Regressão Linear Múltipla – Aula 07

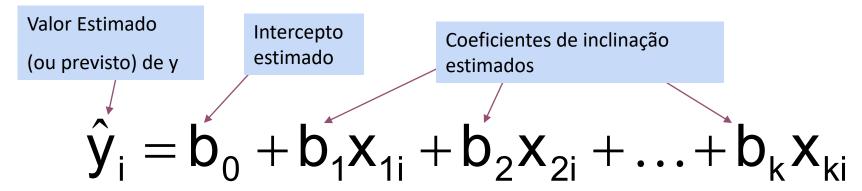
Statistics for Business and Economics 11 edi..o, by Paul Newbold , William Carlson , Betty Thorne (cap. Simple Regression)

Statistics for Economics, Accounting and Business Studies, capítulo 8, Barrow (Multiple Regression)

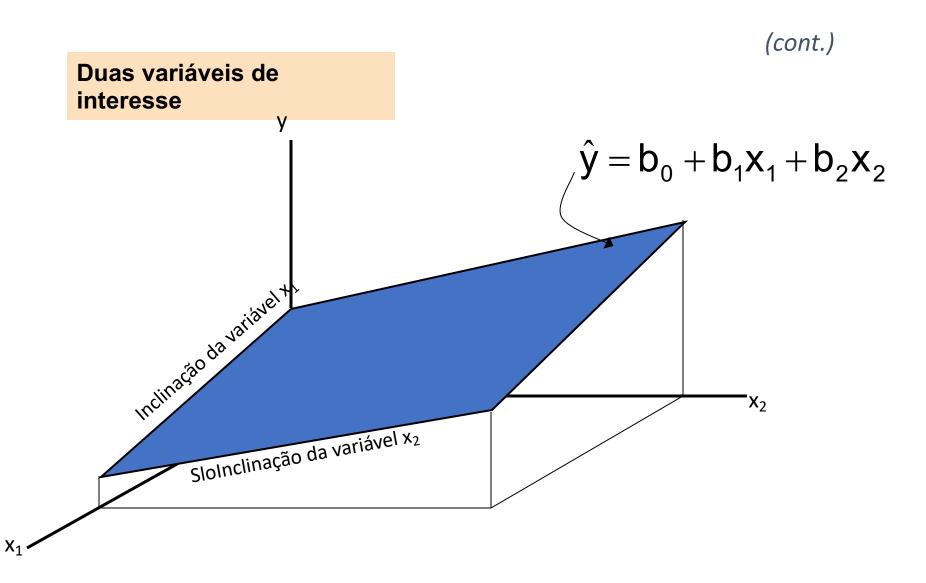
Marislei Nishijima

O modelo de regressão múltipla

Ideia: Examinar a relação linear entre uma variável dependente (Y) e 2 ou mais variáveis independentes (X_i)

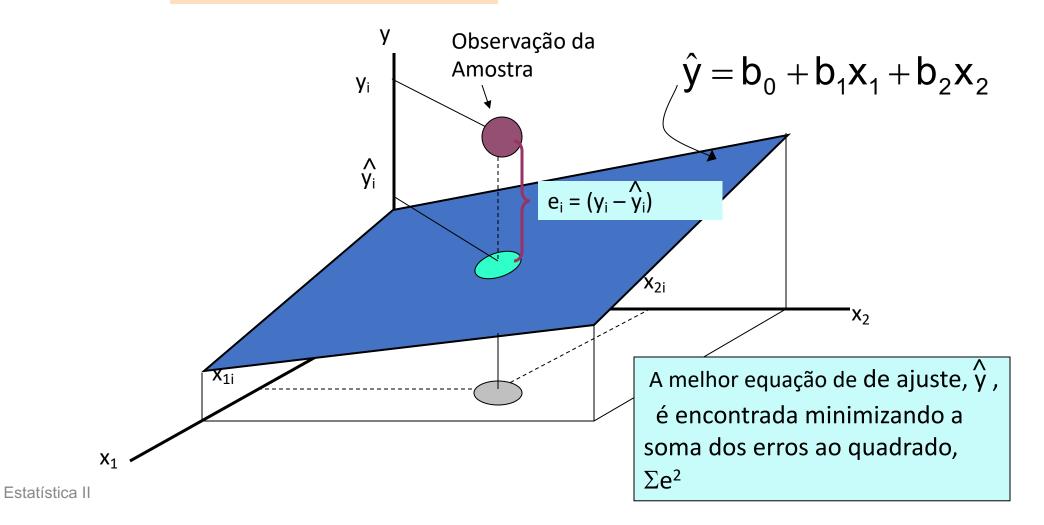

modelo de regressão múltipla com k variáveis independentes:

Y-intercepto Inclinações populacionais
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$$


O modelo de regressão múltipla

Os coeficientes do modelo de regressão múltipla são estimados usando dados de amostra

Equação de regressão múltipla com k variáveis independentes:



A equação de regressão múltipla

O modelo de regressão múltipla

Modelo com duas variáveis

Pressupostos do modelo de regressão múltipla

- Os valores de x_i e os termos do erro ε_i são independentes
- Os termos de erro são variáveis aleatórias com média 0 e uma variância constante, σ^2 .

$$E[\varepsilon_i] = 0$$
 and $E[\varepsilon_i^2] = \sigma^2$ for $(i = 1, ..., n)$

(A propriedade de variância constante é chamada homocedasticidade)

Pressupostos do modelo de regressão múltipla

(cont.)

