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Abstract—Ubiquitous sensors and smart devices from facto-
ries and communities are generating massive amounts of data,
and ever-increasing computing power is driving the core of
computation and services from the cloud to the edge of the
network. As an important enabler broadly changing people’s
lives, from face recognition to ambitious smart factories and
cities, developments of artificial intelligence (especially deep
learning, DL) based applications and services are thriving.
However, due to efficiency and latency issues, the current cloud
computing service architecture hinders the vision of “providing
artificial intelligence for every person and every organization at
everywhere”. Thus, unleashing DL services using resources at the
network edge near the data sources has emerged as a desirable
solution. Therefore, edge intelligence, aiming to facilitate the
deployment of DL services by edge computing, has received
significant attention. In addition, DL, as the representative
technique of artificial intelligence, can be integrated into edge
computing frameworks to build intelligent edge for dynamic,
adaptive edge maintenance and management. With regard to
mutually beneficial edge intelligence and intelligent edge, this
paper introduces and discusses: 1) the application scenarios of
both; 2) the practical implementation methods and enabling
technologies, namely DL training and inference in the customized
edge computing framework; 3) challenges and future trends of
more pervasive and fine-grained intelligence. We believe that by
consolidating information scattered across the communication,
networking, and DL areas, this survey can help readers to
understand the connections between enabling technologies while
promoting further discussions on the fusion of edge intelligence
and intelligent edge, i.e., Edge DL.

Index Terms—Edge computing, deep learning, wireless com-
munication, computation offloading, artificial intelligence

I. INTRODUCTION

With the proliferation of computing and storage devices,
from server clusters in cloud data centers (the cloud) to
personal computers and smartphones, further, to wearable and
other Internet of Things (IoT) devices, we are now in an
information-centric era in which computing is ubiquitous and
computation services are overflowing from the cloud to the
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edge. According to a Cisco white paper [1], 50 billion IoT
devices will be connected to the Internet by 2020. On the
other hand, Cisco estimates that nearly 850 Zettabytes (ZB)
of data will be generated each year outside the cloud by 2021,
while global data center traffic is only 20.6 ZB [2]. This
indicates that data sources for big data are also undergoing
a transformation: from large-scale cloud data centers to an
increasingly wide range of edge devices. However, existing
cloud computing is gradually unable to manage these mas-
sively distributed computing power and analyze their data: 1)
a large number of computation tasks need to be delivered to
the cloud for processing [3], which undoubtedly poses serious
challenges on network capacity and the computing power
of cloud computing infrastructures; 2) many new types of
applications, e.g., cooperative autonomous driving, have strict
or tight delay requirements that the cloud would have difficulty
meeting since it may be far away from the users [4].

Therefore, edge computing [5], [6] emerges as an attractive
alternative, especially to host computation tasks as close as
possible to the data sources and end users. Certainly, edge
computing and cloud computing are not mutually exclusive
[7], [8]. Instead, the edge complements and extends the cloud.
Compared with cloud computing only, the main advantages
of edge computing combined with cloud computing are three
folds: 1) backbone network alleviation, distributed edge
computing nodes can handle a large number of computation
tasks without exchanging the corresponding data with the
cloud, thus alleviating the traffic load of the network; 2) agile
service response, services hosted at the edge can signifi-
cantly reduce the delay of data transmissions and improve the
response speed; 3) powerful cloud backup, the cloud can
provide powerful processing capabilities and massive storage
when the edge cannot afford.

As a typical and more widely used new form of applica-
tions [9], various deep learning-based intelligent services and
applications have changed many aspects of people’s lives due
to the great advantages of Deep Learning (DL) in the fields
of Computer Vision (CV) and Natural Language Processing
(NLP) [10]. These achievements are not only derived from
the evolution of DL but also inextricably linked to increasing
data and computing power. Nevertheless, for a wider range of
application scenarios, such as smart cities, Internet of Vehicles
(IoVs), etc., there are only a limited number of intelligent
services offered due to the following factors.
• Cost: training and inference of DL models in the cloud

requires devices or users to transmit massive amounts
of data to the cloud, thus consuming a large amount of
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network bandwidth;
• Latency: the delay to access cloud services is generally

not guaranteed and might not be short enough to satisfy
the requirements of many time-critical applications such
as cooperative autonomous driving [11];

• Reliability: most cloud computing applications relies on
wireless communications and backbone networks for
connecting users to services, but for many industrial
scenarios, intelligent services must be highly reliable,
even when network connections are lost;

• Privacy: the data required for DL might carry a lot of
private information, and privacy issues are critical to areas
such as smart home and cities.
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Fig. 1. Edge intelligence and intelligent edge.

Since the edge is closer to users than the cloud, edge
computing is expected to solve many of these issues. In fact,
edge computing is gradually being combined with Artificial In-
telligence (AI), benefiting each other in terms of the realization
of edge intelligence and intelligent edge as depicted in Fig. 1.
Edge intelligence and intelligent edge are not independent of
each other. Edge intelligence is the goal, and the DL services
in intelligent edge are also a part of edge intelligence. In
turn, intelligent edge can provide higher service throughput
and resource utilization for edge intelligence.

To be specific, on one hand, edge intelligence is expected
to push DL computations from the cloud to the edge as
much as possible, thus enabling various distributed, low-
latency and reliable intelligent services. As shown in Fig. 2,
the advantages include: 1) DL services are deployed close to
the requesting users, and the cloud only participates when
additional processing is required [12], hence significantly
reducing the latency and cost of sending data to the cloud for
processing; 2) since the raw data required for DL services is
stored locally on the edge or user devices themselves instead

of the cloud, protection of user privacy is enhanced; 3) the
hierarchical computing architecture provides more reliable DL
computation; 4) with richer data and application scenarios,
edge computing can promote the pervasive application of DL
and realize the prospect of “providing AI for every person
and every organization at everywhere” [13]; 5) diversified and
valuable DL services can broaden the commercial value of
edge computing and accelerate its deployment and growth.
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Fig. 2. Capabilities comparison of cloud, on-device and edge intelligence.

On the other hand, intelligent edge aims to incorporate DL
into the edge for dynamic, adaptive edge maintenance and
management. With the development of communication tech-
nology, network access methods are becoming more diverse.
At the same time, the edge computing infrastructure acts as an
intermediate medium, making the connection between ubiqui-
tous end devices and the cloud more reliable and persistent
[14]. Thus the end devices, edge, and cloud are gradually
merging into a community of shared resources. However, the
maintenance and management of such a large and complex
overall architecture (community) involving wireless commu-
nication, networking, computing, storage, etc., is a major
challenge [15]. Typical network optimization methodologies
rely on fixed mathematical models; however, it is difficult to
accurately model rapidly changing edge network environments
and systems. DL is expected to deal with this problem: when
faced with complex and cumbersome network information,
DL can rely on its powerful learning and reasoning ability
to extract valuable information from data and make adaptive
decisions, achieving intelligent maintenance and management
accordingly.

Therefore, considering that edge intelligence and intelligent
edge, i.e., Edge DL, together face some of the same chal-
lenges and practical issues in multiple aspects, we identify the
following five technologies that are essential for Edge DL:

1) DL applications on Edge, technical frameworks for sys-
tematically organizing edge computing and DL to provide
intelligent services;

2) DL inference in Edge, focusing on the practical deploy-
ment and inference of DL in the edge computing archi-
tecture to fulfill different requirements, such as accuracy
and latency;

3) Edge computing for DL, which adapts the edge computing
platform in terms of network architecture, hardware and
software to support DL computation;

4) DL training at Edge, training DL models for edge in-
telligence at distributed edge devices under resource and
privacy constraints;
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TABLE I
LIST OF IMPORTANT ABBREVIATIONS IN ALPHABETICAL ORDER

Abbr. Definition Abbr. Definition Abbr. Definition

A-LSH Adaptive Locality Sensitive Hashing DVFS Dynamic Voltage and Frequency Scaling NLP Natural Language Processing

AC Actor-Critic ECSP Edge Computing Service Provider NN Neural Network

A3C Asynchronous Advantage Actor-Critic EEoI Early Exit of Inference NPU Neural Processing Unit

AE Auto-Encoder EH Energy Harvesting PPO Proximate Policy Optimization

AI Artificial Intelligence FAP Fog radio Access Point QoE Quality of Experience

APU AI Processing Unit FCNN Fully Connected Neural Network QoS Quality of Service

AR Augmented Reality FL Federated Learning RAM Random Access Memory

ASIC Application-Specific Integrated Circuit FPGA Field Programmable Gate Array RNN Recurrent Neural Network

BS Base Station FTP Fused Tile Partitioning RoI Region-of-Interest

C-RAN Cloud-Radio Access Networks GAN Generative Adversarial Network RRH Remote Radio Head

CDN Content Delivery Network GNN Graph Neural Network RSU Road-Side Unit

CNN Convolutional Neural Network IID Independent and Identically Distributed SDN Software-Defined Network

CV Computer Vision IoT Internet of Things SGD Stochastic Gradient Descent

DAG Directed Acyclic Graph IoV Internet of Vehicles SINR Signal-to-Interference-plus-Noise Ratio

D2D Device-to-Device KD Knowledge Distillation SNPE Snapdragon Neural Processing Engine

DDoS Distributed Denial of Service kNN k-Nearest Neighbor TL Transfer Learning

DDPG Deep Deterministic Policy Gradient MAB Multi-Armed Bandit UE User Equipment

DL Deep Learning MEC Mobile (Multi-access) Edge Computing VM Virtual Machine

DNN Deep Neural Networks MDC Micro Data Center VNF Virtual Network Function

DQL Deep Q-Learning MDP Markov Decision Process V2V Vehicle-to-Vehicle

DRL Deep Reinforcement Learning MLP Multi-Layer Perceptron WLAN Wireless Local Area Network

DSL Domain-specific Language NFV Network Functions Virtualizatio ZB Zettabytes

5) DL for optimizing Edge, application of DL for maintain-
ing and managing different functions of edge computing
networks (systems), e.g., edge caching [16], computation
offloading [17].

As illustrated in Fig. 3, “DL applications on Edge” and “DL
for optimizing edge” correspond to the theoretical goals of
edge intelligence and intelligent edge, respectively. To support
them, various DL models should be trained by intensive com-
putation at first. In this case, for the related works leveraging
edge computing resources to train various DL models, we
classify them as “DL training at Edge”. Second, to enable
and speed up Edge DL services, we focus on a variety of
techniques supporting the efficient inference of DL models
in edge computing frameworks and networks, called “DL
inference in Edge”. At last, we classify all techniques, which
adapts edge computing frameworks and networks to better
serve Edge DL, as “Edge computing for DL”.

To the best of our knowledge, existing articles that are
most related to our work include [18]–[21]. Different from our
more extensive coverage of Edge DL, [18] is focussed on the
use of machine learning (rather than DL) in edge intelligence
for wireless communication perspective, i.e., training machine
learning at the network edge to improve wireless communica-
tion. Besides, discussions about DL inference and training are
the main contribution of [19]–[21]. Different from these works,
this survey focuses on these respects: 1) comprehensively con-
sider deployment issues of DL by edge computing, spanning
networking, communication, and computation; 2) investigate
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Fig. 3. Landscape of Edge DL according to the proposed taxonomy.

the holistic technical spectrum about the convergence of DL
and edge computing in terms of the five enablers; 3) point out
that DL and edge computing are beneficial to each other and
considering only deploying DL on the edge is incomplete.

This paper is organized as follows (as abstracted in Fig. 4).
We have given the background and motivations of this survey
in the current section. Next, we provide some fundamentals
related to edge computing and DL in Section II and Section
III, respectively. The following sections introduce the five
enabling technologies, i.e., DL applications on edge (Section
IV), DL inference in edge (Section V), edge computing for
DL services (Section VI), DL training at edge (Section VII),
and DL for optimizing edge (Section VIII). Finally, we present
lessons learned and discuss open challenges in Section IX and
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conclude this paper in Section X. All related acronyms are
listed in Table I.
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Fig. 4. Conceptual relationships of edge intelligence and intelligent edge.

II. FUNDAMENTALS OF EDGE COMPUTING

Edge computing has become an important solution to break
the bottleneck of emerging technologies by virtue of its advan-
tages of reducing data transmission, improving service latency
and easing cloud computing pressure. The edge computing
architecture will become an important complement to the
cloud, even replacing the role of the cloud in some scenarios.
More detailed information can be found in [8], [22], [23].

A. Paradigms of Edge Computing

In the development of edge computing, there have been
various new technologies aimed at working at the edge of
the network, with the same principles but different focuses,
such as Cloudlet [24], Micro Data Centers (MDCs) [25], Fog
Computing [26] [27] and Mobile Edge Computing [5] (viz.,
Multi-access Edge Computing [28] now). However, the edge
computing community has not yet reached a consensus on the
standardized definitions, architectures and protocols of edge
computing [23]. We use a common term “edge computing”
for this set of emerging technologies. In this section, different
edge computing concepts are introduced and differentiated.

1) Cloudlet and Micro Data Centers: Cloudlet is a network
architecture element that combines mobile computing and
cloud computing. It represents the middle layer of the three-
tier architecture, i.e., mobile devices, the micro cloud, and
the cloud. Its highlights are efforts to 1) define the system
and create algorithms that support low-latency edge cloud
computing, and 2) implement related functionality in open
source code as an extension of Open Stack cloud management
software [24]. Similar to Cloudlets, MDCs [25] are also
designed to complement the cloud. The idea is to package
all the computing, storage, and networking equipment needed

to run customer applications in one enclosure, as a stand-
alone secure computing environment, for applications that
require lower latency or end devices with limited battery life
or computing abilities.

2) Fog Computing: One of the highlights of fog computing
is that it assumes a fully distributed multi-tier cloud computing
architecture with billions of devices and large-scale cloud
data centers [26] [27]. While cloud and fog paradigms share
a similar set of services, such as computing, storage, and
networking, the deployment of fog is targeted to specific
geographic areas. In addition, fog is designed for applications
that require real-time responding with less latency, such as
interactive and IoT applications. Unlike Cloudlet, MDCs and
MEC, fog computing is more focused on IoTs.

3) Mobile (Multi-access) Edge Computing (MEC): Mobile
Edge Computing places computing capabilities and service en-
vironments at the edge of cellular networks [5]. It is designed
to provide lower latency, context and location awareness, and
higher bandwidth. Deploying edge servers on cellular Base
Stations (BSs) allows users to deploy new applications and ser-
vices flexibly and quickly. The European Telecommunications
Standards Institute (ETSI) further extends the terminology of
MEC from Mobile Edge Computing to Multi-access Edge
Computing by accommodating more wireless communication
technologies, such as Wi-Fi [28].

4) Definition of Edge Computing Terminologies: The def-
inition and division of edge devices are ambiguous in most
literature (the boundary between edge nodes and end devices
is not clear). For this reason, as depicted in Fig. 1, we further
divide common edge devices into end devices and edge nodes:
the “end devices” (end level) is used to refer to mobile
edge devices (including smartphones, smart vehicles, etc.) and
various IoT devices, and the “edge nodes” (edge level) include
Cloudlets, Road-Side Units (RSUs), Fog nodes, edge servers,
MEC servers and so on, namely servers deployed at the edge
of the network.
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Fig. 5. A sketch of collaborative end-edge-cloud DL computing.
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TABLE II
SUMMARY OF EDGE COMPUTING AI HARDWARES AND SYSTEMS

Owner Production Feature

Integrated
Commodities

Microsoft Data Box Edge [29] Competitive in data preprocessing and data transmission

Intel Movidius Neural
Compute Stick [30] Prototype on any platform with plug-and-play simplicity

NVIDIA Jetson [31] Easy-to-use platforms that runs in as little as 5 Watts

Huawei Atlas Series [32] An all-scenario AI infrastructure solution that bridges “device, edge, and cloud”

AI Hardware
for

Edge Computing

Qualcomm Snapdragon 8 Series [33] Powerful adaptability to major DL frameworks

HiSilicon Kirin 600/900 Series [34] Independent NPU for DL computation

HiSilicon Ascend Series [35] Full coverage from the ultimate low energy consumption scenario
to high computing power scenario

MediaTek Helio P60 [36] Simultaneous use of GPU and NPU to accelerate neural network computing

NVIDIA Turing GPUs [37] Powerful capabilities and compatibility but with high energy consumption

Google TPU [38] Stable in terms of performance and power consumption

Intel Xeon D-2100 [39] Optimized for power- and space-constrained cloud-edge solutions

Samsung Exynos 9820 [40] Mobile NPU for accelerating AI tasks

Edge
Computing

Frameworks

Huawei KubeEdge [41] Native support for edge-cloud collaboration

Baidu OpenEdge [42] Computing framework shielding and application production simplification

Microsoft Azure IoT Edge [43] Remotely edge management with zero-touch device provisioning

Linux Foundation EdgeX [44] IoT edge across the industrial and enterprise use cases

Linux Foundation Akraino Edge Stack [45] Integrated distributed cloud edge platform

NVIDIA NVIDIA EGX [46] Real-time perception, understanding, and processing at the edge

Amazon AWS IoT Greengrass [47] Tolerance to edge devices even with intermittent connectivity

Google Google Cloud IoT [48] Compatible with Google AI products, such as TensorFlow Lite and Edge TPU

5) Collaborative End-Edge-Cloud Computing: While cloud
computing is created for processing computation-intensive
tasks, such as DL, it cannot guarantee the delay requirements
throughout the whole process from data generation to trans-
mission to execution. Moreover, independent processing on the
end or edge devices is limited by their computing capability,
power consumption, and cost bottleneck. Therefore, collabo-
rative end-edge-cloud computing for DL [12], abstracted in
Fig. 5, is emerging as an important trend as depicted in Fig.
6. In this novel computing paradigm, computation tasks with
lower computational intensities, generated by end devices, can
be executed directly at the end devices or offloaded to the
edge, thus avoiding the delay caused by sending data to the
cloud. For a computation-intensive task, it will be reasonably
segmented and dispatched separately to the end, edge and
cloud for execution, reducing the execution delay of the task
while ensuring the accuracy of the results [12], [49], [50]. The
focus of this collaborative paradigm is not only the successful
completion of tasks but also achieving the optimal balance of
equipment energy consumption, server loads, transmission and
execution delays.

B. Hardware for Edge Computing

In this section, we discuss potential enabling hardware of
edge intelligence, i.e., customized AI chips and commodities
for both end devices and edge nodes. Besides, edge-cloud
systems for DL are introduced as well (listed in Table II).

1) AI Hardware for Edge Computing: Emerged edge AI
hardware can be classified into three categories according

to their technical architecture: 1) Graphics Processing Unit
(GPU)-based hardware, which tend to have good compati-
bility and performance, but generally consume more energy,
e.g., NVIDIA’ GPUs based on Turing architecture [37]; 2)
Field Programmable Gate Array (FPGA)-based hardware [51],
[52], which are energy-saving and require less computation
resources, but with worse compatibility and limited program-
ming capability compared to GPUs; 3) Application Specific
Integrated Circuit (ASIC)-based hardware, such as Google’s
TPU [38] and HiSilicon’s Ascend series [35], usually with a
custom design that is more stable in terms of performance and
power consumption.

As smartphones represent the most widely-deployed edge
devices, chips for smartphones have undergone rapid devel-
opments, and their capabilities have been extended to the
acceleration of AI computing. To name a few, Qualcomm
first applies AI hardware acceleration [33] in Snapdragon
and releases Snapdragon Neural Processing Engine (SNPE)
SDK [53], which supports almost all major DL frameworks.
Compared to Qualcomm, HiSilicon’s 600 series and 900 series
chips [34] do not depend on GPUs. Instead, they incorporate
an additional Neural Processing Unit (NPU) to achieve fast
calculation of vectors and matrices, which greatly improves
the efficiency of DL. Compared to HiSilicon and Qualcomm,
MediaTek’s Helio P60 not only uses GPUs but also introduces
an AI Processing Unit (APU) to further accelerate neural
network computing [36]. Performance comparison of most
commodity chips with respect to DL can be found in [54],
and more customized chips of edge devices will be discussed
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in detail later.
2) Integrated Commodities Potentially for Edge Nodes:

Edge nodes are expected to have computing and caching ca-
pabilities and to provide high-quality network connection and
computing services near end devices. Compared to most end
devices, edge nodes have more powerful computing capability
to process tasks. On the other side, edge nodes can respond
to end devices more quickly than the cloud. Therefore, by
deploying edge nodes to perform the computation task, the
task processing can be accelerated while ensuring accuracy. In
addition, edge nodes also have the ability to cache, which can
improve the response time by caching popular contents. For
example, practical solutions including Huawei’ Atlas modules
[32] and Microsoft’s Data Box Edge [29] can carry out
preliminary DL inference and then transfer to the cloud for
further improvement.

3) Edge Computing Frameworks: Solutions for edge com-
puting systems are blooming. For DL services with com-
plex configuration and intensive resource requirements, edge
computing systems with advanced and excellent microservice
architecture are the future development direction. Currently,
Kubernetes is as a mainstream container-centric system for
the deployment, maintenance, and scaling of applications in
cloud computing [55]. Based on Kubernetes, Huawei develops
its edge computing solution “KubeEdge” [41] for networking,
application deployment and metadata synchronization between
the cloud and the edge (also supported in Akraino Edge Stack
[45]). “OpenEdge” [42] focus on shielding computing frame-
work and simplifying application production. For IoT, Azure
IoT Edge [43] and EdgeX [44] are devised for delivering cloud
intelligence to the edge by deploying and running AI on cross-
platform IoT devices.

