

Engineering acc. to IEC 61850

Content

IEC 61850 Engineering Reference to IEC 61850-6

SCL Engineering process Tools

③ ABB University Switzerland - 2 -

To provide interoperability

- a formal description of the Substation Automation System with all *communication links* is needed
- all IED capabilities have to be described formally in an unambiguous way
- all communication services applicable have to be described formally in an unambiguous way
- the relationship between the switchgear (*single line*) and the functions of the substation automation system represented by objects (LD, LN, etc.) have to be described **formally** in an unambiguous way

The formal description is provided by the **Substation Configuration description Language (SCL)**

- based on XML
- defined in part 6 of the standard (IEC 61850-6)
- usable for
 - IED Capability Description (ICD) files
 - System Configuration Description (SCD) file

System functional specification (SSD)

The engineering information is exchangeable between tools, the tools get interoperable !!!bb

SCL Introduction

```
<Substation Ref="">
   <VoltageLevel Ref="E1">
      <Bay Ref="Q1">
         <Bfunction Ref="">
            <Device Ref="QA1" Type="CBR">
               <Connection NodeRef="L1"/>
               <LNode Ref="1"
LNClass="CSWI"/>
            </Device>
            <Device Ref="QB1" Type="DIS">
               <Connection NodeRef="L1"/>
               <LNode Ref="2"
LNClass="CSWI"/>
            </Device>
         </Bfunction>
      </Bay>
   </VoltageLevel>
</Substation>
```

Described is a substation with the bay E1Q1, the **Circuit** breaker QA1 and the **Isolator QB1**. both electrical connected in Connection Node L1. The Controller is represented by -LN CSWI controls both switches.

SCL Introduction

Data structure and SCL

Reminder:

The SA functions and devices are not standardized

The SA architecture is not standardized

Data and data exchange is standardized

Note:

The engineering tools are not standardized

The engineering process is not standardized

The configuration description is standardized (SCL)

Process from Specification to Solution

ABB

Engineering Process

Engineering according to IEC 61850

Engineering according to IEC 61850

IED Capability Description file *Device on the shelf - mandatory*

System Specification Description file Single line and function allocation

System Configuration Description file Configured system description

Configuration IED Description file

Configured IED description incl. device specific data beyond IEC 61850

Project Structures / Engineering Aspects

Geographic, Location, Placement structure

Engineering

Process

Function, Software, Data (Product) structure Devices / Physics, Hardware (Product) structure

Interface to environment or external world

SCL Contents – Single Line Diagram

- Hierarchy Station / Voltage level / Bay / Apparatus
 / apparatus part (Phase) acc. IEC 61346-1
 - Electrical connections between apparatusses
 - Several stations model a power network
 - Focus: Naming hierarchy of substation functions
- Model is compatible with IEC 61970
 - Different data exchange formats (although XML based
 - Data integration needs identical naming
 - WG19: global Identifier, Identification server

SCL Contents – Function specification

SCL Contents – IED Capabilities

SCL Contents – IED Configuration

SCL Contents – Function relation

© ABB University Switzerland - 17 -

Engineering Process

SCL Contents – Communication relation

ABB

© ABB University Switzerland - 18 -

Engineering Process

SCL Contents illustrated

© ABB University Switzerland - 19 -

- The IEC 61850 IED data model and SCL language provides....
 - A standardized description of
 - Substation Automation System functionality
 - Communication system logical structure
 - Binding of IEDs and their functions to the switch yard

... And thus enables

- Automated configuration of communication and function
- System **performance checking** (performance)

- Import of SCD into IED (-Tool)
- Detail engineering of IED, as necessary
 - Marshalling of inputs / outputs to terminals
 - Eventual additional logics, HMI, texts,
 - Marshalling of external (communication-)signals to application inputs
- Loading of configuration onto the IED
- Integration into system communicationwise and fucntionwise

③ ABB University Switzerland - 22 -

- Configuration revision information (project specific)
 - Data model revision
 - Communication related configuration: data set / control block revision
- Information is available online and in SCL file
 - Real time services always have revision of data sets in the sent message. The receiver checks this always to assure configuration compatibility.
 - Reporting version information can be read on demand
 - Data model version and IED HW / SW version can be read on demand
 - Comparison with released SCL configuration file can be automated

• IED name stays always as SCL reference

Engineering

Process

Engineering Process

Engineering according to IEC 61850

Engineering according to IEC 61850

IED Capability Description file *Device on the shelf - mandatory*

System Specification Description file Single line and function allocation

System Configuration Description file Configured system description

Configuration IED Description file

Configured IED description incl. device specific data beyond IEC 61850

Typical features of Device Specific Tools

- are strong in configuring dedicated device features also beyond IEC 61850
- work with application libraries
- do normally not handle the single line diagram since it is beyond one device
- working on-line with the devices

Typical features of System Configuration Tools

- allow top-down Engineering
- support the engineering of systems off-line from the specification
- are strong in reusing solutions and combining solution parts
- provide the administration of other project data like cubicle layouts
- support the creation of comprehensive project documentation

© ABB University Switzerland - 27 -

Main dependencies between tools

- State of the art tool support
- Automated configuration
- Open interfaces

Engineering

Tools

- State of the art device tool support
- Eng./Test/Com. Efficiency
- Common look and feel

References

- Etz-Report 34, VDE Verlag 2004 (allgemein + Engineering, German)
- Praxis profiline, IEC 61850, Juli 2005 (general + Engineering)
- Design of IEC61850 based Substation Automation Systems according to Customer Requirements, CIGRE B5 PS1 2004, Brand, Brunner, Wimmer
- IEC 61850 SCL more than interoperable data exchange, PSCC 2005 Liege, Wimmer
- Safety related distributed functions in Substations and the standard IEC 61850, IEEE BPT 2003 Milano, Brand, Ostertag, Wimmer
- Reliability investigations in SA architectures based on IEC 61850, IEEE PT 2005 Petersburg, Andersson, Brand, Brunner, Wimmer

