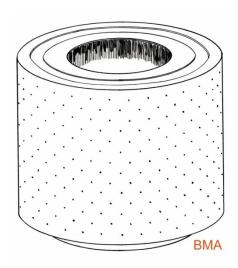
Tela { - arame trançado em espiral - topo fixo bem menor - chapa perfurada { circular retangular

Centrifugas de magma (massa B)

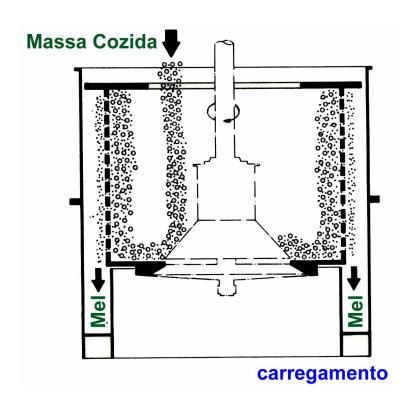


3.2. ESQUEMA DE OPERAÇÃO

reaquecimento da massa ≈ 50°C



Detalhes da centrifuga e do cesto da centrifuga



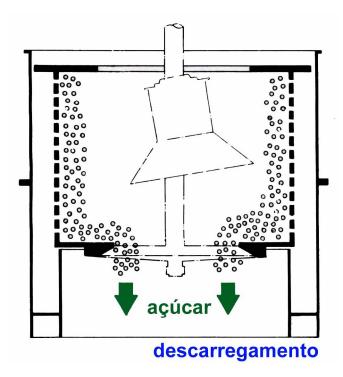


Ilustração da operação de centrifugação

Tipo

✓ calha oscilante
✓ esteira de borracha

componentes condutor

Mesa retangular Barra de sustentação Motor ligado a excêntrico

Condutor de açúcar sob a centrífuga

Descarga de açúcar da centrífuga

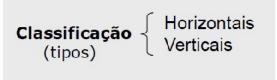
D) Caixa de méis

Tipo

✓ mel pobre
✓ mel rico

Caixas retangulares com bombas de recalque para depósitos de méis, localizada atrás dos cozedores.

FATORES NA QUALIDADE DO AÇÚCAR


Açúcar cristal permanece por longo período de tempo.

- ❖ POL/Umidade; → Determina o potencial de resistência ou não à ação de m.o.
- ❖ Temperatura; Influencia a % de decomposição e susceptibilidade ao empedramento.
- Umidade relativa. Influencia a decomposição e susceptibilidade ao empedramento.

TIPOS DE SECADORES DE AÇÚCAR

(A) SECADORES HORIZONTAIS

Açúcar bruto

Umidade relativa = 0,5-2,0%

Secador

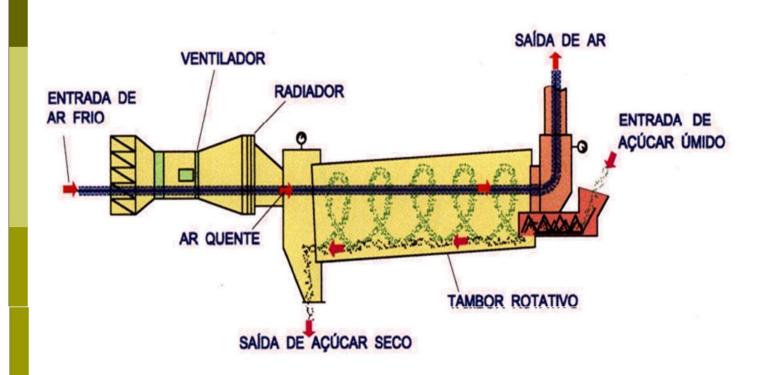
Umidade relativa = 0,1-0,2%

Partes (secadores)

