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A toy example

• Consider two antennas receiving a signal s(t) emitted by a source in
the far-field

y2(t) ≃ As(t− t0 −∆t)

y1(t) ≃ As(t− t0)

s(t)

• The time delay ∆t depends on the direction of arrival θ of s(t) and
on the relative (known) positions of the antennas:
• if θ is known, one can obtain s(t): spatial filtering (beamforming)
• if one can estimate ∆t from y1(t) and y2(t), then θ follows: source

localization.
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A toy example

• For narrowband signals, a delay amounts to a phase shift. Hence

y1(t) = As(t) + n1(t)

y2(t) = As(t)eiφ + n2(t)

• Let us estimate s(t) using a linear filter:

ŝ(t) = w1y1(t) + w2y2(t) = As(t)[w1 + w2e
iφ] + [w1n1(t) + w2n2(t)]

• The output signal to noise ratio (SNR) is given

SNR =
|w1 + w2e

iφ|2
|w1|2 + |w2|2

|A|2Ps
Pn

and is maximal for w2 = w1e
−iφ, so that ŝ(t) ∝ y1(t) + y2(t)e

-iφ.

O. Besson (ISAE-SUPAERO) Introduction to array processing 4 / 113



Array of sensors

Potentialities

Array of sensors offer an additional dimension (space) which enables one,
possibly in conjunction with temporal or frequency filtering, to perform
spatial filtering of signals:

1 source separation

2 direction finding

Fields of application

1 radar, sonar (detection, target localization, anti-jamming)

2 communications (system capacity improvement, enhanced signals
reception, spatial focusing of transmissions, interference mitigation)
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Arrays and waveforms

y

z

x

⋆~k

θ

φ

• The array performs spatial sampling of a wavefront impinging from
direction(θ, φ).

• Assumptions: homogeneous propagation medium, source in the
far-field of the array → plane wavefront.
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Multi-channel receiver
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Signals (in the frequency domain)

ω

X̆(ω)

S(ω)H̆(ω) H̆(ω)

−ωc ωc
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Signals and receiver

Source signal (narrowband)

x̆(t) = 2Re
{
s(t)eiωct

}

, Re
{
α(t)eiφ(t)eiωct

}

= α(t) cos [ωct+ φ(t)]

α(t) and φ(t) stand for amplitude and phase of s(t), and have slow
time-variations relative to fc.

Channel response

Receive channel number n has impulse response h̆n(t).
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Model of received signals

• Signal received on n-th antenna

y̆n(t) = αh̆n(t) ∗ x̆(t− τn) + n̆n(t)

where τn is the propagation delay to n-th sensor.

• In frequency domain :

Y̆n(ω) = αH̆n(ω)X̆(ω)e−iωτn + N̆n(ω)

• After demodulation (ω → ω + ωc) and lowpass filtering:

Yn(ω) = αH̆n(ω + ωc)S(ω)e−i(ω+ωc)τn + N̆n(ω + ωc)

'αH̆n(ωc)S(ω)e−iωcτn + N̆n(ω + ωc)
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Model of received signals

• Taking the inverse Fourier transform F−1 (Yn(ω)) yields

yn(t) ' αH̆n(ωc)s(t)e
−iωcτn + nn(t)

• The signal is then sampled (temporally) at rate Ts to obtain the N |K
data matrix:

1

2

N

Space

TimeTs 2Ts KTs

y1(Ts)

y2(Ts)

...

yN (Ts)

y1(2Ts)

y2(2Ts)

...

yN (2Ts)

y1(KTs)

y2(KTs)

...

yN (KTs)

y(1) y(2) y(K)
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Model of received signals

• The snapshot at time index k writes

y(k) =




y1(kTs)
y2(kTs)

...
yN (kTs)


 = α




H̆1(ωc)e
−iωcτ1

H̆2(ωc)e
−ωcτ2

...

H̆N (ωc)e
−iωcτN


 s(kTs) +




n1(kTs)
n2(kTs)

...
nN (kTs)




• Assuming all H̆n(ωc) are identical and absorbing α and H̆n(ωc) in
s(kTs), we simply write

y(k) = a(θ)s(k) + n(k)

where a(θ) is the vector of phase shifts, referred to as the steering
vector since τn depends only on the directions(s) of arrival of the
source.
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Model of received signals

Snapshot at time index k

The snapshot received in the presence of P sources is given by

y(k) =

P∑

p=1

a(θp)sp(k) + n(k)

=
[
a(θ1) . . . a(θP )

]


s1(k)

...
sP (k)


+ n(k)

=
N |P

A(θ)s(k)
P |1

+ n(k)
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Steering vector

y

z

x

⋆~k

θ

φ

τn =
1

c
[xn cos θ cosφ+ yn cos θ sinφ+ zn sin θ]

an(θ, φ) = ei
2π
λ
[xn cos θ cosφ+yn cos θ sinφ+zn sin θ]
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Uniform linear array (ULA)

Steering vector

1 2 3 N

θ
d sin θ

d

⋆

a(θ) =
[
1 ei2πfs · · · ei2π(N−1)fs

]T
; fs = fc

d sin θ

c
=
d

λ
sin θ

Shannon spatial sampling theorem

|fs| ≤ 0.5⇒ d ≤ λ

2
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Covariance matrix

Definition

The covariance matrix is defined as

R = E
{
y(k)yH(k)

}

= E








y1(k)
y2(k)

...
yN (k)



[
y∗1(k) y∗2(k) . . . y∗N (k)

]





R(n, `) = E {yn(k)y∗` (k)} measures the correlation between signals
received at sensors n and `, at the same time index k.
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Structure of the covariance matrix

Signals covariance matrix

The covariance matrix of the signal component is

R = E
{
A(θ)s(k)sH(k)AH(θ)

}
= A(θ)RsA

H(θ)

=

P∑

p=1

Ppa(θp)a
H(θp) (uncorrelated signals)

Provided that Rs is full-rank (non coherent signals), the signal covariance
matrix has rank P and its range space is spanned by the steering vectors
a(θp), p = 1, · · · , P .

