

Departamento de Engenharia Elétrica e de Computação - EESC-USP

SEL-0415 Introdução à Organização de Computadores

Aula 2 : Decodificadores

Profa. Luiza Maria Romeiro Codá

INTRODUÇÃO (Resumo):

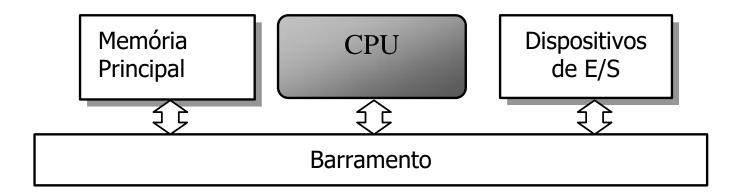
Estudo ou análise de um Computador:

 ORGANIZAÇÃO: (implementação): hardware, relacionada aos componentes físicos

Exs: tecnologia utilizada na memória, freqüência do relógio, monitor, teclado, mouse.

 ARQUITETURA: características de interesse do programador, software (programa do computador)

Exs: Conjunto de instruções, tamanho da palavra, modo de endereçamento das instruções


1ª Parte curso: Organização do Computador

- Estudo de como os componentes, memórias e dispositivos de entrada e saída, são ligados ao microprocessador;
- Implementação do hardware externo ao microprocessador;
- Tecnologia utilizadas nos diversos dispositivos e memórias utilizados.

MODELO DE VON NEUMANN

A arquitetura básica de um computador consiste de 4 partes principais:

- CPU (ULA + Controle + Registradores)
- Memória principal
- dispositivo de entrada/saída
- dispositivo de conexão (barramento de dados)

Os Princípiois de Von Neumann (Revisão aula 1)

O Conceito Von Neumann:

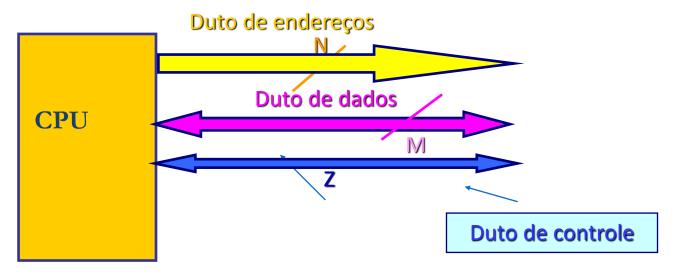
- computador visto como uma Máquina de programa armazenado
- seqüencialmente executado
- CPU comunica-se com apenas um dispositivo de cada vez

Implementação do Modelo de Von Neumann

✓ Apenas 1 duto (barramento) faz a comunicação entre CPU e memórias ou dispositivos de I/O

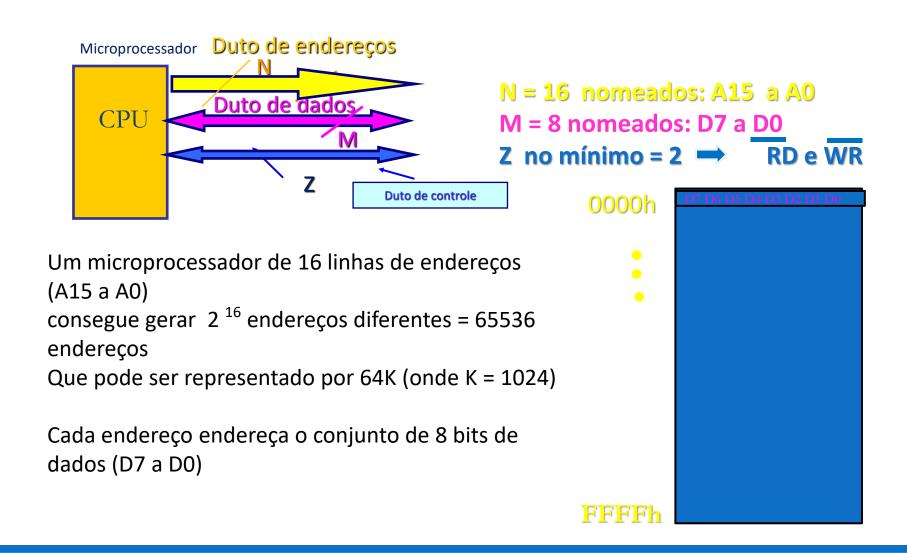
✓ Esse duto consiste em :

um conjunto de linhas de endereços (geradas pela CPU)
um conjunto Linhas de dados (enviadas ou recebidas pela CPU)
um conjunto de linhas de controle (geralmente gerados pela CPU)

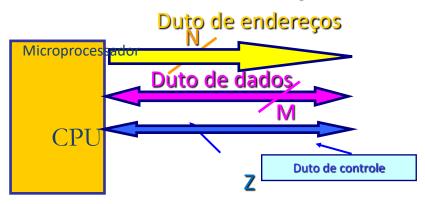

 ✓ A CPU (ou microprocessador) deve selecionar apenas 1 dispositivo (memórias ou I/O) de cada vez para se comunicar

Portanto, necessário que o circuito de hardware implementado para o Sistema microprocessado possibilite que a CPU selecione apenas 1 dispositivo por vez.

Para tal utiliza-se DECODIFICADORES


Representação da CPU e barrramentos

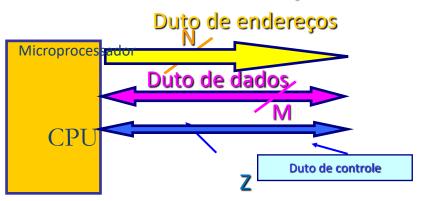
Microprocessador



Onde N, M e Z são o número de linhas de endereços, dados e sinais de controle, respectivamente, que podem variar de acordo com a escolha do microprocessador

Microprocessador (CPU) de 64K x 8

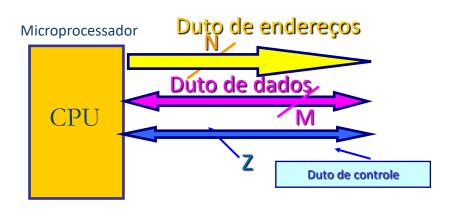
Capacidade de endereçamento do Microprocessador (CPU)


Representação do espaço de endereçamento do microprocessador

$$64K = 2^{6} \times 2^{10}$$
 6 + 10 = 16 linhas de endereços

Cada linha de endereço acessam(8)bits

Capacidade de endereçamento do Microprocessador (CPU)



