Teste de Hipótese – Aula 04

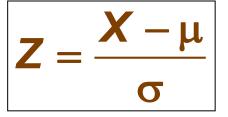
Statistics for Business and Economics 7 edição, by Paul Newbold, William Carlson, Betty Thorne (cap. Hypothesis Testing: Single Population)

Bussab e Morettin (Cap 13 Teste de Hipótese)

Statistics for Economics, Accounting and Business Studies, capítulo 5, Barrow (Cap. 5 Hypothesis testing)

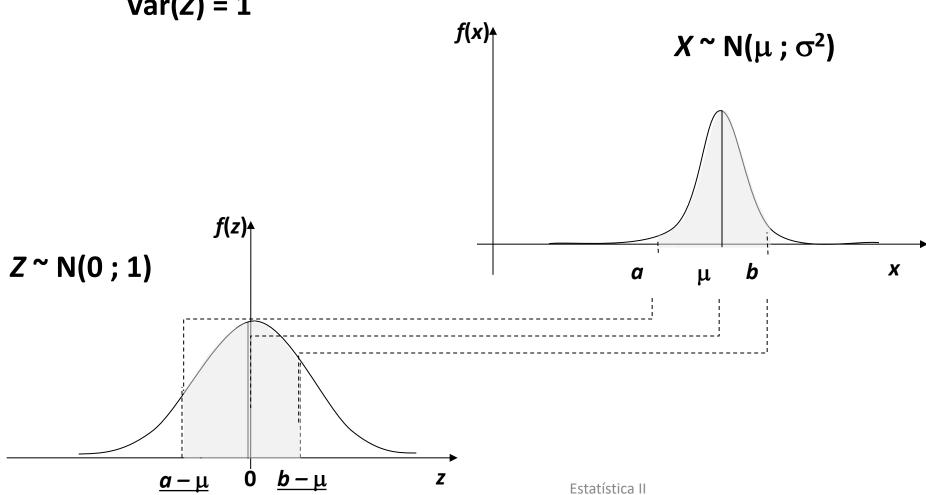
Marislei Nishijima

Se
$$X \sim N(\mu; \sigma^2)$$
, definimos
E(Z) = 0



Lembrando!!!

σ



O que é uma Hipótese?

Uma hipótese é uma afirmação (suposição) sobre um parâmetro de população:

Média da população

Exemplo: a média mensal de gasto com celular numa cidade é de μ =\$42

Proporção da população

Exemplo: A proporção de adultos que possui celular numa cidade é de p = .68

A Hipótese Nula, H_o

• Estabelece a hipótese (numérica) a ser testada

Exemplo: O múmero médio de TVs nas residências dos EUA é igual a 3 (H_0 : μ = 3)

 Sempre se refere a um parâmetro populacional nunca à amostra.

A Hipótese Nula, H₀

(cont.)

Comece com a suposição de que a hipótese nula é verdadeira

Semelhante à noção de inocente até que se prove o contrário

Refere-se ao status quo

Sempre contém o sinal "=", "≤" ou "≥"

Pode ou não ser rejeitado

A Hipótese Alternativa, H₁

É o oposto da hipótese nula

por exemplo, o número médio de aparelhos de TV em residências nos EUA não é igual a 3 (H1: μ ≠ 3)

Desafia o status quo

Nunca contém o sinal "=", "≤" ou "≥"

Pode ou não ser suportado

Geralmente é a hipótese que o pesquisador está tentando sustentar

Processo de teste de hipóteses

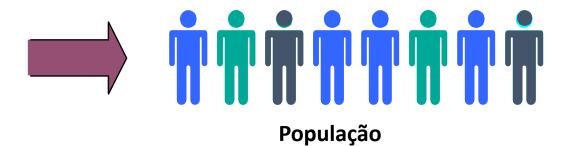
Afirmação: a

A média de idade

da população é 50.

(Hipótese Nula:

 H_0 : $\mu = 50$)

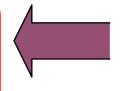


 \overline{X} =20 é provável se μ = 50?

Se não é provável,

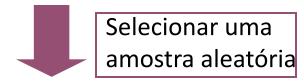
Rejeite a

Hipótese Nula



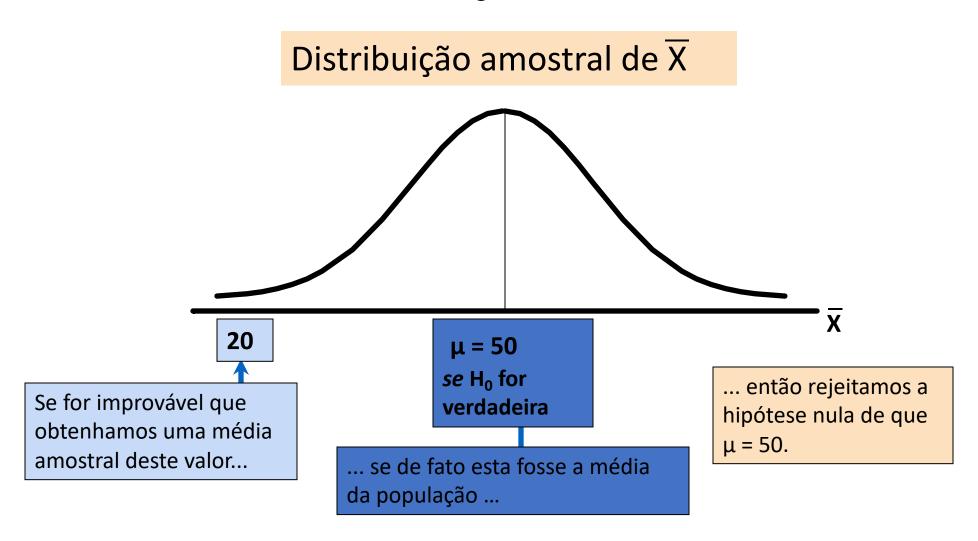
Suponha que a Média de idade

da amostra é 20: $\overline{X} = 20$



Amostra

Razões para Rejeitar H₀



Nível de significância, α

Define os valores improváveis da estatística de amostra se a hipótese nula for verdadeira

