Statistics for Economics, Accounting and Business Studies

Seventh edition

```
Pearson Education Limited
Edinburgh Gate
Harlow CM2O 2JE
United Kingdom
Tel: +44 (0)1279 623623
Web: www.pearson.com/uk
First published }1988\mathrm{ (print)
Second edition published }1996\mathrm{ (print)
Third edition published }2001\mathrm{ (print and electronic)
Fourth edition published 2006 (print and electronic)
Fifth edition published 2009 (print and electronic)
Sixth edition published }2013\mathrm{ (print and electronic)
Seventh edition published }2017\mathrm{ (print and electronic)
© Pearson Education Limited 1988, }1996\mathrm{ (print)
@ Pearson Education Limited 2001, 2006, 2009, 2013, }2017\mathrm{ (print and electronic)
```

Pearson Education is not responsible for the content of third-party internet sites.

```
ISBN: 978-1-292-11870-3 (Print)
    978-1-292-11874-1 (PDF)
    978-1-292-18249-0 (ePub)
```


British Library Cataloguing-in-Publication Data

A catalogue record for the print edition is available from the British Library

Library of Congress Cataloging-in-Publication Data
Names: Barrow, Michael, author.
Title: Statistics for economics, accounting and business studies / Michael Barrow.
Description: Seventh edition. | Harlow, United Kingdom : Pearson Education,
[2017]| Includes bibliographical references and index.
Identifiers: LCCN 2016049343 |ISBN 9781292118703 (Print) | ISBN 9781292118741
(PDF) |ISBN 9781292182490 (ePub)
Subjects: LCSH: Economics--Statistical methods. | Commercial statistics.
Classification: LCC HB137 .B37 2016|DDC 519.5024/33--dc23
LC record available at https://Iccn.loc.gov/2016049343

Print edition typeset in 9/12pt StoneSerifITCPro-Medium by iEnergizer Aptara* Ltd Printed in Slovakia by Neografia

Contents

Guided tour of the book xii
Publisher's acknowledgements xiv
Preface to the seventh edition xvi
Custom publishing xviii
Introduction 1
1 Descriptive statistics 7
Learning outcomes 8
Introduction 8
Summarising data using graphical techniques 10
Looking at cross-section data: wealth in the United Kingdom in 2005 16
Summarising data using numerical techniques 27
The box and whiskers diagram 47
Time-series data: investment expenditures 1977-2009 48
Graphing bivariate data: the scatter diagram 63
Data transformations 67
The information and data explosion 70
Writing statistical reports 72
Guidance to the student: how to measure your progress 74
Summary 75
Key terms and concepts 75
Reference 76
Formulae used in this chapter 77
Problems 78
Answers to exercises 84
Appendix 1A: \sum notation 88
Problems on Σ notation 89
Appendix 1B: E and V operators 90
Appendix 1C: Using logarithms 91
Problems on logarithms 92
2 Probability 93
Learning outcomes 93
Probability theory and statistical inference 94
The definition of probability 94
Probability theory: the building blocks 97
Events 98
Bayes' theorem 110
Decision analysis 112
Summary 116
Key terms and concepts 117
Formulae used in this chapter 118
Problems 118
Answers to exercises 124
3 Probability distributions 128
Learning outcomes 128
Introduction 129
Random variables and probability distributions 130
The Binomial distribution 131
The Normal distribution 137
The distribution of the sample mean 145
The relationship between the Binomial and Normal distributions 151
The Poisson distribution 153
Summary 156
Key terms and concepts 156
Formulae used in this chapter 157
Problems 157
Answers to exercises 162
4 Estimation and confidence intervals 164
Learning outcomes 164
Introduction 165
Point and interval estimation 165
Rules and criteria for finding estimates 166
Estimation with large samples 170
Precisely what is a confidence interval? 173
Estimation with small samples: the t distribution 181
Summary 186
Key terms and concepts 187
Formulae used in this chapter 188
Problems 188
Answers to exercises 191
Appendix: Derivations of sampling distributions 193
5 Hypothesis testing 195
Learning outcomes 195
Introduction 196
The concepts of hypothesis testing 196
The Prob-value approach 203
Significance, effect size and power 204
Further hypothesis tests 207
Hypothesis tests with small samples 211
Are the test procedures valid? 213
Hypothesis tests and confidence intervals 214
Independent and dependent samples 215
Issues with hypothesis testing 218
Summary 219
Key terms and concepts 220
Reference 220
Formulae used in this chapter 221
Problems 221
Answers to exercises 226
6 The χ^{2} and F distributions 230
Learning outcomes 230
Introduction 231
The χ^{2} distribution 231
The F distribution 245
Analysis of variance 248
Summary 255
Key terms and concepts 255
Formulae used in this chapter 256
Problems 256
Answers to exercises 259
Appendix Use of χ^{2} and F distribution tables 261
7 Correlation and regression 263
Learning outcomes 263
Introduction 264
What determines the birth rate in developing countries? 265
Correlation 267
Regression analysis 276
Inference in the regression model 283
Route map of calculations 291
Some other issues in regression 293
Gapminder again 297
Summary 298
Key terms and concepts 299
References 299
Formulae used in this chapter 300
Problems 301
Answers to exercises 304
8 Multiple regression 307
Learning outcomes 307
Introduction 308
Principles of multiple regression 309
What determines imports into the United Kingdom? 310
Finding the right model 330
Summary 338
Key terms and concepts 339
References 339
Formulae used in this chapter 340
Problems 340
Answers to exercises 344
9 Data collection and sampling methods 349
Learning outcomes 349
Introduction 350
Using secondary data sources 351
Collecting primary data 355
Random sampling 356
Calculating the required sample size 365
Collecting the sample 367
Case study: the UK Living Costs and Food Survey 370
Summary 371
Key terms and concepts 372
References 372
Formulae used in this chapter 373
Problems 373
10 Index numbers 374
Learning outcomes 374
Introduction 375
A simple index number 376
A price index with more than one commodity 377
Using expenditures as weights 385
Quantity and expenditure indices 387
The Consumer Price Index 393
Discounting and present values 394
Inequality indices 399
The Lorenz curve 399
The Gini coefficient 402
Concentration ratios 407
Summary 409
Key terms and concepts 409
References 410
Formulae used in this chapter 411
Problems 411
Answers to exercises 416
Appendix: deriving the expenditure share form of the Laspeyres price index 419
11 Seasonal adjustment of time-series data 420
Learning outcomes 420
Introduction 421
The components of a time series 421
Forecasting 432
Further issues 433
Summary 434
Key terms and concepts 435
Problems 436
Answers to exercises 438
List of important formulae 442
Appendix: Tables 448
Table A1 Random number table 448
Table A2 The standard Normal distribution 450
Table A3 Percentage points of the t distribution 451
Table A4 Critical values of the χ^{2} distribution 452
Table A5(a) Critical values of the F distribution (upper 5\% points) 454
Table A5(b) Critical values of the F distribution (upper 2.5% points) 456
Table A5(c) Critical values of the F distribution (upper 1\% points) 458
Table A5(d) Critical values of the F distribution (upper 0.5% points) 460
Table A6 Critical values of Spearman's rank correlation coefficient 462
Table A7 Critical values for the Durbin-Watson test at 5\% significance level 463
Answers and Commentary on Problems 464
Index 492

Preface to the seventh edition

This text is aimed at students of economics and the closely related disciplines of accountancy, finance and business, and provides examples and problems relevant to those subjects, using real data where possible. The text is at a fairly elementary university level and requires no prior knowledge of statistics, nor advanced mathematics. For those with a weak mathematical background and in need of some revision, some recommended texts are given at the end of this preface.

This is not a cookbook of statistical recipes: it covers all the relevant concepts so that an understanding of why a particular statistical technique should be used is gained. These concepts are introduced naturally in the course of the text as they are required, rather than having sections to themselves. The text can form the basis of a one- or two-term course, depending upon the intensity of the teaching.

As well as explaining statistical concepts and methods, the different schools of thought about statistical methodology are discussed, giving the reader some insight into some of the debates that have taken place in the subject. The text uses the methods of classical statistical analysis, for which some justification is given in Chapter 5, as well as presenting criticisms that have been made of these methods.

Changes in this edition

There are limited changes in this edition, apart from a general updating of the examples used in the text. Other changes include:

- A new section on how to write statistical reports (Chapter 1)
- Examples of good and bad graphs, and how to improve them
- Illustrations of graphing regression coefficients as a means of presentation
- Probability chapter expanded to improve exposition
- More discussion and critique of hypothesis testing
- New Companion Website for students including quizzes to test your knowledge and Excel data files
- As before, there is an associated blog on statistics and the teaching of the subject. This is where I can comment on interesting stories and statistical issues, relating them to topics covered in this text. You are welcome to comment on the posts and provide feedback on the text. The blog can be found at http://anecdotesandstatistics.blogspot.co.uk/.

For lecturers:

- As before, PowerPoint slides are available containing most of the key tables, formulae and diagrams, which can be adapted for lecture use
- Answers to even-numbered problems (not included in the text itself)
o An Instructor's Manual giving hints and guidance on some of the teaching issues, including those that come up in response to some of the exercises and problems.

For students:

- The associated website contains numerous exercises (with answers) for the topics covered in this text. Many of these contained randomised values so that you can try out the tests several times and keep track of you progress and understanding.

Mathematics requirements and suggested texts

No more than elementary algebra is assumed in this text, any extensions being covered as they are needed in the text. It is helpful to be comfortable with manipulating equations, so if some revision is needed, I recommend one of the following books:

Jacques, I., Mathematics for Economics and Business, 8th edn, Pearson, 2015
Renshaw, G., Maths for Economists, 4th edn, Oxford University Press, 2016.

Introduction

Statistics is a subject which can be (and is) applied to every aspect of our lives. The printed publication Guide to Official Statistics is, sadly, no longer produced but the UK Office for National Statistics website ${ }^{1}$ categorises data by 'themes', including education, unemployment, social cohesion, maternities and more. Many other agencies, both public and private, national and international, add to this evergrowing volume of data. It seems clear that whatever subject you wish to investigate, there are data available to illuminate your study. However, it is a sad fact that many people do not understand the use of statistics, do not know how to draw proper inferences (conclusions) from them, or misrepresent them. Even (especially?) politicians are not immune from this. As I write the UK referendum campaign on continued EU membership is in full swing, with statistics being used for support rather than illumination. For example, the 'Leave' campaign claims the United Kingdom is more important to the European Union than the EU is to the UK, since the EU exports more to the UK than vice versa. But the correct statistic to use is the proportion of exports (relative to GDP). About 45\% of UK exports go to the EU but only about 8% of EU exports come to the UK, so the UK is actually the more dependent one. Both sets of figures are factually correct but one side draws the wrong conclusion from them.

People's intuition is often not very good when it comes to statistics - we did not need this ability to evolve, so it is not innate. A majority of people will still believe crime is on the increase even when statistics show unequivocally that it is decreasing. We often take more notice of the single, shocking story than of statistics which count all such events (and find them rare). People also have great difficulty with probability, which is the basis for statistical inference, and hence make erroneous judgements (e.g. how much it is worth investing to improve safety). Once you have studied statistics, you should be less prone to this kind of error.

Two types of statistics

The subject of statistics can usefully be divided into two parts: descriptive statistics (covered in Chapters 1, 10 and 11 of this book) and inferential statistics (Chapters 4-8), which are based upon the theory of probability (Chapters 2 and 3). Descriptive statistics are used to summarise information which would otherwise be too complex to take in, by means of techniques such as averages and graphs. The graph shown in Figure 1.1 is an example, summarising drinking habits in the United Kingdom.

The graph reveals, for instance, that about 43% of men and 57% of women drink between 1 and 10 units of alcohol per week (a unit is roughly equivalent to one glass of wine or half a pint of beer). The graph also shows that men tend to

[^0]Figure 1.1
Alcohol consumption in the United Kingdom

drink more than women (this is probably no surprise to you), with higher proportions drinking 11 to 20 units and over 21 units per week. This simple graph has summarised a vast amount of information, the consumption levels of about 45 million adults.

Even so, it is not perfect and much information is hidden. It is not obvious from the graph that the average consumption of men is 16 units per week, of women only 6 units. From the graph, you would probably have expected the averages to be closer together. This shows that graphical and numerical summary measures can complement each other. Graphs can give a very useful visual summary of the information but are not very precise. For example, it is difficult to convey in words the content of a graph; you have to see it. Numerical measures such as the average are more precise and are easier to convey to others. Imagine you had data for student alcohol consumption; how do you think this would compare to the graph? It would be easy to tell someone whether the average is higher or lower, but comparing the graphs is difficult without actually viewing them.

Conversely, the average might not tell you important information. The problem of 'binge' drinking is related not to the average (though it does influence the average) but to extremely high consumption by some individuals. Other numerical measures (or an appropriate graph) are needed to address the issue.

Statistical inference, the second type of statistics covered, concerns the relationship between a sample of data and the population (in the statistical sense, not necessarily human) from which it is drawn. In particular, it asks what inferences can be validly drawn about the population from the sample. Sometimes the sample is not representative of the population (either due to bad sampling procedures or simply due to bad luck) and does not give us a true picture of reality.

The graph above was presented as fact but it is actually based on a sample of individuals, since it would obviously be impossible to ask everyone about their drinking habits. Does it therefore provide a true picture of drinking habits? We can be reasonably confident that it does, for two reasons. First, the government statisticians who collected the data designed the survey carefully, ensuring that all age groups are fairly represented and did not conduct all the interviews in pubs, for example. Second, the sample is a large one (about 10000 households), so there is little possibility of getting an unrepresentative sample by chance. It would be very unlucky indeed if the sample consisted entirely of teetotallers, for example. We can be reasonably sure, therefore, that the graph is a fair reflection of reality and that the average woman drinks around 6 units of alcohol per week. However,

Figure 1.2
Birth rate v. growth rate

we must remember that there is some uncertainty about this estimate. Statistical inference provides the tools to measure that uncertainty.

The scatter diagram in Figure 1.2 (considered in more detail in Chapter 7) shows the relationship between economic growth and the birth rate in 12 developing countries. It illustrates a negative relationship - higher economic growth appears to be associated with lower birth rates.

Once again we actually have a sample of data, drawn from the population of all countries. What can we infer from the sample? Is it likely that the 'true' relationship (what we would observe if we had all the data) is similar, or do we have an unrepresentative sample? In this case the sample size is quite small and the sampling method is not known, so we might be cautious in our conclusions.

Statistics and you

By the time you have finished this text you will have encountered and, I hope, mastered a range of statistical techniques. However, becoming a competent statistician is about more than learning the techniques, and comes with time and practice. You could go on to learn about the subject at a deeper level and discover some of the many other techniques that are available. However, I believe you can go a long way with the simple methods you learn here, and gain insight into a wide range of problems. A nice quotation relating to this is contained in the article 'Error Correction Models: Specification, Interpretation, Estimation', by G. Alogoskoufis and R. Smith in the Journal of Economic Surveys, 1991 (vol. 5, pages 27-128), examining the relationship between wages, prices and other variables. After 19 pages analysing the data using techniques far more advanced than those presented in this book, they state '. . . the range of statistical techniques utilised have not provided us with anything more than we would have got by taking the [. . .] variables and looking at their graphs'. Sometimes advanced techniques are needed, but never underestimate the power of the humble graph.

Beyond a technical mastery of the material, being a statistician encompasses a range of more informal skills which you should endeavour to acquire. I hope that you will learn some of these from reading this text. For example, you should be able to spot errors in analyses presented to you, because your statistical 'intuition' rings a warning bell telling you something is wrong. For example, the Guardian newspaper, on its front page, once provided a list of the 'best' schools in England,
based on the fact that in each school, every one of its pupils passed a national exam - a 100% success rate. Curiously, all of the schools were relatively small, so perhaps this implies that small schools get better results than large ones? Once you can think statistically you can spot the fallacy in this argument. Try it. The answer is at the end of this introduction.

Here is another example. The UK Department of Health released the following figures about health spending, showing how planned expenditure (in $£ \mathrm{~m}$) was to increase.

	$1998-99$	$1999-2000$	$2000-1$	$2001-2$	Total increase over three-year period
Health spending	37169	40228	43129	45985	17835

The total increase in the final column seems implausibly large, especially when compared to the level of spending. The increase is about 45% of the level. This should set off the warning bell, once you have a 'feel' for statistics (and, perhaps, a certain degree of cynicism about politics). The 'total increase' is the result of counting the increase from 1998-99 to 1999-2000 three times, the increase from 1999-2000 to 2000-1 twice, plus the increase from 2000-1 to 2001-2. It therefore measures the cumulative extra resources to health care over the whole period, but not the year-on-year increase, which is what many people would interpret it to be.

You will also become aware that data cannot be examined without their context. The context might determine the methods you use to analyse the data, or influence the manner in which the data are collected. For example, the exchange rate and the unemployment rate are two economic variables which behave very differently. The former can change substantially, even on a daily basis, and its movements tend to be unpredictable. Unemployment changes only slowly and if the level is high this month, it is likely to be high again next month. There would be little point in calculating the unemployment rate on a daily basis, yet this makes some sense for the exchange rate. Economic theory tells us quite a lot about these variables even before we begin to look at the data. We should therefore learn to be guided by an appropriate theory when looking at the data - it will usually be a much more effective way to proceed.

Another useful skill is the ability to present and explain statistical concepts and results to others. If you really understand something, you should be able to explain it to someone else - this is often a good test of your own knowledge. Below are two examples of a verbal explanation of the variance (covered in Chapter 1) to illustrate.

Good explanation

The variance of a set of observations expresses how spread out are the data. A low value of the variance indicates that the observations are of similar magnitude, a high value indicates that they are widely spread around the average.

Bad explanation

The variance is a formula for the deviations, which are squared and added up. The differences are from the mean, and divided by n or sometimes by $n-1$.
written down). For a (statistically) unsophisticated audience the explanation is quite useful and might then be supplemented by a few examples.

Statistics can also be written well or badly. Two examples follow, concerning a confidence interval, which is explained in Chapter 4. Do not worry if you do not understand the statistics now.

Good explanation

The 95% confidence interval is given by

$$
\bar{x} \pm 1.96 \times \sqrt{s^{2} / n}
$$

Inserting the sample values $\bar{x}=400, s^{2}=1600$ and $n=30$ into the formula we obtain

$$
400 \pm 1.96 \times \sqrt{1600 / 30}
$$

yielding the interval
[385.7, 414.3]

Bad explanation

$$
\begin{aligned}
& 95 \% \text { interval }=\bar{x}-1.96 \sqrt{s^{2} / n}= \\
& \bar{x}+1.96 \sqrt{s^{2} / n}=0.95 \\
& =400-1.96 \sqrt{1600 / 30} \text { and } \\
& =400+1.96 \sqrt{1600 / 30}
\end{aligned}
$$

so we have [385.7, 414.3]

In good statistical writing there is a logical flow to the argument, like a written sentence. It is also concise and precise, without too much extraneous material. The good explanation exhibits these characteristics whereas the bad explanation is simply wrong and incomprehensible, even though the final answer is correct. You should therefore try to note the way the statistical arguments are laid out in this text, as well as take in their content. Chapter 1 contains a short section on how to write good statistical reports.

When you do the exercises at the end of each chapter, try to get another student to read through your work. If they cannot understand the flow or logic of your work, then you have not succeeded in presenting your work sufficiently accurately.

How to use this book

For students:
You will not learn statistics simply by reading through this text. It is more a case of 'learning by doing' and you need to be actively involved by such things as doing the exercises and problems and checking your understanding. There is also material on the website, including further exercises, which you can make use of.

Here is a suggested plan for using the book.

- Take it section by section within each chapter. Do not try to do too much at one sitting.
- First, read the introductory section of the chapter to get an overview of what you are going to learn. Then read through the first section of the chapter trying to follow all the explanation and calculations. Do not be afraid to check the working of the calculations. You can type the data into Excel (it does not take long) to help with calculation.
- Check through the worked example which usually follows. This uses small amounts of data and focuses on the techniques, without repeating all the descriptive explanation. You should be able to follow this fairly easily. If not, work out where you got stuck, then go back and re-read the relevant text. (This is all obvious, in a way, but it's worth saying once.)
- Now have a go at the exercise, to test your understanding. Try to complete the exercise before looking at the answer. It is tempting to peek at the answer and convince yourself that you did understand and could have done it correctly. This is not the same as actually doing the exercise - really it is not.
- Next, have a go at the relevant problems at the end of the chapter. Answers to odd-numbered problems are at the back of the book. Your tutor will have answers to the even-numbered problems. Again, if you cannot do a problem, figure out what you are missing and check over it again in the text.
- If you want more practice you can go online and try some of the additional exercises.
- Then, refer back to the learning outcomes to see what you have learnt and what is still left to do.
- Finally - finally - take a deserved break.

Remember - you will probably learn most when you attempt and solve (or fail to) the exercises and problems. That is the critical test. It is also helpful to work with other students rather than only on your own. It is best to attempt the exercises and problems on your own first, but then discuss them with colleagues. If you cannot solve it, someone else probably did. Note also that you can learn a lot from your (and others') mistakes - seeing why a particular answer is wrong is often as informative as getting the right answer.

For lecturers and tutors:

You will obviously choose which chapters to use in your own course, it is not essential to use all of the material. Descriptive statistics material is covered in Chapters 1,10 and 11 ; inferential statistics is covered in Chapters 4 to 8, building upon the material on probability in Chapters 2 and 3. Chapter 9 covers sampling methods and might be of interest to some but probably not all.

You can obtain PowerPoint slides to form the basis of you lectures if you wish, and you are free to customize them. The slides contain the main diagrams and charts, plus bullet points of the main features of each chapter.

Students can practise by doing the odd-numbered questions. The evennumbered questions can be set as assignments - the answers are available on request to adopters of the book.

Answer to the 'best' schools problem

A high proportion of small schools appear in the list simply because they are lucky. Consider one school of 20 pupils, another with 1000 , where the average ability is similar in both. The large school is highly unlikely to obtain a 100% pass rate, simply because there are so many pupils and (at least) one of them will probably perform badly. With 20 pupils, you have a much better chance of getting them all through. This is just a reflection of the fact that there tends to be greater variability in smaller samples. The schools themselves, and the pupils, are of similar quality.

Descriptive statistics

Learning outcomes 8
Introduction 8
Summarising data using graphical techniques 10
Education and employment, or, after all this, will you get a job? 10
The bar chart 11
The pie chart 15
Looking at cross-section data: wealth in the United Kingdom in 2005 16
Frequency tables and charts 16
The histogram 18
Relative frequency and cumulative frequency distributions 21
Summarising data using numerical techniques 27
Measures of location: the mean 27
The mean as the expected value 30
The sample mean and the population mean 30
The weighted average 30
The median 32
The mode 34
Measures of dispersion 35
The variance 37
The standard deviation 38
The variance and standard deviation of a sample 39
Alternative formulae for calculating the variance and standard deviation 40
The coefficient of variation 42
Independence of units of measurement 42
The standard deviation of the logarithm 43
Measuring deviations from the mean: z scores 44
Chebyshev's inequality 44
Measuring skewness 45
Comparison of the 2005 and 1979 distributions of wealth 46
The box and whiskers diagram 47
Time-series data: investment expenditures 1977-2009 48
Graphing multiple series 53
Numerical summary statistics 58
The mean of a time series 58
The geometric mean 60
The variance of a time series 62
Graphing bivariate data: the scatter diagram 63
Data transformations 67
Rounding 68
Grouping 68
Dividing/multiplying by a constant 69
Differencing 69
Taking logarithms 69
Taking the reciprocal 69
Deflating 70
The information and data explosion 70
Writing statistical reports 72
Writing 73
Tables 73
Graphs 74
Guidance to the student: how to measure your progress 74
Summary 75
Key terms and concepts 75
Reference 76
Formulae used in this chapter 77
Problems 78
Answers to exercises 84
Appendix 1A: Σ notation 88
Problems on Σ notation 89
Appendix 1B: E and V operators 90
Appendix 1C: Using logarithms 91
Problems on logarithms 92
By the end of this chapter you should be able to:- recognise different types of data and use appropriate methods to summarise and anal-yse them

- use graphical techniques to provide a visual summary of one or more data series
- use numerical techniques (such as an average) to summarise data series
- recognise the strengths and limitations of such methods
- recognise the usefulness of data transformations to gain additional insight into a setof data
- be able to write a brief report summarising the data.

Introduction

The aim of descriptive statistical methods is simple: to present information in a clear, concise and accurate manner. The difficulty in analysing many phenomena, be they economic, social or otherwise, is that there is simply too much information for the mind to assimilate. The task of descriptive methods is therefore to summarise all this information and draw out the main features, without distorting the picture.

Consider, for example, the problem of presenting information about the wealth of British citizens (which follows later in this chapter). There are about 18 million adults for whom data are available and to present the data in raw form (i.e. the wealth holdings of each and every person) would be neither useful nor informative (it would take about 30000 pages of a book, for example). It would be more useful to have much less information, but information which is still representative of the original data. In doing this, much of the original information would be deliberately lost; in fact, descriptive statistics might be described as the art of constructively throwing away much of the data.

There are many ways of summarising data and there are few hard-and-fast rules about how you should proceed. Newspapers and magazines often provide innovative (though not always successful) ways of presenting data. There are, however, a number of techniques which are tried and tested and these are the subject of this chapter. They are successful because: (a) they tell us something useful about the underlying data; and (b) they are reasonably familiar to many people, so we can all talk in a common language. For example, the average tells us about the location of the data and is a familiar concept to most people. For example, young children soon learn to describe their day at school as 'average'.

The appropriate method of analysing the data will depend on a number of factors: the type of data under consideration, the sophistication of the audience and the 'message' which it is intended to convey. One would use different methods to persuade academics of the validity of one's theory about inflation than one would use to persuade consumers that Brand X powder washes whiter than Brand Y. To illustrate the use of the various methods, three different topics are covered in this chapter. First, we look at the relationship between educational attainment and employment prospects. Do higher qualifications improve your employment chances? The data come from people surveyed in 2009, so we have a sample of cross-section data giving an illustration of the situation at one point in time. We will look at the distribution of educational attainments amongst those surveyed, as well as the relationship to employment outcomes. In this example, we simply count the numbers of people in different categories (e.g. the number of people with a degree qualification who are employed).

Second, we examine the distribution of wealth in the United Kingdom in 2005. The data are again cross-section, but this time we can use more sophisticated methods since wealth is measured on a ratio scale. Someone with $£ 200000$ of wealth is twice as wealthy as someone with $£ 100000$, for example, and there is a meaning to this ratio. In the case of education, one cannot say with any precision that one person is twice as educated as another. The educational categories may be ordered (so one person can be more educated than another, although even that may be ambiguous) but we cannot measure the 'distance' between them. We therefore refer to educational attainment being measured on an ordinal scale. In contrast, there is not an obvious natural ordering to the three employment categories (employed, unemployed, inactive), so this is measured on a nominal scale.

Third, we look at national spending on investment over the period 1977-2009. This is time-series data since we have a number of observations on the variable measured at different points in time. Here it is important to take account of the
time dimension of the data: things would look different if the observations were in the order 1977, 1989, 1982, . . rather than in correct time order. We also look at the relationship between two variables, investment and output, over that period of time and find appropriate methods of presenting it.

In all three cases, we make use of both graphical and numerical methods of summarising the data. Although there are some differences between the methods used in the three cases, these are not watertight compartments: the methods used in one case might also be suitable in another, perhaps with slight modification. Part of the skill of the statistician is to know which methods of analysis and presentation are best suited to each particular problem.

Summarising data using graphical techniques

Education and employment, or, after all this, will you get a job?
We begin by looking at a question which should be of interest to you: how does education affect your chances of getting a job? It is nowadays clear that education improves one's life chances in various ways, one of the possible benefits being that it reduces the chances of being out of work. But by how much does it reduce those chances? We shall use a variety of graphical techniques to explore the question.

The raw data for this investigation come from the Education and Training Statistics for the UK 2009. Some of these data are presented in Table 1.1 and show the numbers of people by employment status (either in work, unemployed or inactive, i.e. not seeking work) and by educational qualification (higher education, A levels, other qualification or no qualification). The table gives a cross-tabulation of employment status by educational qualification and is simply a count (the frequency) of the number of people falling into each of the 12 cells of the table. For example, there were 9713000 people in work who had experience of higher education. This is part of a total of nearly 38 million people of working age. Note that the numbers in the table are in thousands, for the sake of clarity.

From the table, we can see some messages from the data; for example, being unemployed or inactive seems to be more prevalent amongst those with lower qualifications: $56 \%(=(382+2112) / 4458)$ of those with no qualifications are unemployed or inactive compared to only about 15% of those with higher education.

However, it is difficult to go through the table by eye and pick out these messages. It is easier to draw some graphs of the data and use them to form conclusions.

The bar chart

The first graphical technique we shall use is the bar chart. This is shown in Figure 1.1. The bar chart summarises the educational qualifications of those in work, i.e. the data in the first row of Table 1.1. The four educational categories are arranged along the horizontal (x) axis, while the frequencies are measured

Table 1.1 Economic status and educational qualifications, 2009 (numbers in 000s)

	Higher education	A levels	Other qualification	No qualification	Total
In work	9713	5479	10173	1965	27330
Unemployed	394	432	1166	382	2374
Inactive	1256	1440	3277	2112	8085
Total	11363	7351	14616	4459	37789

Source: Adapted from Department for Children, Schools and Families, Education and Training Statistics for the UK 2009, http://dera.ioe.ac.uk/15353/, contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government
on the vertical (y) axis. The height of each bar represents the numbers in work for that category.

The biggest groups are those with higher education and those with 'other qualifications' which are of approximately equal size. The graph also shows that there are relatively few people working who have no qualifications. It is important to realise what the graph does not show: it does not say anything about your likelihood of being in work, given your educational qualifications. For that, we would need to compare the proportions of each education category in work; for the moment, we are only looking at the absolute numbers.

It would be interesting to compare the distribution in Figure 1.1 with those for the unemployed and inactive categories. This is done in Figure 1.2, which adds bars for these other two categories.

This multiple bar chart shows that, as for the 'in work' category, amongst the inactive and unemployed, the largest group consists of those with 'other' qualifications (which are typically vocational qualifications). These findings simply reflect the fact that 'other qualifications' is the largest category. We can also now begin to see whether more education increases your chance of having a job. For example, compare the height of the 'in work' bar to the 'inactive' bar. It is relatively much higher for those with higher education than for those with

Figure 1.1
Educational qualifications of people in work in the United Kingdom, 2009

Number of people (000s)

Note: The height of each bar is determined by the associated frequency. The first bar is 9713 units high, the second is 5479 units high and so on. The ordering of the bars could be reversed ('no qualifications' becoming the first category) without altering the message.

Figure 1.2
Numbers employed, inactive and unemployed, by educational qualification

Figure 1.3
Stacked bar chart of educational qualifications and employment status

Note: The bars for the unemployed and inactive categories are constructed in the same way as for those in work: the height of the bar is determined by the frequency.
no qualifications. In other words, the likelihood of being inactive rather than employed is lower for graduates. A similar conclusion arises if we compare the 'in work' column with the 'unemployed' one. However, we have to make these judgements about the relative heights of different bars simply by eye, so it is easy to make a mistake. It would be better if we could draw charts that clearly highlight the differences. Figure 1.3 shows an alternative method of presentation: the stacked bar chart. In this case, the bars (for each education category) are stacked one on top of another instead of being placed side by side.

Note: The overall height of each bar is determined by the sum of the frequencies of the category, given in the final row of Table 1.1. Hence, for higher education, the height of the bar is 11362 , with divisions at 9713 and at $10107(=9713+394)$.

Table 1.2 Economic status and educational qualifications (column percentages)

	Higher education	A levels	Other qualification	No qualification	All
In work	85	75	70	44	72
Unemployed	3	6	8	9	6
Inactive	11	20	22	47	21
Totals	99	101	100	100	99

Note: The column percentages are obtained by dividing each frequency by the column total. For example, 85% is 9713 divided by $11362 ; 75 \%$ is 5479 divided by 7352 , etc. Some columns do not sum to 100% due to rounding.

This is perhaps slightly better, and the different overall size of each category is clearly brought out. However, we still have to make tricky visual judgements about proportions. As you may be starting to realise, we can present the same data in different ways depending upon our purpose. Here, we are going through different types of graph in turn and seeing what each can tell us. In practice, one would more likely identify the purpose first and then choose the type of graph most suited to it.

A clearer picture emerges if the data are transformed into (column) percentages, i.e. the columns are expressed as percentages of the column totals (e.g. the proportion of graduates in work, rather than the number). This makes it easier to directly compare the different educational categories and to see whether graduates are more or less likely to be employed than others. These figures are shown in Table 1.2.

