
sensetecnic.com

Rodger Lea

25-32 minutes

We recently presented a paper at the 2016 ACM middleware

conference describing some of the internal details of FRED, as

well as some info on how our customers are using FRED (and

Node-RED) for their projects and products.

The slide deck we used for the presentation can be seen here

A preprint version of the paper is available here: MOTA-

Middleware2016-preprintV2

Please cite this paper using:

Michael Blackstock and Rodger Lea. 2016. FRED: A Hosted

Data Flow Platform for the IoT. In Proceedings of the 1st

International Workshop on Mashups of Things and APIs (MOTA

’16). ACM, New York, NY, USA, Article 2, 5 pages. DOI:

https://doi.org/10.1145/3007203.3007214

ABSTRACT

IoT developers need to integrate a variety of protocols, backend

components and services; they often need to pre and post-

process data as well as react to changes in the real world. Data

flow programming tools have been introduced in a number of

related domains to provide a flexible, but easy to use visual

programming environment for rapid development. The open

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

1 of 20 8/25/2020, 11:24 AM

source Node-RED system provides such a tool for IoT

applications, but is limited to executing a single flow file in a

single thread. In this paper we describe the design of our system

called the Front-End for Node-RED (FRED) that manages

multiple instances of Node-RED for logged in users, allowing

Node-RED to be used as a cloud-hosted data flow mashup tool

for the IoT. We present some examples of how some of our

1800+ users are using FRED for IoT mashups, and some of the

challenged we faced in implementing the FRED system.

CCS Concepts

Information systems ➝ World Wide Web ➝ Web Interfaces

➝ Mashups • Software and its engineering ➝ Software

notations and tools ➝ General programming languages ➝
Language types ➝ Data flow languages.

This is a pre-print version of a paper presented at the 1st

Workshop on the Mashup of things and APIs (MOTA) part of the

2016 ACM Middleware workshop in Trento, Italy.

 The final version is available in the ACM digital library.

http://dl.acm.org/citation.cfm?id=3007214

Keywords

Internet of Things; IoT Mashups; Node-RED; Data Flow

Programming

Building IoT applications can be a complex task. It requires the

integration of a variety of protocols and services, as well as a

secure and flexible backend to manage and gather volumes of

time series data streams from ’things’ and services. Developers

need a means to pre and post-process data and mechanisms to

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

2 of 20 8/25/2020, 11:24 AM

alert and react to changes in both the physical and online world.

While it is possible to create real time interactive IoT mashups

using traditional programming tools, it can be difficult, requiring

developers to learn new protocols and APIs, create data

processing components, and link them together. To provide

more flexibility while maintaining ease of use, several systems

provide a data-flow programming paradigm [12] where computer

programs are modeled as directed graphs connecting networks

of ‘black box’ nodes that exchange data along connected arcs.

Visual data flow programming languages have been used in

many other domains such as high performance parallel

computing [1] leveraging multi-core processors, music [17], toys,

science and engineering [20].

In 2010 our group created the WoTKit, an IoT platform which

included a cloud-hosted visual dataflow programming system

called the Processor for creating IoT mashups [2]. Using the

tool, developers created pipes made-up of input, data

processing and output modules acting on data received in real

time as sensors and other data sources pushed data into the

WoTKit platform. In 2014, our group began using the Node-RED

open source project developed by IBM. The initial focus for

Node-RED was edge devices, offering a visual data flow tool to

address the issues around device-level integration by providing

a variety of pre-built components for integration and data

processing, using a visual data flow paradigm similar to that

used by the cloud-hosted Processor and other visual data flow

programming languages.

What is most impressive about Node-RED is the large and

growing community of developers and variety of nodes they

contribute for others to use in their IoT projects. They range from

nodes for making it easy to connect to the GPIO pins on a

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

3 of 20 8/25/2020, 11:24 AM

Raspberry Pi to connecting to on-line notification, instant

messaging systems and social networks. We decided to refocus

our efforts on the Processor to leverage the large community

and growing ecosystem of nodes available to Node-RED. By

doing so, we believed this would have the added benefit of

sharing the same data-flow programming model on both devices

and the cloud. To get started we embarked on a comparison and

evaluation of the Processor and Node-RED systems [3, 9]. This

effort was followed by the design and implementation of the

system we call FRED: a Front-end for Node-RED. FRED

provides a multi-tenant cloud hosted Node-RED system for rapid

cloud-hosted IoT integration and application development.

