
NSF Cloud 3.0 Workshop Report

January 18-19, 2018, Stanford, CA

Organized by: Aditya Akella (UW-Madison), George Porter (UC San Diego), Keith Winstein

(Stanford)

Table of Contents

Table of Contents

Introduction and Report Overview

Applications
Edge cloud based network functions
Large scale video and image analytics
Data Science in the serverless world
Enabling domain scientists
New security capabilities
Publish-subscribe applications
Monitoring
Laptop/desktop extensions
Cloud-native applications

FaaS Building Blocks
Networking and systems

Low-latency execution and scheduling
Fine-grained resource sharing
Server-network interface
Inter-Lambda/Thread communication
Managing state
Tracing and debugging

Security
Programming models

Barriers and Solutions
What are barriers to conducting research on serverless?
What new testbeds, datasets, or tools could be provided to enable research in this area?

Testbeds
Data, broadly defined

Resources

Closing

Workshop Participants

Pointers to Full Workshop Resources

Introduction and Report Overview

Cloud computing has revolutionized the computing landscape in the last decade, turning
what was once a specialized resource -- high-performance networked computing platforms
-- into a convenient and efficient commodity. The ability to scale out computing workloads
and network services has been an enormous driver of innovation in industry, academia,
and beyond.

Despite this growth, cloud computing, and cloud-computing research, has largely been
stuck in an archaic computational paradigm: the renting of whole servers (virtual or
physical), each with an allocation of CPU, RAM, storage, and network connectivity. With this
model comes a host of issues that cloud providers and cloud users have attempted to
paper over, with mixed success: inefficient allocation of computing and network resources,
budget overruns, unresponsive elastic scaling in response to varied demands, difficulty
securing whole-server/whole-OS platforms, and clumsy and low-level programming
environments.

Recognizing the above challenges, cloud providers have recently begun to offer "serverless"
cloud computing, in which cloud users only need specify the application code to be run in
response to some event; the cloud provider handles the rest (scaling, provisioning, security,
resource allocation, etc.). An early version was Platform-as-a-service (PaaS), exemplified by
Google’s App Engine, which followed even earlier serverless models, such as shared web
hosting and CGI scripting. A more recent popular recent variant of serverless computing is
Function as a Service (FaaS), which forms the primary focus of this report. In the most
common style of FaaS, compute tasks are specified as individual functions to be launched
dynamically across available resources when triggered by external events. Some in the
industry have started to refer to FaaS as Cloud version 3.0, or “Cloud 3.0”.

In what follows, we will abuse terminology somewhat and use “serverless” and “FaaS”
interchangeably. We will distinguish other forms of serverless computing where necessary.

In one view, FaaS may be the “packet switching” equivalent of cloud computing, with
services composed of very granular, fine timescale tasks, compared with services that rent
whole machines by the minute, which are more akin to “circuit switching.” As with the

advent of packet switching more than a half-century ago, the true promise and downsides
of FaaS computing may not be clear for many years, and incumbents who are wedded to
older models could staunchly oppose it--likely with some merit. This new cloud computing
model requires new techniques and enables new applications, but ​which​ applications are
most able to benefit remains to be seen. Research has only just begun to emerge in this
space.

The NSF Cloud 3.0 Workshop was convened to study new directions in FaaS/serverless
cloud computing. One goal of the workshop was to understand existing offerings in FaaS,
their capabilities, and which applications benefit most from them (and how). Another goal
was to explore how FaaS might look like in the limit; for example, to what extent can
advances in systems and networking support even more stringent performance than
today’s FaaS offerings? A related goal here was to explore hitherto unseen applications that
might exploit such future FaaS platforms, and which applications or use-cases are
fundamentally a poor fit for FaaS. The discussion was meant to be broad, to include various
possible FaaS instantiations, e.g., third-party based serverless offerings vs. FaaS
infrastructure put in place by an enterprise to supports its internal applications (akin to a
private cloud today).