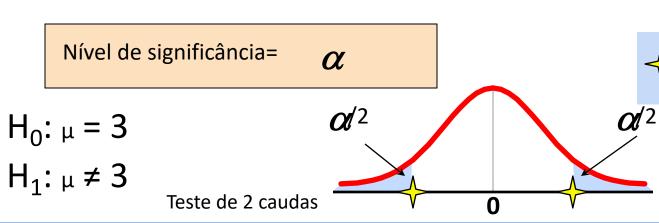
Define a região de rejeição da distribuição amostral

É designdada por α , (Nível de significância)

Valores típicos são .01, .05, ou .10

É selecionado pelo pesquisador no início Fornece o (s) valor (es) crítico (s) do teste

Nível de significância e região de rejeição



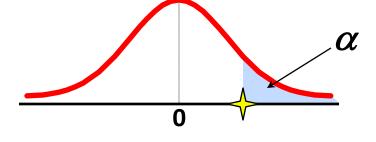
Representa os valores críticos

região de rejeição sombreada

$$H_0$$
: $\mu \le 3$ H_1 :

 $\mu > 3$

Teste da cauda superior



$$H_0$$
: μ ≥ 3

$$H_1$$
: $\mu < 3$

 α

Teste da cauda inferior

Erros ao tomar decisões

- Erro tipo I
 - Rejeitar uma hipótese nula verdadeira
 - Considerado um tipo grave de erro
- A probabilidade de erro tipo I é lpha
 - Chamado nível de significância do teste
- Definido pelo pesquisador com antecedência

Erros ao tomar decisões

(cont.)

- Erro Tipo II
- Não rejeitar uma hipótese nula falsa

A probabilidade de erro tipo II é β

Resultados e Probabilidades

Possíveis resultados do teste de hipótese

Resultado (Probabilidade)

	Situação Real	
Decisão	H ₀ Verdadeira	H ₀ Falsa
Não Rejeitar H ₀	Não Erro (1 - α)	Erro tipo II (β)
Rejeitar H 0	Erro Tipo I (α)	Não Erro (1-β)

Relação entre os Erros Tipo I e II

 Os erros Tipo I e II não podem acontecer simultâneamente

Erro Tipo I só ocorre se H₀ é verdadeira

Erro Tipo II só ocorre se H₀ é falsa

Se a probabilidade do erro Tipo I (α) 1, então

a probabiliade do erro Tipo II (β)

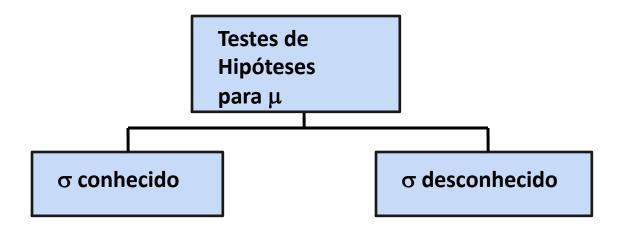
Fatores que afetam o Erro Tipo II

- Tudo o mais constante,
 - β quando a diferença entre o suposto parâmetro e o seu verdairo valor
 - β quando α
 - β quando σ
 - β quando n

O Poder do Teste

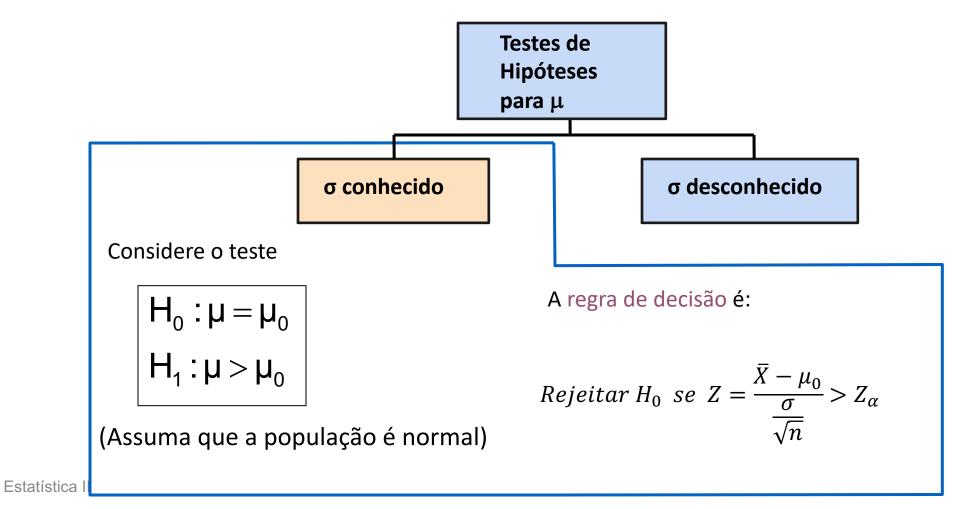
- O poder de um teste é a probabilidade de rejeitar uma hipótese nula que é falsa
- Por exemplo, Poder = $P(Rejeitar H_0 | H_1 \text{ é verdadeira})$
 - O poder do teste aumenta à medida que o tamanho da amostra aumenta

Testes de Hipóteses para a Média



Testes de Hipóteses para a Média (σ conhecido)

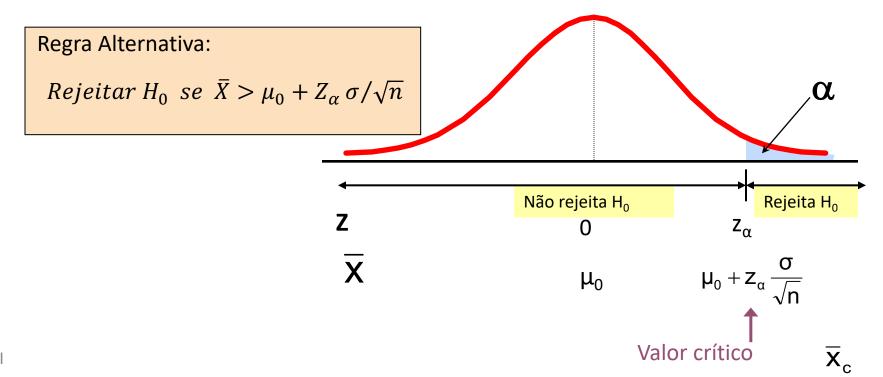
• Converta o resultado de amostra (\bar{x}) para um z valor



Regra de Decisão

Rejeitar
$$H_0$$
 se $Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > Z_{\alpha}$

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu > \mu_0$



Abordagem de p-valor para teste

- p-valor: Probabilidade de obter uma estatística de teste mais extrema (≤ ou ≥) do que a observada no valor da amostra dado que H₀ é verdadeira
 - Também chamado de nível de significância observada
 - Valores menores de α para que H_0 possa ser rejeitada

Abordagem de p-valor para teste

(cont.)

