Introduction to Array Processing

Olivier Besson

Contents

(1) Introduction

A toy example
(2) Array processing model
(3) Beamforming
(4) Source localization

A toy example

- Consider two antennas receiving a signal $s(t)$ emitted by a source in the far-field

- The time delay Δt depends on the direction of arrival θ of $s(t)$ and on the relative (known) positions of the antennas:
- if θ is known, one can obtain $s(t)$: spatial filtering (beamforming)
- if one can estimate Δt from $y_{1}(t)$ and $y_{2}(t)$, then θ follows: source localization.

A toy example

- For narrowband signals, a delay amounts to a phase shift. Hence

$$
\begin{aligned}
& y_{1}(t)=A s(t)+n_{1}(t) \\
& y_{2}(t)=A s(t) e^{i \phi}+n_{2}(t)
\end{aligned}
$$

- Let us estimate $s(t)$ using a linear filter:

$$
\hat{s}(t)=w_{1} y_{1}(t)+w_{2} y_{2}(t)=A s(t)\left[w_{1}+w_{2} e^{i \phi}\right]+\left[w_{1} n_{1}(t)+w_{2} n_{2}(t)\right]
$$

- The output signal to noise ratio (SNR) is given

$$
\mathrm{SNR}=\frac{\left|w_{1}+w_{2} e^{i \phi}\right|^{2}}{\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}} \frac{|A|^{2} P_{s}}{P_{n}}
$$

and is maximal for $w_{2}=w_{1} e^{-i \phi}$, so that $\hat{s}(t) \propto y_{1}(t)+y_{2}(t) e^{-i \phi}$.

Array of sensors

Potentialities

Array of sensors offer an additional dimension (space) which enables one, possibly in conjunction with temporal or frequency filtering, to perform spatial filtering of signals:
(1) source separation
(2) direction finding

Fields of application

(1) radar, sonar (detection, target localization, anti-jamming)
(2) communications (system capacity improvement, enhanced signals reception, spatial focusing of transmissions, interference mitigation)

Contents

(1) Introduction

(2) Array processing model

Principle
Multi-channel receiver
Source signals
Signals received on the array
Covariance matrix
(3) Beamforming
(4) Source localization

Arrays and waveforms

- The array performs spatial sampling of a wavefront impinging from direction (θ, ϕ).
- Assumptions: homogeneous propagation medium, source in the far-field of the array \rightarrow plane wavefront.

Multi-channel receiver

Signals (in the frequency domain)

Signals and receiver

Source signal (narrowband)

$$
\begin{aligned}
\breve{x}(t) & =2 \operatorname{Re}\left\{s(t) e^{i \omega_{c} t}\right\} \\
& \triangleq \operatorname{Re}\left\{\alpha(t) e^{i \phi(t)} e^{i \omega_{c} t}\right\} \\
& =\alpha(t) \cos \left[\omega_{c} t+\phi(t)\right]
\end{aligned}
$$

$\alpha(t)$ and $\phi(t)$ stand for amplitude and phase of $s(t)$, and have slow time-variations relative to f_{c}.

Channel response

Receive channel number n has impulse response $\breve{h}_{n}(t)$.

Model of received signals

- Signal received on n-th antenna

$$
\breve{y}_{n}(t)=\alpha \breve{h}_{n}(t) * \breve{x}\left(t-\tau_{n}\right)+\breve{n}_{n}(t)
$$

where τ_{n} is the propagation delay to n-th sensor.

- In frequency domain :

$$
\breve{Y}_{n}(\omega)=\alpha \breve{H}_{n}(\omega) \breve{X}(\omega) e^{-i \omega \tau_{n}}+\breve{N}_{n}(\omega)
$$

- After demodulation $\left(\omega \rightarrow \omega+\omega_{c}\right)$ and lowpass filtering:

$$
\begin{aligned}
Y_{n}(\omega) & =\alpha \breve{H}_{n}\left(\omega+\omega_{c}\right) S(\omega) e^{-i\left(\omega+\omega_{c}\right) \tau_{n}}+\breve{N}_{n}\left(\omega+\omega_{c}\right) \\
& \simeq \alpha \breve{H}_{n}\left(\omega_{c}\right) S(\omega) e^{-i \omega_{c} \tau_{n}}+\breve{N}_{n}\left(\omega+\omega_{c}\right)
\end{aligned}
$$

Model of received signals

- Taking the inverse Fourier transform $\mathcal{F}^{-1}\left(Y_{n}(\omega)\right)$ yields

$$
y_{n}(t) \simeq \alpha \breve{H}_{n}\left(\omega_{c}\right) s(t) e^{-i \omega_{c} \tau_{n}}+n_{n}(t)
$$

- The signal is then sampled (temporally) at rate T_{s} to obtain the $N \mid K$ data matrix:

Model of received signals

- The snapshot at time index k writes

$$
\mathbf{y}(k)=\left[\begin{array}{c}
y_{1}\left(k T_{s}\right) \\
y_{2}\left(k T_{s}\right) \\
\vdots \\
y_{N}\left(k T_{s}\right)
\end{array}\right]=\alpha\left[\begin{array}{c}
\breve{H}_{1}\left(\omega_{c}\right) e^{-i \omega_{c} \tau_{1}} \\
\breve{H}_{2}\left(\omega_{c}\right) e^{-\omega_{c} \tau_{2}} \\
\vdots \\
\breve{H}_{N}\left(\omega_{c}\right) e^{-i \omega_{c} \tau_{N}}
\end{array}\right] s\left(k T_{s}\right)+\left[\begin{array}{c}
n_{1}\left(k T_{s}\right) \\
n_{2}\left(k T_{s}\right) \\
\vdots \\
n_{N}\left(k T_{s}\right)
\end{array}\right]
$$

- Assuming all $\breve{H}_{n}\left(\omega_{c}\right)$ are identical and absorbing α and $\breve{H}_{n}\left(\omega_{c}\right)$ in $s\left(k T_{s}\right)$, we simply write

$$
\mathbf{y}(k)=\mathbf{a}(\theta) s(k)+\mathbf{n}(k)
$$

where $\mathbf{a}(\theta)$ is the vector of phase shifts, referred to as the steering vector since τ_{n} depends only on the directions(s) of arrival of the source.

Model of received signals

Snapshot at time index k
The snapshot received in the presence of P sources is given by

$$
\begin{aligned}
\mathbf{y}(k) & =\sum_{p=1}^{P} \mathbf{a}\left(\theta_{p}\right) s_{p}(k)+\mathbf{n}(k) \\
& =\left[\begin{array}{lll}
\mathbf{a}\left(\theta_{1}\right) & \ldots & \mathbf{a}\left(\theta_{P}\right)
\end{array}\right]\left[\begin{array}{c}
s_{1}(k) \\
\vdots \\
s_{P}(k)
\end{array}\right]+\mathbf{n}(k) \\
& =\underset{P \mid 1}{N \mid P} \boldsymbol{\theta}) \mathbf{s}(k)+\mathbf{n}(k)
\end{aligned}
$$

Steering vector

$$
\begin{aligned}
\tau_{n} & =\frac{1}{c}\left[x_{n} \cos \theta \cos \phi+y_{n} \cos \theta \sin \phi+z_{n} \sin \theta\right] \\
a_{n}(\theta, \phi) & =e^{i \frac{2 \pi}{\lambda}\left[x_{n} \cos \theta \cos \phi+y_{n} \cos \theta \sin \phi+z_{n} \sin \theta\right]}
\end{aligned}
$$

Uniform linear array (ULA)

Steering vector

$$
\mathbf{a}(\theta)=\left[\begin{array}{llll}
1 & e^{i 2 \pi f_{s}} & \cdots & e^{i 2 \pi(N-1) f_{s}}
\end{array}\right]^{T} ; \quad f_{s}=f_{c} \frac{d \sin \theta}{c}=\frac{d}{\lambda} \sin \theta
$$

Shannon spatial sampling theorem

$$
\left|f_{s}\right| \leq 0.5 \Rightarrow d \leq \frac{\lambda}{2}
$$

Covariance matrix

Definition

The covariance matrix is defined as

$$
\begin{aligned}
\mathbf{R} & =\mathcal{E}\left\{\mathbf{y}(k) \mathbf{y}^{H}(k)\right\} \\
& =\mathcal{E}\left\{\left[\begin{array}{c}
y_{1}(k) \\
y_{2}(k) \\
\vdots \\
y_{N}(k)
\end{array}\right]\left[\begin{array}{llll}
y_{1}^{*}(k) & y_{2}^{*}(k) & \ldots & y_{N}^{*}(k)
\end{array}\right]\right\}
\end{aligned}
$$

$\mathbf{R}(n, \ell)=\mathcal{E}\left\{y_{n}(k) y_{\ell}^{*}(k)\right\}$ measures the correlation between signals received at sensors n and ℓ, at the same time index k.

Structure of the covariance matrix

Signals covariance matrix

The covariance matrix of the signal component is

$$
\begin{aligned}
\mathbf{R} & =\mathcal{E}\left\{\mathbf{A}(\boldsymbol{\theta}) \mathbf{s}(k) \mathbf{s}^{H}(k) \mathbf{A}^{H}(\boldsymbol{\theta})\right\}=\mathbf{A}(\boldsymbol{\theta}) \mathbf{R}_{s} \mathbf{A}^{H}(\boldsymbol{\theta}) \\
& =\sum_{p=1}^{P} P_{p} \mathbf{a}\left(\theta_{p}\right) \mathbf{a}^{H}\left(\theta_{p}\right) \quad \text { (uncorrelated signals) }
\end{aligned}
$$

Provided that \mathbf{R}_{s} is full-rank (non coherent signals), the signal covariance matrix has rank P and its range space is spanned by the steering vectors $\mathbf{a}\left(\theta_{p}\right), p=1, \cdots, P$.

Noise covariance matrix

Assuming spatially white noise (i.e., uncorrelated between channels) with same power on each channel, $\mathcal{E}\left\{\mathbf{n}(k) \mathbf{n}^{H}(k)\right\}=\sigma^{2} \mathbf{I}$.