The participants were asked to identify themes and directions for new research in
serverless computing, both at the infrastructure level (i.e., research on cloud platforms
themselves) and at the application level (i.e., research on innovative ways of leveraging
FaaS). The participants represented a wide range of expertise on systems, networking, and
security from both academia and industry. Before the workshop, participants were asked
to submit position papers describing their current research and their views on promising
research avenues. The workshop was organized around numerous breakout sessions each
of which focused on specific sub-areas of research in serverless computing. The breakout
sessions then reported back to the larger group and the findings were used to guide
subsequent breakout sessions. Two industry participants, one from Google and another
from Microsoft, were invited to present to the group about their efforts in cloud computing.

This workshop report summarizes the findings of the workshop. We identify key research
challenges in support for existing applications, as well as new hitherto unseen applications,
and new grand research challenges both in core networking and systems, as well as
cross-cutting challenges, aimed at future fundamental advances in FaaS. We conclude by
outlining barriers to conducting research in this exciting space and offer our thoughts on
overcoming them.

Applications

A key issue that arises is what scenarios is FaaS inherently suited or not suited for. FaaS can
help improve flexibility in developing and deploying applications. It can also help offer

improvements in performance (latency, scale-in/out, etc) and availability compared to
alternative ways of deploying applications. In what follows, we present example
applications where FaaS could ​potentially​ offer benefits. This list is by no means exhaustive,
but is merely meant as a starting point for exploration and discussion. We also outline
challenges to realizing said benefits. Some of the benefits hinge on key advancements to
the underlying platforms so as to ensure suitable performance, availability, security, and
programming for current or future applications leveraging FaaS; we visit these issues in a
subsequent section.

Edge cloud based network functions

Especially in the context of edge clouds, the combination of NFV and serverless computing
can be quite powerful in enabling the seamless on-demand execution of specialized packet
processing for end devices. For example, application-specific lambdas executed with an
NFV framework in an edge cloud could be tailored to the specific needs of end-device
traffic from sources such as video streaming, group collaboration, or security-sensitive
applications. Service providers could offer such network-based enhanced service and
end-users (or the applications they use) could selectively and dynamically invoke those
in-network services as needed.

While serverless environments can be used very cost effectively for large-scale parallel
processing data analytics applications, it is less clear if networked applications, such as
middleboxes and routing/switching, can also benefit from these new computing services as
they do not share the same characteristics. Performance targets for traditional cloud-based
applications may not translate well to the needs of NFV. For instance, a key issue is
obtaining high performance for network functions that must maintain state across packets,
which requires accessing an external store. (State management in serverless computing is
a fundamental research challenge in itself; we will visit this topic shortly.) Thus, a broad
research area examining fundamental constraints existing platforms impose but also
exploring how to offer the necessary architectural support for a range of network
functionality, including routing, switching, middleboxes and application-level gateways.
Exploring workloads such as these will be crucial for identifying if and how cloud-native
designs can be realized for various important and “extreme” use-cases.

Large scale video and image analytics

These applications play a central role in a variety of tasks, ranging from broad questions
such as image recognition challenges, to traffic and environment monitoring, and public
safety. It is therefore important to consider how these applications can leverage the
serverless world to achieve “burst-parallel” brief execution across thousands of nodes. FaaS
services can offer much promise to such streaming analytics tasks. These applications can
be particularly challenging because they use not just CPUs but GPUs and FPGAs as well,

and may stress many resource management and programming systems for serverless
computing. Beyond today’s video, it would be interesting to explore the processing of 3D
sensors (LiDaR, stereo cameras) using serverless computing, under the assumption that
streams of these sensors will become feasible in the near future. A key question here is to
understand FaaS’s suitability as a real-time execution platform. Subtly tied to this issue is
the availability of data. If one has to upload a chunk of video, the time to do so may likely
overshadow the analytics time. If it is a streaming live video that is being analyzed, the
real-time nature of the FaaS platform will be stressed more.