Having done this, it is easier to make a direct comparison of the different education categories (columns). This is shown in Figure 1.4 (based on the data in Table 1.2), where all the bars are of the same height (representing 100\%) and the components of each bar now show the proportions of people in each educational category either in work, unemployed or inactive.

Figure 1.4
Percentages in each employment category, by educational qualification

Percentage

It is now clear how economic status differs according to education and the result is quite dramatic. In particular:

- The proportion of people unemployed or inactive increases rapidly with lower educational attainment.
- The biggest difference is between the no qualifications category and the other three, which have relatively smaller differences between them. In particular, A levels and other qualifications show a similar pattern.

Thus we have looked at the data in different ways, drawing different charts and seeing what they can tell us. You need to consider which type of chart is most suitable for the data you have and the questions you want to ask. There is no one graph which is ideal for all circumstances.

Can we safely conclude therefore that the probability of your being unemployed is significantly reduced by education? Could we go further and argue that the route to lower unemployment generally is via investment in education? The answer may be 'yes' to both questions, but we have not proved it. Two important considerations are as follows:

- Innate ability has been ignored. Those with higher ability are more likely to be employed and are more likely to receive more education. Ideally we would like to compare individuals of similar ability but with different amounts of education.
- Even if additional education does reduce a person's probability of becoming unemployed, this may be at the expense of someone else, who loses their job to the more educated individual. In other words, additional education does not reduce total unemployment but only shifts it around amongst the labour force. Of course, it is still rational for individuals to invest in education if they do not take account of this externality.

Producing charts using Microsoft Excel

You can draw charts by hand on graph paper, and this is still a very useful way of really learning about graphs. Nowadays, however, most charts are produced by computer software, notably Excel. Most of the charts in this text were produced using Excel's charting facility. You should aim for a similar, uncluttered look. Some tips you might find useful are:

- Make the grid lines dashed in a light grey colour (they are not actually part of the chart, and hence should be discrete) or eliminate them altogether.
- Get rid of any background fill (grey by default; alter to 'No fill'). It will look much better when printed.
- On the x-axis, make the labels horizontal or vertical, not slanted - it is difficult to see which point they refer to.
- On the y-axis, make the axis title horizontal and place it at the top of the axis. It is much easier for the reader to see.
- Colour charts look great on-screen but unclear if printed in black and white. Change the style of the lines or markers (e.g. make some of them dashed) to distinguish them on paper.
- Both axes start at zero by default. If all your observations are large numbers, then this may result in the data points being crowded into one corner of the graph. Alter the scale on the axes to fix this - set the minimum value on the axis to be slightly less than the minimum observation. Note, however, that this distorts the relative heights of the bars and could mislead. Use with caution.

Figure 1.5
Educational qualifications of those in work

Figure 1.6
Educational qualifications of the unemployed

Note: If you have to draw a pie chart by hand, the angle of each slice can be calculated as follows:

$$
\text { angle }=\frac{\text { frequency }}{\text { totalfrequency }} \times 360 .
$$

The angle of the first slice, for example, is

$$
\frac{9713}{27330} \times 360=127.9^{\circ}
$$

The pie chart

Another common way of presenting information graphically is the pie chart, which is a good way to describe how a variable is distributed between different categories. For example, from Table 1.1 we have the distribution of educational qualifications for those in work (the first row of the table). This can alternatively be shown as a pie chart, as in Figure 1.5.

The area (and angle) of each slice is proportional to the respective frequency, and the pie chart is an alternative means of presentation to the bar chart shown in Figure 1.1. The numbers falling into each education category have been added around the chart, but this is not essential. For presentational purposes, it is best not to have too many slices in the chart: beyond about six the chart tends to look crowded. It might be worth amalgamating less important categories to make such a chart look clearer.

The chart reveals, as did the original bar chart, that 'higher education' and 'other qualifications' are the two biggest categories. However, it is more difficult to compare them accurately; it is more difficult to compare angles than it is to compare heights. The results may be contrasted with Figure 1.6 which shows a similar

pie chart for the unemployed (the second row of Table 1.1). This time, we have put the proportion in each category in the labels (Excel has an option which allows this), rather than the absolute number.

The 'other qualifications' category is now substantially larger and the 'no qualifications' group now accounts for 16% of the unemployed, a bigger proportion than for those employed. Further, the proportion with a degree approximately halves from 35% to 17%.

Notice that we would need three pie charts (another for the 'inactive' group) to convey the same information as the multiple bar chart in Figure 1.2. It is harder to look at the three pie charts than it is to look at one bar chart, so in this case the bar chart is the better method of presenting the data.

The following table shows the total numbers (in millions) of tourists visiting each country and the numbers of English tourists visiting each country:

	France	Germany	Italy	Spain
All tourists	12.4	3.2	7.5	9.8
English tourists	2.7	0.2	1.0	3.6

Adapted from data from the Office for National Statistics licensed under the Open Government Licence v.3.0. Source: Office for National Statistics.
(a) Draw a bar chart showing the total numbers visiting each country.
(b) Draw a stacked bar chart which shows English and non-English tourists making up the total visitors to each country.
(c) Draw a pie chart showing the distribution of all tourists between the four destination countries. Do the same for English tourists and compare results.

Experiment with the presentation of each graph to see which works best. Try a horizontal (rather than vertical) bar chart, try different colours, make all text horizontal (including the title of the vertical axis and the labels on the horizontal axis), place the legend in different places, etc.

Looking at cross-section data: wealth in the United Kingdom in 2005

Frequency tables and charts

We now move on to examine data in a different form. The data on employment and education consisted simply of frequencies, where a characteristic (such as higher education) was either present or absent for a particular individual. We now look at the distribution of wealth, a variable which can be measured on a ratio scale so that a different value is associated with each individual. For example, one person might have $£ 1000$ of wealth, and another might have $£ 1$ million. Different presentational techniques will be used to analyse this type of data. We use these techniques to investigate questions such as how much wealth does the average person have and whether wealth is evenly distributed or not.

The data are given in Table 1.3 which shows the distribution of wealth in the United Kingdom for the year 2005 (the latest available at the time of writing), available at http://webarchive.nationalarchives.gov.uk/+/http://www.hmrc.gov.uk/ stats/personal_wealth/archive.htm. This is an example of a frequency table. Wealth

Table 1.3 The distribution of wealth, United Kingdom, 2005

Class interval (£)	Numbers (thousands)
999-0	1668
	1318
و99 99-000-25	1174
	662
	627
و999-60000	1095
و99 99-8000-79	1195
	3267
	2392
و9و 999-20000-1	2885
	1480
و99 و99-50000-4	628
9و9 و99 1900000-1000	198
2000000 or more	88
Total	18667

Note: It would be impossible to show the wealth of all 18 million individuals, so it has been summarised in this frequency table.
Source: Adapted from HM Revenue and Customs Statistics, 2005, contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www.nationalarchives.gov.uk/doc/open-government-licence/ open-government
is difficult to define and to measure; the data shown here refer to marketable wealth (i.e. items such as the right to a pension, which cannot be sold, are excluded) and are estimates for the population (of adults) as a whole based on taxation data.

Wealth is divided into 14 class intervals: $£ 0$ up to (but not including) $£ 10000$; $£ 10000$ up to $£ 24999$, etc., and the number (or frequency) of individuals within each class interval is shown. Note that the widths of the intervals (the class widths) vary up the wealth scale: the first is $£ 10000$, the second $£ 15000$ ($=25000-10000$), the third $£ 15000$ also and so on. This will prove an important factor when it comes to graphical presentation of the data.

This table has been constructed from the original 18667000 observations on individuals' wealth, so it is already a summary of the original data (note that all the frequencies have been expressed in thousands in the table) and much of the original information is unavailable. The first decision to make if one had to draw up such a frequency table from the raw data is how many class intervals to have and how wide they should be. It simplifies matters if they are all of the same width, but in this case it is not feasible: if 10000 were chosen as the standard width for each class, there would be many intervals between 500000 and 1000000 (50 of them in fact), most of which would have a zero or very low frequency. If 100000 were the standard width, there would be only a few intervals and the first of them ($0-100000$) would contain 7739 observations (41% of all observations), so almost all the interesting detail would be lost. A compromise between these extremes has to be found.

A useful rule of thumb is that the number of class intervals should equal the square root of the total frequency, subject to a maximum of about 12 intervals. Thus, for example, a total of 25 observations should be allocated to 5 intervals; 100 observations should be grouped into 10 intervals and 18667 should be grouped into about 12 (14 are used here). The class widths should be equal insofar as this is feasible but should increase when the frequencies become very small.

Figure 1.7
Bar chart of the distribution of wealth in the United Kingdom, 2005

To present these data graphically one could draw a bar chart, as in the case of education above, and this is presented in Figure 1.7. Note that although the original data are on a ratio scale, we have transformed them so that we are now counting individuals in each category. Hence we can make use of the bar chart again, although note that the x-axis has categories differentiated by the value of wealth rather than some characteristic such as education. Before reading on, spend some time looking at the figure and ask yourself what is wrong with it.

The answer is that the figure gives a completely misleading picture of the data. (Incidentally, this is the picture that you will get using a spreadsheet program. All the standard packages appear to do this, so beware. One wonders how many decisions have been influenced by data presented in this incorrect manner.)

Why is the figure wrong? Consider the following argument. The diagram appears to show that there are few individuals around $£ 40000$ to $£ 50000$ (the frequency is approximately 660 thousand) but many around $£ 150000$. But this is just the result of the difference in the class width at these points (10000 at $£ 40000$ and 50000 at $£ 150000$). Suppose that we divide up the $£ 150000$-to- $£ 200000$ class into two: $£ 150000$ to $£ 175000$ and $£ 175000$ to $£ 200000$. We divide the frequency of 2392 equally between the two classes (this is an arbitrary decision but illustrates the point). The graph now looks like Figure 1.8.

Comparing Figures 1.7 and 1.8 reveals a difference: the hump around $£ 150000$ has now gained a substantial crater. But this is disturbing: it means that the shape of the distribution can be altered simply by altering the class widths. The underlying data are exactly the same. So how can we rely upon visual inspection of the distribution? What does the 'real' distribution look like? A better method would make the shape of the distribution independent of how the class intervals are arranged. This can be done by drawing a histogram.

The histogram

A histogram is similar to a bar chart except that it corrects for differences in class widths. If all the class widths are identical, then there is no difference between a bar chart and a histogram. The calculations required to produce the histogram are shown in Table 1.4.

Figure 1.8
The wealth distribution with alternative class intervals

Number of individuals

The new column in the table shows the frequency density, which measures the frequency per unit of class width. Hence it allows a direct comparison of different class intervals, i.e. accounting for the difference in class widths.

The frequency density is defined as follows:

$$
\begin{equation*}
\text { frequency density }=\frac{\text { frequency }}{\text { classwidth }} \tag{1.1}
\end{equation*}
$$

Using this formula corrects the figures for differing class widths. Thus
$0.1668=\frac{1668}{10000}$ is the first frequency density,
$0.0789=\frac{1318}{15000}$ is the second, etc.
Table 1.4 Calculation of frequency densities

Range	Frequency	Class width	Frequency density
$0-$	1668	10000	0.1668
$10000-$	1318	15000	0.0879
$25000-$	1174	15000	0.0783
$40000-$	662	10000	0.0662
$50000-$	627	10000	0.0627
$60000-$	1095	20000	0.0548
$80000-$	1195	20000	0.0598
$100000-$	3267	50000	0.0653
$150000-$	2392	50000	0.0478
$200000-$	5279	3800000	0.0014

Note: As an alternative to the frequency density, one could calculate the frequency per 'standard' class width, with the standard width chosen to be 10000 (the narrowest class). The values in column 4 would then be $1668 ; 879(=1318 \div 1.5) ; 783$, etc. This would lead to the same shape of histogram as using the frequency density.

Above $£ 200$ 000, the class widths are very large and the frequencies small (too small to be visible on a histogram), so these classes have been combined.

The width of the final interval is unknown, so it has to be estimated in order to calculate the frequency density. It is likely to be extremely wide since the wealthiest person may well have assets valued at several $£ \mathrm{~m}$ (or even $£$ bn); the value we assume will affect the calculation of the frequency density and therefore of the shape of the histogram. Fortunately, it is in the tail of the distribution and only affects a small number of observations. Here we assume (arbitrarily) a width of $£ 3.8 \mathrm{~m}$ to be a 'reasonable' figure, giving an upper class boundary of $£ 4 \mathrm{~m}$.

The frequency density, not the frequency, is then plotted on the vertical axis against wealth on the horizontal axis to give the histogram. One further point needs to be made: for clarity, the scale on the horizontal wealth axis should be linear as far as possible, e.g. $£ 50000$ should be twice as far from the origin as $£ 25000$. However, it is difficult to fit all the values onto the horizontal axis without squeezing the graph excessively at lower levels of wealth, where most observations are located. Therefore, the classes above $£ 100000$ have been squeezed, and the reader's attention is drawn to this. The result is shown in Figure 1.9.

The effect of taking frequency densities is to make the area of each block in the histogram represent the frequency, rather than the height, which now shows the density. This has the effect of giving an accurate picture of the shape of the distribution. Note that it is very different from the preceding graph.

Now that all this has been done, what does the histogram show?

- The histogram is heavily skewed to the right (i.e. the long tail is to the right).
- The modal class interval is $£ 0$ to $£ 10000$ (i.e. has the greatest density: no other $£ 10000$ interval has more individuals in it).

Figure 1.9 Histogram of the distribution of wealth in the United Kingdom, 2005

Note: A frequency polygon would be the result if, instead of drawing blocks for the histogram, one drew lines connecting the centres of the top of each block. The diagram is better drawn with blocks, in general.

- Looking at the graph, it appears that more than half of all people have wealth of less than $£ 100000$. However, this is misleading as the graph is squeezed beyond $£ 100000$. In fact, about 41% have wealth below this figure.

The figure shows quite a high degree of inequality in the wealth distribution. Whether this is acceptable or even desirable is a value judgement. It should be noted that part of the inequality is due to differences in age: younger people have not yet had enough time to acquire much wealth and therefore appear worse off, although in lifetime terms this may not be the case. To get a better picture of the distribution of wealth would require some analysis of the acquisition of wealth over the life-cycle (or comparison of individuals of a similar age). In fact, correcting for age differences does not make a big difference to the pattern of wealth distribution. On this point and on inequality in wealth in general, see Atkinson (1983), Chapters 7 and 8.

Relative frequency and cumulative frequency distributions

An alternative way of illustrating the wealth distribution uses the relative and cumulative frequencies of the data. The relative frequencies show the proportion of observations that fall into each class interval, so, for example, 3.5% of individuals have wealth holdings between $£ 40000$ and $£ 50000$ (662000 out of 18677000 individuals). Relative frequencies are shown in the third column of Table 1.5, calculated using the following formula:

$$
\begin{equation*}
\text { Relativefrequency }=\frac{\text { frequency }}{\text { sumoffrequencies }}=\frac{f}{\sum f} \tag{1.2}
\end{equation*}
$$

Note: If you are unfamiliar with the Σ notation, then read Appendix 1A to this chapter before continuing.

Table 1.5 Calculation of relative and cumulative frequencies

Range	Frequency, f	Relative frequency (\%)	Cumulative frequency, F
$0-$	1668	8.9	1668
$10000-$	1318	7.1	2986
$25000-$	1174	6.3	4160
$40000-$	662	3.5	4822
$50000-$	627	3.4	5449
$60000-$	1095	5.9	6544
$80000-$	1195	6.4	7739
$100000-$	3267	17.5	11006
$150000-$	2392	12.8	13398
$200000-$	2885	15.4	16283
$300000-$	1480	7.9	17763
$500000-$	628	3.4	18391
$1000000-$	198	1.1	18589
$2000000-$	88	0.5	18677
Total	18677	100.0	

Note: Relative frequencies are calculated in the same way as the column percentages in Table 1.2. Thus for example, 8.9% is 1668 divided by 18667 . Cumulative frequencies are obtained by cumulating, or successively adding, the frequencies. For example, 2986 is $1668+1318,4160$ is $2986+1174$, etc.

Original source of data: US Census Bureau, World Population Profile 2000. Graph adapted from the UNAIDS website at http://www.unaids.org/ epidemic_update/report/ Epi_report.htm\#thepopulation.

The AIDS epidemic

To illustrate how descriptive statistics can be helpful in presenting information we show below the 'population pyramid' for Botswana (one of the countries most seriously affected by AIDS), projected for the year 2020. This is essentially two bar charts (one for men, one for women) laid on their sides, showing the frequencies in each age category (rather than wealth categories). The inner pyramid (in the darker colour) shows the projected population given the existence of AIDS; the outer pyramid assumes no deaths from AIDS.

One can immediately see the huge effect of AIDS, especially on the 40 to 60 age group (currently aged 30-50), for both men and women. These people would normally be in the most productive phase of their lives but, with AIDS, the country will suffer enormously with many old and young people dependent on a small working population.

The sum of the relative frequencies has to be 100%, and this acts as a check on the calculations.

The cumulative frequencies, shown in the fourth column, are obtained by cumulating (successively adding) the frequencies. The cumulative frequencies show the total number of individuals with wealth up to a given amount; for example, about 7.7 million people have less than $£ 100000$ of wealth.

Both relative and cumulative frequency distributions can be drawn, in a similar way to the histogram. In fact, the relative frequency distribution has exactly the same shape as the frequency distribution. This is shown in Figure 1.10. This time we have written the relative frequencies above the appropriate column, although this is not essential.

The cumulative frequency distribution is shown in Figure 1.11, where the blocks increase in height as wealth increases. The simplest way to draw this is to cumulate the frequency densities (shown in the final column of Table 1.4) and to use these values as the y-axis coordinates.

Figure 1.10
The relative frequency distribution of wealth in the United Kingdom, 2005

Figure 1.11
The cumulative frequency distribution of wealth in the United Kingdom, 2005

Note: The y-axis coordinates are obtained by cumulating the frequency densities in Table 1.4. For example, the first two y coordinates are $0.1668,0.2547$.

Worked example 1.1

There is a mass of detail in the sections above, so this worked example is intended to focus on the essential calculations required to produce the summary graphs. Simple artificial data are deliberately used to avoid the distraction of a lengthy interpretation of the results and their meaning. The data on
the variable X and its frequencies f are shown in the following table, with the calculations required:

\boldsymbol{X}	Frequency, f	Relative frequency	Cumulative frequency, F
10	6	0.17	6
11	8	0.23	14
12	15	0.43	29
13	5	0.14	34
14	1	0.03	35
Total	35	1.00	

Notes:
The X values are unique but could be considered the mid-point of a range, as earlier.
The relative frequencies are calculated as $0.17=6 / 35,0.23=8 / 35$, etc. Note that these are expressed as decimals rather than percentages; either form is acceptable.
The cumulative frequencies are calculated as $14=6+8,29=6+8+15$, etc.
The symbol F usually denotes the cumulative frequency in statistical work.

The resulting bar chart and cumulative frequency distribution are:

and

Exercise 1.2

Given the following data:

Range	Frequency
$0-10$	20
$11-30$	40
$31-60$	30
$61-100$	20

(a) Draw both a bar chart and a histogram of the data and compare them.
(b) Calculate cumulative frequencies and draw a cumulative frequency diagram.

Improving the presentation of graphs - an example

Today we are assailed with information presented in the form of graphs, sometimes done well but often badly. We give an example below of how presentation might be improved for one particular graph, showing employers' perceptions of economics graduates' skills. One can learn a lot from looking at examples of graphs in reports and academic papers and thinking how they might be improved. The original graph ${ }^{1}$ is not actually a bad one, but it could be better.

[^1]Problems with this graph include:

1. The category labels are difficult to read, being small and wrap-around text.
2. The vertical axis title is sideways, so difficult to read.
3. It is difficult to compare across categories. For example, which skill has the most 'very high' or 'fairly high' responses?
4. A subjective judgement, but the colours are not particularly harmonious.

The version below takes the same data but presents it slightly differently:

Turning the graph on its side makes the labels much easier to read, as is the horizontal axis label. Using a stacked bar saves space and makes it look less cluttered. It is fairly easy to see that 'interpreting quantitative data' scores the most 'very high' or 'fairly high' responses - hopefully this text makes some contribution towards that. Using different shades of the same colour makes for a better appearance (and probably works better if printed in greyscale too).

You might have noticed that the categories are now in a different order. This is a quirk of Excel; the same data table was used for both charts. Fortunately, the ordering does not matter. We shall give similar examples of good practice at other places in this text.

Summarising data using numerical techniques

Graphical methods are an excellent means of obtaining a quick overview of the data, but they are not particularly precise, nor do they lend themselves to further analysis. For this, we must turn to numerical measures such as the average. There are a number of different ways in which we may describe a distribution such as that for wealth. If we think of trying to describe the histogram, it is useful to have:

- A measure of location giving an idea of whether people own a lot of wealth or a little. An example is the average, which gives some idea of where the distribution is located along the x-axis. In fact, we will encounter three different measures of the 'average':
- The mean
- The median
- The mode
- A measure of dispersion showing how wealth is dispersed around the average, whether it is concentrated close to the average or is generally far away from it. An example here is the standard deviation.
- A measure of skewness showing how symmetric the distribution is, i.e. whether the left half of the distribution is a mirror image of the right half. This is obviously not the case for the wealth distribution.

We consider each type of measure in turn.

Measures of location: the mean

The arithmetic mean, commonly called the average, is the most familiar measure of location and is obtained simply by adding all the wealth observations and dividing by the number of observations. If we denote the wealth of the i th household by x_{i} (so that the index i runs from 1 to N, where N is the number of observations; as an example, x_{3} would be the wealth of the third household), then the mean is given by the following formula:

$$
\begin{equation*}
\mu=\frac{\sum_{i=1}^{i=N} x_{i}}{N} \tag{1.3}
\end{equation*}
$$

where μ (the Greek letter mu, pronounced 'myu'2) denotes the mean and $\sum_{i=1}^{i=N} x_{i}$ (read 'sigma $x i$, from $i=1$ to N ', Σ being the Greek capital letter sigma) means the sum of the x values. We may simplify this to

$$
\begin{equation*}
\mu=\frac{\sum x}{N} \tag{1.4}
\end{equation*}
$$

when it is obvious which x values are being summed (usually all the available observations). This latter form is more easily readable, and we will generally use this.

[^2]
Worked example 1.2

We will find the mean of the values $17,25,28,20,35$. The total of these five numbers is 125 , so we have $N=5$ and $\Sigma x=125$. Therefore the mean is

$$
\mu=\frac{\sum x}{N}=\frac{125}{5}=25
$$

Formula 1.3 can only be used when all the individual x values are known. The frequency table for wealth does not show all 18 million observations, however, but only the range of values for each class interval and the associated frequency. In the case of such grouped data the following equivalent formula may be used:

$$
\begin{equation*}
\mu=\frac{\sum_{i=1}^{i=C} f_{i} x_{i}}{\sum_{i=1}^{i=C} f_{i}} \tag{1.5}
\end{equation*}
$$

or, more simply,

$$
\begin{equation*}
\mu=\frac{\sum f x}{\sum f} \tag{1.6}
\end{equation*}
$$

In this formula:

- x denotes the mid-point of each class interval, since the individual x values are unknown. The mid-point is used as the representative x value for each class. In the first class interval, for example, we do not know precisely where each of the 1668 observations lies. Hence we assume they all lie at the mid-point, $£ 5000$. This will cause a slight inaccuracy - because the distribution is so skewed, there are likely more households below the mid-point than above it in every class interval except, perhaps, the first. We ignore this problem here, and it is less of a problem for most distributions which are less skewed than this one.
- The summation runs from 1 to C, the number of class intervals, or mid-point x values. f times x gives the total wealth in each class interval. If we sum over the 14 class intervals, we get the total wealth of all individuals.
- $\Sigma f_{i}=N$ gives the total number of observations, the sum of the individual frequencies.

The calculation of the mean, μ, for the wealth data is shown in Table 1.6.
From this we obtain:

$$
\mu=\frac{3490260}{18677}=186.875
$$

Note that the x values are expressed in $£ 000$, so we must remember that the mean will also be in $£ 000$; the average wealth holding is therefore $£ 186875$. Note that the frequencies have also been divided by 1000 , but this has no effect upon the calculation of the mean since f appears in both numerator and denominator of the formula for the mean.

The mean tells us that if the total wealth were divided up equally between all individuals, each would have $£ 186875$. This value may seem surprising, since the

Table 1.6 The calculation of average wealth

Range	x	f	$f x$
$0-$	5.0	1668	8340
$10000-$	17.5	1318	23065
$25000-$	32.5	1174	38155
$40000-$	45.0	662	29790
$50000-$	55.0	627	34485
$60000-$	70.0	1095	76650
$80000-$	90.0	1195	107550
$100000-$	125.0	3267	408375
$150000-$	175.0	2392	418600
$200000-$	250.0	2885	721250
$300000-$	400.0	1480	592000
$500000-$	750.0	628	471000
$1000000-$	1500.0	198	297000
$2000000-$	3000.0	88	264000
Total		18677	3490260

Note: The $f x$ column gives the product of the values in the f and x columns (so, for example,
$5.0 \times 1668=8340$, which is the total wealth held by those in the first class interval). The sum of the $f x$ values gives total wealth.
histogram clearly shows most people have wealth below this point (approximately two-thirds of individuals are below the mean, in fact). The mean does not seem to be typical of the wealth that most people have. The reason the mean has such a high value is that there are some individuals whose wealth is way above the figure of $£ 186875$ - up into the $£$ millions, in fact. The mean is the 'balancing point' of the distribution - if the histogram were a physical model, it would balance on a fulcrum placed at 186875 . The few very high wealth levels exert a lot of leverage and counterbalance the more numerous individuals below the mean.

Worked example 1.3

Suppose we have 10 families with a single television in their homes, 12 families with two televisions each and three families with three. You can probably work out in your head that there are 43 televisions in total $(10+24+9)$ owned by the 25 families $(10+12+3)$. The average number of televisions per family is therefore $43 / 25=1.72$.

Setting this out formally, we have (as for the wealth distribution, but simpler):

x	f	$f x$
1	10	10
2	12	24
3	3	9
Totals	25	43

This gives our resulting mean as 1.72 . The data are discrete values in this case and we have the actual values, not a broad class interval. Note that no single family could actually have 1.72 television sets; it is the average over all families.

The mean as the expected value

We also refer to the mean as the expected value of x and write:

$$
\begin{equation*}
\mathrm{E}(x)=\mu=186875 \tag{1.7}
\end{equation*}
$$

$\mathrm{E}(x)$ is read ' E of x^{\prime} or 'the expected value of x '. The mean is the expected value in the sense that if we selected a household at random from the population, we would 'expect' its wealth to be $£ 186875$. It is important to note that this is a statistical expectation, rather than the everyday use of the term. Most of the random individuals we encounter have wealth substantially below this value. Most people might therefore 'expect' a lower value because that is their everyday experience; but statisticians are different; they refer to the mean as the expected value.

The expected value notation is particularly useful in keeping track of the effects upon the mean of certain data transformations (e.g. dividing wealth by 1000 also divides the mean by 1000); Appendix 1B provides a detailed explanation. Use is also made of the E operator in inferential statistics, to describe the properties of estimators (see Chapter 4).

The sample mean and the population mean

Very often we have only a sample of data (as in worked example 1.3), and it is important to distinguish this case from the one where we have all the possible observations. For this reason, the sample mean is given by:

$$
\begin{equation*}
\bar{x}=\frac{\sum x}{n} \text { or } \bar{x}=\frac{\sum f x}{\sum f} \text { for grouped data } \tag{1.8}
\end{equation*}
$$

Note the distinctions between μ (the population mean) and \bar{x} (the sample mean), and between N (the size of the population) and n (the sample size). Otherwise, the calculations are identical. It is a convention to use Greek letters, such as μ, to refer to the population and Roman letters, such as \bar{x}, to refer to a sample.

The weighted average

Sometimes observations have to be given different weightings in calculating the average, as in the following example. Consider the problem of calculating the average spending per pupil by an education authority. Some figures for spending on primary (ages $5-11$), secondary ($11-16$) and post-16 pupils are given in Table 1.7.

Clearly, significantly more is spent on secondary and post-16 pupils (a general pattern throughout England and most other countries) and the overall average should lie somewhere between 1750 and 3820 . However, taking a simple average of these three values would give the wrong answer, because there are different numbers of children in the three age ranges. The numbers and proportions of children in each age group are given in Table 1.8.

Table 1.7 Cost per pupil in different types of school ($£$ p.a.)

	Primary	Secondary	Post-16
Unit cost	1750	3100	3820

Table 1.8 Numbers and proportions of pupils in each age range

	Primary	Secondary	Post-16	Total
Numbers	8000	7000	3000	18000
Proportion	44.4%	38.9%	16.7%	

Since there are relatively more primary schoolchildren than secondary, and relatively fewer post-16 pupils, the primary unit cost should be given greatest weight in the averaging process and the post-16 unit cost the least. The weighted average is obtained by multiplying each unit cost figure by the proportion of children in each category and summing. The weighted average is therefore

$$
\begin{equation*}
0.444 \times 1750+0.389 \times 3100+0.167 \times 3820=2620.8 \tag{1.9}
\end{equation*}
$$

The weighted average gives an answer closer to the primary unit cost than does the simple average of the three figures (2890 in this case), which would be misleading. The formula for the weighted average is

$$
\begin{equation*}
\bar{x}_{w}=\sum_{i} w_{i} x_{i} \tag{1.10}
\end{equation*}
$$

where w represents the weights, which must sum to one, i.e.

$$
\begin{equation*}
\sum_{i} w_{i}=1 \tag{1.11}
\end{equation*}
$$

and x represents the unit cost figures.
Notice that what we have done is equivalent to multiplying each unit cost by its frequency (8000, etc.) and then dividing the sum by the grand total of 18000 . This is the same as the procedure we used for the wealth calculation. The difference with weights is that we first divide 8000 by 18000 (and 7000 by 18000 , etc.) to get the weights, which must then sum to one, and use these weights in formula (1.10).

Calculating your degree result

If you are a university student your final degree result will probably be calculated as a weighted average of your marks on the individual courses. The weights may be based on the credits associated with each course or on some other factors. For example, in my university the average mark for a year is a weighted average of the marks on each course, the weights being the credit values of each course.

The grand mean G, on which classification is based, is then a weighted average of the averages for the different years, as follows:

$$
G=\frac{0 \times \text { Year } 1+40 \times \text { Year } 2+60 \times \text { Year } 3}{100}
$$

i.e. the year 3 mark has a weight of 60%, year 2 is weighted 40% and the first year is not counted at all.

For students taking a year abroad the formula is slightly different:

$$
G=\frac{0 \times \text { Year } 1+40 \times \text { Year } 2+25 \times \text { Yabroad }+60 \times \text { Year } 3}{125}
$$

Note that, to accommodate the year abroad mark, the weights on years 2 and 3 are effectively reduced (to $40 / 125=32 \%$ and $60 / 125=48 \%$, respectively).

The median

Returning to the study of wealth, the unrepresentative result for the mean suggests that we may prefer a measure of location which is not so strongly affected by outliers (extreme observations) and skewness.

The median is a measure of location which is more robust to such extreme values; it may be defined by the following procedure. Imagine everyone in a line from poorest to wealthiest. Go to the individual located halfway along the line. Ask her what her wealth is. Her answer is the median. The median is clearly unaffected by extreme values, unlike the mean: if the wealth of the richest person were doubled (with no reduction in anyone else's wealth), there would be no effect upon the median. The calculation of the median is not so straightforward as for the mean, especially for grouped data. The following worked example first shows how to calculate the median for ungrouped data.

Worked example 1.4 The median

Calculate the median of the following values: $45,12,33,80,77$.
First we put them into ascending order: $12,33,45,77,80$.
It is then easy to see that the middle value is 45 . This is the median. Note that if the value of the largest observation changes to, say, 150 , the value of the median is unchanged. This is not the case for the mean, which would change from 49.4 to 63.4.

If there is an even number of observations, then there is no middle observation. The solution is to take the average of the two middle observations. For example:

Find the median of $12,33,45,63,77,80$.
Note the new observation, 63, making six observations. The median value is halfway between the third and fourth observations, i.e. $(45+63) / 2=54$.

