
Bare-metal, Virtual Machines and Containers in
OpenStack

Charalampos Gavriil Kominos
Department of Computer Science

Uppsala University
Uppsala, Sweden

Email: h’lastname’@gmail.com

Nicolas Seyvet and Konstantinos Vandikas
Management and Operations of Complex Systems

Ericsson Research
Kista, Sweden

Email: firstname.lastname@ericsson.com

Abstract—Cloud computing is an on-demand access model for
computing resources most notably embodied by the OpenStack
project. As of release Liberty, OpenStack supports provisioning
Bare-metal, Virtual machine (VM) and container based hosts.
These different hosts incur different overheads. Consequently, the
main goal of this paper is to empirically quantify that overhead
through a series of experiments.

The following drivers are leveraged in this process: Ironic for
Bare-metal or Metal as a Service (MaaS), nova-compute for VM-
based hosts, and nova-docker for Docker based containers.

We make use of a private-cloud in order to compare the
different options. This cloud is then used to compare the different
hosts in terms of performance (CPU, networking, disk I/O and
RAM) by using various open-source benchmarking tools. We
also measure boot-up times. The output of these benchmarks is
collected and results are compared.

In this paper we discuss our learnings as well as the different
configurations and fine-tuning that we implemented. As a result,
we provide a set of recommendations based on the advantages
and disadvantages of each host in present and future cloud
deployments.

I. INTRODUCTION

There is no doubt that cloud computing brings an entire
new set of value propositions to enterprise computing en-
vironments. Cloud computing offers a huge set of benefits
such as application scalability, operational flexibility, improved
economies of scale, reduced costs, resource efficiency, agility
improvement and more. The National Institute of Standards
and Technology [1] defines Cloud as a model for enabling
ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction.

Cloud computing is, at this date, based on four (4) main
deployment models [1]:

• Private cloud: The cloud infrastructure is provisioned for
exclusive use by a single organization.

• Community cloud: The cloud infrastructure is provi-
sioned for exclusive use by a specific community of
consumers from organizations that have shared concerns.

• Public cloud: The cloud infrastructure is provisioned for
open use by the general public.

• Hybrid cloud: Which is a combination of the public and
private models.

Generally it is assumed that the origins of Cloud computing
can be traced back to the 1960s when applications had to
share system resources provided by mainframe computers.
IBM then invested a lot of time and effort in developing robust
time-sharing solutions to improve efficiency between users and
expensive shared computer resources. Today, the best way to
improve resource utilization, and at the same time simplify
data center management, is through virtualization.

Virtualization refers to the act of creating a virtual (rather
than actual) version of something. It abstracts the physical
hardware formed by clusters of servers into large aggregated
pools of logical resources. This, in turn, can then be divided
and offered back to users in the form of VMs. Today, Infras-
tructure as a Service (IaaS) is largely synonymous with VMs.

Within IaaS, the OpenStack project is a well-known open
source software. OpenStack begun in 2010 as a joint project
between Rackspace Hosting and Anso Labs (contracting for
NASA). Its first release, code name ”Austin”, is launched in
July 2010. Since then, hundreds of companies have pledged
support to the project, and, at the time when this paper is
written, there have been thirteen additional releases, the latest
being ”Mitaka”. The OpenStack mission is to produce the
ubiquitous Open Source Cloud Computing platform that will
meet the needs of both public and private clouds regardless
of size, by being simple to implement and massively scalable
[2].

When deciding how to deploy an application in a private
cloud using OpenStack a developer can provision three differ-
ent hosts:

• Bare-metal: No virtualization, the hardware is fully ded-
icated, delivered on demand.

• Virtual Machine: Traditional virtualization where the
machine appears as a self-contained computer, boots a
standard OS kernel, and runs an unmodified application
process on top of a Hypervisor layer (see Figure 1).

• Containers: A light-weight approach to isolating re-
sources, where applications share a common kernel.

OpenStack supports these hosts through three different
drivers/projects:

• Ironic [3]: To provision bare-metal machines via PXE
and Intelligent Platform Management Interface (IPMI)
aka Lights Out Management (LOM).