Espaço de endereçamento do microprocessador

0000h D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0

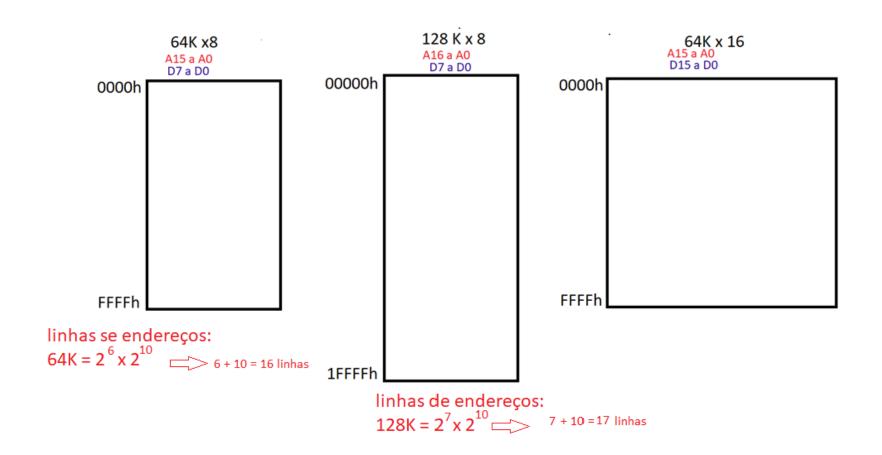
0
0
0
0
FFFFh D7 D6 D5 D4 D3 D2 D1 D0

Comunicação do Microprocessador (CPU) de 64K x 8 com os dispositivos

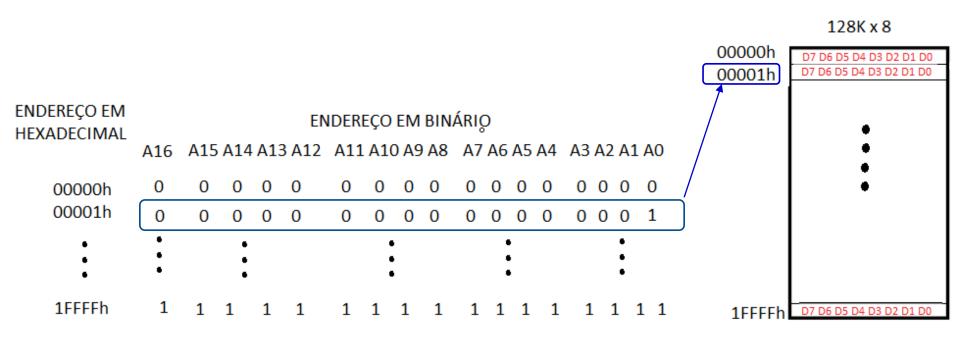
N = 16 nomeados: A15 a A0 M = 8 nomeados: D7 a D0

Z no mínimo = 2→ RD e WR

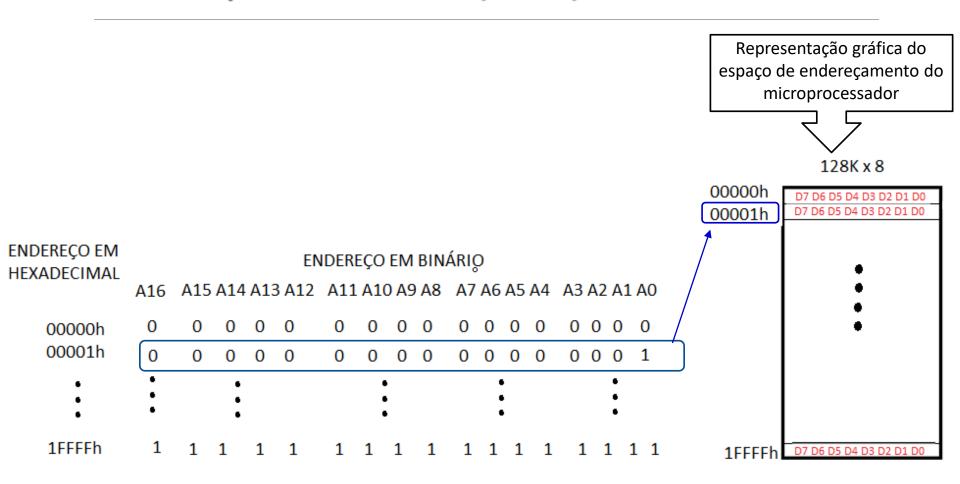
O microprocessador para enviar dados para memórias ou dispositivos saída **ESCRITA**

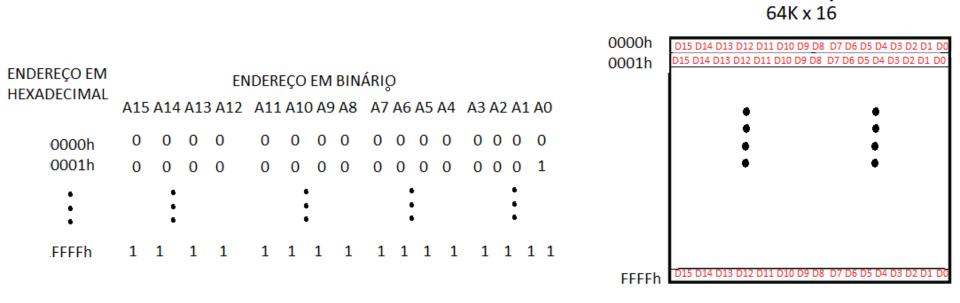

coloca o sinal de controle WR ='0'

O microprocessador para receber dados de memórias ou dispositivos entrada LEITURA