For grouped data there are two stages to the calculation: first we must identify the class interval which contains the median person, and then we must calculate where in the interval that person lies.
(1) To find the appropriate class interval: since there are 18677000 observations, we need the wealth of the person who is 9338500 in rank order. The table of cumulative frequencies (see Table 1.5) is the most suitable for this. There are

7739000 individuals with wealth of less than $£ 100000$ and 11006000 with wealth of less than $£ 150000$. The middle person therefore falls into the $£ 100000-150000$ class. Furthermore, given that 9338500 falls roughly halfway between 7739000 and 11006000 , it follows that the median should be close to the middle of the class interval. We now go on to make this statement more precise.
(2) To find the position in the class interval, we can now use formula (1.12):

$$
\begin{equation*}
\text { median }=x_{\mathrm{L}}+\left(x_{\mathrm{U}}-x_{\mathrm{L}}\right) \frac{\left\{\frac{N+1}{2}-F\right\}}{f} \tag{1.12}
\end{equation*}
$$

where:
$x_{\mathrm{L}}=$ the lower limit of the class interval containing the median
$x_{\mathrm{U}}=$ the upper limit of this class interval
$N=$ the number of observations (using $N+1$ rather than N in the formula is only important when N is relatively small)
$F=$ the cumulative frequency of the class intervals up to (but not including) the one containing the median
$f=$ the frequency for the class interval containing the median.
For the wealth distribution we have:

$$
\begin{aligned}
\text { median } & =100000+(150000-100000)\left\{\frac{\frac{18677000}{2}-7739000}{3267000}\right\} \\
& =£ 124480
\end{aligned}
$$

This alternative measure of location gives a very different impression: it is around two-thirds of the mean. Nevertheless, it is an equally valid statistic, despite having a different meaning. It demonstrates that the person 'in the middle' has wealth of $£ 124480$ and in this sense is typical of the UK population. Before going on to compare these measures further we examine a third, the mode.

Generalising the median - quantiles

The idea of the median as the middle of the distribution can be extended: quartiles divide the distribution into 4 equal parts, quintiles into 4 , deciles into 10 , and finally percentiles divide the distribution into 100 equal parts. Generically they are known as quantiles. We shall illustrate the idea by examining deciles (quartiles are covered below).

The first decile occurs one-tenth of the way along the line of people ranked from poorest to wealthiest. This means we require the wealth of the person ranked 1867700 ($=N / 10$) in the distribution. From the table of cumulative frequencies, this person lies in the second class interval. Adapting formula (1.12), we obtain:
first decile $=10000+(25000-10000) \times\left\{\frac{1867700-1668000}{1318000}\right\}=£ 12273$
Thus we estimate that any household with less than $£ 12273$ of wealth falls into the bottom 10% of the wealth distribution. In a similar fashion, the ninth decile can be found by calculating the wealth of the household ranked $16809300(=N \times 9 / 10)$ in the distribution.

The mode

The mode is defined as that level of wealth which occurs with the greatest frequency, in other words the value that occurs most often. It is most useful and easiest to calculate when one has all the data and there are relatively few distinct observations. This is the case in the simple example below.

Suppose we have the following data on sales of dresses by a shop, according to size:

Size	Sales
8	7
10	25
12	36
14	11
16	3
18	1

The modal size is 12 . There are more women buying dresses of this size than any other. This may be the most useful form of average as far as the shop is concerned. Although it needs to stock a range of sizes, it knows it needs to order more dresses in size 12 than any other size. The mean would not be so helpful in this case (it is $\bar{x}=11.7$), as it is not an actual dress size.

In the case of grouped data, matters are more complicated. The modal class interval is required, once the intervals have been corrected for width (otherwise a wider class interval is unfairly compared with a narrower one). For this, we can again make use of the frequency densities. From Table 1.4 it can be seen that it is the first interval, from $£ 0$ to $£ 10000$, which has the highest frequency density. It is 'typical' of the distribution because it is the one which occurs most often (using the frequency densities, not frequencies). The wealth distribution is most concentrated at this level, and more people are like this in terms of wealth than anything else. Once again, it is notable how different the mode is from both the median and the mean.

The three measures of location give different messages because of the skewness of the distribution: if it were symmetric, then they would all give approximately the same answer. Here we have a rather extreme case of skewness, but it serves to illustrate how the different measures of location compare. When the distribution is skewed to the right, as here, they will be in the order mode, median, mean; if skewed to the left, the order is reversed. If the distribution has more than one peak, then this rule for orderings may not apply.

Which of the measures is 'correct' or most useful? In this particular case the mean is not very useful: it is heavily influenced by extreme values. The median is therefore often used when discussing wealth (and income) distributions. Where inequality is even more pronounced, as in some less developed countries, the mean is even less informative. The mode is also quite useful in telling us about a large section of the population, although it can be sensitive to how the class intervals are arranged. If the data were arranged such that there was a class interval of $£ 5000$ to $£ 15000$, then this might well be the modal class, conveying a slightly different impression.

Figure 1.12
The histogram with the mean, median and mode marked

The three different measures of location are marked on the histogram in Figure 1.12. This brings out the substantial difference between the measures for a skewed distribution, such as for wealth.

Exercise 1.3

(a) For the data in Exercise 1.2, calculate the mean, median and mode of the data.
(b) Mark these values on the histogram you drew for Exercise 1.2.

Measures of dispersion

Two different distributions (e.g. wealth in two different countries) might have the same mean yet look very different, as shown in Figure 1.13 (the distributions have

Figure 1.13 Two distributions with different degrees of dispersion

Note: Distribution A has a greater degree of dispersion than B , where everyone has similar levels of wealth.
been drawn using smooth curves rather than bars to improve clarity). In one country, everyone might have a similar level of wealth (curve B). In another, although the average is the same, there might be extremes of great wealth and poverty (curve A). A measure of dispersion is a number which allows us to distinguish between these two situations.

The simplest measure of dispersion is the range, which is the difference between the smallest and largest observations. It is impossible to calculate accurately from the table of wealth holdings since the largest observation is not available. In any case, it is not a very useful figure since it relies on two extreme values and ignores the rest of the distribution. In simpler cases, it might be more informative. For example, in an exam the marks may range from a low of 28% to a high of 74%. In this case the range is $74-28=46$ and this tells us something useful.

An improvement is the inter-quartile range, which is the difference between the first and third quartiles. It therefore defines the limits of wealth of the middle half of the distribution and ignores the very extremes of the distribution. To calculate the first quartile (which we label Q_{1}) we have to go one-quarter of the way along the line of wealth holders (ranked from poorest to wealthiest) and ask the person in that position what their wealth is. Their answer is the first quartile. The calculation is as follows:

- one-quarter of 18677 observations is 4669.25 ;
- the person ranked 4669.25 is in the $£ 40000-50000$ class;
- adapting formula (1.12):

$$
\begin{equation*}
Q_{1}=40000+(50000-40000)\left\{\frac{4669.25-4160}{662}\right\}=47692.6 \tag{1.13}
\end{equation*}
$$

The third quartile is calculated in similar fashion:

- three-quarters of 18677 is 14007.75 ;
- the person ranked 14007.75 is in the $£ 200000$ to 300000 class;
- again using (1.12):

$$
Q_{3}=200000+(300000-200000)\left\{\frac{14007.75-13398}{2885}\right\}=221135.1
$$

and therefore the inter-quartile range is $Q_{3}-Q_{1}=221135-47693=173442$. This might be reasonably rounded to $£ 175000$ given the approximations in our calculation, and is a much more memorable figure. Thus, the 50% of people in the middle of the distribution have wealth between $£ 48000$ and $£ 221000$ of wealth, approximately.

This gives one summary measure of the dispersion of the distribution: the higher the value the more spread out is the distribution. Therefore, two different wealth distributions might be compared according to their inter-quartile ranges, with the country having the larger figure exhibiting greater inequality. Note that the figures would have to be expressed in a common unit of currency for this comparison to be valid.

Worked example 1.5 The range and inter-quartile range

Suppose 110 children take a test, with the following results:

Mark, X	Frequency, f	Cumulative frequency, F
13	5	5
14	13	18
15	29	47
16	33	80
17	17	97
18	8	105
19	4	109
20	1	110
Total	110	

The range is simply $20-13=7$. The inter-quartile range requires calculation of the quartiles. Q_{1} is given by the value of the 27.5 th observation ($=110 / 4$), which is $15 . Q_{3}$ is the value of the 82.5 th observation $(=110 \times 0.75)$ which is 17 . The IQR is therefore $17-15=2$ marks.

Notice that a slight change in the data (three more students getting 16 rather than 17 marks) would alter the IQR to 1 mark ($16-15$). The result should therefore be treated with some caution. This is a common problem when there are few distinct values of the variable (eight in this example). It is often worth considering whether a few small changes to the data could alter a calculation considerably. In such a case, the original result might not be very robust.

The variance

A more useful measure of dispersion is the variance, which makes use of all of the information available, rather than just trimming the extremes of the distribution. The variance is denoted by the symbol $\sigma^{2} . \sigma$ is the Greek lower-case letter sigma, so σ^{2} is read 'sigma squared'. It has a completely different meaning from Σ (capital sigma) used before. Its formula is:

$$
\begin{equation*}
\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N} \tag{1.14}
\end{equation*}
$$

In this formula, $x-\mu$ measures the distance from each observation to the mean. Squaring these makes all the deviations positive, whether above or below the mean. We then take the average of all the squared deviations from the mean. A more dispersed distribution (such as A in Figure 1.13) will tend to have larger deviations from the mean and hence a larger variance. In comparing two distributions with similar means, therefore, we could examine their variances to see which of
the two has the greater degree of dispersion. With grouped data the formula becomes:

$$
\begin{equation*}
\sigma^{2}=\frac{\sum f(x-\mu)^{2}}{\sum f} \tag{1.15}
\end{equation*}
$$

The calculation of the variance of wealth is shown in Table 1.9, and from this we obtain:

$$
\sigma^{2}=\frac{1499890455.1}{18677}=80306.8
$$

This calculated value is before translating back into the original units of measurement, as was done for the mean by multiplying by 1000 . In the case of the variance, however, we must multiply by 1000000 , which is the square of 1000 . The variance of the original data is therefore 80306800000 . Multiplying by the square of 1000 is a consequence of using squared deviations in the variance formula (see Appendix 1B on E and V operators for more details of this).

One thus needs to be a little careful about the units of measurement. If the mean is reported at 186.875 , then it is appropriate to report the variance as 80 306.8. If the mean is reported as 186875 , then the variance should be reported as 80306800000 . Note that it is only the presentation which changes; the underlying facts are the same.

The standard deviation

In what units is the variance measured? Since we have used a squaring procedure in the calculation we end up with something like 'squared' $£ s$ s, which is not very convenient, nor does it make much sense. Because of this, it is useful to define the

Table 1.9 The calculation of the variance of wealth

Range	Mid-point $x(£ 000)$	Frequency, f	Deviation $(x-\mu)$	$(x-\mu)^{2}$	$f(x-\mu)^{2}$
$0-$	5.0	1668	-181.9	33078.4	55174821.9
$10000-$	17.5	1318	-169.4	28687.8	37810535.3
$25000-$	32.5	1174	-154.4	23831.6	27978261.2
$40000-$	45.0	662	-141.9	20128.4	13325033.3
$50000-$	55.0	627	-131.9	17391.0	10904128.1
$60000-$	70.0	1095	-116.9	13659.7	14957383.4
$80000-$	90.0	1195	-96.9	9384.7	11214740.7
$100000-$	125.0	3267	-61.9	3828.5	12507665.8
$150000-$	175.0	2392	-11.9	141.0	337296.1
$200000-$	250.0	2885	63.1	3984.8	11496134.1
$300000-$	400.0	1480	213.1	45422.4	67225100.9
$500000-$	750.0	628	563.1	317110.0	199145098.5
$1000000-$	1500.0	198	1313.1	1724297.9	341410980.4
$2000000-$	300.0	88	2813.1	7913673.6	696403275.4
Totals		18677			1499890455.1

standard deviation as the square root of the variance, which is therefore back in $£$ s. The standard deviation is therefore given by:

$$
\begin{equation*}
\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}} \tag{1.16}
\end{equation*}
$$

or, for grouped data:

$$
\begin{equation*}
\sigma=\sqrt{\frac{\sum f(x-\mu)^{2}}{N}} \tag{1.17}
\end{equation*}
$$

These are simply the square roots of (1.14) and (1.15). The standard deviation of wealth is therefore $\sqrt{80306.8}=283.385$. This is in $£ 000$, so the standard deviation is actually $£ 283385$ (note that this is the square root of 80306800000 , as it should be). On its own the standard deviation (and the variance) is not easy to interpret since it is not something we have an intuitive feel for, unlike the mean. It is more useful when used in a comparative setting. This will be illustrated later on.

The variance and standard deviation of a sample

As with the mean, a different symbol is used to distinguish a variance calculated from the population and one calculated from a sample. In addition, the sample variance is calculated using a slightly different formula from the one for the population variance. The sample variance is denoted by s^{2} and its formula is given by equations (1.18) and (1.19) below:

$$
\begin{equation*}
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \tag{1.18}
\end{equation*}
$$

and, for grouped data:

$$
\begin{equation*}
s^{2}=\frac{\sum f(x-\bar{x})^{2}}{n-1} \tag{1.19}
\end{equation*}
$$

where n is the sample size. The reason $n-1$ is used in the denominator rather than n (as one might expect) is the following. Our real interest is in the population variance, and the sample variance is an estimate of it. The former is measured by the dispersion around μ and the sample variance should ideally be measured around μ also. However, μ is unknown, so \bar{x} is used in the formula instead. But the variation of the sample observations around \bar{x} tends to be smaller than that around μ. Using $n-1$ rather than n in the formula compensates for this and the result is an unbiased ${ }^{3}$ (i.e. correct on average) estimate of the population variance.

Using the correct formula is more important the smaller is the sample size, as the proportionate difference between $n-1$ and n increases. For example, if $n=10$, the adjustment amounts to 10% of the variance; when $n=100$, the adjustment is only 1%.

The sample standard deviation is given by the square root of equation (1.18) or (1.19).

[^3]
Worked example 1.6 The variance and standard deviation

We continue with the previous worked example, relating to students' marks. The variance and standard deviation can be calculated as:

X	f	$f x$	$x-\mu$	$(x-\mu)^{2}$	$f(x-\mu)^{2}$
13	5	65	-2.81	7.89	39.45
14	13	182	-1.81	3.27	42.55
15	29	435	-0.81	0.65	18.98
16	33	528	0.19	0.04	1.20
17	17	289	1.19	1.42	24.11
18	8	144	2.19	4.80	38.40
19	4	76	3.19	10.18	40.73
20	1	20	4.19	17.56	17.56
Totals	110	1739			222.99

The mean is calculated as $1739 / 110=15.81$ and from this the deviations col-$\operatorname{umn}(x-\mu)$ is calculated (so $-2.81=13-15.81$, etc.).

The variance is calculated as $\sum f(x-\mu)^{2} /(n-1)=222.99 / 109=2.05$. The standard deviation is therefore 1.43 , the square root of 2.05. (Calculations are shown to 2 decimal places but have been calculated using exact values.)

For distributions which are approximately symmetric and bell-shaped (i.e. the observations are clustered around the mean), there is an approximate relationship between the standard deviation and the inter-quartile range. This rule of thumb is that the IQR is 1.3 times the standard deviation. In this case, $1.3 \times 1.43=1.86$, close to the value calculated earlier, 2 .

Alternative formulae for calculating the variance and standard deviation

The following formulae give the same answers as equations (1.14) to (1.17) but are simpler to calculate, either by hand or using a spreadsheet. For the population variance one can use

$$
\begin{equation*}
\sigma^{2}=\frac{\sum x^{2}}{N}-\mu^{2} \tag{1.20}
\end{equation*}
$$

or, for grouped data,

$$
\begin{equation*}
\sigma^{2}=\frac{\sum f x^{2}}{\sum f}-\mu^{2} \tag{1.21}
\end{equation*}
$$

The calculation of the variance using equation (1.21) is shown in Figure 1.14.
The sample variance can be calculated using

$$
\begin{equation*}
s^{2}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1} \tag{1.22}
\end{equation*}
$$

Figure 1.14 Descriptive statistics calculated using Excel

or, for grouped data,

$$
\begin{equation*}
s^{2}=\frac{\sum f x^{2}-n \bar{x}^{2}}{n-1} \tag{1.23}
\end{equation*}
$$

The standard deviation may of course be obtained as the square root of these formulae.

Using a calculator or computer for calculation

Electronic calculators and (particularly) computers have simplified the calculation of the mean, etc. Figure 1.14 shows how to set out the above calculations in Microsoft Excel, including some of the appropriate cell formulae.

The variance in this case is calculated using the formula $\sigma^{2}=\frac{\sum f x^{2}}{\sum f}-\mu^{2}$ which is the formula given in equation (1.21). Note that it gives the same result as that calculated in the text.

The following formulae are contained in the cells:

```
D5: = C5*B5 to calculate }f\mathrm{ times }
E5: = D5*B5 to calculate f}f\mathrm{ times }\mp@subsup{x}{}{2
C20: = SUM(C5:C18) to sum the frequencies, }\Sigma
H6: = D20/C20 calculates }\Sigmafx/\Sigma
H7: = E20/C20 - H6^2 calculates \Sigmaf\mp@subsup{x}{}{2}/\Sigmaf-\mp@subsup{\mu}{}{2}
H8: = SQRT(H7) calculates \Sigma
H9: = H8/H6 calculates }\sigma/
```


The coefficient of variation

The measures of dispersion examined so far are all measures of absolute dispersion and, in particular, their values depend upon the units in which the variable is measured. It is therefore difficult to compare the degrees of dispersion of two variables which are measured in different units. For example, one could not compare wealth in the United Kingdom with that in Germany if the former uses £s and the latter euros for measurement. Nor could one compare the wealth distribution in one country between two points in time because inflation alters the value of the currency over time. The solution is to use a measure of relative dispersion, which is independent of the units of measurement. One such measure is the coefficient of variation, defined as:

$$
\begin{equation*}
\text { Coefficient of variation }=\frac{\sigma}{\mu} \tag{1.24}
\end{equation*}
$$

i.e. the standard deviation divided by the mean. Whenever the units of measurement are changed, the effect upon the mean and the standard deviation is the same; hence the coefficient of variation is unchanged. For the wealth distribution its value is $283.385 / 186.875=1.516$, i.e. the standard deviation is 152% of the mean. This may be compared directly with the coefficient of variation of a different wealth distribution to see which exhibits a greater relative degree of dispersion.

Independence of units of measurement

It is worth devoting a little attention to this idea, that some summary measures are independent of the units of measurement and some are not, as it occurs quite often in statistics and is not often appreciated at first. A statistic which is independent of the units of measurement is one which is unchanged, even when the units of measurement are changed. It is therefore more useful in general than a statistic which is not independent, since one can use it to make comparisons, or judgements, without worrying too much about how it was measured.

The mean is not independent of the units of measurement. If we are told the average income in the United Kingdom is 30000 , for example, we need to know whether it is measured in pounds sterling, euros or even dollars. The underlying level of income is the same, of course, but it is measured differently. By contrast, the rate of growth (described in detail shortly) is independent of the units of measurement. If we are told it is 3% p.a., it would be the same whether the calculation was based on pound, euro or dollar figures. If told that the rate of growth in the United States is 2% p.a., we can immediately conclude that the United Kingdom is growing faster, and no further information is needed.

Most measures we have encountered so far, such as the mean and variance, do depend on units of measurement. The coefficient of variation is one that does not. We now go on to describe another means of measuring dispersion that avoids the units of measurement problem.

The standard deviation of the logarithm

Another solution to the problem of different units of measurement is to use the logarithm ${ }^{4}$ of wealth rather than the actual value. The reason why this works can best be illustrated by an example. Suppose that between 1997 and 2005 each individual's wealth doubled, so that

$$
X_{i}^{2005}=2 X_{i}^{1997}
$$

where X_{i}^{t} indicates the wealth of individual i in year t. It follows that the standard deviation of wealth in 2005 is exactly twice that of 1997 (and hence the coefficient of variation is unchanged). Taking logs, we have $\ln X_{i}^{2005}=\ln 2+\ln X_{i}^{1997}$, so it follows that the distribution of $\ln X^{2005}$ is the same as that of $\ln X^{1997}$ except that it is shifted to the right by $\ln 2$ units. The variances (and hence standard deviations) of the two logarithmic distributions must therefore be the same, indicating no change in the relative dispersion of the two wealth distributions.

The use of logarithms in data analysis is very common, so it is worth making sure you understand the principles and mechanics of using them.

The standard deviation of the logarithm of wealth is calculated from the data in Table 1.10. The variance turns out to be:

$$
\sigma^{2}=\frac{\sum f x^{2}}{\sum f}-\mu^{2}=\frac{417772.5}{18677}-\left(\frac{84840.9}{18677}\right)^{2}=1.734
$$

and the standard deviation $\sigma=1.317$. The larger this figure is, the greater the dispersion. On its own the number is difficult to interpret; it is only really useful when compared to another such figure.

Table 1.10 The calculation of the standard deviation of the logarithm of wealth

Range	Mid-point, x	$\ln (x)$	Frequency, f	$f x$	$f x$ squared
$0-$	5.0	1.609	1668	2684.5	4320.6
$10000-$	17.5	2.862	1318	3772.4	10797.3
$25000-$	32.5	3.481	1174	4087.0	14227.7
$40000-$	45.0	3.807	662	2520.0	9592.8
$50000-$	55.0	4.007	627	2512.6	10068.8
$60000-$	70.0	4.248	1095	4652.1	19764.4
$80000-$	90.0	4.500	1195	5377.3	24196.7
$100000-$	125.0	4.828	3267	15774.1	76162.3
$150000-$	175.0	5.165	2392	12354.2	63806.6
$200000-$	250.0	5.521	2885	15929.4	87953.6
$300000-$	400.0	5.991	1480	8867.4	53128.5
$500000-$	750.0	6.620	628	4157.4	27522.3
$1000000-$	1500.0	7.313	198	1448.0	10589.7
$2000000-$	3000.0	8.006	88	704.6	5641.0
Totals			18677	84840.9	417772.5

Notes: Use the 'In' key on your calculator or the $=\mathrm{LN}()$ function in a spreadsheet to obtain natural logarithms of the data. You should obtain $\ln 5=1.609, \ln 17.5=2.862$, etc. The column headed ' $f x$ ' is the product of the f and $\ln (x)$ columns.

[^4]For comparison, the standard deviation of log wealth in 1979 (discussed in more detail later on) is 1.310 , so there appears to have been little change in relative dispersion over this time period. Thus we have found two different ways of measuring relative dispersion. In a later chapter we will meet a third, the Gini coefficient.

Measuring deviations from the mean: z scores

Imagine the following problem. A man and a woman are arguing over their career records. The man says he earns more than she does, so he is more successful. The woman replies that women are discriminated against and that, relative to other women, she is doing better than the man is, relative to other men. Can the argument be resolved?

Suppose the data are as follows: the average male salary is $£ 19500$ and the average female salary $£ 16800$. The standard deviation of male salaries is $£ 4750$ and for women it is $£ 3800$. The man's salary is $£ 31375$, while the woman's is $£ 26800$. The man is therefore $£ 11875$ above the mean, and the woman is $£ 10000$ above. However, women's salaries are less dispersed than men's, so the woman has done well to get to $£ 26800$.

One way to resolve the problem is to calculate the z score, which gives the salary in terms of the number of standard deviations from the mean. Thus for the man, the z score is

$$
\begin{equation*}
z=\frac{X-\mu}{\sigma}=\frac{31375-19500}{4750}=2.50 \tag{1.25}
\end{equation*}
$$

Thus the man is 2.5 standard deviations above the male mean salary, i.e. $31375=19500+2.5 \times 4750$. For the woman the calculation is

$$
\begin{equation*}
z=\frac{26800-16800}{3800}=2.632 \tag{1.26}
\end{equation*}
$$

The woman is 2.632 standard deviations above her mean and therefore wins the argument - she is nearer the top of her distribution than is the man and so is more of an outlier. Actually, this probably won't end the argument, but is the best the statistician can do. The z score is an important concept which will be used again (see Chapter 5) when we cover hypothesis testing.

Chebyshev's inequality

Use of the z score leads on naturally to Chebyshev's inequality, which tells us about the proportion of observations that fall into the tails of any distribution, regardless of its shape. The theorem is expressed as follows:

At least $\left(1-1 / k^{2}\right)$ of the observation in any distribution
lie within k standard deviations of the mean
If we take the female wage distribution given above, we can ask what proportion of women lie beyond 2.632 standard deviations from the mean (in both tails of the distribution). Setting $k=2.632$, then

$$
\left(1-\frac{1}{k^{2}}\right)=\left(1-\frac{1}{2.632^{2}}\right)=0.8556 .
$$

So at least 85% of women have salaries within ± 2.632 standard deviations of the mean, i.e. between $£ 6800$ and $£ 26800(16800 \pm 2.632 \times 3800)$. Fifteen percent of women therefore lie outside this range.

Chebyshev's inequality is a very conservative rule since it applies to any distribution; if we know more about the shape of a particular distribution (for example, men's heights follow a Normal distribution - see Chapter 3), then we can make a more precise statement. In the case of the Normal distribution, over 99\% of men are within 2.632 standard deviations of the average height because there is a concentration of observations near the centre of the distribution.

We can also use Chebyshev's inequality to investigate the inter-quartile range. The formula (1.27) implies that 50% of observations lie within $\sqrt{2}=1.41$ standard deviations of the mean, a more conservative value than our previous 1.3.

Exercise 1.4

(a) For the data in Exercise 1.2, calculate the inter-quartile range, the variance and the standard deviation.
(b) Calculate the coefficient of variation.
(c) Check if the relationship between the IQR and the standard deviation stated in the text (worked example 1.6) is approximately true for this distribution.
(d) Approximately how much of the distribution lies within one standard deviation either side of the mean? How does this compare with the prediction from Chebyshev's inequality?

Measuring skewness

The skewness of a distribution is the third characteristic that was mentioned earlier, in addition to location and dispersion. The wealth distribution is heavily skewed to the right, or positively skewed; it has its long tail in the right-hand end of the distribution. A measure of skewness gives a numerical indication of how asymmetric is the distribution.

One measure of skewness, known as the coefficient of skewness, is

$$
\begin{equation*}
\frac{\sum f(x-\mu)^{3}}{N \sigma^{3}} \tag{1.28}
\end{equation*}
$$

and it is based upon cubed deviations from the mean. The result of applying formula (1.28) is positive for a right-skewed distribution (such as wealth), zero for a symmetric one, and negative for a left-skewed one. Table 1.11 shows the calculation for the wealth data (some rows are omitted for brevity).

Table 1.11 Calculation of the skewness of the wealth data

Range	Mid-point x	Frequency f	$x-\mu$	$(x-\mu)^{3}$	$f(x-\mu)^{3}$
$0-$	5.0	1668	-181.9	-6016132	-10034907815
$10000-$	17.5	1318	-169.4	-4858991	-6404150553
$:$	$:$	$:$	$:$	$:$	$:$
$1000000-$	1500.0	198	1313.1	2264219059	448315373613
$2000000-$	3000.0	88	2813.1	22262154853	1959069627104
Total		18677	3898.8	24692431323	2506882551023

From this we obtain:

$$
\frac{\sum f(x-\mu)^{3}}{N}=\frac{2506882551023}{18677}=134222977.5
$$

and dividing by Σ^{3} gives $\frac{134222977.5}{22757714}=5.898$ which is positive, as expected.
The measure of skewness is much less useful in practical work than measures of location and dispersion, and even knowing the value of the coefficient does not always give much idea of the shape of the distribution: two quite different distributions can share the same coefficient. In descriptive work, it is probably better to draw the histogram itself.

Comparison of the 2005 and 1979 distributions of wealth

Some useful lessons may be learned about these measures by comparing the 2005 distribution with its counterpart from 1979. This covers the period of Conservative government starting with Mrs Thatcher in 1979 and much of the following Labour administration. This shows how useful the various summary statistics are when it comes to comparing two different distributions. The wealth data for 1979 are given in Problem 1.5, where you are asked to confirm the following calculations.

Average wealth in 1979 was $£ 16$ 399, about one-eleventh of its 2005 value. The average increased substantially therefore (at about 10% p.a., on average), but some of this was due to inflation rather than a real increase in the quantity of assets held. In fact, between 1979 and 2005 the retail price index rose from 52.0 to 217.9, i.e. it increased approximately four times. Thus the nominal ${ }^{5}$ increase (i.e. in cash terms, before any adjustment for rising prices) in wealth is made up of two parts: (a) an inflationary part which more than quadrupled measured wealth and (b) a real part, consisting of a 2.75 -fold increase (thus $4 \times 2.75=11$, approximately). Price indexes are covered in Chapter 10 where it is shown more formally how to divide a nominal increase into price and real (quantity) components. It is likely that the extent of the real increase in wealth is overstated here due to the use of the retail price index rather than an index of asset prices. A substantial part of the increase in asset values over the period is probably due to the very rapid rise in house prices (houses form a significant part of the wealth of many households).

The standard deviation is similarly affected by inflation. The 1979 value is 25552 compared to 2005's 283 385, which is about 11 times larger (as was the mean). The spread of the distribution appears to be about the same therefore (even if we take account of the general price effect). Looking at the coefficient of variation reveals a similar finding: the value has changed from 1.56 to 1.52 , which is a modest difference. The spread of the distribution relative to its mean has not changed by much. This is confirmed by calculating the standard deviation of the logarithm: for 1979 this gives a figure of 1.310, almost identical to the 2005 figure (1.317).

The measure of skewness for the 1979 data comes out as 5.723 , only slightly smaller than the 2005 figure (5.898). This suggests that the 1979 distribution is similarly skewed to the 2005 one. Again, these two figures can be directly com-

[^5]pared because they do not depend upon the units in which wealth is measured. However, the relatively small difference is difficult to interpret in terms of how the shape of the distribution has changed.

The box and whiskers diagram

Figure 1.15
Box plot of the wealth distribution

Having calculated these various summary statistics, we can now return to a useful graphical method of presentation. This is the box and whiskers diagram (sometimes called a box plot) which shows the median, quartiles and other aspects of a distribution on a single diagram. Figure 1.15 shows the box plot for the wealth data.

Wealth is measured on the vertical axis. The rectangular box stretches (vertically) from the first to third quartile and therefore encompasses the middle half of the distribution. The horizontal line through it is at the median and lies slightly less than halfway up the box. This tells us that there is a degree of skewness even within the central half of the distribution, though it does not appear very severe. The two 'whiskers' extend above and below the box as far as the highest and lowest observations, excluding outliers. An outlier is defined to be any observation which is more than 1.5 times the inter-quartile range (which is the same as the height of the box) above or below the box. Earlier we found the IQR to be 173443 and the upper quartile to be 221135 , so an (upper) outlier lies beyond $221135+1.5 \times 173443=481300$. There are no outliers below the box as wealth cannot fall below zero. The top whisker is thus substantially longer than the bottom one, and indicates the extent of dispersion towards the tails of the distribution. The crosses indicate the outliers and in reality extend far beyond those shown in the diagram.

A simple diagram thus reveals a lot of information about the distribution.

Other boxes and whiskers could be placed alongside in the same diagram (perhaps representing other countries), making comparisons straightforward. Some statistical software packages, such as SPSS and STATA, can generate box plots from the original data, without the need for the user to calculate the median, etc. However, spreadsheet packages do not yet have this useful facility.

Time-series data: investment expenditures 1977-2009

The data on the wealth distribution give a snapshot of the situation at particular points in time, and comparisons can be made between the 1979 and 2005 snapshots. Often, however, we wish to focus on the time-path of a variable and therefore we use time-series data. The techniques of presentation and summarising are slightly different than for cross-section data. As an example, we use data on investment in the United Kingdom for the period 1977-2009. These data are available from the Office of National Statistics (ONS) website. However, even after its recent redesign, it is almost impossible to find the data that you want. To save a lot of frustration, use the Econstats website (http://www.econstats.com/uk/index.htm), a U.S. site which aggregates economic data from around the world. The data series used is total gross fixed capital formation (series NPQX), which is measured in current prices (i.e. not adjusted for inflation). We will refer to this series simply as 'investment'.

Investment expenditure is important to the economy because it is one of the primary determinants of growth. Until recent years, the UK economy's growth record had been poor by international standards and lack of investment may have been a cause. The variable studied here is total gross (i.e. before depreciation is deducted) domestic fixed capital formation, measured in $£$ m. The data are shown in Table 1.12.