• Nova-compute [4]: To provision VMs using KVM [5] as
a hypervisor within an OpenStack compute host.

• Nova-docker [6]: To provision Docker containers within
an OpenStack compute host.

The key focus of this paper is to evaluate the different
hosts that can be provisioned by means of the aforementioned
drivers in an empirical manner; by comparing their perfor-
mance in terms of CPU, Network, Disk I/O, memory and
boot-up times.

In this research space we encounter similar work done by
Felter et. al. [7]. The main difference between our work and
theirs is that we place our emphasis on OpenStack and on
different kinds of hosts that can be provisioned as opposed
to performing a straight-cut comparison of hypervisors vs
containers. Moreover, in the context of OpenStack there is
similar work done by Boden [8]. Our work improves on that
by extending that comparison with Ironic and a higher version
of Docker, both of which were not available at the time when
that comparison took place.

II. BACKGROUND AND RELATED WORK

In this paper, the OpenStack project is used as an IaaS
provider. OpenStack supports three fundamentally different
types of computing resources that can be requested by a user:
bare-metal, VM and container based. These different options
are illustrated in Figure 1.

Ironic (bare-metal) allocates the whole server hardware to
the load. Consequently, applications can run natively on the
host and fully utilize the underlying hardware. However, this
is a single tenant option as unused hardware resources cannot
be shared or re-used by others within the data center. As a
result bare-metal tends to decrease overall utilization rates,
and is often not a cost-effective option. Additionally, from
an Ironic project perspective, special extensions are need to
allow access to hardware resources. Implementation of these
extensions limits the list of supported hardware and leads to
increase the cost of developing and maintaining the OpenStack
Ironic driver.

The other two types of hosts addressed in this paper over-
come the aforementioned limitations by introducing a level
of abstraction by means of a hypervisor and the container
engine respectively. This addition comes at the expense of
performance.

The hypervisor spawns VMs, and presents the guest op-
erating system (OS) with a list of ideal virtual resources
through which to manage all interactions with the physical
resources. As a result, it achieves load isolation and hardware
independence from the guest OS perspective.

There are two types of hypervisors:

• Type one hypervisor or bare-metal hypervisor: VMs lie
directly on top of the hypervisor (e.g. ESXi, Xen, KVM)

• Type two hypervisor: VMs lie on top of a physical
host which is running its own operating system (e.g.
VirtualBox).

Nova-compute uses KVM by default; a type one hypervisor
[9] and more specifically the KVM-QEMU pair. Nova-libvirt
([10] and [11]) driver manages the communication between
OpenStack and KVM.

While VMs excel at isolation, data exchanges between
guests and hypervisors are slower. KVM uses hardware vir-
tualization features in the processors to limit overheads, and
supports paravirtual devices via Virtio [12], a virtualization
standard for network and disk device drivers where only
the guest’s device driver ”knows” it is running in a virtual
environment, and cooperates with the hypervisor. Both features
tend to reduce virtualization overheads.

Rather than running a full OS in a VM, containers achieve
similar process isolation by modifying a shared OS (operating-
system-level virtualization). This eliminates the need for a
Guest OS; applications run in their own isolated user space;
a sandbox which is manifested via Linux kernel features such
as namespaces and cgroups. The entirety of these user spaces
is managed by the container engine which gains access to
physical resources through the host operating system. The
elimination of Guest OS in containers enables them to be more
lightweight and faster than VMs thus significantly reducing
boot time.

The nova-docker driver spawns Docker [13] containers.
Docker containers wrap a piece of software in a complete file-
system that contains everything needed to run an application:
Code, runtime, system tools, system libraries anything that
can be installed on a server.

The remaining sections of the paper are structured as
follows: The Methodology section describes our setup and
the different configurations we have implemented in order to
provision the individual hosts. In addition, it describes the
different assumptions we made and the expectations we had
for each test. The Evaluation section presents and analyzes
the different tests that have been performed for each kind of
host for the following resources: CPU, Network, Memory, disk
I/O and booting times. Finally, the paper finishes off with the
conclusions that can be derived from this work and a set of
further steps that can be taken as part of Future Work.