Converter o resultado da amostra (ex., \overline{X}) para a estatística de teste (ex, statística z)

Obter o p-valor

Para um teste na cauda superior:

$$p-valor = P(Z > \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}, dado \ que \ H_0 \ \'e \ verdadeira)$$

$$= P(Z > \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} | \mu) = \mu_0$$

Regra de decisão: comparar o p-valor com α

Se p-valor $< \alpha$, rejeite H_0

Se p-valor $\geq \alpha$, não rejeite H_0

Exemplo: Teste Z de Cauda Superior para a media (σ conhecido)

Um gerente da indústria de telefonia acha que a conta mensal de telefone celular do cliente aumentou e agora está em média acima de US \$ 52 por mês. A empresa deseja testar esta afirmação. (Suponha que σ = 10 é conhecido)

Formulação do Teste de hipótese:

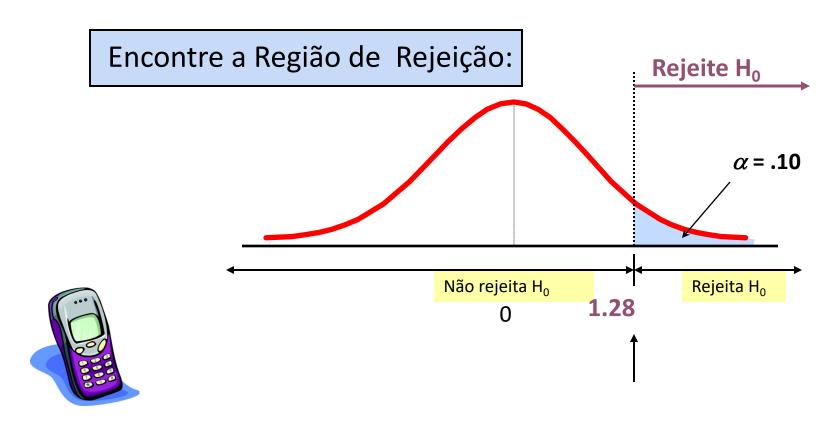
```
H_0: \mu ≤ 52 a média não é maior que $ 52 por mês
```

 H_1 : $\mu > 52$ a média é maior que \$ 52 por mês (ou seja, existem evidências suficientes para apoiar o reivindicação do gerente)

Exemplo: Encontre a Região de Rejeição

(cont.)

• Suponha que α = .10 seja escolhido para este teste



Rejeita
$$H_0$$
 se $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} > 1,28$

Exemplo: Resultados da Amostra

(cont.)

Obtenha a amostra e compute o teste estatístico

Suponha uma amostra que resulte em: $n = 64, \overline{x} = 53.1$

 $(\sigma = 10 \text{ assumido conhecido})$

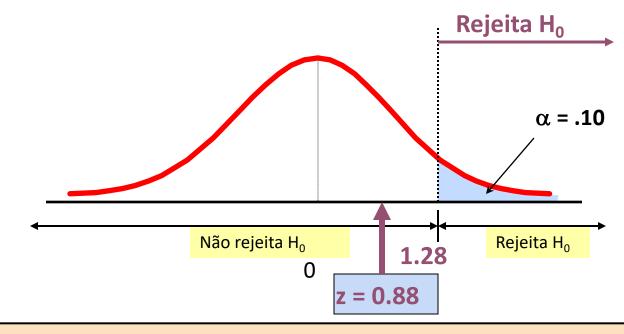
• Usando os resultados da amostra,

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{53.1 - 52}{\frac{10}{\sqrt{64}}} = 0.88$$

Exemplo: Decisão

(cont.)

Tome uma decisão e interprete o resultado:



Não rejeita H_0 desde que z = 0.88 < 1.28

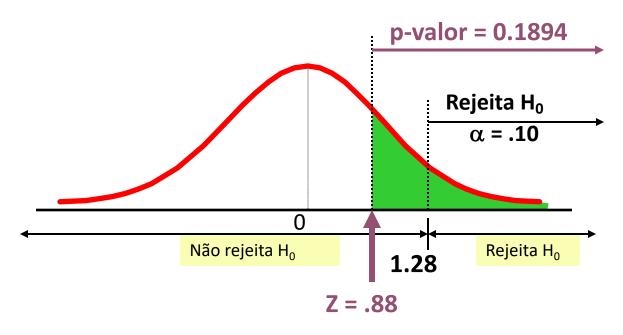
ou seja: não há evidências suficientes de que o a conta média é superior a \$ 52

Exemplo: Solução do p-Valor

(cont.)