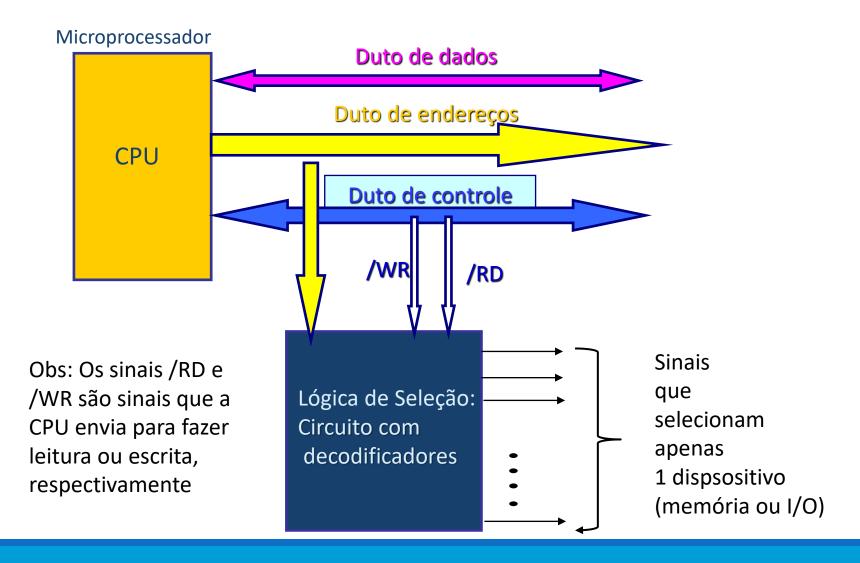


coloca o sinal de controle RD ='0'


Microprocessador (CPU) com capacidade de endereçamento diferentes

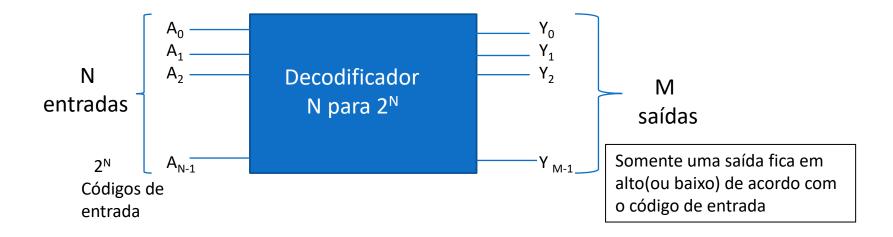

Microprocessador (CPU) de 128K x 8

Microprocessador (CPU) de 128K x 8



Microprocessador (CPU) de 64K x 16

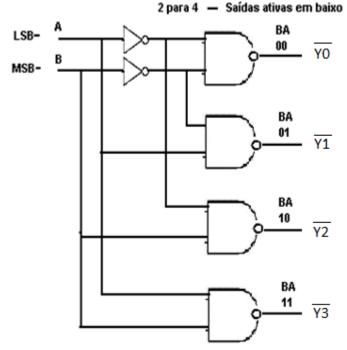
Representação gráfica do espaço de endereçamento do microprocessador


Implementação do Modelo de Von Neumann

DECODIFICADORES (Revisão)

Decodificador N X M:

converte um código binário de N bits que lhe é apresentado como entrada, em M linhas de saída, sendo que cada linha de saída será ativada por uma, e somente uma, das possíveis combinações dos bits de entrada ($M = 2^N$)

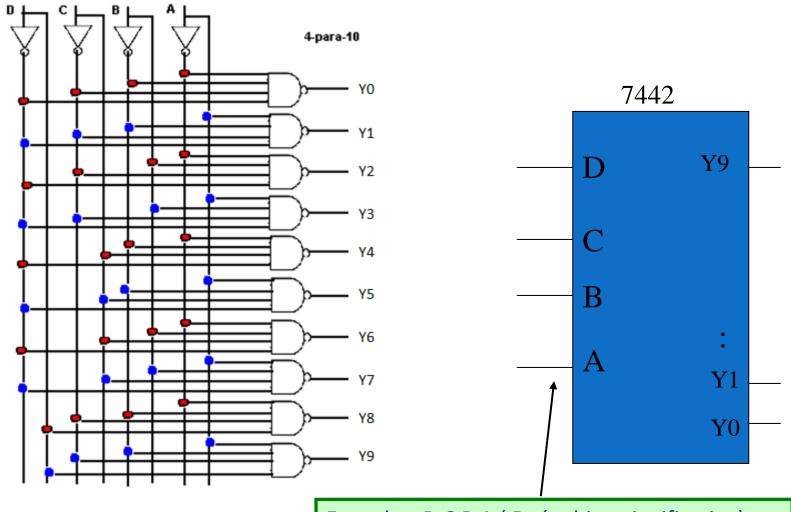


Existem decodificadores que quando a saída está ativa o valor dela é "1" e outros que apresentam a saída ativa em "0". Nos circuitos de seleção de projetos de microcomputadores utiliza-se decodificadores com saídas ativas em "0" porque nas memórias e grande parte das interfaces, o sinal de seleção é ativo em "0".

DECODIFICADORES

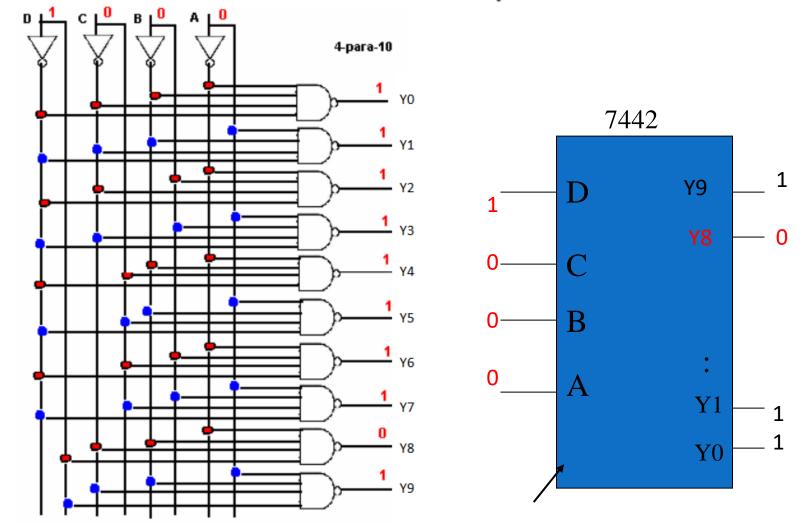
- Cada saída é ativada por um único código binário aplicado nas entradas;
- o índice da saída indica o valor do código binário que ativa essa saída.