• Os termos aleatórios, ε_i não são correlacionados entre si, então

$$E[\varepsilon_i \varepsilon_j] = 0$$
 for all $i \neq j$

Não é possível encontrar um conjunto de números, c₀, c₁, . . . , c_k, tal que

$$c_0 + c_1 x_{1i} + c_2 x_{2i} + ... + c_K x_{Ki} = 0$$

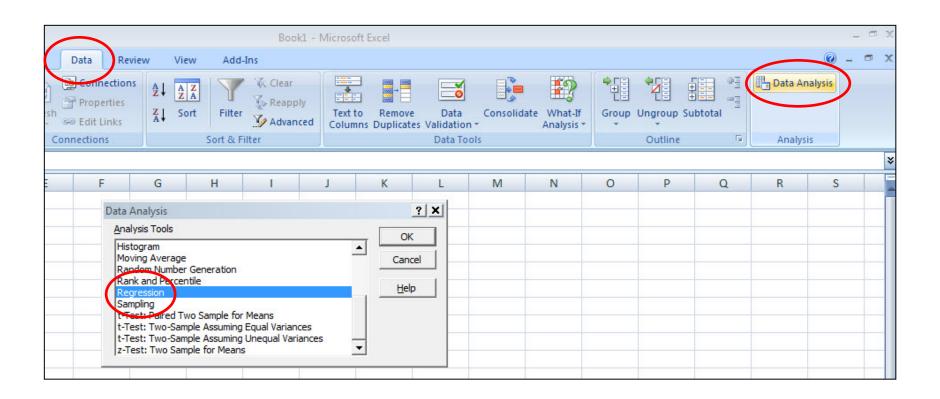
(Esta é a propriedade de não relação linear para os X_i's)

Exemplo: 2 Variáveis Independentes

- Um distribuidor de tortas congeladas quer avaliar fatores que influenciam a sua demanda
- Variável dependente: vendas de tortas (unidades por semana)
 - Variáveis independentes: Preço (em \$)
 - Propaganda (gastos em \$100's)
- Dados são coletados para 15 semanas

Exemplo de vendas de Tortas

sema na	Qtortas	Preco (\$)	Propag (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7


Equação da Regressão Múltipla:

vendas =
$$b_0 + b_1$$
 (Preço)
+ b_2 (Propaganda)

Estimando a Regressão Linear Múltipla

- Excel e Stata serão usados para gerar os coeficientes e medidas de qualidade de ajuste para regressão múltipla
 - Data / Data Analysis / Regression

Saída da Regressão Múltipla

Regression St	tatistics					414
Multiple R	0.72213				Salar Sa	
R Square	0.52148				135	
Adjusted R Square	0.44172					
Standard Error	47.46341					
Observations	15	Qtortas	= 306.526	- 24.975	5*Preco+74.13	31*Propaganda
ANOVA	df	ss	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Teste F para Significância Conjunta

• Estatística de Teste F:

$$F = \frac{MSR}{MSE}$$

sendo

$$MSR = \frac{SQR}{k}$$

$$MSE = \frac{SQE}{n - k - 1}$$

onde F segue uma distribuição F com k numerador e (n - k - 1) denominador graus de liberdade

(k = o número de variáveis independentes no modelo de regressão)

Equação da Regressão Múltipla

 $\widehat{Qtortas} = 306.526 - 24.975*Preco+74.131*Propaganda$

Sendo

vendas é o número de tortas por semana Preço em \$ Propaganda em \$100's.

b₁ = -24.975: as vendas diminuirão, em média, em 24.975 tortas por semana para cada aumento de \$ 1 no preço de venda, líquido dos efeitos das mudanças devido à publicidade

b₂ = 74.131: as vendas aumentarão, em média, em 74.131 tortas por semana para cada \$
 100 de aumento em publicidade, líquido dos efeitos das mudanças devido ao preço

Coeficiente de Determinação, R²

 Relata a proporção da variação total em y explicada por todas as variáveis x tomadas em conjunto

$$R^2 = \frac{SQR}{SQT} = \frac{Soma\ dos\ Quadrados\ da\ Regressão}{Soma\ dos\ Quadrados\ Totais}$$

 Esta é a razão entre a variabilidade explicada e a variabilidade total da amostra.

Coeficiente de Determinação, R²

(cont.)