Calcular o p-valor e comparar com α

(assumindo que $\mu = 52$)



$$P(\bar{x} \ge 53.1 | \mu = 52.0)$$

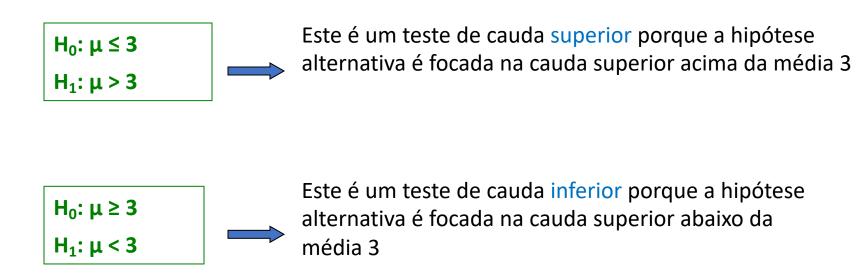
$$=P\left(z \ge \frac{53.1-52.0}{10/\sqrt{64}}\right)$$

$$=P(z \ge 0.88) = 1-.8106$$

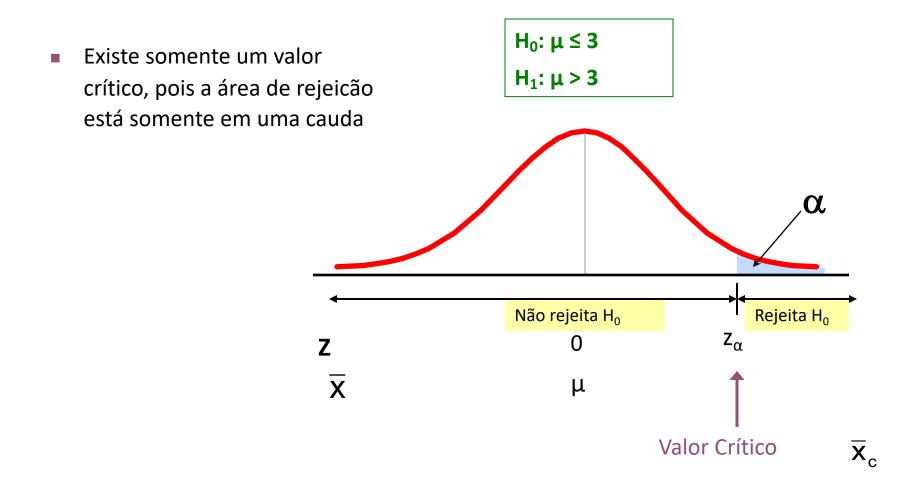
Não rejeita H_0 desde que p-valor = .1894 > α = .10

Teste de Uma Cauda

• Em muitos casos, a hipótese alternativa foca uma única direção particular

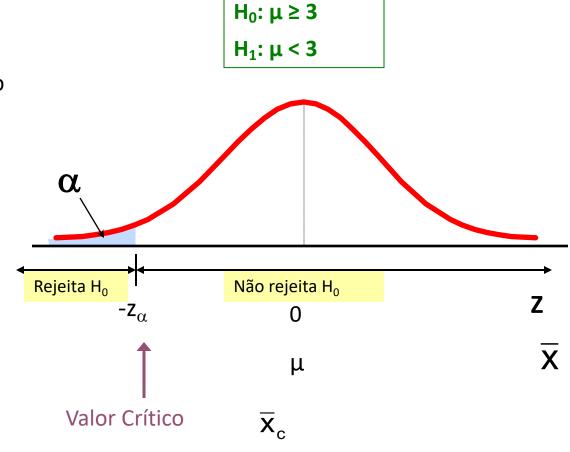


Teste de cauda superior



Teste de cauda inferior

 Existe somente um valor crítico, pois a área de rejeicão está somente em uma cauda

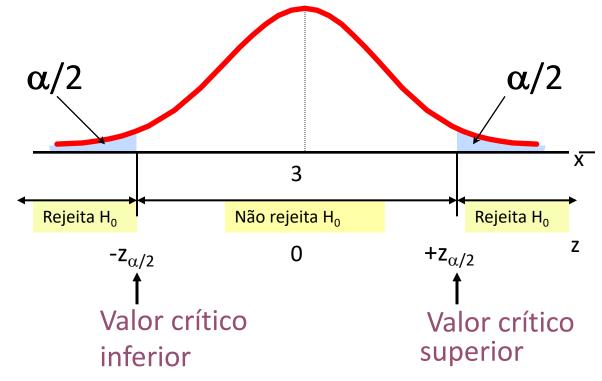


Teste de Duas Caudas

 Em alguns situações, a hipótese alternativa não especifica uma direção única

$$H_0$$
: $\mu = 3$ H_1 : $\mu \neq 3$

 Existem dois valores críticos, definindo as duas regiões de rejeição



Teste a afirmação de que o número médio verdadeiro de aparelhos de TV em residências nos EUA é igual a 3. (Assuma $\sigma = 0.8$)

Estabeleça as hipóteses nulas e alternativas apropriadas

- H_0 : $\mu = 3$, H_1 : $\mu \neq 3$ (Este é um teste de duas caudas)
- Especifique o nível de significância desejado
 - Suponha que α = .05 é escolhida para este teste
- Escolha o tamanho da amostra.
 - Suponha que o tamanho da amostra seja n = 100

(cont.)

- Determine a técnica apropriada
 - σ é conhecido então este é teste z
- Estabeleça os valores críticos
 - Para $\alpha = .05$ os z críticos são ± 1.96
- Colete os dados e compute os testes estatístico
 - Suponha que a mostra resulte em n = 100, $\bar{x} = 2.84$ ($\sigma = 0.8$ conhecido)

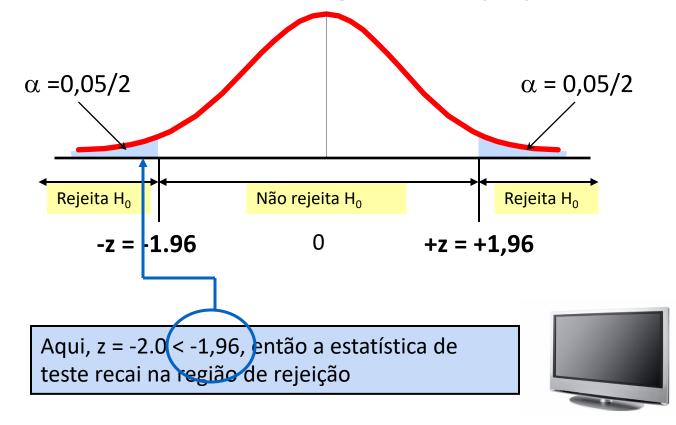
Então o teste estatístico é:

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

(cont.)

