

PEF – 3528 – Ferramentas Computacionais na Mecânica das Estruturas Criação e Concepção

Aula 02

Valério S. Almeida - 2020 valerio.almeida@usp.br

SISTEMA LINEAR DE BARRAS COM MOLAS ELÁSTICAS

Em cada nó associam-se deslocamentos (U_1, U_2, U_3) e forças (R_1, R_2, R_3)

> Nesse exemplo: 3 graus de liberdade

> > 2

Matriz de rigidez:

relaciona forças nodais com deslocamentos nodais

Equações de equilíbrio:

 $F_{1}^{(1)} + F_{1}^{(2)} + F_{1}^{(3)} + F_{1}^{(4)} = R_{1}$ $F_{2}^{(2)} + F_{2}^{(3)} + F_{2}^{(5)} = R_{2}$ Eq. (2) $F_{3}^{(4)} + F_{3}^{(5)} = R_{3}$

Substituindo as Eqs. (1) na Eq. (2), tem-se o sistema linear a ser resolvido

$$\begin{bmatrix} (k_1 + k_2 + k_3 + k_4) & -(k_2 + k_3) & -(k_4) \\ -(k_2 + k_3) & (k_2 + k_3 + k_5) & -(k_5) \\ -(k_4) & -(k_5) & (k_4 + k_5) \end{bmatrix} \cdot \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_3 \end{bmatrix} = \begin{cases} R_1 \\ R_2 \\ R_3 \end{bmatrix}$$

K: Matriz de rigidez de toda a estrutura
U: vetor deslocamento nodais da estrutura
R: vetor de forças externas nodais da estrutura

Dimensão do problema: nr. todas de graus de

liberdade (ngdl)

MÉTODO DOS ELEMENTOS FINITOS (MEF)

MÉTODO CONFIÁVEL NA ANÁLISE EM ENGENHARIA

EVOLUÇÃO NATURAL

ANÁLISE MATRICIAL DE MODELOS RETICULADOS

ORIGEM: Argyris e Kelsey (1955), Turner et al. (1956)

Clough (1990): "... "the essential idea in the proposed Turner procedure was that the deformations of any plane stress element be approximated by assuming a combination of simple strain fields acting within the element..."

Argyris, J, Kelsey, S. 1960, Energy theorems and structural analysis, Aircraft Engineering, 1954 and 1955, reprinted by Butterworths Scientific Publications, London.

Turner, M, Clough, RW, Martin, HC and Topp, LJ,1956,Stiffness and deflection analysis of complex structures, J. Aeronaut. Sci., Vol. 23, pp. 805–823.

MÉTODO DOS ELEMENTOS FINITOS (MEF)

MÉTODO DOS ELEMENTOS FINITOS (MEF)

Método dos Elementos Finitos (MEF)

9

Método dos Elementos Finitos (MEF)

HIPÓTESES

- MECÂNICA DOS SÓLIDOS
- FORMULAÇÃO BASEADA EM DESLOCAMENTOS
- ANÁLISE ESTÁTICA
- ANÁLISE ELÁSTICA LINEAR

MÉTODO DOS ELEMENTOS FINITOS

Subdividir o domínio em subdomínios, em elementos finitos;

Aplicam as funções aproximadas para o campo das variáveis pertinentes nas EDPs de um problema de valor de contorno (PVC);

Para o caso de se basear no método dos deslocamentos, o campo aproximado é o dos deslocamentos, associados a parâmetros nodais.

MÉTODO DOS ELEMENTOS FINITOS

Partindo-se então das equações diferenciais de equilíbrio:

$$\sigma_{ij,j} + b_i = 0, \qquad i, j = 1, 2, 3$$

 $\overline{p}_i = p_i = \sigma_{ij} \cdot n_j$ em Γ_p i, j = 1,2,3 forças de superfície prescritas

 $\overline{u}_i = u_i$ em Γ_u i, j = 1, 2, 3

Método dos Resíduos Ponderados:

$$\int_{V} (\sigma_{ij,j} + b_i) \ \hat{u}_i \ dV = 0 \quad i, j = 1, 2, 3$$

 $\Gamma = \Gamma_p + \Gamma_u$

 \hat{u}_i : campo de deslocamentos contínuo e virtual, que satisfaça: $\hat{u}_i = 0$ em Γ_u

deslocamentos prescritos

Funções aproximadas (teste) – Trial Functions

Aplicando-se o teorema da divergência, e uma identidade matemática, tem-se:

$$\int_{V} \hat{\varepsilon}^{T} \cdot \sigma \quad dV = \int_{V} \hat{u} \cdot b \quad dV + \int_{S_{F_{m}}} \hat{u} \cdot \bar{p} \quad dS$$

12

MÉTODO DOS ELEMENTOS FINITOS

Na mecânica dos sólidos, é comum empregar o famoso método de Bubnov-Galerkin no PTV, o qual impõe que as funções pesos e admissíveis são iguais $u = \hat{u}_i$

Funções aproximadas

$$\hat{u} = H(x_i) \quad u^{nodal} \qquad i = 1,2,3$$
$$\hat{\varepsilon} = B(x_i) \quad u^{nodal} \qquad i = 1,2,3$$

H e B são as matrizes de interpolação de desloc. e deformação resultantes da função teste

Para um elemento finito genérico "e":