III. METHODOLOGY

In this section we describe the hardware setup, software
tools and configuration choices that have been made in our
evaluation. Before we do that we start by giving more specific
definitions to a set of terms that are used extensively through-
out this paper.

A. Terminology

Within the scope of this paper, the following terms are used:

• A Compute host or host is a node managed by OpenStack
to instantiate a VM, or a container. It runs various

Fig. 1. Different hosts in OpenStack

OpenStack services such as the Neutron agent, ceilome-
ter, a nova agent, openvSwitch [14], a messaging client
(RabbitMQ), etc.

• An Ironic host is a bare-metal node managed by Open-
Stack. The physical server is entirely allocated to the load
and does not run any OpenStack services.

• A docker container running within a compute host is
referred to as Docker.

• A VM running within a compute host is referred to as
VM.

B. Hardware

Our setup consists of five servers located in the same rack.
Each physical server is a Hewlett Packard G6 blade equipped
with two Intel(R) Xeon(R) CPU E5540, 72 GB of RAM and
two 160 GB 10000 rpm hard disks in RAID0 configuration.
The servers are connected via two NICs to a 1000/1000
network through an Top of Rack (ToR) Extreme Networks
X450a-48t Switch. One of the servers is dedicated to be the
OpenStack controller and the four others are compute/ironic
hosts.

Note that during the evaluation phase, a particular server is
singled out to avoid variations. This is the server under test. In
cases where communication to a remote VM or container is
required, then a different server connected to the ToR is used
in order to limit the number of network hops to one.

Networking in OpenStack uses Neutron and VLANs. The
PXE network (NIC1, untagged) is required for Fuel to control
and deploy the physical servers. The Public network (NIC1,
1200) is used to distribute public IPs to VMs, containers and
hosts. Storage (NIC1, 1062) and management (NIC1, 1061)
are separate internal networks used by OpenStack manage-
ment. The ”private” tags (NIC2, 1063-1080) are used for
isolating each virtual network. The bare-metal network (NIC2,
1082) is reserved for Ironic provisioned instances. Standard
tuning is applied for 1Gbps network.

Since the Ironic conductor achieves bare-metal provision-
ing through Lights Out Management (LOM) protocol, the
servers are communicating via the Integrated Lights Out
(ILO) interface. ILO is HP’s version of LOM. LOM allows a
system administrator to monitor and manage servers and other
network-attached equipment by remote control regardless of

whether the machine is powered on, or if an operating system
is installed or functional.

C. IaaS software

We used the OpenStack Liberty release, and Docker v1.11.
Those were the latest available versions at the time.

D. Benchmarking tools

Our evaluation focuses on CPU, memory, disk I/O, network
(latency and bandwidth) and boot-up times. To stress each
resource, the following open-source tools have been selected:

• CPU: the PXZ program has been selected. [16] This
tool, which is widely available in Ubuntu and Fedora,
implements the classic Lempel-Ziv-Markov compression
algorithm [17]. PXZ is a parallel loss-less compression
tool and can be easily configured to run in any number of
cores. As input for PXZ a 1GB Wikipedia data dump has
been selected [18]. The file is fed into the PXZ algorithm
while varying the number of allocated cores. The wall
time that PXZ takes to compress the file is then recorded.

• Network: Network throughput and latency were tested
using two different tools:

– Nuttcp [19] is used to measure network throughput.
This tool works in a client-server fashion. The system
to be tested acts as client and an external system in
the cloud acts as a server. Nuttcp traffic is generated
between the client and server. The throughput is
a variable and tests are made between 650 and
1100 Mbps. We measure both inbound and outbound
throughput.

– Netperf [20] is used to measure network latency. It
also works in a client-server model although in this
case the machine to be tested acts as a server. The
client is then used to generate a packet of fixed length
(200 bytes). When that packet reaches the server, the
server sends back a response of fixed length (200
bytes). Therefore only one packet is in flight at any
point in time. We measure how many packets are
sent within a fixed period of time.