Model limitations

$\mathbf{y}(k)=\mathbf{a}(\theta) s(k)+\mathbf{n}(k)$ is an idealized model of the signals received on the array. It does not account for:

- a possibly non homogeneous propagation medium which results in coherence loss and wavefront distortions. This leads to amplitude and phase variations along the array, i.e.
$y_{n}(k)=g_{n}(k) e^{i \phi_{n}(k)} a_{n}(\theta) s(k)+n_{n}(k)$.
- uncalibrated arrays, i.e., different amplitude and phase responses for each channel.
- wideband signals for which a time delay does not amount to a simple phase shift. In the frequency domain, one has
$\mathbf{y}(f)=\mathbf{a}_{f}(\theta) s(f)+\mathbf{n}(f)$ with
$\mathbf{a}_{f}(\theta)=\left[\begin{array}{llll}1 & e^{-i 2 \pi f \tau(\theta)} & \cdots & e^{-i 2 \pi f(N-1) \tau(\theta)}\end{array}\right]^{T}$.
- possibly colored reception noise, i.e. $\mathcal{E}\left\{\mathbf{n}(k) \mathbf{n}^{H}(k)\right\} \neq \sigma^{2} \mathbf{I}$.

Contents

(1) Introduction

(2) Array processing model
(3) Beamforming

Principle
Array beampattern
Spatial filtering
SNR improvement
Adaptive beamforming
Robust adaptive beamforming Partially adaptive beamforming

Spatial filtering

Principle: use a linear combination of the sensors outputs in order to point towards a looked direction.

Array beampattern

- For any weight vector \mathbf{w}, the corresponding array beampattern is defined as $G_{\mathbf{w}}(\theta)=\left|g_{\mathbf{w}}(\theta)\right|^{2}$ with $g_{\mathbf{w}}(\theta)=\mathbf{w}^{H} \mathbf{a}(\theta)$.
- For a uniform linear array, the natural beampattern, obtained as a simple sum $\left(w_{n}=1\right)$ of the sensors outputs, is given by

$$
\begin{aligned}
g(\theta) & =\sum_{n=0}^{N-1} e^{i 2 \pi n \frac{d}{\lambda} \sin \theta} \\
& =e^{i \pi(N-1) \frac{d}{\lambda} \sin \theta} \times \frac{\sin \left[\pi N \frac{d}{\lambda} \sin \theta\right]}{\sin \left[\pi \frac{d}{\lambda} \sin \theta\right]}
\end{aligned}
$$

$$
G(\theta)=|g(\theta)|^{2}=\left|\frac{\sin \left[\pi N \frac{d}{\lambda} \sin \theta\right]}{\sin \left[\pi \frac{d}{\lambda} \sin \theta\right]}\right|^{2}
$$

ULA beampattern

Beampattern of the uniform linear array

$$
\theta_{3 \mathrm{~dB}} \simeq \frac{0.9 \lambda}{N d}
$$

Windowing

Beamforming

Objective

We aim at pointing towards a given direction in order to enhance reception of the signals impinging from this direction, and to possibly mitigate interference located at other directions.

Principle

Each sensor output is weighted by w_{n}^{*} before summation:

$$
y_{F}(k)=\sum_{n=1}^{N} w_{n}^{*} y_{n}(k)=\left[\begin{array}{llll}
w_{1}^{*} & w_{2}^{*} & \cdots & w_{N}^{*}
\end{array}\right] \mathbf{y}(k)=\mathbf{w}^{H} \mathbf{y}(k)
$$

Question

How to choose \mathbf{w} such that, if $\mathbf{y}(k)=\mathbf{a}\left(\theta_{s}\right) s(k)+\cdots$ then at the output $y_{F}(k) \simeq \alpha s(k) ?$

Conventional beamforming

Conventional beamforming: $\mathbf{w} \propto \mathbf{a}\left(\theta_{s}\right)$

$$
\begin{aligned}
y_{F}(k) & =\mathbf{a}^{H}\left(\theta_{s}\right) \mathbf{a}\left(\theta_{s}\right) s(k) \quad\left[\mathbf{w}=\mathbf{a}\left(\theta_{s}\right), 1 \text { source at } \theta_{s}\right] \\
& =\sum_{n=0}^{N-1} e^{-i 2 \pi \frac{d}{\lambda} n \sin \theta_{s}} \times e^{+i 2 \pi \frac{d}{\lambda} n \sin \theta_{s}} s(k) \\
& =\sum_{n=0}^{N-1} s(k)=N s(k)
\end{aligned}
$$

so that the gain towards θ_{s} is maximal and equal to N. The beamfomer $\mathbf{w}_{\text {CBF }}=\mathbf{a}\left(\theta_{s}\right) /\left[\mathbf{a}^{H}\left(\theta_{s}\right) \mathbf{a}\left(\theta_{s}\right)\right]$ is referred to as the conventional beamformer.

Principle

One compensates for the phase shift induced by propagation from direction θ_{s} and then sum coherently.

Array beampattern with conventional beamforming

SNR improvement

Before beamforming

$$
\mathbf{y}(k)=\mathbf{a}_{s} s(k)+\mathbf{n}(k) ; \quad \mathrm{SNR}_{\mathrm{elem}} \triangleq \frac{\mathcal{E}\left\{|s(k)|^{2}\right\}}{\mathcal{E}\left\{\left|n_{n}(k)\right|^{2}\right\}}=\frac{P}{\sigma^{2}} .
$$

After beamforming

$$
\begin{aligned}
y_{F}(k) & =\mathbf{w}^{H} \mathbf{y}(k)=\mathbf{w}^{H} \mathbf{a}_{s} s(k)+\mathbf{w}^{H} \mathbf{n}(k) \\
\mathrm{SNR}_{\text {array }} & =\frac{\left|\mathbf{w}^{H} \mathbf{a}_{s}\right|^{2}}{\|\mathbf{w}\|^{2}} \mathrm{SNR}_{\text {elem }} \leq\left\|\mathbf{a}_{s}\right\|^{2} \mathrm{SNR}_{\text {elem }}=N \times \mathrm{SNR}_{\text {elem }}
\end{aligned}
$$

with equality if $\mathbf{w} \propto \mathbf{a}_{s}$.
White noise array gain
For any \mathbf{w} such that $\mathbf{w}^{H} \mathbf{a}_{s}=1$, the white noise array gain is $A_{\mathrm{WN}}=\mathrm{SNR}_{\text {array }} / \mathrm{SNR}_{\text {elem }}=\|\mathbf{w}\|^{-2} \leq N$.

Conventional beamforming versus adaptive beamforming

Conventional beamforming

The conventional beamformer is optimal in white noise: it amounts to minimize $\mathbf{w}^{H} \mathbf{w}$ (the output power in white noise) under the constraint $\mathbf{w}^{H} \mathbf{a}\left(\theta_{s}\right)=1$. Any other direction is deemed to be equivalent \Rightarrow it does not take into account other signals (interference) present in some directions.

Adaptive beamforming

Adaptive beamforming takes into account these other signals. It consists in minimizing the output power $\mathcal{E}\left\{\left|\mathbf{w}^{H} \mathbf{y}(k)\right|^{2}\right\}$ while maintaining a unit gain towards looked direction \Rightarrow tends to place nulls towards interfering signals.

Adaptive beamforming

Beamforming-filtering in the presence of interference

- The received (input) signal in the presence of interference and noise is given by

$$
\mathbf{y}(k)=\mathbf{a}_{s} s(k)+\mathbf{y}_{I}(k)+\mathbf{n}(k)
$$

where \mathbf{a}_{s} is the actual SOI steering vector.

- At the output of the beamformer

Signal to interference plus noise ratio (SINR)

Definition of SINR

For a given beamformer \mathbf{w}, the usual figure of merit is the signal to interference plus noise ratio (SINR), defined as

$$
\begin{aligned}
\operatorname{SINR}(\mathbf{w}) & =\frac{\mathcal{E}\left\{\left|\mathbf{w}^{H} \mathbf{a}_{s} s(k)\right|^{2}\right\}}{\mathcal{E}\left\{\left|\mathbf{w}^{H}\left[\mathbf{y}_{I}(k)+\mathbf{n}(k)\right]\right|^{2}\right\}} \\
& =\frac{P_{s}\left|\mathbf{w}^{H} \mathbf{a}_{s}\right|^{2}}{\mathbf{w}^{H} \mathbf{C w}}
\end{aligned}
$$

where $\mathbf{C}=\mathcal{E}\left\{\left[\mathbf{y}_{I}(k)+\mathbf{n}(k)\right]\left[\mathbf{y}_{I}(k)+\mathbf{n}(k)\right]^{H}\right\}$ stands for the interference plus noise covariance matrix.

Optimal beamformer: SINR maximization

Optimal beamformer

Maximize SINR while ensuring a unit gain towards \mathbf{a}_{s} :

$$
\min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{C w} \text { subject to } \mathbf{w}^{H} \mathbf{a}_{s}=1
$$

(optimal)

$$
\mathbf{w}_{\mathrm{opt}}=\frac{\mathbf{C}^{-1} \mathbf{a}_{s}}{\mathbf{a}_{s}^{H} \mathbf{C}^{-1} \mathbf{a}_{s}} \rightarrow S I N R_{\mathrm{opt}}=P_{s} \mathbf{a}_{s}^{H} \mathbf{C}^{-1} \mathbf{a}_{s}
$$

Remarks

- Principle is to minimize output power (when input $=\mathbf{y}_{I}+\mathbf{n}$) under the constraint that the actual steering vector \mathbf{a}_{s} goes non distorted.
- Neither \mathbf{a}_{s} nor \mathbf{C} will be known in practice: the actual steering vector may be different from its expected value and \mathbf{C} needs to be estimated from data (which contains $\mathbf{y}_{I}+\mathbf{n}$).

Minimum Variance Distortionless Response (MVDR)

Principle

Minimize output power (when input $=\mathbf{y}_{I}+\mathbf{n}$) under the constraint that the assumed steering vector goes non distorted.

Minimization problem and solution

$$
\begin{equation*}
\min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{C w} \text { subject to } \mathbf{w}^{H} \mathbf{a}_{0}=1 \tag{MVDR}
\end{equation*}
$$

where \mathbf{a}_{0} is the assumed steering vector of the signal of interest (Sol). The solution is given by

$$
\mathbf{w}_{\text {MVVR }}=\frac{\mathbf{C}^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{0}}
$$

Minimum Power Distortionless Response (MPDR)

Principle

Minimize output power (when input $=\mathbf{a}_{s} s+\mathbf{y}_{I}+\mathbf{n}$) under the constraint that the assumed steering vector goes non distorted:

$$
\min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{R} \mathbf{w} \text { subject to } \mathbf{w}^{H} \mathbf{a}_{0}=1
$$

where $\mathbf{R}\left(=\mathbf{C}+P_{s} \mathbf{a}_{s} \mathbf{a}_{s}^{H}\right)$ stands for the signal plus interference plus noise covariance matrix.