Lei constitutiva: Lei de Hooke

13

Para o elemento "e":

- K_e matriz de rigidez $(ngdl \ x \ nr \ nos \ elem)^2$
- F_{e} vetor resultante devido às forças externas
- u_e vetor dos deslocamentos nodais

Fazendo-se o somatório de todos os elementos "*ne*" que compõem o domínio em estudo:

$$K = \sum_{e=1}^{ne} \left[\int_{V_e} B_e^T D_e B_e dV \right]$$
$$F = \sum_{e=1}^{ne} \left[\int_{V_e} H_e^T b_e dV + \int_{S_{\Gamma_p}} H_e^T \overline{p}_e dS \right]$$

 $K \cdot u^{nodal} = F$

Para a estrutura total:

matriz de rigidez (nn x ngdl) x (nn x ngdl)

Vetor de forças nodais equivalentes (nn x ngdl), conhecidos Vetor de desloc. nodais (nn x ngdl), desconhecidos

nn: nr. de nós; ngdl: nr. de grau de liberdade de cada nó

FUNÇÕES TESTE – FUNÇÕES DE FORMA

As funções aproximações (teste):

escolhidas de modo que a aprox. melhore conforme nr. de termos das soluções aumente. Se isso ocorre, $\hat{u} = \tilde{u}$ é dito completa

Linearmente independente

 $\phi_i(x) = -$

Tem valor unitário no nó i e nulo nos outros nós.

Técnica de interpolação lagrangiana:

 $=\begin{cases} \frac{(x-x_{i-1})}{(x_i-x_{i-1})} & se \quad x_{i-1} \le x \le x \\ \frac{(x_{i+1}-x)}{(x_{i+1}-x_i)} & se \quad x_i \le x \le x_{i+1} \end{cases}$

 $\widetilde{u}(x) = \alpha_1 \phi_1(x) + \alpha_2 \phi_2(x) + \ldots + \alpha_i \phi_i(x) + \ldots + \alpha_n \phi_n(x)$

 $\alpha_i = u_i$

FUNÇÕES TESTE – FUNÇÕES DE FORMA

Muitas possibilidades de escolha da função teste - Famílias de elementos finitos!

MEF: MONTAGEM DA MATRIZ K

17

Características da matriz de rigidez (K)

ser altamente esparsa ser positiva-semi-definida ser simétrica ser bem estruturada

N*N=3,3.10⁷ N=2,3.10⁵ %nz=0,7% Matriz c/ 5800 linhas e colunas

18

MEF:

- Formulação local, facilita modelos não-lineares
 - Existem grande família de elementos finitos
 - Geometria complexa é imediato
- Dificuldade para aproximar campos singulares, gradientes de tensões, descontinuidades (Mec. Fratura)
 - Exige eficientes técnicas de remalhamento
 - Fácil realizar enriquecimento "*h*" localmente
 - Matrizes esparsas, simétricas e em banda

MEF – PÓRTICO PLANO

2 - DEFINIÇÃO DE MATRIZ DE RIGIDEZ E VETOR DE FORÇA NODAL LOCAL

Seja o pórtico plano qualquer, definido em um sistema de coordenadas global, conforme figura abaixo:

Toma-se um elemento genérico "j" conhecidos suas coordenadas neste sistema global, sua área, módulo de Young e momento de inércia, que são admitidos constantes ao longo do elemento.

Define-se um sistema local $(\overline{x}, \overline{y}, \overline{z})$ dextrorso, de modo que o eixo \overline{x} seja orientado do nó

local 1 para o nó final 2 e que os versores $z \in \overline{z}$ sejam idênticos.

Associam-se aos nós locais do elemento "j" os três graus de liberdade existentes no pórtico plano com sentido positivo indicado pelo sistema local, ou seja,

MEF – PÓRTICO PLANO

X

Deste modo, a barra genérica "j" pode ser indicada como:

MEF – PÓRTICO PLANO

1

onde:
$$\xi = \frac{x}{\ell}$$

Que pode ser representada matricialmente por:

$$\stackrel{\text{\tiny{\textcircled{}}}}{=} u(\xi) = \{1 \quad \varepsilon\} \cdot \begin{cases} \alpha_0 \\ \alpha_1 \end{cases}$$
(31)

Os parâmetros nodais a ser considerados são os deslocamentos longitudinais ui e uj no nós i e j. Portanto, impondo as condições de contorno:

E trabalhando os resultados, obtém-se:

 $\alpha_0 = ui$ $\alpha_1 = uj - ui$

► X

Chegando à seguinte relação entre parâmetros nodais e generalizados:

 $\begin{cases} \alpha_0 \\ \alpha_1 \end{cases} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{cases} ui \\ uj \end{cases}$

(32)

MEF – PÓRTICO PLANO

Determinação da Matriz de Rigidez para Elemento Finito de Treliça

Portanto:

 $\mathbf{u}(\boldsymbol{\xi}) = \{1 - \boldsymbol{\varepsilon} \quad \boldsymbol{\varepsilon}\} \begin{bmatrix} \mathbf{u} \\ \mathbf{u} \end{bmatrix}$

$$\phi_{t}] = \{1 - \varepsilon \quad \varepsilon\} \tag{34}$$

$$\{Un_t\} = \begin{cases} ui \\ uj \end{cases}$$

Que são, respectivamente, a função de forma e o Vetor de Deslocamentos Nodais para elementos de treliça.