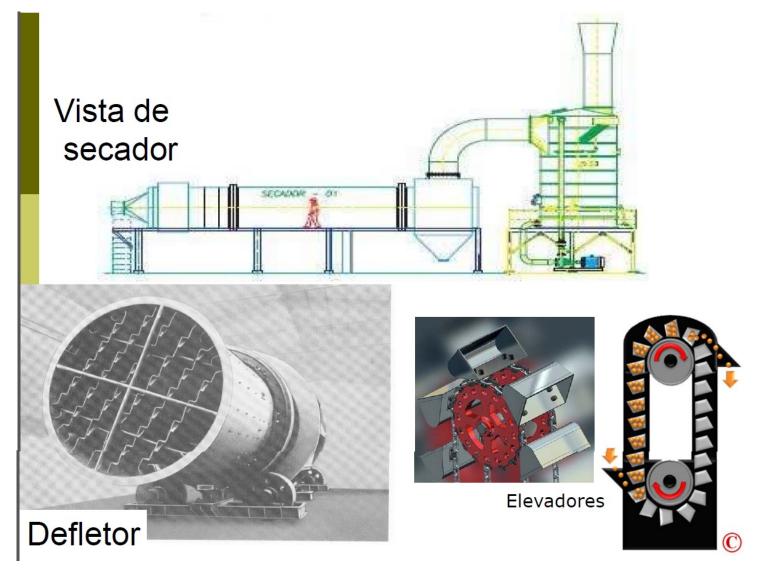
- a) tambor rotativo inclinado gira sobre mancais. Duas partes secagem resfriamento
- b) exaustor
- c) separador de pó

Açúcar branco

Umidade relativa = 0,5-2,0%


Secador

Umidade relativa = 0,04-0,07%



SECADOR HORIZONTAL DE AÇÚCAR

ESTOCAGEM DO AÇÚCAR

CONDIÇÕES DE ARMAZENAGEM

- deterioração depende composição impurezas teor de umidade
- Umidade relativa de Equilíbrio (URE)
- Umidade ambiente 65% equilíbrio (não perde e nem absorve umidade)

bactérias

leveduras

fungos

Armazém de açúcar

CUIDADOS GERAIS NO ARMAZENAMENTO DO AÇÚCAR (A GRANEL/ ENSACADO):

- Vedação do piso, parede e teto;
- Cobertura (teto) com material com bom coeficiente isolante térmico e elevado índice de reflexão;
- Circulação de ar: portas fechadas. URe ~ 65% (Saças: inclinação de 20°);
- As pilhas de açúcar devem ser feitas sobre estrados de madeira, papel betumado ou lona plástica;

CUIDADOS GERAIS NO ARMAZENAMENTO DO AÇÚCAR (A GRANEL/ ENSACADO):

- As pilhas devem ser compactas e o mais próximas possíveis (diminuir a superfície de exposição em relação ao volume);
- Pilhas devem ser cobertas com material betumado ou lona plástica;
- A granel: ângulo de talude 33-36° quando seco, açúcar úmido até 53°.

EMPEDRAMENTO DO AÇÚCAR

Depende umidade, temperatura de ensacamento e condições de tempo de armazenamento.

Temperatura do açúcar < 43°C Umidade Atmosférica ~ 65%

AGLOMERAÇÃO E DISSOLUÇÃO DE CRISTAIS

PESAGEM DO AÇÚCAR

controle do açúcar seco em armazenamento (granel)

✓ superior: recebe o açúcar;

3 depósitos (balanças) ✓ intermediário: faz a pesagem;

√ inferior: recebe o açúcar pesado e alimenta o

sistema de transporte.

balanças automáticas ou comuns (até 200kg)

ENSACAMENTO DO AÇÚCAR

Manejo e acondicionamento de açúcar

Tendências:

A granel

Containers ou big-bag (900 a 1200kg)

Sacos (50kg)