C. Virtualizing the Edge

The requirements of virtualization technology for integrat-
ing edge computing and DL reflect in the following aspects: 1)
The resource of edge computing is limited. Edge computing
cannot provide that resources for DL services as the cloud
does. Virtualization technologies should maximize resource
utilization under the constraints of limited resources; 2) DL
services rely heavily on complex software libraries. The ver-
sions and dependencies of these software libraries should be
taken into account carefully. Therefore, virtualization catering
to Edge DL services should be able to isolate different
services. Specifically, the upgrade, shutdown, crash, and high
resource consumption of a single service should not affect
other services; 3) The service response speed is critical for
Edge DL. Edge DL requires not only the computing power of
edge devices but also the agile service response that the edge
computing architecture can provide.

The combination of edge computing and DL to form
high-performance Edge DL services requires the coordinated
integration of computing, networking and communication re-
sources, as depicted in Fig. 8. Specifically, both the computa-
tion virtualization and the integration of network virtualization,
and management technologies are necessary. In this section,
we discuss potential virtualization technologies for the edge.

TABLE III
POTENTIAL DL LIBRARIES FOR EDGE COMPUTING
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Edge
Support × × X X X X X X X X X X X X

Android × × × X X X X × X X X X X ×

iOS × × × × × X X X × X X X X ×

Arm × × X X X X X × X X X X X X

FPGA × × × × × × X × × × × X × ×

DSP × × × × × × × × X × × × × ×

GPU X X X X X X X × × × × × × ×

Mobile
GPU × × × × X × × X X X X X X ×

Training
Support X X X X × X X × × × × × × X

1) Virtualization Techniques: Currently, there are two main
virtualization strategies: Virtual Machine (VM) and container.
In general, VM is better at isolating while container provides
easier deployment of repetitive tasks [69]. With VM virtu-
alization at operating system level, a VM hypervisor splits
a physical server into one or multiple VMs, and can easily
manage each VM to execute tasks in isolation. Besides, the
VM hypervisor can allocate and use idle computing resources
more efficiently by creating a scalable system that includes
multiple independent virtual computing devices.

In contrast to VM, container virtualization is a more flexible
tool for packaging, delivering, and orchestrating software in-
frastructure services and applications. Container virtualization
for edge computing can effectively reduce the workload execu-
tion time with high performance and storage requirements, and
can also deploy a large number of services in a scalable and
straightforward fashion [70]. A container consists of a single
file that includes an application and execution environment
with all dependencies, which makes it enable efficient service
handoff to cope with user mobility [71]. Owning to that the
execution of applications in the container does not depend on
additional virtualization layers as in VM virtualization, the
processor consumption and the amount of memory required
to execute the application are significantly reduced.

2) Network Virtualization: Traditional networking func-
tions, combined with specific hardware, is not flexible enough
to manage edge computing networks in an on-demand fashion.
In order to consolidate network device functions into industry-
standard servers, switches and storage, Network Functions Vir-
tualization (NFV) enables Virtual Network Functions (VNFs)
to run in software, by separating network functions and
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Fig. 8. Virtualizing edge computing infrastructure and networks.

services from dedicated network hardware. Further, Edge DL
services typically require high bandwidth, low latency, and
dynamic network configuration, while Software-defined Net-
working (SDN) allows rapid deployment of services, network
programmability and multi-tenancy support, through three key
innovations [72]: 1) Decoupling of control planes and data
planes; 2) Centralized and programmable control planes; 3)
Standardized application programming interface. With these
advantages, it supports a highly customized network strategy
that is well suited for the high bandwidth, dynamic nature of
Edge DL services.

Network virtualization and edge computing benefit each
other. On the one hand, NFV/SDN can enhance the inter-
operability of edge computing infrastructure. For example,
with the support of NFV/SDN, edge nodes can be efficiently
orchestrated and integrated with cloud data centers [73]. On
the other hand, both VNFs and Edge DL services can be hosted
on a lightweight NFV framework (deployed on the edge) [74],
thus reusing the infrastructure and infrastructure management
of NFV to the largest extent possible [75].

3) Network Slicing: Network slicing is a form of agile and
virtual network architecture, a high-level abstraction of the
network that allows multiple network instances to be created
on top of a common shared physical infrastructure, each
of which optimized for specific services. With increasingly
diverse service and QoS requirements, network slicing, imple-
mented by NFV/SDN, is naturally compatible with distributed
paradigms of edge computing. To meet these, network slicing
can be coordinated with joint optimization of computing and
communication resources in edge computing networks [76].
Fig. 8 depicts an example of network slicing based on edge
virtualization. In order to implement service customization in
network slicing, virtualization technologies and SDN must be
together to support tight coordination of resource allocation
and service provision on edge nodes while allowing flexible
service control. With network slicing, customized and opti-
mized resources can be provided for Edge DL services, which
can help reduce latency caused by access networks and support
dense access to these services [77].

III. FUNDAMENTALS OF DEEP LEARNING

With respect to CV, NLP, and AI, DL is adopted in a myriad
of applications and corroborates its superior performance [78].
Currently, a large number of GPUs, TPUs, or FPGAs are
required to be deployed in the cloud to process DL service
requests. Nonetheless, the edge computing architecture, on
account of it covers a large number of distributed edge devices,
can be utilized to better serve DL. Certainly, edge devices
typically have limited computing power or power consumption
compared to the cloud. Therefore, the combination of DL
and edge computing is not straightforward and requires a
comprehensive understanding of DL models and edge com-
puting features for design and deployment. In this section,
we compendiously introduce DL and related technical terms,
paving the way for discussing the integration of DL and edge
computing (more details can be found in [79]).
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A. Neural Networks in Deep Learning
DL models consist of various types of Deep Neural Net-

works (DNNs) [79]. Fundamentals of DNNs in terms of basic
structures and functions are introduced as follows.

1) Fully Connected Neural Network (FCNN): The output
of each layer of FCNN, i.e., Multi-Layer Perceptron (MLP),
is fed forward to the next layer, as in Fig. 7(a). Between
contiguous FCNN layers, the output of a neuron (cell), either
the input or hidden cell, is directly passed to and activated by
neurons belong to the next layer [80]. FCNN can be used for
feature extraction and function approximation, however with
high complexity, modest performance, and slow convergence.

2) Auto-Encoder (AE): AE, as in Fig. 7(b), is actually a
stack of two NNs that replicate input to its output in an unsu-
pervised learning style. The first NN learns the representative
characteristics of the input (encoding). The second NN takes
these features as input and restores the approximation of the
original input at the match input output cell, used to converge
on the identity function from input to output, as the final output
(decoding). Since AEs are able to learn the low-dimensional
useful features of input data to recover input data, it is often
used to classify and store high-dimensional data [81].

3) Convolutional Neural Network (CNN): By employing
pooling operations and a set of distinct moving filters, CNNs
seize correlations between adjacent data pieces, and then
generate a successively higher level abstraction of the input
data, as in Fig. 7(c). Compared to FCNNs, CNNs can extract
features while reducing the model complexity, which mitigates
the risk of overfitting [82]. These characteristics make CNNs
achieve remarkable performance in image processing and also
useful in processing structural data similar to images.

4) Generative Adversarial Network (GAN): GAN origi-
nates from game theory. As illustrated in Fig. 7(d), GAN is
composed of generator and discriminator. The goal of the
generator is to learn about the true data distribution as much
as possible by deliberately introducing feedback at the back-
fed input cell, while the discriminator is to correctly determine
whether the input data is coming from the true data or the
generator. These two participants need to constantly optimize
their ability to generate and distinguish in the adversarial
process until finding a Nash equilibrium [83]. According to
the features learned from the real information, a well-trained
generator can thus fabricate indistinguishable information.

5) Recurrent Neural Network (RNN): RNNs are designed
for handling sequential data. As depicted in Fig. 7(e), each
neuron in RNNs not only receives information from the upper
layer but also receives information from the previous channel
of its own [10]. In general, RNNs are natural choices for
predicting future information or restoring missing parts of
sequential data. However, a serious problem with RNNs is
the gradient explosion. LSTM, as in Fig. 7(f), improving
RNN with adding a gate structure and a well-defined memory
cell, can overcome this issue by controlling (prohibiting or
allowing) the flow of information [84].

6) Transfer Learning (TL): TL can transfer knowledge, as
shown in Fig. 7(g), from the source domain to the target
domain so as to achieve better learning performance in the
target domain [85]. By using TL, existing knowledge learned

by a large number of computation resources can be transferred
to a new scenario, and thus accelerating the training process
and reducing model development costs. Recently, a novel
form of TL emerges, viz., Knowledge Distillation (KD) [86]
emerges. As indicated in Fig. 7(h), KD can extract implicit
knowledge from a well-trained model (teacher), inference
of which possess excellent performance but requires high
overhead. Then, by designing the structure and objective func-
tion of the target DL model, the knowledge is “transferred”
to a smaller DL model (student), so that the significantly
reduced (pruned or quantized) target DL model achieves high
performance as possible.

B. Deep Reinforcement Learning (DRL)

As depicted in Fig. 9, the goal of RL is to enable an agent in
the environment to take the best action in the current state to
maximize long-term gains, where the interaction between the
agent’s action and state through the environment is modeled as
a Markov Decision Process (MDP). DRL is the combination
of DL and RL, but it focuses more on RL and aims to
solve decision-making problems. The role of DL is to use
the powerful representation ability of DNNs to fit the value
function or the direct strategy to solve the explosion of
state-action space or continuous state-action space problem.
By virtue of these characteristics, DRL becomes a powerful
solution in robotics, finance, recommendation system, wireless
communication, etc [18], [87].

State

1. Value-based
DRL:

Direct action

2. Policy-gradient-
based DRL:
Action policy

Environment

Take
actions

DRL agent

Reward

DNNs
Observation

state

Fig. 9. Value-based and policy-gradient-based DRL approaches.

1) Value-based DRL: As a representative of value-based
DRL, Deep Q-Learning (DQL) uses DNNs to fit action
values, successfully mapping high-dimensional input data to
actions [88]. In order to ensure stable convergence of training,
experience replay method is adopted to break the correlation
between transition information and a separate target network
is set up to suppress instability. Besides, Double Deep Q-
Learning (Double-DQL) can deal with that DQL generally
overestimating action values [89], and Dueling Deep Q-
Learning (Dueling-DQL) [90] can learn which states are (or
are not) valuable without having to learn the effect of each
action at each state.

2) Policy-gradient-based DRL: Policy gradient is another
common strategy optimization method, such as Deep Deter-
ministic Policy Gradient (DDPG) [91], Asynchronous Advan-
tage Actor-Critic (A3C) [92], Proximate Policy Optimization
(PPO) [93], etc. It updates the policy parameters by continu-
ously calculating the gradient of the policy expectation reward
with respect to them, and finally converges to the optimal
strategy [94]. Therefore, when solving the DRL problem,
DNNs can be used to parameterize the policy, and then be
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optimized by the policy gradient method. Further, Actor-
Critic (AC) framework is widely adopted in policy-gradient-
based DRL, in which the policy DNN is used to update the
policy, corresponding to the Actor; the value DNN is used to
approximate the value function of the state action pair, and
provides gradient information, corresponding to the Critic.

C. Distributed DL Training

At present, training DL models in a centralized manner
consumes a lot of time and computation resources, hindering
further improving the algorithm performance. Nonetheless,
distributed training can facilitate the training process by taking
full advantage of parallel servers. There are two common ways
to perform distributed training, i.e., data parallelism and model
parallelism [95]–[98] as illustrated in Fig. 10.

Shared
data

Global
model

parameter
server

Machine

Machine

Machine

Machine

Machine

Machine

Machine

(a) Data parallelism (b) Model parallelism

Data
partitions

Fig. 10. Distributed training in terms of data and model parallelism.

Model parallelism first splits a large DL model into multiple
parts and then feeds data samples for training these segmented
models in parallel. This not only can improve the training
speed but also deal with the circumstance that the model is
larger than the device memory. Training a large DL model gen-
erally requires a lot of computation resources, even thousands
of CPUs are required to train a large-scale DL model. In order
to solve this problem, distributed GPUs can be utilized for
model parallel training [99]. Data parallelism means dividing
data into multiple partitions, and then respectively training
copies of the model in parallel with their own allocated data
samples. By this means, the training efficiency of model
training can be improved [100].

Coincidentally, a large number of end devices, edge nodes,
and cloud data centers, are scattered and envisioned to be
connected by virtue of edge computing networks. These dis-
tributed devices can potentially be powerful contributors once
the DL training jumps out of the cloud.

D. Potential DL Libraries for Edge

Development and deployment of DL models rely on the
support of various DL libraries. However, different DL li-
braries have their own application scenarios. For deploying
DL on and for the edge, efficient lightweight DL libraries are
required. Features of DL frameworks potentially supporting
future edge intelligence are listed in Table III (excluding
libraries unavailable for edge devices, such as Theano [101]).

IV. DEEP LEARNING APPLICATIONS ON EDGE

In general, DL services are currently deployed in cloud
data centers (the cloud) for handling requests, due to the
fact that most DL models are complex and hard to compute
their inference results on the side of resource-limited devices.
However, such kind of “end-cloud” architecture cannot meet
the needs of real-time DL services such as real-time analytics,
smart manufacturing and etc. Thus, deploying DL applications
on the edge can broaden the application scenarios of DL
especially with respect to the low latency characteristic. In
the following, we present edge DL applications and highlight
their advantages over the comparing architectures without edge
computing.

A. Real-time Video Analytic

Real-time video analytic is important in various fields, such
as automatic pilot, VR and Augmented Reality (AR), smart
surveillance, etc. In general, applying DL for it requires high
computation and storage resources. Unfortunately, executing
these tasks in the cloud often incurs high bandwidth con-
sumption, unexpected latency, and reliability issues. With the
development of edge computing, those problems tend to be
addressed by moving video analysis near to the data source,
viz., end devices or edge nodes, as the complementary of the
cloud. In this section, as depicted in Fig. 11, we summarize
related works as a hybrid hierarchical architecture, which is
divided into three levels: end, edge, and cloud.

Analysis requests
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Well-trained
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DNN layers
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Results
directly
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Results
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Fig. 11. The collaboration of the end, edge and cloud layer for performing
real-time video analytic by deep learning.

1) End Level: At the end level, video capture devices,
such as smartphones and surveillance cameras are responsible
for video capture, media data compression [102], image pre-
processing, and image segmentation [103]. By coordinating
with these participated devices, collaboratively training a
domain-aware adaptation model can lead to better object
recognition accuracy when used together with a domain-
constrained deep model [104]. Besides, in order to appro-
priately offload the DL computation to the end devices, the
edge nodes or the cloud, end devices should comprehensively
consider tradeoffs between video compression and key metrics,
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e.g., network condition, data usage, battery consumption,
processing delay, frame rate and accuracy of analytics, and
thus determine the optimal offloading strategy [102].

If various DL tasks are executed at the end level inde-
pendently, enabling parallel analytics requires a solution that
supports efficient multi-tenant DL. With the model pruning and
recovery scheme, NestDNN [105] transforms the DL model
into a set of descendant models, in which the descendant
model with fewer resource requirements shares its model pa-
rameters with the descendant model requiring more resources,
making itself nested inside the descendent model requiring
more resources without taking extra memory space. In this
way, the multi-capacity model provides variable resource-
accuracy trade-offs with a compact memory footprint, hence
ensuring efficient multi-tenant DL at the end level.

2) Edge Level: Numerous distributed edge nodes at the
edge level generally cooperate with each other to provide
better services. For example, LAVEA [106] attaches edge nodes
to the same access point or BS as well as the end devices,
which ensure that services can be as ubiquitous as Internet
access. In addition, compressing the DL model on the edge
can improve holistic performance. The resource consumption
of the edge layer can be greatly reduced while ensuring the
analysis performance, by reducing the unnecessary filters in
CNN layers [107]. Besides, in order to optimize performance
and efficiency, [108] presents an edge service framework, i.e.,
EdgeEye, which realizes a high-level abstraction of real-time
video analytic functions based on DL. To fully exploit the
bond function of the edge, VideoEdge [109] implements an
end-edge-cloud hierarchical architecture to help achieve load
balancing concerning analytical tasks while maintaining high
analysis accuracy.

3) Cloud Level: At the cloud level, the cloud is responsible
for the integration of DL models among the edge layer and
updating parameters of distributed DL models on edge nodes
[102]. Since the distributed model training performance on
an edge node may be significantly impaired due to its local
knowledge, the cloud needs to integrate different well-trained
DL models to achieve global knowledge. When the edge
is unable to provide the service confidently (e.g., detecting
objects with low confidence), the cloud can use its powerful
computing power and global knowledge for further processing
and assist the edge nodes to update DL models.

B. Autonomous Internet of Vehicles (IoVs)
It is envisioned that vehicles can be connected to improve

safety, enhance efficiency, reduce accidents, and decrease
traffic congestion in transportation systems [110]. There are
many information and communication technologies such as
networking, caching, edge computing which can be used
for facilitating the IoVs, though usually studied respectively.
On one hand, edge computing provides low-latency, high-
speed communication and fast-response services for vehicles,
making automatic driving possible. On the other hand, DL
techniques are important in various smart vehicle applications.
Further, they are expected to optimize complex IoVs systems.

In [110], a framework which integrates these technologies
is proposed. This integrated framework enables dynamic or-

chestration of networking, caching and computation resources
to meet requirements of different vehicular applications [110].
Since this system involves multi-dimensional control, a DRL-
based approach is first utilized to solve the optimization
problem for enhancing the holistic system performance. Sim-
ilarly, DRL is also used in [111] to obtain the optimal
task offloading policy in vehicular edge computing. Besides,
Vehicle-to-Vehicle (V2V) communication technology can be
taken advantaged to further connect vehicles, either as an edge
node or an end device managed by DRL-based control policies
[112].

C. Intelligent Manufacturing

Two most important principles in the intelligent manufac-
turing era are automation and data analysis, the former one
of which is the main target and the latter one is one of the
most useful tools [113]. In order to follow these principles,
intelligent manufacturing should first address response latency,
risk control, and privacy protection, and hence requires DL
and edge computing. In intelligent factories, edge computing
is conducive to expand the computation resources, the network
bandwidth, and the storage capacity of the cloud to the IoT
edge, as well as realizing the resource scheduling and data
processing during manufacturing and production [114]. For
autonomous manufacturing inspection, DeepIns [113] uses DL
and edge computing to guarantee performance and process
delay respectively. The main idea of this system is partitioning
the DL model, used for inspection, and deploying them on
the end, edge and cloud layer separately for improving the
inspection efficiency.

Nonetheless, with the exponential growth of IoT edge
devices, 1) how to remotely manage evolving DL models
and 2) how to continuously evaluate these models for them
are necessary. In [115], a framework, dealing with these
challenges, is developed to support complex-event learning
during intelligent manufacturing, thus facilitating the devel-
opment of real-time application on IoT edge devices. Besides,
the power, energy efficiency, memory footprint limitation of
IoT edge devices [116] should also be considered. Therefore,
caching, communication with heterogeneous IoT devices, and
computation offloading can be integrated [117] to break the
resource bottleneck.

D. Smart Home and City

The popularity of IoTs will bring more and more intelligent
applications to home life, such as intelligent lighting control
systems, smart televisions, and smart air conditioners. But at
the same time, smart homes need to deploy numerous wireless
IoT sensors and controllers in corners, floors, and walls. For
the protection of sensitive home data, the data processing of
smart home systems must rely on edge computing. Like use
cases in [118], [119], edge computing is deployed to optimize
indoor positioning systems and home intrusion monitoring so
that they can get lower latency than using cloud computing as
well as the better accuracy. Further, the combination of DL and
edge computing can make these intelligent services become
more various and powerful. For instance, it endows robots the
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ability of dynamic visual servicing [120] and enables efficient
music cognition system [121].

If the smart home is enlarged to a community or city, public
safety, health data, public facilities, transportation, and other
fields can benefit. The original intention of applying edge
computing in smart cities is more due to cost and efficiency
considerations. The natural characteristic of geographically
distributed data sources in cities requires an edge computing-
based paradigm to offer location-awareness and latency-
sensitive monitoring and intelligent control. For instance, the
hierarchical distributed edge computing architecture in [122]
can support the integration of massive infrastructure compo-
nents and services in future smart cities. This architecture can
not only support latency-sensitive applications on end devices
but also perform slightly latency-tolerant tasks efficiently on
edge nodes, while large-scale DL models responsible for deep
analysis are hosted on the cloud. Besides, DL can be utilized to
orchestrate and schedule infrastructures to achieve the holistic
load balancing and optimal resource utilization among a region
of a city (e.g., within a campus [123]) or the whole city.

V. DEEP LEARNING INFERENCE IN EDGE

In order to further improve the accuracy, DNNs become
deeper and require larger-scale dataset. By this means, dra-
matic computation costs are introduced. Certainly, the out-
standing performance of DL models is inseparable from the
support of high-level hardware, and it is difficult to deploy
them in the edge with limited resources. Therefore, large-scale
DL models are generally deployed in the cloud while end
devices just send input data to the cloud and then wait for the
DL inference results. However, the cloud-only inference limits
the ubiquitous deployment of DL services. Specifically, it can
not guarantee the delay requirement of real-time services, e.g.,
real-time detection with strict latency demands. Moreover,
for important data sources, data safety and privacy protection
should be addressed. To deal with these issues, DL services
tend to resort to edge computing. Therefore, DL models should
be further customized to fit in the resource-constrained edge,
while carefully treating the trade-off between the inference
accuracy and the execution latency of them.