Regression St	tatistics			SOR 29	460.0		1112 T
Multiple R	0.72213	¥	$R^2 =$	$=\frac{SQR}{SQT}=\frac{29}{56}$	$\frac{100.0}{402.2} = 0$	0.52148	
R Square	0.52148	,		<i>SQ1</i> 50	493.3	13	
Adjusted R Square	0.44172		1	3 40/ J	.• ~ .		
Standard Error	47.46341		/			as vendas de	
Observations	15		1	-	_	ela variação d	le
			<u> </u>	reço e pub	licidade		
ANOVA	df	SS		MS	F	Significance F	
Regression	2	2946	0.027	14730.013	6.53861	0.01201	•
Residual	12	2703	3.306	2252.776			
Total	14	5649	3.333				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.2	25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.8	33213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.9	96732	2.85478	0.01449	17.55303	130.70888

Coeficiente de Determinação, R²

```
reg q_torta preco proga
```

```
Source | SS df MS
                                        Number of obs = 15
                                        F(2, 12) = 6.54
 Model | 29460.0261 2 14730.0131
                                        Prob > F = 0.0120
R-squared = 0.5215
                                        Adj R-squared = 0.4417
 Total | 56493.3333 14 4035.2381
                                        Root MSE = 47.463
q_torta | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 preco | -24.97509 10.83213 -2.31 0.040 -48.57626 -1.373916
 proga | 74.13096 25.96732 2.85 0.014 17.55303 130.7089
 cons | 306.5262 114.2539 2.68 0.020 57.58834 555.4641
```

Estatística II

Estimativa da Variância do Erro

Considere o modelo de regressão populacional

$$Y_{i} = \beta_{0} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \dots + \beta_{K} x_{Ki} + \epsilon_{i}$$

A estimativa não viesada da variância dos erros é

$$s_e^2 = \frac{\sum_{i=1}^n e_i^2}{n-K-1} = \frac{SSE}{n-K-1}$$

$$\mathbf{e}_{i} = \mathbf{y}_{i} - \hat{\mathbf{y}}_{i}$$

 A raiz quadrada da variância, s_e, é chamado de erro padrão da estimativa

Erro Padrão, s_e

Regression S	tatistics					711-
Multiple R	0.72213	c - 47	163		(au	
R Square	0.52148	$s_e = 47$.403		13	
Adjusted R Square	0.44172	A m	nagnitude	deste val	or pode	
Standard Error	47.46341		comparad		•	
Observations	15	_	dio de y			
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Coeficiente de Determinação Ajustado, R²

- R² nunca diminui quando uma nova variável X é adicionada ao modelo, mesmo se a nova variável não for uma variável preditora importante
- Isso pode ser uma desvantagem ao comparar modelos
- Qual é o efeito líquido de adicionar uma nova variável?
- Perdemos um certo grau de liberdade quando uma nova variável X é adicionada
- A nova variável X adicionou poder explicativo suficiente para compensar a perda de um grau de liberdade?

Coeficiente de Determinação Ajustado, R²

(cont.)

 Usado para corrigir o fato de que adicionar variáveis independentes não relevantes ainda reduzirá a soma dos quadrados do erro

$$\bar{R}^2 = 1 - \frac{SQE/(n-K-1)}{SQT/(n-1)}$$

- (onde n = tamanho da amostra, K = número de variáveis independentes)
- R² ajustado fornece uma melhor comparação entre modelos de regressão múltipla com diferentes números de variáveis independentes
- Penalize o uso excessivo de variáveis independentes sem importância
- Menor que R²

$\overline{\mathsf{R}}^2$

Regression Statistics						
Multiple R	0.72213					
R Square	0.52148					
Adjusted R Square	0.44172					
Standard Error	47.46341					
Observations	15					

 $\overline{R}^2 = .44172$

44.2% da variação nas vendas de tortas é explicada pela variação no preço e na publicidade, levando em consideração o tamanho da amostra e o número de variáveis independentes

ANOVA	df	SS	MS	F	Significance F
Regression	2	29460.027	14730.013	6.53861	0.01201
Residual	12	27033.306	2252.776		
Total	14	56493.333			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Coeficiente de Correlação Múltipla

• O coeficiente de correlação múltipla é a correlação entre o valor previsto e o valor observado da variável dependente

$$R = r(\hat{y}, y) = \sqrt{R^2}$$

- É a raiz quadrada do coeficiente de determinação múltiplo
- Usado como outra medida da relação linear entre a variável dependente e as variáveis independentes
- Comparável à correlação entre Y e X na regressão simples

Avaliando coeficientes individuais da Regressão

- Use testes t para coeficientes individuais
- Mostra se uma variável independente específica é condicionalmente importante

Hipóteses

- H_0 : $\beta_i = 0$ (nenhuma relação linear)
- H_1 : $\beta_j \neq 0$ (existe relação linear entre x_j e y)

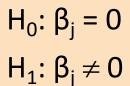
Avaliando coeficientes individuais da Regressão

(cont.)