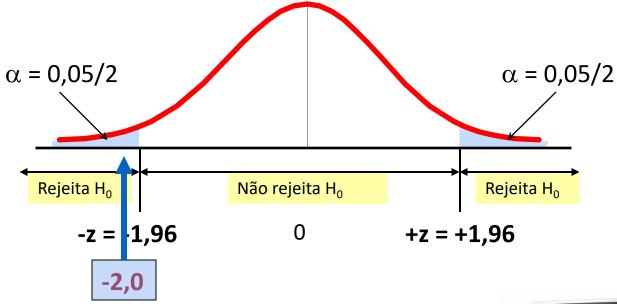
A estatística de teste está na região de rejeição?

Rejeita H₀ se z < -1,96 ou z > 1,96; caso contrário não rejeita H₀



(cont.)

Tome uma decisão e interprete os resultados

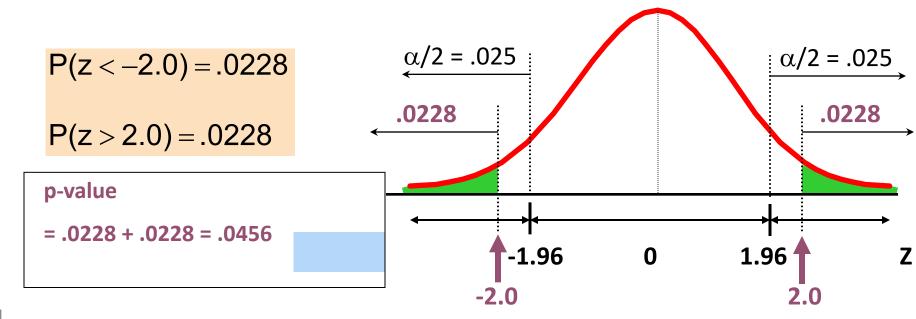


Como z = -2,0 < -1,96, <u>rejeitamos a hipótese nula</u> e concluímos que existe evidência suficiente que a média de número de TVs nas residências dos EUA não é igual a 3

Exemplo: p-Valor

• Exemplo: Quão provável é ver uma média amostral de 2,84 (ou algum valor diferente da média em qualquer direção) se a verdadeira média é μ = 3,0?

 \overline{x} = 2,84 se traduz em z = -2.0



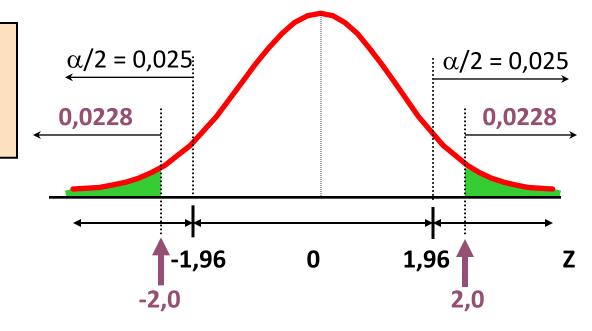
Exemplo: p-Valor

(cont.)

- Compare o p-valor com α
 - Se p-valor $< \alpha$, rejeitar H_0
 - Se p-valor $\geq \alpha$, não rejeitar H_0

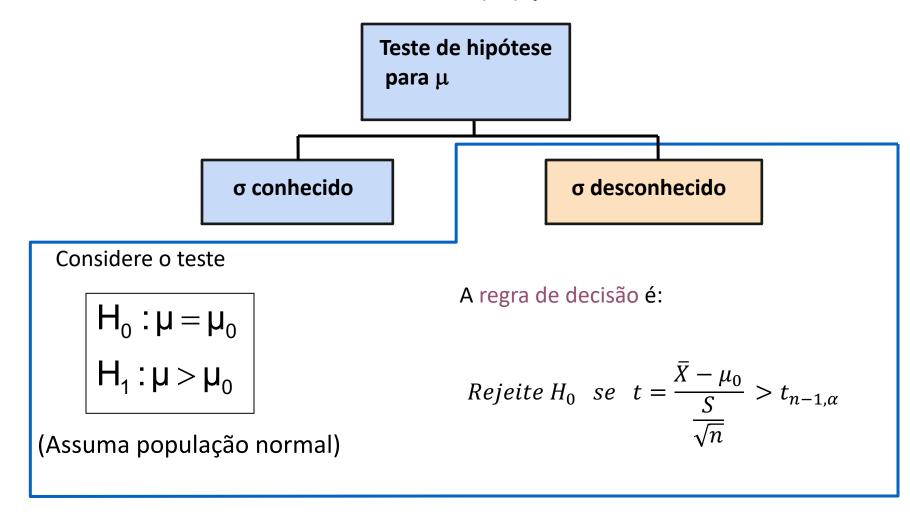
Aqui: p-valor = 0,0456 α = 0,05

Como 0,0456 < 0,05, rejeitamos a hipótese nula



Teste de Hipótese t para a média (σ desconhecido)

• Converta o reultado da amostra (x̄) para uma estística t



Estatística II

Teste de Hipótese t para a média (σ desconhecido)

(cont.)

Teste de duas caudas:

Considere o teste

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

 $H_0: \mu = \mu_0$ (Assuma população no variância populacional $H_1: \mu \neq \mu_0$ desconhecida) (Assuma população normal e

A regra de decisão é:

$$Rejeite \ H_0 \ se \ t = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} < -t_{n-1,\frac{\alpha}{2}} \quad ou \ se \ t = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1,\frac{\alpha}{2}}$$

Exemplo: Teste de Duas Caudas (σ desconhecido)

O custo médio de um quarto de hotel em Chicago é estimado em US \$ 168 por noite. Uma amostra aleatória de 25 hotéis resultou em x = \$ 172,50 e

S = \$15,40. Teste usando $\alpha = 0.05$.