TABELA 2	-para-4				
Entradas		Saídas			
В	Α	Q0	Q1	Q2	Q3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

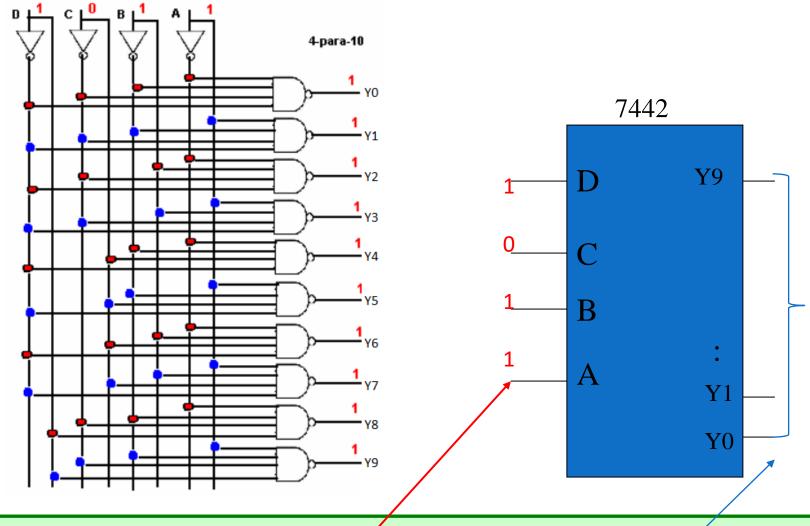


Decodificador 2 para 4

com saídas ativas em nível baixo Tabela para o 7442

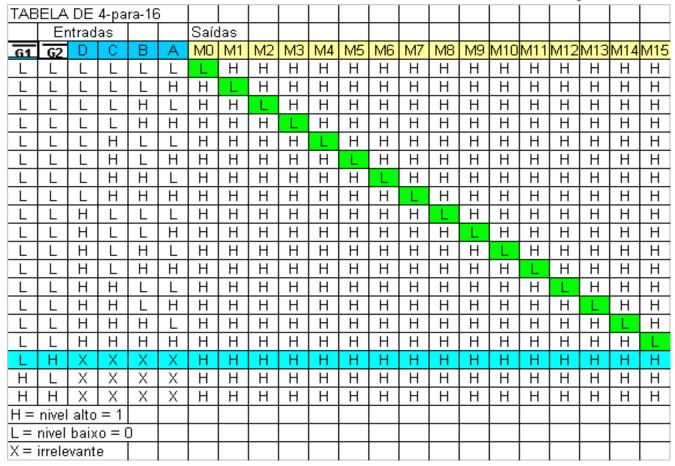

TABELA	4-para	ı-10												
	Entrad	las			Saídas									
Num	D	O	В	Α	M0	M1	M2	М3	M4	M5	M6	M7	M8	M9
0	L	┙	L	L	L	Ι	Н	Ι	Η	Η	Ι	Ι	Η	Н
1	L	┙	L	Ι	Н	اــا	Τ	I	Ι	Ι	Ι	Ι	Ι	Н
2	L	┙	Ι	اــا	Н	Τ	Ш	I	Ι	I	I	Ι	I	Н
3	L	┙	Ι	I	Н	Τ	Ι	اـ	Τ	I	I	Ι	I	Η
4	L	Ι	L	L	Н	Ι	I	Ι	L	Ι	Ι	Ι	Ι	Н
5	L	Ι	L	Ι	Н	Ι	I	Ι	Ι	Ш	Ι	Ι	Ι	Н
6	L	Ι	Η	L	Н	Ι	I	Ι	Ι	Η	Ш	Ι	Ι	Н
7	L	Ι	Η	Ι	Н	Ι	I	Ι	Ι	Ι	Ι	Ш	Ι	Н
8	Η	┙	L	L	Н	Ι	Η	Ι	Ι	Ι	Ι	Ι	Ш	Н
9	Η	┙	L	Ι	Н	Τ	Η	I	Ι	Ι	I	Ι	Ι	L
	Τ	١	Ι	اــ	Н	Τ	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Н
N	Τ	┙	Ι	I	Н	Τ	Ι	I	Τ	I	I	Ι	I	Η
V	Η	Ι	L	اــا	Н	Τ	Ι	I	Ι	I	I	Ι	Ι	Н
Α	Η	Ι	L	Ι	H	Ι	I	Ι	Ι	Η	I	Ι	Ι	Н
L	Н	Η	Η	L	Н	Ι	Н	Η	Η	Η	Ι	Η	Η	Н
I.	Н	Η	Η	Ι	Н	Ι	H	Ι	Η	Η	Ι	Η	Η	Н
H = nive	H = nivel alto = 1													
L = nivel	baixo	= 0												

Obs: A entrada D do decodificador representa o bit mais significativo.

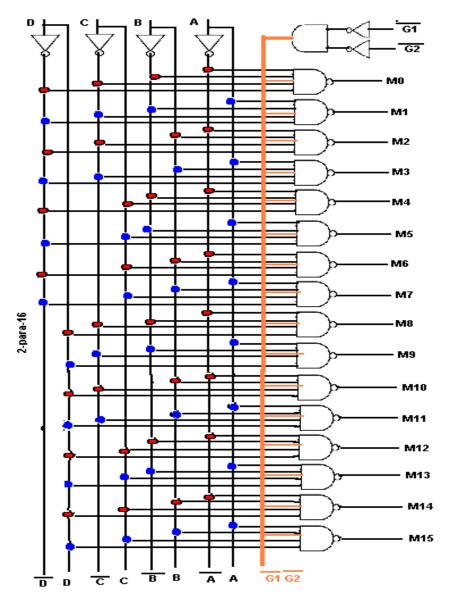


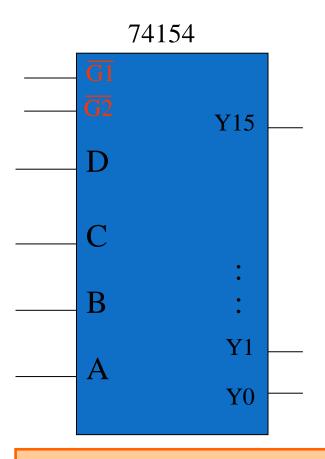
Entradas: D C B A (D é o bit + significativo)

Saídas: YO a Y9 (dez saídas)