It should be remembered that the data are in current prices so that the figures reflect price increases as well as changes in the volume of physical investment. The series in Table 1.12 thus shows the actual amount of cash that was spent each year on investment. The techniques used below for summarising the investment

Table 1.12 UK investment, 1977-2009 (£m)

Year	Investment	Year	Investment	Year	Investment
1977	28351	1988	97956	1999	161722
1978	32387	1989	113478	2000	167172
1979	38548	1990	117027	2001	171782
1980	43612	1991	107838	2002	180551
1981	43746	1992	103913	2003	186700
1982	57935	1993	103997	2004	200415
1983	59278	1994	111623	2005	209758
1984	65181	1995	121364	2006	227234
1985	69581	1997	1998	130346	2007
1986	80344	155997	2008	249517	
1987			2009	240361	

Note: Time-series data consist of observations on one or more variables over several time periods. The observations can be daily, weekly, monthly, quarterly or, as here, annually.

Source: Data adapted from the Office for National Statistics licensed under the Open Government Licence(OGL) v.3.0. http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government

Figure 1.16
Time-series graph of investment in the United Kingdom, 1977-2009

Investment (£m)

Note: The X, Y coordinates are the values \{year, investment\}; the first data point has the coordinates $\{1977,28351\}$, for example.
data could equally well be applied to a series showing the volume of investment.
First of all, we can use graphical techniques to gain an insight into the characteristics of investment. Figure 1.16 shows a time-series graph of investment. The graph plots the time periods on the horizontal axis and the investment variable on the vertical.

Plotting the data in this way brings out clearly some key features of the series:

- The trend in investment is upwards, with only a few years in which there was either no increase or a decrease.
- There is a 'hump' in the data in the late 1980 s/early 1990s, before the series returns to its trend. Something unusual must have happened around that time. If we want to know what factors determine investment (or the effect of investment upon other economic magnitudes), we should get some useful insights from this period of the data.
- The trend is slightly non-linear - it follows an increasingly steep curve over time. This is essentially because investment grows by a percentage or proportionate amount each year. As we shall see shortly, it grows by about 6.2% each year. Therefore, as the level of investment increases each year, so does the increase in the level, giving a non-linear graph.
- The years 2008 and 2009 show a significant fall in investment, reflecting the financial crisis that occurred in 2008. Not only is investment below its 2007 level, it is substantially below what we might have expected, if the long-term trend had continued. Again, because of unusual movements in the data, we are likely to learn something about the causes and consequences of investment from what happened in these years.
- Successive values of the investment variable are similar in magnitude, i.e. the value in year t is similar to that in $t-1$. Investment does not change from $£ 40$ bn in one year to $£ 10$ bn the next, and then back to $£ 50$ bn, for instance. In fact, the value in one year appears to be based on the value in the previous year,

Table 1.13 The change in investment

Year	Δ Investment	Year	Δ Investment	Year	Δ Investment
1977	2711	1988	17612	1999	5725
1978	4036	1989	15522	2000	5450
1979	6161	1990	3549	2001	4610
1980	5064	1991	-9189	2002	8769
1981	134	1992	-3925	2003	6149
1982	4189	1993	84	2004	13715
1983	4164	1994	7626	2005	9343
1984	7179	1995	9741	2006	17476
1985	5903	1996	8982	2007	22283
1986	4400	1997	7961	2008	-9156
1987	10763	1998	17690	2009	-36091

Note: The change in investment is obtained by taking the difference between successive observations. For example, 4036 is the difference between 32387 and 28351 . The first figure of 2711 is obtained using the investment level for 1976 of 25640 (not shown in Table 1.12).
plus (in general) 6.2% or so. We refer to this phenomenon of an observation being related to its previous value as serial correlation, and it is one of the aspects of the data that we might wish to investigate. The ordering of the data matters, unlike the case with cross-section data where the ordering is usually irrelevant. In deciding how to model investment behaviour, we might focus on changes in investment from year to year.

- The series seems 'smoother' in some periods than others. There appear to be two particular periods of volatility, where investment varies more widely around its trend, (i.e. has a greater variance around the trend). This is known as heteroscedasticity; a constant variance is termed homoscedasticity.

We may gain further insight into how investment evolves over time by focusing on the change in investment from year to year. If we denote investment in year t by I_{t} then the change in investment ${ }^{6}, \Delta I_{\mathrm{t}}$ is given by $I_{t}-I_{t-1}$. Table 1.13 shows the changes in investment each year, and Figure 1.17 provides a time-series graph.

Figure 1.17
Time-series graph of the change in investment

[^6]This series is made up mainly of positive values, indicating that investment increases over time. It also shows that the increase tends to grow each year, although this may simply be a reflection of inflation rather than a genuine increase. The periods of volatility around 1990 and 2008 stand out as exceptions to this account, and both suggest large increases in investment before rapid and deep declines in the series.

Outliers

Graphing data also allows you to see outliers (unusual observations). Outliers might be due to an error in inputting the data (e.g. typing 97 instead of 970) or because something unusual happened (e.g. the investment figure for 2008). Either of these should be apparent from an appropriate graph. For example, the graph of the change in investment highlights the 2008 and 2009 figures. In the case of a straightforward error you should obviously correct it. If you are satisfied that the outlier is not simply a typo, you might want to think about the possible reasons for its existence and whether it distorts the descriptive picture you are trying to paint.

Another useful way of examining the data is to look at the logarithm of investment. This transformation has the effect of straightening out the non-linear investment series. Table 1.14 shows the transformed values, and Figure 1.18 graphs the series. In this case, we use the natural (base e) logarithm.

This new series is much smoother than the original one (as is usually the case when taking logs) and is helpful in showing the long-run trend, although it tends to mask some of the volatility of investment. Even the sharp fall in 2008-9 appears as a gentle downturn in this graph. The slope of this graph gives an approximation to the average rate of growth of investment over the period (expressed as a decimal). This is calculated as follows:

$$
\begin{equation*}
\text { slope }=\frac{\text { change in }(\mathrm{ln}) \text { investment }}{\text { number of years }}=\frac{12.227-10.252}{32}=0.062 \tag{1.29}
\end{equation*}
$$

i.e. 6.2% p.a. Note that although there are 33 observations, there are only 32 years of growth. Note also that this calculation uses the two end-points of the graph; hence it

Table 1.14 The logarithm of investment and the change in the logarithm

Year	In Investment	Δ In Investment	Year	In Investment	Δ In Investment	Year	In Investment	Δ In Investment
1977	10.252	0.101	1988	11.492	0.198	1999	11.994	0.036
1978	10.386	0.133	1989	11.639	0.147	2000	12.027	0.033
1979	10.560	0.174	1990	11.670	0.031	2001	12.054	0.027
1980	10.683	0.123	1991	11.588	-0.082	2002	12.104	0.050
1981	10.686	0.003	1992	11.551	-0.037	2003	12.137	0.033
1982	10.778	0.091	1993	11.552	0.001	2004	12.208	0.071
1983	10.861	0.083	1994	11.623	0.071	2005	12.254	0.046
1984	10.990	0.129	1995	11.707	0.084	2006	12.334	0.080
1985	11.085	0.095	1996	11.778	0.071	2007	12.427	0.094
1986	11.150	0.065	1997	11.837	0.059	2008	12.390	-0.037
1987	11.294	0.144	1998	11.958	0.120	2009	12.227	-0.163

Note: For $1977,10.252$ is the natural logarithm of 28351 , i.e. $\ln 28351=10.252$. The table also shows the changes in In investment, calculated as the difference between successive values of the logarithm of investment.

Figure 1.18
Time-series graph of the logarithm of investment expenditures

Figure 1.19
Time-series graph of the difference of the logarithmic series

is sensitive to changes in these two observations. For example, if we measure the average growth rate from 1977 to 2007, we get 7.25% p.a. A further word of warning: you must use natural (base e) logarithms, not logarithms to the base 10, for this calculation to work. Remember also that the growth of the volume of investment will be less than 6.2% p.a. because part of it is due to price increases.

The logarithmic presentation is useful when comparing two different data series: when graphed in logs it is easy to see which is growing faster - just notice which series has the steeper slope.

A corollary of equation (1.29) is that the change in the natural logarithm of investment from one year to the next represents the percentage change in the data over that year. For example, the natural logarithm of investment in 1977 is 10.252 , while in 1978 it is 10.386 . The difference is 0.134 , so the rate of growth is 13.4%.

Finally, we can graph the difference of the logarithm, as we graphed the difference of the level. This is shown in Figure 1.19 (the calculations are in Table 1.14) and presents the changes in proportionate terms.

Figure 1.20
A multiple time-series graph of investment

This is quite revealing. It shows the series fluctuating about the value of approximately 0.06 (the average calculated in equation (1.29)), with a slight downward trend (i.e. the growth of investment is slowing down). From the graph it is easy to read off that investment in 2009 fell by roughly 15% from its level in 2008, which was itself about 5% below the figure for 2007.

Graphing multiple series

Investment is made up of different categories: the table in Problem 1.14 presents investment data under five different headings: dwellings, transport, machinery, intangible fixed assets and other buildings. Together they make up total investment. It is often useful to show all of the series together on one graph. Figure 1.20 shows a multiple time-series graph of these investment data.

Construction of this type of graph is straightforward; it is just an extension of the technique for presenting a single series. The chart shows that all investment categories have increased over time in a fairly similar way, including the rise then fall in 2008, apart from the 'intangible fixed assets' category. This series includes items such as the value of patents held by a company, which is hard to measure, and the estimated values are likely not to vary much from year to year.

Other noticeable features of the graph are the particularly steep decline in investment in dwellings in 2008-9 and the fall in machinery investment around 2000 while other categories, particularly dwellings, continued to increase. It is difficult from the graph to tell which categories have increased most rapidly over time: the 1977 values are relatively small and hard to distinguish. In fact, it is the 'intangible fixed assets' category (the smallest one) which has increased fastest in proportionate terms. This is easier to observe with a few numerical calculations (covered later in this chapter) rather than trying to read a cramped graph.

Reading too much into a graph

It is possible to draw too many conclusions from a graph. Humans seem programmed to look for patterns and to find them, even when they are not there. In 1998, there was a small blip in investment in transport (see Figure 1.20). So what caused it? The answer is probably
'nothing'; it is just a random movement in the data. It is difficult to separate random movements from causal effects, and the temptation is often to favour the latter.

My belief, based on practical experience, is that you rarely get more than two or three genuine findings from a graph and they will be pretty obvious to see. If you have a list of 10, you have probably imagined most of them. For the investment graphs, the findings are (i) the general upward trend, (ii) the hump around 1990 and (iii) the steep decline in 2008. To find more subtle effects in the data you need to use more sophisticated methods, many of which are covered in later chapters.

One could also produce a multiple series graph of the logarithms of the variables and also of the change, as was done for the total investment series. Since the log transformation tends to squeeze the values (on the y-axis) closer together (compare Figures 1.16 and1.18), it might be easier to see the relative rates of growth of the series using this method. This is left as an exercise for the reader.

Another complication arises when the series are of different orders of magnitude and it is difficult to make all the series visible on the chart. Some lie along the very bottom of the chart, others at the top. In this case you can chart some of the series against a second vertical scale, on the right-hand axis. An example is shown in Figure 1.21, plotting the (total) investment data with the interest rate, which has much smaller numerical values. If the same axis were used for both series, the interest rate would appear as a horizontal line coinciding with the x-axis. This would reveal no useful information to the viewer.

It would usually be inappropriate to use this technique on data such as the investment categories graphed in Figure 1.20. Those are directly comparable to each other and to magnify one of the series by plotting it on a separate axis risks distorting the message for the reader. However, investment and interest rates are measured in inherently different ways and one cannot directly compare their sizes; hence it is acceptable to use separate axes. The graph allows one to observe the movements of the series together and hence perhaps infer something about the relationship between them. The rising investment and falling interest rate suggest an inverse relationship between them.

Figure 1.21
Time-series graph using two vertical scales: investment (LH scale) and the interest rate (RH scale), 1985-2005

Overlapping the ranges of the data series

The graph below provides a nice example of how to compare different time periods on a single chart. The aim is to compare the recessions starting in 1973Q2, 1979Q2, 1990Q2 and 2008Q1 and the subsequent recoveries of real gross domestic product (GDP). Instead of plotting time on the horizontal axis, the number of quarters since the start of each recession is used, so that the series overlap. To aid comparison, all the series have been set to a value of 100 in the initial quarter. From this, one can see that the most recent recession, starting in 2008, was deeper and longer lasting than the earlier ones.

The investment categories may also be illustrated by means of an area graph, which plots the four series stacked one on top of the other, as illustrated in Figure 1.22.

This shows, for example, the 'dwellings' and 'machinery' categories each take up about one quarter of total investment. This is easier to see from the area graph than from the multiple series graph in Figure 1.20.

Figure 1.22
Area graph of investment categories, 1977-2009
£m

\square Other buildings
\square Intangible fixed assets \square Machinery -Transport
\square Dwellings

Figure 1.23
Over-the-top graph of investment

'Chart junk'

With modern computer software it is easy to get carried away and produce a chart that actually hides more than it reveals. There is a great temptation to add some 3-D effects, liven it up with a bit of colour, rotate and tilt the viewpoint, etc. This sort of stuff is generally known as 'chart junk'. As an example, look at Figure 1.23 which is an alternative to the area graph in Figure 1.22. It was fun to create, but it doesn't get the message across at all. Taste is, of course, personal, but moderation is usually an essential part of it.

Exercise 1.5

Given the following data:

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Profit	50	60	25	-10	10	45	60	50	20	40
Sales	300	290	280	255	260	285	300	310	300	330

(a) Draw a multiple time-series graph of the two variables. Label both axes appropriately and provide a title for the graph.
(b) Adjust the graph by using the right-hand axis to measure profits, the left hand axis sales. What difference does this make?

Improving the presentation of graphs - example 2: time series

Earlier we showed how a bar chart might be improved. Here we look at a slightly curious presentation of time-series data, taken from the Office for National Statistics ${ }^{7}$ and relating to the importance of the EU to UK trade. This chart shows the GDP of various

[^7]countries or groups of countries, separated into EU and non-EU territories, from 1993 to 2013.

It actually takes a while to interpret this graph; it is not at all intuitive. Among the reasons are:

1. A bar chart is used to present time-series data.
2. There are actually two time series presented, summarised in the two sets of bars, one for EU countries, one for the rest.
3. The colours give information about individual countries, but it is difficult to go from the colour to the legend, and then back again to see the pattern. The author seems to have just used the Excel defaults for this type of graph.

How could this be improved? It presents a lot of information, so the answer is not immediately obvious. It helps to focus on what messages are being conveyed. From the text of the ONS document these are:

1. EU combined GDP is larger than that of any individual country, surpassing the USA in 2003, and
2. EU growth has been slower than non-EU growth.

We therefore do not need all of the information in the original graph; for example, nothing is said about individual EU economies. Hence, a better version of the chart would be as follows:

Now it is much easier to see the relevant features. The EU (blue line) overtakes the United States in 2003 (though it was also bigger pre-1999, hard to see from the original chart) and EU growth is slower than all non-EU territories, principally since 2008. One can also see the rapid growth of China, again difficult to see in the initial chart. The legend is put on the right-hand side, and it is very easy to match up the colours to the associated country or region.

This revised chart is what Excel calls a 'combo' chart, which shows two different types of chart in the same picture. The non-EU territories make up an area graph (hence filled with colour), while the EU is a line chart.

Numerical summary statistics

The graphs have revealed quite a lot about the data already, but we can also calculate numerical descriptive statistics as we did for the cross-section data. First, we consider the mean, and then the variance and standard deviation.

The mean of a time series

We could calculate the mean of investment itself, but this would not be very informative. Because the series is trended over time, it passes through the mean at some point between 1977 and 2005 but never returns to it. The mean of the series is actually $£ 123.1$ bn, achieved in 1995-6, but this is not very informative since it tells nothing about its value today, for instance. The problem is that the variable is trended, so that the mean is not typical of the series. The annual increase in investment is also trended (though much less so), so it is subject to similar criticism (see Figure 1.17).

It is better in this case to calculate the average growth rate, since this is less likely to have a trend and hence more likely to be representative of the whole time
period. The average growth rate of investment spending was calculated in equation (1.29) as 6.2% p.a. by measuring the slope of the graph of the log investment series, but this is only one way of measuring the growth rate. Furthermore, different methods give slightly different answers, although this is rarely important in practice.

The growth rate may be calculated based upon annual compounding or continuous compounding principles. The former is probably the more common and simpler method, so we explain this first.

Calculating the growth rate based upon annual compounding
This method likens growth to the way money grows in a savings account as interest is added annually. We can calculate the growth rate in the following way:
(1) Calculate the overall growth factor of the series, i.e. x_{T} / x_{1} where x_{T} is the final observation and x_{1} is the initial observation. This is:
$\frac{x_{T}}{x_{1}}=\frac{204270}{28351}=7.2050$,
i.e. investment expenditure is 7.2 times larger in 2009 than in 1977.
(2) To get the annual figure, take the $T-1$ root of the growth factor, where T is the number of observations. Since $T=33$ we calculate $\sqrt[32]{7.205}=1.0637$ (This can be performed on a scientific calculator by raising 7.205 to the power $\left.7.205^{(1 / 32)}=1.0637.\right)$
(3) Subtract 1 from the result in the previous step, giving the growth rate as a decimal. In this case we have $1.0637-1=0.0637$.

Thus the average growth rate of investment is 6.4% p.a., slightly different from the 6.2% calculated earlier (which, as we will see, is based on continuous compounding). The difference is small in practical terms, and neither is definitively the right answer. Both are estimates of the true growth rate. To emphasise this issue, note that since the calculated growth rate is based only upon the initial and final observations, it could be unreliable if either of these two values is an outlier (as in this case, the 2009 value). For example, if the growth rate is measured from 1977 to 2007, then the answer is 7.0%. With a sufficient span of time, however, such outliers are unlikely to be a serious problem.

The power of compound growth

The Economist provided some amusing and interesting examples of how a $\$ 1$ investment can grow over time. They assumed that an investor (they named her Felicity Foresight, for reasons that become obvious) started with $\$ 1$ in 1900 and had the foresight or luck to invest, each year, in the best performing asset of the year. Sometimes she invested in equities, some years in gold and so on. By the end of the century she had amassed $\$ 9.6$ quintillion (9.6×10^{18}, more than world GDP, so impossible in practice). This is equivalent to an average annual growth rate of 55%. In contrast, Henry Hindsight did the same, but invested in the previous year's best asset. This might be thought more realistic. Unfortunately, his \$1 turned into only $\$ 783$, a still respectable annual growth rate of 6.9%. This, however, is beaten by the strategy of investing in the previous year's worst performing asset (what goes down must come up ...). This turned $\$ 1$ into $\$ 1730$, a return of 7.7%. Food for thought! Source: Based on The Economist, 12 February 2000, p. 111.

The geometric mean

In calculating the average growth rate of investment we have implicitly calculated the geometric mean of a series. If we have a series of n values, then their geometric mean is calculated as the nth root of the product of the values, i.e.

$$
\begin{equation*}
\text { geometric mean }=\sqrt[n]{\prod_{i=1}^{n} x_{i}} \tag{1.30}
\end{equation*}
$$

The x values in this case are the growth factors in each year, as in Table 1.15 (the values in intermediate years are omitted). The ' Π ' symbol is similar to the use of Σ, but means 'multiply together' rather than 'add up'.

The product of the 32 growth factors is 7.205 (the same as is obtained by dividing the final observation by the initial one - why?) and the 32nd root of this is 1.0637. This latter figure, 1.0637, is the geometric mean of the growth factors, and from it we can derive the growth rate of 6.37% p.a. by subtracting 1 .

Whenever one is dealing with growth data (or any series that is based on a multiplicative process), one should ideally use the geometric mean rather than the arithmetic mean to get the answer. However, using the arithmetic mean in this case generally gives a similar answer, as long as the growth rate is reasonably small. If we take the arithmetic mean of the growth factors, we obtain:

$$
\frac{1.142+1.190+\cdots+0.963+0.850}{32}=1.0664
$$

giving an estimate of the growth rate of $1.0664-1=0.0664=6.64 \%$ p.a. - close to the correct value. Equivalently, one could take the average of the annual growth rates ($0.142,0.190$, etc.), giving 0.0664 , to get the same result. Use of the arithmetic mean is justified in this context if one needs only an approximation to the right answer and annual growth rates are reasonably small. It is usually quicker and easier to calculate the arithmetic rather than geometric mean, especially if one does not use a computer.

Table 1.15 Calculation of the geometric mean - annual growth factors

	Investment	Growth factors	
1977	28351		$(=32387 / 28351)$
1978	32387	1.142	$(=38548 / 32387)$
1979	38548	1.190	etc.
1980	43612	1.131	
2006	227234	1.083	
2007	249517	0.968	
2008	240361	0.850	
2009	204270		

Note: Each growth factor simply shows the ratio of that year's investment to the previous year's.

Calculating the growth rate based upon continuous compounding

This method is based upon the idea that growth is a continuous process, according to an equation such as

$$
x_{T}=x_{1} e^{g(T-1)}
$$

Obtaining the growth rate g as the subject of this equation requires a little mathematics. Taking natural logs:

$$
\ln x_{T}-\ln x_{1} \times g(T-1)
$$

and hence

$$
g=\frac{\ln x_{T}-\ln x_{1}}{T-1}
$$

This is what was calculated earlier (equation 1.29) when we found the slope of the graph of the logarithm of investment. That calculation gave a result of 6.2% p.a. The continuous method will always provide a slightly smaller estimate of the growth rate than the annual compounding method.

To conclude this section we note that the two methods' results are related and that one can be derived from the other. If we start with the continuous method estimate of 0.062 we can obtain:

$$
e^{0.062}-1=0.064
$$

which gives the result calculated by the annual compounding method.

Compound interest

The calculations we have performed relating to growth rates are analogous to computing compound interest. If we invest $£ 100$ at a rate of interest of 10% p.a., then the investment will grow at 10% p.a. (assuming all the interest is reinvested). Thus after one year the total will have grown to $£ 100 \times 1.1(£ 110)$, after two years to $£ 100 \times 1.1^{2}(£ 121)$ and after t years to $£ 100 \times 1.1^{t}$. The general formula for the terminal value S_{t} of a sum S_{0} invested for t years at a rate of interest r is

$$
\begin{equation*}
S_{t}=S_{0}(1+r)^{t} \tag{1.31}
\end{equation*}
$$

where r is expressed as a decimal. Rearranging (1.31) to make r the subject yields

$$
\begin{equation*}
r=\sqrt[t]{s_{t} / s_{0}}-1 \tag{1.32}
\end{equation*}
$$

which is precisely the formula for the average growth rate. To give a further example: suppose an investment fund turns an initial deposit of $£ 8000$ into $£ 13500$ over 12 years. What is the average rate of return on the investment? Setting $S_{0}=8, S_{t}=13.5, t=12$ and using (1.32), we obtain

$$
r=\sqrt[12]{13.5} / 8-1=0.045
$$

or 4.5% p.a.
Formula (1.32) can also be used to calculate the depreciation rate and the amount of annual depreciation on a firm's assets. In this case, S_{0} represents the initial value of the asset, S_{t} represents the final or scrap value and the annual rate of depreciation (as a negative number) is given by r from equation (1.32).

The variance of a time series

How should we interpret the variance of a time series? For cross-section data (wealth), the variance measured the spread of the distribution, comparing richer with poorer. But the spread of investment values is conceptually different. The variance of the investment data can be calculated, but it would be uninformative in the same way as the mean. Since the series is trended, and this is likely to continue in the longer run, the variance is in principle equal to infinity. The calculated variance would be closely tied to the sample size: the larger it is, the larger the variance.

We can use the variance, however, to measure the volatility of a time series, how much it varies from year to year around the (growing) mean value. For this, it makes sense to calculate the variance of the growth rate, which has little trend in the long run.

This variance can be calculated from the formula:

$$
\begin{equation*}
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1} \tag{1.33}
\end{equation*}
$$

Where x is the rate of growth and $\bar{\chi}$ is its average value. The calculation is set out in Table 1.16 using the right-hand formula in (1.33).

The variance is therefore

$$
s^{2}=\frac{0.3230-32 \times 0.0664^{2}}{31}=0.0059
$$

and the standard deviation is 0.0766 , the square root of the variance. The coefficient of variation is

$$
c v=\frac{0.0766}{0.0664}=1.15
$$

i.e. the standard deviation of the growth rate is about 115% of the mean.

Note three things about this calculation: first, we have used the arithmetic mean (using the geometric mean makes very little difference); second, we have used the formula for the sample variance since the period 1977 to 2005 constitutes a sample of all the possible data we could collect and third, we could have equally used the growth factors for the calculation of the variance (why?).

Table 1.16 Calculation of the variance of the growth rate

Year	Investment	Growth rate, x	x^{2}
1978	32387	0.142	0.020
1979	38548	0.190	0.036
1980	43612	0.131	0.017
$:$	$:$	$:$	$:$
2006	227234	0.083	0.007
2007	249517	0.098	0.010
2008	240361	-0.037	0.001
2009	204270	-0.150	0.023
Totals		2.1253	0.3230

Worked example 1.7

Given the following data:

Year	1999	2000	2001	2002	2003
Price of a laptop PC	1100	900	800	750	700

we can work out the average rate of price growth p.a. as follows. The overall growth factor is $\frac{700}{1100}=0.6363$. The fact that this number is less than one simply reflects the fact that the price has fallen over time. It has fallen to 64% of its original value. To find the annual rate, we take the fourth root of 0.6363 (four years of growth). Hence, we get $\sqrt[4]{0.6363}=0.893$, i.e. each year the price falls to 89% of its value the previous year. This implies price is falling at $0.893-1=-0.107$, or approximately an 11% fall each year.

We can see if the fall is more or less the same by calculating each year's growth factor. These are:

Year	1999	2000	2001	2002	2003
Laptop price	1100	900	800	750	700
Growth factor		0.818	0.889	0.9375	0.933
Price fall		-19	-11	-6	-7

The price fall was larger in the earlier years, in percentage as well as in absolute terms. Calculating the standard deviation of the values in the final row provides a measure of the variability from year to year. The variance is given by

$$
s^{2}=\frac{(19-11)^{2}+(11-11)^{2}+(6-11)^{2}+(7-11)^{2}}{3}=30.7
$$

The standard deviation is then 5.54%. (The calculations are shown rounded, but the answer is accurate.)

Exercise 1.6

(a) Using the data in Exercise 1.5, calculate the average level of profit over the time period and the average growth rate of profit over the time period. Which appears more useful?
(b) Calculate the variance of profit and compare it to the variance of sales.

Graphing bivariate data: the scatter diagram

The analysis of investment is an example of the use of univariate methods: only a single variable is involved. However, we often wish to examine the relationship between two (or sometimes more) variables and have to use bivariate (or multivariate) methods. To illustrate the methods involved we shall examine the relationship between investment expenditures and gross domestic product

Table 1.17 GDP data ($£ \mathrm{~m}$)

Year	GDP	Year	GDP	Year	GDP
1977	146973	1988	478510	1999	928730
1978	169344	1989	525274	2000	976533
1979	199220	1990	570283	2001	1021828
1980	233184	1991	598664	2002	1075564
1981	256279	1992	622080	2003	1139746
1982	281024	1993	654196	2004	1202956
1983	307207	1994	692987	2005	1254058
1984	329913	1995	733266	2006	1328363
1985	361758	1996	781726	2007	1404845
1986	389149	1997	830094	2008	1445580
1987	428665	1998	879102	2009	1394989

(GDP). Economics tells us to expect a positive relationship between these variables; higher GDP is usually associated with higher investment. Table 1.17 provides data on GDP for the United Kingdom.

A scatter diagram (also called an $X Y$ chart) plots one variable (in this case investment) on the y-axis, the other (GDP) on the x-axis, and therefore shows the relationship between them. For example, one can see whether high values of one variable tend to be associated with high values of the other. Figure 1.24 shows the relationship for investment and GDP.

The chart shows a strong linear relationship between the two variables, apart from a dip in the middle. This reflects the sharp fall in investment after 1990 which is not matched by a fall in GDP (if it were, the $X Y$ chart would show a linear relationship without the dip). It is important to recognise the difference between the time-series plot and the $X Y$ chart. The sharp fall in investment in 2008 which we noted earlier is matched by a similar fall in GDP; hence the $X Y$ chart does not reveal this.

Figure 1.24
Scatter diagram of investment (vertical axis) against GDP (horizontal axis) (nominal values)

Investment (£m)

Note: The (x, y) coordinates of each point are given by the values of investment and GDP, respectively. Thus the first (1977) data point is drawn 28351 units above the horizontal axis and 146973 units from the vertical one.

Figure 1.25
The relationship between real investment and real output

Because of inflation and growth, later observations tend to be towards the top right of the $X Y$ chart (both investment and GDP are increasing over time) but this does not have to happen; if both variables fluctuated up and down, later observations could be at the bottom left (or centre, or anywhere). By contrast, in a time-series plot, later observations are always further to the right.

Note that both variables are in nominal terms, i.e. they make no correction for inflation over the time period. This may be seen algebraically: investment expenditure is made up of the volume of investment (I) times its price $\left(P_{T}\right)$. Similarly, nominal GDP is real GDP (Y) times its price $\left(P_{Y}\right)$. Thus the scatter diagram actually charts $P_{I} \times I$ against $P_{Y} \times Y$. It is likely that the two prices follow a similar trend over time and that this might dominate the movements in real investment and GDP. The chart then shows the relationship between a mixture of prices and quantities, when the more interesting relationship is between the quantities of investment and output.

Figure 1.25 shows the relationship between the quantities of investment and output, i.e. after the strongly trending price effects have been removed. It is not so straightforward as the nominal graph. There is now a 'knot' of points in the centre where perhaps both (real) investment and GDP fluctuated up and down. Overall, it is clear that something 'interesting' happened around 1990 that merits additional investigation.

Chapter 10, on index numbers, explains in detail how to derive real variables from nominal ones, as we have done here, and generally describes how to correct for the effects of inflation on economic magnitudes.
(a) Once again using the data from Exercise 1.5, draw an $X Y$ chart with profits on the vertical axis and sales on the horizontal axis. Choose the scale of the axes appropriately.
(b) If using Excel to produce graphs, right click on the graph, choose 'Add trendline' and choose a linear trend. This gives the 'line of best fit' (covered in detail in Chapter 7). What does this appear to show?

Improving graphs - scatter plot example

Our third example of how to improve a graph starts with the following picture. You might want to look at it for a few moments and think how you might better present the data before reading on. The picture looks at life satisfaction and GDP across some OECD countries.

Life satisfaction and GDP, 2007-2014

Source: adapted from http://www.ons.gov.uk/ons/dcp171766_406995.pdf, Figure 2.

The chart presents two data series, for life satisfaction and for GDP, and one can try to draw conclusions from it. GDP has grown in most countries (exception: Greece), but life satisfaction more often goes down rather than up. It is difficult to see if or how growth of GDP relates to increased satisfaction. Sometimes the bars are in the same direction (for a country), sometimes opposed. The Guardian turned this into an interactive infographic ${ }^{8}$ which allowed you to see either GDP or satisfaction but not both together. This is terrible.

Since there are two variables, this really cries out for a scatter plot, as shown here.

[^8]

Now one can see a lot more, more clearly (and the scatter plot actually shows more countries). There seems to be a positive relation between the variables, and below about 20\% growth (over seven years, so 2.6% p.a.) satisfaction generally falls. The exception to this is Iceland, recovering from its severe banking crisis. Chile and Slovakia show the greatest increase in life satisfaction and contrast with Poland which has even higher GDP growth, yet a fall in satisfaction.

One piece of information that is missing from the improved version is the country names, apart from a selected few. However, the aim is to show the general relationship so these are not all needed. One can add individual labels (as shown) if one wants to comment upon a particular country.

Data transformations

In analysing employment and investment data in the examples above, we have often changed the variables in some way in order to bring out the important characteristics. In statistics, one usually works with data that have been transformed in some way rather than using the original numbers. It is therefore worth summarising the main data transformations available, providing justifications for their use and exploring the implications of such adjustments to the original data. We briefly deal with the following transformations:

- rounding
- grouping
- dividing or multiplying by a constant
- differencing
- taking logarithms
- taking the reciprocal
- deflating.

Rounding

Rounding improves readability. Too much detail can confuse the message, so rounding the answer makes it more memorable. To give an example, the average wealth holding calculated earlier in this chapter is actually $£ 186875.766$ (to three decimal places). It would be absurd to present it in this form, however. We do not know for certain that this figure is accurate (in fact, it almost certainly is not). There is a spurious degree of precision which might mislead the reader. How much should this be rounded for presentational purposes? Remember that the figures have already been effectively rounded by allocation to classes of width 10000 or more (all observations have been rounded to the mid-point of the interval). However, much of this rounding is offsetting, i.e. numbers rounded up offset those rounded down, so the class mean is reasonably accurate. Rounding to $£ 187000$ makes the figure much easier to remember, and is only a change of 0.07% ($187000 / 186874.766=1.00067$), so is a reasonable compromise. In a report, it might be best to use the figure of $£ 187000$ therefore. In the text above, the answer was not rounded to such an extent since the purpose was to highlight the methods of calculation.