Data Science in the serverless world

What is the role of FaaS in machine learning (ML) applications? There are two ways to
consider this issue. ML applications can be run on platforms that offer “ML-as-a-service”;
here FaaS plays the role of helping coordinate ML-as-a-service. Another option is to run ML
applications atop FaaS -- where FaaS plays a role in implementing ML applications. Key
issues arise in both scenarios. For example, in the latter case, we must ask: How do we
enable new ML applications (e.g., large-scale and long running analytics over constantly
evolving datasets) using serverless computing? More generally, how do we enable data
science pipelines in the serverless world? Enabling such applications can have the road
benefit of democratizing data analytics, or data science more generally. Two main
challenges stand out. First, serverless computing, as of today, is priced much higher than
doing the same unit of computing using rented VMs. If we intend to process live HD data
streams 24x7, for example, this can be uneconomical. Second, 24x7 ML processing does
not readily lend itself to the model of short-lived functions. A key research topic will involve
how to build stateful and reliable long-standing computations out of serverless
infrastructure, to support, for example, life-long learning applications. Another key
question is building suitable scheduling and orchestration infrastructure for data science
pipelines that is easy and flexible to program and control.

There are a number of other interesting systems-building challenges. As serverless
functions are stateless there is a need for systems support to enable cross-function
communication in the form of shuffles, broadcasts, reduces etc. Furthermore, there are a
number of resource limitations such as fixed amount of memory, limited CPU time which
restrict the kind of workloads that can be executed. Designing automatic ways to adapt
existing workloads or developing new interfaces which can allow users to express
applications like iterative ML algorithms would expand the class of workloads that can
benefit from serverless technology.

Enabling domain scientists

While new computational methods create a multitude of data by-products, the root of the
Big Data revolution is in the fact that instruments produce more data, more complex data,
and that we build increasingly more interesting complex instruments. Working with those

online data producers typically means that timeliness of response is at a premium, both in
order to “steer” an instrument effectively and to develop a feasible “conversation”. The
ability to manage overall response times implies the delivery of an end-to-end quality of
service which in turn implies controlled execution over various components of the system.
A key challenge is enabling serverless execution with the property of timeliness (or even
better the capability to trade-off timeliness against other qualities of service). This would
revolutionize all the existing experimental and observational sciences, and enable new
critical applications such as personalized medicine.

New security capabilities

Can serverless platforms enable new, and more cost-effective security solutions? For
example, serverless computing can enable interesting new moving target defenses.
Likewise, it can provide scalable and cost-effective DDoS defense systems. A broad
question is understanding the envelope of security issues for which serverless provides
“better” solutions than existing fixed function security solutions. A related question is
whether FaaS may make it harder to have good performance and protect against
compromises such as Spectre or Meltdown. Another question is: what can an attacker
“learn” in a serverless world vis-a-vis today’s VM-driven or server-driven workloads?

Publish-subscribe applications

At one end of the spectrum, serverless computing enables programming with containers
that are very similar to server environments with computation, storage, and network
resources available as in a Linux server. At the other end of the spectrum, serverless
computing enables each event to have its own computing, storage, and networking
resources on an event basis. This is a natural fit for applications such as publish and
subscribe systems.

Monitoring

Cloud1.0/2.0 has made it possible to talk about and offer Monitoring-as-a-Service (MaaS);
that is, the ability for an enterprise to spin up virtual appliances (with monitoring
capabilities such detailed packet capture) pretty much anywhere in its network (e.g., cloud
and non-cloud portions) and for any desired duration. MaaS typically results in big data in
the form of distributed streaming data, but their analysis in support of real-time network
management solutions remains an open problem. Is serverless computing a part of a
practically deployable solution to this problem? An interesting issue is to explore how such
distributed streaming data can be queried in real time to develop novel approaches to
cyber security and new solutions to network performance-related problems. In particular,
what new capabilities serverless computing can offer to address the real-time constraints

and scalability issues (e.g., data rates, number of simultaneous queries) that make this a
“hard” problem?

Laptop/desktop extensions

To move “traditional” applications to a serverless platform, we need mechanisms for
running computations over FaaS that can automatically capture the inputs and processes
of existing computational applications and run them faithfully with high parallelism. The
broader vision can be achieved by doing this via a “laptop extension” where processes in
the cloud see the environment as local ones. The low startup time of serverless platforms
may let us transparently offload tasks from traditional computing environments.