 H_0 : $\beta_i = 0$ (nenhuma relação linear)

 H_1 : $\beta_j \neq 0$ (existe relação linear entre x_j e y)

Estatística de Teste:


$$t = \frac{b_j - 0}{S_{b_j}}$$
 (df = n - k - 1)

Avaliando coeficientes individuais da Regressão

(cont.)

Regression S	tatistics	O valor de s	t nara Drog	20 6 t = -	2 306 com n	
Multiple R	0.72213		O valor de t para Preco é t = -2.306, com p- valor de 0.0398			
R Square	0.52148	valor de U.	0598			
Adjusted R Square	0.44172	_				
Standard Error	47.46341	t-v O valor	de t para F	Propagan	ida é t = 2.85	5,
Observations	15	com p-valo	r de 0.014	15		
				1		
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	au de la constante de la const
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Exemplo: Avaliando coeficientes individuais da Regressão

$$d.f. = 15-2-1 = 12$$

 $\alpha = .05$

 $t_{12,.025} = 2.1788$

Da saída do Excel:

	Coefficients	Standard Error	t Stat	P-value
Price	-24.97509	10.83213	-2.30565	0.03979
Advertising	74.13096	25.96732	2.85478	0.01449

A estatística de teste para cada variável cai na região de rejeição (p-values < .05)

Decisão:

Rejeita H₀ para cada variável

Conclusão:

Há evidências de que tanto o preço quanto a publicidade afetam as vendas de tortas a $\alpha = .05$

Estimativa do intervalo de confiança para a inclinação

Estimativa do intervalo de confiança para a inclinação β_i

$$b_j \pm t_{n-K-1,\alpha/2} S_{b_j} \qquad \begin{array}{l} \text{Sendo que t has} \\ \text{(n-K-1) g.l.} \end{array}$$

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, thas (15-2-1) = 12 d.f.

Exemplo: Construa um IC de 95% para efeitos de mudanças de preços (x_1) sobre a quantidade vendida de tortas:

$$-24.975 \pm (2.1788)(10.832)$$

Então o intervalo é $-48.576 < \beta_1 < -1.374$

Estimativa do intervalo de confiança para a inclinação

(cont.)

Estimativa do intervalo de confiança para a inclinação β_i

	Coefficients	Standard Error	 Lower 95%	Upper 95%
Intercept	306.52619	114.25389	 57.58835	555.46404
Price	-24.97509	10.83213	 -48.57626	-1.37392
Advertising	74.13096	25.96732	 17.55303	130.70888

Exemplo: a saída do Excel também relata os valores do intervalo:

Estima-se que as vendas semanais sejam reduzidas entre 1,37 a 48,58 tortas para cada aumento de \$ 1 no preço de venda

Teste sobre todos os Coeficientes

- Teste F para a Significância global do Modelo
- Mostra se existe uma relação linear entre todas as variáveis X consideradas juntas e Y
- Use a estatística de teste F
- Hipóteses:

```
H_0: \beta_1 = \beta_2 = ... = \beta_k = 0 (não há relação linear)
```

 H_1 : at least one $\beta_i \neq 0$ (pelo menos uma variável independente afeta Y)

Teste F para significância geral

Estatística de Teste:

$$F = \frac{MSR}{S_e^2} = \frac{SQR/K}{SQE/(n-K-1)}$$

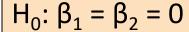
sendo que F tem k (numerador) e

$$(n-K-1)$$
 (denominador)

graus de liberdade

A regra de decisão é

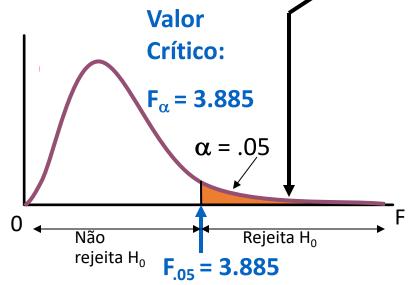
Rejeita
$$H_0$$
 se $F > F_{K,n-K-1,\alpha}$


Teste F para significância geral

(cont.)

Regression St	atistics					July 1 har and 1
Multiple R	0.72213	B 44		700.0		
R Square	0.52148		SR _ <u>14</u>	730.0	= 6.5386	
Adjusted R Square	0.44172	' - M	$SE^{-}22$	252.8	_ 0.0000	
Standard Error	47.46341	With 2 and	12 degrees o	of	1	
Observations	15	freedom	12 degrees (/	P-value for he F-Test
				/		#
ANOVA	df	ss	MS	F /	Significance F	=_
Regression	2	29460.027	14730.013	6.53861	0.0120	1
Residual	12	27033.306	2252.776			
Total	14	56493.333				<u> </u>
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.5883	5 555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	3 130.70888

Teste F para significância geral


(cont.)