Inflation in Zimbabwe

'Zimbabwe's rate of inflation surged to 3731.9\%, driven by higher energy and food costs, and amplified by a drop in its currency, official figures show.'
BBC news online, 17 May 2007.
Whether official or not, it is impossible that the rate of inflation is known with such accuracy (to one decimal place), especially when prices are rising so fast. It would be more reasonable to report a figure of 3700% in this case. Sad to say, inflation rose even further in subsequent months.

Rounding is a 'trapdoor' function: you cannot obtain the original value from the transformed (rounded) value. Therefore, if you are going to need the original value in further calculations, you should not round your answer. Furthermore, small rounding errors can cumulate, leading to a large error in the final answer. Therefore, you should never round an intermediate answer, only the final one. Even if you only round the intermediate answer by a small amount, the final answer could be grossly inaccurate. Try the following: calculate $60.29 \times 30.37-1831$ both before and after rounding the first two numbers to integers. In the first case you get 0.0073, and in the second -31 .

Grouping

When there is too much data to present easily, grouping solves the problem, although at the cost of hiding some of the information. The examples relating to
education and unemployment and to wealth used grouped data. Using the raw data would have given us far too much information, so grouping is a first stage in data analysis. Grouping is another trapdoor transformation: once it's done you cannot recover the original information (unless you have access to the raw data, of course).

Dividing/multiplying by a constant

This transformation is carried out to make numbers more readable or to make calculation simpler by removing trailing zeros. The data on wealth were divided by 1000 to ease calculation; otherwise the $f x^{2}$ column would have contained extremely large values. Some summary statistics (e.g. the mean) will be affected by the transformation, but not all (e.g. the coefficient of variation). Try to remember which are affected. E and V operators (see Appendix 1B) can help. The transformation is easy to reverse.

Differencing

In time-series data there may be a trend, and it is better to describe the features of the data relative to the trend. The result may also be more economically meaningful, e.g. governments are often more concerned about the growth of output than about its level. Differencing is one way of eliminating the trend (see Chapter 11 for other methods of detrending data). Differencing was used for the investment data for both of these reasons. One of the implications of differencing is that information about the level of the variable is lost.

Taking logarithms

Taking logarithms is used to linearise a non-linear series, in particular one that is growing at a fairly constant rate. It is often easier to see the important features of such a series if the logarithm is graphed rather than the raw data. The logarithmic transformation is also useful in regression (see Chapter 9) because it yields estimates of elasticities (e.g. of demand). Taking the logarithm of the investment data linearised the series and tended to smooth it. The inverses of the logarithmic transformations are 10^{x} (for common logarithms) and e^{x} (for natural logarithms) so one can recover the original data.

Taking the reciprocal

The reciprocal of a variable might have a useful interpretation and provide a more intuitive explanation of a phenomenon. The reciprocal transformation will also turn a linear series into a non-linear one. The reciprocal of turnover in the labour market (i.e. the number leaving unemployment divided by the number unemployed) gives an idea of the duration of unemployment. If one-half of those unemployed find work each year (turnover $=0.5$), then the average duration of unemployment is two years $(=1 / 0.5)$. If a graph of turnover shows a linear decline over time, then the average duration of unemployment will be rising, at a faster and faster rate. Repeating the reciprocal transformation recovers the original data.

Deflating

Deflating turns a nominal series into a real one, i.e. one that reflects changes in quantities without the contamination of price changes. This is dealt with in more detail in Chapter 10. It is often more meaningful in economic terms to talk about a real variable than a nominal one. Consumers are more concerned about their real income than about their money income, for example.

Confusing real and nominal variables is dangerous. For example, someone's nominal (money) income may be rising yet their real income falling (if prices are rising faster than money income). It is important to know which series you are dealing with (this is a common failing among students new to statistics). An income series that is growing at 2 to 3 p.a. is probably a real series; one that is growing at 10% p.a. or more is likely to be nominal.

The information and data explosion

Recent developments in technology, especially those relating to the web, have led to a huge increase in data availability. Data files can now have tags allowing other websites to query the data, provide 'mashups' and exhibit the data in new ways. This is leading to a democratisation of data - anyone can now obtain them, draw graphs, interpret them and so on. Most of the data manipulation is done behind the scenes; the user does not need to have any understanding of the formulae nor of the calculations involved. This has some implications for those producing and using statistics, which we consider here.

First, however, we take a look at some examples of such 'data visualisation'. One of the most striking is Gapminder (www.gapminder.org), a site which allows you to construct interactive graphs of many variables. It is innovative in that it provides an enormous amount of information in each graph. Figure 1.26 shows a graph of CO_{2} emissions against real GDP (an XY chart) for countries around the world in 1950.

As well as the two main variables, note the additional features:

- The data points are coloured bubbles. The colour represents the region and the size of the bubble represents the total emissions of the country (the variable on the y-axis is emissions per capita). Hence, we actually have four variables represented on the chart.
- Much of the graph can be customised. The axes can be linear or log scale (note that Gapminder has chosen a linear scale for emissions graphed against the log of income). The size of the bubble can be changed to represent alternative variables, e.g. an index of urbanisation.
- By hovering the cursor over a bubble, the country name is revealed (here, the United States) and the values for that observation are shown on the axes.
- By 'playing' the graph or using the slider, one can go forward through time to see the changes in a most vivid way. Unfortunately, this cannot be replicated in this text, but Figure 1.27 is the same graph for 2008.

The new graph shows how total emissions have grown (note China in particular) over the time period. A good feature of Gapminder is that the underlying data can be downloaded so that you can carry out your own further analysis if you wish to.

Figure 1.26 CO_{2} emissions versus real GDP in 1950

Source: From www.gapminder.org, Visualization formGapminder World, powered by Trendalyzer from www.gapminder.org.

Figure 1.27 CO_{2} emissions versus real GDP in 2008

Source: From www.gapminder.org, Visualization from Gapminder World, powered by Trendalyzer from www.gapminder.org.

Google (of course) is another company developing such tools, such as Trends, Correlate and Fusion Tables. Some of these are still in beta, so will no doubt have developed by the time you read this. To locate them, use Google.

Another interesting example is the Mayor of London's Datastore (data.london. gov.uk/) which aims to open up London's data to the public, for free. It contains a multitude of data, some of it from other sites, and unlike Gapminder it only provides the data, with the idea being that other companies will create websites, mobile apps, and so forth that will interpret the data for you.

Sites such as Yahoo Finance (http://uk.finance.yahoo.com/) or Google Finance (http://www.google.co.uk/finance) allow you to examine a large amount of financial data and draw graphs of the data simply by selecting from a few menus.

Another development is 'data mining', which uses artificial intelligence techniques to 'mine' large databases of information, looking for trends and other features. For example, it is used by supermarkets to analyse their sales data with a view to spotting spending patterns and exploit them. Not only does one not need to perform calculations on the data, one does not even need to know what questions to ask of it.

Do these developments mean that there is less need to study statistics? Obviously, I am unlikely to answer 'yes' to this! The interpretation of the results still requires human judgement, aided by statistical tests to ensure one is not just observing random variations. Furthermore, the use of pictures (which many of such sites rely on) can be highly informative but it is difficult to convey that to another person without the picture. One can look at a graph of CO_{2} emissions, but to convey the trend it is easier to pass on the average growth rate of those emissions. Looking at the Gapminder graphs above, how would you convey to another person (without showing them the graphs) how fast US emissions have risen? (The answer is only 0.2% p.a., somewhat surprisingly. China's have risen by 6.4\% p.a.)

Easy access to such data also means it will be used indiscriminately by those unaware of its shortcomings, unsure how to correctly interpret them and eager to use them for support rather than illumination. It is all the more important, therefore, that more people are trained to understand and not be misled by statistics.

Writing statistical reports

This text presents most of the results of statistical analyses in a fairly formal way, since the aim is exposition and explanation of the methods. However, more often you might be writing or reading a short statistical report which requires a punchier and more concise presentation. This will attract attention, but it is important to maintain the accuracy of what is said.

Here is some advice on writing such a report, organised in sections on writing, graphs and tables. I have drawn on two excellent documents of the UN Economic Commission for Europe ${ }^{9}$ on 'making data meaningful', and I recommend that you go to those sources.

[^9]
Writing

In a report, you should put the most important facts first, less important and supporting material afterwards. This is known as the 'inverted pyramid'. The opening paragraph should be concise and tell the story, making little use of numbers if possible.

Each paragraph should focus on one or two main points, explained using short sentences. Aim to avoid jargon, so-called elevator statistics ("... this went up, that went down . . ."), acronyms and making the reader refer to tables in order to understand the point. The text should provide interpretation and context rather than repeating values which are in tables.

Break up the text with sub-headings, which should include a verb (to encourage you to make a point with the heading). For example, "More Britons finding work" is better than "Employment trends in Britain". Once you have completed the story, write the headline with the aim of catching the reader's attention.

As an example, consider the discussion earlier on the comparison of 1979 and 2005 wealth distributions in the United Kingdom. That was written in textbook style for the purpose of learning, but in a report might be better presented as follows.

Britons becoming wealthier but inequality persists

In 2005 the average Briton had wealth of around $£ 187,000$, about 11 times greater than in 1979. Adjusting for inflation, wealth has grown by nearly three times, or an average of 4% p.a. Despite this, the gap between rich and poor has remained much the same, with someone in the top 10% of the distribution owning 25 times more wealth than someone in the bottom 10%.

Tables

Tables in a report should be simple, sometimes called presentation tables, in contrast to reference tables which are best kept to an appendix. Many of the tables in this text are reference tables, such as the table calculating average wealth, Table 1.6. These are generally too complex to put into the text of a report and would have to be simplified in some way, according to the point that is being made.

Tables should be comprehensible in themselves, without the reader needing to look for further information. One way to ensure this is to ask if the table could be cut and pasted into another document and still make sense. Hence the table needs at least an informative title.

Another useful tip is to order the categories in a table according to frequency where this is appropriate. Consider the table used in Exercise 1.1(b) earlier, on tourist destinations. There is no natural ordering of the four countries, so why not order the countries by the number of tourists, as follows?

Tourists (millions) visiting European countries, 2013

	France	Spain	Italy	Germany
All tourists	12.4	9.8	7.5	3.2
English tourists	2.7	3.6	1.0	0.2
Non-English tourists	9.7	6.2	6.5	3.0

Note the difference in presentation from the exercise and how this makes it easier to read the table. In presentation tables it is important to keep decimal places as small as possible (also aligning the numbers properly) to aid readability. In this text, we often use more decimal places so that you can follow calculation of various statistics. This is not necessary for presentation tables.

Graphs

Much advice has already been given about drawing graphs already, but there are some additional points relevant to a report. Make sure that each graph tells a simple story with not more than one or two elements. An informative title helps with this, as shown below illustrating the tourism data.

France has the most tourists but the English prefer Spain

Compare this chart with the answer to Exercise 1.1, where the countries are not ordered by frequency. This one is easier to read, and the title spells out the essential messages.

Guidance to the student: how to measure your progress

Now you have reached the end of the chapter your work is not yet over. It is very unlikely that you have fully understood everything after one reading. What you should do now is:

- Check back over the learning outcomes at the start of the chapter. Do you feel you have achieved them? For example, can you list the various different data types you should be able to recognise (the first learning outcome)?
- Read the chapter summary below to help put things in context. You should recognise each topic and be aware of the main issues, techniques, etc., within them. There should be no surprises or gaps.
- Read the list of key terms. You should be able to give a brief and precise definition or description of each one. Do not worry if you cannot remember all the formulae (though you should try to memorise simple ones, such as that for the mean).
- Try out the problems (most important!). Answers to odd-numbered problems are at the back of the text, so you can check your answers. There is more detail for some of the answers on the text's website.

From all of this, you should be able to work out whether you have really mastered the chapter. Do not be surprised if you have not - it will take more than one reading. Go back over those parts where you feel unsure of your knowledge. Use these same learning techniques for each chapter.

Summary

- Descriptive statistics are useful for summarising large amounts of information, highlighting the main features but omitting the detail.
- Different techniques are suited to different types of data, e.g. bar charts for cross-section data and rates of growth for time series.
- Graphical methods, such as the bar chart, provide a picture of the data. These give an informal summary, but they are unsuitable as a basis for further analysis.
- Important graphical techniques include the bar chart, frequency distribution, relative and cumulative frequency distributions, histogram and pie chart. For time-series data, a time-series chart of the data is informative.
- Numerical techniques are more precise as summaries. Measures of location (such as the mean), of dispersion (the variance) and of skewness form the basis of these techniques.
- Important numerical summary statistics include the mean, median and mode; variance, standard deviation and coefficient of variation; coefficient of skewness.
- For bivariate data, the scatter diagram (or $X Y$ graph) is a useful way of illustrating the data.
- Data are often transformed in some way before analysis, e.g. by taking logs. Transformations often make it easier to see key features of the data in graphs and sometimes make summary statistics easier to interpret. For example, with time-series data the average rate of growth may be more appropriate than the mean of the series.

Key terms and concepts

absolute dispersion	compound interest
area graph	cross-section data
arithmetic mean	cross-tabulation
average growth rate	data transformation
bar chart	decile
bivariate method	depreciation rate
box and whiskers plot	elasticity
Chebyshev's inequality	expected value
class interval	frequency
class width	frequency density
coefficient of skewness	frequency table
coefficient of variation	geometric mean
compound growth	growth factor

heteroscedasticity	quantile solidus quantiles
histogram	quartile
homoscedasticity	quintile
inter-quartile range	range
logarithm	ratio scale
mean	reference tables
measure of dispersion	relative and cumulative frequencies
measure of location	relative dispersion
measure of skewness	scatter diagram (XY chart)
median	serial correlation
mid-point	skewness
mode	stacked bar chart
multiple bar chart	standard deviation
multiple time-series graph	standard width
multivariate method	time-series data
nominal scale	time-series graph
non-linear trend	transformed data
ordinal scale	trend
outliers	unbiased
percentile	univariate method
pie chart	variance
positively skewed	weighted average
presentation tables	z score

Reference

Atkinson, A. B., The Economics of Inequality, 2nd edn, Oxford University Press, 1983.

Formulae used in this chapter

Formula	Description	Notes
$\mu=\frac{\sum x}{N}$	Mean of a population	Use when all individual observations are available. N is the population size.
$\mu=\frac{\sum f x}{\sum f}$	Mean of a population	Use with grouped data. f represents the class or group frequencies, x represents the mid-point of the class interval
$\bar{y}=\underline{\sum x}$	Mean of a sample	n is the number of observations in the sample
$\sum f x$	Mean of a sample	Use with grouped data
$m=x_{L}+\left(x_{U}-x_{L}\right)\left\{\frac{\frac{N+1}{2}-F}{f}\right\}$	Median (where data are grouped)	x_{L} and x_{U} represent the lower and upper limits of the interval containing the median. F represents the cumulative frequency up to (but excluding) the interval
$\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}$	Variance of a population	N is the population size.
$\sigma^{2}=\frac{\sum f(x-\mu)^{2}}{\sum f}$	Population variance (grouped data)	
$s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$	Sample variance	
$s^{2}=\frac{\sum f(x-\bar{x})^{2}}{n-1}$	Sample variance (grouped data)	
$c . v=\frac{\sigma}{\mu}$	Coefficient of variation	The ratio of the standard deviation to the mean. A measure of dispersion.
$z=\frac{x-\mu}{\sigma}$	z score	Measures the distance from observation x to the mean μ measured in standard deviations
$\frac{\sum f(x-\mu)^{3}}{N \sigma^{3}}$	Coefficient of skewness	A positive value means the distribution is skewed to the right (long tail to the right).
$g=\sqrt[t-1]{\frac{x_{T}}{x_{1}}}-1$	Rate of growth	Measures the average annual rate of growth between years 1 and T
$\sqrt[n]{\Pi x}$	Geometric mean (of n observations on x)	
$1-\frac{1}{k^{2}}$	Chebyshev's inequality	Minimum proportion of observations lying within k standard deviations of the mean of any distribution

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
1.1 The following data show the education and employment status of women aged 20-29:

	Higher education	A levels	Other qualification	No qualification	Total
In work	209	182	577	92	1060
Unemployed	12	9	68	32	121
Inactive	17	34	235	136	422
Sample	238	225	880	260	1603

(a) Draw a bar chart of the numbers in work in each education category (the first line of the table). Can this be easily compared with the similar diagram in the text, for both males and females (Figure 1.1)?
(b) Draw a stacked bar chart using all the employment states, similar to Figure 1.3. Comment upon any similarities and differences from the diagram in the text.
(c) Convert the table into (column) percentages and produce a stacked bar chart similar to Figure 1.4. Comment upon any similarities and differences.
(d) Draw a pie chart showing the distribution of educational qualifications of those in work and compare it to Figure 1.5 in the text.
1.2 The data below show the average hourly earnings (in $£ s$) of those in full-time employment, by category of education (NVQ levels. NVQ 4 corresponds to a university degree).

	NVQ 4	NVQ 3	NVQ 2	Below NVQ 2	No qualification
Males	17.69	12.23	11.47	10.41	8.75
Females	14.83	9.57	9.40	9.24	7.43

(a) In what fundamental way do the data in this table differ from those in Problem 1.1?
(b) Construct a bar chart showing male and female earnings by education category. What does it show?
(c) Why would it be inappropriate to construct a stacked bar chart of the data? How should one graphically present the combined data for males and females? What extra information is necessary for you to do this?
1.3 Using the data from Problem 1.1:
(a) Which education category has the highest proportion of women in work? What is the proportion?
(b) Which category of employment status has the highest proportion of women with a degree? What is the proportion?
1.4 Using the data from Problem 1.2:
(a) What is the premium, in terms of average earnings, of a degree over A levels (NVQ 3)? Does this differ between men and women?
(b) Would you expect median earnings to show a similar picture? What differences, if any, might you expect?
1.5 The distribution of marketable wealth in 1979 in the United Kingdom is shown in the table below (adapted from Inland Revenue Statistics, 1981, contains public sector information licensed under the Open Government Licence (OGL) v3.0, http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government:

Range	Number 000s	Amount $£ \mathrm{fm}$
$0-$	1606	148
$1000-$	2927	5985
$3000-$	2562	10090
$5000-$	3483	25464
$10000-$	2876	35656
$15000-$	1916	33134
$20000-$	3425	104829
$50000-$	621	46483
$100000-$	170	25763
$200000-$	59	30581

Draw a bar chart and histogram of the data (assume the final class interval has a width of 200000). Comment on the differences between the two types of chart. Comment on any differences between this histogram and the latest one for 2005 given in the text of this chapter.
1.6 The data below show the number of enterprises in the United Kingdom in 2010, arranged according to employment:

Number of employees	Number of firms
$1-$	1740685
$5-$	388990
$10-$	215370
$20-$	141920
$50-$	49505
$100-$	25945
$250-$	7700
$500-$	2795
$1000-$	1320

Draw a bar chart and histogram of the data (assume the mid-point of the last class interval is 2000). What are the major features apparent in each and what are the differences?
1.7 Using the data from Problem 1.5:
(a) Calculate the mean, median and mode of the distribution. Why do they differ?
(b) Calculate the inter-quartile range, variance, standard deviation and coefficient of variation of the data.
(c) Calculate the skewness of the distribution.
(d) From what you have calculated, and the data in the chapter, can you draw any conclusions about the degree of inequality in wealth holdings, and how this has changed?
(e) What would be the effect upon the mean of assuming the final class width to be $£ 10 \mathrm{~m}$? What would be the effects upon the median and mode?
1.8 Using the data from Problem 1.6:
(a) Calculate the mean, median and mode of the distribution. Why do they differ?
(b) Calculate the inter-quartile range, variance, standard deviation and coefficient of variation of the data.
(c) Calculate the coefficient of skewness of the distribution.
1.9 A motorist keeps a record of petrol purchases on a long journey, as follows:

Petrol station	1	2	3
Litres purchased	33	40	25
Price per litre (pence)	134	139	137

Calculate the average petrol price for the journey.
1.10 Demonstrate that the weighted average calculation given in equation (1.9) is equivalent to finding the total expenditure on education divided by the total number of pupils.
1.11 On a test taken by 100 students, the average mark is 65 , with variance 144 . Student A scores 83 ; student B scores 47.
(a) Calculate the z scores for these two students.
(b) What is the maximum number of students with a score either better than A's or worse than B's?
(c) What is the maximum number of students with a score better than A's?
1.12 The average income of a group of people is $£ 8000$, and 80% of the group have incomes within the range $£ 6000-10000$. What is the minimum value of the standard deviation of the distribution?
1.13 The following data show car registrations in the United Kingdom for 1987-2010:

Year	Registrations	Year	Registrations	Year	Registrations
1987	2212.6	1995	2024.0	2003	2820.7
1988	2437.0	1996	2093.3	2004	2784.7
1989	2535.2	1997	2244.3	2005	2603.6
1990	2179.9	1998	2367.0	2006	2499.1
1991	1708.5	1999	2342.0	2007	2539.3
1992	1694.4	2000	2430.0	2008	2188.3
1993	1853.4	2001	2710.0	2009	1959.1
1994	1991.7	2002	2816.0	2010	1994.6

(a) Draw a time-series graph of car registrations. Comment upon the main features of the series. (It looks daunting, but it will take you less than 10 minutes to type in these data.)
(b) Draw time-series graphs of the change in registrations, the (natural) \log of registrations and the change in the In. Comment upon the results.
1.14 The table below shows the different categories of investment in the United Kingdom over a series of years:

Year	Dwellings	Transport	Machinery	Intangible fixed assets	Other buildings
1977	5699	3248	9950	797	8657
1978	6325	4112	11709	760	9481
1979	7649	4758	13832	964	11289
1980	8674	4707	15301	1216	13680
1981	8138	4011	15454	1513	14603
1982	8920	4489	16734	2040	15730
1983	10447	4756	18377	2337	16157
1984	11932	5963	20782	2918	17708
1985	12219	6676	24349	3239	18648
1986	14140	6527	25218	3219	20477
1987	16548	7871	28226	3430	24269
1988	21097	9228	32615	4305	30713
1989	22771	10625	38419	4977	36689
1990	21048	10572	37776	6298	41334
1991	18339	9051	35094	6722	38632
1992	18826	8420	35426	6584	34657
1993	19886	9315	35316	6492	32988
1994	21155	11395	38426	6702	33945
1995	22448	11036	45012	7272	35596
1996	22516	12519	50102	7889	37320
1997	23928	12580	51465	8936	41398
1998	25222	16113	58915	9461	46286
1999	25700	14683	60670	10023	50646
2000	27394	13577	63535	10670	51996
2001	29806	14656	60929	11326	55065
2002	34499	16314	57152	12614	59972
2003	38462	15592	54441	13850	64355
2004	44298	14339	59632	14164	67982
2005	47489	14763	59486	14386	73634
2006	53331	14855	61497	15531	82020
2007	55767	15482	69411	16049	92808
2008	50292	14570	67837	16726	90936
2009	37044	12127	56411	17710	80978

Use appropriate graphical techniques to analyse the properties of any one of the investment series. Comment upon the results. (Although this seems a lot of data, it shouldn't take long to type in, even less time if two people collaborate and share their results.)
1.15 Using the data from Problem 1.13:
(a) Calculate the average rate of growth of the series.
(b) Calculate the standard deviation around the average growth rate.
(c) Does the series appear to be more or less volatile than the investment figures used in the chapter? Suggest reasons.
1.16 Using the data from Problem 1.14:
(a) Calculate the average rate of growth of the series for dwellings.
(b) Calculate the standard deviation around the average growth rate.
(c) Does the series appear to be more or less volatile than the investment figures used in the chapter? Suggest reasons.
1.17 How would you expect the following time-series variables to look when graphed? (e.g. Trended? Linear trend? Trended up or down? Stationary? Homoscedastic? Autocorrelated? Cyclical? Anything else?)
(a) Nominal national income.
(b) Real national income.
(c) The nominal interest rate.
1.18 How would you expect the following time-series variables to look when graphed?
(a) The price level.
(b) The inflation rate.
(c) The $£ / \$$ exchange rate.
1.19 (a) A government bond is issued, promising to pay the bearer $£ 1000$ in five years' time. The prevailing market rate of interest is 7%. What price would you expect to pay now for the bond? What would its price be after two years? If, after two years, the market interest rate jumped to 10%, what would the price of the bond be?
(b) A bond is issued which promises to pay $£ 200$ p.a. over the next five years. If the prevailing market interest rate is 7%, how much would you be prepared to pay for the bond? Why does the answer differ from the previous question? (Assume interest is paid at the end of each year.)
1.20 A firm purchases for $£ 30000$ a machine which is expected to last for 10 years, after which it will be sold for its scrap value of $£ 3000$. Calculate the average rate of depreciation p.a., and calculate the written-down value of the machine after one, two and five years.
1.21 Depreciation of BMW and Mercedes cars is given in the following table of new and used car prices:

Age	BMW 525i	Mercedes 200E
Current	22275	21900
1 year	18600	19700
2 years	15200	16625
3 years	12600	13950
4 years	9750	11600
5 years	8300	10300

(a) Calculate the average rate of depreciation of each type of car.
(b) Use the calculated depreciation rates to estimate the value of the car after 1, 2, etc., years of age. How does this match the actual values?
(c) Graph the values and estimated values for each car.
1.22 A bond is issued which promises to pay $£ 400$ p.a. in perpetuity. How much is the bond worth now, if the interest rate is 5% ? (Hint: the sum of an infinite series of the form

$$
\frac{1}{1+r}+\frac{1}{(1+r)^{2}}+\frac{1}{(1+r)^{3}}+\cdots
$$

is $1 / r$, as long as $r>0$.)
1.23 Demonstrate, using Σ notation, that $\mathrm{E}(x+k)=\mathrm{E}(x)+k$.
1.24 Demonstrate, using Σ notation, that $\mathrm{V}(k x)=k^{2} \mathrm{~V}(x)$.
1.25 Criticise the following statistical reasoning. The average price of a dwelling is $£ 54150$. The average mortgage advance is $£ 32760$. So purchasers have to find $£ 21390$, that is, about 40% of the purchase price. On any basis, that is an enormous outlay which young couples, in particular, who are buying a house for the first time would find incredibly difficult, if not impossible, to raise.
1.26 Criticise the following statistical reasoning. Amongst arts graduates, 10% fail to find employment. Amongst science graduates only 8% remain out of work. Therefore, science graduates are better than arts graduates. Hint: imagine there are two types of job: popular (hard to get, so with a low success rate) and unpopular (easy to get). Arts graduates tend to apply for the former, scientists for the latter. Try to show that arts graduates are more successful at applying for both types of job, yet overall they are less successful.
1.27 Project 1: Is it true that the Conservative government in the United Kingdom, 1979-1997, lowered taxes, while the Labour government 1997-2007 raised them?

You should gather data which you think appropriate to the task, summarise it as necessary and write a brief report of your findings. You might like to consider the following points:

- Should one consider tax revenue, or revenue as a proportion of GNP?
- Should one distinguish between tax rates and the tax base (i.e. what is taxed)?
- Has the balance between direct and indirect taxation changed?
- Have different sections of the population fared differently?

You might like to consider other points and do the problem for a different country. Suitable data sources for the United Kingdom are: Inland Revenue Statistics, UK National Accounts, Annual Abstract of Statistics or Financial Statistics. Useful websites are HMRC and the UK Treasury.
1.28 Project 2: Is the employment and unemployment experience of the UK economy worse than that of its competitors? Write a report on this topic in a similar manner to the project above. You might consider rates of unemployment in the United Kingdom and other countries, trends in unemployment in each of the countries, the growth in employment in each country, the structure of employment (e.g. full-time/part-time) and unemployment (e.g. long-term/short-term).

You might use data for a number of countries, or concentrate on two in more depth. Suitable data sources are: OECD Main Economic Indicators; The Economic and Labour Market Review (http:// www.ons.gov.uk/ons/rel/elmr/economic-and-labour-market-review/index.html).

Answers to exercises

Exercise 1.1

(a)

(b)

(c)

English tourists \square Non-English tourists
All tourists

(d)

It is clear the English are more likely to visit Spain than are other nationalities.

Exercise 1.2

(a) Bar chart

Histogram

Once again, the histogram shows a more skewed distribution than the bar chart would suggest.
(b) The cumulative frequencies are $20,60,90,110$, and the graph of these values is as follows:

Cumulative Frequency

Exercise 1.3
(a)

	Midpoint, x	Frequency, f	$f x$
$0-10$	5	20	100
$11-30$	20	40	800
$31-60$	45	30	1350
$61-100$	80	20	1600
	110	3850	

Hence the mean $=3850 / 110=35$.
The median is contained in the 11 to 30 group (the 55th observation, or strictly the 55.5 th observation but this will make little difference) and is $35 / 40$ of the way through the interval $(20+35$ gets us to observation 55$)$. Hence the median is $11+35 / 40 \times 19=27.625$.

The mode is anywhere in the 0 to 30 range, the frequency density is the same throughout this range.
(b)

Exercise 1.4

(a) Q1 relates to observation $27.5(=110 / 4)$ This observation lies in the $11-30$ range. There are 20 observations in the first class interval, so Q1 will relate to observation 7.5 in the second interval. Hence we need to go 7.5/40 of the way through the interval. This gives $11+(7.5 / 40) \times 19=14.6$. Similarly, Q 3 is $22.5 / 30$ of the way through the third interval, yielding $Q 3=31+22.5 / 30 \times 29=52.8$. The IQR is therefore $52.8-14.6=38.2$. For the variance we obtain $\Sigma f x=3850$ and $\Sigma f x^{2}=205250$. The variance is therefore $\sigma^{2}=205250 / 110-35^{2}=640.9$ and the standard deviation 25.3.
(b) $\mathrm{CV}=25.3 / 35=0.72$.
(c) $1.3 \times 25.3=32.9$, not far from the IQR value of 38.2 .
(d) One standard deviation either side of the mean takes us from 9.7 up to 60.3. This contains all 70 observations in the second and third intervals, plus perhaps one from the first interval. Thus, we get approximately 71 observations within this range. Chebyshev's inequality does not help us here, as it is not defined for $k \leq 1$.

Exercise 1.5

(a)

Profits and sales

Using the second axis brings out the variability of profits relative to sales.

Exercise 1.6

(a) The average profit is $350 / 10=35$. The average rate of growth is calculated by comparing the end values 50 and 40 over the 10 -year period. The ratio is 0.8 . Taking the ninth root of this (nine years of growth) gives $\sqrt[9]{0.8}=0.976$, so the annual rate of growth is $0.976-1=-2.4$.
(b) The variances are (using the sample variance formula): for profits, $\sum(x-\mu)^{2}=4800$ and dividing by 9 gives a variance of 533.3. For sales, the mean is 291 and $\sum(x-\mu)^{2}=4540$. The variance is therefore $4540 / 9=504.4$. This is similar in absolute size to the variance of profits, but relative to the mean it is much smaller.

Exercise 1.7

The trend line seems to show a positive relationship between the variables: higher profits are associated with higher sales.

Appendix 1A

Σ notation

The Greek symbol Σ (capital sigma) means 'add up' and is a shorthand way of writing what would otherwise be long algebraic expressions. Instead of writing out each term in the series, we provide a template, or typical term of the series, with instructions about how many terms there are.