A. Optimization of DL Models in Edge

DL tasks are usually computationally intensive and requires
large memory footprints. But in the edge, there are not enough
resources to support raw large-scale DL models. Optimizing
DL models and quantize their weights can reduce resource
costs. In fact, model redundancies are common in DNNs [124],
[125] and can be utilized to make model optimization possible.
The most important challenge is how to ensure that there is
no significant loss in model accuracy after being optimized.
In other words, the optimization approach should transform or
re-design DL models and make them fit in edge devices, with
as little loss of model performance as possible. In this section,
optimization methods for different scenarios are discussed: 1)
general optimization methods for edge nodes with relatively
sufficient resources; 2) fine-grained optimization methods for
end devices with tight resource budgets.

1) General Methods for Model Optimization: On one hand,
increasing the depth and width of DL models with nearly con-
stant computation overhead is one direction of optimization,
such as inception [126] and deep residual networks [127] for
CNNs. On the other hand, for more general neural network
structures, existing optimization methods can be divided into
four categories [128]: 1) parameter pruning and sharing [129],
[130], including also weights quantization [131]–[133]; 2)
low-rank factorization [124]; 3) transferred/compact convolu-
tion filters [107], [134], [135]; 4) knowledge distillation [136].
These approaches can be applied to different kinds of DNNs
or be composed to optimize a complex DL model for the edge.

2) Model Optimization for Edge Devices: In addition to
limited computing and memory footprint, other factors such
as network bandwidth and power consumption also need to
be considered. In this section, efforts for running DL on edge
devices are differentiated and discussed.
• Model Input: Each application scenario has specific

optimization spaces. Concerning object detection, FFS-
VA uses two prepositive stream-specialized filters and a
small full-function tiny-YOLO model to filter out vast
but non-target-object frames [137]. In order to adjust
the configuration of the input video stream (such as
frame resolution and sampling rate) online with low cost,
Chameleon [138] greatly saves the cost of searching
the best model configuration by leveraging temporal
and spatial correlations of the video inputs, and allows
the cost to be amortized over time and across multiple
video feeds. Besides, as depicted in Fig. 12, narrowing
down the classifier’s searching space [139] and dynamic
Region-of-Interest (RoI) encoding [140] to focus on target
objects in video frames can further reduce the bandwidth
consumption and data transmission delay. Though this
kind of methods can significantly compress the size of
model inputs and hence reduce the computation overhead
without altering the structure of DL models, it requires a
deep understanding of the related application scenario to
dig out the potential optimization space.

Raw input picture

DNN
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Reduce
searching
space

RoI

Homer
Simpson

Fig. 12. Optimization for model inputs, e.g., narrowing down the searching
space of DL models (pictures are with permission from [141]).

• Model Structure: Not paying attention to specific applica-
tions, but focusing on the widely used DNNs’ structures is
also feasible. For instance, point-wise group convolution
and channel shuffle [142], paralleled convolution and
pooling computation [143], depth-wise separable convo-
lution [107] can greatly reduce computation cost while
maintaining accuracy. NoScope [144] leverages two types
of models rather than the standard model (such as YOLO
[9]): specialized models that waive the generality of
standard models in exchange for faster inference, and
difference detectors that identify temporal differences
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across input data. After performing efficient cost-based
optimization of the model architecture and thresholds for
each model, NoScope can maximize the throughput of
DL services and by cascading these models. Besides, as
depicted in Fig. 13, parameters pruning can be applied
adaptively in model structure optimization as well [145]–
[147]. Furthermore, the optimization can be more effi-
cient if across the boundary between algorithm, software
and hardware. Specifically, general hardware is not ready
for the irregular computation pattern introduced by model
optimization. Therefore, hardware architectures should be
designed to work directly for optimized models [145].
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Fig. 13. Adaptive parameters pruning in model structure optimization.

• Model Selection: With various DL models, choosing the
best one from available DL models in the edge requires
weighing both precision and inference time. In [148], the
authors use kNN to automatically construct a predictor,
composed of DL models arranged in sequence. Then, the
model selection can be determined by that predictor along
with a set of automatically tuned features of the model
input. Besides, combining different compression tech-
niques (such as model pruning), multiple compressed DL
models with different tradeoffs between the performance
and the resource requirement can be derived. AdaDeep
[149] explores the desirable balance between performance
and resource constraints, and based on DRL, automat-
ically selects various compression techniques (such as
model pruning) to form a compressed model according
to current available resources, thus fully utilizing the
advantages of them.

• Model Framework: Given the high memory footprint and
computational demands of DL, running them on edge
devices requires expert-tailored software and hardware
frameworks. A software framework is valuable if it 1)
provides a library of optimized software kernels to enable
deployment of DL [150]; 2) automatically compresses DL
models into smaller dense matrices by finding the min-
imum number of non-redundant hidden elements [151];
3) performs quantization and coding on all commonly
used DL structures [146], [151], [152]; 4) specializes DL
models to contexts and shares resources across multiple
simultaneously executing DL models [152]. With respect
to the hardware, running DL models on Static Random
Access Memory (SRAM) achieves better energy savings
compared to Dynamic RAM (DRAM) [146]. Hence, DL
performance can be benefited if underlying hardware
directly supports running optimized DL models [153] on
the on-chip SRAM.

B. Segmentation of DL Models

In [12], the delay and power consumption of the most
advanced DL models are evaluated on the cloud and edge
devices, finding that uploading data to the cloud is the
bottleneck of current DL servicing methods (leading to a
large overhead of transmitting). Dividing the DL model and
performing distributed computation can achieve better end-
to-end delay performance and energy efficiency. In addition,
by pushing part of DL tasks from the cloud to the edge, the
throughput of the cloud can be improved. Therefore, the DL
model can be segmented into multiple partitions and then
allocated to 1) heterogeneous local processors (e.g., GPUs,
CPUs) on the end device [154], 2) distributed edge nodes
[155], [156], or 3) collaborative “end-edge-cloud” architecture
[12], [49], [157], [158].

Partitioning the DL model horizontally, i.e., along the end,
edge and cloud, is the most common segmentation method.
The challenge lies in how to intelligently select the partition
points. As illustrated in Fig. 14, a general process for de-
termining the partition point can be divided into three steps
[12], [157]: 1) measuring and modeling the resource cost
of different DNN layers and the size of intermediate data
between layers; 2) predicting the total cost by specific layer
configurations and network bandwidth; 3) choosing the best
one from candidate partition points according to delay, energy
requirements, etc. Another kind of model segmentation is
vertically partitioning particularly for CNNs [156]. In contrast
to horizontal partition, vertical partition fuses layers and parti-
tions them vertically in a grid fashion, and thus divides CNN
layers into independently distributable computation tasks.
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Fig. 14. Segmentation of DL models in the edge.

C. Early Exit of Inference (EEoI)

To reach the best trade-off between model accuracy and
processing delay, multiple DL models with different model
performance and resource cost can be maintained for each
DL service. Then, by intelligently selecting the best model,
the desired adaptive inference is achieved [159]. Nonetheless,
this idea can be further improved by the emerged EEoI [160].

The performance improvement of additional layers in DNNs
is at the expense of increased latency and energy consumption
in feedforward inference. As DNNs grow larger and deeper,
these costs become more prohibitive for edge devices to run
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real-time and energy-sensitive DL applications. By additional
side branch classifiers, for partial samples, EEoI allows infer-
ence to exit early via these branches if with high confidence.
For more difficult samples, EEoI will use more or all DNN
layers to provide the best predictions.

As depicted in Fig. 15, by taking advantage of EEoI,
fast and localized inference using shallow portions of DL
models at edge devices can be enabled. By this means,
the shallow model on the edge device can quickly perform
initial feature extraction and, if confident, can directly give
inference results. Otherwise, the additional large DL model
deployed in the cloud performs further processing and final
inference. Compared to directly offloading DL computation to
the cloud, this approach has lower communication costs and
can achieve higher inference accuracy than those of the pruned
or quantized DL models on edge devices [113], [161]. In
addition, since only immediate features rather than the original
data are sent to the cloud, it provides better privacy protection.
Nevertheless, EEoI shall not be deemed independent to model
optimization (Section V-A2) and segmentation (Section V-B).
The envision of distributed DL over the end, edge and cloud
should take their collaboration into consideration, e.g., devel-
oping a collaborative and on-demand co-inference framework
[162] for adaptive DNN partitioning and EEoI.

1st exit 2nd exit N-th exit

(N+1)-th exit

Early exit
of inference

End level
Edge level
Cloud level

Fig. 15. Early exit of inference for DL inference in the edge.

D. Sharing of DL Computation

The requests from nearby users within the coverage of
an edge node may exhibit spatiotemporal locality [163]. For
instance, users within the same area might request recognition
tasks for the same object of interest, and it may introduce
redundant computation of DL inference. In this case, based
on offline analysis of applications and online estimates of
network conditions, Cachier [163] proposes to cache related
DL models for recognition applications in the edge node
and to minimize expected end-to-end latency by dynamically
adjusting its cache size. Based on the similarity between con-
secutive frames in first-person-view videos, DeepMon [164]
and DeepCache [165] utilize the internal processing structure
of CNN layers to reuse the intermediate results of the previous
frame to calculate the current frame, i.e., caching internally
processed data within CNN layers, to reduce the processing
latency of continuous vision applications.

Nevertheless, to proceed with effective caching and results
reusing, accurate lookup for reusable results shall be ad-
dressed, i.e., the cache framework must systematically tolerate
the variations and evaluate key similarities. DeepCache [165]
performs cache key lookup to solve this. Specifically, it divides
each video frame into fine-grained regions and searches for
similar regions from cached frames in a specific pattern of
video motion heuristics. For the same challenge, FoggyCache
[166] first embeds heterogeneous raw input data into feature
vectors with generic representation. Then, Adaptive Locality
Sensitive Hashing (A-LSH), a variant of LSH commonly used
for indexing high-dimensional data, is proposed to index these
vectors for fast and accurate lookup. At last, Homogenized
kNN, which utilizes the cached values to remove outliers and
ensure a dominant cluster among the k records initially chosen,
is implemented based on kNN to determine the reuse output
from records looked up by A-LSH.

Differ from sharing inference results, Mainstream [167]
proposes to adaptively orchestrate DNN stem-sharing (the
common part of several specialized DL models) among con-
current video processing applications. By exploiting computa-
tion sharing of specialized models among applications trained
through TL from a common DNN stem, aggregate per-frame
compute time can be significantly decreased. Though more
specialized DL models mean both higher model accuracy
and less shared DNN stems, the model accuracy decreases
slowly as less-specialized DL models are employed (unless
the fraction of the model specialized is very small). This
characteristic hence enables that large portions of the DL
model can be shared with low accuracy loss in Mainstream.

VI. EDGE COMPUTING FOR DEEP LEARNING

Extensive deployment of DL services, especially mobile
DL, requires the support of edge computing. This support
is not just at the network architecture level, the design,
adaptation, and optimization of edge hardware and software
are equally important. Specifically, 1) customized edge hard-
ware and corresponding optimized software frameworks and
libraries can help DL execution more efficiently; 2) the edge
computing architecture can enable the offloading of DL com-
putation; 3) well-designed edge computing frameworks can
better maintain DL services running on the edge; 4) fair
platforms for evaluating Edge DL performance help further
evolve the above implementations.

A. Edge Hardware for DL

1) Mobile CPUs and GPUs: DL applications are more
valuable if directly enabled on lightweight edge devices, such
as mobile phones, wearable devices, and surveillance cameras,
near to the location of events. Low-power IoT edge devices
can be used to undertake lightweight DL computation, and
hence avoiding communication with the cloud, but it still needs
to face limited computation resources, memory footprint, and
energy consumption. To break through these bottlenecks, in
[143], the authors focus on ARM Cortex-M micro-controllers
and develop CMSIS-NN, a collection of efficient NN kernels.
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By CMSIS-NN, the memory footprint of NNs on ARM Cortex-
M processor cores can be minimized, and then the DL model
can be fitted into IoT devices, meantime achieving normal
performance and energy efficiency.

With regard to the bottleneck when running CNN layers on
mobile GPUs, DeepMon [164] decomposes the matrices used
in the CNN layers to accelerate the multiplications between
high-dimensional matrices. By this means, high-dimensional
matrix operations (particularly multiplications) in CNN layers
are available in mobile GPUs and can be accelerated. In view
of this work, various mobile GPUs, already deployed in edge
devices, can be potentially explored with specific DL models
and play a more important role in enabling edge DL.

Other than DL inference [143], [164], important factors
that affect the performance of DL training on mobile CPUs
and GPUs are discussed in [168]. Since commonly used DL
models, such as VGG [169], are too large for the memory
size of mainstream edge devices, a relatively small Mentee
network [170] is adopted to evaluate DL training. Evaluation
results point out that the size of DL models is crucial for
training performance and the efficient fusion of mobile CPUs
and GPUs is important for accelerating the training process.

2) FPGA-based Solutions: Though GPU solutions are
widely adopted in the cloud for DL training and inference,
however, restricted by the tough power and cost budget in
the edge, these solutions may not be available. Besides,
edge nodes should be able to serve multiple DL computation
requests at a time, and it makes simply using lightweight CPUs
and GPUs impractical. Therefore, edge hardware based on
Field Programmable Gate Array (FPGA) is explored to study
their feasibility for edge DL.

FPGA-based edge devices can achieve CNN acceleration
with arbitrarily sized convolution and reconfigurable pooling
[143], and they perform faster than the state-of-the-art CPU
and GPU implementations [145] with respect to RNN-based
speech recognition applications while achieving higher energy
efficiency. In [52], the design and setup of an FPGA-based
edge platform are developed to admit DL computation of-
floading from mobile devices. On implementing the FPGA-
based edge platform, a wireless router and an FPGA board
are combined together. Testing this preliminary system with
typical vision applications, the FPGA-based edge platform
shows its advantages, in terms of both energy consumption
and hardware cost, over the GPU (or CPU)-based one.

Nevertheless, it is still pended to determine whether FPGAs
or GPUs/CPUs are more suitable for edge computing, as
shown in Table IV. Elaborated experiments are performed in
[171] to investigate the advantages of FPGAs over GPUs: 1)
capable of providing workload insensitive throughput; 2) guar-
anteeing consistently high performance for high-concurrency
DL computation; 3) better energy efficiency. However, the
disadvantage of FPGAs lies in that developing efficient DL
algorithms on FPGA is unfamiliar to most programmers.
Although tools such as Xilinx SDSoC can greatly reduce
the difficulty [52], at least for now, additional works are
still required to transplant the state-of-the-art DL models,
programmed for GPUs, into the FPGA platform.

TABLE IV
COMPARISON OF SOLUTIONS FOR EDGE NODES

Metrics Preferred
Hardware Analysis

Resource
overhead FPGA FPGA can be optimized by customized designs.

DL
training GPU Floating point capabilities are better on GPU.

DL
inference FPGA FPGA can be customized for specific DL models.

Interface
scalability FPGA It is more free to implement interfaces on FPGAs.

Space
occupation

CPU/
FPGA

Lower power consumption of FPGA leads to
smaller space occupation.

Compatibility CPU/
GPU CPUs and GPUs have more stable architecture.

Development
efforts

CPU/
GPU

Toolchains and software libraries facilitate the
practical development.

Energy
efficiency FPGA Customized designs can be optimized.

Concurrency
support FPGA FPGAs are suitable for stream process.

Timing
latency FPGA Timing on FPGAs can be an order of magnitude

faster than GPUs.

B. Communication and Computation Modes for Edge DL

Though on-device DL computation, illustrated in Sec. V,
can cater for lightweight DL services. Nevertheless, an inde-
pendent end device still cannot afford intensive DL compu-
tation tasks. The concept of edge computing can potentially
cope with this dilemma by offloading DL computation from
end devices to edge or (and) the cloud. Accompanied by the
edge architectures, DL-centric edge nodes can become the
significant extension of cloud computing infrastructure to deal
with massive DL tasks. In this section, we classify four modes
for Edge DL computation, as exhibited in Fig. 16.

End
device

(a) Integral
offloading

Composition of
a computing task

(b) Partial
offloading

(c) Vertical
collaboration

(d) Horizontal
collaboration

Edge
node

Cloud
server

Offload
Task

allocation

Fig. 16. Communication and computation modes for Edge DL.

1) Integral Offloading: The most natural mode of DL
computation offloading is similar to the existed “end-cloud”
computing, i.e., the end device sends its computation requests
to the cloud for DL inference results (as depicted in Fig.
16(a)). This kind of offloading is straightforward by extricating
itself from DL task decomposition and combinatorial problems
of resource optimization, which may bring about additional
computation cost and scheduling delay, and thus simple to
implement. In [172], the proposed distributed infrastructure
DeepDecision ties together powerful edge nodes with less
powerful end devices. In DeepDecision, DL inference can be
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TABLE V
DETAILS ABOUT EDGE COMMUNICATION AND COMPUTATION MODES FOR DL

Ref. DL Model End/Edge/Cloud Network Dependency Objective Performance
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]

YOLO

Samsung Galaxy S7 / Server
with a quad-core CPU at
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RAM / N/A

Simulated
WLAN
& LAN

TensorFlow,
Darknet

Consider the complex interaction between
model accuracy, video quality, battery
constraints, network data usage, and net-
work conditions to determine an optimal
offloading strategy

Achieve about 15 FPS video ana-
lytic while possessing higher ac-
curacy than that of the baseline
approaches

M
A

SM
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]

\ Simulated devices / Cloudlet
/ N/A \ \
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and the computation capacities of the
VMs hosted on the Cloudlet
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08

] DetectNet,
FaceNet

Cameras / Server with Intel
i7-6700, GTX 1060 and

24GB RAM / N/A
Wi-Fi

TensorRT,
ParaDrop,
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Offload the live video analytics tasks to
the edge using EdgeEye API, instead of
using DL framework specific APIs, to
provide higher inference performance

\

Pa
rt

ia
l
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D
ee
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r
[1

74
] MobileNet,

GoogLeNet,
DeepSense,

etc.

Commodity smartwatches
running Android Wear OS /

Commodity smartphone
running Android / N/A

Bluetooth TensorFlow

Provide context-aware offloading, strate-
gic model partition, and pipelining sup-
port to efficiently utilize the processing
capacity of the edge

Bring up to 5.08× and 23.0× ex-
ecution speedup, as well as 53.5%
and 85.5% energy saving against
wearable-only and handheld-only
strategies, respectively
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N

N
[1
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]

AlexNet

Embedded board Odroid
XU4 / Server with an

quad-core CPU at 3.6GHz,
GTX 1080 Ti and 32GB

RAM / Unspecified

WLAN Caffe

Partitions the DNN layers and incremen-
tally uploads the partitions to allow col-
laborative execution by the end and the
edge (or cloud) to improves both the query
performance and the energy consumption

Maintain almost the same upload-
ing latency as integral uploading
while largely improving query ex-
ecution time
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]
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Google Nexus 9 / Server
with an quad-core CPU and
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WLAN
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Apache
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computation in the cloud
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data transmission
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point for best latency and best mobile
energy consumption

Improve end-to-end latency by
3.1× on average and up to 40.7×,
reduce mobile energy consump-
tion by 59.5% on average and up
to 94.7%, and improve data-center
throughput by 1.5× on average
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VGG-16 Multiple LG Nexus 5 / N/A
/ N/A WLAN MXNet

Partition already trained DNN models
onto several mobile devices to accelerate
DNN computations by alleviating device-
level computing cost and memory usage

When the number of worker nodes
increases from 2 to 4, MoDNN can
speedup the DNN computation by
2.17-4.28×

[1
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]

VGGNet-E,
AlexNet

Xilinx Virtex-7 FPGA
simulating multiple end

devices / N/A / N/A

On-chip
simula-
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Torch,
Vivado
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Fuse the processing of multiple CNN lay-
ers and enable caching of intermediate
data to save data transfer (bandwidth)

Reduce the total data transfer by
95%, from 77MB down to 3.6MB
per image
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Raspberry Pi 3 Model B /
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gateway / N/A

WLAN Darknet

Employ a scalable Fused Tile Partition-
ing of CNN layers to minimize memory
footprint while exposing parallelism and a
novel work scheduling process to reduce
overall execution latency

Reduce memory footprint by more
than 68% without sacrificing accu-
racy, improve throughput by 1.7×-
2.2× and speedup CNN inference
by 1.7×-3.5×
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Multiple LG G2 / Wi-Fi
router connected with a

Linux server / N/A

WLAN
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Android
Caffe,

OpenCV,
EdgeBoxes

Coordinate participating mobile users for
collaboratively training a domain-aware
adaptation model to improve object recog-
nition accuracy

Improve the object recognition ac-
curacy by 150% when compared
to that achieved merely using a
generic DL model

LA
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]
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Raspberry PI 2 & Raspberry
PI 3 / Servers with quad-core
CPU and 4GB RAM / N/A

WLAN
& LAN

Docker,
Redis

Design various task placement schemes
that are tailed for inter-edge collaboration
to minimize the service response time

Have a speedup ranging from
1.3× to 4× (1.2× to 1.7×)
against running in local (client-
cloud confguration)
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performed on the end or the edge, depending on the tradeoffs
between the inference accuracy, the inference latency, the DL
model size, the battery level, and network conditions. With
regard to each DL task, the end device decides whether locally
processing or offloading it to an edge node.