Solution

$$
\mathbf{w}_{\mathrm{MPDR}}=\frac{\mathbf{R}^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H} \mathbf{R}^{-1} \mathbf{a}_{0}}
$$

Summary of adaptive beamformers (known covariance matrices)

Beamformer	Principle	Weight vector
Optimal	$\min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{C w}$ s.t. $\mathbf{w}^{H} \mathbf{a}_{s}=1$	$\mathbf{w}_{\text {opt }}=\frac{\mathbf{C}^{-1} \mathbf{a}_{s}}{\mathbf{a}_{s}^{H} \mathbf{C}^{-1} \mathbf{a}_{s}}$
MVDR	$\min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{C w}$ s.t. $\mathbf{w}^{H} \mathbf{a}_{0}=1$	$\mathbf{w}_{\text {MVDR }}=\frac{\mathbf{C}^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{0}}$
MPDR	$\min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{R} \mathbf{w}$ s.t. $\mathbf{w}^{H} \mathbf{a}_{0}=1$	$\mathbf{w}_{\text {MPDR }}=\frac{\mathbf{R}^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H} \mathbf{R}^{-1} \mathbf{a}_{0}}$

- $\mathbf{a}_{s}\left(\mathbf{a}_{0}\right)$ the actual (assumed) steering vector
- $\mathbf{C}=\operatorname{cov}\left(\mathbf{y}_{I}+\mathbf{n}\right)$ and $\mathbf{R}=\operatorname{cov}\left(\mathbf{a}_{s} s+\mathbf{y}_{I}+\mathbf{n}\right)$

CBF vs MVDR in the case of a single interference

Derivation of SINR

In the case

$$
\mathbf{y}(k)=\mathbf{a}_{s} s(k)+\mathbf{a}_{j} s_{j}(k)+\mathbf{n}(k) \quad\left[\mathbf{C}=P_{j} \mathbf{a}_{j} \mathbf{a}_{j}^{H}+\sigma^{2} \mathbf{I}\right]
$$

with $\mathrm{INR}=\frac{P_{j}}{\sigma^{2}} \gg 1$, it can be shown that

$$
\mathrm{SINR}_{\mathrm{CBF}} \simeq \frac{P_{s}}{\sigma^{2}} \times \frac{1}{g \times I N R} ; \quad \mathrm{SINR}_{\mathrm{opt}} \simeq \frac{P_{s}}{\sigma^{2}} \times N(1-g)
$$

with $g=\cos ^{2}\left(\mathbf{a}_{s}, \mathbf{a}_{j}\right)=\left|\mathbf{a}_{s}^{H} \mathbf{a}_{j}\right|^{2} /\left(\mathbf{a}_{s}^{H} \mathbf{a}_{s}\right)\left(\mathbf{a}_{j}^{H} \mathbf{a}_{j}\right)$.

Remarks

- With CBF, the SINR decreases when P_{j} increases while it is independent of P_{j} with adaptive beamforming.
- The SINR decreases when $\mathbf{a}_{j} \rightarrow \mathbf{a}_{s}(g \rightarrow 1)$.

CBF and MVDR beampatterns

Generalized Sidelobe Canceler

Rewriting the weight vector w (MVDR or MPDR)

The weight vector \mathbf{w} can be decomposed into a component along \mathbf{a}_{0} and a component orthogonal to \mathbf{a}_{0}, i.e., $\mathbf{w}=\alpha \mathbf{a}_{0}-\mathbf{w}_{\perp}$:

- The component along \mathbf{a}_{0} ensures that the constraint is fulfilled since

$$
\mathbf{w}^{H} \mathbf{a}_{0}=\alpha^{*} \mathbf{a}_{0}^{H} \mathbf{a}_{0}-\mathbf{w}_{\perp}^{H} \mathbf{a}_{0}=\alpha^{*} \mathbf{a}_{0}^{H} \mathbf{a}_{0}+0 \Rightarrow \alpha=\left(\mathbf{a}_{0}^{H} \mathbf{a}_{0}\right)^{-1}
$$

- The orthogonal component \mathbf{w}_{\perp} is chosen to minimize output power, in an unconstrained way.

Generalized Sidelobe Canceler

- \mathbf{w}_{\perp} can be written as $\mathbf{w}_{\perp}=\mathbf{B} \mathbf{w}_{a}$ where the $(N-1)$ columns of \mathbf{B} form a basis of the subspace orthogonal to \mathbf{a}_{0}.
- Minimization of the output power can be achieved by solving one of the two following equivalent problems:

$$
\begin{array}{c|c}
\min _{\mathbf{w}^{H} \mathbf{a}_{0}=1} \mathbf{w}^{H} \mathbf{C w} & \min _{\mathbf{w}_{a}}\left(\mathbf{w}_{\mathrm{CBF}}-\mathbf{B} \mathbf{w}_{a}\right)^{H} \mathbf{C}\left(\mathbf{w}_{\mathrm{CBF}}-\mathbf{B} \mathbf{w}_{a}\right) \\
\text { direct form, constrained } & \text { GSC form, unconstrained }
\end{array}
$$

- The MVDR beamformer in its GSC form is given by $\mathbf{w}_{\mathrm{GSC}}=\mathbf{w}_{\mathrm{CBF}}-\mathbf{B} \mathbf{w}_{a}^{*}$ where \mathbf{w}_{a}^{*} solves the above minimization problem.

Generalized Sidelobe Canceler

- The GSC structure can be represented as

where \mathbf{B} blocks the steering vector \mathbf{a}_{0}.
- The $(N-1)$ auxiliary channels $\mathbf{z}(k)$ are free of signal and enable one to infer the part of interference that went through the CBF.
- \mathbf{w}_{a} enables one to estimate, from $\mathbf{z}(k)$, the part of interference $\mathbf{i}_{1}(k)$ contained in $d(k)$ since $\mathbf{i}_{1}(k)$ is correlated with $\mathbf{z}(k)$ through $\mathbf{i}_{2}(k)$.

Generalized Sidelobe Canceler

Derivation of w_{a}

- The power at the output of the beamformer is given by

$$
\begin{aligned}
\mathcal{E}\left\{\left|d(k)-\mathbf{w}_{a}^{H} \mathbf{z}(k)\right|^{2}\right\} & =\mathcal{E}\left\{|d(k)|^{2}\right\}-\mathbf{w}_{a}^{H} \mathbf{r}_{d \mathbf{z}}-\mathbf{r}_{d \mathbf{z}}^{H} \mathbf{w}_{a}+\mathbf{w}_{a}^{H} \mathbf{R}_{z} \mathbf{w}_{a} \\
& =\left[\mathbf{w}_{a}-\mathbf{R}_{z}^{-1} \mathbf{r}_{d \mathbf{z}}\right]^{H} \mathbf{R}_{z}\left[\mathbf{w}_{a}-\mathbf{R}_{z}^{-1} \mathbf{r}_{d \mathbf{z}}\right] \\
& +\mathcal{E}\left\{|d(k)|^{2}\right\}-\mathbf{r}_{d \mathbf{z}}^{H} \mathbf{R}_{z}^{-1} \mathbf{r}_{d \mathbf{z}}
\end{aligned}
$$

with $\mathbf{r}_{d \mathbf{z}}=\mathcal{E}\left\{\mathbf{z}(k) d^{*}(k)\right\}$ and $\mathbf{R}_{z}=\mathcal{E}\left\{\mathbf{z}(k) \mathbf{z}(k)^{H}\right\}$.

- The weight vector which minimizes output power is thus

$$
\mathbf{w}_{a}=\mathbf{R}_{z}^{-1} \mathbf{r}_{d \mathbf{z}}
$$

Generalized Sidelobe Canceler

- The GSC form of the weight vector is given by

$$
\begin{align*}
\mathbf{w}_{\mathrm{GSC}} & =\mathbf{w}_{\mathrm{CBF}}-\mathbf{B} \mathbf{R}_{z}^{-1} \mathbf{r}_{d \mathbf{z}} \\
& =\mathbf{w}_{\mathrm{CBF}}-\mathbf{B}\left(\mathbf{B}^{H} \mathbf{R}_{y} \mathbf{B}\right)^{-1} \mathbf{B}^{H} \mathbf{R}_{y} \mathbf{w}_{\mathrm{CBF}} \tag{GSC}
\end{align*}
$$

where $\mathbf{R}_{y}=\mathbf{R}$ in a MPDR scenario and $\mathbf{R}_{y}=\mathbf{C}$ in a MVDR scenario.

- Since they solve the same problem $\mathbf{w}_{\mathrm{GSC}}=\left(\mathbf{a}_{0}^{H} \mathbf{R}_{y}^{-1} \mathbf{a}_{0}\right)^{-1} \mathbf{R}_{y}^{-1} \mathbf{a}_{0}$.
- The SINR is inversely proportional to the output power when $\mathbf{R}_{y}=\mathbf{C}$, i.e.,

$$
\mathrm{SINR}_{\mathrm{GSC}}=P_{s}\left[\mathbf{w}_{\mathrm{CBF}}^{H} \mathbf{C w}_{\mathrm{CBF}}-\mathbf{r}_{d \mathbf{z}}^{H} \mathbf{R}_{z}^{-1} \mathbf{r}_{d \mathbf{z}}\right]^{-1}
$$

Minimization of the mean-square error

- Assume we have a reference signal $s(k)$ (e.g. pilot signal). Then, one may try to minimize the mean-square error:

$$
\mathcal{E}\left\{\left|\mathbf{w}^{H} \mathbf{y}(k)-s(k)\right|^{2}\right\}=\mathbf{w}^{H} \mathbf{R}_{y} \mathbf{w}-\mathbf{w}^{H} \mathbf{r}_{y s}-\mathbf{r}_{y s}^{H} \mathbf{w}+P_{s}
$$

where $\mathbf{r}_{y s}=\mathcal{E}\left\{\mathbf{y}(k) s^{*}(k)\right\}$.

- The solution is given by

$$
\mathbf{w}=\mathbf{R}_{y}^{-1} \mathbf{r}_{y s}
$$

- If $\mathbf{r}_{y s}=P_{s} \mathbf{a}_{s}$ then $\mathbf{w}=P_{s} \mathbf{R}^{-1} \mathbf{a}_{s}$, which is exactly the MPDR beamformer (without requiring knowledge of \mathbf{a}_{s}).

Interpretation of optimal beamformer

- Assuming J interfering signals, then

$$
\mathbf{C}=\sum_{j=1}^{J} P_{j} \mathbf{a}_{j} \mathbf{a}_{j}^{H}+\sigma^{2} \mathbf{I}=\sum_{n=1}^{J}\left(\lambda_{n}+\sigma^{2}\right) \mathbf{u}_{n} \mathbf{u}_{n}^{H}+\sigma^{2} \sum_{n=J+1}^{N} \mathbf{u}_{n} \mathbf{u}_{n}^{H}
$$

where $\mathcal{R}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{J}\right\}=\mathcal{R}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{J}\right\}$, i.e., principal eigenvectors span the same subspace as interference steering vectors.