Cloud-native applications

The next generation of services and systems must take a critical step forward to fully utilize
emerging cloud platforms. Such “cloud-native systems” are designed not just to take
advantage of the rentable nature of computing infrastructure, but intrinsically utilize
now-standard as well as emerging cloud services to realize their end goals. For example,
scalable, reliable distributed storage (e.g, Amazon’s S3, Google’s Cloud Storage, Azure’s
Blob Storage) is now ubiquitous; these services form a strong storage base upon which to
build applications and services, instead of simple collections of raw storage resources (e.g.,
disk drives). Similarly, new serverless compute platforms (such as Amazon’s Lambdas,
Google Cloud Functions, or Azure Functions) enable users to launch small pieces of
computation on demand, scaling up or down readily to take advantage of workload
parallelism, all without considering issues such as server provisioning or maintenance.
Cloud-native systems exploit base cloud services to realize new, more flexible,
high-performance, reliable systems and services more readily than ever before. A key issue
is outlining cloud-native principles that underlie this vision with a view on FaaS. ​We must
understand how to align today's cloud application services / architectures with FaaS and
develop the principles of this integrated approach.​ The principles, when applied correctly,
can showcase new points in the systems and networking design space which are directly
enabled by this modern version of the cloud.

FaaS Building Blocks

In what follows, we outline the research opportunities pertaining to improving FaaS
offerings themselves, in terms of improving performance, availability, state management,
programmability, moinitoring, etc. Opportunities for research into applications built on top
of FaaS were presented in the previous section. We envision applications running atop FaaS
to have a variety of service level objectives (SLOs), ranging from tight, low latency
requirements on the one extreme to loose requirements that focus on the overall cost of

running the applications’ computation. An ideal serverless platform should be able to
optimally support different application SLOs.

Networking and systems

Low-latency execution and scheduling

Benchmarking of AWS Lambda and Google Cloud Functions shows that the latency for
launching functions can be 10s to 100s of milliseconds. We need to bring this latency down,
ideally to sub-10ms scales. Potential avenues of research include container reuse, very fast
container spin up, and predicting/prefetching inputs over the network.

Fine-grained resource sharing

As serverless functions leverage computation resources beyond CPUs and moves to GPUs
and FPGAs, fine-grained sharing of these resources will pose significant challenges. For
example, existing GPU manufacturers provide limited isolation support between multiple
application processes running on the same GPU and forces users to choose between high
performance and low cost. Given that a function typically requires a fraction of a GPU’s
resources, allocating a complete GPU to one user is inefficient. We should explore how to
perform fine-grained sharing of GPUs and FPGAs at the level of individual functions and
users. Ensuring end-to-end isolation is another classic challenge that will only become
more challenging in the serverless world when a function goes through a variety of
resources with unique constraints.

Server-network interface

When multiple applications are multiplexed atop FaaS platforms, we can arrive at a
situation where we need the underlying compute infrastructure to support flexible,
hierarchical network policies; e.g., a hierarchy of rate-limits, priorities and weights specified
across different applications, some of which have tight latency requirements, and other
have elastic performance needs. Such requirements are difficult to support today. In
particular, with current NICs, cloud operators must either 1) use a single NIC queue and
enforce network policy in software, which incurs high CPU overheads and struggles to drive
increasing linerates, or 2) use multiple NIC queues and accept that it is no longer possible
to isolate competing applications or enforce network policy . These limitations particularly
impact serverless applications with tight performance constraints. It also limits complex,
multi-stage applications that need flexible, dynamically changing policies (e.g., dynamically
re-prioritize some flows over others to meet a tight service-level objective). Existing
solutions such as Flow Director are limited, e.g., they cannot support arbitrary hierarchical
policies. Thus a case can be made for considering a new NIC design that supports both
performance and the afore-mentioned flexibility in the context of serverless applications.