• Memory: In the tested system four memory levels are
available (L1 cache, L2 cache, L3 cache, RAM). In order

Fig. 2. Compute node networking using Neutron (VLAN) in Liberty release [15]

to test all these resources the open-source bandwidth [21]
tool was selected. In this tool memory chunks of different
sizes are copied into memory. The tool starts from 256
bit and continues until the chunks are 512 MB in size.

• Disk I/O: In order to test system disk I/O two different
tools were used:

– SysBench [22].
– Linux binary copy (dd) utility.

Disk IO tools operate by copying and reading from and
to big chunks of data. For such benchmarking, it is
important to prevent RAM involvement (buffer caches
at OS level). To achieve that:

– VMs and containers are limited to 8 GB of RAM.
– For Ironic and Host experiments, the physical server

is stripped to two DIMMs.
– The benchmark files will have a size of 16 GB (i.e.

twice the size of the RAM).

Tool Version Resource
ParallelPXZ 4.999.9beta CPU
Nuttcp 6.1.2 Network
Netperf 2.6.0 Network
Bandwidth 1.3.1 Memory
SysBench 0.4.12 Disk
dd 8.25 Disk

TABLE I
BENCHMARKING TOOLS

Table I summarizes the different tools used in our evalua-
tion.

E. Configuration choices

For I/O tests instead of using the nova-docker driver, we
spawned a standard Ubuntu 14.04 container directly from the
CLI. The reason is that in a standard container, disk access is
not to the device but to a copy-on-write file-system (Advanced

multi-layered Unification FileSystem, AUFS). Since our intent
is not to compare AUFS vs VM block based storage, but to
compare how different hosts affect the access to a resource,
this approach permits mounting a data volume to access the
local Compute host disk and thus to bypass AUFS. Similarly
the VM is using the ”mount host-file” option to access the local
host hard drive. One of the caveats of using Docker directly
was security issues with App Armor.

For CPU measurements of KVM VMs, the CPU allocation
model is set to ”host-passthrough” [23], With this mode, the
CPU is visible to the guest VM is exactly the same as the
host physical machine CPU. By default, nova-compute does
not optimize KVM. Consequently, CPU pinning is not enabled.

IV. EVALUATION

The different experiments for each resource performed in
our evaluation are repeated ten times. Mean and standard de-
viation are then computed. The standard deviation is displayed
as error bar in the diagrams. When the error bar is not visible,
assume the deviation to be less than 1%.

The results for each experiment are presented and analyzed
in the following subsections.

A. CPU

For CPU tests, four different OpenStack VMs are created
respectively with 1,2,4,8 vCPUs. We also leverage PXZ’s
ability configure the number of cores. For example a VM with
2 vCPUs is compared with a bare-metal machine where PXZ
is limited to 2 cores. The results for the different configurations
are shown in Tables II and III.

From this evaluation the following observations can be
made:

• Bare-metal offers best performance.

Resource 1 vCPU 2 vCPU
time (s) std % time (s) std %

Bare-metal 670.8 6.9 -2% 360.4 4.3 -7%
Compute host 683.8 2.8 0% 388.9 3.8 0%
Docker 685.2 3.9 0% 387.0 7.6 0%
VM 709.6 7.8 +3% 393.6 3.4 +1%

TABLE II
1-2 VCPU PERFORMANCE

Resource 4 vCPU 8 vCPU
time (s) std % time (s) std %

Bare-metal 192.0 0.8 -9% 109.5 1.0 -16%
Compute host 211.3 2.1 0% 131.4 2.1 0%
Container 211.7 2.5 0% 131.2 1.4 0%
VM 223.9 1.2 +5% 141.1 1.0 +7%

TABLE III
4-8 VCPU PERFORMANCE

• As highlighted by the difference between bare-metal
and Compute hosts, OpenStack services consume a non-
negligible part of the CPU.