- The MVDR beamformer can be rewritten as

$$
\mathbf{w}_{\mathrm{opt}}=\alpha\left[\mathbf{w}_{\mathrm{CBF}}-\sum_{n=1}^{J} \frac{\lambda_{n}}{\lambda_{n}+\sigma^{2}}\left[\mathbf{u}_{n}^{H} \mathbf{w}_{\mathrm{CBF}}\right] \mathbf{u}_{n}\right]
$$

where $\alpha=\left(\mathbf{a}_{s}^{H} \mathbf{a}_{s}\right) /\left(\mathbf{a}_{s}^{H} \mathbf{C}^{-1} \mathbf{a}_{s}\right) / \sigma^{2}$.

Interpretation of optimal beamformer

- The optimal beamformer amounts to subtract from the CBF a linear combination of the J principal eigenvectors of \mathbf{C}.
- These "eigenbeams" enable one to evaluate the part of interference that went through the conventional beamformer.

Beampatterns (CBF and eigenvectors)

Beampatterns (CBF and eigenvectors)

SINR versus number of eigenvectors

MVDR versus MPDR

The optimal, MVDR and MPDR beamformers are equivalent if and only if

$$
\begin{aligned}
& \min _{\mathbf{w}} \mathbf{w}^{H}\left(\mathbf{C}+P_{s} \mathbf{a}_{s} \mathbf{a}_{s}^{H}\right) \mathbf{w} \text { subject to } \mathbf{w}^{H} \mathbf{a}_{0}=1 \\
\equiv & \min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{C w} \text { subject to } \mathbf{w}^{H} \mathbf{a}_{0}=1 \\
\equiv & \min _{\mathbf{w}} \mathbf{w}^{H} \mathbf{C w} \text { subject to } \mathbf{w}^{H} \mathbf{a}_{s}=1
\end{aligned}
$$

which is true only when the 2 following conditions are satisfied:
(1) the assumed steering vector \mathbf{a}_{0} coincides with the actual steering vector \mathbf{a}_{s} : in practice, uncalibrated arrays or a pointing error lead to $\mathbf{a}_{0} \neq \mathbf{a}_{s}$;
(2) the covariance matrix \mathbf{R} is known: in practice, one needs to estimate it which results in estimation errors $\hat{\mathbf{R}}-\mathbf{R}$.
\Longrightarrow It ensues that degradation compared to $\operatorname{SINR}_{\text {opt }}$ is unavoidable in practice, and it can be quite different between MPDR and MVDR.

Influence of a steering vector error (MVDR)

- We assume that the Sol steering vector is \mathbf{a}_{0} while it is actually \mathbf{a}_{s}.
- The SINR obtained with $\mathbf{w}_{\text {MVDR }}=\left(\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{0}\right)^{-1} \mathbf{C}^{-1} \mathbf{a}_{0}$ becomes

$$
\begin{aligned}
\operatorname{SINR}_{\mathrm{MVDR}} & =\frac{P_{s}\left|\mathbf{w}_{\mathrm{MVDR}}^{H} \mathbf{a}_{s}\right|^{2}}{\mathbf{w}_{\mathrm{MVDR}}^{H} \mathbf{C w}_{\mathrm{MVDR}}}=P_{s} \frac{\left|\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{s}\right|^{2}}{\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{0}} \\
& =\operatorname{SINR}_{\mathrm{opt}} \times \frac{\left|\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{s}\right|^{2}}{\left(\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{0}\right)\left(\mathbf{a}_{s}^{H} \mathbf{C}^{-1} \mathbf{a}_{s}\right)} \\
& =\operatorname{SINR}_{\mathrm{opt}} \times \cos ^{2}\left(\mathbf{a}_{s}, \mathbf{a}_{0} ; \mathbf{C}^{-1}\right) \leq \operatorname{SINR}_{\mathrm{opt}}
\end{aligned}
$$

Influence of a steering vector error (MPDR)

- The MPDR beamformer can be written as

$$
\mathbf{w}_{\mathrm{MPDR}}=\frac{\mathbf{R}^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H} \mathbf{R}^{-1} \mathbf{a}_{0}} ; \mathbf{R}=P_{s} \mathbf{a}_{s} \mathbf{a}_{s}^{H}+\mathbf{C}
$$

- Its SINR is decreased compared to that of the MVDR, viz

$$
\begin{aligned}
\mathrm{SINR}_{\text {MPDR }} & =\frac{\mathrm{SINR}_{\text {MVDR }}}{1+\left(2 \operatorname{SINR}_{\text {opt }}+\operatorname{SINR}_{\text {opt }}^{2}\right) \sin ^{2}\left(\mathbf{a}_{s}, \mathbf{a}_{0} ; \mathbf{C}^{-1}\right)} \\
& \leq \operatorname{SINR}_{\text {MVDR. }}
\end{aligned}
$$

- The degradation is more important as P_{s} increases.

Influence of a steering vector error on beampatterns

Beampatterns with pointing errors

Influence of a steering vector error on SINR and WNAG

Case of an uncalibrated array

- Let us consider an uncalibrated array with actual steering vector

$$
\tilde{\mathbf{a}}_{n}(\theta)=\left(1+g_{n}\right) e^{i \phi_{n}} \mathbf{a}_{n}(\theta)
$$

where $\left\{g_{n}\right\}$ and $\left\{\phi_{n}\right\}$ are independent random gains and phases.

- For any beamformer \mathbf{w}, the average value of the resulting beampattern $\tilde{G}_{\mathbf{w}}(\theta)=\left|\mathbf{w}^{H} \tilde{\mathbf{a}}(\theta)\right|^{2}$ is related to the nominal beampattern $G_{\mathbf{w}}(\theta)=\left|\mathbf{w}^{H} \mathbf{a}(\theta)\right|^{2}$ through

$$
\mathcal{E}\left\{\tilde{G}_{\mathbf{w}}(\theta)\right\}=|\gamma|^{2} G_{\mathbf{w}}(\theta)+\left[1+\sigma_{g}^{2}-|\gamma|^{2}\right]\|\mathbf{w}\|^{2}
$$

where $\sigma_{g}^{2}=\mathcal{E}\left\{\left|g_{n}\right|^{2}\right\}$ and $\gamma=\mathcal{E}\left\{e^{i \phi_{n}}\right\}$.

- The term proportional to $\|\mathbf{w}\|^{2}$ leads to sidelobe level increase \Rightarrow better to have high white noise array gain (low $\|\mathbf{w}\|^{2}$).

Influence of a finite number of snapshots

- In practice, K snapshots are available:

$$
\mathbf{y}(k)=\mathbf{a}_{s} s(k)+\overbrace{\mathbf{y}_{I}(k)+\mathbf{n}(k)}^{\mathbf{y}_{i_{++n}(k)}} ; \quad k=1, \ldots, K
$$

- The covariance matrices are thus estimated and subsequently one can compute the corresponding beamformers as

$$
\begin{aligned}
\hat{\mathbf{R}} & =\frac{1}{K} \sum_{k=1}^{K} \mathbf{y}(k) \mathbf{y}^{H}(k) \\
& \longrightarrow \mathbf{w}_{\text {MPDR }}^{\text {sin }}=\frac{\hat{\mathbf{R}}^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H} \hat{\mathbf{R}}^{-1} \mathbf{a}_{0}} \\
\hat{\mathbf{C}}=\frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_{i+n}(k) \mathbf{y}_{i+n}^{H}(k) & \longrightarrow \mathbf{w}_{\text {MVDR }}^{\text {smi }}=\frac{\hat{\mathbf{C}}^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H} \hat{\mathbf{C}}^{-1} \mathbf{a}_{0}}
\end{aligned}
$$

where ${ }^{\text {smi }}$ stands for "sample matrix inversion".

Influence of a finite number of snapshots

- The sample beamformers $\mathbf{w}_{M-D R}^{s m i}$ will differ from their ensemble counterparts $\mathbf{w}_{\mathrm{M}-\mathrm{DR}}$ since $\hat{\mathbf{R}}=\mathbf{R}+\Delta \mathbf{R}$ and $\hat{\mathbf{C}}=\mathbf{C}+\Delta \mathbf{C}$.
- The weight vectors $\mathbf{w}_{M-D R}^{s m i}$ are random and so are their corresponding signal to noise ratios

$$
\begin{aligned}
& \operatorname{SINR}\left(\mathbf{w}_{\mathrm{MPDR}}^{\text {smi }}\right)=P_{s} \frac{\left|\mathbf{a}_{0}^{H} \hat{\mathbf{R}}^{-1} \mathbf{a}_{s}\right|^{2}}{\mathbf{a}_{0}^{H} \hat{\mathbf{R}}^{-1} \mathbf{C} \hat{\mathbf{R}}^{-1} \mathbf{a}_{0}} \\
& \operatorname{SINR}\left(\mathbf{w}_{\mathrm{MVDR}}^{\text {smi }}\right)=P_{s} \frac{\left|\mathbf{a}_{0}^{H} \hat{\mathbf{C}}^{-1} \mathbf{a}_{s}\right|^{2}}{\mathbf{a}_{0}^{H} \hat{\mathbf{C}}^{-1} \mathbf{C} \hat{\mathbf{C}}^{-1} \mathbf{a}_{0}}
\end{aligned}
$$

- Important issue is speed of convergence, i.e., how large should K be for $\operatorname{SINR}\left(\mathbf{w}_{\text {MPDR }}^{\text {smi }}\right)$ or $\operatorname{SINR}\left(\mathbf{w}_{\text {MVDR }}^{\text {smi }}\right)$ to be "close" to $\operatorname{SINR}_{\text {opt }}$?