Further, the workload optimization among edge nodes
should not be ignored in the offloading problem, since edge
nodes are commonly resource-restrained compared to the
cloud. In order to satisfy the delay and energy requirements
of accomplishing a DL task with limited edge resources,
providing DL models with different model sizes and per-
formance in the edge can be adopted to fulfill one kind of
task. Hence, multiple VMs or containers, undertaking different
DL models separately, can be deployed on the edge node
to process DL requests. Specifically, when a DL model with
lower complexity can meet the requirements, it is selected as
the serving model. For instance, by optimizing the workload
assignment weights and computing capacities of VMs, MASM
[173] can reduce the energy cost and delay while guaranteeing
the DL inference accuracy.

2) Partial Offloading: Partially offloading the DL task to
the edge is also feasible (as depicted in Fig. 16(b)). An
offloading system can be developed to enable online fine-
grained partition of a DL task, and determine how to allocate
these divided tasks to the end device and the edge node. As
exemplified in [178], MAUI, capable of adaptively partitioning
general computer programs, can conserve an order of magni-
tude energy by optimizing the task allocation strategies, under
the network constraints. More importantly, this solution can
decompose the whole program at runtime instead of manually
partitioning of programmers before program deploying.

Further, particularly for DL computation, DeepWear [174]
abstracts a DL model as a Directed Acyclic Graph (DAG),
where each node represents a layer and each edge represents
the data flow among those layers. To efficiently determine
partial offloading decisions, DeepWear first prunes the DAG
by keeping only the computation-intensive nodes, and then
grouping the repeated sub-DAGs. In this manner, the complex
DAG can be transformed into a linear and much simpler one,
thus enabling a linear complexity solution for selecting the
optimal partition to offload.

Nevertheless, uploading a part of the DL model to the edge
nodes may still seriously delay the whole process of offloading
DL computation. To deal with this challenge, an incremental
offloading system IONN is proposed in [175]. Differ from
packing up the whole DL model for uploading, IONN divides
a DL model, prepared for uploading, into multiple partitions,
and uploads them to the edge node in sequential. The edge
node, receiving the partitioned models, incrementally builds
the DL model as each partitioned model arrives, while being
able to execute the offloaded partial DL computation even
before the entire DL model is uploaded. Therefore, the key lies
in the determination concerning the best partitions of the DL
model and the uploading order. Specifically, on the one hand,
DNN layers, performance benefit and uploading overhead of
which are high and low, respectively, are preferred to be
uploaded first, and thus making the edge node quickly build a
partial DNN to achieve the best-expected query performance.

On the other hand, unnecessary DNN layers, which cannot
bring in any performance increase, are not uploaded and hence
avoiding the offloading.

3) Vertical Collaboration: Expected offloading strategies
among “End-Edge” architecture, as discussed in Section VI-B1
and VI-B2, are feasible for supporting less computation-
intensive DL services and small-scale concurrent DL queries.
However, when a large number of DL queries need to be pro-
cessed at one time, a single edge node is certainly insufficient.

A natural choice of collaboration is the edge performs data
pre-processing and preliminary learning, when the DL tasks
are offloaded. Then, the intermediate data, viz., the output
of edge architectures, are transmitted to the cloud for further
DL computation [176]. Nevertheless, the hierarchical structure
of DNNs can be further excavated for fitting the vertical
collaboration. In [12], all layers of a DNN are profiled on
the end device and the edge node in terms of the data and
computation characteristics, in order to generate performance
prediction models. Based on these prediction models, wireless
conditions and server load levels, the proposed Neurosurgeon
evaluates each candidate point in terms of end-to-end latency
or mobile energy consumption and partition the DNN at the
best one. Then, it decides the allocation of DNN partitions,
i.e., which part should be deployed on the end, the edge or the
cloud, while achieving best latency and energy consumption
of end devices.

By taking advantages of EEoI (Section V-C), vertical col-
laboration can be more adapted. Partitions of a DNN can be
mapped onto a distributed computing hierarchy (i.e., the end,
the edge and the cloud) and can be trained with multiple early
exit points [161]. Therefore, the end and the edge can perform
a portion of DL inference on themselves rather than directly
requesting the cloud. Using an exit point after inference,
results of DL tasks, the local device is confident about, can
be given without sending any information to the cloud. For
providing more accurate DL inference, the intermediate DNN
output will be sent to the cloud for further inference by using
additional DNN layers. Nevertheless, the intermediate output,
e.g., high-resolution surveillance video streams, should be
carefully designed much smaller than the raw input, therefore
drastically reducing the network traffic required between the
end and the edge (or the edge and the cloud).

Though vertical collaboration can be considered as an evolu-
tion of cloud computing, i.e., “end-cloud” strategy. Compared
to the pure “end-edge” strategy, the process of vertical collab-
oration may possibly be delayed, due to it requires additional
communication with the cloud. However, vertical collaboration
has its own advantages. One side, when edge architectures
cannot afford the flood of DL queries by themselves, the cloud
architectures can share partial computation tasks and hence
ensure servicing these queries. On the other hand, the raw data
must be preprocessed at the edge before they are transmitted
to the cloud. If these operations can largely reduce the size
of intermediate data and hence reduce the network traffic, the
pressure of backbone networks can be alleviated.

4) Horizontal Collaboration: In Section VI-B3, vertical
collaboration is discussed. However, devices among the edge
or the end can also be united without the cloud to process
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resource-hungry DL applications, i.e., horizontal collaboration.
By this means, the trained DNN models or the whole DL task
can be partitioned and allocated to multiple end devices or
edge nodes to accelerate DL computation by alleviating the
resource cost of each of them. MoDNN, proposed in [177],
executes DL in a local distributed mobile computing system
over a Wireless Local Area Network (WLAN). Each layer of
DNNs is partitioned into slices to increase parallelism and to
reduce memory footprint, and these slices are executed layer-
by-layer. By the execution parallelism among multiple end
devices, the DL computation can be significantly accelerated.

With regard to specific DNN structures, e.g., CNN, a finer
grid partitioning can be applied to minimize communication,
synchronization, and memory overhead [130]. In [156], a
Fused Tile Partitioning (FTP) method, able to divide each
CNN layer into independently distributable tasks, is proposed.
In contrast to only partitioning the DNN by layers as in
[12], FTP can fuse layers and partitions them vertically in a
grid fashion, hence minimizing the required memory footprint
of participated edge devices regardless of the number of
partitions and devices, while reducing communication and task
migration cost as well. Besides, to support FTP, a distributed
work-stealing runtime system, viz., idle edge devices stealing
tasks from other devices with active work items [156], can
adaptively distribute FTP partitions for balancing the workload
of collaborated edge devices.

C. Tailoring Edge Frameworks for DL

Though there are gaps between the computational complex-
ity and energy efficiency required by DL and the capacity
of edge hardware [179], customized edge DL frameworks
can help efficiently 1) match edge platform and DL models;
2) exploit underlying hardware in terms of performance and
power; 3) orchestrate and maintain DL services automatically.

First, where to deploy DL services in edge computing (cel-
lular) networks should be determined. The RAN controllers
deployed at edge nodes are introduced in [180] to collect
the data and run DL services, while the network controller,
placed in the cloud, orchestrates the operations of the RAN
controllers. In this manner, after running and feeding analytics
and extract relevant metrics to DL models, these controllers
can provide DL services to the users at the network edge.

Second, as the deployment environment and requirements
of DL models can be substantially different from those during
model development, customized operators, adopted in devel-
oping DL models with (Py)Torch, TensorFlow, etc., may not
be directly executed with the DL framework at the edge.
To bridge the gap between deployment and development, the
authors of [181] propose to specify DL models in development
using the deployment tool with an operator library from the
DL framework deployed at the edge. Furthermore, to automate
the selection and optimization of DL models, ALOHA [182]
formulates a toolflow: 1) Automate the model design. It gen-
erates the optimal model configuration by taking into account
the target task, the set of constraints and the target architecture;
2) Optimize the model configuration. It partitions the DL
model and accordingly generates architecture-aware mapping

information between different inference tasks and the available
resources. 3) Automate the model porting. It translates the
mapping information into adequate calls to computing and
communication primitives exposed by the target architecture.

Third, the orchestration of DL models deployed at the
edge should be addressed. OpenEI [183] defines each DL
algorithm as a four-element tuple ¡Accuracy, Latency, Energy,
Memory Footprint¿ to evaluate the Edge DL capability of the
target hardware platform. Based on such tuple, OpenEI can
select a matched model for a specific edge platform based
on different Edge DL capabilities in an online manner. Zoo
[184] provides a concise Domain-specific Language (DSL)
to enable easy and type-safe composition of DL services.
Besides, to enable a wide range of geographically distributed
topologies, analytic engines, and DL services, ECO [185]
uses a graph-based overlay network approach to 1) model
and track pipelines and dependencies and then 2) map them
to geographically distributed analytic engines ranging from
small edge-based engines to powerful multi-node cloud-based
engines. By this means, DL computation can be distributed as
needed to manage cost and performance, while also supporting
other practical situations, such as engine heterogeneity and
discontinuous operations.

Nevertheless, these pioneer works are not ready to natively
support valuable and also challenging features discussed in
Section VI-B, such as computation offloading and collabora-
tion, which still calls for further development.

D. Performance Evaluation for Edge DL

Throughout the process of selecting appropriate edge hard-
ware and associated software stacks for deploying different
kinds of Edge DL services, it is necessary to evaluate their
performance. Impartial evaluation methodologies can point out
possible directions to optimize software stacks for specific
edge hardware. In [186], for the first time, the performance
of DL libraries is evaluated by executing DL inference on
resource-constrained edge devices, pertaining to metrics like
latency, memory footprint, and energy. In addition, particu-
larly for Android smartphones, as one kind of edge devices
with mobile CPUs or GPUs, AI Benchmark [54] extensively
evaluates DL computation capabilities over various device
configurations. Experimental results show that no single DL
library or hardware platform can entirely outperform others,
and loading the DL model may take more time than that
of executing it. These discoveries imply that there are still
opportunities to further optimize the fusion of edge hardware,
edge software stacks, and DL libraries.

Nonetheless, a standard testbed for Edge DL is missing,
which hinders the study of edge architectures for DL. To
evaluate the end-to-end performance of Edge DL services, not
only the edge computing architecture but also its combination
with end devices and the cloud shall be established, such
as openLEON [187] and CAVBench [188] particularly for
vehicular scenarios. Furthermore, simulations of the control
panel of managing DL services are still not dabbled. An
integrated testbed, consisting of wireless links and networking
models, service requesting simulation, edge computing plat-
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forms, cloud architectures, etc., is ponderable in facilitating
the evolution of “Edge Computing for DL”.

VII. DEEP LEARNING TRAINING AT EDGE

Present DL training (distributed or not) in the cloud data
center, namely cloud training, or cloud-edge training [50],
viz., training data are preprocessed at the edge and then
transmitted to cloud, are not appropriate for all kind of DL
services, especially for DL models requiring locality and
persistent training. Besides, a significant amount of commu-
nication resources will be consumed, and hence aggravating
wireless and backbone networks if massive data are required
to be continually transmitted from distributed end devices
or edge nodes to the cloud. For example, with respect to
surveillance applications integrated with object detection and
target tracking, if end devices directly send a huge amount of
real-time monitoring data to the cloud for persistent training,
it will bring about high networking costs. In addition, merging
all data into the cloud might violate privacy issues. All these
challenges put forward the need for a novel training scheme
against existing cloud training.

Naturally, the edge architecture, which consists of a large
number of edge nodes with modest computing resources, can
cater for alleviating the pressure of networks by processing
the data or training at themselves. Training at the edge or
potentially among “end-edge-cloud”, treating the edge as the
core architecture of training, is called “DL Training at Edge”.
Such kind of DL training may require significant resources
to digest distributed data and exchange updates. Nonetheless,
FL is emerging and is promised to address these issues. We
summarize select works on FL in Table VI.

A. Distributed Training at Edge

Distributed training at the edge can be traced back to the
work of [189], where a decentralized Stochastic Gradient
Descent (SGD) method is proposed for the edge computing
network to solve a large linear regression problem. However,
this proposed method is designed for seismic imaging applica-
tion and can not be generalized for future DL training, since
the communication cost for training large scale DL models
is extremely high. In [190], two different distributed learning
solutions for edge computing environments are proposed. As
depicted in Fig. 17, one solution is that each end device trains
a model based on local data, and then these model updates
are aggregated at edge nodes. Another one is edge nodes train
their own local models, and their model updates are exchanged
and refined for constructing a global model. Though large-
scale distributed training at edge evades transmitting bulky
raw dataset to the cloud, the communication cost for gradients
exchanging between edge devices is inevitably introduced.
Besides, in practical, edge devices may suffer from higher
latency, lower transmission rate and intermittent connections,
and therefore further hindering the gradients exchanging be-
tween DL models belong to different edge devices.

Most of the gradient exchanges are redundant, and hence
updated gradients can be compressed to cut down the com-
munication cost while preserving the training accuracy (such
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Fig. 17. Distributed DL training at edge environments.

as DGC in [191]). First, DGC stipulates that only impor-
tant gradients are exchanged, i.e., only gradients larger than
a heuristically given threshold are transmitted. In order to
avoid the information losing, the rest of the gradients are
accumulated locally until they exceed the threshold. To be
noted, gradients whether being immediately transmitted or ac-
cumulated for later exchanging will be coded and compressed,
and hence saving the communication cost. Second, considering
the sparse update of gradients might harm the convergence of
DL training, momentum correction and local gradient clipping
are adopted to mitigate the potential risk. By momentum
correction, the sparse updates can be approximately equivalent
to the dense updates. Before adding the current gradient to
previous accumulation on each edge device locally, gradient
clipping is performed to avoid the exploding gradient problem
possibly introduced by gradient accumulation. Certainly, since
partial gradients are delayed for updating, it might slow
down the convergence. Hence, finally, for preventing the stale
momentum from jeopardizing the performance of training,
the momentum for delayed gradients is stopped, and less
aggressive learning rate and gradient sparsity are adopted at
the start of training to reduce the number of extreme gradients
being delayed.

With the same purpose of reducing the communication cost
of synchronizing gradients and parameters during distributed
training, two mechanisms can be combined together [192]. The
first is transmitting only important gradients by taking advan-
tage of sparse training gradients [193]. Hidden weights are
maintained to record times of a gradient coordinate participat-
ing in gradient synchronization, and gradient coordinates with
large hidden weight value are deemed as important gradients
and will be more likely be selected in the next round training.
On the other hand, the training convergence will be greatly
harmed if residual gradient coordinates (i.e., less important
gradients) are directly ignored, hence, in each training round,
small gradient values are accumulated. Then, in order to avoid
that these outdated gradients only contribute little influence
on the training, momentum correction, viz., setting a discount
factor to correct residual gradient accumulation, is applied.

Particularly, when training a large DL model, exchanging
corresponded model updates may consume more resources.
Using an online version of KD can reduce such kind of
communication cost [194]. In other words, the model outputs
rather the updated model parameters on each device are
exchanged, making the training of large-sized local models
possible. Besides communication cost, privacy issues should
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be concerned as well. For example, in [195], personal informa-
tion can be purposely obtained from training data by making
use of the privacy leaking of a trained classifier. The privacy
protection of training dataset at the edge is investigated in
[196]. Different from [190]–[192], in the scenario of [196],
training data are trained at edge nodes as well as be uploaded
to the cloud for further data analysis. Hence, Laplace noises
[197] are added to these possibly exposed training data for
enhancing the training data privacy assurance.

B. Vanilla Federated Learning at Edge

In Section VII-A, the holistic network architecture is ex-
plicitly separated, specifically, training is limited at the end
devices or the edge nodes independently instead of among
both of them. Certainly, by this means, it is simple to or-
chestrate the training process since there is no need to deal
with heterogeneous computing capabilities and networking
environments between the end and the edge. Nonetheless,
DL training should be ubiquitous as well as DL inference.
Federated Learning (FL) [198], [199] is emerged as a practical
DL training mechanism among the end, the edge and the cloud.
Though in the framework of native FL, modern mobile devices
are taken as the clients performing local training. Naturally,
these devices can be extended more widely in edge computing
[200], [201]. End devices, edge nodes and servers in the cloud
can be equivalently deemed as clients in FL. These clients are
assumed capable of handling different levels of DL training
tasks, and hence contribute their updates to the global DL
model. In this section, fundamentals of FL are discussed.

Without requiring uploading data for central cloud training,
FL [198], [199] can allow edge devices to train their local
DL models with their own collected data and upload only the
updated model instead. As depicted in Fig. 18, FL iteratively
solicits a random set of edge devices to 1) download the
global DL model from an aggregation server (use “server”
in following), 2) train their local models on the downloaded
global model with their own data, and 3) upload only the
updated model to the server for model averaging. Privacy and
security risks can be significantly reduced by restricting the
training data to only the device side, and thus avoiding the
privacy issues as in [195], incurred by uploading training data
to the cloud. Besides, FL introduces FederatedAveraging to
combine local SGD on each device with a server performing
model averaging. Experimental results corroborate Federate-
dAveraging is robust to unbalanced and non-IID data and can
facilitate the training process, viz., reducing the rounds of
communication needed to train a DL model.

To summarize, FL can deal with several key challenges in
edge computing networks: 1) Non-IID training data. Training
data on each device is sensed and collected by itself. Hence,
any individual training data of a device will not be able to
represent the global one. In FL, this can be met by Feder-
atedAveraging; 2) Limited communication. Devices might
potentially off-line or located in a poor communication envi-
ronment. Nevertheless, performing more training computation
on resource-sufficient devices can cut down communication
rounds needed for global model training. In addition, FL
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Fig. 18. Federated learning among hierarchical network architectures.

only selects a part of devices to upload their updates in one
round, therefore successfully handling the circumstance where
devices are unpredictably off-line; 3) Unbalanced contribu-
tion. It can be tackled by FederatedAveraging, specifically,
some devices may have less free resources for FL, resulting
in varying amounts of training data and training capability
among devices; 4) Privacy and security. The data need to be
uploaded in FL is only the updated DL model. Further, secure
aggregation and differential privacy [197], which are useful in
avoiding the disclosure of privacy-sensitive data contained in
local updates, can be applied naturally.

C. Communication-efficient FL

In FL, raw training data are not required to be uploaded, thus
largely reducing the communication cost. However, FL still
needs to transmit locally updated models to the central server.
Supposing the DL model size is large enough, uploading
updates, such as model weights, from edge devices to the
central server may also consume nonnegligible communication
resources. To meet this, we can let FL clients communicate
with the central server periodically (rather continually) to seek
consensus on the shared DL model [202]. In addition, struc-
tured update, sketched update can help enhance the communi-
cation efficiency when clients uploading updates to the server
as well. Structured update means restricting the model updates
to have a pre-specified structure, specifically, 1) low-rank
matrix; or 2) sparse matrix [202], [203]. On the other hand, for
sketched update, full model updates are maintained. But before
uploading them for model aggregation, combined operations of
subsampling, probabilistic quantization, and structured random
rotations are performed to compress the full updates [203].
FedPAQ [204] simultaneously incorporates these features and
provides near-optimal theoretical guarantees for both strongly
convex and non-convex loss functions, while empirically
demonstrating the communication-computation tradeoff.

Different from only investigating on reducing communi-
cation cost on the uplink, [205] takes both server-to-device
(downlink) and device-to-server (uplink) communication into
consideration. For the downlink, the weights of the global DL
model are reshaped into a vector, and then subsampling and
quantization are applied [203]. Naturally, such kind of model
compression is lossy, and unlike on the uplink (multiple edge
devices are uploading their models for averaging), the loss
cannot be mitigated by averaging on the downlink. Kashin’s
representation [206] can be utilized before subsampling as a
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basis transform to mitigate the error incurred by subsequent
compression operations. Furthermore, for the uplink, each
edge device is not required to train a model based on the
whole global model locally, but only to train a smaller sub-
model or pruned model [207] instead. Since sub-models and
pruned models are more lightweight than the global model,
the amount of data in updates uploading is reduced.

Computation resources of edge devices are scarce compared
to the cloud. Additional challenges should be considered to im-
prove communication efficiencies: 1) Computation resources
are heterogeneous and limited at edge devices; 2) Training
data at edge devices may be distributed non-uniformly [208]–
[210]. For more powerful edge devices, ADSP [211] lets
them continue training while committing model aggregation at
strategically decided intervals. For general cases, based on the
deduced convergence bound for distributed learning with non-
IID data distributions, the aggregation frequency under given
resource budgets among all participating devices can be opti-
mized with theoretical guarantees [208]. Astraea [212] reduces
92% communication traffic by designing a mediator-based
multi-client rescheduling strategy. On the one hand, Astraea
leverages data augmentation [5] to alleviate the defect of non-
uniformly distributed training data. On the other hand, Astraea
designs a greedy strategy for mediator-based rescheduling,
in order to assign clients to the mediators. Each mediator
traverses the data distribution of all unassigned clients to
select the appropriate participating clients, aiming to make the
mediator’s data distribution closest to the uniform distribution,
i.e., minimizing the KullbackLeibler divergence [213] between
mediator’s data distribution and uniform distribution. When
a mediator reaches the max assigned clients limitation, the
central server will create a new mediator and repeat the process
until all clients have been assigned with training tasks.

Aiming to accelerate the global aggregation in FL, [214]
takes advantage of over-the-air computation [215]–[217], of
which the principle is to explore the superposition property
of a wireless multiple-access channel to compute the desired
function by the concurrent transmission of multiple edge de-
vices. The interferences of wireless channels can be harnessed
instead of merely overcoming them. During the transmission,
concurrent analog signals from edge devices can be naturally
weighed by channel coefficients. Then the server only needs
to superpose these reshaped weights as the aggregation results,
nonetheless, without other aggregation operations.