While it is possible to host Node-RED on cloud infrastructures

such as Amazon Web Services or platforms such as the Cloud

Foundry-based BlueMix [6, 10], with FRED, we aim to make it as

fast and easy to get started with Node-RED as possible. Today,

FRED requires no subscriptions, set up, installation or

configuration for users to begin creating cloud-hosted mashups

using Node-RED. They simply register on the system and hit

‘Start Instance’. This makes it faster and easier for users to try

out Node-RED for rapid IoT and service mashups.

In the remainder of this paper we provide a short overview of

Node-RED, then describe the requirements and design of

FRED. This is followed by some examples of FRED-hosted

flows, a discussion of our experience to date with our FRED

deployment, and some hints at future work. By participating in

the workshop we would like to demonstrate FRED as a tool for

rapid prototyping of applications, get feedback on our system to

date

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

4 of 20 8/25/2020, 11:24 AM

Figure 1. FRED High Level Architecture

and discuss open research issues around cloud-hosted Node-

RED and similar tools.

Node-RED is a web-based tool for ‘wiring up’ hardware devices

with various protocols and APIs. It provides both a browser-

based visual editor and a run time implemented in JavaScript

using the Node.js framework. By doing so, it takes advantage of

the Node.js built in asynchronous event-driven runtime and

native support for JavaScript on both the browser and on the

server.

Programs written using Node-RED are called flows. They

consist of a set of nodes connected by wires (see Figure 4). Like

other visual data flow systems, the user interface consists of a

visual flow editor where node templates, representing different

input, output and data processing nodes, can be dropped into

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

5 of 20 8/25/2020, 11:24 AM

the canvas and wired together.

To execute a flow, the flow file is read, and nodes are

instantiated that correspond to the node type in the flow file.

Nodes and node sets are usually packaged and installed as

node.js modules. The nodes in a set inherit from a Node base

class, a subclass of an EventEmitter in the Node.js event API.

The Node object implements the observer design pattern to

maintain subscriber lists defined by wires, and emits events to

nodes downstream in a flow.

On instantiation, input nodes may subscribe to external services,

begin listening for data on a port, get data from a local sensor or

file, or begin processing HTTP requests for example. Once data

is processed by a node, either from an external service, or

received from an upstream node via its “input” handler, a node

calls the base class Node send() method with a JavaScript

object to send named events or messages to the single

threaded Node.js event loop for execution. The event loop

processes these messages using the downstream Node

instances that can process data, generate additional events, or

communicate with outside services, local hardware or the OS.

It is possible to store global, per tab and per-node state using

Node-RED in what are called context variables. These variables

persist between executions of the flow. Because Node-RED

uses the single-threaded Node.js runtime it cannot easily take

advantage of multiple cores on a server.

The Front-End for Node-RED is a service that hosts multiple

Node-RED processes, currently one instance for each registered

user. The FRED system is essentially a ‘smart’ proxy that

creates and manages Node-RED processes, and ‘proxies’

communications between connected clients, devices, and

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

6 of 20 8/25/2020, 11:24 AM

services. Like Node-RED itself, it is implemented using Node.js.

The FRED service can be used to connect devices to cloud

services, coordinate communication between devices, integrate

services with each other or for creating new web APIs and

applications. To do this, it supports the ability to run flows for

multiple users; all flows should get fair access to CPU, memory

and storage resources. It provides secure access to flow editors

and the flow run-time. The system scales with the number of

users and their hosted flows.

In the design of the FRED system we aimed to take advantage

of the open source community’s work on both the Node-RED

platform and nodes as they evolve. To do this, we aimed to

minimize the changes to both while addressing other

constraints. While Node-RED is delivered as a web service, it

has a number of limitations. In particular, it was designed for

hosting one ‘flow’[1] on one device/host; at a minimum we

needed to find a way to deploy Node-RED in the cloud for many

users and their flows efficiently and cost-effectively. We need to

have a way to monitor Node-RED instances and restart them

automatically in case it crashes or exhibits node configuration

problems.