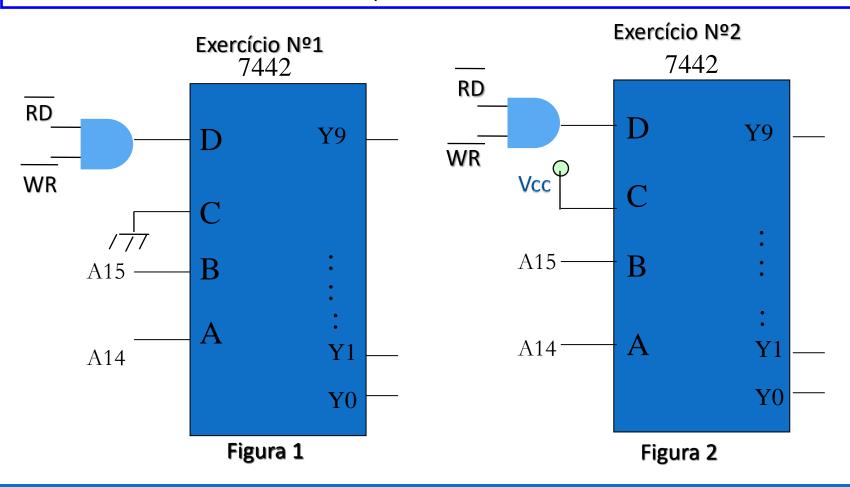
Entradas: D='1' C='0' B='0' A='0' (D é o bit + significativo) → Entrada =(1000)b = 8 Saídas: Y0 a Y9 (dez saídas) → Y8 ='0' é selecionada as demais são ='1'




Entradas: D C B A = (1011)b = 11 em decimal

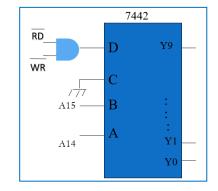
Saídas: Y0 a Y9 (dez saídas) nenhuma saída é selecionada, todas serão = '1'

G1 e G2: entradas para habilitar ou desabilitar o chip


D é o bit + significativo das entradas D C B A

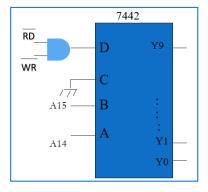
EXERCÍCIOS COM DECODIFICADORES:

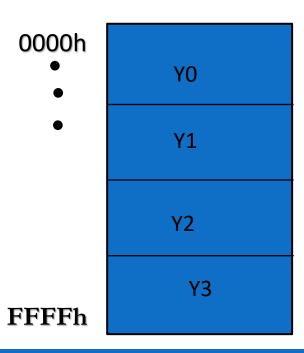
Para um microprocessador de 64Kx8 (16 linhas de endereços e 8 de dados)


Quais são as saídas do 7442 podem ser usadas como sinal de seleção /CS, sabendo-se que as linhas de endereço devem estar sincronizadas com os sinais /WR e /RD?

Obs: Se /RD = '0' então /WR = '1' e qdo /RD = '1' então /WR = '0'

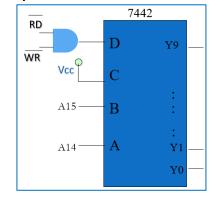
Para o decodificador do Exercício Nº1(Figura1):


D	С	В	Α	S
0	0	0	0	Y0
0	0	0	1	Y1
0	0	1	0	Y2
0	0	1	1	Y3



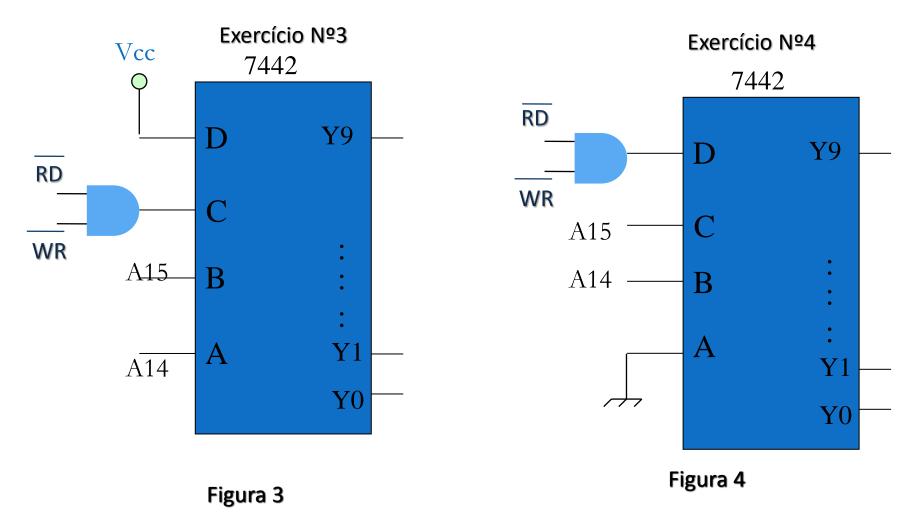
Para o decodificador do Exercício Nº1(Figura1):

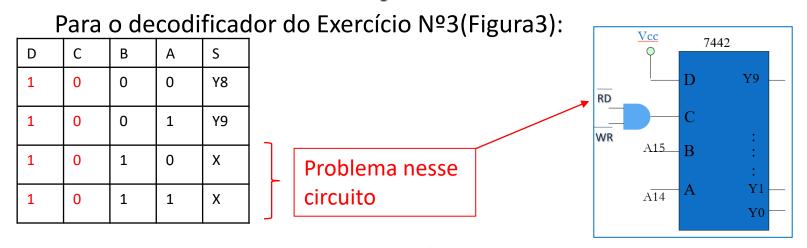
D	С	В	Α	S
0	0	0	0	Y0
0	0	0	1	Y1
0	0	1	0	Y2
0	0	1	1	Y3



Valor dos bits de seleção (A15 e A14)					
Saída Y0	endereço inicial: 0000h endereço final : 3FFFh				
Saída Y1	endereço inicial: 4000h endereço final: 7FFFh				
saída Y2	endereço inicial: 8000h endereço final : BFFFh				
Saída Y3	endereço inicial: C000h endereço final: FFFFh				

Para o decodificador do Exercício Nº2(Figura2):

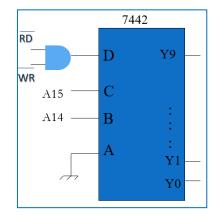

D	С	В	Α	S
0	1	0	0	Y4
0	1	0	1	Y5
0	1	1	0	Y6
0	1	1	1	Y7



Valor o	dos bits de seleção (A15 e A14)
Saída Y4	endereço inicial: 0000h 0000 0000 0000 0000 endereço final: 3FFFh 0011 1111 1111 1111
Saída Y5	
saída Y6	endereço inicial: 8000h 1000 0000 0000 0000 endereço final: BFFFh 1011 1111 1111
Saída Y7	endereço inicial: C000h 1100 0000 0000 0000 endereço final: FFFFh 1111 1111 1111