D. Resource-optimized FL

When FL deploys the same neural network model to het-
erogeneous edge devices, devices with weak computing power
(stragglers) may greatly delay the global model aggregation.
Although the training model can be optimized to accelerate
the stragglers, due to the limited resources of heterogeneous
equipment, the optimized model usually leads to diverged
structures and severely defect the collaborative convergence.
ELFISH [218] first analyzes the computation consumption of
the model training in terms of the time cost, memory usage,
and computation workload. Under the guidance of the model
analysis, which neurons need to be masked in each layer to

ensure that the computation consumption of model training
meets specific resource constraints can be determined. Second,
unlike generating a deterministically optimized model with di-
verged structures, different sets of neurons will be dynamically
masked in each training period and recovered and updated
during the subsequent aggregation period, thereby ensuring
comprehensive model updates overtime. It is worth noting that
although ELFISH improves the training speed by 2× through
resource optimization, the idea of ELFISH is to make all
stragglers work synchronously, the synchronous aggregation
of which may not able to handle extreme situations.

When FL is deployed in a mobile edge computing scenario,
the wall-clock time of FL will mainly depend on the number
of clients and their computing capabilities. Specifically, the
total wall-clock time of FL includes not only the computation
time but also the communication time of all clients. On
the one hand, the computation time of a client depends on
the computing capability of the clients and local data sizes.
On the other hand, the communication time correlates to
clients’ channel gains, transmission power, and local data
sizes. Therefore, to minimize the wall-clock training time of
the FL, appropriate resource allocation for the FL needs to
consider not only FL parameters, such as accuracy level for
computation-communication trade-off, but also the resources
allocation on the client side, such as power and CPU cycles.

However, minimizing the energy consumption of the client
and the FL wall-clock time are conflicting. For example,
the client can save energy by always maintain its CPU at
low frequency, but this will definitely increase training time.
Therefore, in order to strike a balance between energy cost
and training time, the authors of [219] first design a new FL
algorithm FEDL for each client to solve its local problem
approximately till a local accuracy level achieved. Then, by
using Pareto efficiency model [224], they formulate a non-
convex resource allocation problem for FEDL over wireless
networks to capture the trade-off between the clients’ energy
cost and the FL wall-clock time). Finally, by exploiting the
special structure of that problem, they decompose it into three
sub-problems, and accordingly derive closed-form solutions
and characterize the impact of the Pareto-efficient controlling
knob to the optimal.

Since the uplink bandwidth for transmitting model updates
is limited, the BS must optimize its resource allocation while
the user must optimize its transmit power allocation to reduce
the packet error rates of each user, thereby improving FL per-
formance. To this end, the authors of [220] formulate resource
allocation and user selection of FL into a joint optimization
problem, the goal of which is to minimize the value of the FL
loss function while meeting the delay and energy consumption
requirements. To solve this problem, they first derive a closed-
form expression for the expected convergence rate of the FL in
order to establish an explicit relationship between the packet
error rates and the FL performance. Based on this relationship,
the optimization problem can be reduced to a mixed-integer
nonlinear programming problem, and then solved as follows:
First, find the optimal transmit power under a given user
selection and resource block allocation; Then, transform the
original optimization problem into a binary matching problem;
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TABLE VI
SUMMARY OF THE SELECTED WORKS ON FL

Ref. DL
Model Scale Dependency Main Idea Key Metrics or Performance

Va
ni

lla
FL [198]

FCNN,
CNN,
LSTM

Up to 5e5 clients TensorFlow
Leave the training data distributed on the mo-
bile devices, and learns a shared model by
aggregating locally-training updates

Communication rounds reduction: 10-
100×

[199] RNN Up to 1.5e6 clients TensorFlow Pace steering for scalable FL Scalability improvement: up to 1.5e6
clients

C
om

m
un

ic
at

io
n-

ef
fic

ie
nt

FL

[202] ResNet18 4 clients per cluster / 7
clusters \ Gradient sparsification; Periodic averaging Top 1 accuracy; Communication latency

reduction

[203] CNN,
LSTM Up to 1e3 clients \ Sketched updates Communication cost reduction: by two

orders of magnitude

[205] CNN Up to 500 clients TensorFlow Lossy compression on the global model; Fed-
erated Dropout

Downlink reduction: 14×; Uplink reduc-
tion: 28×; Local computation reduction:
1.7×

[211] CNN,
RNN Up to 37 clients TensorFlow Let faster clients continue with their mini-batch

training to keep overall synchronization Convergence acceleration: 62.4%

[208] CNN

5-500 clients
(simulation); 3

Raspberry Pi and 2
laptops (testbed)

\
Design a control algorithm that determines the
best trade-off between local update and global
aggregation

Training accuracy under resource budget

[204] FCNN 50 clients \ Periodic averaging; Partial device participation;
Quantized message-passing Total training loss and time

[212] CNN 500 clients \ Global data distribution based data augmenta-
tion; Mediator based multi-client rescheduling

Top 1 accuracy imrpovement: 5.59%-
5.89%; Communication traffic reduction:
92%

[207]
LeNet,
CNN,

VGG11
10 Raspberry Pi Py(Torch) Jointly trains and prunes the model in a feder-

ated manner
Communication and computation load re-
duction

R
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rc

e
-o

pt
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iz
ed

FL

[218] AlexNet,
LeNet

Multiple Nvidia Jetson
Nano \ Partially train the model by masking a partic-

ular number of resource-intensive neurons
Training acceleration: 2×; Model accu-
racy improvement: 4%

[219] \ Up to 50 clients TensorFlow Jointly optimize FL parameters and resources
of user equipments Convergence rate; Test accuracy

[220] \ 20 clients / 1 BS \ Jointly optimize wireless resource allocation
and client selection

Reduction of the FL loss function value:
up to 16%

[221] LSTM 23-1,101 clients TensorFlow Modify FL training objectives with α-fairness Fairness; Training accuracy

Se
cu

ri
ty

-e
nh

an
ce

d
FL

[201] CNN 100 clients MXNET Use the trimmed mean as a robust aggregation Top 1 accuracy against data poisoning

[222] \ 2e10-2e14 clients \ Use Secure Aggregation to protect the privacy
of each clients model gradient Communication expansion: 1.73×-1.98×

[223] \ 10 clients \ Leverage blockchain to exchange and verify
model updates of local training Learning completion latency

Finally, using Hungarian algorithm [225] to find the best user
selection and resource block allocation strategy.

The number of devices involved in FL is usually large,
ranging from hundreds to millions. Simply minimizing the
average loss in such a large network may be not suited for
the required model performance on some devices. In fact,
although the average accuracy under vanilla FL is high, the
model accuracy required for individual devices may not be
guaranteed. To this end, based on the utility function α-fairness
[226] used in fair resource allocation in wireless networks,
the authors of [221] define a fair-oriented goal q-FFL for
joint resource optimization. q-FFL minimizes an aggregate
re-weighted loss parameterized by q, so that devices with
higher loss are given higher relative weight, thus encouraging
less variance (i.e., more fairness) in the accuracy distribution.
Adaptively minimizing q-FFL avoids the burden of hand-
crafting fairness constraints, and can adjust the goal according
to the required fairness dynamically, achieving the effect of
reducing the variance of accuracy distribution among partici-

pated devices.

E. Security-enhanced FL

In vanilla FL, local data samples are processed on each edge
device. Such a manner can prevent the devices from revealing
private data to the server. However, the server also should not
trust edge devices completely, since devices with abnormal
behavior can forge or poison their training data, which results
in worthless model updates, and hence harming the global
model. To make FL capable of tolerating a small number
of devices training on the poisoned dataset, robust federated
optimization [201] defines a trimmed mean operation. By
filtering out not only the the values produced by poisoned
devices but also the natural outliers in the normal devices,
robust aggregation protecting the global model from data
poisoning is achieved.

Other than intentional attacks, passive adverse effects on
the security, brought by unpredictable network conditions and
computation capabilities, should be concerned as well. FL
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must be robust to the unexpectedly drop out of edge devices, or
else once a device loses its connection, the synchronization of
FL in one round will be failed. To solve this issue, Secure
Aggregation protocol is proposed in [222] to achieve the
robustness of tolerating up to one-third devices failing to
timely process the local training or upload the updates.

In turn, malfunctions of the aggregation server in FL may re-
sult in inaccurate global model updates and thereby distorting
all local model updates. Besides, edge devices (with a larger
number of data samples) may be less willing to participate
FL with others (with less contribution). Therefore, in [223],
combining Blockchain and FL as BlockFL is proposed to
realize 1) locally global model updating at each edge device
rather a specific server, ensuring device malfunction cannot
affect other local updates when updating the global model; 2)
appropriate reward mechanism for stimulating edge devices to
participate in FL.

VIII. DEEP LEARNING FOR OPTIMIZING EDGE

DNNs (general DL models) can extract latent data features,
while DRL can learn to deal with decision-making problems
by interacting with the environment. Computation and storage
capabilities of edge nodes, along with the collaboration of the
cloud, make it possible to use DL to optimize edge computing
networks and systems. With regard to various edge manage-
ment issues such as edge caching, offloading, communication,
security protection, etc., 1) DNNs can process user information
and data metrics in the network, as well as perceiving the
wireless environment and the status of edge nodes, and based
on these information 2) DRL can be applied to learn the
long-term optimal resource management and task scheduling
strategies, so as to achieve the intelligent management of the
edge, viz., intelligent edge as shown in Table VII.

A. DL for Adaptive Edge Caching

From Content Delivery Network (CDN) [227] to caching
contents in cellular networks, caching in the network have
been investigated over the years to deal with soaring demand
for multimedia services [228]. Aligned with the concept of
pushing contents near to users, edge caching [229], is deemed
as a promising solution for further reducing the redundant data
transmission, easing the pressure of cloud data centers and
improving the QoE.

Edge caching meets two challenges: 1) the content popu-
larity distribution among the coverage of edge nodes is hard
to estimate, since it may be different and change with spatio-
temporal variation [230]; 2) in view of massive heterogeneous
devices in edge computing environments, the hierarchical
caching architecture and complex network characteristics fur-
ther perplex the design of content caching strategy [231].
Specifically, the optimal edge caching strategy can only be
deduced when the content popularity distribution is known.
However, users’ predilection for contents is actually unknown
since the mobility, personal preference and connectivity of
them may vary all the time. In this section, DL for determining
edge caching policies, as illustrated in Fig. 19, are discussed.
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Fig. 19. DL and DRL for optimizing the edge caching policy.

1) Use Cases of DNNs: Traditional caching methods are
generally with high computational complexity since they re-
quire a large number of online optimization iterations to
determine 1) the features of users and contents and 2) the
strategy of content placement and delivery.

For the first purpose, DL can be used to process raw
data collected from the mobile devices of users and hence
extract the features of the users and content as a feature-based
content popularity matrix. By this means, the popular content
at the core network is estimated by applying feature-based
collaborative filtering to the popularity matrix [232].

For the second purpose, when using DNNs to optimize the
strategy of edge caching, online heavy computation iterations
can be avoided by offline training. A DNN, which consists
of an encoder for data regularization and a followed hidden
layer, can be trained with solutions generated by optimal or
heuristic algorithms and be deployed to determine the cache
policy [233], hence avoiding online optimization iterations.
Similarly, in [234], inspired by the fact that the output of
optimization problem about partial cache refreshing has some
patterns, an MLP is trained for accepting the current content
popularity and the last content placement probability as input
to generate the cache refresh policy.

As illustrated in [233] [234], the complexity of optimization
algorithms can be transferred to the training of DNNs, and
thus breaking the practical limitation of employing them. In
this case, DL is used to learn input-solution relations, and
DNN-based methods are only available when optimization
algorithms for the original caching problem exist. Therefore,
the performance of DNN-based methods bounds by fixed
optimization algorithms and is not self-adapted.

In addition, DL can be utilized for customized edge caching.
For example, to minimize content-downloading delay in the
self-driving car, an MLP is deployed in the cloud to predict
the popularity of contents to be requested, and then the outputs
of MLP are delivered to the edge nodes (namely MEC servers
at RSUs in [235]). According to these outputs, each edge node
caches contents that are most likely to be requested. On self-
driving cars, CNN is chosen to predict the age and gender
of the owner. Once these features of owners are identified,
k-means clustering [236] and binary classification algorithms
are used to determine which contents, already cached in edge
nodes, should be further downloaded and cached from edge
nodes to the car. Moreover, concerning taking full advantage
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of users’ features, [237] points out that the user’s willing
to access the content in different environments is varying.
Inspired by this, RNN is used to predict the trajectories of
users. And based on these predictions, all contents of users’
interests are then prefetched and cached in advance at the edge
node of each predicted location.

2) Use Cases of DRL: The function of DNNs described
in Section VIII-A1 can be deemed as a part of the whole
edge caching solution, i.e., the DNN itself does not deal with
the whole optimization problem. Different from these DNNs-
based edge caching, DRL can exploit the context of users
and networks and take adaptive strategies for maximizing the
long-term caching performance [238] as the main body of the
optimization method. Traditional RL algorithms are limited
by the requirement for handcrafting features and the flaw that
hardly handling high-dimensional observation data and actions
[239]. Compared to traditional RL irrelevant to DL, such as
Q-learning [240] and Multi-Armed Bandit (MAB) learning
[230], the advantage of DRL lies in that DNNs can learn key
features from the raw observation data. The integrated DRL
agent combining RL and DL can optimize its strategies with
respect to cache management in edge computing networks
directly from high-dimensional observation data.

In [241], DDPG is used to train a DRL agent, in order to
maximize the long-term cache hit rate, to make proper cache
replacement decisions. This work considers a scenario with a
single BS, in which the DRL agent decides whether to cache
the requested contents or replace the cached contents. While
training the DRL agent, the reward is devised as the cache hit
rate. In addition, Wolpertinger architecture [242] is utilized
to cope with the challenge of large action space. In detail, a
primary action set is first set for the DRL agent and then using
kNN to map the practical action inputs to one out of this set. In
this manner, the action space is narrowed deliberately without
missing the optimal caching policy. Compared DQL-based
algorithms searching the whole action space, the trained DRL
agent with DDPG and Wolpertinger architecture is able to
achieve competitive cache hit rates while reducing the runtime.

B. DL for Optimizing Edge Task Offloading

Edge computing allows edge devices offload part of their
computing tasks to the edge node [243], under constraints
of energy, delay, computing capability, etc. As shown in Fig.
20, these constraints put forward challenges of identifying 1)
which edge nodes should receive tasks, 2) what ratio of tasks
edge devices should offload and 3) how many resources should
be allocated to these tasks. To solve this kind of task offloading
problem is NP-hard [244], since at least combination optimiza-
tion of communication and computing resources along with
the contention of edge devices is required. Particularly, the
optimization should concern both the time-varying wireless
environments (such as the varying channel quality) and re-
quests of task offloading, hence drawing the attention of using
learning methods [245]–[255]. Among all these works related
to learning-based optimization methods, DL-based approaches
have advantages over others when multiple edge nodes and
radio channels are available for computation offloading. At

this background, large state and action spaces in the whole
offloading problem make the conventional learning algorithms
[245] [256] [247] infeasible actually.
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Fig. 20. Computation offloading problem in edge computing.

1) Use Cases of DNNs: In [249], the computation of-
floading problem is formulated as a multi-label classification
problem. By exhaustively searching the solution in an offline
way, the obtained optimal solution can be used to train a
DNN with the composite state of the edge computing network
as the input, and the offloading decision as the output. By
this means, optimal solutions may not require to be solved
online avoiding belated offloading decision making, and the
computation complexity can be transferred to DL training.

Further, a particular offloading scenario with respect to
Blockchain is investigated in [252]. The computing and energy
resources consumption of mining tasks on edge devices may
limit the practical application of Blockchain in the edge com-
puting network. Naturally, these mining tasks can be offloaded
from edge devices to edge nodes, but it may cause unfair edge
resource allocation. Thus, all available resources are allocated
in the form of auctions to maximize the revenue of the Edge
Computing Service Provider (ECSP). Based on an analytical
solution of the optimal auction, an MLP can be constructed
[252] and trained with valuations of the miners (i.e., edge
devices) for maximizing the expected revenue of ECSP.

2) Use Cases of DRL: Though offloading computation
tasks to edge nodes can enhance the processing efficiency of
the computation tasks, the reliability of offloading suffers from
the potentially low quality of wireless environments. In [248],
to maximize offloading utilities, the authors first quantify the
influence of various communication modes on the task of-
floading performance and accordingly propose applying DQL
to online select the optimal target edge node and transmission
mode. For optimizing the total offloading cost, a DRL agent
that modifies Dueling- and Double-DQL [263] can allocate
edge computation and bandwidth resources for end devices.

Besides, offloading reliability should also be concerned. The
coding rate, by which transmitting the data, is crucial to make
the offloading meet the required reliability level. Hence, in
[250], effects of the coding block-length are investigated and
an MDP concerning resource allocation is formulated and then
solved by DQL, in order to improve the average offload-
ing reliability. Exploring further on scheduling fine-grained
computing resources of the edge device, in [257], Double-
DQL [89] is used to determine the best Dynamic Voltage and
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TABLE VII
DL FOR OPTIMIZING EDGE APPLICATION SCENARIOS

Ref. DL Comm. Scale Inputs - DNN (States -
DRL)

Outputs - DNN (Action -
DRL)

Loss func. - DL (Reward
- DRL) Performance

D
L

fo
r

A
da

pt
iv

e
E

dg
e

C
ac

hi
ng

[2
32

]

SD
A

E 60 users / 6
SBSs

User features, content fea-
tures

Feature-based content pop-
ularity matrix

Normalized differences be-
tween input features and
the consequent reconstruc-
tion

QoE improvement: up to
30%; Backhaul offloading:
6.2%

[2
33

]

FC
N

N 100-200 UEs
per cell / 7 BSs

Channel conditions, file re-
quests Caching decisions

Normalized differences be-
tween prediction decisions
and the optimum

Prediction accuracy: up to
92%; Energy saving: 8% gaps
to the optimum

[2
34

]

FC
N

N UEs with
density 25-30 /
Multi-tier BSs

Current content popular-
ity, last content placement
probability

Content placement proba-
bility

Statistical average of the
error between the model
outputs and the optimal
CVX solution

Prediction accuracy: slight
degeneration to the optimum

[2
35

]

FC
N

N
C

N
N Cars / 6 RSUs

with MEC
servers

Facial images - CNN; Con-
tent features - FCNN

Gender and age prediction
- CNN; Content request
probability - FCNN

N/A - CNN; Cross entropy
error - FCNN

Caching accuracy: up to
98.04%

[2
37

]

R
N

N 20 UEs / 10
servers User historical traces User location prediction Cross entropy error Caching accuracy: up to 75%

[2
41

]

D
D

PG Multiple UEs /
Single BS

Features of cached con-
tents, current requests Content replacement Cache hit rate Cache hit rate: about 50%

D
L

fo
r

O
pt

im
iz

in
g

E
dg

e
Ta

sk
O

ffl
oa

di
ng

[2
52

]

FC
N

N 20 miners /
Single edge

node

Bidder valuation profiles of
miners

Assignment probabilities,
conditional payments

Expected, negated revenue
of the service provider Revenue increment

[2
57

]

D
ou

bl
e-

D
Q

L

Single UE System utilization states,
dynamic slack states DVFS algorithm selection Average energy consump-

tion Energy saving: 2%-4%

[2
53

]

D
Q

L Multiple UEs /
Single eNodeB

Sum cost of the entire sys-
tem, available capacity of
the MEC server

Offloading decision, re-
source allocation

Negatively correlated to
the sum cost System cost reduction

[2
55

]

D
D

PG

Multiple UEs /
Single BS with
an MEC server

Channel vectors, task
queue length

Offloading decision, power
allocation

Negative wighted sum of
the power consumption and
task queue length

Computation cost reduction

[2
54

]

D
Q

L Single UE /
Multiple MEC

servers

Previous radio bandwidth,
predicted harvested energy,
current battery level

MEC server selection, of-
floading rate

Composition of overall
data sharing gains,
task drop loss, energy
consumption and delay

Energy saving; Delay im-
provement

[2
51

]

D
ou

bl
e-

D
Q

L Single UE / 6
BSs with MEC

servers

Channel gain states, UE-
BS association state, en-
ergy queue length, task
queue length

Offloading decision, en-
ergy units allocation

Composition of task execu-
tion delay, task drop times,
task queuing delay, task
failing penalty and service
payment

Offloading performance im-
provement

[2
58

]

D
R

O
O Multiple UEs /

Single MEC
server

Channel gain states Offloading action Computation rate Algorithn execution time: less
than 0.1s in 30-UE network

D
L

fo
r

E
dg

e
M

an
ag

em
en

t
an

d
M

ai
nt

en
an

ce

C
om

m
un

ic
at

io
n

[2
59

]

R
N

N
&

L
ST

M 53 vehicles /
20 fog servers

Coordinates of vehicles
and interacting fog nodes,
time, service cost

Cost prediction Mean absolute error Prediction accuracy: 99.2%

[2
60

]

D
Q

L 4 UEs /
Multiple RRHs

Current on-off states of
processors, current com-
munication modes of UEs,
cache states

Processor state control,
communication mode
selection

Negative of system energy
consumption System power consumption

Se
cu

ri
ty

[2
61

]

D
Q

L Multiple UEs /
Multiple edge

nodes

Jamming power, channel
bandwidth, battery levels,
user density

Edge node and channel
selection, offloading rate,
transmit power

Composition of defense
costs and secrecy capacity Signal SINR increasement

Jo
in

t
O

pt
im

iz
at

io
n [1

10
]

D
ou

bl
e-

D
ue

lin
g

D
Q

L Multiple UEs /
5 BSs and 5
MEC servers

Status from each BS, MEC
server and content cache

BS allocation, caching de-
cision, offloading decision

Composition of received
SNRs, computation capa-
bilities and cache states

System utility increasement

[2
62

]

A
C

D
R

L 20 UEs per
router / 3 fog

nodes

States of requests, fog
nodes, tasks, contents and
SINR

Decisions about fog
node, channel, resource
allocation, offloading and
caching

Composition of computa-
tion offloading delay and
content delivery delay

Average service latency: 1.5-
4.0s

[1
12

]

D
Q

L 50 vehicles /
10 RSUs

States of RSUs, vehicles
and caches, contact rate,
contact times

RSU assignment, caching
control and control

Composition of communi-
cation, storage and compu-
tation cost

Backhaul capacity mitigation;
Resource saving
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Frequency Scaling (DVFS) algorithm. Compared to DQL, the
experiment results indicate that Double-DQL can save more
energy and achieve higher training efficiency. Nonetheless, the
action space of DQL-based approaches may increase rapidly
with increasing edge devices. Under the circumstances, a pre-
classification step can be performed before learning [253] to
narrow the action space.