Pode-se então, determinar a derivada segunda da função de forma:

$$[B_{t}] = \frac{d[\phi_{t}]}{d\xi} = \{-1 \ 1\}$$

(36)

(33)

(35)

Substituindo (34), (35) e (36) em (33), obtém-se as seguintes relações:

$$(\varepsilon) = [\phi_t] \cdot \{Un_t\}$$

$$(37)$$

$$\frac{du(\varepsilon)}{d\varepsilon} = [B_t].\{Un_t\}$$
(38)

Sabe-se que:

$$\varepsilon_{\chi} = \frac{du}{dx} = \frac{du}{d\varepsilon} \cdot \frac{d\varepsilon}{dx} = \frac{1}{\ell} \cdot \frac{du}{d\varepsilon}$$
(39)

Substituindo (38) em (39), fica:

$$\varepsilon_{\rm X} = \frac{1}{\ell} \cdot [\mathsf{B}_{\rm t}] \cdot \{\mathsf{Un}_{\rm t}\}$$
⁽⁴⁰⁾

Para treliça, temos:

$$\{\epsilon\} = \{\epsilon\}^{t} = \epsilon_{\chi} \tag{41}$$

 $\{\sigma\} = \{\sigma\}^{c} = \sigma_{\chi} = E.\varepsilon_{\chi}$ (42)

Substituindo (41) e (42) em (7), temos:

MEF – PÓRTICO PLANO

Determinação da Matriz de Rigidez para Elemento Finito de Treliça

$$[D] = [D]^{t} = \frac{\sigma_{\chi}}{\varepsilon_{\chi}} = \frac{E \cdot \varepsilon_{\chi}}{\varepsilon_{\chi}} = E$$
(43)

Substituindo (40), (41) e (42) em (2), fica:

$$U = \frac{1}{2} \int_{V} (\{Un_{t}\}^{t} \cdot [B_{t}]^{t} \cdot \frac{1}{\ell}) \cdot E \cdot ([B_{t}] \cdot \{Un_{t}\}) dV$$
$$U = \frac{1}{2} \cdot \{Un_{t}\}^{t} \cdot \left(\iint_{z \ y \ x} [B_{t}]^{t} \cdot \frac{1}{\ell^{2}} \cdot E \cdot [B_{t}] dxdydz \right) \cdot \{Un_{t}\}$$
(44)

Sabe-se que: $\left(\int_{Z} \int_{Y} dy dz = A \right)$ (área da seção transversal) e $dx = \ell . d\epsilon$. Substituindo

em (44), fica:

$$U = \frac{1}{2} \cdot \{Un_t\}^t \cdot \left(\int_0^1 [B_t]^t \cdot \frac{E \cdot A}{\ell} \cdot [B_t] d\epsilon \right) \cdot \{Un_t\}$$
⁽⁴⁵⁾

onde:

$$\int_{0}^{1} [B_{t}]^{t} \cdot \frac{E.A}{\ell} \cdot [B_{t}] \, d\epsilon \, \cdot \, \text{Matriz de Rigidez para um Elemento de Treliça } [K_{t}] \cdot (46)$$

Considerando E e A constantes, substituindo [Bt] (36) em (46) e efetuando as integrações, temos:

$$[\mathbf{K}_{t}] = \frac{\mathbf{E}\mathbf{A}}{\ell} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$(47)$$

Que é a Matriz de Rigidez para um Elemento Finito de Treliça sem considerar a variação de espessura (A constante).

MEF – PÓRTICO PLANO

Matriz de Rigidez para Elemento Finito de Viga de Euler-Bernoulli:

O elemento finito de viga (Fig. 2.1) é desenvolvido mediante a consideração de uma função aproximadora cúbica para representar o deslocamento transversal do tipo:

 $v(\xi) = \alpha_0 + \alpha_1 . \xi + \alpha_2 . \xi^2 + \alpha_3 . \xi^3$

onde: $\xi = \frac{x}{\epsilon}$ representa um sistema de coordenadas homogêneas.

Que pode ser representada matricialmente por:

$$v(\xi) = \{1 \quad \xi \quad \xi^2 \quad \xi^3\} \cdot \begin{cases} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{cases}$$

Onde se pode obter as rotações derivando a função dos deslocamentos, resultando:

(2.1)

$$\theta(\xi) = \frac{dv}{dx} = \frac{dv}{d\xi} \cdot \frac{d\xi}{dx} = (\alpha_1 + 2 \cdot \alpha_2 \cdot \xi + 3 \cdot \alpha_3 \cdot \xi^2) \cdot \frac{1}{\ell}$$

Os parâmetros nodais a ser considerados são os deslocamentos transversais vi e vj/e as rotações $\hat{\sigma} e \hat{\sigma}$ nos nós i e j. Portanto, impondo as condições de contorno existentes no extremo do elemento de viga nas relações de deslocamentos e de rotações, de maneira que seja satisfeito as seguintes condições:

$$v(\xi = 0) = vi$$
$$v(\xi = 1) = vj$$
$$\theta(\xi = 0) = \theta i$$
$$\theta(\xi = 1) = \theta j$$