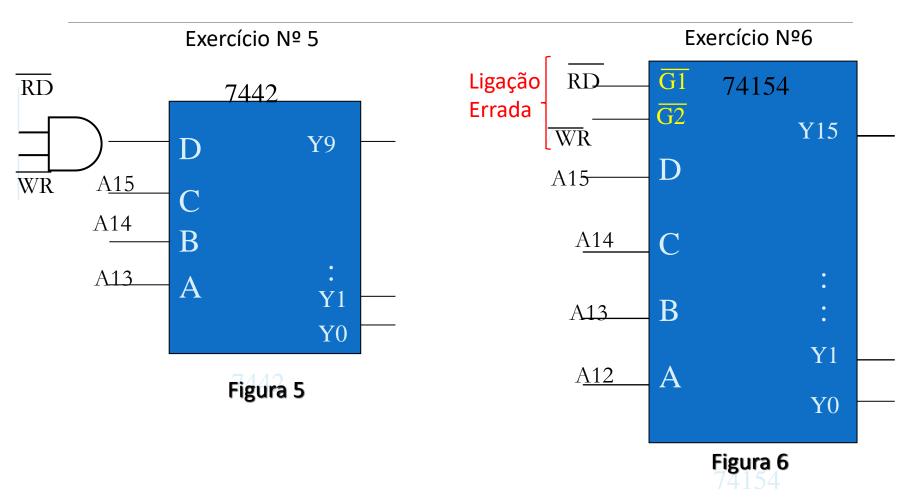
EXERCÍCIOS COM DECODIFICADORES:

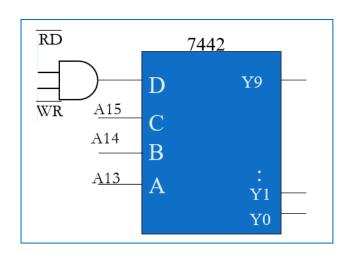
Para um microprocessador de 64Kx8 (16 linhas de endereços e 8 de dados) quais saídas do decodificadores que podem estar ativas?



Valor dos b	its de seleção (A15 e A14)	A15 A14 A13A1 A0
Saída Y8	endereço inicial: 0000h — endereço final : 3FFFh —	
Saída Y9	endereço inicial: 4000h — endereço final: 7FFFh —	
	endereço inicial: 8000h — endereço final : BFFFh —	
	endereço inicial: C000h — endereço final: FFFFh	

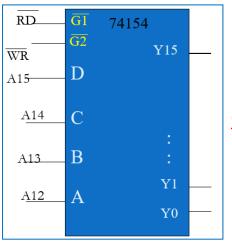
Para o decodificador do Exercício Nº4(Figura4):


D	С	В	Α	S
0	0	0	0	YO
0	0	1	0	Y2
0	1	0	0	Y4
0	1	1	0	Y6


Valor dos	bits de seleção (A15 e A14)	A15 A14 A13A1 A0		
Saída YO	endereço inicial: 0000h — endereço final : 3FFFh —			
Saída Y2	endereço inicial: 4000h — endereço final: 7FFFh: —			
saída Y4	endereço inicial: 8000h — endereço final : BFFFh			
Saída Y6	endereço inicial: C000h – endereço final: FFFFh			

Exercícios com decodificadores

Para um microprocessador de 64Kx8 (16 linhas de endereços e 8 de dados) Quais saídas do decodificadores que podem estar ativas?



Para o decodificador do Exercício № 5(Figura5):

D	С	В	Α	S
0	0	0	0	Y0
0	0	0	1	Y1
0	0	1	0	Y2
0	0	1	1	Y3
0	1	0	0	Y4
0	1	0	1	Y5
0	1	1	0	Y6
0	1	1	1	Y7

Para o decodificador do Exercício № 6(Figura6):

Resposta: nenhuma saída ficará ativa, pois o microprocessa<u>dor</u> para a<u>ces</u>sar memórias ou dispositivos de I/O, se for fazer leitura coloca RD = '0' e WR='1', <u>e se for fazer escrita coloca WR = '0' e RD='1'</u>, portanto nunca acontecerá G1 = G2 = '0' que é a condição para habilitar as saídas do decodificador 74154

EXERCÍCIOS COM DECODIFICADORES:

Exercício Nº7 Para um microprocessador de 64Kx8 (16 linhas de endereços e 8 de dados):

- a. Qual o valor de A15, A14 e A13 para a saída Y5
- b. Qual a saída do decodificador que contém o endereço DFFFh

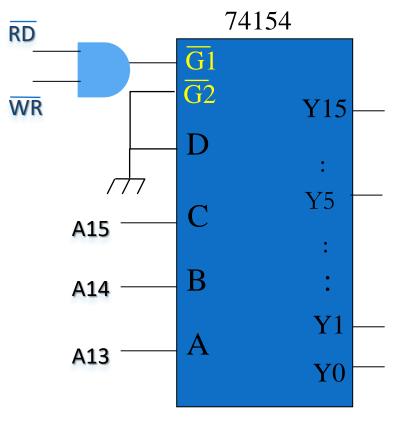
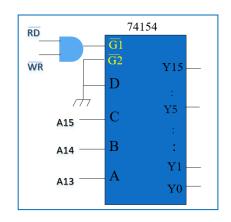
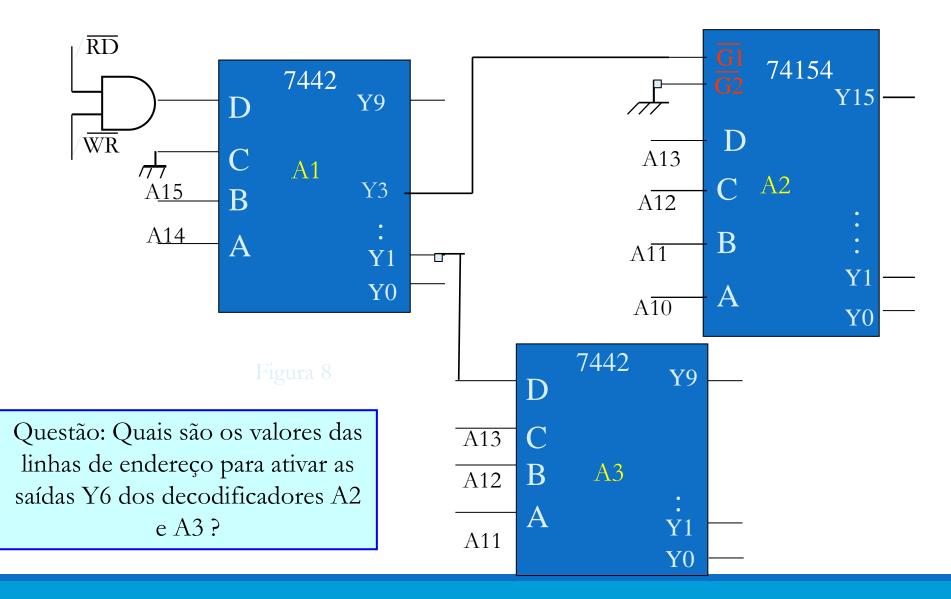