IoT edge environments powered by Energy Harvesting (EH)
is investigated in [251], [254]. In EH environments, the energy
harvesting makes the offloading problem more complicated,
since IoT edge devices can harvest energy from ambient
radio-frequency signals. Hence, CNN is used to compress the
state space in the learning process [254]. Further, in [251],
inspired by the additive structure of the reward function,
Q-function decomposition is applied in Double-DQL, and
it improves the vanilla Double-DQL. However, value-based
DRL can only deal with discrete action space. To perform
more fine-grained power control for local execution and task
offloading, policy-gradient-based DRL should be considered.
For example, compared tot he discrete power control strategy
based on DQL, DDPG can adaptively allocate the power of
edge devices with finer granularity [255].

Freely letting DRL agents take over the whole process
of computation offloading may lead to huge computational
complexity. Therefore, only employing DNN to make partial
decisions can largely reduce the complexity. For instance, in
[258], the problem of maximizing the weighted sum computa-
tion rate is decomposed into two sub-problems, viz., offloading
decision and resource allocation. By only using DRL to deal
with the NP-hard offloading decision problem rather than
both, the action space of the DRL agent is narrowed, and
the offloading performance is not impaired as well since the
resource allocation problem is solved optimally.

C. DL for Edge Management and Maintenance

Edge DL services are envisioned to be deployed on BSs
in cellular networks, as implemented in [264]. Therefore,
edge management and maintenance require optimizations from
multiple perspectives (including communication perspective).
Many works focus on applying DL in wireless communication
[265]–[267]. Nevertheless, management and maintenance at
the edge should consider more aspects.

1) Edge Communication: When edge nodes are serving
mobile devices (users), mobility issues in edge computing
networks should be addressed. DL-based methods can be used
to assist the smooth transition of connections between devices
and edge nodes. To minimize energy consumption per bit, in
[268], the optimal device association strategy is approximated
by a DNN. Meanwhile, a digital twin of network environments
is established at the central server for training this DNN
off-line. To minimize the interruptions of a mobile device
moving from an edge node to the next one throughout its
moving trajectory, the MLP can be used to predict available
edge nodes at a given location and time [259]. Moreover,
determining the best edge node, with which the mobile device
should associate, still needs to evaluate the cost (the latency
of servicing a request) for the interaction between the mobile

device and each edge node. Nonetheless, modeling the cost
of these interactions requires a more capable learning model.
Therefore, a two-layer stacked RNN with LSTM cells is
implemented for modeling the cost of interaction. At last,
based on the capability of predicting available edge nodes
along with corresponding potential cost, the mobile device can
associate with the best edge node, and hence the possibility
of disruption is minimized.

Aiming at minimizing long-term system power consumption
in the communication scenario with multiple modes (to serve
various IoT services), i.e., Cloud-Radio Access Networks (C-
RAN) mode, Device-to-Device (D2D) mode, and Fog radio
Access Point (FAP) mode, DQL can be used to control
communication modes of edge devices and on-off states of
processors throughout the communicating process [260]. After
determining the communication mode and the processors’ on-
off states of a given edge device, the whole problem can be
degraded into an Remote Radio Head (RRH) transmission
power minimization problem and solved. Further, TL is inte-
grated with DQL to reduce the required interactions with the
environment in the DQL training process while maintaining a
similar performance without TL.

2) Edge Security: Since edge devices generally equipped
with limited computation, energy and radio resources, the
transmission between them and the edge node is more vul-
nerable to various attacks, such as jamming attacks and Dis-
tributed Denial of Service (DDoS) attacks, compared to cloud
computing. Therefore, the security of the edge computing
system should be enhanced. First, the system should be able
to actively detect unknown attacks, for instance, using DL
techniques to extract features of eavesdropping and jamming
attacks [269]. According to the attack mode detected, the
system determines the strategy of security protection. Cer-
tainly, security protection generally requires additional energy
consumption and the overhead of both computation and com-
munication. Consequently, each edge device shall optimize its
defense strategies, viz., choosing the transmit power, channel
and time, without violating its resource limitation. The opti-
mization is challenging since it is hard to estimate the attack
model and the dynamic model of edge computing networks.

DRL-based security solutions can provide secure offloading
(from the edge device to the edge node) to against jamming
attacks [261] or protect user location privacy and the usage
pattern privacy [270]. The edge device observes the status of
edge nodes and the attack characteristics and then determines
the defense level and key parameters in security protocols.
By setting the reward as the anti-jamming communication
efficiency, such as the signal-to-interference-plus-noise ratio
of the signals, the bit error rate of the received messages, and
the protection overhead, the DQL-based security agent can be
trained to cope with various types of attacks.

3) Joint Edge Optimization: Edge computing can cater for
the rapid growth of smart devices and the advent of mas-
sive computation-intensive and data-consuming applications.
Nonetheless, it also makes the operation of future networks
even more complex [271]. To manage the complex networks
with respect to comprehensive resource optimization [16] is
challenging, particularly under the premise of considering key
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enablers of the future network, including Software-Defined
Network (SDN) [272], IoTs, Internet of Vehicles (IoVs).

In general, SDN is designed for separating the control
plane from the data plane, and thus allowing the operation
over the whole network with a global view. Compared to
the distributed nature of edge computing networks, SDN is
a centralized approach, and it is challenging to apply SDN
to edge computing networks directly. In [273], an SDN-
enabled edge computing network catering for smart cities is
investigated. To improve the servicing performance of this
prototype network, DQL is deployed in its control plane to
orchestrate networking, caching, and computing resources.

Edge computing can empower IoT systems with more
computation-intensive and delay-sensitive services but also
raises challenges for efficient management and synergy of stor-
age, computation, and communication resources. For minimiz-
ing the average end-to-end servicing delay, policy-gradient-
based DRL combined with AC architecture can deal with
the assignment of edge nodes, the decision about whether to
store the requesting content or not, the choice of the edge
node performing the computation tasks and the allocation of
computation resources [262].

IoVs is a special case of IoTs and focuses on connected ve-
hicles. Similar to the consideration of integrating networking,
caching and computing as in [262], Double-Dueling DQL (i.e.,
combining Double DQL and Dueling DQL) with more robust
performance, can be used to orchestrate available resources to
improve the performance of future IoVs [110]. In addition,
considering the mobility of vehicles in the IoVs, the hard
service deadline constraint might be easily broken, and this
challenge is often either neglected or tackled inadequately
because of high complexities. To deal with the mobility
challenge, in [112], the mobility of vehicles is first modeled
as discrete random jumping, and the time dimension is split
into epochs, each of which comprises several time slots. Then,
a small timescale DQL model, regarding the granularity of
time slot, is devised for incorporating the impact of vehicles’
mobility in terms of the carefully designed immediate reward
function. At last, a large timescale DQL model is proposed
for every time epoch. By using such multi-timescale DRL,
issues about both immediate impacts of the mobility and
the unbearable large action space in the resource allocation
optimization are solved.

IX. LESSONS LEARNED AND OPEN CHALLENGES

To identify existing challenges and circumvent potential
misleading directions, we briefly introduce the potential sce-
nario of “DL application on Edge”, and separately discuss
open issues related to four enabling technologies that we focus
on, i.e., “DL inference in Edge”, “Edge Computing for DL”,
“DL training at Edge” and “DL for optimizing Edge”.

A. More Promising Applications

if DL and edge are well-integrated, they can offer great
potential for the development of innovative applications. There
are still many areas to be explored to provide operators,

suppliers and third parties with new business opportunities and
revenue streams.

For example, with more DL techniques are universally
embedded in these emerged applications, the introduced pro-
cessing delay and additional computation cost make the cloud
gaming architecture struggle to meet the latency requirements.
Edge computing architectures, near to users, can be leveraged
with the cloud to form a hybrid gaming architecture. Besides,
intelligent driving involves speech recognition, image recogni-
tion, intelligent decision making, etc. Various DL applications
in intelligent driving, such as collision warning, require edge
computing platforms to ensure millisecond-level interaction
delay. In addition, edge perception is more conducive to ana-
lyze the traffic environment around the vehicle, thus enhancing
driving safety.

B. General DL Model for Inference

When deploying DL in edge devices, it is necessary to
accelerate DL inference by model optimization. In this section,
lessons learned and future directions for “DL inference in
Edge”, with respect to model compression, model segmen-
tation, and EEoI, used to optimize DL models, is discussed.

1) Ambiguous Performance Metrics: For an Edge DL ser-
vice for a specific task, there are usually a series of DL
model candidates that can accomplish the task. However, it
is difficult for service providers to choose the right DL model
for each service. Due to the uncertain characteristics of edge
computing networks (varying wireless channel qualities, un-
predictable concurrent service requests, etc.), commonly used
standard performance indicators (such as top-k accuracy [138]
or mean average accuracy [164]) cannot reflect the runtime
performance of DL model inference in the edge. For Edge
DL services, besides model accuracy, inference delay, resource
consumption, and service revenue are also key indicators.
Therefore, we need to identify the key performance indicators
of Edge DL, quantitatively analyze the factors affecting them,
and explore the trade-offs between these indicators to help
improve the efficiency of Edge DL deployment.

2) Generalization of EEoI: Currently, EEoI can be ap-
plied to classification problems in DL [160], but there is no
generalized solution for a wider range of DL applications.
Furthermore, in order to build an intelligent edge and support
edge intelligence, not only DL but also the possibility of
applying EEoI to DRL should be explored, since applying
DRL to real-time resource management for the edge, as
discussed in Section VIII, requires stringent response speed.

3) Hybrid model modification: Coordination issues with
respect to model optimization, model segmentation, and EEoI
should be thought over. These customized DL models are often
used independently to enable “end-edge-cloud” collaboration.
Model optimizations, such as model quantification and prun-
ing, may be required on the end and edge sides, but because of
the sufficient computation resources, the cloud does not need
to take the risk of model accuracy to use these optimizations.
Therefore, how to design a hybrid precision scheme, that is,
to effectively combine the simplified DL models in the edge
with the raw DL model in the cloud is important.
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4) Coordination between training and inference: Pruning,
quantizing and introducing EEoI into trained raw DL models
require retraining to give them the desired inference perfor-
mance. In general, customized models can be trained offline
in the cloud. However, the advantage of edge computing lies
in its response speed and might be neutralized because of
belated DL training. Moreover, due to a large number of
heterogeneous devices in the edge and the dynamic network
environment, the customization requirements of DL models
are not monotonous. Then, is this continuous model training
requirement reasonable, and will it affect the timeliness of
model inference? How to design a mechanism to avoid these
side-effects?

C. Complete Edge Architecture for DL

Edge intelligence and intelligent edge require a complete
system framework, covering data acquisition, service deploy-
ment and task processing. In this section, we discuss chal-
lenges for “Edge Computing for DL” to build a complete edge
computing framework for DL.

1) Edge for Data Processing: Both pervasively deployed
DL services on the edge and DL algorithms for optimizing
edge cannot be realized without data acquiring. Edge archi-
tecture should be able to efficiently acquire and process the
original data, sensed or collected by edge devices, and then
feed them to DL models.

Adaptively acquiring data at the edge and then transmitting
them to cloud (as done in [7]) is a natural way to alleviate
the workload of edge devices and to reduce the potential
resource overhead. In addition, it is better to further compress
the data, which can alleviate the bandwidth pressure of the
network, while the transmission delay can be reduced to
provide better QoS. Most existed works focus only on vision
applications [102]. However, the heterogeneous data structures
and characteristics of a wide variety of DL-based services are
not addressed well yet. Therefore, developing a heterogeneous,
parallel and collaborative architecture for edge data processing
for various DL services will be helpful.

2) Microservice for Edge DL Services: Edge and cloud
services have recently started undergoing a major shift from
monolithic entities to graphs of hundreds of loosely-coupled
microservices [274]. Executing DL computations may need
a series of software dependencies, and it calls for a solution
for isolating different DL services on the shared resources. At
present, the microservice framework, deployed on the edge for
hosting DL services, is in its infant [275], due to several critical
challenges: 1) Handling DL deployment and management flex-
ibly; 2) Achieving live migration of microservices to reduce
migration times and unavailability of DL services due to user
mobilities; 3) Orchestrating resources among the cloud and
distributed edge infrastructures to achieve better performance,
as illustrated in Section VI-B3.

3) Incentive and trusty offloading mechanism for DL:
Heavy DL computations on resource-limited end devices can
be offloaded to nearby edge nodes (Section VI-B). However,
there are still several issues, 1) an incentive mechanism should
be established for stimulating edge nodes to take over DL

computations; 2) the security should be guaranteed to avoid
the risks from anonymous edge nodes [276].

Blockchain, as a decentralized public database storing trans-
action records across participated devices, can avoid the risk
of tampering the records [277]. By taking advantage of these
characteristics, incentive and trust problems with respect to
computation offloading can potentially be tackled. To be
specific, all end devices and edge nodes have to first put
down deposits to the blockchain to participate. The end device
request the help of edge nodes for DL computation, and
meantime send a “require” transaction to the blockchain with
a bounty. Once an edge nodes complete the computation, it
returns results to the end device with sending a “complete”
transaction to the blockchain. After a while, other participated
edge nodes also execute the offloaded task and validate the
former recorded result. At last, for incentives, firstly recorded
edge nodes win the game and be awarded [278]. However,
this idea about blockchained edge is still in its infancy.
Existing blockchains such as Ethereum [279] do not support
the execution of complex DL computations, which raises the
challenge of adjusting blockchain structure and protocol in
order to break this limitation.

4) Integration with “DL for optimizing Edge”: End de-
vices, edge nodes, and base stations in edge computing net-
works are expected to run various DL models and deploy
corresponding services in the future. In order to make full use
of decentralized resources of edge computing, and to estab-
lish connections with existing cloud computing infrastructure,
dividing the computation-intensive DL model into sub-tasks
and effectively offloading these tasks between edge devices for
collaboration are essential. Owing to deployment environments
of Edge DL are usually highly dynamic, edge computing
frameworks need excellent online resource orchestration and
parameter configuration to support a large number of DL
services. Heterogeneous computation resources, real-time joint
optimization of communication and cache resources, and high-
dimensional system parameter configuration are critical. We
have introduced various theoretical methods to optimize edge
computing frameworks (networks) with DL technologies in
Section VIII. Nonetheless, there is currently no relevant work
to deeply study the performance analysis of deploying and
using these DL technologies for long-term online resource
orchestration in practical edge computing networks or testbeds.
We believe that “Edge Computing for DL” should continue to
focus on how to integrate “DL for optimizing Edge” into the
edge computing framework to realize the above vision.

D. Practical Training Principles at Edge

Compared with DL inference in the edge, DL training at the
edge is currently mainly limited by the weak performance of
edge devices and the fact that most Edge DL frameworks or
libraries still do not support training. At present, most studies
are at the theoretical level, i.e., simulating the process of DL
training at the edge. In this section, we point out the lessons
learned and challenges in “DL Training at Edge”.

1) Data Parallelism versus Model Parallelism: DL mod-
els are both computation and memory intensive. When they
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become deeper and larger, it is not feasible to acquire their
inference results or train them well by a single device.
Therefore, large DL models are trained in distributed manners
over thousands of CPU or GPU cores, in terms of data
parallelism, model parallelism or their combination (Section
III-C). However, differing from parallel training over bus-or
switch-connected CPUs or GPUs in the cloud, perform model
training at distributed edge devices should further consider
wireless environments, device configurations, privacies, etc.

At present, FL only copies the whole DL model to every
participated edge devices, namely in the manner of data par-
allelism. Hence, taking the limited computing capabilities of
edge devices (at least for now) into consideration, partitioning
a large-scale DL model and allocating these segments to
different edge devices for training may be a more feasible and
practical solution. Certainly, this does not mean abandoning
the native data parallelism of FL, instead, posing the challenge
of blending data parallelism and model parallelism particularly
for training DL models at the edge, as illustrated in Fig. 21.

End device

End
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End device
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device
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Fig. 21. DL training at the edge by both data and model parallelism.

2) Where is training data from?: Currently, most of the
DL training frameworks at the edge are aimed at supervised
learning tasks, and test their performance with complete data
sets. However, in practical scenarios, we cannot assume that
all data in the edge computing network are labeled and with a
correctness guarantee. For unsupervised learning tasks such as
DRL, we certainly do not need to pay too much attention to
the production of training data. For example, the training data
required for DRL compose of the observed state vectors and
rewards obtained by interacting with the environment. These
training data can generate automatically when the system is
running. But for a wider range of supervised learning tasks,
how edge nodes and devices find the exact training data for
model training? The application of vanilla FL is using RNN
for next-word-prediction [199], in which the training data
can be obtained along with users’ daily inputs. Nonetheless,
for extensive Edge DL services concerning video analysis,
where are their training data from. If all training data is
manually labeled and uploaded to the cloud data center, and
then distributed to edge devices by the cloud, the original
intention of FL is obviously violated. One possible solution
is to enable edge devices to construct their labeled data by
learning “labeled data” from each other. We believe that the
production of training data and the application scenarios of
DL models training at the edge should first be clarified in the
future, and the necessity and feasibility of DL model training
at the edge should be discussed as well.

3) Asynchronous FL at Edge: Existing FL methods [198],
[199] focus on synchronous training, and can only process
hundreds of devices in parallel. However, this synchronous

updating mode potentially cannot scale well, and is inefficient
and inflexible in view of two key properties of FL, specifically,
1) infrequent training tasks, since edge devices typically have
weaker computing power and limited battery endurance and
thus cannot afford intensive training tasks; 2) limited and
uncertain communication between edge devices, compared to
typical distributed training in the cloud.

Thus, whenever the global model is updating, the server is
limited to selecting from a subset of available edge devices to
trigger a training task. In addition, due to limited computing
power and battery endurance, task scheduling varies from
device to device, making it difficult to synchronize selected
devices at the end of each epoch. Some devices may no
longer be available when they should be synchronized, and
hence the server must determine the timeout threshold to
discard the laggard. If the number of surviving devices is too
small, the server has to discard the entire epoch including
all received updates. These bottlenecks in FL can potentially
be addressed by asynchronous training mechanisms [280]–
[282]. Adequately selecting clients in each training period
with resource constraints may also help. By setting a certain
deadline for clients to download, update, and upload DL
models, the central server can determine which clients to
perform local training such that it can aggregate as many client
updates as possible in each period, thus allowing the server to
accelerate performance improvement in DL models [283].

4) Transfer Learning-based Training: Due to resource
constraints, training and deploying computation-intensive DL
models on edge devices such as mobile phones is challenging.
In order to facilitate learning on such resource-constrained
edge devices, TL can be utilized. For instance, in order to
reduce the amount of training data and speeding up the training
process, using unlabeled data to transfer knowledge between
edge devices can be adopted [284]. By using the cross-modal
transfer in the learning of edge devices across different sensing
modalities, required labeled data and the training process can
be largely reduced and accelerated, respectively.

Besides, KD, as a method of TL, can also be exploited
thanks to several advantages [136]: 1) using information from
well-trained large DL models (teachers) to help lightweight
DL models (students), expected to be deployed on edge de-
vices, converge faster; 2) improving the accuracy of students;
3) helping students become more general instead of being
overfitted by a certain set of data. Although results of [136],
[284] show some prospects, further research is needed to
extend the TL-based training method to DL applications with
different types of perceptual data.

E. Deployment and Improvement of Intelligent Edge
There have been many attempts to use DL to optimize and

schedule resources in edge computing networks. In this regard,
there are many potential areas where DL can be applied,
including online content streaming [285], routing and traffic
control [286] [287], etc. However, since DL solutions do not
rely entirely on accurate modeling of networks and devices,
finding a scenario where DL can be applied is not the most
important concern. Besides, if applying DL to optimize real-
time edge computing networks, the training and inference of
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DL models or DRL algorithms may bring certain side effects,
such as the additional bandwidth consumed by training data
transmission and the latency of DL inference.

Existing works mainly concern about solutions of “DL for
optimizing Edge” at the high level, but overlook the practical
feasibility at the low level. Though DL exhibits its theoretical
performance, the deployment issues of DNNs/DRL should be
carefully considered (as illustrated in Fig. 22):
• Where DL and DRL should be deployed, in view of

the resource overhead of them and the requirement of
managing edge computing networks in real time?