The FRED system consists of three sub-systems as shown in

Figure 1. FRED-IS (Instance Server) which manages individual

instances, the FRED Proxy which provides a management front

end for users and authorized administrators and the FRED

billing service.

The FRED Proxy is used to create, start and stop a Node-RED

process, delegating the work of managing these processes to

FRED-IS (described next). As its name implies, FRED Proxy

includes a proxy component that redirects communication from

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

7 of 20 8/25/2020, 11:24 AM

each user’s browser to their node-red process, devices and

services that are communicating with a Node-RED flow using

HTTP or web sockets. Depending on the type of client (browser,

device or service) this is done using a browser cookie, API key

for devices to access the system, or URL-based mapping for

public access to nodes. The FRED Proxy provides the

administrative UI described earlier for managing users and

Node-RED processes.

Instance Servers host FRED-IS services. These FRED-IS micro

services manage the node-red processes running on the host.

To provide isolation from the OS and limit the memory and CPU,

FRED-IS leverages the Docker container system [7], using the

Docker API to manage processes on the host.

Finally, the FRED billing service provides authentication and

plan subscription services. Once registered and logged in, the

Billing System creates a JSON Web Token that is checked by

FRED to ensure they are authorized to use the system.

To provide redundancy and scalability the FRED Proxy and

Billing System are replicated behind load balancers. Additional

Instance Servers are added to a cluster to support additional

instances as demand for the number of concurrently running

Node-RED processes increases.

The FRED UI extends the Node-RED UI by adding a

management panel to the left of the standard Node-RED editor

interface called the Dashboard as shown in Figure 2. This panel

provides controls for the user to start and stop the Node-RED

process, and view the standard output and error streams

generated by node red, provides access to their user profile and

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

8 of 20 8/25/2020, 11:24 AM

subscription related information. Access to standard output and

error streams is needed since some information needed by

developers such as status output from the Node-RED execution

engine and node themselves is only shown there.

Administrators can manage user profile information as well as

log into the system as a given user to provide support and alter

a user’s flows on their behalf.

Using the instance panel, an administrator can start and stop

instances, and configure limits: the limitations on an instance

such as maximum memory used, node count and time to run

that are mapped to subscription plans. For example, with a free

subscription, instances run for only 72 hours between log-ins,

and are limited to 50 node whereas paid subscriptions run

longer, and have higher node limits.

Currently FRED is deployed on Amazon AWS and is available

for free public access[2]. There are approximately 1900

registered users of the system to date with users ranging from

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

9 of 20 8/25/2020, 11:24 AM

those just learning Node-RED to home automation hobbyists

through to companies using FRED for industrial IoT applications

such as factory automation, precision agriculture, environmental

monitoring and process control. Cutting across those use

domains are a set of different use patterns, ranging from classic

IoT device/sensor monitoring and alerting, through to simple

web services and bots up-to back-end integration of enterprise

software services.

In support of this diverse set of use patterns, FRED includes a

variety of additional nodes for connectivity to external services

such as databases, social networks, messaging, notification

services and hosted enterprise services.

To illustrate the diversity of use cases for a cloud-hosted Node-

RED system like FRED, we present two example flows. Many

FRED users connect devices to FRED through gateways that

use a protocol suitable for wide area networks such as HTTP,

web sockets or MQTT. To illustrate, we’ll connect a TI Sensor

tag to the cloud. This device is a sensor hardware package that

collects data from a number of onboard sensors including

accelerometer, buttons humidity and temperature, and sends

them to a mobile phone application via Bluetooth Low Energy

protocol [4]. We configured the TI Sensor tag application to send

data to a public MQTT server at test.mosquitto.org.

Figure 3.