Figura 7

EXERCÍCIOS COM DECODIFICADORES: (continuação)

Resposta Exercício №7: a. Qual o valor de A15, A14 e A13 para a saída Y5 b. Qual a saída do decodificador que contém o endereço DFFFh

D	С	В	А	S
	A15	A14	A13	
0	0	0	0	Y0
0	0	0	1	Y1
0	0	1	0	Y2
0	0	1	1	Y3
0	1	0	0	Y4
0	1	0	1	Y5
0	1	1	0	Y6
0	1	1	1	Y7

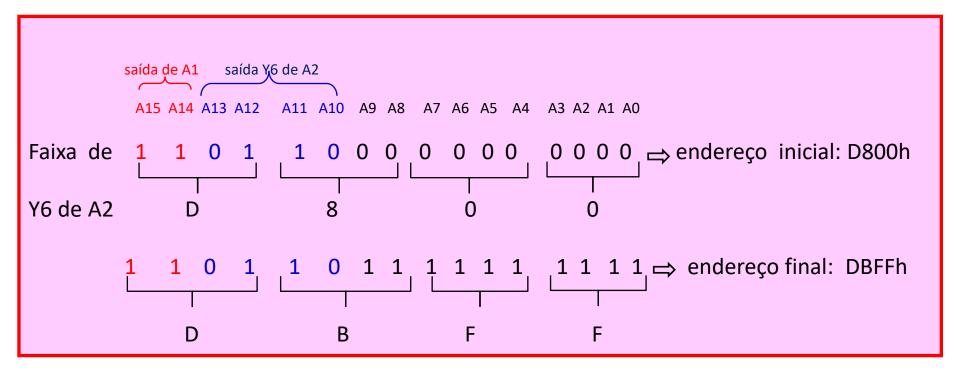

Respostas: a) saída Y5 A15='1' A14='0' e A13 ='1'

b)

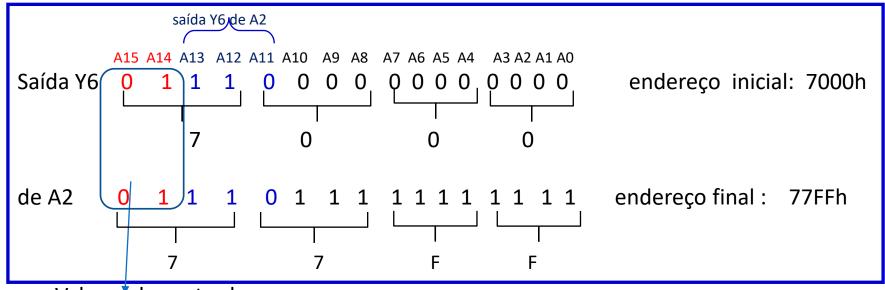
A15	A14	A 13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	
1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	DFFFh

Exercícios com decodificadores

Exercício Nº8: Para um microprocessador de 64Kx8 (16 linhas de endereços e 8 de dados)

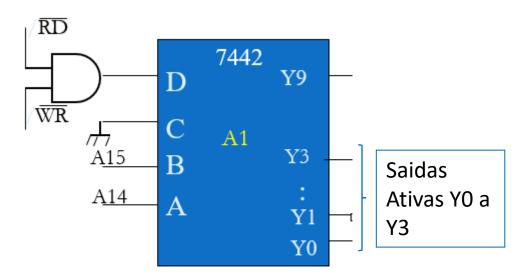

Resposta do Exercício 8

O decodificador A1 é o decodificador mestre e apresenta 4 saídas ativas, pois tem nas suas entradas apenas duas entradas de endereços A15 e A14 \implies 2² = 4, portanto 4 saídas ativas

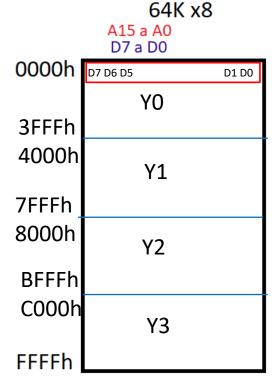

Valor dos	s bits de seleção (A15 e A14) A15 A14 A13A1 A0
Saída Y0	endereço inicial: 0000h — 0000 0000 0000 0000 endereço final: 3FFFh — 0011 1111 1111 1111
Saída Y1	endereço inicial: 4000h → 0100 0000 0000 0000 endereço final: 7FFFh → 0111 1111 1111
Saída Y2	endereço inicial: 8000h 1000 0000 0000 0000 endereço final: BFFFh 1011 1111 1111
Saída Y3	endereço inicial: C000h → 1100 0000 0000 0000 endereço final: FFFFh → 1111 1111 1111

O decodificador A2 está ligado na saída Y3 de A1, então redivide a faixa C000h a FFFFh O decodificador A3 está ligado na saída Y1 de A1, então redivide a faixa 0000h a 3FFFh

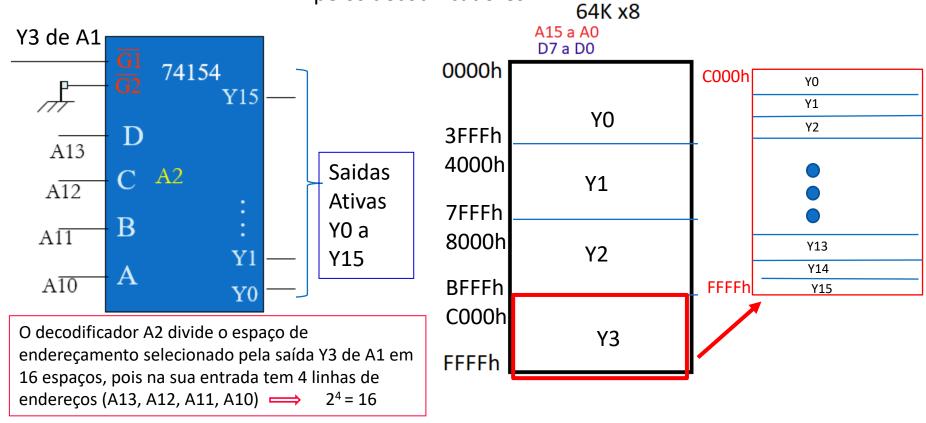
Decodificador A2 está na faixa de endereço da saída Y3 de A1 (C000h – FFFFh) e A2 possui 4 entradas de endereços (A13, A12, A11, A10) ligadas às entradas do decodificador 74154 que é um decodificador de 4x16, portanto apresenta 16 saídas ativas (de Y0 a Y15), pois 2^4 = 16. A saída Y6 de A2 está ativa quando A13 A12 A11 A10 = (0110).