• When using DL to determine caching policies or optimize
task offloading, will the benefits of DL be neutralized
by the bandwidth consumption and the processing delay
brought by DL itself?

• How to explore and improve edge computing architec-
tures in Section VI to support “DL for optimizing Edge”?

• Are the ideas of customized DL models, introduced in
Section V, can help to facilitate the practical deployment?

• How to modify the training principles in Section VII to
enhance the performance of DL training, in order to meet
the timeliness of edge management?

DL model

End
devices

Edge
nodes

Edge computing networks and systems

How and where to
deploy?

Fig. 22. Deployment issues of intelligent edge, i.e., how and where to deploy
DL models for optimizing edge computing networks (systems).

Besides, the abilities of the state-of-the-art DL or DRL, such
as Multi-Agent Deep Reinforcement Learning [288]–[290],
Graph Neural Networks (GNNs) [291], [292], can also be
exploited to facilitate this process. For example, end devices,
edge nodes, and the cloud can be deemed as individual agents.
By this means, each agent trains its own strategy according
to its local imperfect observations, and all participated agents
work together for optimizing edge computing networks. In
addition, the structure of edge computing networks across
the end, the edge, and the cloud is actually an immense
graph, which comprises massive latent structure information,
e.g., the connection and bandwidth between devices. For
better understanding edge computing networks, GNNs, which
focuses on extracting features from graph structures instead
of two-dimensional meshes and one-dimensional sequences,
might be a promising method.

X. CONCLUSIONS

DL, as a key technique of artificial intelligence, and edge
computing are expected to benefit each other. This survey
has comprehensively introduced and discussed various ap-
plicable scenarios and fundamental enabling techniques for
edge intelligence and intelligent edge. In summary, the key
issue of extending DL from the cloud to the edge of the

network is: under the multiple constraints of networking,
communication, computing power, and energy consumption,
how to devise and develop edge computing architecture to
achieve the best performance of DL training and inference.
As the computing power of the edge increases, edge intelli-
gence will become common, and intelligent edge will play an
important supporting role to improve the performance of edge
intelligence. We hope that this survey will increase discussions
and research efforts on DL/Edge integration that will advance
future communication applications and services.

ACKNOWLEDGEMENT

This work was supported by the National Key
R&D Program of China (No.2019YFB2101901 and
No.2018YFC0809803), National Science Foundation of
China (No.61702364, No.61972432 and No.U1711265),
the Program for Guangdong Introducing Innovative and
Enterpreneurial Teams (No.2017ZT07X355), Chinese
National Engineering Laboratory for Big Data System
Computing Technology and Canadian Natural Sciences and
Engineering Research Council. It was also supported in part
by Singapore NRF National Satellite of Excellence, Design
Science and Technology for Secure Critical Infrastructure
NSoE DeST-SCI2019-0007, A*STAR-NTU-SUTD Joint
Research Grant Call on Artificial Intelligence for the Future
of Manufacturing RGANS1906, WASP/NTU M4082187
(4080), Singapore MOE Tier 1 2017-T1-002-007 RG122/17,
MOE Tier 2 MOE2014-T2-2-015 ARC4/15, Singapore
NRF2015-NRF-ISF001-2277, and Singapore EMA Energy
Resilience NRF2017EWT-EP003-041. Especially, we would
like to thank the editors of IEEE COMST and the reviewers
for their help and support in making this work possible.

REFERENCES

[1] “Fog Computing and the Internet of Things: Extend the Cloud to
Where the Things Are.” [Online]. Available: https://www.cisco.com/c/
dam/en us/solutions/trends/iot/docs/computing-overview.pdf

[2] “Cisco Global Cloud Index: Forecast and Methodology.”
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.html

[3] M. V. Barbera, S. Kosta, A. Mei et al., “To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,” in 2013
IEEE Conference on Computer Communications (INFOCOM 2013),
2013, pp. 1285–1293.

[4] W. Hu, Y. Gao, K. Ha et al., “Quantifying the Impact of Edge
Computing on Mobile Applications,” in Proc. 7th ACM SIGOPS Asia-
Pacific Workshop Syst. (APSys 2016), 2016, pp. 1–8.

[5] “Mobile-Edge ComputingIntroductory Technical White Paper,” ETSI.
[Online]. Available: https://portal.etsi.org/Portals/0/TBpages/MEC/
Docs/Mobile-edge Computing - Introductory Technical White
Paper V1%2018-09-14.pdf

[6] W. Shi, J. Cao et al., “Edge Computing: Vision and Challenges,” IEEE
Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[7] B. A. Mudassar, J. H. Ko, and S. Mukhopadhyay, “Edge-cloud collab-
orative processing for intelligent internet of things,” in Proc. the 55th
Annual Design Automation Conference (DAC 2018), 2018, pp. 1–6.

[8] A. Yousefpour, C. Fung, T. Nguyen et al., “All one needs to know about
fog computing and related edge computing paradigms: A complete
survey,” J SYST ARCHITECT., 2019.

[9] J. Redmon, S. Divvala et al., “You Only Look Once: Unified, Real-
Time Object Detection,” in Proc. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2016), 2016, pp. 779–788.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, Jan. 2015.

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf


TO BE APPEARED IN IEEE COMMUNICATIONS SURVEYS & TUTORIALS 30

[11] H. Khelifi, S. Luo, B. Nour et al., “Bringing deep learning at the edge
of information-centric internet of things,” IEEE Commun. Lett., vol. 23,
no. 1, pp. 52–55, Jan. 2019.

[12] Y. Kang, J. Hauswald, C. Gao et al., “Neurosurgeon: Collaborative
Intelligence Between the Cloud and Mobile Edge,” in Proc. 22nd Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS 2017),
2017, pp. 615–629.

[13] “Democratizing AI.” [Online]. Available: https://news.microsoft.com/
features/democratizing-ai/

[14] Y. Yang, “Multi-tier computing networks for intelligent IoT,” Nature
Electronics, vol. 2, no. 1, pp. 4–5, Jan. 2019.

[15] C. Li, Y. Xue, J. Wang et al., “Edge-Oriented Computing Paradigms:
A Survey on Architecture Design and System Management,” ACM
Comput. Surv., vol. 51, no. 2, pp. 1–34, Apr. 2018.

[16] S. Wang, X. Zhang, Y. Zhang et al., “A Survey on Mobile Edge
Networks: Convergence of Computing, Caching and Communications,”
IEEE Access, vol. 5, pp. 6757–6779, 2017.

[17] T. X. Tran, A. Hajisami et al., “Collaborative Mobile Edge Computing
in 5G Networks: New Paradigms, Scenarios, and Challenges,” IEEE
Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[18] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless Network
Intelligence at the Edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,
Nov. 2019.

[19] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[20] J. Chen and X. Ran, “Deep Learning With Edge Computing: A
Review,” Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[21] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato et al., “Federated Learning in Mobile Edge Networks: A
Comprehensive Survey,” arXiv preprint arXiv:1909.11875, 2019.

[22] C. Mouradian, D. Naboulsi, S. Yangui et al., “A Comprehensive Survey
on Fog Computing: State-of-the-Art and Research Challenges,” IEEE
Commun. Surveys Tuts., vol. 20, no. 1, pp. 416–464, 2018.

[23] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and micro
data centers,” Comput. Networks, vol. 130, no. 2018, pp. 94–120, 2018.

[24] M. Satyanarayanan, P. Bahl, R. Cceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, 2009.

[25] M. Aazam and E. Huh, “Fog computing micro datacenter based
dynamic resource estimation and pricing model for iot,” in Proc. IEEE
29th International Conference on Advanced Information Networking
and Applications (AINA 2019), Mar. 2015, pp. 687–694.

[26] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proc. the first edition of the MCC
workshop on Mobile cloud computing, 2012, pp. 13–16.

[27] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A
Platform for Internet of Things and Analytics. Cham: Springer
International Publishing, 2014, pp. 169–186.

[28] “Multi-access Edge Computing.” [Online]. Available: http://www.etsi.
org/technologies-clusters/technologies/multi-access-edge-computing

[29] “What is Azure Data Box Edge?” [Online]. Available: https://docs.
microsoft.com/zh-cn/azure/databox-online/data-box-edge-overview

[30] “Intel Movidius Neural Compute Stick.” [Online]. Available: https:
//software.intel.com/en-us/movidius-ncs

[31] “Latest Jetson Products.” [Online]. Available: https://developer.nvidia.
com/buy-jetson

[32] “An all-scenario AI infrastructure solution that bridges ’device,
edge, and cloud’ and delivers unrivaled compute power to lead
you towards an AI-fueled future.” [Online]. Available: https:
//e.huawei.com/en/solutions/business-needs/data-center/atlas

[33] “Snapdragon 8 Series Mobile Platforms.” [Online]. Available: https:
//www.qualcomm.com/products/snapdragon-8-series-mobile-platforms

[34] “Kirin.” [Online]. Available: http://www.hisilicon.com/en/Products/
ProductList/Kirin

[35] “The World’s First Full-Stack All-Scenario AI Chip.” [Online].
Available: http://www.hisilicon.com/en/Products/ProductList/Ascend

[36] “MediaTek Helio P60.” [Online]. Available: https://www.mediatek.
com/products/smartphones/mediatek-helio-p60

[37] “NVIDIA Turing GPU Architecture.” [Online]. Available: https:
//www.nvidia.com/en-us/geforce/turing/

[38] N. P. Jouppi, A. Borchers, R. Boyle, P. L. Cantin, and B. Nan, “In-
Datacenter Performance Analysis of a Tensor Processing Unit,” in Proc.
44th Int. Symp. Comput. Archit. (ISCA 2017), 2017, pp. 1–12.

[39] “Intel Xeon Processor D-2100 Product Brief: Ad-
vanced Intelligence for High-Density Edge Solutions.” [On-
line]. Available: https://www.intel.cn/content/www/cn/zh/products/
docs/processors/xeon/d-2100-brief.html

[40] “Mobile Processor: Exynos 9820.” [Online]. Available:
https://www.samsung.com/semiconductor/minisite/exynos/products/
mobileprocessor/exynos-9-series-9820/

[41] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend Cloud to Edge with
KubeEdge,” in Proc. 2018 IEEE/ACM Symposium on Edge Computing
(SEC 2018), 2018, pp. 373–377.

[42] “OpenEdge, extend cloud computing, data and service seamlessly to
edge devices.” [Online]. Available: https://github.com/baidu/openedge

[43] “Azure IoT Edge, extend cloud intelligence and analytics to edge
devices.” [Online]. Available: https://github.com/Azure/iotedge

[44] “EdgeX, the Open Platform for the IoT Edge.” [Online]. Available:
https://www.edgexfoundry.org/

[45] “Akraino Edge Stack.” [Online]. Available: https://www.lfedge.org/
projects/akraino/

[46] “NVIDIA EGX Edge Computing Platform: Real-Time AI at the
Edge.” [Online]. Available: https://www.nvidia.com/en-us/data-center/
products/egx-edge-computing/

[47] “AWS IoT Greengrass: Bring local compute, messaging, data caching,
sync, and ML inference capabilities to edge devices.” [Online].
Available: https://aws.amazon.com/greengrass/

[48] “Google Cloud IoT: Unlock business insights from your global
device network with an intelligent IoT platform.” [Online]. Available:
https://cloud.google.com/solutions/iot/

[49] G. Li, L. Liu, X. Wang et al., “Auto-tuning Neural Network Quanti-
zation Framework for Collaborative Inference Between the Cloud and
Edge,” in Proc. International Conference on Artificial Neural Networks
(ICANN 2018), 2018, pp. 402–411.

[50] Y. Huang, Y. Zhu, X. Fan et al., “Task Scheduling with Optimized
Transmission Time in Collaborative Cloud-Edge Learning,” in Proc.
27th International Conference on Computer Communication and Net-
works (ICCCN 2018), 2018, pp. 1–9.

[51] E. Nurvitadhi, G. Venkatesh, J. Sim et al., “Can fpgas beat gpus
in accelerating next-generation deep neural networks?” in Proc.
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA 2017), 2017, pp. 5–14.

[52] S. Jiang, D. He, C. Yang et al., “Accelerating Mobile Applications
at the Network Edge with Software-Programmable FPGAs,” in 2018
IEEE Conference on Computer Communications (INFOCOM 2018),
2018, pp. 55–62.

[53] “Qualcomm Neural Processing SDK for AI.” [Online]. Available: https:
//developer.qualcomm.com/software/qualcomm-neural-processing-sdk

[54] A. Ignatov, R. Timofte, W. Chou et al., “AI Benchmark: Running
Deep Neural Networks on Android Smartphones,” arXiv preprint
arXiv:1810.01109.

[55] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[56] “Microsoft Cognitive Toolkit (CNTK), an open source deep-learning
toolkit.” [Online]. Available: https://github.com/microsoft/CNTK

[57] S. Tokui, K. Oono et al., “Chainer: a next-generation open source
framework for deep learning,” in Proc. workshop on machine learning
systems (LearningSys) in the twenty-ninth annual conference on neural
information processing systems (NeurIPS 2015), 2015, pp. 1–6.

[58] M. Abadi, P. Barham et al., “TensorFlow: A System for Large-Scale
Machine Learning,” in Proc. the 12th USENIX conference on Operating
Systems Design and Implementation (OSDI 2016), 2016, pp. 265–283.

[59] “Deeplearning4j: Open-source distributed deep learning for the JVM,
Apache Software Foundation License 2.0.” [Online]. Available:
https://deeplearning4j.org

[60] “Deploy machine learning models on mobile and IoT devices.”
[Online]. Available: https://www.tensorflow.org/lite

[61] T. Chen, M. Li, Y. Li et al., “MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems,”
arXiv preprint arXiv:1512.01274, 2015.

[62] “PyTorch: tensors and dynamic neural networks in Python with strong
GPU acceleration.” [Online]. Available: https://github.com/pytorch/

[63] “Core ML: Integrate machine learning models into your
app.” [Online]. Available: https://developer.apple.com/documentation/
coreml?language=objc

[64] “NCNN is a high-performance neural network inference framework
optimized for the mobile platform.” [Online]. Available: https:
//github.com/Tencent/ncnn

[65] “MNN is a lightweight deep neural network inference engine.”
[Online]. Available: https://github.com/alibaba/MNN

https://news.microsoft.com/features/democratizing-ai/
https://news.microsoft.com/features/democratizing-ai/
http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
https://docs.microsoft.com/zh-cn/azure/databox-online/data-box-edge-overview
https://docs.microsoft.com/zh-cn/azure/databox-online/data-box-edge-overview
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs
https://developer.nvidia.com/buy-jetson
https://developer.nvidia.com/buy-jetson
https://e.huawei.com/en/solutions/business-needs/data-center/atlas
https://e.huawei.com/en/solutions/business-needs/data-center/atlas
https://www.qualcomm.com/products/snapdragon-8-series-mobile-platforms
https://www.qualcomm.com/products/snapdragon-8-series-mobile-platforms
http://www.hisilicon.com/en/Products/ProductList/Kirin
http://www.hisilicon.com/en/Products/ProductList/Kirin
http://www.hisilicon.com/en/Products/ProductList/Ascend
https://www.mediatek.com/products/smartphones/mediatek-helio-p60
https://www.mediatek.com/products/smartphones/mediatek-helio-p60
https://www.nvidia.com/en-us/geforce/turing/
https://www.nvidia.com/en-us/geforce/turing/
https://www.intel.cn/content/www/cn/zh/products/docs/processors/xeon/d-2100-brief.html
https://www.intel.cn/content/www/cn/zh/products/docs/processors/xeon/d-2100-brief.html
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9820/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9820/
https://github.com/baidu/openedge
https://github.com/Azure/iotedge
https://www.edgexfoundry.org/
https://www.lfedge.org/projects/akraino/
https://www.lfedge.org/projects/akraino/
https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/
https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/
https://aws.amazon.com/greengrass/
https://cloud.google.com/solutions/iot/
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://github.com/microsoft/CNTK
https://deeplearning4j.org
https://www.tensorflow.org/lite
https://github.com/pytorch/
https://developer.apple.com/documentation/coreml?language=objc
https://developer.apple.com/documentation/coreml?language=objc
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://github.com/alibaba/MNN


TO BE APPEARED IN IEEE COMMUNICATIONS SURVEYS & TUTORIALS 31

[66] “Multi-platform embedded deep learning framework.” [Online].
Available: https://github.com/PaddlePaddle/paddle-mobile

[67] “MACE is a deep learning inference framework optimized for
mobile heterogeneous computing platforms.” [Online]. Available:
https://github.com/XiaoMi/mace

[68] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “FANN-on-MCU: An
Open-Source Toolkit for Energy-Efficient Neural Network Inference at
the Edge of the Internet of Things,” arXiv preprint arXiv:1911.03314,
2019.

[69] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A Survey of
Virtual Machine Management in Edge Computing,” Proc. IEEE, vol.
107, no. 8, pp. 1482–1499, 2019.

[70] R. Morabito, “Virtualization on internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access,
vol. 5, pp. 8835–8850, 2017.

[71] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient Live Migration of Edge
Services Leveraging Container Layered Storage,” IEEE Trans. Mob.
Comput., vol. 18, no. 9, pp. 2020–2033, Sep. 2019.

[72] A. Wang, Z. Zha, Y. Guo, and S. Chen, “Software-Defined Networking
Enhanced Edge Computing: A Network-Centric Survey,” Proc. IEEE,
vol. 107, no. 8, pp. 1500–1519, Aug. 2019.

[73] Y. D. Lin, C. C. Wang, C. Y. Huang, and Y. C. Lai, “Hierarchical
CORD for NFV Datacenters: Resource Allocation with Cost-Latency
Tradeoff,” IEEE Netw., vol. 32, no. 5, pp. 124–130, 2018.

[74] L. Li, K. Ota, and M. Dong, “DeepNFV: A Lightweight Framework
for Intelligent Edge Network Functions Virtualization,” IEEE Netw.,
vol. 33, no. 1, pp. 136–141, Jan. 2019.

[75] “Mobile Edge Computing A key technology towards 5G,” ETSI. [On-
line]. Available: https://www.etsi.org/images/files/ETSIWhitePapers/
etsi wp11 mec a key technology towards 5g.pdf

[76] H.-T. Chien, Y.-D. Lin, C.-L. Lai, and C.-T. Wang, “End-to-End Slicing
as a Service with Computing and Communication Resource Allocation
for Multi-Tenant 5G Systems,” IEEE Wirel. Commun., vol. 26, no. 5,
pp. 104–112, Oct. 2019.

[77] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On Multi-Access Edge Computing: A Survey of the Emerging 5G
Network Edge Cloud Architecture and Orchestration,” IEEE Commun.
Surv. Tutor., vol. 19, no. 3, pp. 1657–1681, 2017.

[78] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, May 2015.

[79] S. S. Haykin and K. Elektroingenieur, Neural networks and learning
machines. Pearson Prentice Hall, 2009.

[80] R. Collobert and S. Bengio, “Links between perceptrons, MLPs and
SVMs,” in Proc. the Twenty-first international conference on Machine
learning (ICML 2004), 2004, p. 23.

[81] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of
statistical natural language processing. MIT press, 1999.

[82] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks,” in 2014 European Conference on Computer Vision
(ECCV 2014), 2014, pp. 818–833.

[83] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative adver-
sarial nets,” in Advances in Neural Information Processing Systems 27
(NeurIPS 2014), 2014, pp. 2672–2680.

[84] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[85] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[86] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[87] S. S. Mousavi, M. Schukat, and E. Howley, “Deep Reinforcement
Learning: An Overview,” in Proc. the 2016 SAI Intelligent Systems
Conference (IntelliSys 2016), 2016, pp. 426–440.

[88] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, Feb. 2015.

[89] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in Proc. the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI 2016), 2016, pp. 2094–2100.

[90] Z. Wang, T. Schaul, M. Hessel et al., “Dueling network architectures
for deep reinforcement learning,” in Proc. the 33rd International
Conference on Machine Learning (ICML 2016), 2016, pp. 1995–2003.

[91] T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., “Continuous control with
deep reinforcement learning,” in Proc. the 6th International Conference
on Learning Representations (ICLR 2016), 2016.

[92] V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous Methods
for Deep Reinforcement Learning,” in Proc. the 33rd International
Conference on Machine Learning (ICML 2016), 2016, pp. 1928–1937.

[93] J. Schulman, F. Wolski, P. Dhariwal et al., “Proximal policy optimiza-
tion algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[94] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,”
in Proc. the 12th International Conference on Neural Information
Processing Systems (NeurIPS 1999), 1999, pp. 1057–1063.

[95] Monin and Yaglom, “Large Scale Distributed Deep Networks,” in
Proc. Advances in Neural Information Processing Systems 25 (NeurIPS
2012), 2012, pp. 1223–1231.

[96] Y. Zou, X. Jin, Y. Li et al., “Mariana: Tencent deep learning platform
and its applications,” in Proc. VLDB Endow., vol. 7, no. 13, 2014, pp.
1772–1777.

[97] X. Chen, A. Eversole, G. Li et al., “Pipelined Back-Propagation for
Context-Dependent Deep Neural Networks,” in 13th Annual Confer-
ence of the International Speech Communication Association (INTER-
SPEECH 2012), 2012, pp. 26–29.

[98] M. Stevenson, R. Winter et al., “1-Bit Stochastic Gradient Descent and
its Application to Data-Parallel Distributed Training of Speech DNNs,”
in 15th Annual Conference of the International Speech Communication
Association (INTERSPEECH 2014), 2014, pp. 1058–1062.