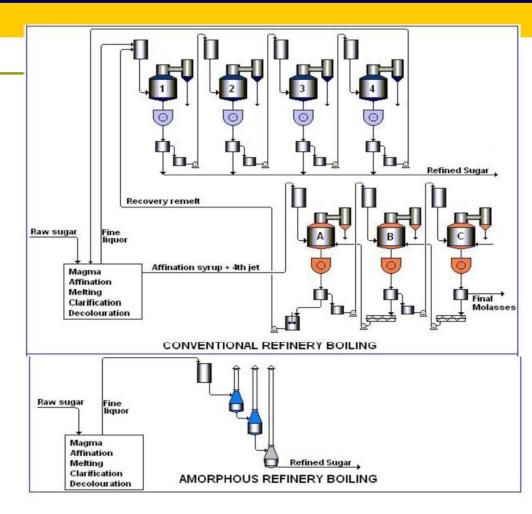
TIPOS DE AÇÚCAR

Específicação de açúcar

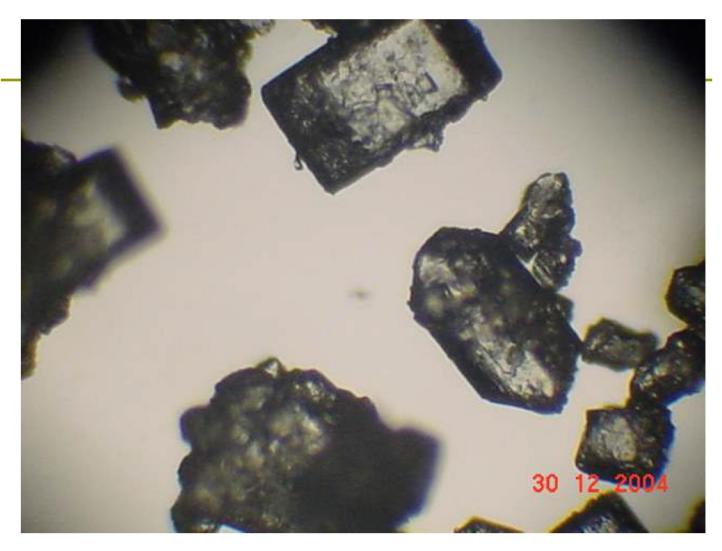
Caracteristicas	Unidade		TIPO DE AÇÚCAR											
			Tipo 1	Tipo 2 A	Tipo 2 B	Tipo 2 C	Tipo 2 D	Tipo 2G	Tipo 3 A	Tipo 3 B	Tipo 4	VVHP	VVHPC	VHP
CorICUMSA	UI	máx.	100	150	150	150	150	150	180	250	400	450	450	1200
Residuos Insolúveis (comparativo)	1 a 10	máx.	5	5	9	5		4	9	•	•	÷		7.
Pontos Pretos	n ^e / 100g	máx.	7	7	15	12		7	15	30	74	-		·-
Particulas Magnetizáveis	mg/kg	máx.	2	1	3	5		1	5	10	:			2.4
Polarização	°Z	-	≥ 99,80	≥ 99,70	≥ 99,70	≥ 99,70	≥ 99,7	≥ 99,70	≥99,70	≥ 99,50	≥ 99,50	≥ 99,60	≥ 99,60	99,00 a
Umidade	%	máx.	0,04	0,04	0,04	0,04	80,0	0,04	0,04	0,10	0,10	0,10	0,10	0,15
Cinzas	%	máx.	0,04	0,05	0,05	0,05	0,07	0,05	0,07	0,10	0,10	0,12	0,10	0,15
Sulfito	mg/kg	máx.	10	10	10	15		10	15	20	20	<1 ⁽¹⁾	<1(1)	32
Dextrana	mg/kg	máx.		100		-		100	150	-0		80	50	- 15
Amido	mg/kg	máx.	:	180				180	180		:	80	50	92
Turbidez	NTU	máx.		20		20		20	20	-	0.5		20	2.
Floco Alcoólico	Abs. 420	máx.		-	-	0,120					્.			٠.
	AM em mm			0,5 a 0,8	0,5 a 0,8			< 0,6	0,5 a 0,8	-			-	•
Granulometria	CV em %	máx.	82					35	-					
	% passante # 70	máx.				7,5				-				
Residuos Insolúveis (gravimėtrico)	mg/kg	máx.	2-		-	15		15.8		-		120	20	
Aparência	-		Cristal branco, sem empedramento										:	•
Sabor			Doce caracteristico									-		
Odor		- Característico, sem odor desagradável												