 H_1 : β_1 e β_2 não são ambos 0

$$\alpha = .05$$

$$gl_1 = 2$$
 $gl_2 = 12$

Estatística de Teste:

$$F = \frac{MSR}{MSE} = 6.5386$$

Decisão:

Como a estatística de teste F cai na região de rejeição (p-valor < .05), rejeita-se H₀

Conclusão:

Há evidências de que pelo menos uma variável independente afeta Y

Testes para um subconjunto de coeficientes de regressão

• Considere um modelo de regressão múltipla envolvendo as variáveis x_j e z_j , e a hipótese nula de que os coeficientes da variável z são todos zero:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_K x_{Ki} + \alpha_1 z_{1i} + \dots + \alpha_r z_{ri} + \epsilon_i$$

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$

 H_1 : pelo menos um $\alpha_j \neq 0$. (j=1,2,...,r)

Testes para um subconjunto de coeficientes de regressão

(cont.)

- Objetivo: comparar a soma dos quadrados dos erros do modelo completo com a soma dos quadrados dos erros do modelo restrito
- Primeiro execute uma regressão para o modelo completo e obtenha SQE
- Em seguida, execute uma regressão restrita que exclui as variáveis z (o número de variáveis excluídas é r) e obtenha a soma do erro restrito dos quadrados SQE(r)
- Calcule a estatística F e aplique a regra de decisão para um nível de significância α

Rejeite
$$H_0$$
 se $F = \frac{(SQE(r) - SQE)/r}{S_e^2} > F_{r,n-K-r-1,\alpha}$

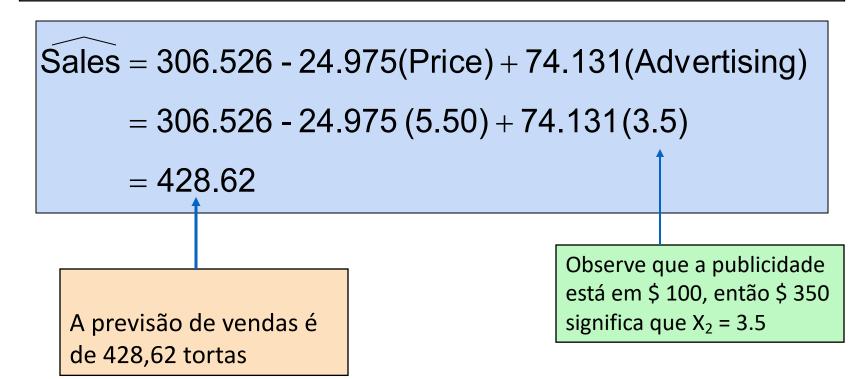
Previsão

• Dado um modelo de regressão populacional

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_K x_{Ki} + \epsilon_i$$
 $(i = 1, 2, ..., n)$

Então, dado um novo ponto observado

$$(x_{1,n+1}, x_{2,n+1}, \ldots, x_{K,n+1})$$


a melhor previão linear não viesada de y_{n+1} é

$$\hat{y}_{n+1} = b_0 + b_1 x_{1,n+1} + b_2 x_{2,n+1} + \dots + b_K x_{K,n+1}$$

• É arriscado prever novos valores de X fora do intervalo dos dados usados para estimar os coeficientes do modelo, porque não temos dados para apoiar que o modelo linear se estende além do intervalo observado.

Usando a equação para fazer previsões

Preveja vendas para uma semana em que o preço de venda seja \$ 5,50 e a publicidade seja \$ 350:

Modelos de regressão não linear

- A relação entre a variável dependente e uma variável independente pode não ser linear
- É possível revisar o diagrama de dispersão para verificar relações não lineares
- Exemplo: modelo quadrático

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \epsilon$$

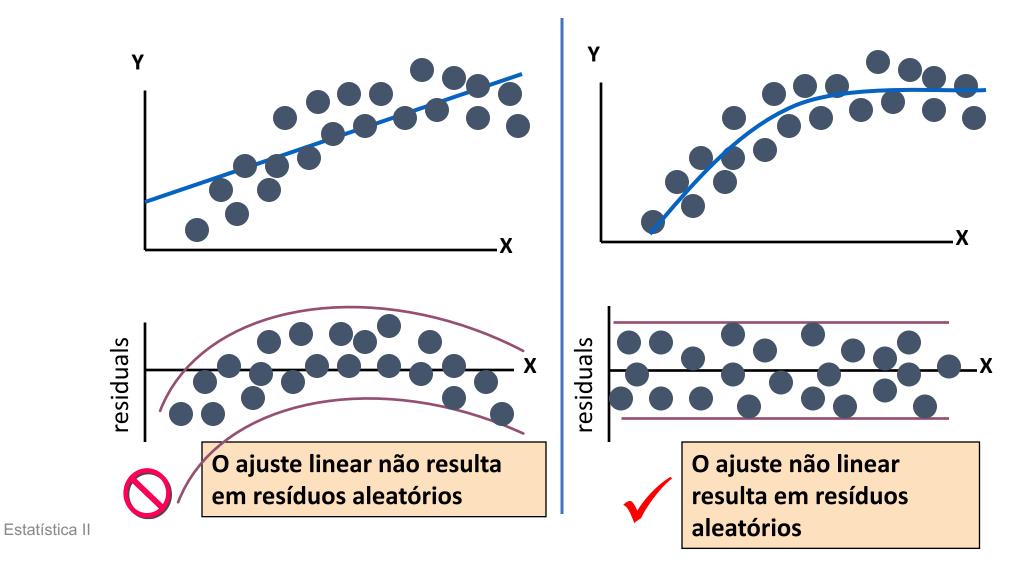
 A segunda variável independente é o quadrado da primeira variável