The undeniable reality of today’s networking hardware and end-host stacks is that they are
far more efficient when allowed to batch operations and transfer large blocks of data. The
overheads involved in sending small chunks of data dominate the transfer times by orders
of magnitude in existing networking stacks, and is only getting worse. Serverless computing
is yet another reason why it is important to reconsider today’s network stack, and the set of
abstractions modern operating systems expose. We should explore whether providing a
number of distinct network channels may be superior than today’s model of a single
network fabric.

Inter-Lambda/Thread communication

If serverless platforms outgrow their Web-based origins and eventually find broad adoption
as general-purpose parallel computers, we may need IPC primitives similar to MPI or Unix
domain sockets. Current methods for communicating between threads on serverless
platforms are quite cumbersome and inefficient (e.g., using a rendezvous server to enable
thread-to-thread communication).

Providing low-latency IPC primitives for serverless platforms could provide us a pathway to
easily porting cluster-computing applications that previously relied on IPC primitives such
as MPI. These include scientific computing applications that require coordination between
threads such as particle simulations and PDE solvers. Recent work in datacenter
networking reports RPC latency on the order of tens of microseconds by modifying both
the end hosts and the network’s switches. While more research is required to translate
these networking results into end-to-end low-latency IPC primitives, they show that
low-latency IPC might be feasible assuming the network’s switches can be programmed, a
capability that is emerging in production switches today.

Managing state

Embarrassingly parallel, stateless functions can do only so many things. In many cases, we
may have to maintain states between iterations and stages. Existing serverless computing
infrastructures only provide heavyweight solutions; e.g., storing states into Amazon S3 in
case of Amazon Lambda. These storage systems were not designed for serverless use
cases, where each function may deal with a small amount of data. Existing in-memory
storage and caching solutions (e.g., Alluxio) are not fast enough for extremely low-latency
accesses. Key-value stores lack common file system semantics and do handle large I/O well.
We need a fast, in-memory storage solution that supports objects ranging from bytes to
terabytes, is elastic, and acts as both a cache and a durable storage layer.

A concrete goal would be a decentralized, fault-tolerant, in-memory storage system, where
individual bytes can be named and accessed using the same interface as that used to
access large files. Serverless functions can store, retrieve, and discard their states in
orders-of-magnitude faster rate than that using blob stores like S3 or existing in-memory
storage systems like Alluxio. It would be expected to work on both DRAM and NVM.

Another possible direction would be exposing a shared disaggregated memory (DRAM and
NVM) to all the functions in the same workflow in a transparent manner so that developers
do not have to even reason about IPC or shared memory for inter-function communication.
While there are recent solutions for memory disaggregation, sharing disaggregated
memory and making it resilient to failures and load imbalance are all open challenges.

Tracing and debugging

In systems that permit serverless computing using short stateless functions, tracking the
provenance of data through the system, and fine time​-scale monitoring are important
problems. Solving these may allow serverless applications--built out of small functions with
documented inputs and outputs--to be more understandable, reproducible, and
debuggable than more monolithic applications of today. A key challenge here is tracing
indirect (storage-triggered) invocations.

Security

To provide such end-to-end timeliness of response we will need to explore system-level
enforcement, potentially combined with accurate application characterization that can
improve the delivery of controlled response times by pairing off non-interfering (or
low-interfering) types of applications. This general principle applies across the spectrum of
resource types that will need to be scheduled though will raise different specific challenges
for each type of resource (e.g., program execution versus data transfer). Combining
individual heterogeneous components into an end-to-end system is a challenge in itself
and requires bridging different models, different levels of trust, and provider domains.

● Can we categorize and refine existing FaaS security architectures, point out
deficiencies in their isolation models, and suggest near-term improvements?

● After decades of side-channel attacks, we’ve now seen the sky-is-falling version in

the form of Meltdown/Spectre. What are good clean-slate designs of cloud
hardware and software stacks that provide strong guarantees of
side-channel-freeness, yet support the elasticity and agility of existing services?

● Lots of new software will be written for FaaS systems, and old security mistakes will

be reinvented in new forms. How do we get ahead of this and provide FaaS design
patterns, security frameworks, and APIs that guide developers towards getting right
basic security issues (e.g., access control)?