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

10 of 20 8/25/2020, 11:24 AM

With this device and gateway configuration, it is straightforward

to create a flow to retrieve this data and use it for data

processing in the cloud. For example, in Figure 3 we have a

simple flow that will send an ‘alarm’ message when the Y

accelerometer data from the sensor meets a condition. An

MQTT input node receives data from the device connected to a

smart phone. The function node called “format” to makes

changes to the JSON message fields and types received from

the SensorTag. The switch node passes messages only when

the acc_y payload value exceeds 0.015. Finally, a delay node

ensures no more than one message per minute is sent to a

FRED output node, used to signal an alarm sound on a

Raspberry Pi connected to a wifi router.

FRED is used by some users to develop and host RESTful APIs

and even simple web sites. The flow shown in Figure 4.b

implements a simple real time chat application shown in Figure

4.a using public HTTP and web sockets endpoints.

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

11 of 20 8/25/2020, 11:24 AM

Figure 4 (a) Real time chat application user interface. (b) Simple

flow that implements real time chat with sentiment analysis.

The endpoint /public/chat is a public HTTP node that serves a

web page containing the chat UI using a template node. This

application communicates with the system through the /public

/receive and /public/publish web sockets nodes to send and

receive data to other users. When data is received it is

run through the same sentiment node so that the application can

colour the message green (positive), blue (neutral or unknown)

or red (negative) in the chat window.

To understand what users are doing with FRED, we surveyed

522 FRED users when they registered themselves with the

system asking How would you describe your use of FRED, and

What Industry or area of interest are you using FRED for (check

all that apply). The responses are summarized in Tables 1 and

2.

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

12 of 20 8/25/2020, 11:24 AM

Table 1. How would you describe your use of FRED

Question Number Percent

To learn about Node-RED 328 62.8%

For personal projects 129 24.7%

For work – but just playing around 25 4.8%

For a company project 12 2.3%

For my own business (consultant,

contractor)

8 1.5%

Other 20 3.8%

Based on this survey, today FRED is being used mostly as a tool

to learn about Node-RED, and for personal projects. The use

cases align with this, with most people using FRED for home

automation and monitoring. It is interesting to note that some

users see FRED as a useful tool for creating web services APIs.

Table 2. What industry or area of interest are you using FRED

for?

Question Number

Home Automation 294

Remote Monitoring and Notifications 231

Web services and APIs 176

Backend integration 95

Process control/factory automation 94

As part of a hardware dev kit 90

Bots/Chat applications 61

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

13 of 20 8/25/2020, 11:24 AM

Other 101

FRED in its current implementation has a few limitations mostly

related to the decision to use Node-RED in its current form,

which leverages the Node.js runtime. Other limitations are

related to hosting node-red as a service, and how FRED proxies

interaction to node-red instances by transforming URLs.

Today, users can create their own function nodes and sub flows,

but FRED currently does not allow users to install their own

nodes. This is because many nodes make assumptions about

the Node-RED host including access to the underlying OS.

Since nodes have access to the host and the node-red runtime,

it is easy for a user to get into a situation where their instance

will not start. Until we have implemented easy ways for users to

fix these issues, we only allow users to use certain pre-tested

nodes on FRED.

The Node.js runtime has a fairly large memory footprint. When

we run several instances of Node-RED we duplicate all of the

Node.js libraries in RAM; there is no easy way to share this

code. This is exacerbated when many users install the same

nodes; each of these uses more RAM on a cloud instance,

which is duplicated for every user that makes use of them. There

is not a clear way to address this issue without changes to the

Node.js and Node-RED run time. To keep RAM use to a

minimum, we recently added a feature to allow users to manage

the nodes installed in their instance. This conserves RAM since

many users will only use a small subset of available nodes.

Users select from a list of pre-qualified nodes, and restart their

Node-RED instance for the changes to take effect.

Several node-red nodes assume that the user has access to the

host and the underlying file system. Since we are providing

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

14 of 20 8/25/2020, 11:24 AM

node-red as a service, and not complete access to the process

and host, this means that a number of nodes such as the file I/O

nodes and Sqlite nodes that require local file access cannot be

included without changes. The freeboard dashboard node saves

dashboard information to the local file system. If the user does

not remember to bookmark their saved dashboard, there is no

easy way for them to retrieve them. To address this we aim to

provide a file browser/editor for users to access their file storage

directory and limit the file size of files used by certain nodes

such as sqlite.