Podemos expressar os parâmetros da função ponderada da seguinte forma:

$$\begin{split} \alpha_0 &= vi \\ \alpha_1 &= \mathcal{O}i.\ell \\ \alpha_2 &= -3.vi + 3.vj - 2.\mathcal{O}i.\ell - \mathcal{O}j.\ell \\ \alpha_3 &= 2.vi - 2.vj + \mathcal{O}i.\ell + \mathcal{O}j.\ell \end{split}$$

Os quais podem ser representados por:

MEF – PÓRTICO **PLANO**

$ \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = $	1 0 -3 2	0 ℓ - 2.ℓ ℓ	0 0 3 - 2	$\begin{bmatrix} 0\\ 0\\ -\ell\\ \ell \end{bmatrix}$	vi ∂i vj ∂j	
Substit	uindo	o (2.2) e	em (2.	.1), te	m-se	5
			Γ	1	0	0

vj Gj

 $v(\xi) = \{1 \quad \xi \quad \xi^2 \quad \xi^3\}. \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \ell & 0 & 0 \\ -3 & -2.\ell & 3 & -\ell \\ 2 & \ell & -2 & \ell \end{bmatrix} \begin{bmatrix} \theta_i \\ \theta_j \\ \theta_j \end{bmatrix}$

Então, o campo de deslocamento de um elemento de viga qualquer pode ser indicado por:

Matriz de Rigidez $v(\xi) = \{1 - 3.\xi^2 + 2.\xi^3 \quad \xi.\ell - 2.\ell.\xi^2 + \ell.\xi^3 \quad 3.\xi^2 - 2.\xi^3 \quad -\ell.\xi^2 + \ell.\xi^3 \}. \begin{cases} v_i \\ \theta_i \\ \theta_i \end{cases}$ para Elemento Finito de Viga de **Euler-Bernoulli:**

$$\begin{aligned} & \psi(\xi) = \{1 - 3.\xi^2 + 2.\xi^3 - \xi.\ell - 2.\ell.\xi^2 + \ell.\xi^3 - 3.\xi^2 - 2.\xi^3 - \ell.\xi^2 + \ell.\xi^3 \} \\ & \psi''_{\{\mathcal{G}\}} \end{aligned}$$

$$\begin{aligned} & [\phi] = \{1 - 3.\xi^2 + 2.\xi^3 - \xi.\ell - 2.\ell.\xi^2 + \ell.\xi^3 - 3.\xi^2 - 2.\xi^3 - \ell.\xi^2 + \ell.\xi^3 \} \\ & \{Un\} = \begin{cases} vi \\ \theta \\ \vdots \end{cases} \end{aligned}$$

Pode-se então, determinar a derivada segunda da função de forma:

$$[B] = \frac{d^2[\phi]}{d\xi^2} = \{-6 + 12.\xi - 4.\ell + 6.\ell.\xi - 6 - 12.\xi - 2.\ell + 6.\ell.\xi\}$$
(2.6)

Seguindo as hipóteses clássicas da resistência dos materiais para as vigas, apenas considera-se as tensões atuantes e deformações na direção do eixo x (σ_v e ε_v). As outras direções são desprezadas.

Com isto, têm-se, da Resistência dos Materiais, as seguintes hipóteses cinemáticas (Fig. 2.2):

Fig. 2.2 (Trecho de Viga Indeformada e Deformada)

 $u = -y . sen \theta$ (tem valor negativo devido ao sistema de referência $sen \theta =$ entre y e u) dv

Para ângulos muito pequenos: sen
$$\theta \cong \tan \theta \cong \theta \in \theta = \frac{1}{dx}$$
, portanto:
 $u = -y \cdot \frac{dv}{dx}$
Sabe-se que $\varepsilon_x = \frac{du}{dx}$, Então:
 $\varepsilon_x = -y \cdot \frac{d^2v}{dx^2}$
(2.7)

$$= -y \cdot \frac{dv}{dx^2}$$
(2.7)

Deixando (2.7) em função de ξ, temos:

$$\varepsilon_{x} = -y \cdot \frac{1}{\ell^{2}} \frac{d^{2}v}{d\xi^{2}} = -y \cdot \frac{1}{\ell^{2}} \cdot [B] \cdot \{Un\}$$
(2.8)

Para viga, temos:

(2.2)

(2.3)

(2.4)

(2.5)

$$\{\varepsilon\} = \{\varepsilon\}^t = \varepsilon_x \tag{2.9}$$

$$\{\sigma\} = \{\sigma\}^t = \sigma_x = E \cdot \varepsilon_x \tag{2.10}$$

Substituindo (2.9) e (2.10) em (1.7), temos:

$$[D] = [D]^{t} = \frac{\sigma_{x}}{\varepsilon_{x}} = \frac{E \cdot \varepsilon_{x}}{\varepsilon_{x}} = E$$
(2.11)

Substituindo (2.8), (2.9) e (2.10) em (1.2), fica:

Matriz de Rigidez para Elemento Finito de Viga de Euler-Bernoulli:

$$U = \frac{1}{2} \int_{V} \{Un\}^{t} \cdot [B]^{t} \cdot \frac{y^{2}}{\ell^{4}} \cdot E \cdot [B] \cdot \{Un\} dV$$
$$U = \frac{1}{2} \cdot \{Un\}^{t} \cdot \left(\iint_{z \ y \ x} [B]^{t} \cdot \frac{y^{2}}{\ell^{4}} \cdot E \cdot [B] dx dy dz \right) \cdot \{Un\}$$
$$Como \ dx = \ell \cdot d\xi \ e \ \iint_{z \ y} y^{2} dy dz = I_{z} \cdot fica:$$
$$U = \frac{1}{2} \cdot \{Un\}^{t} \left(\int_{z \ y} [B]^{t} \cdot \frac{1}{\ell} \cdot E \cdot [B] dx dy dz \right) \cdot \{Un\}$$

$$U = \frac{1}{2} \cdot \{Un\}^t \left(\int_0^1 [B]^t \cdot \frac{1}{\ell^3} \cdot EI_z \cdot [B] \ d\xi \right) \cdot \{Un\}$$
(2.12)

Onde:

$$\int_{0}^{1} [B]^{t} \cdot \frac{1}{\ell^{3}} E \cdot I_{z} \cdot [B] d\xi - \text{Matriz de Rigidez para Elementos de Viga [K]}.$$
(2.13)

Considerando E e Iz constantes, substituindo [B] (2.6) em (2.13) e efetuando as integrações temos:

$$[K] = \frac{EI_z}{\ell^3} \begin{bmatrix} 12 & 6.\ell & -12 & 6.\ell \\ 6.\ell & 4.\ell^2 & -6.\ell & 2.\ell^2 \\ -12 & -6.\ell & 12 & -6.\ell \\ 6.\ell & 2.\ell^2 & -6.\ell & 4.\ell^2 \end{bmatrix}$$
(2.14)

que é a Matriz de Rigidez para Elementos Finitos de Viga sem considerar a variação de espessura (Iz constante).

Determinação da Matriz de Rigidez para Elementos Finitos de Pórticos Planos

A Matriz de Rigidez para Elemento Finito de Pórtico Plano pode ser determinada através da união entre a Matriz de Rigidez para Elemento Finito de Viga (Equação (26)) com a Matriz de Rigidez para Elemento Finito de Treliça (Equação (47)).

Isso se deve ao fato de os pórticos planos terem como incógnitas nodais duas translações (deslocamentos longitudinais (U) e transversais (V)) e uma rotação (giro (θ)).

Unindo (26) e (47), obtém-se a seguinte matriz de rigidez para pórticos planos considerando o sistema de coordenadas locais para cada elemento, ou seja, o eixo x acompanha a inclinação de cada trecho distinto do pórtico:

$$[K_p] = \begin{bmatrix} \frac{E.A}{\ell} & 0 & 0 & -\frac{E.A}{\ell} & 0 & 0\\ 0 & \frac{12.EI}{\ell^3} & \frac{6.EI}{\ell^2} & 0 & -\frac{12.EI}{\ell^3} & \frac{6.EI}{\ell^2}\\ 0 & \frac{6.EI}{\ell^2} & \frac{4.EI}{\ell} & 0 & -\frac{6.EI}{\ell^2} & \frac{2.EI}{\ell}\\ -\frac{E.A}{\ell} & 0 & 0 & \frac{E.A}{\ell} & 0 & 0\\ 0 & -\frac{12.EI}{\ell^3} & -\frac{6.EI}{\ell^2} & 0 & \frac{12.EI}{\ell^3} & -\frac{6.EI}{\ell^2}\\ 0 & \frac{6.EI}{\ell^2} & \frac{2.EI}{\ell} & 0 & -\frac{6.EI}{\ell^2} & \frac{4.EI}{\ell} \end{bmatrix}$$

Que é a Matriz de Rigidez para um Elemento Finito de Pórtico Plano sem considerar a variação de espessura (Iz e A constantes). 28

(49)

Vetor de Forças Nodais Equivalentes para Treliça:

Considere a força externa linearmente distribuída no elemento de treliça (Fig. 6.1):

Fig. 6.1 (Força Externa Linearmente Distribuída no Elemento de Treliça)

Considere também o sistema de coordenadas local a cada elemento finito, ou seja, os eixos x e y acompanham a inclinação de cada elemento. A carga externa P varia linearmente através das seguintes relações de t_1 e t_2 (contribuição transversal da carga externa) e de u_1 e u_2 (contribuição vertical da carga externa):

$$P_{t}(\xi) = \{1 - \xi \quad \xi\} \cdot \begin{cases} t_{1} \\ t_{2} \end{cases} = [\overline{\phi_{t}}] \cdot \begin{cases} t_{1} \\ t_{2} \end{cases}$$

$$P(\xi) = \{1 - \xi \quad \xi\} \cdot \begin{cases} u_{1} \\ u_{2} \end{cases} = [\overline{\phi_{t}}] \cdot \begin{cases} u_{1} \\ u_{2} \end{cases}$$

$$(6.1)$$

$$(6.2)$$

Têm-se de (1.1) que:

$$\Omega = -\int_{0}^{\ell} \{P_{t}(x)\}^{t} \cdot \{u(x)\} \ dx = -\int_{0}^{1} \{P_{t}(\xi)\}^{t} \cdot \{u(\xi)\} \cdot \ell \ d\xi \tag{6.3}$$