• The worst performer is the VM. This is in part due to
the hypervisor as its main task is to schedule time in
the physical CPU for the guests processes. For example,
when the hypervisor requests 4 vCPU cores for a limited
amount of time, it must wait until these resources become
available.

• The Docker container performs on par with the compute
host.

• Surprisingly, when the number of vCPUs allocated to
a VM increases, the overall performance degrades. I.e.
while an improvement in overall computation time is
measured, the difference with running on bare-metal
increases. The number of allocated vCPUs by the VM
is a major factor when trying to approximate hypervisor
overhead. Our tests indicate a performance drop of about
2%, 5% and 7% when allocating respectively 1, 2, 4
and 8 vCPUs to a VM. The more CPU cycles that
the hypervisor schedules for, the more the performance
drops percentage-wise. KVM CPU pinning could have
improved the VM performance significantly as indicated
by [8].

B. CPU contention

Contention is the situation where different processes com-
pete for a single resource. To assess this we created up to 4
VMs and Containers with 4 vCPUs/CPUs on a single server
and then ran PXZ.

of instances VM Container % diff
1 216s 203s 6.0%
2 252s 236s 6.3%
3 367s 339s 7.6%
4 483s 445s 7.9%

TABLE IV
CPU CONTENTION: PXZ EXECUTION TIME IN SECONDS

As shown in Table IV, running within Docker containers is
slightly faster than running within a hypervisor. As contention

Fig. 3. Network Bandwidth

increases, the delta between containers and VMs also increases
in favor of containers.

C. Networking

1) Bandwidth: Nuttcp [19] uses a client/server approach
where the client is the system under test, and the server another
node within the cluster. It is configured to generate traffic at
different rates ranging from 500 to 1100 Mbps.

As expected, in our measurements, the link saturates just
below 1000 Mbps. This value is the expected maximum rate
of the network(switch and NIC) when considering packet
headers.

The following observations can be made:

• Bare-metal based host is closer to maximum throughput
than other options,

• All other options are quite close to bare-metal except the
Docker case.

• The Docker container based host did not perform as
well in nearly every case despite several re-configuration
attempts.

A partial explanation to above results is that the OpenStack
internal communication being based on TCP as a protocol, a
small part of the network traffic in all cases except Ironic is
used by the internal messaging system.

In the Docker case, when taken out of the box a 50%
drop in bandwidth was initially observed. It is only after
lowering the Maximum Transmission Unit (MTU) within
the container from 1500 to 1420 that a more reasonable
performance was achieved. In our setup, both nova-docker and
Neutron cooperate to provide networking within the container.
During the instantiation, the container is assigned a networking
namespace belonging the host that is connected to the tap port
provided by Neutron (see Figure 2). In our experiments, we
observed that the tap ports received traffic with an MTU set to
1420 while the nova-docker daemon expected 1500. This may
also be a consequences of issues within Docker 1.11([24]).

This tuning of the container was only possible from within
the host, and a normal OpenStack nova-docker user would
have been unable to manipulate the stack to reach such a

result which is a significant drawback. Further research and
experimentation is advised with newer Docker releases.

Resource TCP Reverse TCP UDP Reverse UDP
Bare-metal 923 929 941 931
Compute host 923 – 937 —
Container 899 327 932 939
VM 912 931 939 939

TABLE V
TCP & UDP MAXIMUM PERFORMANCE

Table V displays the findings for maximum throughput
achieved in TCP and UDP traffic in both directions. Reverse
TCP and UDP traffic were not measured successfully in the
time set and were omitted.

2) Latency: Netperf [20] was used for testing the system’s
latency. For this tool, the machine that is to be tested acts
as a server and another machine outside the cloud acts as
the client. In order to make a good approximation of system
latency we performed a fixed time test (30 sec). In this time
frame, the tool calculates how many packets were sent and
received. Therefore we can approximate the time it takes each
packet to reach its destination.

We use formula 1 from [25] to approximate system latency.