(Assuma população normal)

 H_0 : $\mu = 168$

 H_1 : $\mu \neq 168$

Exemplo Solução: Teste de Duas Caudas

$$H_0$$
: $\mu = 168$

$$H_1$$
: $\mu \neq 168$

•
$$\alpha = 0.05$$

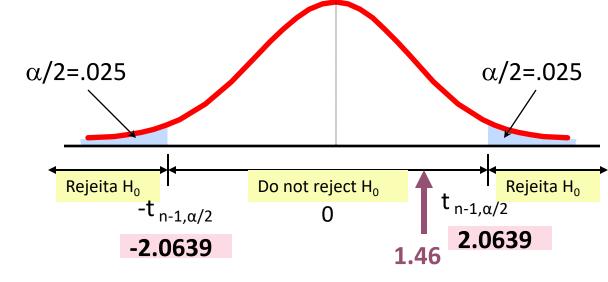
•
$$n = 25$$

 σ é desconhecido, então, usar

uma testatística t

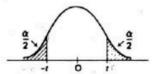
Critical Value:

$$t_{24,.025} = \pm 2.0639$$



Não rejeitamos H₀: não há evidência suficiente de que o verdadeiro custo seja diferente de \$168

TABELA DA DISTRIBUIÇÃO t de STUDENT



4	0,50	0,25	0,10	0,05	0,025	0,01	0,005
1	1,00000	2,4142	6.3138	12.706,	25,542	63,657	127,32
2	0,81650	1,6036	2,9200	4,3127	6,2053	9,9248	14,089
3	0,76489	1,4226	2,3534	3,1825	4,1765	5,8409	7,4533
4	0,74070	1,3444	2,1318	2,7764	3,4954	4,6041	5,5976
5	0,72669	1,3009	2,0150	2,5706	3,1634	4,0321	4,7733
6	0,71756	1,2733	1,9432	2,4469	2,9687	3,7074	4,3168
7	0,71114	1,2543	1,8946	2,3646	2,8412	3,4995	4,0293
8	0,70639	1,2403	1,8595	2,3060	2,7515	3,3554	3,8325
9	0,70272	1,2297	1,8331	2,2622	2,6850	3,2498	3,6897
10	0,69981	1,2213	1,8125	2,2281	2,6338	3,1693	3,5814
11	0,69745	1,2145	1,7959	2,2010	2,5931	3,1058	3,4966
12	0,69548	1,2089	1,7823	2,1788	2,5600	3,9545	3,4284
13	0,69384	1,2041	1,7709	2,1604	2,5326	3,0123	3,3725
14	0,692	1,2001	1,7613	2,1448	2,5096	2,9768	3,3257
15	0,69120	1,1967	1,7530	2,1315	2,4899	2,9467	3,2860
16	0,69013	1,1937	1,7459	2,1199	2,4729	2,9208	3,2520
17	0,68919	1,1910	1,7396	2,1098	2,4581	2,8982	3,2225
18	0,68837	1,1887	1,7341	2,1009	2,4450	2,8784	3,1966
19	0,68763	1,1866	1,7291	2,0930	2,4334	2,8609	3,1737
20	0,68696	1,1848	1,7247	2,0860	2,4231	2,8453	3,1534
21	0,68635	1,1831	1,7207	2,0796	2,4138	2,8314	3,1352
22	0,68580	1,1816	1,7171	2,0739	2,4055	2,8188	3,1188
23	0,68531	1,1802	1,7139	. 2,0687	2,3979	2,8073	3,1040
24	0,68485	1,1789	1,7109	2,0639	2,3910	2,7969	3,0905
25	0,68443	1,1777	1,7081	2,0595	2,3846	2,7874	3,0782
26	0,68405	1,1766	1,7056	2,0555	2,3788	2,7787	3,0669
27	0,68370	1,1757	1,7033	2,0518	2,3734	2,7707	3,0565
28	0,68335	1,1748	1,7011	2,0484	2,3685	2,7633	3,0469
29	0,68304	1,1739	1,6991	2,0452	2,3638	2,7564	3,0380
30	0,68276	1,1731	1,6973	2,0423	2,3596	2,7500	3,0298
40	0,68066	1,1673	1,6839	2,0211	2,3289	2,7045	2,9712
60	0,67862	1,1616	1,6707	2,0003	2,2991	2,6603	2,9146
120	0,67656	1,1559	1,6577	1,9799	2,2699	2,6174	2,8599
•	0,67449	1,1503	1,6449	1,9600	2,2414	2,5758	2,8070

Testes para a Proporção da População

- Envolve variáveis categóricas
- Dois resultados possíveis
- "Sucesso" (uma certa característica está presente)
- "Falha" (a característica não está presente)
- A fração ou proporção da população na categoria de "sucesso" é denotada por P
- Suponha que o tamanho da amostra seja grande

Proporções

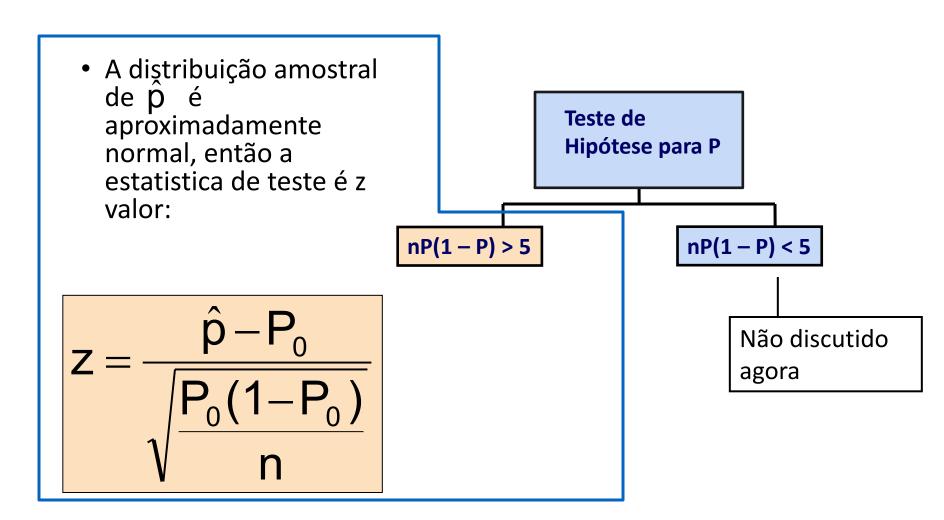
(cont.)