SINR loss with finite number of snapshots (MVDR)

- When $\mathbf{a}_{0}=\mathbf{a}_{s}$, the SINR loss $\rho_{\mathrm{MVDR}} \in[0,1]$

$$
\rho_{\mathrm{MVDR}}=\frac{\operatorname{SINR}\left(\mathbf{w}_{\mathrm{MVRR}}^{\mathrm{smi}}\right)}{\operatorname{SINR}\left(\mathbf{w}_{\text {opt }}\right)}=\frac{\left(\mathbf{a}_{0}^{H} \hat{\mathbf{C}}^{-1} \mathbf{a}_{0}\right)^{2}}{\left(\mathbf{a}_{0}^{H} \mathbf{C}^{-1} \mathbf{a}_{0}\right)\left(\mathbf{a}_{0}^{H} \hat{\mathbf{C}}^{-1} \mathbf{C}^{-1} \hat{\mathbf{a}}_{0}\right)}
$$

follows a complex beta distribution, i.e.,

$$
p\left(\rho_{\mathrm{MVDR}}\right)=\frac{\Gamma(N+1)}{\Gamma(N-K+2) \Gamma(N-1)} \rho_{\mathrm{MVDR}}^{K-N+1}\left(1-\rho_{\mathrm{MVDR}}\right)^{N-2}
$$

- The expected value is $\mathcal{E}\left\{\rho_{\text {MVDR }}\right\}=(K+2-N) /(K+1)$, so that $\operatorname{SINR}\left(\mathbf{w}_{\text {MVDR }}^{\text {smi }}\right)$ is (on average) within 3 dB of the optimal SINR for $K_{\mathrm{MVDR}}=2 N-3$.

SINR loss with finite number of snapshots (MPDR)

- As for $\rho_{\text {MPDR }}$ it was shown that

$$
\rho_{\mathrm{MPDR}}=\frac{\rho^{\prime}}{1+\left(1-\rho^{\prime}\right) \mathrm{SINR}_{\mathrm{opt}}}
$$

where $\rho^{\prime}=\left(\mathbf{a}_{0}^{H} \hat{\mathbf{R}}^{-1} \mathbf{a}_{0}\right)^{2} /\left(\mathbf{a}_{0}^{H} \mathbf{R}^{-1} \mathbf{a}_{0}\right) /\left(\mathbf{a}_{0}^{H} \hat{\mathbf{R}}^{-1} \mathbf{R} \hat{\mathbf{R}}^{-1} \mathbf{a}_{0}\right)$ has the same beta distribution as $\rho_{\text {MPDR }}$.

- The distribution of $\rho_{\text {MPDR }}$ is

$$
p\left(\rho_{\mathrm{MPDR}}\right)=\frac{\Gamma(K+1)\left(1+\mathrm{SINR}_{\mathrm{opt}}\right)^{K-N+2}}{\Gamma(N-1) \Gamma(K-N+2)} \frac{\rho_{\mathrm{MPDR}}^{K-N+1}\left(1-\rho_{\mathrm{MPDR}}\right)^{N-2}}{\left(1+\rho_{\mathrm{MPDR}} \mathrm{SINR}_{\mathrm{opt}}\right)^{K+1}}
$$

- The average number of snapshots to achieve the optimal SINR within 3 dB is about

$$
K_{\mathrm{MPDR}} \simeq(N-1)\left[1+\mathrm{SINR}_{\mathrm{opt}}\right]
$$

where SINR $_{\text {opt }} \simeq N\left(\frac{P_{s}}{\sigma^{2}}\right)$. In general, $K_{\text {MPDR }} \gg K_{\text {MVDR }}$.

Beampatterns with finite number of snapshots

Distribution of SINR loss

SINR versus number of snapshots

How to make MPDR more robust?

Observations

- Estimation of covariance matrices leads to a significant SINR loss (especially for the MPDR beamformer) due to
- the interference being less eliminated
- a sidelobe level increase which results in a lower white noise gain.
- In case of uncalibrated arrays, steering vector errors are all the more emphasized that the white noise gain is low (or $\|\mathbf{w}\|^{2}$ large).

A possible solution

Restrain $\|\mathbf{w}\|^{2}$, or equivalently enforce a minimal white noise array gain in order to make the MPDR beamformer more robust.

White noise array gain versus number of snapshots

Diagonal loading

Principle

One tries to solve

$$
\min _{\mathbf{w}} \mathbf{w}^{H} \hat{\mathbf{R}} \mathbf{w} \text { subject to } \mathbf{w}^{H} \mathbf{a}_{0}=1 \text { and }\|\mathbf{w}\|^{2}=A_{\mathbf{w}}^{-1}
$$

Solution

The Lagrangian is given by (with $\lambda \in \mathbb{C}$ and $\mu \in \mathbb{R}$)

$$
\begin{aligned}
& L(\mathbf{w}, \lambda, \mu)=\mathbf{w}^{H} \hat{\mathbf{R}} \mathbf{w}+\lambda\left(\mathbf{w}^{H} \mathbf{a}_{0}-1\right)+\lambda^{*}\left(\mathbf{a}_{0}^{H} \mathbf{w}-1\right)+\mu\left(\mathbf{w}^{H} \mathbf{w}-A_{\mathbf{W N}}^{-1}\right) \\
& =\left[\mathbf{w}+\lambda(\hat{\mathbf{R}}+\mu \mathbf{I})^{-1} \mathbf{a}_{0}\right]^{H}(\hat{\mathbf{R}}+\mu \mathbf{I})\left[\mathbf{w}+\lambda(\hat{\mathbf{R}}+\mu \mathbf{I})^{-1} \mathbf{a}_{0}\right] \\
& -\lambda-\lambda^{*}-\mu A_{\mathrm{wN}}^{-1}-|\lambda|^{2} \mathbf{a}_{0}^{H}(\hat{\mathbf{R}}+\mu \mathbf{I})^{-1} \mathbf{a}_{0} .
\end{aligned}
$$

Diagonal loading

Solution

The solution thus takes the form $\mathbf{w}_{\text {MPDR-DL }}=-\lambda(\hat{\mathbf{R}}+\mu \mathbf{I})^{-1} \mathbf{a}_{0}$. Since $\mathbf{w}_{\text {MPDR-DL }}^{H} \mathbf{a}_{0}=1$, it follows that

$$
\mathbf{w}_{\mathrm{MPDR}-\mathrm{DL}}=\frac{(\hat{\mathbf{R}}+\mu \mathbf{I})^{-1} \mathbf{a}_{0}}{\mathbf{a}_{0}^{H}(\hat{\mathbf{R}}+\mu \mathbf{I})^{-1} \mathbf{a}_{0}}
$$

and μ is selected such that $\left\|\mathbf{w}_{\text {MPDR-DL }}\right\|^{-2}=A_{\mathrm{WN}}$.

Diagonal loading : adaptivity versus robustness

$$
\mu
$$

Choice of loading level

Many different possibilities have been proposed to set the loading level:

- set $A_{\mathrm{WN}}\left(\right.$ slightly below N) and compute μ from $\left\|\mathbf{w}_{\text {MPDR-DL }}\right\|^{-2}=A_{\mathrm{WN}}$.
- set μ directly, generally a few decibels above white noise level (see discussion next slide about beampatterns and eigenvalues).
- set μ using the theory of ridge regression, which enables one to compute μ from data.
- use that diagonal loading is the solution to the following problem

$$
\max _{P, \mathbf{a}} \hat{\mathbf{R}}-P \mathbf{a a}^{H} \text { for }\left\|\mathbf{a}-\mathbf{a}_{0}\right\|^{2} \leq \varepsilon^{2}
$$

and compute μ from ε.

- set A_{WN} and compute directly the diagonally loaded beamformer in GSC form without necessarily computing μ.

An interpretation of diagonal loading and the choice of μ

- The array beampattern with the true covariance matrix is given by

$$
g(\theta)=\frac{\alpha}{\sigma^{2}}\left\{\mathbf{a}_{0}^{H} \mathbf{a}(\theta)-\sum_{n=1}^{J} \frac{\lambda_{n}}{\lambda_{n}+\sigma^{2}}\left[\mathbf{a}_{0}^{H} \mathbf{u}_{n}\right] \mathbf{u}_{n}^{H} \mathbf{a}(\theta)\right\}
$$

- The array beampattern with an estimated covariance matrix becomes

$$
g^{\text {smi }}(\theta)=\frac{\alpha}{\hat{\lambda}_{\min }}\left\{\mathbf{a}_{0}^{H} \mathbf{a}(\theta)-\sum_{n=1}^{N} \frac{\hat{\lambda}_{n}}{\hat{\lambda}_{n}+\hat{\lambda}_{\min }}\left[\mathbf{a}_{0}^{H} \hat{\mathbf{u}}_{n}\right] \hat{\mathbf{u}}_{n}^{H} \mathbf{a}(\theta)\right\}
$$

- Degradation is due to $\hat{\lambda}_{J+1} \neq \hat{\lambda}_{J+2} \neq \cdots \hat{\lambda}_{N}=\hat{\lambda}_{\text {min }}$.
- Replacing $\hat{\mathbf{R}}$ by $\hat{\mathbf{R}}+\mu \mathbf{I}$ enables one to equalize the eigenvalues, provided that $\mu \gg \sigma^{2}$ and $\mu<\lambda_{J}$.

Diagonal loading: SINR versus number of snapshots

Diagonal loading: beampatterns

Influence of the loading level on SINR and WNAG

Linearly constrained beamforming

- To mitigate pointing errors, one can resort to multiple constraints, i.e. solve the problem

$$
\min \mathbf{w}^{H} \mathbf{C w} \text { subject to } \mathbf{Z}^{H} \mathbf{w}=\mathbf{d}
$$

whose solution is $\mathbf{w}=\mathbf{C}^{-1} \mathbf{Z}\left(\mathbf{Z}^{H} \mathbf{C}^{-1} \mathbf{Z}\right)^{-1} \mathbf{d}$.

- One can use a unit gain constraint around the presumed DOA or a smoothness constraint:

$$
\begin{gathered}
\mathbf{Z}=\left[\begin{array}{llll}
\mathbf{a}\left(\theta_{0}\right) & \mathbf{a}\left(\theta_{0}+\delta_{1}\right) & \cdots & \mathbf{a}\left(\theta_{0}+\delta_{L}\right)
\end{array}\right] \quad \mathbf{d}=\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]^{T} \\
\mathbf{Z}=\left[\begin{array}{llll}
\mathbf{a}\left(\theta_{0}\right) & \left.\frac{\partial \mathbf{a}(\theta)}{\partial \theta}\right|_{\theta_{0}} & \cdots & \left.\frac{\partial^{L} \mathbf{a}(\theta)}{\partial \theta^{L}}\right|_{\theta_{0}}
\end{array}\right] \quad \mathbf{d}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]^{T}
\end{gathered}
$$

Partially adaptive beamforming

Principle

Perform beamforming in a R-dimensional subspace.

Observations

- If interference lies in a subspace, it is meaningful and maybe beneficial to proceed in a (hopefully matched) lower-dimensional subspace in order to better remove interference.
- Rewriting $\mathbf{w}_{\text {MVDR }}$ in terms of $\operatorname{eig}(\mathbf{C})$ leads to

$$
\mathbf{w}_{\mathrm{MVDR}} \propto \mathbf{w}_{\mathrm{CBF}}-\sum_{n=1}^{J} \frac{\lambda_{n}}{\lambda_{n}+\sigma^{2}}\left[\mathbf{u}_{n}^{H} \mathbf{w}_{\mathrm{CBF}}\right] \mathbf{u}_{n}
$$

- The rate of convergence of the MVDR is twice the number of d.o.f of the array (N) : using $R<N$ d.o.f may decrease computational cost and improve rate of convergence.