1

TransferRate(Req/s)
∗ 106µs

1s

2
(1)

Setup UDP
(req/s)

UDP
std

UDP
latency
(µs)

TCP
(req/s)

TCP
std

TCP
latency
(µs)

Bare-metal 1917 100 260 1944 102 257
Compute host 2016 59 250 1992 87 250
Container 1673 67 298 1724 93 289
VM 1380 64 362 1430 43 349

TABLE VI
MEASURED TCP & UDP LATENCY

It can be observed from Table VI that while both Ironic and
the Compute host show similar performance results, the extra
networking layers added by Neutron (Figure 2) introduce some
40 µs latency both for Docker and VM. In the VM’s case, there
is an extra 60 µs inferred by the hypervisor bringing the total
to 100 µs when compared to a bare-metal option.

D. Memory

The Bandwidth tool [21] uses a random data batch of
variable size (from 256bit to 512 MB) to stress system
memory. It is used to test the random read and write speeds
which are typical access types for applications.

The Intel Xeon E5440 CPU used in our setup has L1
(data/instruction) cache of 32KB, L2 of 256KB, and L3 of
8192KB. The different memory levels are clearly visible in
Figures (4, 5, 6). And, as expected, each level outperforms
the previous by a considerable factor.

Figure 6 illustrates our data set partitioned in four data-
clusters (256b, 48KB, 768KB, 512MB), one for each memory
level. From this figure we observe:

Fig. 4. Memory access patterns: Random read

Fig. 5. Memory access patterns: Random writes

• Read performance does not show significant fluctuations
regardless of the system tested.

• RAM write performance in the VM shows a performance
drop of approximately 30%.

• Bare-metal has faster memory access than Compute host.
The OpenStack services are adding an overhead of at least
5% for all tests.

E. Disk I/O

Two different tools are used to stress disk I/O and measure
first number of requests/s, then MB/s.

1) SysBench: We use Sysbench [22] to create a 16GB set
of files and an internal 70%/30% distribution of read/write to
stress the I/O. Since Sysbench cannot force data to always
be stored on disk, the test length is extended to minimize the
effects of data caching in RAM. As such, we measured I/O
requests over a 20 minute period.

As indicated by Figure 7, While bare-metal, compute and
Docker achieve similar behavior, the VM handles only 35%
of I/O requests.

2) Binary Copy: A simple binary copy with the Linux’s dd
is done to create a 4.3GB file filed with zeros. The results are
compiled in Table VII.

Bare-metal and compute host exhibit similar performance.
While Container experiences a 6% performance degradation
and VM performance drops by 30%.

Fig. 6. Random Read example

Fig. 7. File Test I/O

It seems that in cases of full load, the KVM/QEMU hyper-
visor slows down the data transfer considerably. We speculate
that with further KVM tuning higher Input/Output(IO) speeds
can be achieved. However, as mentioned in [7] because each
request must go through QEMU, the system will require more
IO Operations per second (IOPS) and CPU instructions per
second for the same absolute performance. This leaves fewer
resources available for useful application work.

F. Boot-up time

To measure boot-up times, the OpenStack logs are used.
An instance is said to be available when it reaches the ”login”
stage. Although this method is not overly accurate, it is a
good enough estimation of the time required for a resource to
become usable.

Depending on the job execution length, the boot-up time
for a computing resource to become available to a user may
or may not be relevant. If the job is going to run for days or
months then the above values are not important. But for short
jobs (< 1-2 h), then the differences are significant enough to
favor container based setups.

While the Boden report [8] indicates boot-up times of 5s
and 3s respectively for VMs and containers, we did not see
any optimization that would justify such improvements. We
assume that the authors used the time taken to allocate a
resource, not the time where it becomes usable. While a VM

s MB/s std
Bare-metal 28.0 148 2.5
Compute host 28.7 149 1.4
Container 31.2 138 1.9
VM 82.0 104 2.4

TABLE VII
BINARY COPY PERFORMANCE

Boot-up time (s)
Bare-metal 600
Container 5
VM 105

TABLE VIII
BOOT-UP TIMES

instantiation is quick, it does not imply that it is capable of
handling application load. For our measurements, we assume
that a computing resource is ready when it can be ssh-ed in
and not just pinged or visible in the horizon interface.