- Proporção amostral na categoria de sucesso é denominada por p̂
 - $\hat{p} = \frac{x}{n} = \frac{\text{number of successes in sample}}{\text{sample size}}$
- Quando nP(1-P) > 5, \hat{P} pode ser aproximado por uma distribuição normal com media e desvio padrão

$$\mu_{\hat{p}} = P$$

$$\sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}}$$

Teste de Hipótese para Proporções



Exemplo: Teste Z para Proporção

Uma empresa de marketing diz que recebeu 8% de respostas por correio. Para testar se a afirmação é verdadeira, uma amostra aleatória de 500 observações e 25 respostas declaradas como vindo do correio. Teste ao nível de significância de α = 0.05a afirmação.

Checar:

Nossa aproximação para P é $\hat{p}=25/500=.05$

$$nP(1 - P) = (500)(.05)(.95)$$

= 23.75 > 5

Teste de Proporção Z: Solução

 H_0 : P = .08

 $H_1: P \neq .08$

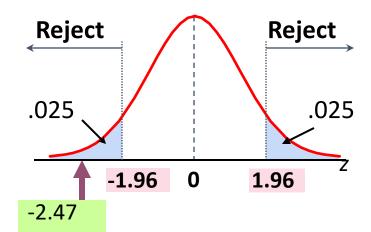
$$\alpha = .05$$

$$n = 500, \hat{p} = .05$$

Estatística de Teste:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1 - .08)}{500}}} = -2.47$$

Valores críticos: ± 1.96



Decisão:

Rejeitar H_0 a α = .05

Conclusão:

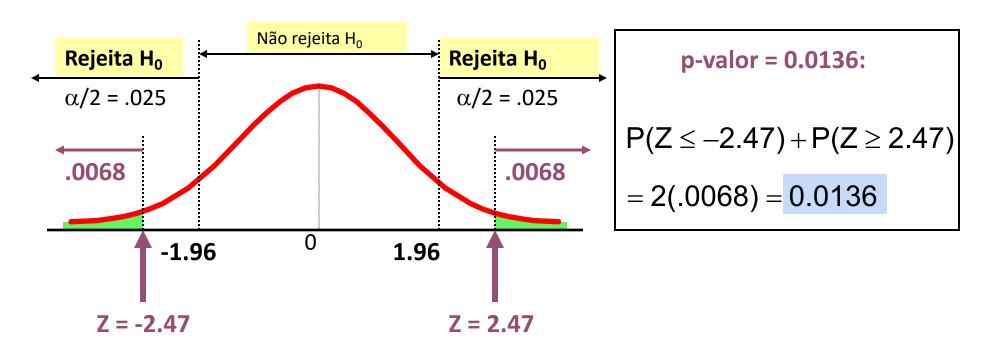
Há evidências suficientes para rejeitar a alegação da empresa de taxa de resposta de 8%.

Solução do p-Valor

(cont.)

Calcule o p-valor e compare com α

(Para teste de dois lados o p-valor é sempre de dois lados)



Rejeita H_0 quando p-valor = 0.0136 < α = 0.05

Poder do Teste

• Relembre os possíveis resultados do teste de

hipótese

Resultado (Probabilidade)

	Situação verdadeira			
Decisão	H ₀ Verdade	H _o Falsa		
Não Rejeita H _o	Sem erro (1 - α)	Erro Tipo II (β)		
Rejeita H ₀	Erro Tipo I (α)	Sem erro (1-β)		

- β denota a probabilidade do Erro Tipo II
- 1β é definido como o poder do teste

Poder = $1 - \beta$ = a probabilidade que uma falsa nula seja rejeitada

Erro Tipo II

Assuma que a população é normal com variância conhecida. Considere o teste

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

A regra de decisão é:

Reject
$$H_0$$
 if $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha}$ or Reject H_0 if $\overline{x} = \overline{x}_c > \mu_0 + Z_{\alpha} \sigma / \sqrt{n}$

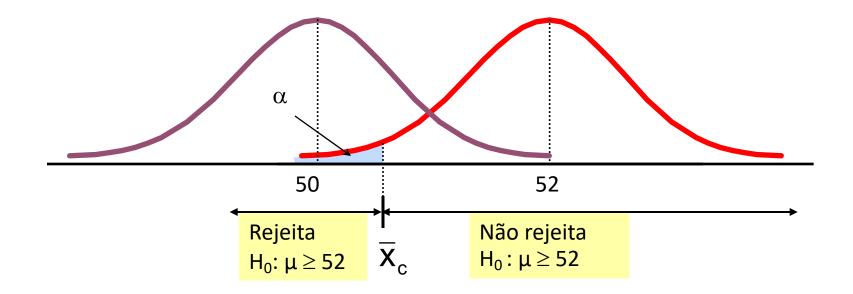
Se a hipótese nula for falsa e a média verdadeira for μ^* , então a probabilidade de erro do tipo II é

$$\beta = P(\overline{x} < \overline{x}_c \mid \mu = \mu^*) = P\left(z < \frac{\overline{x}_c - \mu^*}{\sigma / \sqrt{n}}\right)$$