Substituindo (6.1) e (6.2) em (6.3), têm-se:

$$\Omega = -\int_{0}^{1} \{ [\overline{\phi_{t}}] \cdot \begin{bmatrix} t_{1} \\ t_{2} \end{bmatrix} \}^{t} \cdot [\overline{\phi_{t}}] \cdot \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} \cdot \ell \ d\xi \text{, que fica:}$$
$$\Omega = -\{t_{1} \quad t_{2}\} \cdot \ell \left(\int_{0}^{1} [\overline{\phi}]^{t} \cdot [\phi] \ d\xi \right) \cdot \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

Substituindo as Expressão da Função de Forma expressas em $\overline{\phi}_t(6.1)$ e $\overline{\phi}_t(6.2)$ em (6.4) e efetuando as integrações, obtém-se:

$$\Omega = -\{u_1 \quad u_2\} \cdot \ell \cdot \begin{pmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} \end{pmatrix} \cdot \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$
(6.5)

Desenvolvendo e utilizando o princípio da mínima energia potencial, chega-se à:

$$\{f_t\} = \begin{pmatrix} \left(\frac{1}{3}.t_1 + \frac{1}{6}.t_2\right).\ell \\ \left(\frac{1}{6}.t_1 + \frac{1}{3}.t_2\right).\ell \end{pmatrix}$$
(6.6)

Que é o Vetor de Forças Nodais Equivalentes para Elementos Finitos de Treliça com Carga Distribuída Variando Linearmente {ft}.

Para o caso de força distribuída ser constante, ou seja, $t_1 = t_2 = t$, a equação (6.6) fica:

$$\{f_t\}_c = \begin{pmatrix} \frac{t.\ell}{2} \\ \frac{t.\ell}{2} \end{pmatrix}$$
(6.7)

Que é o Vetor de Forças Nodais Equivalentes para Elementos Finitos de Treliça com Carga Distribuída Constante {ft}c.

(6.4)

MEF – PÓRTICO PLANO

Vetor de Forças Nodais Equivalentes para Viga:

(3.1)

Fig. 3.1 (Força Externa Linearmente Distribuída no Elemento de Viga)

Onde
$$\xi = \frac{x}{\ell}$$

A carga externa P varia linearmente através da seguinte relação de
$$g_1 e g_2$$
:
 $P(\xi) = \{1 - \xi \quad \xi\} \cdot \begin{cases} g_1 \\ g_2 \end{cases} = [\overline{\phi}] \cdot \begin{cases} g_1 \\ g_2 \end{cases}$

Portanto:

$$[\bar{\phi}] = \{1 - \xi \ \xi\}$$
(3.2)

Que é a Função de Forma.

Têm-se, de (1.1) que $\Omega = -\int_{\Gamma} \{P\}^{t} \{v\} d\Gamma$.

Transformando (1.1) para o contorno $\Gamma\,$ ficar em função de $\,\xi\!=\!\!x/\,\ell\,,\,fica:$

$$\Omega = -\int_{0}^{t} \{P(x)\}^{t} \{v(x)\} \ dx = -\int_{0}^{1} \{P(\xi)\}^{t} \{v(\xi)\} \ \ell \ d\xi$$
(3.3)

Têm-se de (2.3) que:

$$v(\xi) = \{1 - 3, \xi^2 + 2, \xi^3 \quad \xi. \ell - 2, \ell. \xi^2 + \ell. \xi^3 \quad 3, \xi^2 - 2, \xi^3 \quad -\ell. \xi^2 + \ell. \xi^3\}, \{Un\} = [\phi], \{Un\} \in [\psi], \{Un\}$$

Onde o vetor {Un} pode ser verificado em (2.5).

Substituindo (2.3) e (3.1) em (3.3), têm-se:

$$\Omega = - \int_{0}^{1} \{ [\overline{\phi}] . \begin{cases} g_1 \\ g_2 \end{cases} \}^t . [\phi] . \{Un\} . \ell \ d\xi$$

que fica:

$$\Omega = -\{g_1 \quad g_2\} \ell \left(\int_0^1 [\vec{\phi}]^t . [\phi] \ d\xi \right) \{Un\}$$
(3.4)

Substituindo as Expressões das Funções de Forma $\overline{\phi}$, Eq. (3.2) e ϕ , Eq. (2.4) na Eq. (3.4) e efetuando as integrações utilizando os recursos do programa "Mathcad 2000 Professional", têm-se:

$$\Omega = -\{g_1 \ g_2\}\ell \begin{pmatrix} \frac{7}{20} & \frac{\ell}{20} & \frac{3}{20} & \frac{-\ell}{30} \\ \frac{3}{20} & \frac{\ell}{30} & \frac{7}{20} & \frac{-\ell}{20} \end{pmatrix} \{Un\}$$

Que pode ser escrita como:

$$\Omega = -\{U\eta\}^{t} \begin{pmatrix} \frac{7.\ell}{20} & \frac{3.\ell}{20} \\ \frac{\ell^{2}}{20} & \frac{\ell^{2}}{30} \\ \frac{3.\ell}{20} & \frac{7.\ell}{20} \\ -\frac{\ell^{2}}{30} & \frac{-\ell^{2}}{20} \end{pmatrix} \begin{cases} g_{1} \\ g_{2} \\ g_{2} \\ \end{array}$$