For example, given the following observations on x :

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
3	5	6	4	8

then

$$
\sum_{i=1}^{4} x_{i}=x_{1}+x_{2}+x_{3}+x_{4}+x_{3}=3+5+6+4+8=26
$$

The template is simply x in this case, representing a number to be added in the series. To expand the sigma expression, the subscript i is replaced by successive integers, beginning with the one below the Σ sign and ending with the one above it (1 to 5 in the example above). Hence the instruction is to add the terms x_{1} to x_{5} Similarly

$$
\sum_{i=1}^{5} x_{1}=x_{2}+x_{3}+x_{4}=5+6+4=15
$$

The instruction tells us to add up only the second, third and fourth terms of the series. When it is clear what range of values i takes (usually when we are to add all available values), the formula can be simplified to $\sum_{i} x_{i}$ or Σx_{i} or even Σx.
When frequencies are associated with each of the observations, as in the data below:

i	1	2	3	4	5
x_{i}	3	5	6	4	8
f_{i}	2	2	4	3	1

then

$$
\sum_{i=1}^{i=5} f_{i} x_{i}=f_{1} x_{1}+\cdots+f_{5} x_{5}=2 \times 3+2 \times 5+\cdots+1 \times 8=60
$$

And also

$$
\sum f_{i}=2+2+4+3+1=12
$$

Thus the sum of the 12 observations is 60 and the mean is

$$
\frac{\sum f x}{\sum f}=\frac{60}{12}=5
$$

We are not limited just to adding the x values. For example, we might wish to square each observation before adding them together. This is expressed as:

$$
\Sigma x^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{5}^{2}=150
$$

Note that this is different from:

$$
\left(\sum x\right)^{2}=\left(x_{1}+x_{2}+\cdots+x_{5}\right)^{2}=676
$$

Part of the formula for the variance calls for the following calculation:

$$
\sum f x^{2}=f_{1} x_{1}^{2}+f_{2} x_{2}^{2}+\cdots+f_{5} x_{5}^{2}=2 \times 3^{2}+2 \times 5^{2}+\cdots+1 \times 8^{2}=324
$$

Using Σ notation we can see the effect of transforming x by dividing by 1000 , as was done in calculating the average level of wealth. Instead of working with x we used $k x$, where $k=1 / 1000$. In finding the mean we calculated

$$
\begin{equation*}
\frac{\sum k x}{N}=\frac{k x_{1}+k x_{2}+\cdots}{N}=\frac{k\left(x_{1}+x_{2}+\cdots\right)}{N}=k \frac{\sum x}{N} \tag{1.34}
\end{equation*}
$$

So to find the mean of the original variable x we had to divide by k again, i.e. multiply by 1000. In general, whenever each observation in a sum is multiplied by a constant, the constant can be taken outside the summation operator, as in (1.34) above.

Problems on Σ notation

1A. 1 Given the following data on $x_{i}:\{4,6,3,2,5\}$ evaluate:

$$
\sum x_{i}, \Sigma x_{i}^{2},\left(\Sigma x_{i}\right)^{2}, \Sigma\left(x_{i}-3\right), \Sigma x_{i}-3, \sum_{i=2}^{4} x_{i}
$$

1A. 2 Given the following data on $x_{\mathrm{i}}:\{8,12,6,4,10\}$ evaluate:

$$
\Sigma x_{i}, \Sigma x_{i}^{2},\left(\Sigma x_{i}\right)^{2}, \Sigma\left(x_{i}-3\right), \Sigma x_{i}-3, \sum_{i=2}^{4} x_{i}
$$

1A. 3 Given the following frequencies, f_{i} associated with the x values in Problem 1A.1: $\{5,3,3,8,5\}$, evaluate:

$$
\Sigma f x, \Sigma f x^{2}, \Sigma f(x-3), \Sigma f x-3
$$

1A. 4 Given the following frequencies, f_{i} associated with the x values in Problem 1A.2: $\{10,6,6,16,10\}$, evaluate:

$$
\Sigma f x, \Sigma f x^{2}, \Sigma f(x-3), \Sigma f x-3
$$

1A. 5 Given the pairs of observations on x and y,

x	4	3	6	8	12
y	3	9	1	4	3

evaluate $\sum x y, \sum x(y-3), \Sigma(x+2)(y-1)$.

1A. 6 Given the pairs of observations on x and y,

x	3	7	4	1	9
y	1	2	5	1	2

evaluate $\sum x y, \Sigma x(y-2), \Sigma(x-2)(y+1)$.

1A. 7 Demonstrate that

$$
\frac{\Sigma f(x-k)}{\Sigma f}=\frac{\Sigma f x}{\Sigma f}-k \text { where } k \text { is a constant. }
$$

1A. 8 Demonstrate that

$$
\frac{\Sigma f(x-\mu)^{2}}{\Sigma f}=\frac{\Sigma f x^{2}}{\Sigma f}-\mu^{2}
$$

These operators are an extremely useful form of notation that we shall make use of later in the text. It is quite easy to keep track of the effects of data transformations using them. There are a few simple rules for manipulating them that allow some problems to be solved quickly and elegantly.
$\mathrm{E}(x)$ is the mean of a distribution and $\mathrm{V}(x)$ is its variance. We showed above in (1.34) that multiplying each observation by a constant k multiplies the mean by k. Thus we have:

$$
\begin{equation*}
\mathrm{E}(k x)=k \mathrm{E}(x) \tag{1.35}
\end{equation*}
$$

Similarly, if a constant is added to every observation, the effect is to add that constant to the mean (see Problem 1.23):

$$
\begin{equation*}
\mathrm{E}(x+a)=\mathrm{E}(x)+a \tag{1.36}
\end{equation*}
$$

(Graphically, the whole distribution is shifted a units to the right and hence so is the mean.) Combining (1.35) and (1.36):

$$
\begin{equation*}
\mathrm{E}(k x+a)=k \mathrm{E}(x)+a \tag{1.37}
\end{equation*}
$$

Similarly, for the variance operator it can be shown that:

$$
\begin{equation*}
\mathrm{V}(x+k)=\mathrm{V}(x) \tag{1.38}
\end{equation*}
$$

Proof:
$\mathrm{V}(x+k)=\frac{\sum((x-k)-(\mu+k))^{2}}{N}=\frac{\sum((x-\mu)+(k-k))^{2}}{N}=\frac{\sum(x-\mu)^{2}}{N}=\mathrm{V}(x)$
(A shift of the whole distribution leaves the variance unchanged.) Also:

$$
\begin{equation*}
\mathrm{V}(k x)=k^{2} \mathrm{~V}(x) \tag{1.39}
\end{equation*}
$$

(See Problem 1.24.) This is why, when the wealth figures were divided by 1000, the variance became divided by 1000^{2}. Applying (1.38) and (1.39):

$$
\begin{equation*}
\mathrm{V}(k x+a)=k^{2} \mathrm{~V}(x) \tag{1.40}
\end{equation*}
$$

Finally, we should note that V itself can be expressed in terms of E:

$$
\begin{equation*}
\mathrm{V}(x)=\mathrm{E}(x-\mathrm{E}(x))^{2} \text { or } \mathrm{E}\left(x^{2}\right)-\mathrm{E}(x)^{2} \tag{1.41}
\end{equation*}
$$

Appendix 1C Using logarithms

Logarithms are less often used now that cheap electronic calculators are available. Formerly, logarithms were an indispensable aid to calculation. However, the logarithmic transformation is useful in other contexts in statistics and economics, so its use is briefly set out here.

The logarithm (to the base 10) of a number x is defined as the power to which 10 must be raised to give x. For example, $10^{2}=100$, so the \log of 100 is 2 and we write $\log _{10} 100=2$ or simply $\log 100=2$.

Similarly, the \log of 1000 is $3\left(100=10^{3}\right)$, of 10000 it is 4 , etc. We are not restricted to integer (whole number) powers of 10 , so for example $10^{2.5}=$ 316.227766 (try this if you have a scientific calculator). So the log of 316.227766 is 2.5 . Every number x can therefore be represented by its logarithm.

Multiplication of two numbers

We can use logarithms to multiply two numbers x and y, based on the property ${ }^{10}$

$$
\log x y=\log x+\log y
$$

For example, to multiply 316.227766 by 10:

$$
\begin{aligned}
\log (316.227766 \times 10) & =\log 316.227766+\log 10 \\
& =2.5+1 \\
& =3.5
\end{aligned}
$$

The anti- \log of 3.5 is given by $10^{3.5}=3162.27766$ which is the answer.
Taking the anti-log (i.e. 10 raised to a power) is the inverse of the log transformation. Schematically we have:

$$
x \rightarrow \text { take logarithms } \rightarrow a(=\log x) \rightarrow \text { raise } 10 \text { to the power } a \rightarrow x
$$

Division

To divide one number by another we subtract the logs. For example, to divide 316.227766 by 100:

$$
\begin{aligned}
\log (316.2277766 / 100) & =\log 316.227766-\log 100 \\
& =2.5-2 \\
& =0.5
\end{aligned}
$$

and $10^{0.5}=3.16227766$.

Powers and roots

Logarithms simplify the process of raising a number to a power. To find the square of a number, multiply the logarithm by 2 , e.g. to find 316.227766^{2} :

$$
\log \left(316.27766^{2}\right)=2 \log (316.227766)=5
$$

and $10^{5}=100000$.

[^10]To find the square root of a number (equivalent to raising it to the power $\frac{1}{2}$), divide the \log by 2 . To find the nth root, divide the \log by n . For example, in the text we have to find the 32nd root of 13.518 :

$$
\frac{\log (13.518)}{32}=\frac{1.1309}{32}=0.0353
$$

and $10^{0.0353}=1.085$.

Common and natural logarithms

Logarithms to the base 10 are known as common logarithms but one can use any number as the base. Natural logarithms are based on the number $e(=2.71828 \ldots)$, and we write $\ln x$ instead of $\log x$ to distinguish them from common logarithms. So, for example,

$$
\begin{aligned}
\ln 316.227766 & =5.756462732 \\
\text { since } e^{5.756462732} & =316.227766 .
\end{aligned}
$$

Natural logarithms can be used in the same way as common logarithms and have similar properties. Use the 'ln' key on your calculator just as you would the ' \log ' key, but remember that the inverse transformation is e^{x} rather than 10^{x}.

Problems on logarithms

```
1C.1 Find the common logarithms of: 0.15, 1.5, 15,150, 1500, 83.7225, 9.15, -12.
1C.2 Find the log of the following values: 0.8, 8, 80,4,16, -37.
1C. }3\mathrm{ Find the natural logarithms of: 0.15, 1.5, 15, 225, -4.
1C. 4 Find the In of the following values: \(0.3, e, 3,33,-1\).
1C. 5 Find the anti-log of the following values: -0.823 909, 1.1, 2.1, 3.1, 12 .
1C. 6 Find the anti-log of the following values: \(-0.09691,2.3,3.3,6.3\).
1C. 7 Find the anti-In of the following values: \(2.70805,3.70805,1,10\).
1C. 8 Find the anti-In of the following values: \(3.496508,14,15,-1\).
1C. 9 Evaluate: \(\sqrt[2]{10}, \sqrt[4]{3.7}, 4^{1 / 4}, 12^{-3}, 25^{-3 / 2}\).
1C. 10 Evaluate: \(\sqrt[3]{30}, \sqrt[6]{17}, 8^{1 / 4}, 15^{0}, 12^{0}, 3^{-1 / 3}\).
```


Probability

Learning outcomes 93
Probability theory and statistical inference 94
The definition of probability 94
The frequentist view 95
The subjective view 96
Probability theory: the building blocks 97
An experiment 97
A trial 97
The sample space 97
The probability of an outcome 97
Events 98
Compound events 100
The addition rule 100
The multiplication rule 102
Tree diagrams 103
The multiplication rule and independence 104
Combining the addition and multiplication rules 106
Combinations and permutations 108
Bayes' theorem 110
Decision analysis 112
Decision criteria: maximising the expected value 113
Maximin, maximax and minimax regret 114
The expected value of perfect information 115
Summary 116
Key terms and concepts 117
Formulae used in this chapter 118
Problems 118
Answers to exercises 124
By the end of this chapter you should be able to:

- understand the essential concept of the probability of an event occurring
- appreciate that the probability of a combination of events occurring can be calculated using simple arithmetic rules (the addition and multiplication rules)
- understand that the probability of an event occurring can depend upon the outcome of other events (conditional probability)
- know how to make use of probability theory to help make decisions in situations of uncertainty

Probability theory and statistical inference

In October 1985 Mrs Evelyn Adams of New Jersey, USA, won $\$ 3.9$ million in the State lottery at odds of 1 in 3200000 . In February 1986 she again won, although this time only (!) $\$ 1.4$ million at odds of 1 in 5200000 . The odds against both these wins were calculated at about 1 in 17300 billion. Mrs Adams is quoted as saying 'They say good things come in threes, so . . . '

The above story illustrates the principles of probability at work. The same principles underlie the theory of statistical inference, which is the task of drawing conclusions (inferences) about a population from a sample of data drawn from that population. For example, we might have a survey which shows that 30% of a sample of 100 families intend to take a holiday abroad next year. What can we conclude from this about all families? The techniques set out in this and subsequent chapters show how to accomplish this.

Why is knowledge of probability necessary for the study of statistical inference? In order to be able to draw inferences about a population from a sample, we must first understand how the sample was drawn from the population. The theory of probability helps with this and can tell us, for example, whether the sample is representative of the population or whether it might be biased in some way.

In many cases, the sample is a random one, i.e. the observations making up the sample are chosen at random from the population. If a second sample were selected, it would almost certainly be different from the first. Each member of the population has a particular probability of being in the sample (in simple random sampling the probability is the same for all members of the population). To understand sampling procedures, and the implications for statistical inference, we must therefore first examine the theory of probability.

As an illustration, consider estimating the wealth of a population from a sample, a subject covered in Chapter 1. As there is no annual wealth tax in the United Kingdom, there are no routine records of the wealth of all individuals, so estimates are based on tax records of wealth passed on by those who die in each year. This constitutes a random sample of all individuals but there is no guarantee it will be representative. Indeed, there are good reasons to believe it might not be, so various adjustments have to be made to obtain good estimates for the population as a whole. How to make these adjustments is partly based on probability considerations.

This chapter and the next therefore cover probability theory, dealing with the concepts and principles in a slightly abstract way before later chapters demonstrate how we then use these ideas to address more practical issues.

The definition of probability

The first task is to define precisely what is meant by probability. This is not as easy as one might imagine, and there are a number of different schools of thought on the subject. Consider the following questions:

- What is the probability of 'heads' occurring on the toss of a coin?
- What is the probability of a driver having an accident in a year of driving?
- What is the probability of a country such as Greece defaulting on its international loan repayments (as Mexico did in the 1980s)?

We shall use these questions as examples when examining the different schools of thought on probability.

The frequentist view

Considering the first question above, the frequentist view would be that the probability is equal to the proportion of heads obtained from tossing a coin many times. The first few results of such an experiment might be:
H, T, T, H, H, H, T, H, T, ...

So after nine tosses we have five heads, suggesting the probability of heads is $5 / 9$ or 0.56 . But repeating the process we might get $3 / 9$ heads instead, suggesting a different probability, 0.33 . If we continue to toss the coin, however, the proportion of heads eventually settles down at some particular fraction and subsequent tosses will individually have an insignificant effect upon the value. Figure 2.1 simulates the result of tossing a coin 250 times and recording the proportion of heads as the experiment progresses.

This shows, after some initial fluctuations, the proportion settling down at a value of about 0.50 , which is what we would conventionally expect of a coin. This value is the probability, according to the frequentist view. The obvious question to ask, however, is how many tosses are necessary before we get to 'the' probability? Any chosen number would be somewhat arbitrary, so the probability is defined as the proportion of heads obtained as the number of tosses approaches infinity. In general, we can define $\operatorname{Pr}(H)$, the probability of event H (in this case heads) occurring, as

$$
\operatorname{Pr}(H)=\frac{\text { number of occurrences of } H}{\text { number of trials }} \text {, as the number of trails approaches infinity }
$$

In this case, each toss of the coin constitutes a trial.
Although this approach appears attractive in theory, it does have its problems. One could not actually toss a coin an infinite number of times, so in practical

Figure 2.1
The proportion of heads in 250 tosses of a fair coin

Proportion of heads

terms we cannot calculate the answer. Or, if one took a different coin, would the results from the first coin necessarily apply to the second?

Perhaps more seriously, the definition is of less use for the second and third questions posed above. Calculating the probability of an accident is not too problematic: it may be defined as the proportion of all drivers having an accident during the year. However, this may be irrelevant for a particular driver, since drivers vary so much in their accident records. And how would you answer the third question? There is no long run to which we can appeal. We cannot rerun history over and over again to see in what proportion of cases the country defaults. Yet this probability (or risk) is what lenders want to know and credit-rating agencies have to assess. Maybe another approach is needed.

The subjective view

According to the subjective view, probability is a degree of belief that someone holds about the likelihood of an event occurring. It is inevitably subjective, and therefore some argue that it should be the degree of belief that it is rational to hold, but this just shifts the argument to what is meant by 'rational'. Some progress can be made by distinguishing between prior and posterior beliefs. The former are those held before any evidence is considered; the latter are the modified probabilities in the light of the evidence. For example, one might initially believe a coin to be fair (the prior probability of heads is one-half), but not after seeing only 5 heads in 50 tosses (the posterior probability would be less than a half).

Although it has its attractions, this approach (which is the basis of Bayesian statistics) also has its drawbacks. It is not always clear how one should arrive at the prior beliefs, particularly when one really has no prior information. Also, these methods often require the use of sophisticated mathematics, which may account for the less frequent use made of them. The development of more powerful computers and user-friendly software may increase the popularity of the Bayesian approach.

There is not universal agreement therefore as to the precise definition of probability. We do not have space here to explore the issue further, so we will ignore the problem. The probability of an event occurring will be defined as a certain value, and we will not worry about the precise origin or meaning of that value. This is an axiomatic approach: we simply state what the probability is, without justifying it, and then examine the consequences.

Exercise 2.1

(a) Define the probability of an event according to the frequentist view.
(b) Define the probability of an event according to the subjective view.

Exercise 2.2
For the following events, suggest how their probability might be calculated. In each case, consider whether you have used the frequentist or subjective view of probability (or possibly some mixture).
(a) The Republican Party winning the next US election.
(b) The number 5 being the first ball drawn in next week's UK lottery. (Note that changes were made to the lottery rules in October 2015. You should use the new rules for the Lotto game.)
(c) A repetition of the 2004 Asian tsunami.
(d) Your train home being late.

Probability theory: the building blocks

We start with a few definitions, to establish a vocabulary that we will subsequently use.

An experiment

An experiment is an activity, such as flipping a coin, which has a number of possible outcomes, in this case heads or tails. Another example of an experiment would be to roll a die, when the possible outcomes would be the numbers 1 to 6 .

A trial

A trial is a single performance of the experiment, with a single outcome. You toss a coin and it comes down heads.

The sample space

The sample space consists of all the possible outcomes of the experiment. The outcomes for a single toss of a coin are \{heads, tails\}, for example, and these constitute the sample space for a toss of a coin. The outcomes in the sample space are mutually exclusive, which means that the occurrence of one rules out all the others. One cannot have both heads and tails in a single toss of a coin. As a further example, if a single card is drawn at random from a pack, then the sample space may be drawn as in Figure 2.2.

Each point represents one card in the pack and there are 52 points altogether. (The sample space could be set out in alternative ways. For instance, one could write a list of all the cards: ace of spades, king of spades, . . . two of clubs. One can choose the representation most suitable for the problem at hand.)

The probability of an outcome

With each outcome in the sample space we associate a probability, which is the chance of that outcome occurring. The probability of heads is one-half; the probability of drawing the ace of spades from a pack of cards is one in 52 , etc. There are restrictions upon the probabilities we can associate with the outcomes in the sample space. These are needed to ensure that we do not come up with self-contradictory results; for example, it would be odd to conclude that we could expect heads more than half

Figure 2.2
The sample space for drawing from a pack of cards

the time and tails more than half the time. To ensure our results are always consistent, the following rules apply to probabilities:

- The probability of an outcome must lie between 0 and 1, i.e.

$$
\begin{equation*}
0 \leq \operatorname{Pr}(A) \leq 1, \text { for any outcome } A \tag{2.1}
\end{equation*}
$$

The explanation is straightforward. If A is certain to occur, it occurs in 100% of all trials and so its probability is 1 (by the frequency definition of probability). Similarly, if A is certain not to occur, then its probability is 0 , since it never happens however many trials there are. Since one cannot be more certain than certain, probabilities of less than 0 or more than 1 can never occur, and (2.1) follows.

- The sum of the probabilities associated with all the outcomes in the sample space is 1 . Formally

$$
\begin{equation*}
\sum P_{i}=1 \tag{2.2}
\end{equation*}
$$

where P_{i} is the probability of outcome i occurring. This follows from the fact that one, and only one, of the outcomes must occur, since they are mutually exclusive and also exhaustive, i.e. they define all the possibilities. The sum of the probabilities of heads and of tails is $1 / 2+1 / 2=1$.

- Following on from (2.2) we may define the complement of an outcome as everything in the sample space apart from that outcome. The complement of heads is tails, for example. If we write the complement of A as not- A, then it follows that $\operatorname{Pr}(A)+\operatorname{Pr}($ not $-A)=1$ and hence

$$
\begin{equation*}
\operatorname{Pr}(\text { not }-A)=1-\operatorname{Pr}(A) \tag{2.3}
\end{equation*}
$$

On occasion it is easier to calculate the probability of the complement and then use equation (2.3) to get to the answer desired.

Events

An event is simply a collection of outcomes within the sample space. It is more common that we are interested in the probability of an event than of a single outcome. For example, the event 'an odd number on the roll of a die' consists of the outcomes 1,3 and 5 . The event 'draw a queen from a pack of cards' encompasses the four queens in the pack - spades, hearts, diamonds and clubs. The probability of the event can easily be calculated as the sum of the individual probabilities. The probability of an odd number on a roll of a die is $1 / 6+1 / 6+1 / 6=1 / 2$, which seems intuitively obvious. Similarly, the probability of drawing a queen is $1 / 13$.

Figure 2.3 gives an illustration of this latter example, where the four relevant outcomes are shaded in. Four of the 52 outcomes are shaded, giving the probability of $1 / 13$ (as all outcomes are equally likely, $1 / 52$).

A slightly more abstract way to illustrate an event will prove useful for our presentation of principles of probability. Figure 2.4 shows the sample space as a rectangle, with an event E represented by a circle within it.

The circle, event E, contains the four queens. The rest of the sample space consists of the other 48 cards in the pack. We can then define $\operatorname{Pr}(E)$ as the probability that we get one of the outcomes contained in the set E, and it is obtained

Figure 2.3
The sample space for the event 'drawing a queen'

Figure 2.4
A Venn diagram illustrating the event E

numerically by summing the probabilities of each of those outcomes, as we did above.

As with individual outcomes we can define the complement of the event E as everything that is not in E, i.e. the white area in the sample space in Figure 4.2. We shall refer to this as not- E as we did for outcomes. This type of diagram is called a Venn diagram, and the properties of such diagrams are useful for explaining probabilities.

You should note in passing that an event could consist of just a single outcome, so there is some overlap in use of the terms. In most practical problems we are interested in combinations of outcomes (e.g. queens, spades, odd numbers on a die), so we will usually be discussing the probabilities of events.

Exercise 2.3

(a) A dart is thrown at a dartboard. What numbers make up the sample space for this experiment? (If you are unfamiliar with the game, google 'dartboard' to find a picture of the board.)
(b) How might you estimate the probability of a player scoring 13 with a single dart? Would your estimate apply to players of different abilities?
(c) How many ways can a player score 18 with a single dart?

Exercise 2.4

(a) An archer has a 30% chance of hitting the bull's eye (centre) on the target. What is the complement to this event and what is its probability?
(b) Call event E the rolling of an even number on a single roll of a die. Draw a Venn diagram to illustrate this situation with the appropriate outcomes inside and outside of event E.
(c) What is the probability of two mutually exclusive events both occurring?
(d) A spectator reckons there is a 70% probability of an American rider winning the Tour de France cycle race and a 40% probability of Frenchman winning. Comment.

Compound events

We often need to answer questions such as 'what is the probability of event A and event B both occurring?', for example the probability of my train to the airport being delayed and my flight leaving on time (implying that I miss the flight). This we call a compound event. It is not always obvious that we are dealing with a compound event, sometimes it is implicit. To give some examples:

- Drawing the ace of spades from a pack of cards (implicitly this means drawing an ace and drawing a spade)
- Rolling two dice and getting a total of 12 (which has to be a six on the first die and a six on the second)
- Mercedes winning the next Grand Prix (which, at the time of writing, means Lewis Hamilton wins or Nico Rosberg wins)

It is sometimes possible to calculate the probability of a compound event by examining the sample space, as in the case of drawing the ace of spades above. Referring to Figure 2.2, it is the single point at the intersection of the ' A ' column and ' $\$$ ' row; hence the probability is $1 / 52$. However, in many cases this is not so easy, for the sample space is too complex or even impossible to write down. For example, the sample space for three draws (with replacement) of a card from a pack consists of over 140000 points. (A typical point might represent, for example, the 10 of spades, 8 of hearts and 3 of diamonds.) Even more complicated (and something we will come to later in the text) is finding the probability that the average height of your friends is more than 1.80 metres.

Fortunately, a few simple rules help us to calculate the probabilities of compound events, starting from the simple events comprising them. If the previous examples are examined closely, we can see that events are being compounded using the words 'or' and 'and': 'Hamilton or Rosberg winning'; 'a six on the first die and a six on the second'. 'And' and 'or' may be termed operators, and act to combine simple events into compound ones. The following rules for manipulating probabilities show how to use these operators and thus how to calculate the probability of a compound event. As we go along we will make use of Venn diagrams to illustrate the process.

The addition rule

The addition rule is associated with 'or'. When we want the probability of one event or another occurring, we add the probabilities of each. More formally, the probability of A or B occurring is given by

$$
\begin{equation*}
\operatorname{Pr}(A \text { or } B)=\operatorname{Pr}(A)+\operatorname{Pr}(B) \tag{2.4}
\end{equation*}
$$

We illustrate this in Figure 2.5 for the motor racing example. The circle labelled 'Event H ' represents Hamilton winning, 'Event R ' is Rosberg winning. The rest of the sample space represents a win by a different driver. Note that the two circles do not overlap, since the events are mutually exclusive; if Hamilton wins, then Rosberg cannot also win and vice versa. An outcome in H or in R will mean a Mercedes victory, so we simply add the probabilities of each event to get the answer desired.

So, if we judge the chance of a Hamilton victory at 40% and a Rosberg victory at 30%, the probability of a Mercedes victory is

$$
\begin{align*}
\operatorname{Pr}(\text { Hamilton win or Rosberg win }) & =\operatorname{Pr}(H \text { wins })+\operatorname{Pr}(R \text { wins }) \tag{2.5}\\
& =0.4+0.3=0.7 \text { or } 70 \%
\end{align*}
$$

Figure 2.5
Mercedes winning the Grand Prix

Figure 2.6
The sample space for rolling a die

Figure 2.7
The sample space for drawing a queen or a spade
 ing (2.4) gives as in Figure 2.7.

To reinforce the idea, consider getting a five or a six on a roll of a die ${ }^{1}$. This is

$$
\begin{equation*}
\operatorname{Pr}(5 \text { or } 6)=\operatorname{Pr}(5)+\operatorname{Pr}(6)=1 / 6+1 / 6=1 / 3 \tag{2.6}
\end{equation*}
$$

This answer can be verified from the sample space, as shown in Figure 2.6. Each dot represents a simple event (one to six). The compound event is made up of two of the six points, shaded in Figure 2.6, so the probability is $2 / 6$ or $1 / 3$.

However, (2.4) is not a general solution to this type of problem, i.e. it does not always give the right answer, as can be seen from the following example. What is the probability of a queen or a spade in a single draw from a pack of cards? $\operatorname{Pr}(Q)=4 / 52$ (four queens in the pack) and $\operatorname{Pr}(A)=13 / 52$ (13 spades), so apply-

$$
\begin{equation*}
\operatorname{Pr}(Q \text { or } S)=\operatorname{Pr}(Q)+\operatorname{Pr}(S)=4 / 52+13 / 52=17 / 52 \tag{2.7}
\end{equation*}
$$

However, if the sample space is examined the correct answer is found to be $16 / 52$,
The problem is that one point in the sample space (the one representing the queen of spades) is double-counted in equation (2.7), once as a queen and again as a spade. The event 'drawing a queen and a spade' is possible, and gets doublecounted. This issue can again be illustrated using a Venn diagram (see Figure 2.8). This is similar to Figure 2.5 except that the two circles overlap. The overlap area is called the intersection of the two sets Q and S and represents any card that is both a queen and a spade (i.e. just the queen of spades). The intersection of the sets is written $Q \cap S$, the symbol ' \cap ' meaning 'intersection'.

Therefore, we wish to consider all of the outcomes within the circles, counted once only. Formally this is known as the union of the two sets, written $Q \cup S$. But if

[^11]Figure 2.8
Drawing the queen of spades

we count all the outcomes in Q and then all those in S, we will double count those in the intersection. Hence, we need to subtract the intersection. In the language of sets we have:

$$
Q \cup S=Q+S-(Q \cap S)
$$

This carries over to probabilities. Equation (2.4) has to be modified by subtracting the probability of getting a queen and a spade, to eliminate this double counting. The correct answer is obtained from

$$
\begin{align*}
\operatorname{Pr}(Q \text { or } S) & =\operatorname{Pr}(Q)+\operatorname{Pr}(S)-\operatorname{Pr}(Q \text { and } S) \tag{2.8}\\
& =4 / 52+13 / 52-1 / 52 \\
& =16 / 52
\end{align*}
$$

The general rule is therefore

$$
\begin{equation*}
\operatorname{Pr}(A \text { or } B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \text { and } B) \tag{2.9}
\end{equation*}
$$

Rule (2.4) worked for the earlier example because $\operatorname{Pr}(H$ and $R)=0$ since it is impossible for both Hamilton and Rosberg to win the same race. The two sets, H and R, did not overlap. The possibility of double counting could not occur in the calculation of that probability.

In general, therefore, one should use (2.9), but when two events are mutually exclusive the rule simplifies to (2.4).

The multiplication rule

The multiplication rule is associated with use of the word 'and' to combine events. Consider the example of a mother with two children. What is the probability that they are both boys? This is really a compound event: that the first child is a boy and the second is also a boy. It corresponds to the intersection of the two sets in a Venn diagram, similar to that shown in Figure 2.8. Assume that in any single birth a boy or girl is equally likely, so $\operatorname{Pr}($ boy $)=\operatorname{Pr}($ girl $)=0.5$. Denote by $\operatorname{Pr}(B 1)$ the probability of a boy on the first birth and by $\operatorname{Pr}(B 2)$ the probability of a boy on the second. Thus the question asks for $\operatorname{Pr}(B 1$ and $B 2)$ and this is given by:

$$
\begin{equation*}
\operatorname{Pr}(B 1 \text { and } B 2)=\operatorname{Pr}(B 1) \times \operatorname{Pr}(B 2)=0.5 \times 0.5=0.25 \tag{2.10}
\end{equation*}
$$

Intuitively, the multiplication rule can be understood as follows. One-half of mothers have a boy on their first birth and of these, one-half will again have a boy on the second. Therefore, a quarter (a half of one-half) of mothers have two boys.

Tree diagrams

This is a useful point at which to introduce another helpful visual aid - the tree diagram. Many people (including experienced researchers) have difficulty mastering probabilities and are easily deceived, but it has been found that if a problem is expressed in the form of a tree diagram, then many find it easier to follow. Furthermore, many find it easier to understand an issue when it is expressed in terms of frequencies rather than probabilities (a tree diagram can use either approach).

Consider the example just above of the mother with two children. We can think about this problem in the following way. Start with 1000 mothers (a convenient round figure) and consider the first child. We would expect 500 of them to be boys and 500 girls since a boy and a girl are equally likely. We can illustrate this as in Figure 2.9(a).

If we add the second birth, we get the extension of the diagram as in Figure 2.9(b). Of the 500 mothers with a boy, 250 have another boy while 250 have a girl, etc. Hence, 250 (out of 1000) mothers have two boys, or 0.25 , as found using probabilities. Figure 2.9(c) shows how we could use the same tree diagram but label it with probabilities instead of frequencies. Either form of the diagram will do but the version using frequencies might be more intuitive for an audience.

Figure 2.9(b)
Tree diagram for second child

Figure 2.9(a)
Tree diagram for first child

Figure 2.9(c)
Tree diagram using probabilities

The multiplication rule and independence

Like the addition rule, the multiplication rule requires slight modification before it can be applied generally and give the right answer in all circumstances. The example above assumes first and second births to be independent events, i.e. that having a boy on the first birth does not affect the probability of a boy on the second. This assumption is not always valid, so we now consider this.

Write $\operatorname{Pr}(B 2 \mid B 1)$ to indicate the probability of the event $B 2$ given that the event $B 1$ has occurred. This is known as the conditional probability, more precisely the probability of $B 2$ conditional upon B1. In words, it means the probability of having a second boy after the first is a boy. Let us drop the independence assumption and suppose the following:

$$
\begin{equation*}
\operatorname{Pr}(B 1)=\operatorname{Pr}(G 1)=0.5 \tag{2.11}
\end{equation*}
$$

i.e. boys and girls are equally likely on the first birth (as previously assumed), but

$$
\begin{equation*}
\operatorname{Pr}(B 2 \mid B 1)=\operatorname{Pr}(G 2 \mid G 1)=0.6 \tag{2.12}
\end{equation*}
$$

i.e. a boy is more likely to be followed by another boy, and a girl by another girl. (It is easy to work out $\operatorname{Pr}(B 2 \mid G 1)$ and $\operatorname{Pr}(G 2 \mid B 1)$. What are they? Use a version of equation (2.2) to think about this.)