Partially adaptive beamforming: structure

- Direct form:

- GSC form:

The (columns of) matrices \mathbf{T} and \mathbf{U} can be viewed as beams pointing towards interference (and possibly the Sol) prior to filtering (beamspace filtering).

Derivation of the partially adaptive beamformer

Direct form

- New snapshots after transformation $\tilde{\mathbf{y}}(k)=\mathbf{T}^{H} \mathbf{y}(k)$ whose covariance matrix is $\mathbf{R}_{\tilde{y}}=\mathbf{T}^{H} \mathbf{R}_{y} \mathbf{T}$.
- Minimization of the output power

$$
\min _{\tilde{\mathbf{w}}} \tilde{\mathbf{w}}^{H} \mathbf{R}_{\tilde{y}} \tilde{\mathbf{w}} \text { subject to } \tilde{\mathbf{w}}^{H} \tilde{\mathbf{a}}_{0}=1
$$

where $\tilde{\mathbf{a}}_{0}=\mathbf{T}^{H} \mathbf{a}_{0}$.

- The solution is given by

$$
\tilde{\mathbf{w}}=\alpha \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{a}}_{0} \Rightarrow \mathbf{w}_{\mathrm{PA}-\mathrm{DF}}=\alpha \mathbf{T}\left(\mathbf{T}^{H} \mathbf{R}_{y} \mathbf{T}\right)^{-1} \mathbf{T}^{H} \mathbf{a}_{0}
$$

Derivation of the partially adaptive beamformer

GSC form

- New snapshots after transformation $\tilde{\mathbf{z}}(k)=\mathbf{U}^{H} \mathbf{z}(k)=\mathbf{U}^{H} \mathbf{B}^{H} \mathbf{y}(k)$ whose covariance matrix is $\mathbf{R}_{\tilde{z}}=\mathbf{U}^{H} \mathbf{R}_{z} \mathbf{U}$.
- Minimization of the output power

$$
\begin{equation*}
\min _{\tilde{\mathbf{w}}} \mathcal{E}\left\{\left|d(k)-\tilde{\mathbf{w}}^{H} \tilde{\mathbf{z}}(k)\right|^{2}\right\} \tag{PA-GSC}
\end{equation*}
$$

- The solution is given by

$$
\begin{aligned}
\tilde{\mathbf{w}} & =\mathbf{R}_{\tilde{z}}^{-1} \mathbf{r}_{d \tilde{\mathbf{z}}}=\left(\mathbf{U}^{H} \mathbf{R}_{z} \mathbf{U}\right)^{-1} \mathbf{U}^{H} \mathbf{r}_{d \mathbf{z}} \\
\mathbf{w}_{\mathrm{PA}-\mathrm{GSC}} & =\mathbf{w}_{\mathrm{CBF}}-\mathbf{B} \mathbf{U R}_{\tilde{z}}^{-1} \mathbf{r}_{d \tilde{\mathbf{z}}}
\end{aligned}
$$

Selection of matrices T and U

Fixed transformations

- For instance using subarrays or spatial filtering, i.e.

$$
\begin{aligned}
\mathbf{T} & =\left[\begin{array}{lll}
\mathbf{a}\left(\tilde{\theta}_{1}\right) & \mathbf{a}\left(\tilde{\theta}_{2}\right) & \cdots \\
\mathbf{a}\left(\tilde{\theta}_{R}\right)
\end{array}\right] \\
\mathbf{U} & =\mathbf{B}^{H}\left[\begin{array}{lll}
\mathbf{a}\left(\tilde{\theta}_{1}\right) & \mathbf{a}\left(\tilde{\theta}_{2}\right) & \cdots \mathbf{a}\left(\tilde{\theta}_{R}\right)
\end{array}\right]
\end{aligned}
$$

- In this case, the columns of \mathbf{U} can be viewed as beamformers aimed at intercepting the interference.
- Require some prior knowledge about the interference DOA in order for them to pass through the beams.

Selection of matrices T and U

Random transformations

- The idea ${ }^{a}$ is to use matrices L matrices \mathbf{U}_{ℓ} drawn from a uniform distribution on the manifold of semi-unitary $N \times R$ matrices, i.e.

$$
\mathbf{U}_{\ell}=\mathbf{X}_{\ell}\left(\mathbf{X}_{\ell}^{H} \mathbf{X}_{\ell}\right)^{-H / 2} ; \quad \mathbf{X}_{\ell} \stackrel{d}{=} \mathbb{C N}\left(\mathbf{0}, \mathbf{I}_{N}, \mathbf{I}_{R}\right)
$$

and to average the corresponding weight vectors $\tilde{\mathbf{w}}_{\ell}$, i.e.

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}_{\mathrm{CBF}}-\mathbf{B}\left[\frac{1}{L} \sum_{\ell=1}^{L} \mathbf{U}_{\ell}\left(\mathbf{U}_{\ell}^{H} \mathbf{R}_{z} \mathbf{U}_{\ell}\right)^{-1} \mathbf{U}_{\ell}^{H} \mathbf{r}_{d \mathbf{z}}\right] \\
& =\mathbf{w}_{\mathrm{CBF}}-\mathbf{B}\left[\frac{1}{L} \sum_{\ell=1}^{L} \mathbf{X}_{\ell}\left(\mathbf{X}_{\ell}^{H} \mathbf{R}_{z} \mathbf{X}_{\ell}\right)^{-1} \mathbf{X}_{\ell}^{H} \mathbf{r}_{d \mathbf{z}}\right]
\end{aligned}
$$

[^0]
Selection of matrices T and U

Adaptive transformations

Matrices \mathbf{T} or \mathbf{U} depend on the snapshots. For example, in GSC form, if

$$
\mathbf{R}_{z}=\sum_{n=1}^{N-1} \lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{H} ; \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N-1}
$$

one can choose

- the R principal eigenvectors of \mathbf{R}_{z} (Principal Component), i.e.

$$
\mathbf{U}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{R}
\end{array}\right] \Rightarrow \mathbf{w}_{\mathrm{pc}-\mathrm{gsc}}=\mathbf{w}_{\mathrm{CBF}}-\mathbf{B} \mathbf{U} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{H} \mathbf{r}_{d \mathbf{z}}
$$

where $\boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{1}, \cdots, \lambda_{R}\right\}$.

- the R eigenvectors which contribute most to increasing the SINR (Cross Spectral Metric).

Partially adaptive beamforming: SINR versus K

Partially adaptive beamforming: SINR versus K

Partially adaptive beamforming: SINR versus R

Beamforming: synthesis

- Conventional beamforming $\mathbf{w}_{\text {CBF }}=\left(\mathbf{a}_{0}^{H} \mathbf{a}_{0}\right)^{-1} \mathbf{a}_{0}$. Optimal in white noise, $\theta_{3 \mathrm{~dB}}=0.9\left(N \frac{d}{\lambda}\right)^{-1}$, sidelobes at -13 dB .
- Adaptive beamforming $\mathbf{w}_{\text {opt }} \propto \mathbf{C}^{-1} \mathbf{a}_{s}, \mathbf{w}_{\text {MVDR }} \propto \mathbf{C}^{-1} \mathbf{a}_{0}$, $\mathbf{w}_{\text {MPDR }} \propto \mathbf{R}^{-1} \mathbf{a}_{0}$
- all equivalent if \mathbf{R}, \mathbf{C} known and $\mathbf{a}_{s}=\mathbf{a}_{0}$
- $\operatorname{SINR}_{\text {opt }} \gtrsim \operatorname{SINR}_{\text {MVDR }} \gg \operatorname{SINR}_{\text {MPDR }}$ when $\mathbf{a}_{s} \neq \mathbf{a}_{0}$
- SINR $_{\text {MVDR-SMI }} \gg$ SINR $_{\text {MPDR-SMI }}$: convergence for about $2 N$ snapshots for MVDR, $N \times$ SINR $_{\text {opt }}$ for MPDR
- Diagonal loading: helps to mitigate both finite-sample errors and steering vector errors. Especially useful in MPDR context with low power signal of interest.
- Partially adaptive beamforming: enables one to achieve faster convergence by operating in low-dimensional subspace. Especially effective with strong, low-rank interference.

Contents

(1) Introduction

(2) Array processing model

(3) Beamforming

(4) Source localization

Non parametric methods (beamforming) Parametric methods for DOA estimation

The direction of arrival estimation problem

Problem formulation

Given a collection of K snapshots which can possibly be modeled as $\mathbf{y}(k)=\sum_{p=1}^{P} \mathbf{a}\left(\theta_{p}\right) s_{p}(k)+\mathbf{n}(k)$, estimate the directions of arrival (DoA) $\theta_{1}, \ldots, \theta_{P}$:

$$
\xrightarrow{\mathbf{y}(k) \stackrel{?}{=} \sum_{p=1}^{P} \mathbf{a}\left(\theta_{p}\right) s_{p}(k)+\mathbf{n}(k)} \xrightarrow{?} \quad \begin{aligned}
& \hat{\theta}_{1}, \ldots, \hat{\theta}_{P} \\
&
\end{aligned}
$$

Approaches

- Non parametric approaches which do not necessarily rely on a model for $\mathbf{y}(k)$: similar to Fourier-based methods in time domain;
- Parametric approaches where a model is assumed and its properties (algebraic structure, distribution) are exploited.

