

Topics Covered

- Understand what Zero Trust is and why it is important.
- What comprises a Zero Trust network and how to create architecture
- Conditions and Controls
- Understand how identity, device health
- Benefits of Zero Trust
- Discover how to apply these conditions to line of business SaaS apps or on-premises web apps.
- Examples and Demo (If time permits)

TRADITIONAL MODEL

The challenge with perimeter-based networks...

It was a walled garden (castle/moat approach)

- Perimeter-based networks operate on the assumption that all systems (and users) within a network can be trusted.
- Not able to accommodate modern work styles such as Bring Your Own Device (BYOD) and Bring Your Own Cloud (BYOC)
- Attacker can compromise single endpoint within trusted boundary and quickly expand foothold across entire network.

Users cannot be trusted! (Neither can the network!)

4%

Of end-users will click on anything¹

28%

of attacks involved inside actors¹

17%

Of breaches had errors as casual events¹

What is a Zero Trust network?

 Eliminates the concept of trust based on network location within a perimeter.

Leverages device and user trust claims to get access to data and

resources.

What comprises a Zero Trust network?

- Identity provider to keep track of users and user-related information.
- Device directory to maintain a list of devices that have access to corporate resources, along with their corresponding device information (e.g., type of device, integrity etc.)
- Policy evaluation service to determine if a user or device conforms to the policy set forth by security admins
- Access proxy that utilizes the above signals to grant or deny access to an organizational resource
- Anomaly detection and machine learning

Example: Basic components of a Zero Trust network model

Designing a Zero Trust architecture

Approach: Start with asking questions

Who are your users? What apps are they trying to access? How are they doing it? Why are they doing it that way?

What conditions are <u>required</u> to access a corporate resource?

What controls are <u>required</u> based on the condition?

Consider an approach based on set of conditions

- What is the user's role and group membership?
- What is the device health and compliance state?
- What is the SaaS, on-prem or mobile app being accessed?
- What is the user's physical location?
- What is the time of sign-in?
- What is the sign-in risk of the user's identity? (i.e. probability it isn't authorized by the identity owner)
- What is the user risk? (i.e. probability a bad actor has compromised the account?

Followed by a set of controls (if/then statement)

- Allow/deny access
- Require MFA
- Force password reset
- Control session access to the app (i.e. allow read but not download, etc)

Device Health Conditions

- Determine the machine risk level (i.e. is it compromised by malware, Pass-the-Hash (PtH), etc)
- Determine the system integrity and posture (i.e. hardware-rooted boottime and runtime checks)
- Integrity checks:
 - Drivers
 - Kernel
 - Firmware
 - Peripheral firmware
 - Antimalware driver code
- Verify boot state of machine
- Compliance policy checks (i.e. is an OS security setting missing/not configured?)

Identity Conditions

What is the user's risk level?

- Is the sign in coming from:
 - A known botnet IP address?
 - An anonymous IP address?
 - Unauthorized browser? (i.e. Tor)
 - An unfamiliar location?
 - Impossible travel to atypical locations?
- Is the sign in suspicious?
 - High number of failed attempts across multiple accounts over a short period of time
 - Matches traffic patterns of IP addresses used by attackers
- Are the user's credentials (username/password pair) leaked?
 - Up for sale on the dark web / black sites

Zero Trust based on conditional access controls

Federated

MSA

G Google ID

Android

ios

MacOS

Windows

Browser apps

Client apps

Conditions

0

Employee & Partner Users and Roles

Trusted &

Compliant Devices

Physical & Virtual Location

Client apps & Auth Method

Cloud SaaS apps

On-premises apps

Zero Trust based on conditional access controls

Federated

MSA

G Google ID

Android

ios

MacOS

Windows

Browser apps

Client apps

Conditions

0

Employee & Partner Users and Roles

Trusted &

Compliant Devices

Physical & Virtual Location

Client apps & Auth Method

Cloud SaaS apps

On-premises apps

Benefits of a Zero Trust model

- Allow conditional access to certain resources while restricting access to high-value resources on managed/compliant devices.
- Prevent network access and lateral movement using stolen credentials and compromised device.
- Enables users to be more productive by working however they want, where they want, when they want.
- Identity is everything, make it the control plane.
- Consider an "if-this-then-that" automated approach to Zero Trust.
- Zero Trust can enable new business outcomes that were not possible before.

Thank You!

Reference:

http://aka.ms/ZeroTrustDemos

Matt Soseman – Presentation Security Architect Microsoft