As a mashup tool, FRED has been found useful as a quick and

easy way to try out Node-RED without the need to install node.js

and Node-RED on their laptops or devices. It has been used in

several IoT hackathons and as a teaching tool aimed at students

and non-technical users. One non-profit organization[3] is using

FRED to teach kids how to use LoRaWan sensor networks to

collect, process and visualize environmental sensor data. Many

active users are running simple flows to monitor and manage

their homes.

Non-technical users of FRED can produce flows that are not

efficient, or not well organized. In some cases, these flows may

use more network or CPU resources than is necessary. One

user created many MQTT server configurations to the same

MQTT broker to avoid connectivity problems. Others have

accidentally introduced infinite loops or allocate many objects in

a function node, causing their Node-RED instance to deadlock

or run out of RAM. When these issues occur, we have needed to

provide direct support to improve or fix flows. While FRED and

Node-RED provides a lot of flexibility, for non-developers, it is

also possible to get into trouble.

There are several IoT platforms that include a visual flow-based

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

15 of 20 8/25/2020, 11:24 AM

editor similar to the Node-RED system hosted by FRED. Zhang

et al. [21] use an HTML-based visual sensor logic design to

create ‘virtual sensors’ that are based on data from physical

sensors that are part of a standards-based sensor network. On a

smaller scale, L Mainetti et al. built a mash up platform based on

the ClickScript visual programming language [5] that connects

devices on constrained networks using the COAP protocol [15].

Meyer et al. integrated their semantic smart environments

system with ClickScript to allow end users to graphically model

their smart environments [18].

If This Then That (IFTTT) [11] allows users to create condition-

action triggers to connect cloud services, including IoT backend

services to each other. An IFTTT recipe can be configured to

turn on the lights in your home when the alarm system detects

an intruder. Unlike Node-RED’s data flow run time, the IFTTT

system exposes a pre-configured set of events and actions that

are possible with a given pair of service connectors.

Like Node-RED, NoFlo [19] is a flow based programming

environment for Javascript. It was not targeted to IoT

applications, and instead to ease the development of web

applications. Like Node-RED, NoFlo provides a visual editor for

a data flow runtime leveraging Node.js. Unlike FRED, NoFlo is

not a cloud service; developers install and deploy NoFlo

themselves, on it’s own, or embedded in an application.

GlueThings Composer is a fork of Node-RED designed to

connect to other components of the GlueThings platform: the

Device Manager, and Deployment Manager [13].

To date FRED has proven to be a useful tool for users learning

about Node-RED and rapidly prototyping cloud-hosted

applications. To make the tool more useful we intend to take

advantage of enhancements to Node-RED itself, and adding

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

16 of 20 8/25/2020, 11:24 AM

features to FRED. This includes adding support for version

control of flows, adding support for developer collaboration and

allow users to edit their flows and other files using a text editor.

We will allow users to manage more than one instance of Node-

RED and share instances with other FRED users.

For non-developers we are considering a ‘simple mode’ that

reduces some of the flexibility offered by Node-RED in favour of

addressing certain common mash up use cases such as home

monitoring quickly and easily. This may include removing some

core node such as the function node, and providing different

sets of example flows on startup.

Longer term, we will explore the use of Docker Swarm [8],

Kubernetes [14], Marathon [16], and Cloud Foundry, to simplify

the multi-host architecture and make it easy for users to

transition from a prototype container to production deployments

of Node-RED. We anticipate creating nodes that represent data

processing services that do not run within the Node-RED

runtime. Finally, we aim to make it easier to manage and

distribute flows hosted both in the FRED cloud service and on

devices [3].

Our thanks to Nick O’Leary and Dave Conway-Jones at IBM and

others in the Node-RED community for the Node-RED system,

nodes and feedback in the development of FRED, and to Ted

Huang at Sense Tecnic who helped design and implement

FRED.

[1] Ackerman, W.B. 1982. Data Flow Languages.