This new situation can again be usefully illustrated with a tree diagram, either using frequencies (Figure 2.10(a)) or probabilities (Figure 2.10(b)).

Figure 2.10(a) Tree diagram, nonindependence case (frequencies)

Figure 2.10(b)
Tree diagram, nonindependence case (probabilities)

Now what is the probability of two boys? This can be seen in Figure 2.10(b). Half of all mothers have a boy first, and of these, 60% have another boy. Thus 30% (60% of 50%) of mothers have two boys. This is obtained from the rule:

$$
\begin{align*}
\operatorname{Pr}(B 1 \text { and } B 2) & =\operatorname{Pr}(B 1) \times \operatorname{Pr}(B 2 \mid B 1) \tag{2.13}\\
& =0.5 \times 0.6 \\
& =0.3
\end{align*}
$$

The frequencies can be read directly from Figure 2.10(a) which might be more intuitive. On the first birth 500 mothers have a boy, and of these, 300 have a second boy (300 is 60% of 500). Hence, 30% of mothers have two boys.

Thus in general we have:

$$
\begin{equation*}
\operatorname{Pr}(A \text { and } B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B \mid A) \tag{2.14}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
\operatorname{Pr}(A \text { and } B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B) \tag{2.15}
\end{equation*}
$$

if A and B are independent.
Independence may therefore be defined as follows: two events, A and B, are independent if the probability of one occurring is not influenced by the fact of the other having occurred. Formally, if A and B are independent, then

$$
\begin{equation*}
\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B \mid \operatorname{not} A)=\operatorname{Pr}(B) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \mid \operatorname{not} B)=\operatorname{Pr}(A) \tag{2.17}
\end{equation*}
$$

The concept of independence is an important one in statistics, as it usually simplifies problems considerably. If two variables are known to be independent, then we can analyse the behaviour of one without worrying about what is happening to the other variable. For example, sales of computers are independent of temperature, so if one is trying to predict sales next month, one does not need to worry about the weather. In contrast, ice cream sales do depend on the weather, so predicting sales accurately requires one to forecast the weather first.

Intuition does not always work with probabilities

Counter-intuitive results frequently arise in probability, which is why it is wise to use the rules to calculate probabilities in tricky situations, rather than rely on intuition. Take the following questions:

- What is the probability of obtaining two heads (HH) in two tosses of a coin?
- What is the probability of obtaining tails followed by heads (TH)?
- If a coin is tossed until either HH or TH occurs, what are the probabilities of each sequence occurring first?
The answers to the first two are easy: $1 / 2 \times 1 / 2=1 / 4$ in each case. You might therefore conclude that each sequence is equally likely to be the first observed, but you would be wrong.

Unless HH occurs on the first two tosses, then TH must occur first. HH is therefore the first sequence only if it occurs on the first two tosses, which has a probability of $1 / 4$. The probability that TH is first is therefore $3 / 4$. The probabilities are unequal, a strange result. Now try the same exercise but with HHH and THH and three tosses of a coin.

Combining the addition and multiplication rules

More complex problems can be solved by suitable combinations of the addition and multiplication formulae. For example, what is the probability of a mother having one child of each sex? This could occur in one of two ways: a girl followed by a boy or a boy followed by a girl. It is important to note that these are two different routes to the same outcome. Therefore, we have (assuming non-independence according to (2.12))

$$
\begin{aligned}
\operatorname{Pr}(1 \text { girl, } 1 \text { boy }) & =\operatorname{Pr}((G 1 \text { and } B 2) \text { or }(B 1 \text { and } G 2)) \\
& =\operatorname{Pr}(G 1) \times \operatorname{Pr}(B 2 \mid G 1)+\operatorname{Pr}(B 1) \times \operatorname{Pr}(G 2 \mid B 1) \\
& =(0.5 \times 0.4)+(0.5 \times 0.4) \\
& =0.4
\end{aligned}
$$

The answer can be checked if we remember (2.2) stating that probabilities must sum to 1 . We have calculated the probability of two boys (0.3) and of a child of each sex (0.4). The only other possibility is of two girls. This probability must be 0.3 , the same as two boys, since boys and girls are treated symmetrically in this problem (even with the non-independence assumption). The sum of the three possibilities (two boys, one of each or two girls) is therefore $0.3+0.4+0.3=1$, as it should be. This is often a useful check to make, especially if one is unsure that one's calculations are correct.

This answer can be seen in Figure 2.10(b). The two inner paths \{Boy, Girl\} and \{Girl, Boy\} are the relevant ones, combining to give a probability of 0.4 . The same outcomes can also be seen in Figure 2.10(a) in terms of frequencies.

Note also that the problem would have been different if we had asked for the probability of the mother having one girl with a younger brother, rather than one girl and one boy.

Two further illustrations of conditional probability

Once again it may be helpful to illustrate our ideas using diagrams in order to gain a better understanding. First, we can use a Venn diagram, as in Figure 2.11. As we learned earlier, the (unconditional) probability of event B is given by area B relative to the whole of the sample space (the outer rectangle). But the probability of B conditional on A means that we can only consider outcomes in A, not in the whole of the sample space. Hence, the probability of B, conditional on A, is the intersection of the two sets (the hatched area), relative to A.

A second possibility is to draw up a cross-tabulation of the events, as in Figure 2.12. The four numbers in the interior of the table are those obtained in Figure 2.10(a), assuming a group of 1000 mothers. Thus we can see, for example, that there are 200 families with a girl followed by a boy (top right-hand cell). From this table we can work out the conditional probabilities. The probability of a boy

Figure 2.11
Conditional probability

Figure 2.12 Conditional probability

Figure 2.13 Conditional probability

		First child		
		Boy		Girl
Total				
Second child	Boy	300	200	500
	Girl	200	300	500
	Total	500	500	1000

		First child		
		Boy	Girl	Total
Second child	Boy	0.3	0.2	0.5
	Girl	0.2	0.3	0.5
	Total	0.5	0.5	1

on the second birth, conditional on a boy on the first is obtained from the first column of the table (outlined) which relates to only those 500 families with a boy born first. Here we can see that 300 of them went on to have another boy, so the conditional probability is $300 / 500=0.6$, as presented earlier.

The figures in the 'Total' row and column lead us to the unconditional probabilities (sometimes called the marginal probabilities because they are at the margins of the table) and we can see that they give a $50: 50$ chance of boy or girl on a single birth (ignoring what might have happened on the other birth), or $\operatorname{Pr}($ Boy $)=\operatorname{Pr}($ Girl $)=0.5$.

Finally, the four interior numbers we initially looked at lead us to the joint probabilities. For example, the probability of a boy on the first birth followed by a girl on the second (upper right cell) is given by $200 / 1000=0.2$. One can also see this value in the tree diagram in Figure 2.10(a). We have presented Figure 2.12 in the form of frequencies but it is just as easy to present it in the form of probabilities just divide all the numbers by 1000, as in Figure 2.13.
(a) For the archer in Exercise 2.4(a) who has a 30\% chance of hitting the bull's eye with a single arrow, what is the probability that she/he hits the bull's eye with one (and only one) of two attempts? Assume independence of the events. (You should write down the formula you use and evaluate it to get your answer, rather than just writing down the answer directly or the numbers in the calculation. It is worth developing this good practice as it aids your thinking and can easily be reviewed later on.)
(b) What is the probability that she hits the bull's eye with both arrows?
(c) Explain the importance of the assumption of independence for the answers to both parts (a) and (b) of this exercise.
(d) What is her probability of hitting the bull's eye with the first arrow and missing with the second? Compare your answer to that for part (a).
(e) If the archer becomes more confident after a successful shot (i.e. her probability of a successful shot rises to 50%) and less confident (probability falls to 20%) after a miss, how would this affect the answers to parts (a) and (b)? Again, take care to write down the probabilities using appropriate notation and make clear how you get your answer.
(f) Draw a tree diagram representing the case outlined in part (e). Confirm that it gives the same answers. What is the probability of the same outcome for both arrows (i.e. either both hit or both miss the bull's eye)? How does this compare to the case where independence is assumed?

Combinations and permutations

The methods described above are adequate for solving fairly simple probability puzzles but fall short when more complex questions are asked. For example, what is the probability of three girls and two boys in a family of five children? The tree diagram can obviously be extended to cover third and subsequent children, but the number of branches rapidly increases (in geometric progression). It takes time to draw the diagram (it has 32 end points), and identify the relevant paths and associated probabilities, and it is easy to make an error. If you do this correctly, you will find that there are 10 relevant paths through the diagram (e.g. GGGBB or GGBBG) and each individual path has a probability of $1 / 32(1 / 2$ raised to the power 5$)$, so the answer is $10 / 32$. Note that we are once again assuming independent events here, so the probability of having a boy or a girl is always 0.5 .

Far better would be to use a formula in a complex case like this. To develop this, we introduce the ideas of combinations and permutations. The strategy for finding the probability of three girls and two boys in five children is two-fold:
(1) Work out the probability of three girls and two boys in one particular order (e.g. GGGBB). This is $0.5^{5}=1 / 32$.
(2) Use a formula to work out the number of different orderings, in this case 10.

It is this second point that we now focus on. How can we establish the number of ways of having three girls and two boys in a family of five children? One way would be to write down all the possible orderings:

```
GGGBB GGBGB GGBBG GBGGB GBGBG
GBBGG BGGGB BGGBG BGBGG BBGGG
```

This shows that there are 10 such orderings, so the probability of three girls and two boys in a family of five children is $10 / 32$. In more complex problems, this soon becomes difficult or impossible. The record number of children born to a British mother is 39 (!) of whom 32 were girls. The appropriate tree diagram has over five thousand billion paths through it, and drawing one line (i.e. for one child) per second would imply 17433 years to complete the task.

Rather than do this, we use the combinatorial formula to find the answer. Suppose there are n children, r of them girls, then the number of orderings, denoted $n C r$, is obtained from ${ }^{2}$

$$
\begin{align*}
n C r & =\frac{n!}{r!(n-r)!} \\
& =\frac{n \times(n-1) \times \ldots \times 1}{\{r \times(r-1) \times \ldots \times 1\} \times\{(n-r) \times(n-r-1) \times \ldots \times 1\}} \tag{2.18}
\end{align*}
$$

In the above example $n=5, r=3$ so the number of orderings is

$$
\begin{equation*}
5 C 3=\frac{5!}{3!\times 2!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{\{3 \times 2 \times 1\} \times\{2 \times 1\}}=10 \tag{2.19}
\end{equation*}
$$

[^12]If there were four girls out of five children, then the number of orderings or combinations would be

$$
\begin{equation*}
5 C 4=\frac{5!}{4!\times 1!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{\{4 \times 3 \times 2 \times 1\} \times 1}=5 \tag{2.20}
\end{equation*}
$$

This gives five possible orderings, i.e. the single boy could be the first, second, third, fourth or fifth born.

Why does this formula work?

(If you are happy just to accept the combinatorial formula above, you can skip this section and go straight to the exercises below.) Consider five empty places to fill, corresponding to the five births in chronological order. Take the case of three girls (call them Amanda, Bridget and Caroline for convenience) who have to fill three of the five places. For Amanda there is a choice of five empty places. Having 'chosen' one, there remain four for Bridget, so there are $5 \times 4=20$ possibilities (i.e. ways in which these two could choose their places). Three remain for Caroline, so there are $60(=5 \times 4 \times 3)$ possible orderings in all (the two boys take the two remaining places). Sixty is the number of permutations of three named girls in five births. This is written as 5P3 or, in general, nPr. Hence

$$
5 P 3=5 \times 4 \times 3
$$

or, in general,

$$
\begin{equation*}
n P r=n \times(n-1) \times \cdots \times(n-r+1) \tag{2.21}
\end{equation*}
$$

A simpler formula is obtained by multiplying and dividing by $(n-r)$!

$$
\begin{equation*}
n P r=\frac{n \times(n-1) \times \cdots \times(n-r+1) \times(n-r)!}{(n-r)!}=\frac{n!}{(n-r)!} \tag{2.22}
\end{equation*}
$$

What is the difference between $n P r$ and $n C r$? The latter does not distinguish between the girls; the two cases Amanda, Bridget, Caroline, boy, boy and Bridget, Amanda, Caroline, boy, boy are effectively the same (three girls followed by two boys). So nPr is larger by a factor representing the number of ways of ordering the three girls. This factor is given by $r!=3 \times 2 \times 1=6$ (any of the three girls could be first, either of the other two second, and then the final one). Thus to obtain nCr one must divide $n P r$ by r !, giving (2.18).

Exercise 2.6

Exercise 2.7

For this exercise we extend the analysis of Exercise 2.5 to a third shot by the archer.
(a) Extend the tree diagram (assuming independence, so $\operatorname{Pr}(\mathrm{H})=0.3, \operatorname{Pr}(\mathrm{M})=0.7$) to a third arrow. Use this to mark out the paths with two successful shots out of three. Calculate the probability of two hits out of three shots.
(b) Repeat part (a) for the case of non-independence. For this you may assume that a hit raises the problem of success with the next arrow to 50\%. A miss lowers it to 20%.
(a) Show how the answer to Exercise 2.6(a) may be arrived at using algebra, including the use of the combinatorial formula.
(b) Repeat part (a) for the non-independence case.

Bayes' theorem

Bayes' theorem is a factual statement about probabilities which in itself is uncontroversial. However, the use and interpretation of the result is at the heart of the difference between classical and Bayesian statistics. The theorem itself is easily derived from first principles. Equation (2.23) is similar to equation equation (2.14) covered earlier when discussing the multiplication rule:

$$
\begin{equation*}
\operatorname{Pr}(A \text { and } B)=\operatorname{Pr}(A \mid B) \times \operatorname{Pr}(B) \tag{2.23}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \text { and } B)}{\operatorname{Pr}(B)} \tag{2.24}
\end{equation*}
$$

Expanding both top and bottom of the right-hand side,

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \times \operatorname{Pr}(A)}{\operatorname{Pr}(B \mid A) \times \operatorname{Pr}(A)+\operatorname{Pr}(B \mid \operatorname{not} A) \times \operatorname{Pr}(\operatorname{not} A)} \tag{2.25}
\end{equation*}
$$

Equation (2.25) is known as Bayes' theorem and is a statement about the probability of the event A, conditional upon B having occurred. The following example demonstrates its use.

Two bags contain red and yellow balls. Bag A contains six red and four yellow balls, and bag B has three red and seven yellow balls. A ball is drawn at random from one bag and turns out to be red. What is the probability that it came from $\operatorname{bag} A$? Since bag A has relatively more red balls to yellow balls than does bag B, it seems bag A ought to be favoured. The probability should be more than 0.5 . We can check if this is correct.

Denoting:

$$
\begin{aligned}
& \operatorname{Pr}(A)=0.5 \quad \text { (the probability of choosing bag } A \text { at random) }=\operatorname{Pr}(B) \\
& \operatorname{Pr}(R \mid A)=0.6 \quad \text { (the probability of selecting a red ball from bag } A \text {), etc. }
\end{aligned}
$$

we have

$$
\begin{equation*}
\operatorname{Pr}(A \mid R)=\frac{\operatorname{Pr}(R \mid A) \times \operatorname{Pr}(A)}{\operatorname{Pr}(R \mid A) \times \operatorname{Pr}(A)+\operatorname{Pr}(R \mid B) \times \operatorname{Pr}(B)} \tag{2.26}
\end{equation*}
$$

using Bayes' theorem. Evaluating this gives

$$
\begin{align*}
\operatorname{Pr}(A \mid R) & =\frac{0.6 \times 0.5}{0.6 \times 0.5+0.3 \times 0.5} \tag{2.27}\\
& =2 / 3
\end{align*}
$$

As expected, this result is greater than 0.5 . (You can check that $\operatorname{Pr}(B \mid R)=1 / 3$ so that the sum of the probabilities is 1.)

It may help us understand this if we draw another tree diagram, as Figure 2.14. Once again, this shows frequencies, 1000 trials of taking a ball from a bag. In 500 of the trials we would expect to select bag A, in the other 500 trials we select bag $B(\operatorname{Pr}(A)=\operatorname{Pr}(B)=0.5)$. This is the first stage of the diagram. Of the 500 occasions we select bag $A, 300$ times we get a red ball $(\operatorname{Pr}(R \mid A)=0.6)$ and 200 times we get yellow. From bag B we get 150 draws of a red ball $(\operatorname{Pr}(R \mid B)=0.3)$ and 350 yellows.

Hence, on 450 occasions we get a red ball. Two-thirds of those (300/450) came from bag A, which is $\operatorname{Pr}(A \mid R)$.

Bayes' theorem can be extended to cover more than two bags: if there are five bags, for example, labelled A to E, then

$$
\begin{equation*}
\operatorname{Pr}(A \mid R)=\frac{\operatorname{Pr}(R \mid A) \times \operatorname{Pr}(A)}{\operatorname{Pr}(R \mid A) \times \operatorname{Pr}(A)+\operatorname{Pr}(R \mid B) \times \operatorname{Pr}(B)+\cdots+\operatorname{Pr}(R \mid E) \times \operatorname{Pr}(E)} \tag{2.28}
\end{equation*}
$$

In Bayesian language, $\operatorname{Pr}(A), \operatorname{Pr}(B)$, etc., are known as the prior (to the drawing of the ball) probabilities, $\operatorname{Pr}(R \mid A), \operatorname{Pr}(R \mid B)$, etc., are the likelihoods and $\operatorname{Pr}(A \mid R)$, $\operatorname{Pr}(B \mid R)$, etc., are the posterior probabilities. Bayes' theorem can alternatively be expressed as

$$
\begin{equation*}
\text { posterior probability }=\frac{\text { likelihood } \times \text { prior probability }}{\sum(\text { likelihood } \times \text { prior probability })} \tag{2.29}
\end{equation*}
$$

This is illustrated below, by reworking the above example in a different format.

	Prior probabilities	Likelihoods	Prior \times likelihood	Posterior probabilities
A	0.5	0.6	0.30	$0.30 / 0.45=2 / 3$
B	0.5	0.3	0.15	$0.15 / 0.45=1 / 3$
Total			0.45	

The general version of Bayes' theorem may be stated as follows. If there are n events labelled E_{1}, \ldots, E_{n}, then the probability of the event E_{i} occurring, given the sample evidence S, is

$$
\begin{equation*}
\operatorname{Pr}\left(E_{i} \mid S\right)=\frac{\operatorname{Pr}\left(S \mid E_{i}\right) \times \operatorname{Pr}\left(E_{i}\right)}{\sum\left(\operatorname{Pr}\left(S \mid E_{i}\right) \times \operatorname{Pr}\left(E_{i}\right)\right)} \tag{2.30}
\end{equation*}
$$

As stated earlier, debate arises over the interpretation of Bayes' theorem. In the above example, there is no difficulty because the probability statements can be interpreted as relative frequencies. If the experiment of selecting a bag at random and choosing a ball from it were repeated many times, then in two-thirds of those occasions when a red ball is selected, bag A will have been chosen. However, consider an alternative interpretation of the symbols:

A: a coin is fair
B : a coin is unfair
R : the result of a toss is a head

Then, given a toss (or series of tosses) of a coin, this evidence can be used to calculate the probability of the coin being fair. But this makes no sense according to the frequentist school: either the coin is fair or not; it is not a question of probability. The calculated value must be interpreted as a degree of belief and be given a subjective interpretation.

(a) Repeat the 'balls in the bag' exercise from the text, but with bag A containing five red and three yellow balls, bag B containing one red and two yellow balls. The single ball drawn is red. Before doing the calculation, predict which bag is more likely to be the source of the drawn ball. Explain why. Then compare your prediction with the calculated answer.
(b) Bag A now contains 10 red and 6 yellow balls (i.e. twice as many as before, but in the same proportion). Does this alter the answer you obtained in part (a)?
(c) Set out your answer to part (b) in the form of prior probabilities and likelihoods, in order to obtain the posterior probability.

Decision analysis

The study of probability naturally leads to the analysis of decision-making where risk is involved. This is the realistic situation facing most firms, and the use of probability can help to illuminate the problem. To illustrate the topic, we use the example of a firm facing a choice of three different investment projects. The uncertainty which the firm faces concerns the interest rate at which to discount the future flows of income. If the interest/discount rate is high, then projects which have income far in the future become less attractive relative to projects with more immediate returns. A low rate reverses this conclusion. The question is: which project should the firm select? As we shall see, there is no unique, right answer to the question but, using probability theory, we can see why the answer might vary.

Table 2.1 provides the data required for the problem. The three projects are imaginatively labelled A, B and C. There are four possible states of the world, i.e. future scenarios, each with a different interest rate, as shown across the top of the table. This is the only source of uncertainty; otherwise the states of the world are identical. The figures in the body of the table show the present value of each income stream at the given discount rate.

Table 2.1 Data for decision analysis: present values of three investment projects at different interest rates ($£ 000$)

Project	Future interest rate			
	4%	5%	6%	7%
A	1475	1363	1200	1115
B	1500	1380	1148	1048
C	1650	1440	1200	810
Probability	0.1	0.4	0.4	0.1

Present value

The present value of future income is its value today and is obtained using the interest rate. For example, if the interest rate is 10%, the present value (i.e. today) of $£ 110$ received in one year's time is $£ 100$. In other words, one could invest $£ 100$ today at 10% and have $£ 110$ in one year’s time. $£ 100$ today and $£ 110$ next year are equivalent.

The present value of $£ 110$ received in two years' time is smaller since one has to wait longer to receive it. It is calculated as $£ 110 / 1.1^{2}=90.91$. Again, $£ 90.91$ invested at 10% p.a. will yield $£ 110$ in two years' time. After one year it is worth $£ 90.91 \times 1.1=100$ and after a second year that $£ 100$ becomes $£ 110$. Notice that, if the interest rate rises, the present value falls. For example, if the interest rate is 20%, $£ 110$ next year is worth only $£ 110 / 1.2=91.67$ today.

If we denote the interest rate by r, so $r=0.1$ indicates an interest rate of 10%, the value now of $£ 110$ in two years' time is $£ 110 /(1+r)^{2}=£ 110 /(1.1)^{2}=90.91$, as above. In general, the present value of a sum X in t years' time is given by $X /(1+r)^{t}$.

The present value of $£ 110$ in one year's time and another $£ 110$ in two years' time is $£ 110 / 1.1+£ 110 / 1.1^{2}=£ 190.91$. The present value of more complicated streams of income can be calculated by extension of this principle. In the example used in the text, you do not need to worry about how we arrive at the present value. Before reading on you may wish to do Exercise 2.8 to practise calculation of present value.

Thus, for example, if the interest rate turns out to be 4%, then project A has a present value of $£ 1475000$ while B^{\prime} 's is $£ 1500000$. If the discount rate turns out to be 5%, the $P V$ for A is $£ 1363000$ while for B it has changed to $£ 1380000$. Obviously, as the discount rate rises, the present value of the return falls. (Alternatively, we could assume that a higher interest rate increases the cost of borrowing to finance the project, which reduces its profitability.) We assume that each project requires a (certain) initial outlay of $£ 1100000$ with which the $P V$ should be compared.

The final row of the table shows the probabilities which the firm attaches to each interest rate. These are obviously someone's subjective probabilities and are symmetric around a central value of 5.5%.
(a) At an interest or discount rate of 10%, what is the present value of $£ 1200$ received in one year's time?
(b) If the interest rate rises to 15%, how is the present value altered? The interest rate has risen by 50% (from 10% to 15%): how has the present value changed?
(c) At an interest rate of 10% what is the present value of $£ 1200$ received in (i) two years' time and (ii) five years' time?
(d) An income of $£ 500$ is received at the end of years one, two and three (i.e. $£ 1500$ in total). What is its present value? Assume the interest rate is 10%.
(e) Project A provides an income of $£ 300$ after one year and another $£ 600$ after two years. Project B provides $£ 400$ and $£ 488$ at the same times. At a discount rate of 10%, which project has the higher present value? What happens if the discount rate rises to 20% ?

Decision criteria: maximising the expected value

We need to decide how a decision is to be made on the basis of these data. The first criterion involves the expected value of each project. Because of the uncertainty about the interest rate, there is no certain present value for each project. We therefore

Table 2.2 Expected values of the three projects

Project	Expected value
A	1284.2
B	1266.0
C	1302.0
Note: 1284.2 is calculated as $1475 \times 0.1+1363 \times 0.4+1200$	
$0.4+1115 \times 0.1$. This is the weighted average of the four $P V$	
values. A similar calculation is performed for the other projects.	

calculate the expected value, using the E operator which was introduced in Chapter 1. In other words, we find the expected present value of each project, by taking a weighted average of the $P V$ figures, the weights being the probabilities. The project with the highest expected return is chosen.

The expected values are calculated in Table 2.2. The highest expected present value is $£ 1302000$, associated with project C. On this criterion, therefore, C is chosen. Is this a wise choice? If the business always uses this rule to evaluate many projects, then in the long run it will earn the maximum profits. However, you may notice that if the interest rate turns out to be 7%, then C would be the worst project to choose in this case and the firm would make a substantial loss in such circumstances. Project C is the most sensitive to the discount rate (it has the greatest variance of $P V$ values of the three projects) and therefore the firm faces more risk by opting for C. There is a trade-off between risk and return. Perhaps some alternative criteria should be examined. These we look at next, in particular the maximin, maximax and minimax regret strategies.

Maximin, maximax and minimax regret

The maximin criterion looks at the worst-case scenario for each project and then selects the project which does best in these circumstances. It is inevitably a pessimistic or cautious view therefore. Table 2.3 illustrates the calculation. This time we observe that project A is preferred. In the worst case (which occurs when $r=7 \%$ for all projects), A does best, with a $P V$ of $£ 1115000$ and therefore a slight profit. The maximin criterion may be a good one in business where managers tend towards over-optimism. Calculating the maximin may be a salutary exercise, even if it is not the ultimate deciding factor.

The opposite criterion is the optimistic one where the maximax criterion is used. In this case one looks at the best circumstances for each project and chooses the best-performing project. Each project does best when the interest rate is at its lowest level, 3%. Examining the first column of Table 2.1 shows that project $C(P V=1650)$ performs best and is therefore chosen. Given the earlier warning about over-optimistic managers, this may not be suitable as the sole criterion for making investment decisions.

Table 2.3 The maximin criterion

Project	Minimum
A	1115
B	1048
C	810
Maximum	1115

Table 2.4 The costs of taking the wrong decision

Project	4%	5%	6%	7%	Maximum
A	175	77	0	0	175
B	150	60	52	67	150
C	0	0	0	305	305
Minimum					150

Note: The first figure in the 4\% discount rate column indicates that Project A's payoff is 175(=1650-1475) worse than that of C , the best choice in this circumstance.

A final criterion is that of minimax regret. If project B were chosen but the interest rate turns out to be 7%, then we would regret not having chosen A, the best project under these circumstances. Our regret would be the extent of the difference between the two, a matter of $1115-1048=67$. Similarly, the regret if we had chosen C would be $1115-810=305$. We can calculate these regrets at the other interest rates too, always comparing the $P V$ of a project with the best $P V$ given that interest rate. This gives us Table 2.4.

The final column of the table shows the maximum regret for each project. The minimax regret criterion is to choose the minimum of these figures. This is given at the bottom of the final column; it is 150 which is associated with project B. A justification for using this criterion might be that you don't want to fall too far behind your competitors. If other firms are facing similar investment decisions, then the regret table shows the difference in $P V$ (and hence profits) if they choose the best project while you do not. Choosing the minimax regret solution ensures that you won't fall too far behind. During the internet bubble of the 1990s it was important to gain market share and keep up with, or surpass, your competitors. The minimax regret strategy might be a useful tool during such times.

You will probably have noticed that we have managed to find a justification for choosing all three projects. No one project comes out best on all criteria. Nevertheless, the analysis might be of some help: if the investment project is one of many small, independent investments the firm is making, then this would justify use of the expected value criterion. On the other hand, if this is a big, one-off project which could possibly bankrupt the firm if it goes wrong, then the maximin criterion would be appropriate.

The expected value of perfect information

Often a firm can improve its knowledge about future possibilities via research, which costs money. This effectively means buying information about the future state of the world. The question arises: how much should a firm pay for such information? Perfect information would reveal the future state of the world with certainty - in this case, the future interest rate. In that case you could be sure of choosing the right project given each state of the world. If interest rates turn out to be 4%, the firm would invest in C, if 7% in A, and so on.

In such circumstances, the firm would expect to earn:

$$
(0.1 \times 1650)+(0.4 \times 1440)+(0.4 \times 1200)+(0.1 \times 1115)=1332.5
$$

i.e. the probability of each state of the world is multiplied by the $P V$ of the best project for that state. This gives a figure which is greater than the expected value

Exercise 2.10

calculated earlier, without perfect information, 1302. The expected value of perfect information is therefore the difference between these two, 30.5 . This sets a maximum to the value of information, for it is unlikely in the real world that any information about the future is going to be perfect.
(a) Evaluate the three projects detailed in the table below, using the criteria of expected value, maximin, maximax and minimax regret. The probability of a 4% interest rate is 0.3 , of $6 \% 0.4$ and of $8 \% 0.3$.

Project	4%	6%	8%
A	100	80	70
B	90	85	75
C	120	60	40

(b) What would be the value of perfect information about the interest rate?

Summary

- The theory of probability forms the basis of statistical inference, the drawing of inferences on the basis of a random sample of data. The probability basis of random sampling is the reason for this.
- A convenient definition of the probability of an event is the number of times the event occurs divided by the number of trials (occasions when the event could occur).
- For more complex events, their probabilities can be calculated by combining probabilities, using the addition and multiplication rules.
- The probability of events A or B occurring is calculated according to the addition rule.
- The probability of A and B occurring is given by the multiplication rule.
- If A and B are not independent, then $\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B \mid A)$, where $\operatorname{Pr}(B \mid A)$ is the probability of B occurring given that A has occurred (the conditional probability). With independence, the formula simplifies to $\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$.
- Tree diagrams are a useful technique for enumerating all the possible paths in series of probability trials, but for large numbers of trials the huge number of possibilities makes the technique impractical.
- For experiments with a large number of trials (e.g. obtaining 20 heads in 50 tosses of a coin), the formulae for combinations and permutations can be used.
- The combinatorial formula $n C r$ gives the number of ways of combining r similar objects among n objects, e.g. the number of orderings of three girls (and hence implicitly two boys also) in five children.
- The permutation formula $n P r$ gives the number of orderings of r distinct objects among n, e.g. three named girls among five children.
- Bayes' theorem provides a formula for calculating a conditional probability, e.g. the probability of someone being a smoker, given they have been diagnosed with cancer. It forms the basis of Bayesian statistics, allowing us to calculate the probability of a hypothesis being true, based on the sample evidence and prior beliefs. Classical statistics disputes this approach.
- Probabilities can also be used as the basis for decision-making in conditions of uncertainty, using as decision criteria expected value maximisation, maximin, maximax or minimax regret.

Key terms and concepts

addition rule	maximax
axiomatic approach	maximin
Bayes' theorem	minimax
Bayesian statistics	minimax regret
classical statistics	multiplication rule
combinations	mutually exclusive
combinatorial formula	operator
complement	outcome or event
compound event	perfect information
conditional probability	permutations
degree of belief	posterior probabilities
event	prior belief
exhaustive	prior probabilities
expected value	probability
expected value of perfect information	proportion
experiment	sample space
frequentist view	states of the world
independent events	statistical inference
intersection	subjective view
joint probabilities	tree diagram
likelihoods	trial
marginal probabilities	union

Formulae used in this chapter

Formula	Description	Note
$n C r=\frac{n!}{r!(n-r)!}$	Combinatorial formula	$n!=n \times(n-1) \times \cdots \times 1$

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
2.1 Given a standard pack of cards, calculate the following probabilities:
(a) drawing an ace;
(b) drawing a court card (i.e. jack, queen or king);
(c) drawing a red card;
(d) drawing three aces without replacement;
(e) drawing three aces with replacement.
2.2 The following data give duration of unemployment by age.