AÇÚCAR AMORFO

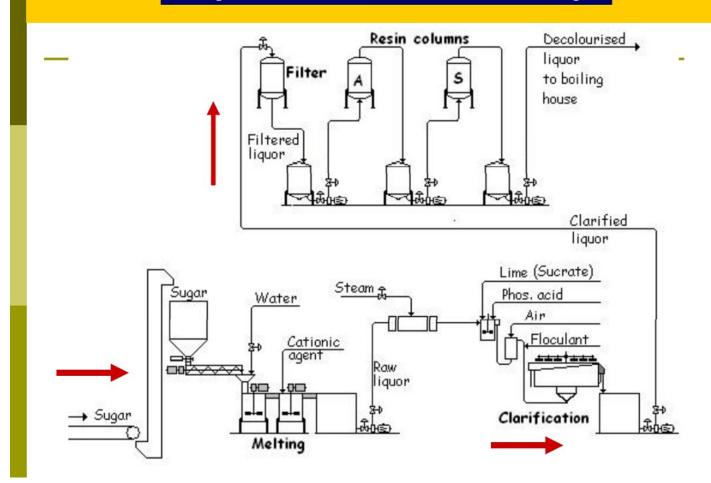
INTRODUÇÃO PRODUÇÃO

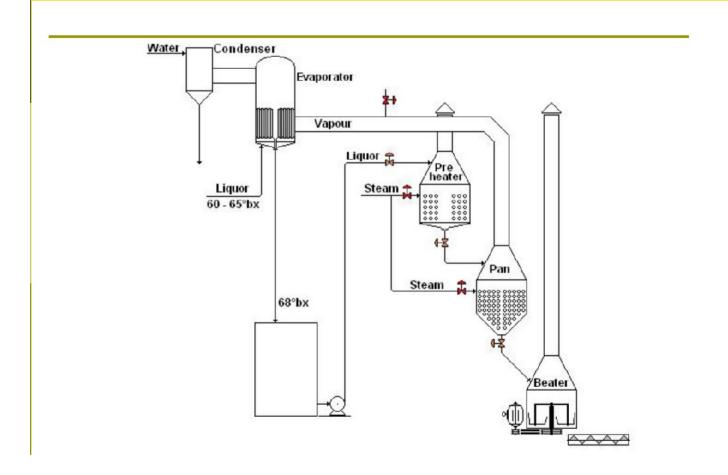


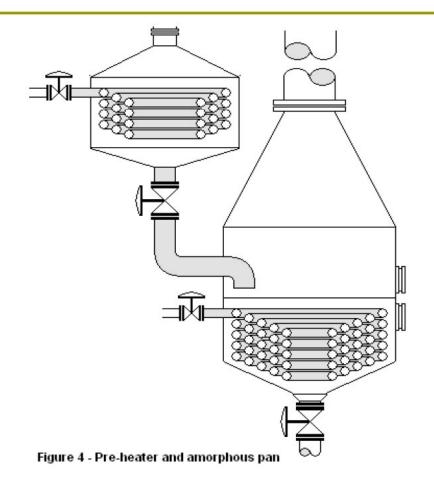
Comparison between conventional and amorphous boilings