Programming models

What are the right programming interfaces to serverless computing? Haskell-type model of
compute over immutable named state? Constraining the dataflow with higher-level
abstractions (MapReduce, SQL, etc?) ​A related, more general issue is that of having narrow,
more optimizable programming models (e.g., JavaScript only or Haskell only) vs. more
general models (native binaries, variety of languages/platforms) that affect the system
design and optimizations available.

Lambdas/functions will permit “white​box” resource management, placement and
provisioning, as well as verification, by permitting static and dynamic program analyses of
these lambdas. Two complementary research questions are the design of programming
languages for lambdas that permits analysis, and the synthesis of lambdas from
higher-​level specifications. Finally, the design of highly-​available datacenter fabrics and
rack-scale systems for lambda execution that disaggregate compute and storage will likely
become significantly important.

An open research question concerns the right level of isolation (containers, VMs,
unikernels, etc.) and the proper abstraction boundary between user code and the platform.
Should the details of compute ​and​ storage be abstracted from user code? Should all data
access be declared to the platform, to allow efficient fine-grained scheduling by the
provider? How can these abstractions be efficiently implemented? Can we design
language-level mechanisms that offer these properties?

Barriers and Solutions

What are barriers to conducting research on serverless?

A key issue we face in our research is the opacity of existing serverless platforms. Very little
is known about how they are designed and run, and as such it is difficult to reason about
observed performance issues, and whether they are fundamental are not. Thus,
determining how to make fundamental improvements is not easy. To address this, having
open source serverless platforms would be invaluable; there is already work on this front,
in the form of OpenWhisk and OpenLambda, but both are in very preliminary stages.

It would be useful to understand what real users are actually doing with serverless and
what they could not have done/could have done but less efficiently with serverless vs.
traditional cloud computing. Ultimately, understanding this may spur thinking into new,
hitherto-unseen applications that benefit from future cloud computing offerings that could
potentially offer much lower latencies and higher performance than today’s offerings.

​It would likewise be useful to know what is going to change for an enterprise as it
transitions from existing infrastructure as a service (IaaS) or other setups to Cloud3.0. How
can we use the lessons learned from past experience on transitioning from “legacy”
on-premise setups to IaaS to simplify the transition to Cloud 3.0? Will much of the change
be opaque to the enterprise and only/mainly impact its cost structure (e.g., less cost due to
more efficient utilization of resources) or are there obvious “killer apps” that require a
closer look, both in terms of the functionality they require and capabilities they offer?

Serverless computing will clearly generate new workload patterns that systems and
networking researchers will need to address. One of the most obvious of these is the fact
that the offered workload will be much more dynamic and the control systems will need to
be more responsive to deal with that, and optimize for the fluctuating demands. This new
environment is likely to come with other requirements, e.g. low latency processing and
efficient processing chains. However, until we have a better understanding of these
workloads and associated requirements, it will prove difficult to produce effective designs.

To understand and innovate on systems issues such as resource allocation and fault
tolerance, the academic community will require access to datacenter infrastructure traces
that can be used to study the impact of the changes proposed. While some of the recent
traces like the Azure VM trace provide statistics on VM allocations, there is no publicly
available resource to understand the usage patterns in serverless computing. These
shortcomings can also be addressed by adding serverless infrastructure to open source
test-beds like CloudLab and using them to run scientific or other academic workloads.

A complete integrated platform for executing granular applications in modern datacenters
is useful. The platform should enable experimentation -- it should not bake in assumptions
about granularity of computing. Researchers should be able to bring up serverless
frameworks that are completely under their control and can be arbitrarily modified. There
are existing open-source systems (eg. OpenLambda) that fit this need from the software
side, and cloud computing testbeds (eg. CloudLab and Chameleon Cloud) that provide the
necessary hardware resources, but these pieces need to be better integrated, and the open
serverless frameworks need to be set up so that they more directly model what is found in
public clouds. Of course there is an inherent risk in the need for large engineering
resources to keep up with the public clouds on their many capabilities.