Noise covariance matrix

Assuming spatially white noise (i.e., uncorrelated between channels) with
same power on each channel, E

{
n(k)nH(k)

}
= σ2I.
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Model limitations

y(k) = a(θ)s(k) + n(k) is an idealized model of the signals received on
the array. It does not account for:

• a possibly non homogeneous propagation medium which results in
coherence loss and wavefront distortions. This leads to amplitude and
phase variations along the array, i.e.
yn(k) = gn(k)eiφn(k)an(θ)s(k) + nn(k).

• uncalibrated arrays, i.e., different amplitude and phase responses for
each channel.

• wideband signals for which a time delay does not amount to a simple
phase shift. In the frequency domain, one has
y(f) = af (θ)s(f) + n(f) with

af (θ) =
[
1 e−i2πfτ(θ) · · · e−i2πf(N−1)τ(θ)

]T
.

• possibly colored reception noise, i.e. E
{
n(k)nH(k)

}
6= σ2I.
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Spatial filtering

Principle: use a linear combination of the sensors outputs in order to
point towards a looked direction.

y1(k)

⊗
w∗

1

y2(k)

⊗
w∗

2

yN (k)

⊗
w∗

N

Σ

yF (k) =
∑N

n=1 w
∗
nyn(k) ≃ as(k)

s(t) i(t)
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Array beampattern

• For any weight vector w, the corresponding array beampattern is
defined as Gw(θ) = |gw(θ)|2 with gw(θ) = wHa(θ).

• For a uniform linear array, the natural beampattern, obtained as a
simple sum (wn = 1) of the sensors outputs, is given by

g(θ) =

N−1∑

n=0

ei2πn
d
λ
sin θ

= eiπ(N−1)
d
λ
sin θ × sin

[
πN d

λ sin θ
]

sin
[
π dλ sin θ

]

G(θ) = |g(θ)|2 =

∣∣∣∣∣
sin
[
πN d

λ sin θ
]

sin
[
π dλ sin θ

]
∣∣∣∣∣

2

O. Besson (ISAE-SUPAERO) Introduction to array processing 22 / 113



ULA beampattern
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Windowing

−80 −60 −40 −20 0 20 40 60 80
−70

−60

−50

−40

−30

−20

−10

0

10
 ULA beampattern with windowing

 d
B

 Angle of arrival

 

 
Rect
Cheb 30dB
Cheb 50dB

O. Besson (ISAE-SUPAERO) Introduction to array processing 24 / 113



Beamforming

Objective

We aim at pointing towards a given direction in order to enhance reception
of the signals impinging from this direction, and to possibly mitigate
interference located at other directions.

Principle

Each sensor output is weighted by w∗n before summation:

yF (k) =

N∑

n=1

w∗nyn(k) =
[
w∗1 w∗2 · · · w∗N

]
y(k) = wHy(k).

Question

How to choose w such that, if y(k) = a(θs)s(k) + · · · then at the output
yF (k) ' αs(k)?
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Conventional beamforming

Conventional beamforming: w ∝ a(θs)

yF (k) = aH(θs)a(θs)s(k) [w = a(θs), 1 source at θs]

=

N−1∑

n=0

e−i2π
d
λ
n sin θs × e+i2π dλn sin θs s(k)

=

N−1∑

n=0

s(k) = Ns(k)

so that the gain towards θs is maximal and equal to N . The beamfomer
wCBF = a(θs)/[a

H(θs)a(θs)] is referred to as the conventional beamformer.

Principle

One compensates for the phase shift induced by propagation from
direction θs and then sum coherently.
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Array beampattern with conventional beamforming
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SNR improvement

Before beamforming

y(k) = ass(k) + n(k); SNRelem ,
E
{
|s(k)|2

}

E {|nn(k)|2} =
P

σ2
.

After beamforming

yF (k) = wHy(k) = wHass(k) + wHn(k)

SNRarray =
|wHas|2
‖w‖2 SNRelem ≤ ‖as‖2SNRelem = N × SNRelem

with equality if w ∝ as.

White noise array gain

For any w such that wHas = 1, the white noise array gain is
AWN = SNRarray/SNRelem = ‖w‖−2 ≤ N .
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Conventional beamforming versus adaptive beamforming

Conventional beamforming

The conventional beamformer is optimal in white noise: it amounts to

minimize wHw (the output power in white noise) under the constraint
wHa(θs) = 1. Any other direction is deemed to be equivalent ⇒ it does
not take into account other signals (interference) present in some
directions.

Adaptive beamforming

Adaptive beamforming takes into account these other signals. It consists

in minimizing the output power E
{∣∣wHy(k)

∣∣2
}

while maintaining a

unit gain towards looked direction ⇒ tends to place nulls towards
interfering signals.
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Adaptive beamforming

Beamforming-filtering in the presence of interference

• The received (input) signal in the presence of interference and noise is
given by

y(k) = ass(k) + yI(k) + n(k)

where as is the actual SOI steering vector.