Note that the measured time includes transferring the image
from the Glance repository to the server, This impacts Bare-
Metal worse than VMs or Container as it is a mandatory step
during provisioning while other options can use host based
caching mechanisms on the compute.

V. CONCLUSIONS

The main goal of this paper is to offer an evaluation of
different hosts that can be provisioned in OpenStack. Within
this scope, we have evaluated bare-metal hosts, VM based
hosts and Docker container based hosts in terms of CPU,
Networking, Memory, Disk I/O and boot-up times. We also
evaluated the impacts of running OpenStack services on a
compute host.

As expected, bare-metal outperforms all other options in our
tests. As such it is recommended for high intensity workloads.
Deploying bare-metal via Ironic introduces no overhead and
applications can run native on the hardware. However, the
absence of overhead also means a lack of flexibility, and
an overall lower utilization rate as no resources are shared.
For example, there is no network isolation as all bare-metal
instances share the same network address range. Note also that
while the Ironic project is a recent addition to OpenStack we
encountered no issues using it during our experimentation.

On the opposite-end in our evaluation we have VM based
hosts. We observe that VM overhead varies and depends
on both the workload and the quantity of assigned virtual
resources. More specifically, our CPU tests indicate a strong
correlation between the number of resources requested (vCPU)
and the measured overhead where performance degrades from
1-2% (negligible) to 8-10% (important). Beyond CPU, VM
based hosts exhibit degraded performance when it comes to
Memory and Disk I/O. VM networking performance is on par
with the other alternatives.

Docker container based hosts have the fastest boot-time
and an overall performance on par with bare-metal with the
one exception being networking bandwidth. This is a strong
indication that the nova-docker project is viable and allows

OpenStack to combine the speed of Containers with the
flexibility and isolation guarantees of OpenStack’s Neutron
based networking. There remains some restrictions to deploy
nova-docker at scale. First there is this issue with the MTU
setting in the container, then nova-docker specifies a hard-
coded space limit of 26GB per node for running containers.
These two limitations make traditional VM-based hosts easier
to setup and maintain over the long term.

Finally, a surprising result is the non-negligible CPU and
networking overheads introduced by the OpenStack services
running on all the compute nodes of the cluster.

VI. FUTURE WORK

Overall, OpenStack can be setup to control and deploy
different options from bare-metal, to containers, and VMs.
Such an environment presents an interesting solution to a
complete data center deployment.

In the scope of Future work it would be interesting to repeat
this evaluation and enable certain features and optimization
that may yield better performance such as KVM CPU pinning
with regards to CPU performance for VM-based hosts. In
addition it is important to further investigate the issues behind
the poor networking performance in Docker despite our efforts
for configuring the MTU. Another interesting dimension to in-
vestigate is that of the AUFS available in Docker which could
also yield better Disk I/O performance in certain scenarios
since it is based on copy-on-write.

Moreover, there are efforts to integrate the advantages pro-
vided by combining bare-metal and container technology. One
such project named Kolla [26] provides production-ready con-
tainers and deployment tools for operating OpenStack. Kolla
uses containers to instantiate and manage the deployment of
OpenStack. The result is similar to a traditional IaaS where
users can spawn VMs, bare-metal or containers. Another inter-
esting project is Magnum [27] that targets running container
orchestration engines such as Docker Swarm, Kubernetes, and
Apache Mesos as first class resources in OpenStack. Magnum
uses Heat to orchestrate an OS image which contains Docker
and Kubernetes and runs that image in either VMs or bare
metal in a cluster configuration.

Overall, we observe a considerable pressure to move away
from pure VM based clouds to more flexible computing envi-
ronments that make better use of available hardware resources,
and improve the revenues/server ratio for cloud providers.