The research community (perhaps in collaboration with industry) would do well to develop
flexible yet robust open-source lambda frameworks designed, for example, for
high-performance networking so that it is easy to develop new designs in a research setting
and have those designs be adopted in practice.

What new testbeds, datasets, or tools could be provided to

enable research in this area?

Testbeds

We outline specific thoughts not covered above on requirements for serverless testbeds to
meet. In building a testbed that supports FaaS research, it is useful to understand
experiments where the scale is really important: Would a scale of ~1,000 be sufficient
(~1,000 cores) to explore a particular issue in serverless? How do we determine this?
Instrumentation and monitoring are crucial. Experimenters may be interested in
fine-grained customize data gathering.

Today, on CloudLab and Chameleon, experimenters often want to be able to download
open source version of something that is popular, e.g., Eucalyptus + 2 racks and then do
research (e.g., on applications running atop said platforms). It would be valuable to enable
something similar for Cloud 3.0.

Data, broadly defined

In general, it is a lot more useful to share know-how than a testbed. It would thus help to
enable a process by which best practices can be shared by the industry. Build canonical
“test workloads” based on information and traces that can be gleaned from customer
reports on lambda providers’ websites.

Resources

Many experiments in the serverless computing research area are increasingly looking into
disaggregated hardware -- fast storage via very fast network connecting nodes with
storage, memory, etc. It is worthwhile to to understand how best to build out such testbeds
and enable sharing across experiments.

An additional barrier is access to physical machines (testbed/resources) that have the latest
and state of the art instruction sets for virtualization and isolation. Also, machines that
have accelerators (FPGAs) and a way to access and program the FPGAs. Having access to
such resources at scale is crucial to understanding and developing future serverless
architectures.

For much of the research in this space, it might be helpful to, rather than have shared
testbeds, make available the know​-how and associated software for building customized
“micro​testbeds” that are perhaps locally shared by a few institutions. This will help groups
who find a single shared general testbed to be restrictive, e.g., toward conducting research

on highly performance-sensitive applications, to set up customized smaller versions that
better match their research goals.

Closing

In summary, we believe that serverless computing offers exciting new challenges and
opportunities. There is plenty of research to accomplish in core systems and networking, as
well as at boundaries with related fields such as formal methods. However, we note that
there are key barrier to conducting this research effectively. Overcoming these, with
suitable infrastructure support and dataset exchange, would be important to allow
research on serverless to come to fruition.

Workshop Participants

Adam Wierman Caltech
Aditya Akella (Organizer) UW-Madison
Albert Greenberg Azure
Alex C. Snoeren UCSD
Ali Ghodsi Databricks
Anirudh Sivaraman NYU
Ann Von Lehmen NSF
Barath Raghavan USC
Bruce Maggs Duke
Changhoon Kim Barefoot
Darleen Fisher NSF
Ganesh Ananthanarayanan MSR
George Porter (Organizer) UCSD
George Varghese UCLA
Hakim Weatherspoon Cornell
Ion Stoica UC Berkeley
Jeff Mogul Google
John Brassil NSF
John Ousterhout Stanford
Kate Keahey ANL
Keith Winstein (Organizer) Stanford
Ken Calvert NSF
Matei Zaharia Stanford
Michael Swift UW-Madison
Monia Ghobadi MSR
Mosharaf Chowdhury Michigan
Nate Foster Cornell
Nick McKeown Stanford

Parveen Patel Azure
Peter Steenkiste CMU
Rachit Agarwal Cornell
Ramesh Govindan USC
Remzi Arpaci-Dusseau UW-Madison
Rob Ricci Utah
Shivaram Venkataraman UC Berkeley/UW-Madison
Srini Seshan CMU
Sujata Banerjee VMWare
Suman Banerjee UW-Madison
Theophilus Benson Brown
Tom Ristenpart Cornell
Vyas Sekar CMU
Walter Willinger Niksun
Xiaowei Yang Duke

Pointers to Full Workshop Resources

Full workshop information, including one-page write-ups, slides, and notes from breakout
sessions and keynote talks may be found at ​https://sites.google.com/site/cloud3workshop/

https://sites.google.com/site/cloud3workshop/