• At the output of the beamformer

y(k) = ass(k) + yI(k) + n(k)

input
w

wHass(k) +wH [yI(k) + n(k)]

signal interference+noise
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Signal to interference plus noise ratio (SINR)

Definition of SINR

For a given beamformer w, the usual figure of merit is the signal to
interference plus noise ratio (SINR), defined as

SINR(w) =
E
{∣∣wHass(k)

∣∣2
}

E
{
|wH [yI(k) + n(k)]|2

}

=
Ps
∣∣wHas

∣∣2

wHCw

where C = E
{

[yI(k) + n(k)] [yI(k) + n(k)]H
}

stands for the

interference plus noise covariance matrix.
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Optimal beamformer: SINR maximization

Optimal beamformer

Maximize SINR while ensuring a unit gain towards as:

min
w

wHCw subject to wHas = 1 (optimal)

wopt =
C−1as

aHs C−1as
→ SINRopt = Psa

H
s C−1as

Remarks
• Principle is to minimize output power (when input = yI + n) under

the constraint that the actual steering vector as goes non distorted.

• Neither as nor C will be known in practice: the actual steering vector
may be different from its expected value and C needs to be estimated
from data (which contains yI + n).
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Minimum Variance Distortionless Response (MVDR)

Principle

Minimize output power (when input = yI + n) under the constraint that
the assumed steering vector goes non distorted.

Minimization problem and solution

min
w

wHCw subject to wHa0 = 1 (MVDR)

where a0 is the assumed steering vector of the signal of interest (SoI). The
solution is given by

wMVDR =
C−1a0

aH0 C−1a0
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Minimum Power Distortionless Response (MPDR)

Principle

Minimize output power (when input = ass+ yI + n) under the constraint
that the assumed steering vector goes non distorted:

min
w

wHRw subject to wHa0 = 1 (MPDR)

where R(= C + Psasa
H
s ) stands for the signal plus interference plus

noise covariance matrix.

Solution

wMPDR =
R−1a0

aH0 R−1a0
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Summary of adaptive beamformers (known covariance
matrices)

Beamformer Principle Weight vector

Optimal min
w

wHCw s.t. wHas = 1 wopt = C−1as
aHs C−1as

MVDR min
w

wHCw s.t. wHa0 = 1 wMVDR = C−1a0

aH0 C−1a0

MPDR min
w

wHRw s.t. wHa0 = 1 wMPDR = R−1a0

aH0 R−1a0

• as (a0) the actual (assumed) steering vector

• C = cov(yI + n) and R = cov(ass+ yI + n)

O. Besson (ISAE-SUPAERO) Introduction to array processing 35 / 113



CBF vs MVDR in the case of a single interference

Derivation of SINR

In the case

y(k) = ass(k) + ajsj(k) + n(k)
[
C = Pjaja

H
j + σ2I

]

with INR =
Pj
σ2 � 1, it can be shown that

SINRCBF '
Ps
σ2
× 1

g × INR ; SINRopt '
Ps
σ2
×N(1− g)

with g = cos2 (as,aj) = |aHs aj |2/(aHs as)(a
H
j aj).

Remarks
• With CBF, the SINR decreases when Pj increases while it is

independent of Pj with adaptive beamforming.

• The SINR decreases when aj → as (g → 1).
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CBF and MVDR beampatterns
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Generalized Sidelobe Canceler

Rewriting the weight vector w (MVDR or MPDR)

The weight vector w can be decomposed into a component along a0 and
a component orthogonal to a0, i.e., w = αa0 −w⊥:

a0

b1

b2

w

αa0

w⊥

• The component along a0 ensures that the constraint is fulfilled since

wHa0 = α∗aH0 a0 −wH
⊥a0 = α∗aH0 a0 + 0⇒ α =

(
aH0 a0

)−1

• The orthogonal component w⊥ is chosen to minimize output power,
in an unconstrained way.
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Generalized Sidelobe Canceler

• w⊥ can be written as w⊥ = Bwa where the (N − 1) columns of B
form a basis of the subspace orthogonal to a0.

• Minimization of the output power can be achieved by solving one of
the two following equivalent problems:

min
wHa0=1

wHCw min
wa

(wCBF −Bwa)
H C (wCBF −Bwa)

direct form, constrained GSC form, unconstrained

• The MVDR beamformer in its GSC form is given by
wGSC = wCBF −Bw∗a where w∗a solves the above minimization
problem.
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Generalized Sidelobe Canceler

• The GSC structure can be represented as

y(k)

∣∣∣∣∣∣

a0s(k)
i(k)
n(k)

a0

aH
0 a0

d(k)

∣∣∣∣∣∣

s(k)
i1(k)
n1(k)

+

B

N |N − 1

wa

N − 1|1

z(k)

∣∣∣∣
i2(k)
n2(k)

−
+

d(k)−wH
a z(k)

main channel

auxiliary channel

auxiliary channel

s(t)

i1(t)i2(t)

where B blocks the steering vector a0.

• The (N − 1) auxiliary channels z(k) are free of signal and enable one
to infer the part of interference that went through the CBF.

• wa enables one to estimate, from z(k), the part of interference i1(k)
contained in d(k) since i1(k) is correlated with z(k) through i2(k).
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Generalized Sidelobe Canceler

Derivation of wa

• The power at the output of the beamformer is given by

E
{∣∣d(k)−wH

a z(k)
∣∣2
}

= E
{
|d(k)|2

}
−wH

a rdz − rHdzwa + wH
a Rzwa

=
[
wa −R−1z rdz

]H
Rz

[
wa −R−1z rdz

]

+ E
{
|d(k)|2

}
− rHdzR

−1
z rdz

with rdz = E {z(k)d∗(k)} and Rz = E
{
z(k)z(k)H

}
.