Desenvolvendo (3.6) chega-se à:

$$\Omega = -\{Ur\}^{t} \begin{pmatrix} \left(\frac{7}{20} \cdot g_{1} + \frac{3}{20} \cdot g_{2}\right) \ell \\ \left(\frac{1}{20} \cdot g_{1} + \frac{1}{30} \cdot g_{2}\right) \ell^{2} \\ \left(\frac{3}{20} \cdot g_{1} + \frac{7}{20} \cdot g_{2}\right) \ell \\ \left(-\frac{1}{30} \cdot g_{1} - \frac{1}{20} \cdot g_{2}\right) \ell^{2} \end{pmatrix}$$

(3.7)

(3.5)

(3.6)

Para se obter o Vetor da Forças Nodais Equivalentes, é necessário minimizar a equação (3.7):

Vetor de Forças Nodais Equivalentes para Viga:

Obtendo-se:

$$\{f\} = \begin{pmatrix} \left(\frac{7}{20} \cdot g_1 + \frac{3}{20} \cdot g_2\right) \cdot \ell \\ \left(\frac{1}{20} \cdot g_1 + \frac{1}{30} \cdot g_2\right) \cdot \ell^2 \\ \left(\frac{3}{20} \cdot g_1 + \frac{7}{20} \cdot g_2\right) \cdot \ell \\ \left(-\frac{1}{30} \cdot g_1 - \frac{1}{20} \cdot g_2\right) \cdot \ell^2 \end{pmatrix}$$

(3.8)

Que é o Vetor de Forças Nodais Equivalentes para Elementos Finitos de Viga com Carga Distribuída Variando Linearmente {f}.

Para o caso de força distribuída ser constante, ou seja, $g_1 = g_2 = g$, o vetor de forças nodais equivalentes fica:

$$\left\{\left\{f\right\}_{c} = \left(\begin{array}{c} \frac{g.\ell}{2} \\ \frac{g.\ell^{2}}{12} \\ \frac{g.\ell}{2} \\ \frac{g.\ell}{2} \\ \frac{g.\ell^{2}}{12} \\ \frac{g.\ell^{2}}{12} \end{array}\right)$$

(3.9)

Que é o Vetor de Forças Nodais Equivalentes para Elementos Finitos de Viga com Carga Distribuída Constante {f}c.

MEF – PÓRTICO PLANO

Vetor de Forças Nodais Equivalentes para Pórtico Plano (distribuída):

MEF – PÓRTICO PLANO

Sistema algébrico do elemento no eixo local:

Que pode ser escrita com a seguinte redação:

$$[k]_{6X6} \cdot \{\delta\}_{6x1} = \{f\}_{6x1}$$

- [k] : matriz de rigidez para o elemento de pórtico plano prismático no sistema local com E,I, A constantes.
- $\{\delta\}, \{f\}$: vetor de deslocamentos e forças nodais equivalentes nodais do elemento, sistema local.

TRANSFORMAÇÕES DE COORDENADAS PARA PÓRTICO PLANO

Seja um vetor V contido no plano *xy*, de versores (e_1, e_2) . Defina-se um sistema cartesiano local (\bar{x}, \bar{y}) , de versores (\bar{e}_1, \bar{e}_2) , também contido no plano *xy*, mas rotacionado (sentido positivo dextrorso) de um ângulo α entre o eixo *x* e este novo eixo \bar{x} , conforme esquematizado na figura abaixo.

🖌 zliz

O vetor V pode ser decomposto como:

$V = V_{\overline{x}} \cdot \overline{e_1} + V_{\overline{y}} \cdot \overline{e_2}$		(23)
$E \\ V_x = V_{\overline{x}} \cdot \cos \alpha + (-)V_{\overline{y}} \cdot sen\alpha$	$V_{y} = V_{\overline{x}} \cdot sen\alpha + V_{\overline{y}} \cdot \cos\alpha$	(24)
Assim, a eq. (24) pode ser escrita matr $\begin{cases} V_x \\ V_y \end{cases} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \cdot \begin{cases} V_{\bar{x}} \\ V_{\bar{y}} \end{cases}$	icialmente como:	(25)

A matriz que relaciona as componentes no sistema $(x, y) \in (\bar{x}, \bar{y})$ é dita matriz de transformação de bases e é também ortogonal. Sabe-se da álgebra que se uma matriz é ortogonal, por exemplo, a matriz [*A*], é possível demonstrar que: $[A]^{-1} = [A]^T$ (26)

Ou seja, a inversa de uma matriz é sua transposta. Relembrando que uma matriz transposta é definida conforme um exemplo indicado na relação (27):

	a_{11}	a_{12}	a ₁₃			a_{11}	a ₂₁	a ₃₁	
4]=	a ₂₁	a ₂₂	a23	-	$[A]^T =$	a ₁₂	a ₂₂	a32	
	a_{31}	a ₃₂	a33]			a ₁₃	a ₂₃	a33]	

Assim, na relação (25), usando a propriedade de ortogonalidade da matriz de transformação, é possível redigi-la da seguinte forma:

$$\begin{cases} V_{\overline{x}} \\ V_{\overline{y}} \end{cases} = \begin{bmatrix} \cos \alpha & sen\alpha \\ -sen\alpha & \cos \alpha \end{bmatrix} \cdot \begin{cases} V_{x} \\ V_{y} \end{cases}$$
(28)

Ou

$$\begin{cases}
V_{\bar{x}} \\
V_{\bar{y}}
\end{cases} = \left[\hat{R}\right] \cdot \begin{cases}
V_x \\
V_y
\end{cases}$$
(29)

Onde R é dita matriz de rotação.