In parallel, cloud computing continues to evolve with
new approaches to application deployment. Two such newly
emerging options are serverless computing and unikernels.
Serverless computing completely removes the need to care for
servers (including virtual ones) by adding another layer of ab-
straction atop the cloud infrastructure. Running an application
becomes only about purposefully built code, and a number of
operations to perform i.e. cycles. Unikernels re-use the concept
of minimalistic operating systems introduced by Containers. A
unikernel is single-user, single-process, specialized operating
systems containing the full application stack. While deployed
on top an hypervisor, they benefit from being light and

ultra compact and as a result compete in performance with
containers.

ACKNOWLEDGMENT

The authors would like to thank the following people from
the IT group that helped us setup the hardware and network,
particularly Patrik Usher, Christopher Lange and Rajive Yadav,
as well as all the OpenStack developers present in in the IRC
channels #fuel, #nova-docker, #openstack-ironic, #openstack-
neutron for taking the time to answer all our questions.

REFERENCES

[1] “Final version of nist cloud computing definition published.”
[Online]. Available: https://www.nist.gov/news-events/news/2011/10/
final-version-nist-cloud-computing-definition-published

[2] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, 2012.

[3] “Ironic project: Openstack bare metal provisioning program.” [Online].
Available: https://wiki.openstack.org/wiki/Ironic

[4] “Openstack nova.” [Online]. Available: https://wiki.openstack.org/wiki/
Nova

[5] “Kvm.” [Online]. Available: http://www.linux-kvm.org/page/Main Page
[6] “Docker driver for openstack nova.” [Online]. Available: https:

//github.com/openstack/nova-docker
[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated

performance comparison of virtual machines and linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On. IEEE, 2015, pp. 171–172.

[8] “Passive benchmarking with docker lxc, kvm & openstack v
2.0,” April 2014. [Online]. Available: http://www.slideshare.net/
BodenRussell/kvm-and-docker-lxc-benchmarking-with-openstack

[9] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” ACM, vol. 17, no. 7, pp. 412–421, 1974.

[10] “Libvirt: The virtualization api.” [Online]. Available: http://libvirt.org/
[11] “Under the hood with nova, libvirt and kvm,” OpenStack

Summit, 2014. [Online]. Available: https://www.openstack.org/assets/
presentation-media/OSSummitAtlanta2014-NovaLibvirtKVM2.pdf

[12] “Paravirtualized drivers for kvm/linux.” [Online]. Available: http:
//www.linux-kvm.org/page/Virtio

[13] “Docker: Build, ship, run.” [Online]. Available: https://www.docker.com/
[14] “Openvswitch.” [Online]. Available: http://openvswitch.org/
[15] “Welcome to openstack documentation.” [Online]. Available: http:

//docs.openstack.org/liberty/
[16] “Devstack project.” [Online]. Available: http://docs.openstack.org/

developer/devstack/
[17] “Lempelzivmarkov chain algorithm.” [Online]. Available: https://en.

wikipedia.org/wiki/LempelZivMarkov chain algorithm
[18] “Hutter.” [Online]. Available: https://cs.fit.edu/∼mmahoney/

compression/textdata.html
[19] “Nuttcp.” [Online]. Available: http://www.nuttcp.net/
[20] “Netperf.” [Online]. Available: http://www.netperf.org/netperf/
[21] “Bandwidth: a memory bandwidth benchmark.” [Online]. Available:

https://zsmith.co/bandwidth.html
[22] “Sysbench.” [Online]. Available: https://github.com/akopytov/sysbench
[23] “Hostpassthrough.” [Online]. Available: https://libvirt.or/formatdomain.

html\#elementsCPUAllocation
[24] “containers in docker 1.11 does not get same mtu as host.” [Online].

Available: https://github.com/docker/docker/issues/22297
[25] “Ibmnetperf.” [Online]. Available: http://www.ibm.com/support/

knowledgecenter/SSQPD3 2.4.0/com.ibm.wllm.doc/runnetpe
[26] “Welcome to kollas documentation!” [Online]. Available: http:

//docs.openstack.org/developer/kolla/
[27] “Magnum.” [Online]. Available: https://wiki.openstack.org/wiki/

Magnum