• The weight vector which minimizes output power is thus

wa = R−1z rdz
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Generalized Sidelobe Canceler

• The GSC form of the weight vector is given by

wGSC = wCBF −BR−1z rdz

= wCBF −B
(
BHRyB

)−1
BHRywCBF (GSC)

where Ry = R in a MPDR scenario and Ry = C in a MVDR
scenario.

• Since they solve the same problem wGSC =
(
aH0 R−1y a0

)−1
R−1y a0.

• The SINR is inversely proportional to the output power when
Ry = C, i.e.,

SINRGSC = Ps
[
wH

CBFCwCBF − rHdzR
−1
z rdz

]−1
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Minimization of the mean-square error

• Assume we have a reference signal s(k) (e.g. pilot signal). Then, one
may try to minimize the mean-square error:

E
{
|wHy(k)− s(k)|2

}
= wHRyw −wHrys − rHysw + Ps

where rys = E {y(k)s∗(k)}.
• The solution is given by

w = R−1y rys

• If rys = Psas then w = PsR
−1as, which is exactly the MPDR

beamformer (without requiring knowledge of as).
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Interpretation of optimal beamformer

• Assuming J interfering signals, then

C =

J∑

j=1

Pjaja
H
j + σ2I =

J∑

n=1

(
λn + σ2

)
unu

H
n + σ2

N∑

n=J+1

unu
H
n

where R{u1, · · · ,uJ} = R{a1, · · · ,aJ}, i.e., principal eigenvectors
span the same subspace as interference steering vectors.

• The MVDR beamformer can be rewritten as

wopt = α

[
wCBF −

J∑

n=1

λn
λn + σ2

[
uHn wCBF

]
un

]

where α = (aHs as)/(a
H
s C−1as)/σ2.
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Interpretation of optimal beamformer

• The optimal beamformer amounts to subtract from the CBF a linear
combination of the J principal eigenvectors of C.

• These “eigenbeams” enable one to evaluate the part of interference
that went through the conventional beamformer.

y(k)

wCBF

+

[
u1 · · · uJ

]

N |J




λ1
λ1+σ2 u

H
1 wCBF

...
λJ

λJ+σ2u
H
J wCBF




J |1

−
+ ⊗

α

wH
opty(k)
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Beampatterns (CBF and eigenvectors)
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Beampatterns (CBF and eigenvectors)
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SINR versus number of eigenvectors
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MVDR versus MPDR

The optimal, MVDR and MPDR beamformers are equivalent if and only if

min
w

wH
(
C + Psasa

H
s

)
w subject to wHa0 = 1 (MPDR)

≡min
w

wHCw subject to wHa0 = 1 (MVDR)

≡min
w

wHCw subject to wHas = 1 (opt)

which is true only when the 2 following conditions are satisfied:

1 the assumed steering vector a0 coincides with the actual steering
vector as: in practice, uncalibrated arrays or a pointing error lead to
a0 6= as;

2 the covariance matrix R is known: in practice, one needs to estimate
it which results in estimation errors R̂−R.

=⇒ It ensues that degradation compared to SINRopt is unavoidable in
practice, and it can be quite different between MPDR and MVDR.
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Influence of a steering vector error (MVDR)

• We assume that the SoI steering vector is a0 while it is actually as.

• The SINR obtained with wMVDR =
(
aH0 C−1a0

)−1
C−1a0 becomes

SINRMVDR =
Ps
∣∣wH

MVDRas
∣∣2

wH
MVDRCwMVDR

= Ps

∣∣aH0 C−1as
∣∣2

aH0 C−1a0

= SINRopt ×
∣∣aH0 C−1as

∣∣2

(aH0 C−1a0)(aHs C−1as)

= SINRopt × cos2
(
as,a0; C

−1) ≤ SINRopt
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Influence of a steering vector error (MPDR)

• The MPDR beamformer can be written as

wMPDR =
R−1a0

aH0 R−1a0
; R = Psasa

H
s + C

• Its SINR is decreased compared to that of the MVDR, viz

SINRMPDR =
SINRMVDR

1 +
(
2SINRopt + SINR2

opt

)
sin2 (as,a0; C−1)

≤ SINRMVDR.

• The degradation is more important as Ps increases.
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Influence of a steering vector error on beampatterns
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Influence of a steering vector error on SINR and WNAG
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Case of an uncalibrated array

• Let us consider an uncalibrated array with actual steering vector

ãn(θ) = (1 + gn)eiφnan(θ)

where {gn} and {φn} are independent random gains and phases.

• For any beamformer w, the average value of the resulting
beampattern G̃w(θ) = |wH ã(θ)|2 is related to the nominal
beampattern Gw(θ) = |wHa(θ)|2 through

E
{
G̃w(θ)

}
= |γ|2Gw(θ) +

[
1 + σ2g − |γ|2

]
‖w‖2

where σ2g = E
{
|gn|2

}
and γ = E

{
eiφn

}
.

• The term proportional to ‖w‖2 leads to sidelobe level increase ⇒
better to have high white noise array gain (low ‖w‖2 ).
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Influence of a finite number of snapshots

• In practice, K snapshots are available:

y(k) = ass(k) +

yi+n(k)︷ ︸︸ ︷
yI(k) + n(k); k = 1, . . . ,K

• The covariance matrices are thus estimated and subsequently one can
compute the corresponding beamformers as

R̂ =
1

K

K∑

k=1

y(k)yH(k) −→ wsmi
MPDR =

R̂−1a0

aH0 R̂−1a0

Ĉ =
1

K

K∑

k=1

yi+n(k)yHi+n(k) −→ wsmi
MVDR =

Ĉ−1a0

aH0 Ĉ−1a0

where smi stands for “sample matrix inversion”.
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Influence of a finite number of snapshots

• The sample beamformers wsmi
M-DR will differ from their ensemble

counterparts wM-DR since R̂ = R + ∆R and Ĉ = C + ∆C.