Computer. 15, 2 (Feb. 1982), 15–25.

[2] Blackstock, M. and Lea, R. 2012. IoT mashups with

the WoTKit. Internet of Things (IOT), 2012 3rd International

Conference on the (Wuxi, China, Oct. 2012), 159–166.

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

17 of 20 8/25/2020, 11:24 AM

[3] Blackstock, M. and Lea, R. 2014. Toward a

Distributed Data Flow Platform for the Web of Things

(Distributed Node-RED). Proceedings of the 5th International

Workshop on Web of Things (New York, NY, USA, 2014), 34–39.

[4] Bluetooth Low Energy | Bluetooth Technology

Website: https://www.bluetooth.com/what-is-bluetooth-

technology/bluetooth-technology-basics/low-energy. Accessed:

2016-08-26.

[5] ClickScript-Server: http://clickscript.ch/site/home.php.

Accessed: 2016-08-22.

[6] Cloud Foundry | The Industry Standard for Cloud

Applications: https://www.cloudfoundry.org/. Accessed:

2016-10-12.

[7] Docker: https://www.docker.com/. Accessed:

2016-08-26.

[8] Docker Swarm: 2016. https://docs.docker.com

/swarm/. Accessed: 2016-10-12.

[9] Giang, N.K. et al. 2015. Developing IoT applications

in the Fog: A Distributed Dataflow approach. Internet of Things

(IOT), 2015 5th International Conference on the (Oct. 2015),

155–162.

[10] IBM Bluemix – Next-Generation Cloud App

Development Platform: https://console.ng.bluemix.net/.

Accessed: 2016-10-12.

[11] IFTTT / Put the internet to work for you.:

https://ifttt.com/. Accessed: 2016-08-22.

[12] Johnston, W.M. et al. 2004. Advances in Dataflow

Programming Languages. ACM Comput. Surv. 36, 1 (Mar.

2004), 1–34.

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

18 of 20 8/25/2020, 11:24 AM

[13] Kleinfeld, R. et al. 2014. Glue.Things: A Mashup

Platform for Wiring the Internet of Things with the Internet of

Services. Proceedings of the 5th International Workshop on

Web of Things (New York, NY, USA, 2014), 16–21.

[14] Kubernetes – Production-Grade Container

Orchestration: http://kubernetes.io/. Accessed: 2016-10-12.

[15] Mainetti, L. et al. 2013. A novel architecture enabling

the visual implementation of web of Things applications. 2013

21st International Conference on Software, Telecommunications

and Computer Networks (SoftCOM) (Sep. 2013), 1–7.

[16] Marathon: A container orchestration platform for

Mesos and DCOS: https://mesosphere.github.io/marathon/.

Accessed: 2016-10-12.

[17] MAX is a visual programming language for media:

http://cycling74.com/products/max/. Accessed: 2016-08-22.

[18] Mayer, S. et al. 2014. Configuration of smart

environments made simple: Combining visual modeling with

semantic metadata and reasoning. Internet of Things (IOT),

2014 International Conference on the (Oct. 2014), 61–66.

[19] NoFlo: Flow-Based Programming for JavaScript:

http://noflojs.org/. Accessed: 2016-08-22.

[20] What is LabVIEW: 2013. http://www.ni.com/newsletter

/51141/en/. Accessed: 2016-08-22.

[21] Zhang, J. et al. 2013. Supporting Personizable Virtual

Internet of Things. Ubiquitous Intelligence and Computing, 2013

IEEE 10th International Conference on Autonomic and Trusted

Computing (UIC/ATC) (Dec. 2013), 329–336.

[1] While Node-RED displays multiple data flow segments in

different tabs, they are effectively one single flow executed in

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

19 of 20 8/25/2020, 11:24 AM

one thread by the Node-RED execution engine.

[2] FRED service is at https://fred.sensetecnic.com

[3] https://herelab.io/stem-camps/ HereLab STEM Camps.

How FRED (Cloud Node-RED) works about:reader?url=http://sensetecnic.com/how-fred-cloud-node-red-works/

20 of 20 8/25/2020, 11:24 AM