Modelo de Regressão Quadrática

Forma do Modelos:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{1i}^2 + \epsilon_i$$

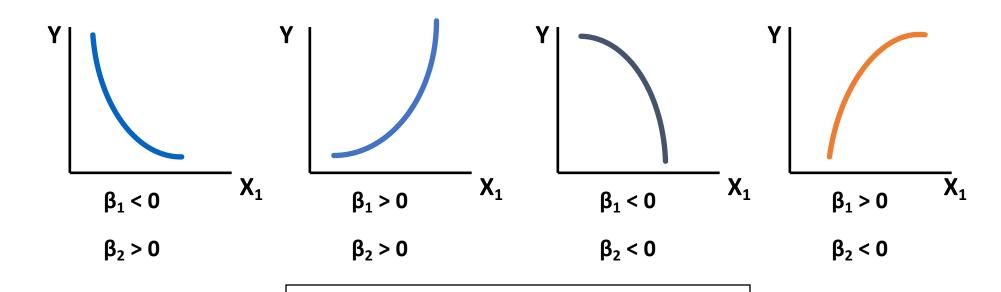
• sendo:


 β_0 = o intercepto de Y

 β_1 = coeficiente de regressão para efeito linear de X em Y

 β_2 = coeficiente de regressão para efeito quadrático em Y

ε_i = erro aleatório em Y para observação i


Ajustamento Linear vs. Não linear

Modelo de Regressão Quadrática

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{1i}^{2} + \epsilon_{i}$$

Modelos quadráticos podem ser considerados quando o diagrama de dispersão assume uma das seguintes formas:

 β_2 = th o coeficiente do termo quadrático

 β^1 = o coeficiente do termo linear

Estatística II

Teste de Significância: Efeito Quadrático

Testando o efeito quadrático

Compare a estimativa de regressão linear

$$\hat{y} = b_0 + b_1 x_1$$

com a estimativa de regressão quadrática

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2$$

Hipóteses

 H_0 : $\beta_2 = 0$ (O termo quadrático não melhora o modelo)

 $H_1: \beta_2 \neq 0$ (O termo quadrático melhora o modelo)

Teste de Significância: Efeito Quadrático

(cont.)

Testando o efeito quadrático

Hipóteses

$$H_0$$
: $\beta_2 = 0$

$$H_1$$
: $\beta_2 \neq 0$

(O termo quadrático não melhora o modelo)

(O termo quadrático melhora o modelo)

A estatística de teste é

$$t = \frac{b_2 - \beta_2}{s_{b_2}}$$

$$d.f. = n - 3$$

sendo:

b² = coeficiente de inclinação do termo quadrado

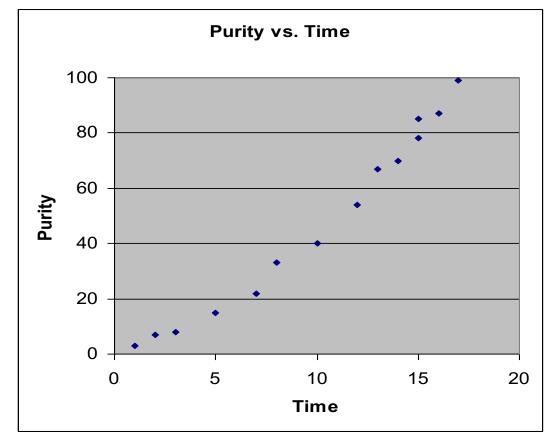
 β_2 = inclinação hipotética (zero)

S_b² = erro padrão da inclinação

Teste de Significância: Efeito Quadrático

(cont.)

Testando o Efeito Quadrático


Comparar o $\overline{R^2}$ da regressão simples com o do modelo quadrático

• Se o R² do modelo quadrático for maior que o R² do modelo de regressão simples, então o modelo quadrático é o melhor modelo.