Beamforming for direction finding purposes

- The idea is to form a beam $\mathbf{w}(\theta)$ for each angle θ and to evaluate the power $\mathcal{E}\left\{\left|y_{F}(k)\right|^{2}\right\}=\mathcal{E}\left\{\left|\mathbf{w}^{H}(\theta) \mathbf{y}(k)\right|^{2}\right\}$ at the output of the beamformer versus θ :
$\xrightarrow{\mathbf{y}(k)} \xrightarrow{\mathbf{w}(\theta)}{ }^{P_{\mathbf{w}}(\theta)=\mathcal{E}\left\{\left|\mathbf{w}^{H}(\theta) \mathbf{y}(k)\right|^{2}\right\}}$
- Large peaks should provide the directions of arrival:

Beamforming for direction finding purposes

CBF and Capon

The conventional beamformer as well as the MPDR beamformer can be used, which yields

$$
\begin{align*}
\mathcal{E}\left\{\left|y_{F}(k)\right|^{2}\right\} & =\frac{\mathbf{a}^{H}(\theta) \mathbf{R a}(\theta)}{N^{2}} \quad\left[\mathbf{w}(\theta)=\frac{\mathbf{a}(\theta)}{\mathbf{a}^{H}(\theta) \mathbf{a}(\theta)}\right] \tag{CBF}\\
& =\frac{1}{\mathbf{a}^{H}(\theta) \mathbf{R}^{-1} \mathbf{a}(\theta)} \quad\left[\mathbf{w}(\theta)=\frac{\mathbf{R}^{-1} \mathbf{a}(\theta)}{\mathbf{a}^{H}(\theta) \mathbf{R}^{-1} \mathbf{a}(\theta)}\right]
\end{align*}
$$

In practice

With K snapshots available, \mathbf{R} is estimated as

$$
\hat{\mathbf{R}}=\frac{1}{K} \sum_{k=1}^{K} \mathbf{y}(k) \mathbf{y}^{H}(k)
$$

CBF and Fourier analysis

- The estimated power at the output of the CBF writes

$$
\begin{aligned}
P_{\mathrm{CBF}}(\theta) & =\frac{1}{N^{2}} \mathbf{a}^{H}(\theta) \hat{\mathbf{R}} \mathbf{a}(\theta) \\
& =\frac{1}{K N^{2}} \sum_{k=1}^{K}\left|\mathbf{a}^{H}(\theta) \mathbf{y}(k)\right|^{2} \\
& =\frac{1}{K N^{2}} \sum_{k=1}^{K}\left|\sum_{n=1}^{N} \mathbf{y}_{n}(k) e^{-i 2 \pi(n-1) f}\right|^{2}
\end{aligned}
$$

where $f=\frac{d}{\lambda} \sin \theta$.

- The inner sum is recognized as the (spatial) Fourier transform of each snapshot.

Comparison CBF-Capon (low resolution scenario)

Comparison CBF-Capon (high resolution scenario)

Model-based methods

Principle

Based on the model

$$
\mathbf{y}(k)=\mathbf{A}(\boldsymbol{\theta}) \mathbf{s}(k)+\mathbf{n}(k)
$$

where $\boldsymbol{\theta}=\left[\begin{array}{llll}\theta_{1} & \theta_{2} & \cdots & \theta_{P}\end{array}\right]^{T}$,

$$
\begin{aligned}
\mathbf{A}(\boldsymbol{\theta}) & =\left[\begin{array}{llll}
\mathbf{a}\left(\theta_{1}\right) & \mathbf{a}\left(\theta_{2}\right) & \cdots & \mathbf{a}\left(\theta_{P}\right)
\end{array}\right] \\
\mathbf{s}(k) & =\left[\begin{array}{llll}
s_{1}(k) & s_{2}(k) & \cdots & s_{P}(k)
\end{array}\right]^{T}
\end{aligned}
$$

and $\mathbf{a}(\theta)$ stands for the steering vector.

Classes of methods

- Maximum Likelihood methods are based on maximizing the likelihood function, which amounts to finding the unknown parameters which make the observed data the more likely.
- Subspace-based methods rely on the fact that the signal subspace coincides with the subspace spanned by the principal eigenvectors of \mathbf{R}. Moreover, the latter is orthogonal to the subspace spanned by the minor eigenvectors. These two algebraic properties are exploited for direction finding.
- Covariance matching relies on a model $\mathbf{R}(\boldsymbol{\eta})$ for the covariance matrix and looks for the model parameters which minimize the distance between $\mathbf{R}(\boldsymbol{\eta})$ and the sample covariance matrix $\hat{\mathbf{R}}$.

Maximum Likelihood Estimation

- The MLE consists in finding the parameter vector $\boldsymbol{\eta}$ which maximizes the likelihood function $p(\mathbf{Y} ; \boldsymbol{\eta})$ of the snapshots $\mathbf{Y}=\left[\begin{array}{llll}\mathbf{y}(1) & \mathbf{y}(2) & \cdots & \mathbf{y}(k)\end{array}\right]$, where $\boldsymbol{\eta}$ is the model parameter vector.
(3) Asymptotically efficient.
(ㄷ) Multi-dimensional optimization problem (usually) \Rightarrow computational complexity, possible convergence to local maxima.

Stochastic (unconditional) MLE

- Assume that $\mathbf{s}(k)$ is Gaussian distributed with $\mathcal{E}\{\mathbf{s}(k)\}=\mathbf{0}$, and a covariance matrix $\mathbf{R}_{s}=\mathcal{E}\left\{\mathbf{s}(k) \mathbf{s}^{H}(k)\right\}$ which is full rank.
- The distribution of the snapshots is thus given by

$$
\mathbf{y}(k) \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{R}=\mathbf{A}(\boldsymbol{\theta}) \mathbf{R}_{s} \mathbf{A}^{H}(\boldsymbol{\theta})+\sigma^{2} \mathbf{I}\right)
$$

- The likelihood function can be written as

$$
p(\mathbf{Y} ; \boldsymbol{\eta})=\prod_{k=1}^{K} \pi^{-N}|\mathbf{R}|^{-1} e^{-\mathbf{y}(k)^{H} \mathbf{R}^{-1} \mathbf{y}(k)}
$$

Stochastic (unconditional) MLE

- The ML estimate is obtained as

$$
\begin{aligned}
\hat{\boldsymbol{\eta}} & =\arg \min _{\boldsymbol{\theta}, \mathbf{R}_{s}, \sigma^{2}}-\log p(\mathbf{Y} ; \boldsymbol{\eta}) \\
& =\arg \min _{\boldsymbol{\theta}, \mathbf{R}_{s}, \sigma^{2}} \log |\mathbf{R}|+\operatorname{Tr}\left\{\mathbf{R}^{-1} \hat{\mathbf{R}}\right\}
\end{aligned}
$$

- Closed-form solutions for σ^{2} and \mathbf{R}_{s} can be obtained so that the likelihood function is concentrated, yielding a minimization over the angles only:

$$
\hat{\boldsymbol{\theta}}^{\text {sto }}=\arg \min _{\boldsymbol{\theta}} \log \left|\mathbf{A}(\boldsymbol{\theta}) \hat{\mathbf{R}}_{s}(\boldsymbol{\theta}) \mathbf{A}^{H}(\boldsymbol{\theta})+\hat{\sigma}^{2}(\boldsymbol{\theta}) \mathbf{I}\right|
$$

Deterministic (conditional) MLE

- The signal waveforms are assumed deterministic so that

$$
\mathbf{y}(k) \sim \mathcal{C N}\left(\mathbf{A}(\boldsymbol{\theta}) \mathbf{s}(k), \sigma^{2} \mathbf{I}\right)
$$

- The MLE is now given by

$$
\hat{\boldsymbol{\eta}}=\arg \min _{\boldsymbol{\theta}, \mathbf{s}(k), \sigma^{2}} N K \log \sigma^{2}+\sigma^{-2} \sum_{k=1}^{K}\|\mathbf{y}(k)-\mathbf{A}(\boldsymbol{\theta}) \mathbf{s}(k)\|^{2}
$$

- The likelihood function can be concentrated with respect to all $\mathbf{s}(k)$ and σ^{2}, and finally

$$
\hat{\boldsymbol{\theta}}^{\mathrm{det}}=\arg \min _{\boldsymbol{\theta}} \operatorname{Tr}\left\{\mathbf{P}_{\mathbf{A}}^{\perp}(\boldsymbol{\theta}) \hat{\mathbf{R}}\right\}
$$

- For a single source $\hat{\theta}^{\text {det }}=\arg \max _{\theta} \frac{1}{N} \mathbf{a}^{H}(\theta) \hat{\mathbf{R}} \mathbf{a}(\theta) \equiv \mathrm{CBF}$.

Subspace methods

Eigenvalue decomposition of the covariance matrix
If P signals are present, one has

$$
\begin{aligned}
\mathbf{R} & =\mathbf{A}\left(\boldsymbol{\theta}_{0}\right) \mathbf{R}_{s} \mathbf{A}^{H}\left(\boldsymbol{\theta}_{0}\right)+\sigma^{2} \mathbf{I}=\sum_{p=1}^{P} \lambda_{p} \mathbf{u}_{p} \mathbf{u}_{p}^{H}+\sigma^{2} \mathbf{I} \\
& =\sum_{p=1}^{P}\left(\lambda_{p}+\sigma^{2}\right) \mathbf{u}_{p} \mathbf{u}_{p}^{H}+\sigma^{2} \sum_{p=P+1}^{N} \mathbf{u}_{p} \mathbf{u}_{p}^{H}=\mathbf{U}_{s} \boldsymbol{\Lambda}_{s} \mathbf{U}_{s}^{H}+\sigma^{2} \mathbf{U}_{n} \mathbf{U}_{n}^{H}
\end{aligned}
$$

Subspace methods

Signal and noise subspaces
Since

$$
\begin{aligned}
& \mathbf{R} \mathbf{U}_{n}=\sigma^{2} \mathbf{U}_{n}=\mathbf{A}\left(\boldsymbol{\theta}_{0}\right) \mathbf{R}_{s} \mathbf{A}^{H}\left(\boldsymbol{\theta}_{0}\right) \mathbf{U}_{n}+\sigma^{2} \mathbf{U}_{n} \\
& \Rightarrow \mathbf{A}^{H}\left(\boldsymbol{\theta}_{0}\right) \mathbf{U}_{n}=\mathbf{0}
\end{aligned}
$$

we have

$$
\begin{aligned}
\mathcal{N}\left\{\mathbf{A}^{H}\left(\boldsymbol{\theta}_{0}\right)\right\} & =\mathcal{R}\left\{\mathbf{U}_{n}\right\}=\mathcal{R}\left\{\mathbf{U}_{s}\right\}^{\perp}=\mathcal{R}\left\{\mathbf{A}\left(\boldsymbol{\theta}_{0}\right)\right\}^{\perp} \\
\Rightarrow \mathcal{R}\left\{\mathbf{U}_{s}\right\} & =\mathcal{R}\left\{\mathbf{A}\left(\boldsymbol{\theta}_{0}\right)\right\}
\end{aligned}
$$

The signal subspace is spanned by U_{s} : it is thus orthogonal to U_{n}.