• The weight vectors wsmi
M-DR are random and so are their corresponding

signal to noise ratios

SINR (wsmi
MPDR) = Ps

|aH0 R̂−1as|2
aH0 R̂−1 C R̂−1a0

SINR (wsmi
MVDR) = Ps

|aH0 Ĉ−1as|2
aH0 Ĉ−1 C Ĉ−1a0

• Important issue is speed of convergence, i.e., how large should K
be for SINR (wsmi

MPDR) or SINR (wsmi
MVDR) to be “close” to SINRopt?
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SINR loss with finite number of snapshots (MVDR)

• When a0 = as, the SINR loss ρMVDR ∈ [0, 1]

ρMVDR =
SINR (wsmi

MVDR)

SINR (wopt)
=

(
aH0 Ĉ−1a0

)2

(
aH0 C−1a0

) (
aH0 Ĉ−1CĈ−1a0

)

follows a complex beta distribution, i.e.,

p(ρMVDR) =
Γ(N + 1)

Γ(N −K + 2)Γ(N − 1)
ρK−N+1
MVDR (1− ρMVDR)N−2

• The expected value is E {ρMVDR} = (K + 2−N)/(K + 1), so that
SINR (wsmi

MVDR) is (on average) within 3dB of the optimal SINR for
KMVDR = 2N − 3.
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SINR loss with finite number of snapshots (MPDR)

• As for ρMPDR it was shown that

ρMPDR =
ρ′

1 + (1− ρ′)SINRopt

where ρ′ =
(
aH0 R̂−1a0

)2
/
(
aH0 R−1a0

)
/
(
aH0 R̂−1RR̂−1a0

)
has the

same beta distribution as ρMPDR.
• The distribution of ρMPDR is

p(ρMPDR) =
Γ(K + 1)(1 + SINRopt)

K−N+2

Γ(N − 1)Γ(K −N + 2)

ρK−N+1
MPDR (1− ρMPDR)N−2

(1 + ρMPDRSINRopt)
K+1

• The average number of snapshots to achieve the optimal SINR within
3dB is about

KMPDR ' (N − 1) [1 + SINRopt]

where SINRopt ' N
(
Ps
σ2

)
. In general, KMPDR � KMVDR.
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Beampatterns with finite number of snapshots
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Distribution of SINR loss
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SINR versus number of snapshots
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How to make MPDR more robust?

Observations
• Estimation of covariance matrices leads to a significant SINR loss

(especially for the MPDR beamformer) due to

I the interference being less eliminated
I a sidelobe level increase which results in a lower white noise gain.

• In case of uncalibrated arrays, steering vector errors are all the more
emphasized that the white noise gain is low (or ‖w‖2 large).

A possible solution

Restrain ‖w‖2, or equivalently enforce a minimal white noise array
gain in order to make the MPDR beamformer more robust.
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White noise array gain versus number of snapshots
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Diagonal loading

Principle

One tries to solve

min
w

wHR̂w subject to wHa0 = 1 and ‖w‖2 = A−1WN

Solution

The Lagrangian is given by (with λ ∈ C and µ ∈ R)

L(w, λ, µ) = wHR̂w + λ
(
wHa0 − 1

)
+ λ∗

(
aH0 w − 1

)
+ µ

(
wHw −A−1WN

)

=

[
w + λ

(
R̂ + µI

)−1
a0

]H (
R̂ + µI

)[
w + λ

(
R̂ + µI

)−1
a0

]

− λ− λ∗ − µA−1WN − |λ|2aH0
(
R̂ + µI

)−1
a0.
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Diagonal loading

Solution

The solution thus takes the form wMPDR-DL = −λ
(
R̂ + µI

)−1
a0. Since

wH
MPDR-DLa0 = 1, it follows that

wMPDR-DL =

(
R̂ + µI

)−1
a0

aH0

(
R̂ + µI

)−1
a0

and µ is selected such that ‖wMPDR-DL‖−2 = AWN.
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Diagonal loading : adaptivity versus robustness
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Choice of loading level

Many different possibilities have been proposed to set the loading level:

• set AWN (slightly below N) and compute µ from ‖wMPDR-DL‖−2 = AWN.

• set µ directly, generally a few decibels above white noise level (see
discussion next slide about beampatterns and eigenvalues).

• set µ using the theory of ridge regression, which enables one to
compute µ from data.

• use that diagonal loading is the solution to the following problem

max
P,a

R̂− PaaH for ‖a− a0‖2 ≤ ε2

and compute µ from ε.

• set AWN and compute directly the diagonally loaded beamformer in
GSC form without necessarily computing µ.

• ...
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An interpretation of diagonal loading and the choice of µ

• The array beampattern with the true covariance matrix is given by

g(θ) =
α

σ2

{
aH0 a(θ)−

J∑

n=1

λn
λn + σ2

[
aH0 un

]
uHn a(θ)

}

• The array beampattern with an estimated covariance matrix becomes

gsmi(θ) =
α

λ̂min

{
aH0 a(θ)−

N∑

n=1

λ̂n

λ̂n + λ̂min

[
aH0 ûn

]
ûHn a(θ)

}

• Degradation is due to λ̂J+1 6= λ̂J+2 6= · · · λ̂N = λ̂min.