Exemplo de Erro Tipo II

 Erro Tipo II é a probabilidade de falhar em rejeitar uma falsa H₀

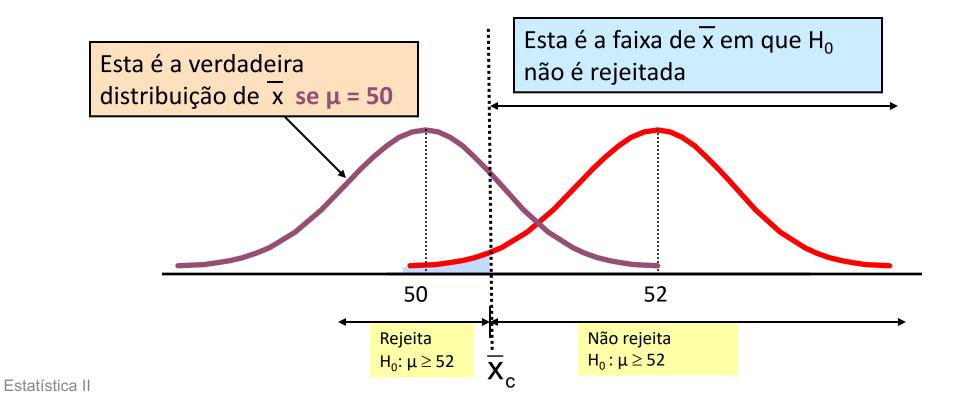
Suponha que falhemos em rejeitar H_0 : $\mu \ge 52$ Quando a verdeira media é $\mu^* = 50$



Exemplo de Erro Tipo II

(cont.)

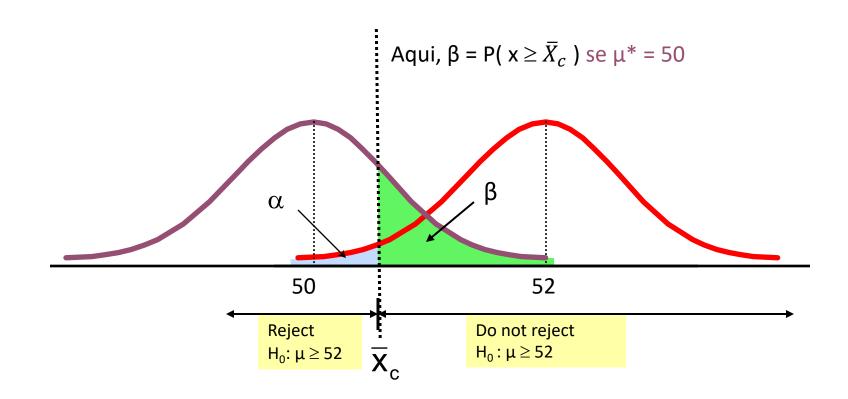
Suponha que não rejeitemos H_0 : $\mu \ge 52$ quando a verdadeira média é $\mu^* = 50$



Exemplo de Erro Tipo II

(cont.)

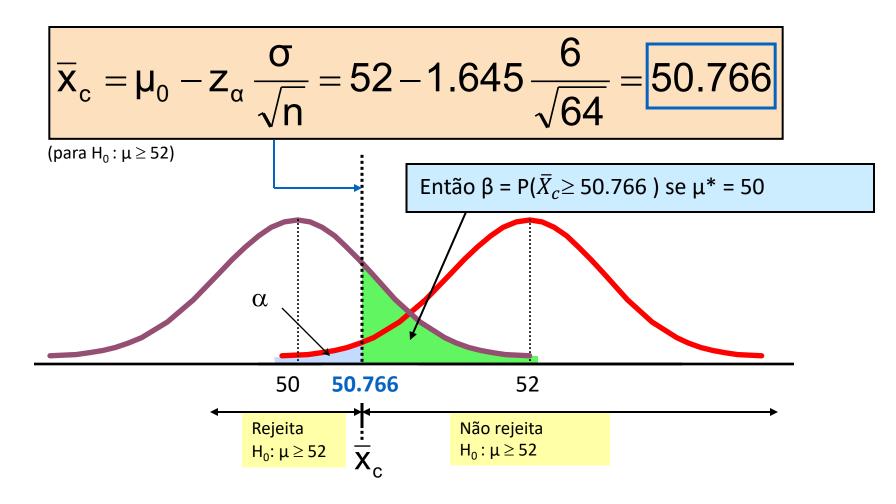
Suponha que não rejeitemos H_0 : $\mu \ge 52$ quando a verdadeira média é $\mu^* = 50$



Calculando B

Estatística II

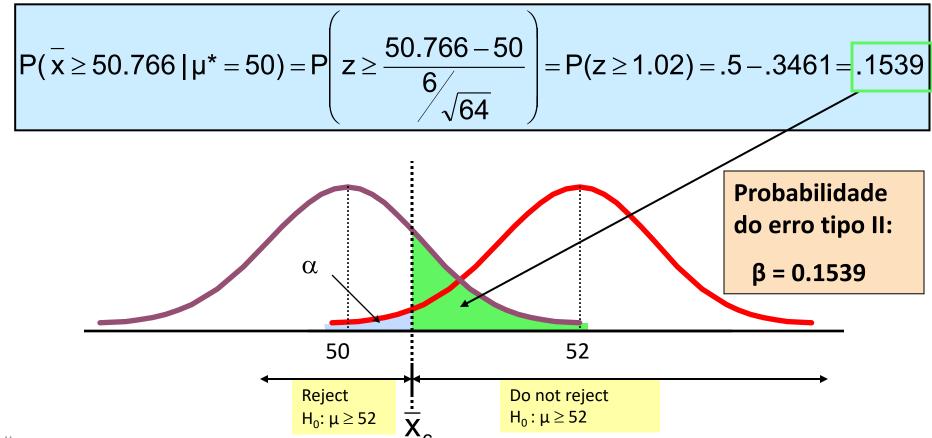
• Suponha n = 64 , σ = 6 , e α = 0.05



Calculando B

(cont.)

• Suponha n = 64 , σ = 6 e α = 0.05



Exemplo de Poder do Teste

Se a verdadeira média é $\mu^* = 50$,

- A probabilidade do Erro Tipo II = β = 0.1539
- O poder do teste = $1 \beta = 1 0.1539 = 0.8461$

Resultado (Probabilidade)

	Situação real		
Decisão	H ₀ Verdadeira	H _o Falsa	
Não Rejeita H _o	Sem erro $1 - \alpha = 0.95$	Erro Tipo II β = 0.1539	
Rejeita H _o	Erro Tipo I α = 0.05	Sem erro 1 - β = 0.8461	

(O valor de β e o poder do teste serão diferentes para cada μ^*)