Voltando para a barra de pórtico plano genérica "j", pode-se transformar os vetores deslocamentos locais para um sistema global.

$$\begin{cases} U_1^G \\ V_1^G \\ \theta_1^G \end{cases} = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ v_1 \\ \theta_1 \end{bmatrix}$$
(30)

Expandi	ndo pa	ra consid	dera	ar o nó	local 🕑	$)_{:}$	
$\begin{bmatrix} U_1^G \end{bmatrix}$	cosα	– sen α	0	0	0	0]	$\begin{bmatrix} u_1 \end{bmatrix}$
V_1^G	senα	cosα	0	0	0	0	$ v_1 $
$ \theta_1^G $	0	0	1	0	0	0	$ \theta_1 $
U_2^G	0	0	0	cosα	– senα	0]u ₂
V_2^G	0	0	0	senα	cosα	0	$ v_2 $
$\left[\theta_{2}^{G} \right]$	0	0	0	0	0	1	$\left[\theta_{2} \right]$

(31)

(27)

TRANSFORMAÇÕES DE COORDENADAS PARA PÓRTICO PLANO

(32)

(34)

Ou $\{U\}^{e}_{6x1} = \begin{bmatrix} \begin{bmatrix} \overline{R} \end{bmatrix}^{T} & \begin{bmatrix} 0 \\ \\ \end{bmatrix} \end{bmatrix} \cdot \{\mathcal{S}\}_{6x1} \rightarrow \{U\}^{e}_{6x1} = \begin{bmatrix} R \end{bmatrix}^{T} \cdot \{\mathcal{S}\}_{6x1}$

De maneira correlata, a mesma transformação é aplicada ao vetor de forças, assim: ${F}_{6x1}^{e} = [R]_{6x6}^{T} \cdot {f}_{6x1}$ (33)

Com a matriz de rotação transposta definida como:

	$\cos \alpha$	$-sen\alpha$	0	0	0	0	
	senα	$\cos \alpha$	0	0	0	0	
[p]]	0	0	1	0	0	0	;
[K] =	0	0	0	$\cos \alpha$	$-sen\alpha$	0	
	0	0	0	senα	$\cos \alpha$	0	
	0	0	0	0	0	1	

Ou, definida na forma direta:

[<i>R</i>]=	$\cos \alpha$	senα	0	0	0	0]
	– senα	$\cos \alpha$	0	0	0	0
	0	0	1	0	0	0
	0	0	0	$\cos \alpha$	senα	0
	0	0	0	$-sen\alpha$	$\cos \alpha$	0
	0	0	0	0	0	1

Onde

 ${U}^{e}$: vetor de deslocamentos nodais do elemento, no **sistema global**; ${F}^{e}$: vetor de forças nodais equivalentes do elemento, **sistema global**.

A equação (22), deve também ser equacionada para o sistema de referência global.

$$[k]_{\delta X \delta} \cdot \{\delta\} = \{f\}$$

$$(22)$$

Isto é feito, aplicando as propriedades de ortogonalidade da matriz de rotação sobre as relações (32) e (33) em (22), da seguinte maneira:

$$[k]_{6X6} \cdot \{\delta\} = [R] \cdot \{F\}^e \to [k]_{6X6} \cdot [R] \cdot \{U\}^e = [R] \cdot \{F\}^e$$

$$(35)$$

Pré-multiplicando a relação (35) por $[R]^{-1}$: $[R]^{-1} \cdot [k]_{6X6} \cdot [R] \cdot \{U\}^e = [R]^{-1} \cdot [R] \cdot \{F\}^e$ (36)

Lembrando da álgebra que $[A]^{-1} \cdot [A] = [I]$, onde *I* é a matriz identidade e da definição (26), a expressão (36) resulta em: $[R]^T \cdot [k]_{6X6} \cdot [R] \cdot \{U\}^e = \{F\}^e$ (37) Ou de modo compacto: $[K]^e_{6X6} \cdot \{U\}^e = \{F\}^e$ (38)

TRANSFORMAÇÕES DE COORDENADAS PARA PÓRTICO PLANO

$\begin{bmatrix} K \end{bmatrix}_{6X6}^{e} = \begin{bmatrix} R \end{bmatrix}^{T} \cdot \begin{bmatrix} k \end{bmatrix} \cdot \begin{bmatrix} R \end{bmatrix}$ (39)

 $[K]^{e}$: matriz de rigidez do elemento, no **sistema global**;

Resumindo, para cada elemento:

i) Definem-se carga distribuída, área, inércia, módulo de elasticidade e seus nós inicial e final, de modo que seu sistema local já fique determinado;

ii) Calcula seus cossenos diretores (*cos* e *sen*) e comprimento;

iii) Obtém as forças nodais equivalentes no sistema local;

- iv) Obtem a matriz de rigidez no sistema local;
- v) Obtem a matriz de rotação, relação (34);

vi) Obtém as forças nodais equivalentes no sistema global, eq. (33), usando a relação das forças nodais equivalentes no sistema local;

vii) Obtem a matriz de rigidez no sistema global, eq. (39), usando a matriz de rigidez no sistema local.