• Replacing R̂ by R̂ + µI enables one to equalize the eigenvalues,
provided that µ� σ2 and µ < λJ .
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Diagonal loading: SINR versus number of snapshots
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Diagonal loading: beampatterns
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Influence of the loading level on SINR and WNAG
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Linearly constrained beamforming

• To mitigate pointing errors, one can resort to multiple constraints, i.e.
solve the problem

min wHCw subject to ZHw = d

whose solution is w = C−1Z
(
ZHC−1Z

)−1
d.

• One can use a unit gain constraint around the presumed DOA or a
smoothness constraint:

Z =
[
a(θ0) a(θ0 + δ1) · · · a(θ0 + δL)

]
d =

[
1 1 · · · 1

]T

Z =
[
a(θ0)

∂a(θ)
∂θ

∣∣∣
θ0
· · · ∂La(θ)

∂θL

∣∣∣
θ0

]
d =

[
1 0 · · · 0

]T
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Partially adaptive beamforming

Principle

Perform beamforming in a R-dimensional subspace.

Observations
• If interference lies in a subspace, it is meaningful and maybe

beneficial to proceed in a (hopefully matched) lower-dimensional
subspace in order to better remove interference.

• Rewriting wMVDR in terms of eig(C) leads to

wMVDR ∝ wCBF −
J∑

n=1

λn
λn + σ2

[
uHn wCBF

]
un

• The rate of convergence of the MVDR is twice the number of d.o.f of
the array (N): using R < N d.o.f may decrease computational cost
and improve rate of convergence.
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Partially adaptive beamforming: structure

• Direct form:
y(k)

T

N |R

ỹ(k)

w̃

R|1

w̃H ỹ(k)

• GSC form:

y(k)

wCBF

d(k)

B

N |N − 1

z(k)

U

N − 1|R

z̃(k)

w̃

R|1

+
+

−

d(k)− w̃H z̃(k)

The (columns of) matrices T and U can be viewed as beams pointing
towards interference (and possibly the SoI) prior to filtering (beamspace
filtering).
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Derivation of the partially adaptive beamformer

Direct form

• New snapshots after transformation ỹ(k) = THy(k) whose
covariance matrix is Rỹ = THRyT.

• Minimization of the output power

min
w̃

w̃HRỹw̃ subject to w̃H ã0 = 1 (PA-DF)

where ã0 = THa0.

• The solution is given by

w̃ = αR−1ỹ ã0 ⇒ wPA-DF = αT
(
THRyT

)−1
THa0
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Derivation of the partially adaptive beamformer

GSC form

• New snapshots after transformation z̃(k) = UHz(k) = UHBHy(k)
whose covariance matrix is Rz̃ = UHRzU.

• Minimization of the output power

min
w̃
E
{∣∣d(k)− w̃H z̃(k)

∣∣2
}

(PA-GSC)

• The solution is given by

w̃ = R−1z̃ rdz̃ =
(
UHRzU

)−1
UHrdz

wPA-GSC = wCBF −BUR−1z̃ rdz̃
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Selection of matrices T and U

Fixed transformations
• For instance using subarrays or spatial filtering, i.e.

T =
[
a(θ̃1) a(θ̃2) · · ·a(θ̃R)

]

U = BH
[
a(θ̃1) a(θ̃2) · · ·a(θ̃R)

]

• In this case, the columns of U can be viewed as beamformers aimed
at intercepting the interference.

• Require some prior knowledge about the interference DOA in order
for them to pass through the beams.
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Selection of matrices T and U

Random transformations
• The ideaa is to use matrices L matrices U` drawn from a uniform

distribution on the manifold of semi-unitary N ×R matrices, i.e.

U` = X`

(
XH
` X`

)−H/2
; X`

d
= CN (0, IN , IR)

and to average the corresponding weight vectors w̃`, i.e.

w = wCBF −B

[
1

L

L∑

`=1

U`

(
UH
` RzU`

)−1
UH
` rdz

]

= wCBF −B

[
1

L

L∑

`=1

X`

(
XH
` RzX`

)−1
XH
` rdz

]

a
T. Marzetta, G. Tucci, S. Simon, “A random matrix-theoretic approach to handling singular covariance

matrices”, IEEE Transactions Information Theory, September 2011
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Selection of matrices T and U

Adaptive transformations

Matrices T or U depend on the snapshots. For example, in GSC form, if

Rz =

N−1∑

n=1

λnunu
H
n ; λ1 ≥ λ2 ≥ · · · ≥ λN−1

one can choose

I the R principal eigenvectors of Rz (Principal Component), i.e.

U =
[
u1 · · · uR

]
⇒ wpc-gsc = wCBF −BUΛ−1UHrdz

where Λ = diag {λ1, · · · , λR}.
I the R eigenvectors which contribute most to increasing the SINR

(Cross Spectral Metric).
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Partially adaptive beamforming: SINR versus K
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Partially adaptive beamforming: SINR versus K
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Partially adaptive beamforming: SINR versus R
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Beamforming: synthesis

• Conventional beamforming wCBF =
(
aH0 a0

)−1
a0. Optimal in white

noise, θ3dB = 0.9
(
N d

λ

)−1
, sidelobes at −13dB.