Exemplo: modelo quadrático

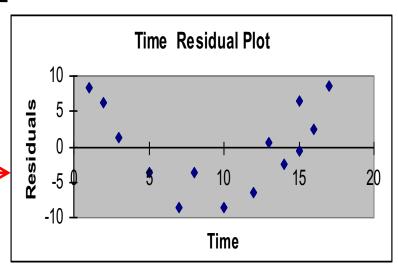
Pureza	Tempo de Filtragem
3	1
7	2
8	3
15	5
22	7
33	8
40	10
54	12
67	13
70	14
78	15
85	15
87	16
99	17

A pureza aumenta conforme o tempo de filtragem aumenta:

Exemplo: modelo quadrático

(cont.)

Resultados da Regressão Simples:


$$\hat{y} = -11.283 + 5.985$$
 Time

	Coefficients	Standard Error	t Stat	P-value
Intercept	-11.28267	3.46805	-3.25332	0.00691
Time	5.98520	0.30966	19.32819	2.078E-10

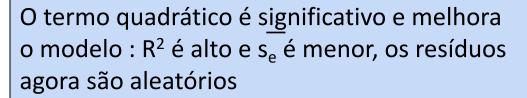
Regression Statistics	
R Square	0.96888
Adjusted R Square	0.96628
Standard Error	6.15997

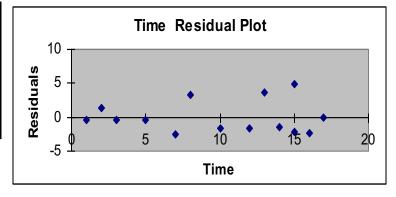
F	Significance F
373.57904	2.0778E-10

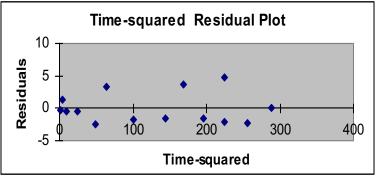
Estatística t, Estatística F e R² são todos altos, mas os resíduos não são aleatórios:

Exemplo: modelo quadrático

(cont.)


Resultados da Regressão Quadrática:


$$\lozenge = 1.539 + 1.565 \text{ Time} + 0.245 \text{ (Time)}^2$$


	Coefficients	Standard Error	t Stat	P-value
Intercept	1.53870	2.24465	0.68550	0.50722
Time	1.56496	0.60179	2.60052	0.02467
Time-squared	0.24516	0.03258	7.52406	1.165E-05

Regression Statistics	
R Square	0.99494
Adjusted R Square	0.99402
Standard Error	2.59513

F	Significance F
1080.7330	2.368E-13

A transformação em Log

O modelo multiplicativo:

Modelo multiplicativo original

$$Y = \beta_0 X_1^{\beta_1} X_2^{\beta_2} \epsilon$$

Modelo multiplicativo transformado

$$\log(Y) = \log(\beta_0) + \beta_1 \log(X_1) + \beta_2 \log(X_2) + \log(\epsilon)$$

Interpretação dos coeficientes

Para o modelo multiplicativo:

$$log Y_i = log \beta_0 + \beta_1 log X_{1i} + log \epsilon_i$$

Quando as variáveis dependentes e independentes são registradas:

O coeficiente da variável independente X_k pode ser interpretado como:

Uma mudança de 1% em X_k leva a uma mudança de b_k % na media do valor de Y

 \bullet b_k é a elasticidade de Y com respeito a uma mudança de X_k

Variáveis Dummy

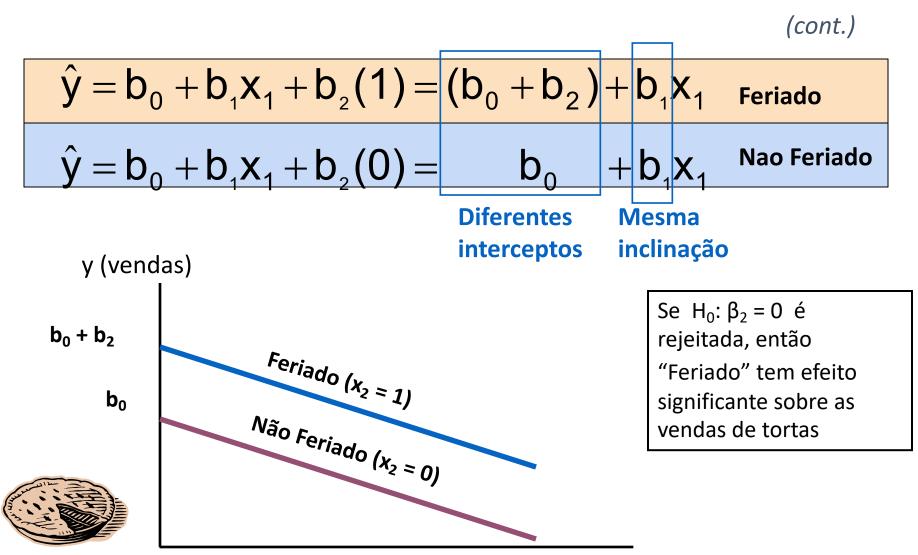
- Uma variável dummy é uma variável independente categórica com dois níveis:
- sim ou não, ligado ou desligado, masculino ou feminino
- registrado como 0 ou 1
- Os interceptos de regressão são diferentes se a variável for significativa
- Assume inclinações iguais para outras variáveis
- Se houver mais de dois níveis, o número de variáveis dummies necessárias é (número de níveis - 1)