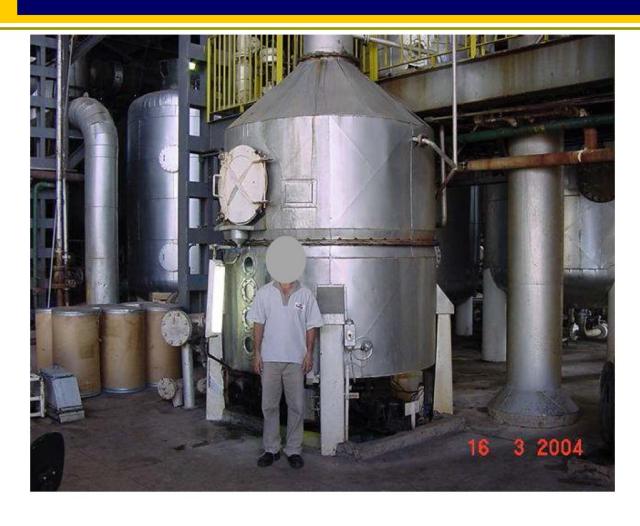

Refinaria convencional

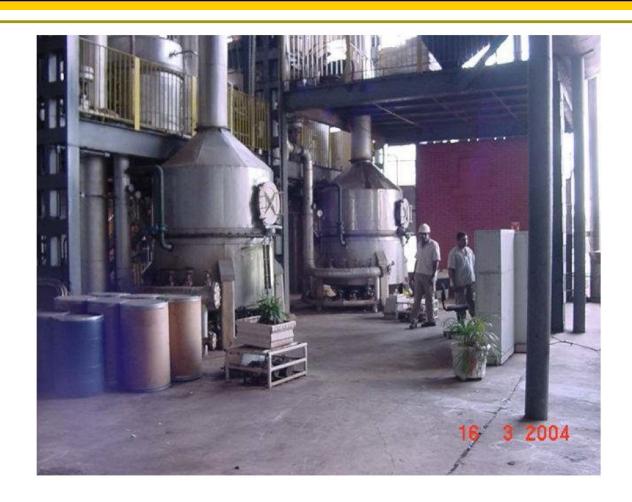
Refinaria amorfo

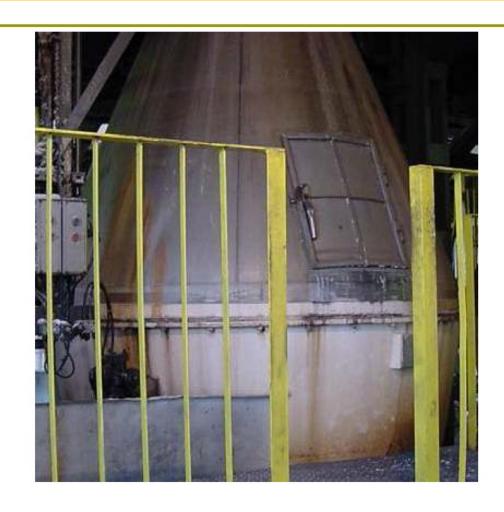


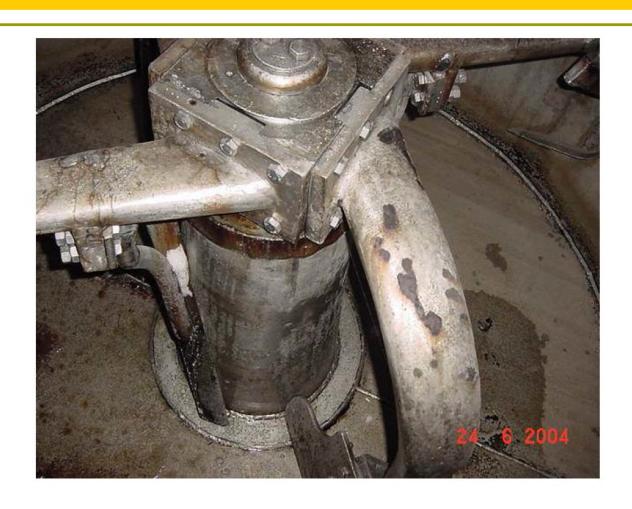

Preparo e tratamento do xarope


Basic flow with vacuum pan and evaporator


Pre- heater and concentrator


Pan – (Concentrator 250T/day)


2 Pans (500 tons/day)


Beater

Beater – (Interior)

Beater with sugar - 1

Beater with sugar - 2

Dryer with sugar - 1

VANTAGENS

- Menos equipamentos
- Equipamentos menores
- Baixo consumo de vapor (~0,5 kg/kg sugar)
- Baixo consumo de energia elétrica
- Menos trabalhoso
- Automação barata
- Sem melaço
- Sem bombas
- Sem tubulações
- Sem tanques de estocagem
- Somente um grau de açúcar

DESVANTAGENS

- □ Cor do açúcar = cor do xarope
- Para ter cristais livres, a %AR não deve ser maior que 0,4%.

Considerações finais

As principais operações finais do processo de produção de açúcar são: cristalização, centrifugação, secagem e armazenamento;

Os principais tipos de açúcares produzidos no Brasil são açúcar cristal branco, açúcar VVHP, Açúcar VHP e açúcar refinado (amorfo ou cristalizado).