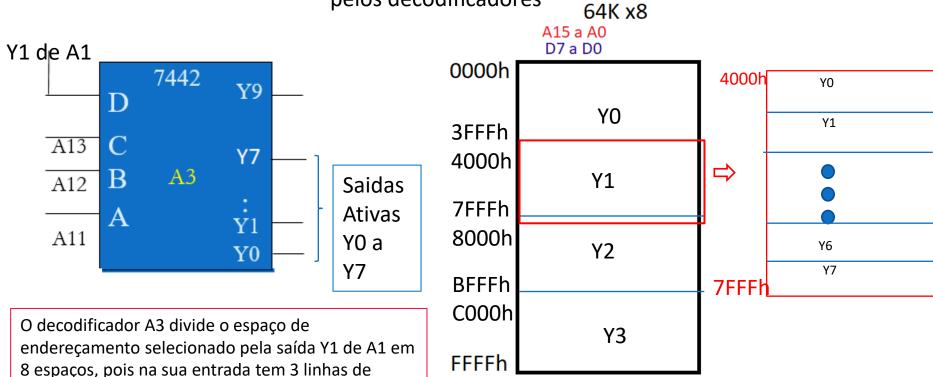


Decodificador A3 está na faixa de endereço da saída Y1 de A1 (4000h - 7FFFh) e A3 possui 3 entradas de endereços (A13, A12, A11) ligadas às entradas do decodificador 7442 que é um decodificador de 4x9, portanto apresenta 8 saídas ativas (de Y0 a Y7), pois $2^3 = 8$. A saída Y6 de A3 está ativa quando A13 A12 A11 = (110).



Valores das entradas A15 e A14 que selecionam o decodificador A3

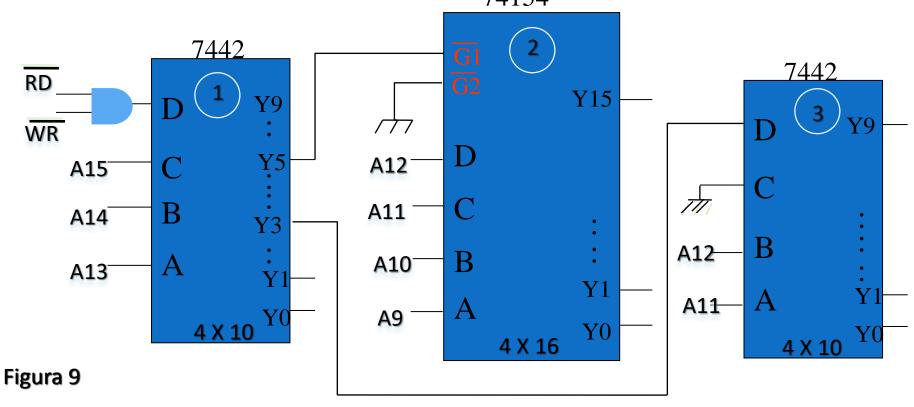

Divisão do espaço de mapeamento do microprocessador pelos decodificadores


O decodificador A1 divide o espaço total de endereçamento de 64Kx8 porque é o decodificador mestre e nele está ligado o bit mais significativos do endereçamento (A15)

Divisão do espaço de mapeamento do microprocessador pelos decodificadores

Divisão do espaço de mapeamento do microprocessador pelos decodificadores

endereços (A13, A12, A11) \implies


 $2^3 = 8$

EXERCÍCIO PROPOSTO

Exercício Nº9: Para um microprocessador de 64Kx8 (16 linhas de endereços e 8 de dados):

- •Qual é o decodificador mestre?
- •Quais os valores de A15, A14 e A13 que selecionam o decodificador 2?
- •Qual a faixa de endereço que é selecionada pelo decodificador 2 ?
- •Quais saídas do decodificador 3 que podem ser selecionadas quando a saída Y3 do decodificador 1 está ativa?
- •Qual a faixa de endereços que o decodificador 3 seleciona?

 $\,$ Para a saída Y6 dos decodificadores 2 e 3, quais são os valores das linhas de endereço para ativar essas saídas? $\,$

EXERCÍCIO PROPOSTO (continuação):

Resposta Exercício Nº9:

•Qual é o decodificador mestre:

Resp: é o decodificador 1

•Quais os valores de A15, A14 e A13 que selecionam o decodificador 2?

Resp: são os valores 101, respectivamente para ativa a saída Y5 do decodificador 1 que está ligada ao decodificador 2

•Qual a faixa de endereço que é selecionada pelo decodificador 2 ?

Resp: É a faixa da saída Y5 do decodificador 1 que é:

A000h a BFFFh

•Quais saídas do decodificador 3 que podem ser selecionadas quando a saída Y3 do decodificador 1 está ativa?

Resp: Nesse circuito de lógica de seleção apenas podem ser ligados dispositivos nas saídas YO, Y1, Y2 e Y3 do decodificador 3, pois só essas saídas podem estar ativas quando Y3 do decodificador 1 estiver ativo(Y3=0), estando este ligado à entrada D do decodificador 3 e a entrada C do decodificador 3 também aterrada, só ativam as saídas de YO a Y3 do decodificador 3

•Qual a faixa de endereços que o decodificador 3 seleciona?

Resp: O decodificador 3 seleciona a faixa que é ativada pela saída y3 do decodificador 1, ou seja, 6000h a 7FFFh

•Para a saída Y6 dos decodificadores 2 e 3, quais são os valores das linhas de endereço para ativar essas saídas?

Resp: Y6 do decodificador 2 está ativo na faixa de endereços de ACOOh a ADFFh e Y6 do decodificador 3 nunca estará ativo por nenhum endereço enviado pelo microprocessador