Exemplo Variáveis Dummies

$$|\hat{y} = b_0 + b_1 x_1 + b_2 x_2|$$

Seja:

y = Quantidade de tortas vendidas


 $x_1 = Preço$

 $x_2 = Feriado$ ($x_2 = 1$ se um feriado ocorre durante a semana)

 $(X_2 = 0 \text{ se não tem feriado na semana})$

Exemplo Variáveis Dummies

Estatística II

x₁ (Price)

Interpretando o coeficiente da variável Dummy

Exemplo:

$$\widehat{Vendas} = 300 - 30 * Preco + 15 * Feriado$$

Vendas: número de tortas vendidas por semana Preço: preço da torta em \$

Feriado: 1 se um feriado ocorre durante a semana 0 se um feriado não ocorre durane a semana

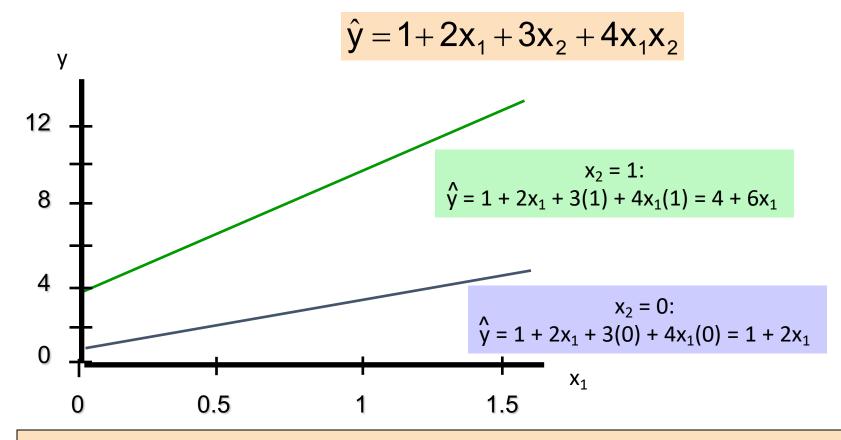
 b_2 = 15: em média, as vendas foram 15 tortas maiores nas semanas com feriado do que nas semanas sem feriado, dado o mesmo preço

Interação entre variáveis explicativas

- Hipótese de interação entre um par de variáveis x
 - Resposta à uma variável x pode variar em diferentes níveis de outra variável x
- Contém o produto cruzado de dois termos

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$
$$= b_0 + b_1 x_1 + b_2 x_2 + b_3 (x_1 x_2)$$

Efeito de Interação


• Dado:

$$Y = \beta_0 + \beta_2 X_2 + (\beta_1 + \beta_3 X_2) X_1$$
$$= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

Sem o termo de Interação, o efeito de X_1 sobre Y é medido por β_1 Com o termo de Interação, o efeito de X_1 sobre Y é medido por $\beta_1 + \beta_3 X_2$ Efeito das mudanças quando X_2 muda é $\beta_2 + \beta_3 X_1$

Exemplo de Interação

Suponha que x₂ é uma variável dummy e a equação da regressão estimada é

As inclinações são diferentes de o efeito de x_1 sobre y depende do valor de x_2

Significância do termo de interação

- O coeficiente b_3 é uma estimatica da diferença no coeficiente de x_1 quando $x_2 = 1$ comparado com quando $x_2 = 0$
- A estatística t para b₃ pode ser usada para testar a hipótese

$$H_0: \beta_3 = 0 \mid \beta_1 \neq 0, \beta_2 \neq 0$$

 $H_1: \beta_3 \neq 0 \mid \beta_1 \neq 0, \beta_2 \neq 0$

• Se rejeitarmos a hipótese nula, concluímos que há uma diferença no coeficiente de inclinação para os dois subgrupos

Pressupostos do modelo de regressão múltipla

Erros (resíduos) do modelo de regressão múltipla

$$e_i = (y_i - y_i)$$

Pressupostos:

- Os erros são normalmente distribuídos
- Os erros têm uma variação constante
- Os erros do modelo s\u00e3o independentes

Análise de resíduos em regressão múltipla

- Esses gráficos residuais são usados em regressão múltipla:
 - Resíduos vs. $\hat{y_i}$
 - Resíduos vs. x_{1i}
 - Resíduos vs. x_{2i}
 - Resíduos vs. tempo (se for dados de série de tempo)

Use os gráficos residuais para verificar as violações das suposições de regressão