• Adaptive beamforming wopt ∝ C−1as, wMVDR ∝ C−1a0,
wMPDR ∝ R−1a0

• all equivalent if R, C known and as = a0

• SINRopt & SINRMVDR � SINRMPDR when as 6= a0

• SINRMVDR-SMI � SINRMPDR-SMI: convergence for about 2N snapshots
for MVDR, N × SINRopt for MPDR

• Diagonal loading: helps to mitigate both finite-sample errors and
steering vector errors. Especially useful in MPDR context with low
power signal of interest.

• Partially adaptive beamforming: enables one to achieve faster
convergence by operating in low-dimensional subspace. Especially
effective with strong, low-rank interference.
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The direction of arrival estimation problem

Problem formulation

Given a collection of K snapshots which can possibly be modeled as
y(k) =

∑P
p=1 a(θp)sp(k) + n(k), estimate the directions of arrival (DoA)

θ1, . . . , θP :

y(k)
?
=

∑P
p=1 a(θp)sp(k) + n(k)

?
θ̂1, . . . , θ̂P

Approaches

• Non parametric approaches which do not necessarily rely on a model
for y(k): similar to Fourier-based methods in time domain;

• Parametric approaches where a model is assumed and its properties
(algebraic structure, distribution) are exploited.
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Beamforming for direction finding purposes

• The idea is to form a beam w(θ) for each angle θ and to

evaluate the power E
{
|yF (k)|2

}
= E

{∣∣wH(θ)y(k)
∣∣2
}

at the

output of the beamformer versus θ:
y(k)

w(θ)
Pw(θ) = E

{
|wH(θ)y(k)|2

}

• Large peaks should provide the directions of arrival:
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Beamforming for direction finding purposes

CBF and Capon

The conventional beamformer as well as the MPDR beamformer can be
used, which yields

E
{
|yF (k)|2

}
=

aH(θ)Ra(θ)

N2

[
w(θ) =

a(θ)

aH(θ)a(θ)

]
(CBF)

=
1

aH(θ)R−1a(θ)

[
w(θ) =

R−1a(θ)

aH(θ)R−1a(θ)

]
(Capon)

In practice

With K snapshots available, R is estimated as

R̂ =
1

K

K∑

k=1

y(k)yH(k)

O. Besson (ISAE-SUPAERO) Introduction to array processing 87 / 113



CBF and Fourier analysis

• The estimated power at the output of the CBF writes

PCBF(θ) =
1

N2
aH(θ)R̂a(θ)

=
1

KN2

K∑

k=1

|aH(θ)y(k)|2

=
1

KN2

K∑

k=1

∣∣∣∣∣
N∑

n=1

yn(k)e−i2π(n−1)f
∣∣∣∣∣

2

where f = d
λ sin θ.

• The inner sum is recognized as the (spatial) Fourier transform of each
snapshot.
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Comparison CBF-Capon (low resolution scenario)
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Comparison CBF-Capon (high resolution scenario)
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Model-based methods

Principle

Based on the model
y(k) = A(θ)s(k) + n(k)

where θ =
[
θ1 θ2 · · · θP

]T
,

A(θ) =
[
a(θ1) a(θ2) · · · a(θP )

]

s(k) =
[
s1(k) s2(k) · · · sP (k)

]T

and a(θ) stands for the steering vector.
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Classes of methods

• Maximum Likelihood methods are based on maximizing the
likelihood function, which amounts to finding the unknown
parameters which make the observed data the more likely.

• Subspace-based methods rely on the fact that the signal subspace
coincides with the subspace spanned by the principal eigenvectors of
R. Moreover, the latter is orthogonal to the subspace spanned by the
minor eigenvectors. These two algebraic properties are exploited for
direction finding.

• Covariance matching relies on a model R(η) for the covariance
matrix and looks for the model parameters which minimize the
distance between R(η) and the sample covariance matrix R̂.
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Maximum Likelihood Estimation

• The MLE consists in finding the parameter vector η which maximizes
the likelihood function p(Y;η) of the snapshots
Y =

[
y(1) y(2) · · · y(k)

]
, where η is the model parameter

vector.

, Asymptotically efficient.

/ Multi-dimensional optimization problem (usually) ⇒ computational
complexity, possible convergence to local maxima.
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Stochastic (unconditional) MLE

• Assume that s(k) is Gaussian distributed with E {s(k)} = 0, and a
covariance matrix Rs = E

{
s(k)sH(k)

}
which is full rank.

• The distribution of the snapshots is thus given by

y(k) ∼ CN
(
0,R = A(θ)RsA

H(θ) + σ2I
)

• The likelihood function can be written as

p(Y;η) =

K∏

k=1

π−N |R|−1e−y(k)HR−1y(k)
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Stochastic (unconditional) MLE

• The ML estimate is obtained as

η̂ = arg min
θ,Rs,σ2

− log p(Y;η)

= arg min
θ,Rs,σ2

log |R|+ Tr
{

R−1R̂
}

• Closed-form solutions for σ2 and Rs can be obtained so that the
likelihood function is concentrated, yielding a minimization over the
angles only:

θ̂
sto

= arg min
θ

log
∣∣∣A(θ)R̂s(θ)AH(θ) + σ̂2(θ)I

∣∣∣
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Deterministic (conditional) MLE

• The signal waveforms are assumed deterministic so that

y(k) ∼ CN
(
A(θ)s(k), σ2I

)

• The MLE is now given by

η̂ = arg min
θ,s(k),σ2

NK log σ2 + σ−2
K∑

k=1

‖y(k)−A(θ)s(k)‖2

• The likelihood function can be concentrated with respect to all s(k)
and σ2, and finally

θ̂
det

= arg min
θ

Tr
{

P⊥A(θ)R̂
}

• For a single source θ̂det = arg maxθ
1
N aH(θ)R̂a(θ)≡ CBF.