[99] A. Coates, B. Huval, T. Wang et al., “Deep learning with cots hpc
systems,” in Proc. the 30th International Conference on Machine
Learning (PMLR 2013), 2013, pp. 1337–1345.

[100] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “SparkNet: Training
Deep Networks in Spark,” arXiv preprint arXiv:1511.06051, 2015.

[101] “Theano is a Python library that allows you to define, optimize, and
evaluate mathematical expressions involving multi-dimensional arrays
efficiently.” [Online]. Available: https://github.com/Theano/Theano

[102] J. Ren, Y. Guo, D. Zhang et al., “Distributed and Efficient Object
Detection in Edge Computing: Challenges and Solutions,” IEEE Netw.,
vol. 32, no. 6, pp. 137–143, Nov. 2018.

[103] C. Liu, Y. Cao, Y. Luo et al., “A New Deep Learning-Based Food
Recognition System for Dietary Assessment on An Edge Computing
Service Infrastructure,” IEEE Trans. Serv. Comput., vol. 11, no. 2, pp.
249–261, Mar. 2018.

[104] D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah, “DeepCham:
Collaborative Edge-Mediated Adaptive Deep Learning for Mobile
Object Recognition,” in Proc. the First ACM/IEEE Symposium on Edge
Computing (SEC 2016), 2016, pp. 64–76.

[105] B. Fang, X. Zeng, and M. Zhang, “NestDNN: Resource-Aware Multi-
Tenant On-Device Deep Learning for Continuous Mobile Vision,” in
Proc. the 24th Annual International Conference on Mobile Computing
and Networking (MobiCom 2018), 2018, pp. 115–127.

[106] S. Yi, Z. Hao, Q. Zhang et al., “LAVEA: Latency-aware Video Ana-
lytics on Edge Computing Platform,” in Proc. the Second ACM/IEEE
Symposium on Edge Computing (SEC 2017), 2017, pp. 1–13.

[107] S. Y. Nikouei, Y. Chen, S. Song et al., “Smart surveillance as an edge
network service: From harr-cascade, svm to a lightweight cnn,” in IEEE
4th International Conference on Collaboration and Internet Computing
(CIC 2018), 2018, pp. 256–265.

[108] P. Liu, B. Qi, and S. Banerjee, “EdgeEye - An Edge Service Framework
for Real-time Intelligent Video Analytics,” in Proc. the 1st Interna-
tional Workshop on Edge Systems, Analytics and Networking (EdgeSys
2018), 2018, pp. 1–6.

[109] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “VideoEdge: Processing Camera Streams
using Hierarchical Clusters,” in Proc. 2018 IEEE/ACM Symposium on
Edge Computing (SEC 2018), 2018, pp. 115–131.

[110] Y. He, N. Zhao et al., “Integrated Networking, Caching, and Computing
for Connected Vehicles: A Deep Reinforcement Learning Approach,”
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55, Jan. 2018.

[111] Q. Qi and Z. Ma, “Vehicular Edge Computing via Deep Reinforcement
Learning,” arXiv preprint arXiv:1901.04290, 2018.

[112] L. T. Tan and R. Q. Hu, “Mobility-Aware Edge Caching and Computing
in Vehicle Networks: A Deep Reinforcement Learning,” IEEE Trans.
Veh. Technol., vol. 67, no. 11, pp. 10 190–10 203, Nov. 2018.

[113] L. Li, K. Ota, and M. Dong, “Deep Learning for Smart Industry:
Efficient Manufacture Inspection System with Fog Computing,” IEEE
Trans. Ind. Inf., vol. 14, no. 10, pp. 4665–4673, 2018.

[114] L. Hu, Y. Miao, G. Wu et al., “iRobot-Factory: An intelligent robot
factory based on cognitive manufacturing and edge computing,” Future
Gener. Comput. Syst., vol. 90, pp. 569–577, Jan. 2019.

[115] J. A. C. Soto, M. Jentsch et al., “CEML: Mixing and moving complex
event processing and machine learning to the edge of the network for
IoT applications,” in Proc. the 6th International Conference on the
Internet of Things (IoT 2016), 2016, pp. 103–110.

https://github.com/PaddlePaddle/paddle-mobile
https://github.com/XiaoMi/mace
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://github.com/Theano/Theano


TO BE APPEARED IN IEEE COMMUNICATIONS SURVEYS & TUTORIALS 32

[116] G. Plastiras, M. Terzi, C. Kyrkou, and T. Theocharidcs, “Edge In-
telligence: Challenges and Opportunities of Near-Sensor Machine
Learning Applications,” in Proc. IEEE 29th International Conference
on Application-specific Systems, Architectures and Processors (ASAP
2018), 2018, pp. 1–7.

[117] Y. Hao, Y. Miao, Y. Tian et al., “Smart-Edge-CoCaCo: AI-Enabled
Smart Edge with Joint Computation, Caching, and Communication in
Heterogeneous IoT,” arXiv preprint arXiv:1901.02126, 2019.

[118] S. Liu, P. Si, M. Xu et al., “Edge Big Data-Enabled Low-Cost Indoor
Localization Based on Bayesian Analysis of RSS,” in Proc. 2017 IEEE
Wireless Communications and Networking Conference (WCNC 2017),
2017, pp. 1–6.

[119] A. Dhakal et al., “Machine learning at the network edge for automated
home intrusion monitoring,” in Proc. IEEE 25th International Confer-
ence on Network Protocols (ICNP 2017), 2017, pp. 1–6.

[120] N. Tian, J. Chen, M. Ma et al., “A Fog Robotic System for Dynamic
Visual Servoing,” arXiv preprint arXiv:1809.06716, 2018.

[121] L. Lu, L. Xu, B. Xu et al., “Fog Computing Approach for Music
Cognition System Based on Machine Learning Algorithm,” IEEE
Trans. Comput. Social Syst., vol. 5, no. 4, pp. 1142–1151, Dec. 2018.

[122] B. Tang, Z. Chen, G. Hefferman et al., “Incorporating Intelligence in
Fog Computing for Big Data Analysis in Smart Cities,” IEEE Trans.
Ind. Inf., vol. 13, no. 5, pp. 2140–2150, Oct. 2017.

[123] Y.-C. Chang and Y.-H. Lai, “Campus Edge Computing Network Based
on IoT Street Lighting Nodes,” IEEE Syst. J. (Early Access), 2018.

[124] E. Denton et al., “Exploiting Linear Structure Within Convolutional
Networks for Efficient Evaluation,” in Advances in Neural Information
Processing Systems 27 (NeurIPS 2014), 2014, pp. 1269–1277.

[125] W. Chen, J. Wilson, S. Tyree et al., “Compressing Neural Networks
with the Hashing Trick,” in Proc. the 32nd International Conference
on International Conference on Machine Learning (ICML 2015), 2015,
pp. 2285–2294.

[126] C. Szegedy, Wei Liu, Yangqing Jia et al., “Going deeper with convo-
lutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2015), 2015, pp. 1–9.

[127] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2016), 2016, pp. 770–778.

[128] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey of Model
Compression and Acceleration for Deep Neural Networks,” arXiv
preprint arXiv:1710.09282, 2017.

[129] S. Han, J. Pool, J. Tran et al., “Learning both Weights and Connections
for Efficient Neural Networks,” in Advances in Neural Information
Processing Systems 28 (NeurIPS 2015), 2015, pp. 1135–1143.

[130] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2016), 2016, pp. 1–12.

[131] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
Deep Neural Networks with binary weights during propagations,”
in Advances in Neural Information Processing Systems 28 (NeurIPS
2015), 2015, pp. 3123–3131.

[132] M. Rastegari, V. Ordonez et al., “XNOR-Net: ImageNet Classification
Using Binary Convolutional Neural Networks,” in 2018 European
Conference on Computer Vision (ECCV 2016), 2016, pp. 525–542.

[133] B. Mcdanel, “Embedded Binarized Neural Networks,” in Proc. the
2017 International Conference on Embedded Wireless Systems and
Networks (EWSN 2017), 2017, pp. 168–173.

[134] F. N. Iandola, S. Han, M. W. Moskewicz et al., “Squeezenet: Alexnet-
level Accuracy with 50x Fewer Parameters and < 0.5 MB Model Size,”
arXiv preprint arXiv:1602.07360, 2016.

[135] A. G. Howard, M. Zhu, B. Chen et al., “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications,” arXiv
preprint arXiv:1704.04861, 2017.

[136] R. Sharma, S. Biookaghazadeh et al., “Are Existing Knowledge Trans-
fer Techniques Effective For Deep Learning on Edge Devices?” in
Proc. the 27th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC 2018), 2018, pp. 15–16.

[137] C. Zhang, Q. Cao, H. Jiang et al., “FFS-VA: A Fast Filtering System
for Large-scale Video Analytics,” in Proc. the 47th International
Conference on Parallel Processing (ICPP 2018), 2018, pp. 1–10.

[138] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc. the 2018
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM 2018), 2018, pp. 253–266.

[139] S. Y. Nikouei et al., “Real-time human detection as an edge service
enabled by a lightweight cnn,” in 2018 IEEE International Conference
on Edge Computing (IEEE EDGE 2018), 2018, pp. 125–129.

[140] L. Liu, H. Li, and M. Gruteser, “Edge Assisted Real-time Object
Detection for Mobile Augmented Reality,” in Proc. the 25th Annual
International Conference on Mobile Computing and Networking (Mo-
biCom 2019), 2019, pp. 1–16.

[141] Fox, “Homer simpson.” [Online]. Available: https://simpsons.fandom.
com/wiki/File:Homer Simpson.svg

[142] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2018), 2018, pp. 6848–6856.

[143] L. Du et al., “A Reconfigurable Streaming Deep Convolutional Neural
Network Accelerator for Internet of Things,” IEEE Trans. Circuits Syst.
I Regul. Pap., vol. 65, no. 1, pp. 198–208, Jan. 2018.

[144] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “NoScope:
Optimizing Neural Network Queries over Video at Scale,” Proceedings
of the VLDB Endowment, vol. 10, no. 11, pp. 1586–1597, Aug. 2017.

[145] S. Han, Y. Wang, H. Yang et al., “ESE: Efficient Speech Recognition
Engine with Sparse LSTM on FPGA,” in Proc. the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA
2017), 2017, pp. 75–84.

[146] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huff-
man Coding,” in Proc. the 6th International Conference on Learning
Representations (ICLR 2016), 2016.

[147] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep
learning layers for constrained resource inference on wearables,” in
Proc. the 14th ACM Conference on Embedded Network Sensor Systems
CD-ROM (SenSys 2016), 2016, pp. 176–189.

[148] B. Taylor, V. S. Marco, W. Wolff et al., “Adaptive deep learning
model selection on embedded systems,” in Proc. the 19th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES 2018), 2018, pp. 31–43.

[149] S. Liu, Y. Lin, Z. Zhou et al., “On-Demand Deep Model Compression
for Mobile Devices,” in Proc. the 16th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys 2018), 2018,
pp. 389–400.

[150] L. Lai and N. Suda, “Enabling deep learning at the IoT edge,” in
Proc. the International Conference on Computer-Aided Design (ICCAD
2018), 2018, pp. 1–6.

[151] S. Yao, Y. Zhao, A. Zhang et al., “DeepIoT: Compressing Deep Neural
Network Structures for Sensing Systems with a Compressor-Critic
Framework,” in Proc. the 15th ACM Conference on Embedded Network
Sensor Systems (SenSys 2017), 2017, pp. 1–14.

[152] S. Han, H. Shen, M. Philipose et al., “MCDNN: An Execution Frame-
work for Deep Neural Networks on Resource-Constrained Devices,”
in Proc. the 14th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys 2016), 2016, pp. 123–136.

[153] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA 2016), 2016, pp. 243–254.

[154] N. D. Lane, S. Bhattacharya, P. Georgiev et al., “DeepX: A Software
Accelerator for Low-Power Deep Learning Inference on Mobile De-
vices,” in 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN 2016), 2016, pp. 1–12.

[155] J. Zhang et al., “A Locally Distributed Mobile Computing Framework
for DNN based Android Applications,” in Proc. the Tenth Asia-Pacific
Symposium on Internetware (Internetware 2018), 2018, pp. 1–6.

[156] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
Adaptive Deep Learning Inference on Resource-Constrained IoT Edge
Clusters,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 37, no. 11, pp. 2348–2359, Nov. 2018.

[157] Z. Zhao, Z. Jiang, N. Ling et al., “ECRT: An Edge Computing System
for Real-Time Image-based Object Tracking,” in Proc. the 16th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2018),
2018, pp. 394–395.

[158] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning
for the Internet of Things with Edge Computing,” IEEE Netw., vol. 32,
no. 1, pp. 96–101, Jan. 2018.

[159] S. S. Ogden and T. Guo, “MODI: Mobile Deep Inference Made
Efficient by Edge Computing,” in {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 2018), 2018.

[160] S. Teerapittayanon et al., “BranchyNet: Fast inference via early exiting
from deep neural networks,” in Proc. the 23rd International Conference
on Pattern Recognition (ICPR 2016), 2016, pp. 2464–2469.

[161] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed Deep
Neural Networks over the Cloud, the Edge and End Devices,” in

https://simpsons.fandom.com/wiki/File:Homer_Simpson.svg
https://simpsons.fandom.com/wiki/File:Homer_Simpson.svg


TO BE APPEARED IN IEEE COMMUNICATIONS SURVEYS & TUTORIALS 33

IEEE 37th International Conference on Distributed Computing Systems
(ICDCS 2017), 2017, pp. 328–339.

[162] E. Li, Z. Zhou, and X. Chen, “Edge Intelligence: On-Demand Deep
Learning Model Co-Inference with Device-Edge Synergy,” in Proc. the
2018 Workshop on Mobile Edge Communications (MECOMM 2018),
2018, pp. 31–36.

[163] U. Drolia, K. Guo, J. Tan et al., “Cachier: Edge-Caching for Recog-
nition Applications,” in IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS 2017), 2017, pp. 276–286.

[164] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-
based Deep Learning Framework for Continuous Vision Applications,”
in Proc. the 15th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys 2017), 2017, pp. 82–95.

[165] M. Xu, M. Zhu et al., “DeepCache: Principled Cache for Mobile Deep
Vision,” in Proc. the 24th Annual International Conference on Mobile
Computing and Networking (MobiCom 2018), 2018, pp. 129–144.

[166] P. Guo, B. Hu et al., “FoggyCache: Cross-Device Approximate Com-
putation Reuse,” in Proc. the 24th Annual International Conference on
Mobile Computing and Networking (MobiCom 2018), 2018, pp. 19–34.

[167] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger, “Main-
stream: Dynamic Stem-sharing for Multi-tenant Video Processing,”
in Proc. the 2018 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC 2018), 2018, pp. 29–41.

[168] Y. Chen, S. Biookaghazadeh, and M. Zhao, “Exploring the Capabilities
of Mobile Devices Supporting Deep Learning,” in Proc. the 27th In-
ternational Symposium on High-Performance Parallel and Distributed
Computing (HPDC 2018), 2018, pp. 17–18.

[169] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[170] R. Venkatesan and B. Li, “Diving deeper into mentee networks,” arXiv
preprint arXiv:1604.08220, 2016.

[171] S. Biookaghazadeh, F. Ren, and M. Zhao, “Are FPGAs Suitable for
Edge Computing?” arXiv preprint arXiv:1804.06404, 2018.

[172] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A
Mobile Deep Learning Framework for Edge Video Analytics,” in 2018
IEEE Conference on Computer Communications (INFOCOM 2018),
2018, pp. 1421–1429.

[173] W. Zhang, Z. Zhang, S. Zeadally et al., “MASM: A Multiple-algorithm
Service Model for Energy-delay Optimization in Edge Artificial Intel-
ligence,” IEEE Trans. Ind. Inf. (Early Access), 2019.

[174] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, “DeepWear:
Adaptive Local Offloading for On-Wearable Deep Learning,” IEEE
Trans. Mob. Comput. (Early Access), 2019.

[175] H.-j. Jeong, H.-j. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incremen-
tal Offloading of Neural Network Computations from Mobile Devices
to Edge Servers,” in Proc. the ACM Symposium on Cloud Computing
(SoCC 2018), 2018, pp. 401–411.

[176] Y. Huang, X. Ma, X. Fan et al., “When deep learning meets edge com-
puting,” in IEEE 25th International Conference on Network Protocols
(ICNP 2017), 2017, pp. 1–2.

[177] J. Mao, X. Chen, K. W. Nixon et al., “MoDNN: Local distributed
mobile computing system for Deep Neural Network,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE 2017),
2017, pp. 1396–1401.

[178] E. Cuervo, A. Balasubramanian, D.-k. Cho et al., “MAUI: Making
Smartphones Last Longer with Code Offload,” in Proc. the 8th in-
ternational conference on Mobile systems, applications, and services
(MobiSys 2010), 2010, pp. 49–62.

[179] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi,
“Scaling for edge inference of deep neural networks,” Nature Electron-
ics, vol. 1, no. 4, pp. 216–222, Apr. 2018.

[180] M. Polese, R. Jana, V. Kounev et al., “Machine Learning at the Edge: A
Data-Driven Architecture with Applications to 5G Cellular Networks,”
arXiv preprint arXiv:1808.07647, 2018.

[181] L. Lai et al., “Rethinking Machine Learning Development and Deploy-
ment for Edge Devices,” arXiv preprint arXiv:1806.07846, 2018.

[182] P. Meloni, O. Ripolles, D. Solans et al., “ALOHA: an architectural-
aware framework for deep learning at the edge,” in Proc. the Workshop
on INTelligent Embedded Systems Architectures and Applications (IN-
TESA 2018), 2018, pp. 19–26.

[183] X. Zhang, Y. Wang, S. Lu, L. Liu, L. Xu, and W. Shi,
“OpenEI: An Open Framework for Edge Intelligence,” arXiv preprint
arXiv:1906.01864, 2019.

[184] J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, and L. Wang, “Data
Analytics Service Composition and Deployment on IoT Devices,” in

Proc. the 16th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys 2018), 2018, pp. 502–504.

[185] N. Talagala, S. Sundararaman, V. Sridhar, D. Arteaga, Q. Luo, S. Subra-
manian, S. Ghanta, L. Khermosh, and D. Roselli, “ECO: Harmonizing
edge and cloud with ml/dl orchestration,” in USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 2018).

[186] X. Zhang, Y. Wang, and W. Shi, “pCAMP: Performance Comparison
of Machine Learning Packages on the Edges,” in {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 2018), 2018.

[187] C. Andrés Ramiro, C. Fiandrino, A. Blanco Pizarro et al., “openLEON:
An End-to-End Emulator from the Edge Data Center to the Mobile
Users Carlos,” in Proc. the 12th International Workshop on Wireless
Network Testbeds, Experimental Evaluation & Characterization (WiN-
TECH 2018), 2018, pp. 19–27.

[188] Y. Wang, S. Liu, X. Wu, and W. Shi, “CAVBench: A Benchmark
Suite for Connected and Autonomous Vehicles,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC 2018), 2018, pp. 30–42.

[189] G. Kamath, P. Agnihotri, M. Valero et al., “Pushing Analytics to the
Edge,” in 2016 IEEE Global Communications Conference (GLOBE-
COM 2016), 2016, pp. 1–6.

[190] L. Valerio, A. Passarella, and M. Conti, “A communication efficient
distributed learning framework for smart environments,” Pervasive
Mob. Comput., vol. 41, pp. 46–68, Oct. 2017.

[191] Y. Lin, S. Han, H. Mao et al., “Deep Gradient Compression: Reduc-
ing the Communication Bandwidth for Distributed Training,” eprint
arXiv:1712.01887, 2017.

[192] Z. Tao and C. William, “eSGD : Communication Efficient Distributed
Deep Learning on the Edge,” in {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 2018), 2018, pp. 1–6.

[193] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in 16th Annual Conference of the International
Speech Communication Association (INTERSPEECH 2015), 2015, pp.
1488–1492.

[194] E. Jeong, S. Oh, H. Kim et al., “Communication-Efficient On-Device
Machine Learning: Federated Distillation and Augmentation under
Non-IID Private Data,” arXiv preprint arXiv:1811.11479, 2018.

[195] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks That
Exploit Confidence Information and Basic Countermeasures,” in Proc.
the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS 2015), 2015, pp. 1322–1333.

[196] M. Du, K. Wang, Z. Xia, and Y. Zhang, “Differential Privacy Preserving
of Training Model in Wireless Big Data with Edge Computing,” IEEE
Trans. Big Data (Early Access), 2018.

[197] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography.
Springer Berlin Heidelberg, 2006, pp. 265–284.

[198] H. B. McMahan, E. Moore, D. Ramage et al., “Communication-
efficient learning of deep networks from decentralized data,” in Proc.
the 20th International Conference on Artificial Intelligence and Statis-
tics (AISTATS 2017), 2017, pp. 1273–1282.

[199] K. Bonawitz, H. Eichner et al., “Towards Federated Learning at Scale:
System Design,” arXiv preprint arXiv:1902.01046, 2019.

[200] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed
federated learning for ultra-reliable low-latency vehicular communica-
tions,” IEEE Trans. Commun. (Early Access), 2019.

[201] C. Xie, S. Koyejo, and I. Gupta, “Practical Distributed Learning: Se-
cure Machine Learning with Communication-Efficient Local Updates,”
arXiv preprint arXiv:1903.06996, 2019.

[202] M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin, “Hierarchical
Federated Learning Across Heterogeneous Cellular Networks,” arXiv
preprint arXiv: 1909.02362, 2019.
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