MUSIC

- The signal steering vectors are orthogonal to \mathbf{U}_{n}

$$
\mathbf{u}_{n}^{H} \mathbf{a}\left(\theta_{p}\right)=0 \Rightarrow \mathbf{a}^{H}\left(\theta_{p}\right) \mathbf{U}_{n} \mathbf{U}_{n}^{H} \mathbf{a}\left(\theta_{p}\right)=0
$$

- One looks for the P largest maxima of

$$
V_{\operatorname{MUSIC}}(\theta)=\frac{1}{\mathbf{a}^{H}(\theta) \hat{\mathbf{U}}_{n} \hat{\mathbf{U}}_{n}^{H} \mathbf{a}(\theta)}
$$

- For a ULA, one can either compute the P roots (root-MUSIC) of

$$
V_{\operatorname{MUSIC}}(z)=\mathbf{a}^{T}\left(z^{-1}\right) \hat{\mathbf{U}}_{n} \hat{\mathbf{U}}_{n}^{H} \mathbf{a}(z)
$$

closest to the unit circle, where $\mathbf{a}(z)=\left[\begin{array}{llll}1 & z & \cdots & z^{N-1}\end{array}\right]^{T}$.

- Many variants around MUSIC, e.g., SSMUSIC (Mc Cloud \& Scharf).

Subspace Fitting

- Since $\mathcal{R}\left\{\mathbf{U}_{s}\right\}=\mathcal{R}\left\{\mathbf{A}\left(\boldsymbol{\theta}_{0}\right)\right\}$, there exists a full-rank matrix \mathbf{T} $(P \times P)$ such that

$$
\mathbf{U}_{s}=\mathbf{A}\left(\boldsymbol{\theta}_{0}\right) \mathbf{T}
$$

- The idea is to look for the DOA which minimize the error between the subspaces spanned by $\hat{\mathbf{U}}_{s}$ and $\mathbf{A}(\boldsymbol{\theta})$:

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}, \hat{\mathbf{T}} & =\arg \min _{\boldsymbol{\theta}, \mathbf{T}}\left\|\hat{\mathbf{U}}_{s}-\mathbf{A}(\boldsymbol{\theta}) \mathbf{T}\right\|_{\mathbf{W}}^{2} \\
& =\arg \min _{\boldsymbol{\theta}, \mathbf{T}} \operatorname{Tr}\left\{\left[\hat{\mathbf{U}}_{s}-\mathbf{A}(\boldsymbol{\theta}) \mathbf{T}\right] \mathbf{W}\left[\hat{\mathbf{U}}_{s}-\mathbf{A}(\boldsymbol{\theta}) \mathbf{T}\right]^{H}\right\}
\end{aligned}
$$

Subspace Fitting

- There exists a closed-form solution for \mathbf{T} and finally

$$
\hat{\boldsymbol{\theta}}^{\mathrm{SSF}}=\arg \min _{\boldsymbol{\theta}} \operatorname{Tr}\left\{\mathbf{P}_{\mathbf{A}}^{\perp}(\boldsymbol{\theta}) \hat{\mathbf{U}}_{s} \mathbf{W} \hat{\mathbf{U}}_{s}^{H}\right\}
$$

- Alternative: use the fact that

$$
\mathcal{R}\left\{\mathbf{U}_{n}\right\}=\mathcal{N}\left\{\mathbf{A}^{H}\left(\boldsymbol{\theta}_{0}\right)\right\} \Rightarrow \mathbf{U}_{n}^{H} \mathbf{A}\left(\boldsymbol{\theta}_{0}\right)=\mathbf{0}
$$

and estimate the angles as

$$
\hat{\boldsymbol{\theta}}^{\mathrm{NSF}}=\arg \min _{\boldsymbol{\theta}}\left\|\hat{\mathbf{U}}_{n}^{H} \mathbf{A}(\boldsymbol{\theta})\right\|_{\mathbf{W}}^{2}
$$

ESPRIT

- We assume that the array is composed of 2 sub-arrays which are related to by a known displacement. Then

$$
\mathbf{A}_{2}=\mathbf{A}_{1} \boldsymbol{\Phi}=\mathbf{A}_{1}\left(\begin{array}{lllll}
e^{i \omega_{c} \tau\left(\theta_{1}\right)} & & & & \\
& e^{i \omega_{c} \tau\left(\theta_{2}\right)} & & & \\
& & \ddots & & \\
& & & \ddots & \\
& & & & e^{i \omega_{c} \tau\left(\theta_{P}\right)}
\end{array}\right)
$$

ESPRIT

- The signals received on the two sub-arrays can be written as

$$
\begin{aligned}
& \mathbf{y}_{1}(k)=\mathbf{A}_{1} \mathbf{s}(k)+\mathbf{n}_{1}(k) \\
& \mathbf{y}_{2}(k)=\mathbf{A}_{1} \boldsymbol{\Phi} \mathbf{s}(k)+\mathbf{n}_{2}(k)
\end{aligned}
$$

- Let

$$
\mathbf{z}(k)=\left[\begin{array}{l}
\mathbf{y}_{1}(k) \\
\mathbf{y}_{2}(k)
\end{array}\right]=\left[\begin{array}{c}
\mathbf{A}_{1} \\
\mathbf{A}_{1} \boldsymbol{\Phi}
\end{array}\right] \mathbf{s}(k)+\left[\begin{array}{l}
\mathbf{n}_{1}(k) \\
\mathbf{n}_{2}(k)
\end{array}\right]=\overline{\mathbf{A}} \mathbf{s}(k)+\overline{\mathbf{n}}(k)
$$

and $\mathbf{R}_{z}=\mathcal{E}\left\{\mathbf{z}(k) \mathbf{z}^{H}(k)\right\}$ be the covariance matrix of $\mathbf{z}(k)$.

ESPRIT

- If $\mathbf{R}_{z}=\mathbf{U}_{s} \boldsymbol{\Lambda}_{s} \mathbf{U}_{s}^{H}+\mathbf{U}_{n} \boldsymbol{\Lambda}_{n} \mathbf{U}_{n}^{H}$ then

$$
\begin{aligned}
\mathbf{U}_{s}=\overline{\mathbf{A}} \mathbf{T} & \Rightarrow\left[\begin{array}{l}
\mathbf{U}_{1} \\
\mathbf{U}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{A}_{1} \\
\mathbf{A}_{1} \boldsymbol{\Phi}
\end{array}\right] \mathbf{T} \\
& \Rightarrow \mathbf{U}_{1}=\mathbf{A}_{1} \mathbf{T} \text { et } \mathbf{U}_{2}=\mathbf{A}_{1} \boldsymbol{\Phi} \mathbf{T} \\
& \Rightarrow \mathbf{U}_{2}=\mathbf{U}_{1} \mathbf{T}^{-1} \boldsymbol{\Phi} \mathbf{T} \\
& \Rightarrow \mathbf{U}_{2}=\mathbf{U}_{1} \mathbf{\Psi}
\end{aligned}
$$

- The eigenvalues of $\boldsymbol{\Psi}$ are $\left\{e^{i \omega_{c} \tau\left(\theta_{p}\right)}\right\}_{p=1}^{P}$.

Low-resolution scenario

Eigenvalues of the covariance matrix

Low-resolution scenario

Comparison CBF-MUSIC

High-resolution scenario

Eigenvalues of the covariance matrix

High-resolution scenario

Covariance matching

- The covariance matrix is given by $\mathbf{R}(\boldsymbol{\theta}, \mathbf{P}, \sigma)=\mathbf{R}_{s}(\boldsymbol{\theta}, \mathbf{P})+\mathbf{Q}(\sigma)$

$$
\mathbf{r}=\operatorname{vec}(\mathbf{R})=\boldsymbol{\Psi}(\boldsymbol{\theta}) \mathbf{P}+\boldsymbol{\Sigma} \sigma=\left[\begin{array}{ll}
\boldsymbol{\Psi}(\boldsymbol{\theta}) & \boldsymbol{\Sigma}
\end{array}\right]\left[\begin{array}{l}
\mathbf{P} \\
\sigma
\end{array}\right] \triangleq \boldsymbol{\Phi}(\boldsymbol{\theta}) \boldsymbol{\alpha}
$$

- The parameters are estimated by minimizing the error between \mathbf{R} and its estimate $\hat{\mathbf{R}}$:

$$
\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\alpha}}=\arg \min [\hat{\mathbf{r}}-\boldsymbol{\Phi}(\boldsymbol{\theta}) \boldsymbol{\alpha}] \mathbf{W}^{-1}[\hat{\mathbf{r}}-\boldsymbol{\Phi}(\boldsymbol{\theta}) \boldsymbol{\alpha}]
$$

- The criterion can be concentrated with respect to α : minimization with respect to $\boldsymbol{\theta}$ only.

Covariance matching

- In case of independent Gaussian distributed snaphots, $\mathbf{W}_{\text {opt }}=\mathbf{R}^{T} \otimes \mathbf{R}$ and covariance matching estimates are asymptotically (i.e. when $K \rightarrow \infty$) equivalent to ML estimates.
- In contrast to MLE, no need for assumptions on the pdf, only an assumption on \mathbf{R}. The criterion is usually simpler to minimize.
- Covariance matching can be used with full-rank covariance matrix \mathbf{R}_{s} while subspace methods require the latter to be rank deficient.

Synthesis

	Hypotheses	Algorithm	Performance	Problems
ML	distribution	optimization	optimal	Computational cost
COMET	\mathbf{R}	optimization	\simeq optimal	Computational cost
MUSIC	\mathbf{R}	EVD	\simeq optimal	Coherent signals

Conclusions

- Array processing, thanks to additional degrees of freedom, enables one to perform spatial filtering of signals.
- Adaptive beamforming, possibly with reduced-rank transformations, enables one to achieve high SINR with a fast rate of convergence in adverse conditions (interference, noise).
- Robustness issues are of utmost importance in practical systems, and should be given a careful attention.
- Non-parametric direction finding methods are simple and robust but may suffer from a lack of resolution.
- Parametric methods offer high resolution, often at the price of degraded robustness.

References

(1) H.L. Van Trees, Optimum Array Processing, John Wiley, 2002
(2) D.G. Manolakis, V.K. Ingle et S.M. Kogon, Statistical and Adaptive Signal Processing, ch. 11, McGraw-Hill, 2000
(3) Y. Hua, A.B. Gershman et Q. Cheng (Editeurs), High-Resolution and Robust Signal Processing, Marcel Dekker, 2004
4) J.R. Guerci, Space-Time Adaptive Processing, Artech House, 2003

5 S. A. Vorobyov, Adaptive and robust beamforming, A. M. Zoubir, M. Viberg, R. Chellappa, and S. Theodoridis, editors, Academic Press Library in Signal Processing, vol. 3, pp. 503-552, Elsevier, 2014.

[^0]: ${ }^{a}$ T. Marzetta, G. Tucci, S. Simon, "A random matrix-theoretic approach to handling singular covariance matrices", IEEE Transactions Information Theory, September 2011