O. Besson (ISAE-SUPAERO) Introduction to array processing 96 / 113



Subspace methods

Eigenvalue decomposition of the covariance matrix

If P signals are present, one has

R = A(θ0)RsA
H(θ0) + σ2I =

P∑

p=1

λpupu
H
p + σ2I

=

P∑

p=1

(
λp + σ2

)
upu

H
p + σ2

N∑

p=P+1

upu
H
p = UsΛsU

H
s + σ2UnU

H
n

Eigenvalues of the covariance matrix

Signal subspace

Noise subspace

σ2
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Subspace methods

Signal and noise subspaces

Since

RUn = σ2Un = A(θ0)RsA
H(θ0)Un + σ2Un

⇒ AH(θ0)Un = 0

we have

N
{
AH(θ0)

}
= R{Un} = R{Us}⊥ = R{A(θ0)}⊥

⇒ R{Us} = R{A(θ0)}

The signal subspace is spanned by Us: it is thus orthogonal to Un.
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MUSIC

• The signal steering vectors are orthogonal to Un

uHn a(θp) = 0⇒ aH(θp)UnU
H
n a(θp) = 0

• One looks for the P largest maxima of

VMUSIC(θ) =
1

aH(θ)ÛnÛH
n a(θ)

• For a ULA, one can either compute the P roots (root-MUSIC) of

VMUSIC(z) = aT (z−1)ÛnÛ
H
n a(z)

closest to the unit circle, where a(z) =
[
1 z · · · zN−1

]T
.

• Many variants around MUSIC, e.g., SSMUSIC (Mc Cloud & Scharf).
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Subspace Fitting

• Since R{Us} = R{A(θ0)}, there exists a full-rank matrix T
(P × P ) such that

Us = A(θ0)T

• The idea is to look for the DOA which minimize the error between the
subspaces spanned by Ûs and A(θ) :

θ̂, T̂ = arg min
θ,T

∥∥∥Ûs −A(θ)T
∥∥∥
2

W

= arg min
θ,T

Tr

{[
Ûs −A(θ)T

]
W
[
Ûs −A(θ)T

]H}
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Subspace Fitting

• There exists a closed-form solution for T and finally

θ̂
SSF

= arg min
θ

Tr
{

P⊥A(θ)ÛsWÛH
s

}

• Alternative: use the fact that

R{Un} = N
{
AH(θ0)

}
⇒ UH

n A(θ0) = 0

and estimate the angles as

θ̂
NSF

= arg min
θ

∥∥∥ÛH
n A(θ)

∥∥∥
2

W
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ESPRIT

• We assume that the array is composed of 2 sub-arrays which are
related to by a known displacement. Then

A2 = A1Φ = A1




eiωcτ(θ1)

eiωcτ(θ2)

. . .
. . .

eiωcτ(θP )
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ESPRIT

• The signals received on the two sub-arrays can be written as

y1(k) = A1s(k) + n1(k)

y2(k) = A1Φs(k) + n2(k)

• Let

z(k) =

[
y1(k)
y2(k)

]
=

[
A1

A1Φ

]
s(k) +

[
n1(k)
n2(k)

]
= Ās(k) + n̄(k)

and Rz = E
{
z(k)zH(k)

}
be the covariance matrix of z(k).
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ESPRIT

• If Rz = UsΛsU
H
s + UnΛnU

H
n then

Us = ĀT⇒
[
U1

U2

]
=

[
A1

A1Φ

]
T

⇒ U1 = A1T et U2 = A1ΦT

⇒ U2 = U1T
−1ΦT

⇒ U2 = U1Ψ

• The eigenvalues of Ψare
{
eiωcτ(θp)

}P
p=1

.
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Low-resolution scenario
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Low-resolution scenario
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High-resolution scenario
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High-resolution scenario
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Covariance matching

• The covariance matrix is given by R(θ,P, σ) = Rs(θ,P) + Q(σ)

r = vec(R) = Ψ(θ)P + Σσ =
[
Ψ(θ) Σ

] [P
σ

]
, Φ(θ)α

• The parameters are estimated by minimizing the error between R and
its estimate R̂:

θ̂, α̂ = arg min [r̂−Φ(θ)α] W−1 [r̂−Φ(θ)α]

• The criterion can be concentrated with respect to α: minimization
with respect to θ only.
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Covariance matching

• In case of independent Gaussian distributed snaphots,
Wopt = RT ⊗R and covariance matching estimates are
asymptotically (i.e. when K →∞) equivalent to ML estimates.

• In contrast to MLE, no need for assumptions on the pdf, only an
assumption on R. The criterion is usually simpler to minimize.

• Covariance matching can be used with full-rank covariance matrix Rs

while subspace methods require the latter to be rank deficient.
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Synthesis

Hypotheses Algorithm Performance Problems

ML distribution optimization optimal Computational cost

COMET R optimization ' optimal Computational cost

MUSIC R EVD ' optimal Coherent signals
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Conclusions

• Array processing, thanks to additional degrees of freedom, enables
one to perform spatial filtering of signals.

• Adaptive beamforming, possibly with reduced-rank transformations,
enables one to achieve high SINR with a fast rate of convergence in
adverse conditions (interference, noise).

• Robustness issues are of utmost importance in practical systems, and
should be given a careful attention.

• Non-parametric direction finding methods are simple and robust but
may suffer from a lack of resolution.

• Parametric methods offer high resolution, often at the price of
degraded robustness.
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