Age	Duration of unemployment (weeks)				Total	Economically active
	≤ 8	(Percentage figures, rows sum to 100)		>52 0)	(000s)	(000s)
16-19	27.2	29.8	24.0	19.0	273.4	1270
20-24	24.2	20.7	18.3	36.8	442.5	2000
25-34	14.8	18.8	17.2	49.2	531.4	3600
35-49	12.2	16.6	15.1	56.2	521.2	4900
50-59	8.9	14.4	15.6	61.2	388.1	2560
≥ 60	18.5	29.7	30.7	21.4	74.8	1110

The 'economically active' column gives the total of employed (not shown) plus unemployed in each age category.
(a) In what sense may these figures be regarded as probabilities? What does the figure 27.2 (top-left cell) mean following this interpretation?
(b) Assuming the validity of the probability interpretation, which of the following statements are true?
(i) The probability of an economically active adult aged 25-34, drawn at random, being unemployed is 531.4/3600.
(ii) If someone who has been unemployed for over one year is drawn at random, the probability that they are aged $16-19$ is 19%.
(iii) For those aged 35-49 who became unemployed at least one year ago, the probability of their still being unemployed is 56.2%.
(iv) If someone aged 50-59 is drawn at random from the economically active population, the probability of their being unemployed for eight weeks or less is 8.9%.
(v) The probability of someone aged 35-49 drawn at random from the economically active population being unemployed for between 8 and 26 weeks is $0.166 \times 521.2 / 4900$.
(c) A person is drawn at random from the population and found to have been unemployed for over one year. What is the probability that they are aged between 16 and 19 ?
2.3 'Odds' in horserace betting are defined as follows: 3/1 (three-to-one against) means a horse is expected to win once for every three times it loses; $3 / 2$ means two wins out of five races; $4 / 5$ (five to four on) means five wins for every four defeats, etc.
(a) Translate the above odds into 'probabilities' of victory.
(b) In a three-horse race, the odds quoted are $2 / 1,6 / 4$ and $1 / 1$. What makes the odds different from probabilities? Why are they different?
(c) Discuss how much the bookmaker would expect to win in the long run at such odds (in part (b)), assuming each horse is backed equally.
2.4 (a) Translate the following odds to 'probabilities': $13 / 8,2 / 1$ on, 100/30.
(b) In the 2.45 race at Plumpton the odds for the five runners were:

Philips Woody	$1 / 1$
Gallant Effort	$5 / 2$
Satin Noir	$11 / 2$
Victory Anthem	$9 / 1$
Common Rambler	$16 / 1$

Calculate the 'probabilities' and their sum.
(c) Should the bookmaker base his odds on the true probabilities of each horse winning, or adjust them depending upon the amount bet on each horse?
2.5 How might you estimate the probability of Peru defaulting on its debt repayments next year? What type of probability estimate is this?
2.6 How might you estimate the probability of a corporation reneging on its bond payments?
2.7 Judy is 33 , unmarried and assertive. She is a graduate in political science, and involved in union activities and anti-discrimination movements. Which of the following statements do you think is more probable?
(a) Judy is a bank clerk.
(b) Judy is a bank clerk, active in the feminist movement.
2.8 A news item revealed that a London 'gender' clinic (which reportedly enables you to choose the sex of your child) had just set up in business. Of its first six births, two were of the 'wrong' sex. Assess this from a probability point of view.
2.9 A newspaper advertisement reads 'The sex of your child predicted, or your money back!' Discuss this advertisement from the point of view of (a) the advertiser and (b) the client.
2.10 'Roll six sixes to win a Mercedes!' is the announcement at a fair. You have to roll six dice. If you get six sixes you win the car, valued at $£ 40000$. The entry ticket costs $£ 1$. What is your expected gain or loss
on this game? If there are 400 people who try the game, what is the probability of the car being won? The organisers of the fair have to take out insurance against the car being won. This costs $£ 400$ for the day. Does this seem a fair premium? If not, why not?
2.11 At another stall, you have to toss a coin numerous times. If a head does not appear in 20 tosses you win $£ 1$ billion. The entry fee for the game is $£ 100$.
(a) What are your expected winnings?
(b) Would you play?
2.12 A four-engine plane can fly as long as at least two of its engines work. A two-engine plane flies as long as at least one engine works. The probability of an individual engine failure is 1 in 1000.
(a) Would you feel safer in a four- or two-engine plane, and why? Calculate the probabilities of an accident for each type.
(b) How much safer is one type than the other?
(c) What crucial assumption are you making in your calculation? Do you think it is valid?
2.13 Which of the following events are independent?
(a) Two flips of a fair coin.
(b) Two flips of a biased coin.
(c) Rainfall on two successive days.
(d) Rainfall on St Swithin's Day and rain one month later.
2.14 Which of the following events are independent?
(a) A student getting the first two questions correct in a multiple-choice exam.
(b) A driver having an accident in successive years.
(c) IBM and Dell earning positive profits next year.
(d) Arsenal Football Club winning on successive weekends.

How is the answer to (b) reflected in car insurance premiums?
2.15 Manchester United beat Liverpool 4-2 at soccer, but you do not know the order in which the goals were scored. Draw a tree diagram to display all the possibilities and use it to find (a) the probability that the goals were scored in the order $\mathrm{L}, \mathrm{MU}, \mathrm{MU}, \mathrm{MU}, \mathrm{L}, \mathrm{MU}$ and (b) the probability that the score was 2-2 at some stage.
2.16 An important numerical calculation on a spacecraft is carried out independently by three computers. If all arrive at the same answer, it is deemed correct. If one disagrees, it is overruled. If there is no agreement, then a fourth computer does the calculation and, if its answer agrees with any of the others, it is deemed correct. The probability of an individual computer getting the answer right is 99%. Use a tree diagram to find:
(a) the probability that the first three computers get the right answer;
(b) the probability of getting the right answer;
(c) the probability of getting no answer;
(d) the probability of getting the wrong answer.
2.17 The French national lottery works as follows. Six numbers from the range 0 to 49 are chosen at random. If you have correctly guessed all six, you win the first prize. What are your chances of
winning if you are allowed to choose only six numbers? A single entry like this costs one euro. For 210 euros you can choose 10 numbers, and you win if the 6 selected numbers are among them. Is this better value than the single entry?
2.18 The UK national lottery originally worked as follows. You choose six (different) numbers in the range 1 to 49. If all six come up in the draw (in any order), you win the first prize, generally valued at around $£ 2 \mathrm{~m}$ (which could be shared if someone else chooses the six winning numbers).
(a) What is your chance of winning with a single ticket?
(b) You win a second prize if you get five out of six right and your final chosen number matches the 'bonus' number in the draw (also in the range 1-49). What is the probability of winning a second prize?
(c) Calculate the probabilities of winning a third, fourth or fifth prize, where a third prize is won by matching five out of the six numbers, a fourth prize by matching four out of six and a fifth prize by matching three out of six.
(d) What is the probability of winning a prize?
(e) The prizes are as follows:

Prize	Value	
First	$£ 2$ million	(expected, possibly shared)
Second	$£ 100000$	(expected, for each winner)
Third	$£ 1500$	(expected, for each winner)
Fourth	$£ 65$	(expected, for each winner)
Fifth	$£ 10$	(guaranteed, for each winner)

Comment upon the distribution of the fund between first, second, etc., prizes.
(f) Why is the fifth prize guaranteed whereas the others are not?
(g) In the first week of the lottery, 49 million tickets were sold. There were 1150000 winners, of which 7 won (a share of) the jackpot, 39 won a second prize, 2139 won a third prize and 76731 a fourth prize. Are you surprised by these results or are they as you would expect?
2.19 A coin is either fair or has two heads. You initially assign probabilities of 0.5 to each possibility. The coin is then tossed twice, with two heads appearing. Use Bayes' theorem to work out the posterior probabilities of each possible outcome.
2.20 A test for AIDS is 99% successful, i.e. if you are HIV+, it will be detected in 99% of all tests, and if you are not, it will again be right 99% of the time. Assume that about 1% of the population are HIV+. You take part in a random testing procedure, which gives a positive result. What is the probability that you are HIV + ? What implications does your result have for AIDS testing?
2.21 (a) Your initial belief is that a defendant in a court case is guilty with probability 0.5 . A witness comes forward claiming he saw the defendant commit the crime. You know the witness is not totally reliable and tells the truth with probability p. Use Bayes' theorem to calculate the posterior probability that the defendant is guilty, based on the witness's evidence.
(b) A second witness, equally unreliable, comes forward and claims she/he saw the defendant commit the crime. Assuming the witnesses are not colluding, what is your posterior probability of guilt?
(c) If $p<0.5$, compare the answers to (a) and (b). How do you account for this curious result?
2.22 A man is mugged and claims that the mugger had red hair. In police investigations of such cases, the victim was able correctly to identify the assailant's hair colour 80% of the time. Assuming that 10% of the population have red hair, what is the probability that the assailant in this case did, in fact, have red hair? Guess the answer first, and then find the right answer using Bayes' theorem. What are the implications of your results for juries' interpretation of evidence in court, particularly in relation to racial minorities?
2.23 A firm has a choice of three projects, with profits as indicated below, dependent upon the state of demand.

Project	Demand		
	Low	Middle	High
A	100	140	180
B	130	145	170
C	110	130	200
Probability	0.25	0.45	0.3

(a) Which project should be chosen on the expected value criterion?
(b) Which project should be chosen on the maximin and maximax criteria?
(c) Which project should be chosen on the minimax regret criterion?
(d) What is the expected value of perfect information to the firm?
2.24 A firm can build a small, medium or large factory, with anticipated profits from each dependent upon the state of demand, as in the table below.

Factory	Demand		
	Low	Middle	High
Small	300	320	330
Medium	270	400	420
Large	50	250	600
Probability	0.3	0.5	0.2

(a) Which project should be chosen on the expected value criterion?
(b) Which project should be chosen on the maximin and maximax criteria?
(c) Which project should be chosen on the minimax regret criterion?
(d) What is the expected value of perfect information to the firm?
2.25 There are 25 people at a party. What is the probability that there are at least two with a birthday in common? They do not need to have been born in the same year, just the same day and month of the year. Also, ignore leap year dates. (Hint: the complement is (much) easier to calculate.)
2.26 This problem is tricky, but amusing. Three gunmen, A, B and C, are shooting at each other. The probabilities that each will hit what they aim at are $1,0.75$ and 0.5 , respectively. They take it in turns to shoot (in alphabetical order) and continue until only one is left alive. Calculate the probabilities of each winning the contest. (Assume they draw lots for the right to shoot first.)
Hint 1: Start with one-on-one gunfights, e.g. the probability of A beating B, or of B beating C. You need to solve this first, and then figure out the optimal strategies in the first stage when all three are alive.
Hint 2: You'll need the formula for the sum of an infinite series, given in Chapter 1.
Hint 3: To solve this, you need to realize that it might be in a gunman's best interest not to aim at one of his opponents ...
2.27 The BMAT test (see http://www.ucl.ac.uk/lapt/bmat/) is an on-line test for prospective medical students. It uses 'certainty based marking'. After choosing your answer from the alternatives available, you then have to give your level of confidence that your answer is correct: low, medium or high confidence. If you choose low, you get one mark for the correct answer, zero if it is wrong. For medium confidence you get +2 or -2 marks for correct or incorrect answers. If you choose high, you get +3 or -6 .
(a) If you are 60% confident your answer is correct (i.e. you think there is a 60% probability you are right), which certainty level should you choose?
(b) Over what range of probabilities is 'medium' the best choice?
(c) If you were 85% confident, how many marks would you expect to lose by opting for each of the wrong choices?
2.28 A multiple choice test involves 20 questions, with four choices for each answer.
(a) If you guessed the answers to all questions at random, what mark out of 20 would you expect to get?
(b) If you know the correct answer to eight of the questions, what is your expected score out of 20?
(c) The examiner wishes to correct the bias due to students guessing answers. He/she decides to award a negative mark for incorrect answers (with 1 for a correct answer and 0 for no answer given). What negative mark would ensure that the overall mark out of 20 is a true reflection of the student's ability?
2.29 (Project) Problem 2.18 calculated the odds of winning the first, second, etc., prizes under the original national lottery rules, where there were 49 numbers.
(a) Recalculate these probabilities where there are 59 numbers. What do you conclude about the probability of winning a prize and about the distribution of prizes?
(b) The prizes have also changed under the new rules. Compare the old and new lotteries considering both changes in probabilities and awards.

Answers to exercises

Exercise 2.1

Answer in text.

Exercise 2.2

(a) A subjective view would have to be taken, informed by such things as opinion polls, the state of the economy, etc. (i.e. events which are expected to influence the outcome of the election).
(b) $1 / 59$, a frequentist view. Some people do add their own subjective evaluations (e.g. that 5 must come up as it has not been drawn for several weeks) but these are unwarranted according to the frequentist approach.
(c) A mixture of objective and subjective criteria might be used here. Historical data on the occurrence of tsunamis might give a (frequentist) baseline figure, to which might be added subjective considerations such as the amount of recent seismic activity and its likely effect on the probability of a tsunami occurring.
(d) A mixture again. Historical data give a benchmark (possibly of little relevance) while immediate factors such as the weather might alter one's subjective judgement. (As I write, it is snowing outside, which seems to have a huge impact on British trains.)

Exercise 2.3

(a) $1,2,3, \ldots, 20,21$ (a triple seven), 22 (double eleven), 24,25 (outer bull), 26, 27, 28, $30,32,33,34,36,38,39,40,42,45,48,50$ (bull), $51,54,57,60$. Or it could miss altogether, it depends upon the player.
(b) For a low-ability player you could assume their chance of hitting the target number is proportional to its area on the board. The number 13 is one of 20 , so 5% of the total. Actually it will be less than this, since the area includes the double-13 and triple-13 bands. If one also counts the black space around the perimeter of the board, this reduces the chances further, so 3% might be a reasonable estimate. This assumes the player is equally likely to hit any point on the board, i.e. has no real skill whatsoever. A good player should do much better than this, perhaps 50% or better. The probability for a particular player might be estimated by observing how often they hit their target number when aiming at the board.
(c) Three ways: hitting 18, a double-9 and a triple-6.

Exercise 2.4

(a) The complement is missing the bull's eye, with a 70% probability $(100 \%-30 \%)$.
(b) Event E

(c) Zero. By definition, mutually exclusive events cannot both occur.
(d) The 'probabilities' sum to 1.1, which is impossible for true probabilities.

Exercise 2.5

(a) $\operatorname{Pr}($ Hit then Miss or Miss then Hit $)=0.3 \times 0.7+0.7 \times 0.3=0.42$. This is a hit followed by a miss or a miss followed by a hit, the two different ways of achieving the outcome.
(b) $\operatorname{Pr}($ Hit then Hit $)=0.3 \times 0.3=0.09$.
(c) It is assumed that the probability of the second arrow hitting the target is the same as the first. Altering this assumption would affect both answers. Independence may be a dubious assumption - hitting with the first arrow might give the archer confidence, increasing the probability of hitting the target again.
(d) This is $\operatorname{Pr}($ Hit then Miss $)=0.3 \times 0.7=0.21$. This is half the value of the answer in part (a). Here we have specified the ordering required, which reduces the number of ways of getting one hit in two shots.
(e) Part (a) becomes $\operatorname{Pr}($ Hit then miss or miss then hit $)=\operatorname{Pr}(\mathrm{H} 1) \times \operatorname{Pr}(\mathrm{M} 2 \mid \mathrm{H} 1)+$ $\operatorname{Pr}(\mathrm{M} 1) \times \operatorname{Pr}(\mathrm{H} 2 \mid \mathrm{M} 1)=0.3 \times(1-0.5)+0.7 \times 0.2+0.29$. Part (b) becomes $0.3 \times 0.5=0.15$. One now has to use the conditional probabilities for the second shot. Hence, for example, $\operatorname{Pr}($ Hit on the second shot given a hit on the first $)=0.5$ and so $\operatorname{Pr}($ Miss on the second shot given a hit on the first $)=1-0.5$.
(f) The diagram is

Dependent case:

The probability of the same outcome for both arrows is $0.15+0.56=0.71$. For the independent case we have:

The probability of either two hits or no hits is $0.09+0.49=0.58$. The effect of confidence on the second shot serves to increase the probability of either no or two hits.

Exercise 2.6
Two hits, $P=0.3 \times 0.3 \times 0.7=0.063$

Exercise 2.7

(a) $\operatorname{Pr}(2$ hits $)=\operatorname{Pr}(\mathrm{H}$ and H and M$) \times 3 \mathrm{C} 2=0.3 \times 0.3 \times 0.7 \times 3=0.189$.
(b) This cannot be done using the combinatorial formula, because of the nonindependence of probabilities. Instead one has to calculate $\operatorname{Pr}(\mathrm{H}$ and H and M$)+$ $\operatorname{Pr}(\mathrm{H}$ and M and H$)+\operatorname{Pr}(\mathrm{M}$ and H and H$)$, yielding the answer 0.175 . In this case the different orderings alter the probabilities of hitting the target, rendering the combinatorial formula inappropriate.

Exercise 2.8

(a) Bag A has proportionately more red balls than bag B; hence it should be the favoured bag from which the single red ball was drawn. Performing the calculation:

$$
\operatorname{Pr}(A \mid R)=\frac{\operatorname{Pr}(R \mid A) \times \operatorname{Pr}(A)}{\operatorname{Pr}(R \mid A) \times \operatorname{Pr}(A)+\operatorname{Pr}(R \mid B) \times \operatorname{Pr}(B)}=\frac{0.625 \times 0.5}{0.625 \times 0.5+1 / 3 \times 0.5}=0.652
$$

(b) The result is the same as $\operatorname{Pr}(R \mid A)=0.625$ as before. The number of balls does not enter the calculation.

	Prior probabilities	Likelihoods	Prior \times likelihood	Posterior probabilities
A	0.5	0.625	0.3125	$0.3125 / 0.5625=0.556$
B	0.5	0.5	0.25	$0.25 / 0.5625=0.444$
Total			0.5625	

Exercise 2.9

(a) $1200 /(1+r)-1200 / 1.1=1090.91$.
(b) $1200 / 1.15=1043.48$. The $P V$ has only changed by 4.3%. This is calculated as $1.1 / 1.15-1=-0.043$
(c) $1200 / 1.1^{2}=991.74 ; 1200 / 1.1^{5}=745.11$.
(d) $P V=500 / 1.1+500 / 1.1^{2}+500 / 1.1^{3}=1243.43$.
(e) At 10% : project A yields a $P V$ of $300 / 1.1+600 / 1.1^{2}=768.6$. Project B yields $400 / 1.1+488 / 1.1^{2}=766.9$. At 20% the $P V s$ are 666.7 and 672.2 , reversing the rankings. A's large benefits in year 2 are penalised by the higher discount rate.

Exercise 2.10
(a)

Project	Expected value	Minimum	Maximum
A	$0.3 \times 100+0.4 \times 80+0.3 \times 70=83$	70	100
B	$0.3 \times 90+0.4 \times 85+0.3 \times 75=83.5$	75	90
C	$0.3 \times 120+0.4 \times 60+0.3 \times 40=72$	40	120

The maximin is 75 , associated with project B and the maximax is 120 , associated with project C. The regret values are given by

	4%	6%	8%	Max
A	20	5	5	20
B	30	0	0	30
C	0	25	35	35
			Min	20

The minimax regret is 20 , associated with project A.
(b) With perfect information the firm could earn $0.3 \times 120+0.4 \times 85+0.3 \times 75=$ 92.5. The highest expected value is 83.5 , so the value of perfect information is $92.5-83.5=9$.

Probability distributions

Learning outcomes 128
Introduction 129
Random variables and probability distributions 130
The Binomial distribution 131
The mean and variance of the Binomial distribution 135
The Normal distribution 137
The distribution of the sample mean 145
Sampling from a non-Normal population 149
The relationship between the Binomial and Normal distributions 151
Binomial distribution method 152
Normal distribution method 152
The Poisson distribution 153
Summary 156
Key terms and concepts 156
Formulae used in this chapter 157
Problems 157
Answers to exercises 162

By the end of this chapter you should be able to:

- recognise that the result of most probability experiments (e.g. the score on a die) can be described as a random variable
- appreciate how the behaviour of a random variable can often be summarised by a probability distribution (a mathematical formula)
- recognise the most common probability distributions and be aware of their uses
- solve a range of probability problems using the appropriate probability distribution.

Introduction

Figure 3.1
The probability distribution for the toss of a coin

The last chapter covered probability concepts and introduced the idea of the outcome of an experiment being random, i.e. influenced by chance. The outcome of tossing a coin is random, as is the mean calculated from a random sample. We can refer to these outcomes as being random variables. The number of heads achieved in five tosses of a coin or the average height of a sample of children are both random variables.

We can summarise the information about a random variable by using its probability distribution. A probability distribution lists, in some form, all the possible outcomes of a probability experiment and the probability associated with each one. Another way of saying this is that the probability distribution lists (in some way) all possible values of the random variable and the probability that each value will occur. For example, the simplest experiment is tossing a coin, for which the possible outcomes are heads or tails, each with probability one-half. The probability distribution can be expressed in a variety of ways: in words, or in a graphical or mathematical form. For tossing a coin, the graphical form is shown in Figure 3.1, and the mathematical form is:

$$
\begin{aligned}
\operatorname{Pr}(H) & =\frac{1}{2} \\
\operatorname{Pr}(T) & =\frac{1}{2}
\end{aligned}
$$

The different forms of presentation are equivalent but one might be more suited to a particular purpose.

If we want to study a random variable (e.g. the mean of a random sample) and draw inferences from it, we need to make use of the associated probability distribution. Therefore, an understanding of probability distributions is vital to making appropriate use of statistical evidence. In this chapter we first look in greater detail at the concepts of a random variable and its probability distribution. We then look at a number of commonly used probability distributions, such as the Binomial and Normal, and see how they are used as the basis of inferential statistics (drawing conclusions from data). In particular, we look at the probability distribution associated with a sample mean because the mean is so often used in statistics.

Some probability distributions occur often and so are well known. Because of this they have names so we can refer to them easily; for example, the Binomial distribution or the Normal distribution. In fact, each of these constitutes a family of distributions. A single toss of a coin gives rise to one member of the Binomial distribution family; two tosses would give rise to another member of that family

(where the possible outcomes are zero, one or two heads in two tosses). These two distributions differ in the number of tosses but are members of the same family. If a biased coin were tossed, this would lead to yet another Binomial distribution, but it would differ from the previous two because of the different probability of heads.

Members of the Binomial family of distributions are distinguished by the number of trials and by the probability of the outcome occurring. These are the two parameters of the distribution and tell us all we need to know about the distribution. Other distributions might have different numbers of parameters, with different meanings. Some distributions, for example, have only one parameter. We will come across examples of different types of distribution throughout the rest of this text.

In order to understand fully the idea of a probability distribution, we first introduce a new concept, that of a random variable. As will be seen later in the chapter, an important random variable is the sample mean, and to understand how to draw inferences from the sample mean, we must recognise it as a random variable.

Random variables and probability distributions

Examples of random variables have already been encountered in the previous chapter, for example, the result of the toss of a coin, or the number of boys in a family of five children. A random variable is one whose outcome or value is the result of chance and is therefore unpredictable, although the range of possible outcomes and the probability of each outcome may be known. It is impossible to know in advance the outcome of a toss of a coin, for example, but it must be either heads or tails, each with probability one-half. The number of heads in 250 tosses is another random variable, which can take any value between zero and 250, although values near 125 are the most likely. You are very unlikely to get 250 heads from tossing a fair coin.

Intuitively, most people would 'expect' to get 125 heads from 250 tosses of the coin, since heads comes up half the time on average. This suggests we could use the expected value notation introduced in Chapter 1 and write $E(X)=125$, where X represents the number of heads obtained from 250 tosses. This usage is indeed valid and we will explore this further below. It is a very convenient shorthand notation.

The time of departure of a train is another example of a random variable. It may be timetabled to depart at 11.15, but it probably (almost certainly) won’t leave at exactly that time. If a sample of 10 basketball players were taken, and their average height calculated, this would be a random variable. In this latter case, it is the process of taking a sample that introduces the variability which makes the resulting average a random variable. If the experiment were repeated, a different sample and a different value of the random variable would be obtained.

The above examples can be contrasted with some things which are not random variables. If one were to take all basketball players and calculate their average height, the result would not be a random variable. This time there is no sampling procedure to introduce variability into the result. If the experiment were repeated, the same result would be obtained, since the same people would be measured the second time (this assumes that the population does not change, of course). Just because the value of something is unknown does not mean it qualifies as a random
variable. This is an important distinction to bear in mind, since it is legitimate to make probability statements about random variables ('the probability that the average height of a sample of basketball players is over 195 cm is 60% ') but not about parameters ('the probability that the Pope is over 180 cm tall is 60% '). Here again, there is a difference of opinion between frequentist and subjective schools of thought. The latter group would argue that it is possible to make probability statements about the Pope's height. It is a way of expressing lack of knowledge about the true value. The frequentists would say the Pope's height is a fact that we do not happen to know; that does not make it a random variable.

The Binomial distribution

One of the simplest distributions which a random variable can have is the Binomial. The Binomial distribution arises whenever the underlying probability experiment has just two possible outcomes, e.g. heads or tails from the toss of a coin. Even if the coin is tossed many times (so one could end up with one, two, three, etc., heads in total), the underlying experiment (sometimes called a Bernoulli trial) has only two outcomes, so the Binomial distribution should be used. A counter-example would be the rolling of a die, which has six possible outcomes (in this case the Multinomial distribution, not covered in this text, would be used). Note, however, that if we were interested only in rolling a six or not, we could use the Binomial by defining the two possible outcomes as 'six' and 'not-six'. It is often the case in statistics that by suitable transformation of the data, we can use different distributions to tackle the same problem. We will see more of this later in the chapter.

The Binomial distribution can therefore be applied to the type of problem encountered in the previous chapter, concerning the sex of children. It provides a convenient formula for calculating the probability of r boys in n births or, in more general terms, the probability of r 'successes' in n trials 1. We shall use it to calculate the probabilities of $0,1, \ldots, 5$ boys in five births.

For the Binomial distribution to apply, we first need to assume independence of successive events and we shall assume that, for any birth:

$$
\operatorname{Pr}(\text { boy })=P=\frac{1}{2}
$$

It follows that

$$
\operatorname{Pr}(\text { girl })=1-\operatorname{Pr}(\text { boy })=1-P=\frac{1}{2}
$$

Although we have $P=\frac{1}{2}$ in this example, the Binomial distribution can be applied for any value of P between 0 and 1 .

First we consider the case of $r=5, n=5$, i.e. five boys in five births. This probability is found using the multiplication rule:

$$
\operatorname{Pr}(r=5)=P \times P \times P \times P \times P=P^{5}=\left(\frac{1}{2}\right)^{5}=1 / 32
$$

The probability of four boys (and then implicitly one girl) is

$$
\operatorname{Pr}(r=4)=P \times P \times P \times P \times(1-P)=1 / 32
$$

[^13]But this gives only one possible ordering of the four boys and one girl. Our original statement of the problem did not specify a particular ordering of the children. There are five possible orderings (the single girl could be in any of five positions in rank order). Recall that we can use the combinatorial formula nCr to calculate the number of orderings, giving $5 C 4=5$. Hence the probability of four boys and one girl in any order is $5 / 32$. Summarising, the formula for four boys and one girl is

$$
\operatorname{Pr}(r=4)=5 C 4 \times P^{4} \times(1-P)
$$

For three boys (and two girls) we obtain

$$
\operatorname{Pr}(r=3)=5 C 3 \times P^{3} \times(1-P)^{2}=10 \times 1 / 8 \times 1 / 4=10 / 32
$$

In a similar manner

$$
\begin{aligned}
& \operatorname{Pr}(r=2)=5 C 2 \times P^{2} \times(1-P)^{3}=10 / 32 \\
& \operatorname{Pr}(r=1)=5 C 1 \times P^{1} \times(1-P)^{4}=5 / 32 \\
& \operatorname{Pr}(r=0)=5 C 0 \times P^{0} \times(1-P)^{5}=1 / 32
\end{aligned}
$$

As a check on our calculations, we may note that the sum of the probabilities equals 1 , as they should do, since we have enumerated all possibilities.

A fairly clear pattern emerges. The probability of r boys in n births is given by

$$
\operatorname{Pr}(r)=n C r \times P^{r} \times(1-P)^{n-r}
$$

and this is known as the Binomial formula or distribution. The Binomial distribution is appropriate for analysing problems with the following characteristics:

- There is a number (n) of trials.
- Each trial has only two possible outcomes, 'success' (with probability P) and 'failure' (probability $1-P$) and the outcomes are independent between trials.
- The probability P does not change between trials.

The probabilities calculated by the Binomial formula may be illustrated in a diagram, as shown in Figure 3.2. This is very similar to the relative frequency distribution introduced in Chapter 1. That distribution was based on empirical data (to do with wealth) while the Binomial probability distribution is a theoretical construction, built up from the basic principles of probability theory.

As stated earlier, the Binomial is, in fact, a family of distributions, each member of which is distinguished by two parameters, n and P. The Binomial is thus a distribution with two parameters, and once their values are known the distribution is completely determined (i.e. $\operatorname{Pr}(r)$ can be calculated for all values of r). To illustrate

Figure 3.2
Probability distribution of the number of boys in five children

Figure 3.3
Binomial distributions with different parameter values

(b)
(c)
the difference between members of the family of the Binomial distribution, Figure 3.3 presents three other Binomial distributions, for different values of P and n. It can be seen that for the value of $P=\frac{1}{2}$ the distribution is symmetric, while for all other values it is skewed to either the left or the right. Part (b) of the figure illustrates the distribution relating to the worked example of rolling a die, described below.

Since the Binomial distribution depends only upon the two values n and P, we can use a shorthand notation rather than the formula itself. A random variable r,
which has a Binomial distribution with the parameters n and P, can be written in general terms as

$$
\begin{equation*}
r \sim B(n, P) \tag{3.1}
\end{equation*}
$$

Thus for the previous example of children, where r represents the number of boys,

$$
r \sim B\left(5, \frac{1}{2}\right)
$$

This is simply a brief and convenient way of writing down the information available; it involves no new problems of a conceptual nature. Writing

$$
r \sim B(n, P)
$$

is just a shorthand for

$$
\operatorname{Pr}(r)=n C r \times P^{r} \times(1-P)^{n-r}
$$

Teenage weapons

A story entitled 'One in five teens carry weapon' (link on main BBC news website 23/7/2007) provides a nice example of how knowledge of the binomial distribution can help our interpretation of events in the news. The headline is somewhat alarming but reading the story reveals that this is what young teenagers report of their friends. It then reveals that some are only 'fairly sure' and that it applies to boys, not girls. By now our suspicions should be aroused. What is the truth?

Notice, incidentally, how the story subtly changes. The headline suggests 20% of teenagers carry a weapon. The text then says this is what young teenagers report of their friends. It then reveals that some are only 'fairly sure' and that it applies to boys, not girls. By now our suspicions should be aroused. What is the truth?

Note that you are more likely to know someone who carries a weapon than to carry one yourself. Let p be the proportion who truly carry a weapon. Assume also that each person has 10 friends. What is the probability that a person, selected at random, has no friends who carry a weapon? Assuming independence, this is given by $[1-p]^{10}$. Hence the probability of at least one friend with a weapon is $1-[1-p]^{10}$. This is the proportion of people who will report having at least one friend with a weapon. How does this vary with p ? This is set out in the table:

p	$p(\geq 1$ friend with weapon $)$ $1-[1-p]^{10}$
0.0%	0%
0.5%	5%
1.0%	10%
1.5%	14%
2.0%	18%
2.5%	22%
3.0%	26%
3.5%	30%
4.0%	34%

Thus, a true proportion of just over 2% carrying weapons will generate a report suggesting 20% know someone carrying a weapon! This is much less alarming (and newsworthy) than in the original story.

You might like to test the assumptions. What happens if there are more than 10 friends assumed? What happens if events are not independent, i.e. having one friend with a weapon increases the probability of another friend with a weapon?

Update: The 2009/10 British Crime Survey estimated that 1% of 13 -15-year-olds carried a knife for their own protection. It also reported 13% reporting they knew someone who carried a knife for protection. These numbers seem entirely consistent with our calculation above, carried out well before the 2009/10 survey.

The mean and variance of the Binomial distribution

In Chapter 1 we calculated the mean and variance of a set of data, of the distribution of wealth. The picture of that distribution (Figure 1.9) looks not too dissimilar to one of the Binomial distributions shown in Figure 3.3. This suggests that we can calculate the mean and variance of a Binomial distribution, just as we did for the empirical distribution of wealth. Calculating the mean would provide the answer to a question such as 'If we have a family with five children, how many do we expect to be boys?' Intuitively the answer seems clear, 2.5 (even though such a family could not exist). The Binomial formula allows us to confirm this intuition.

The mean and variance are most easily calculated by drawing up a relative frequency table based on the Binomial frequencies. This is shown in Table 3.1 for the values $n=5$ and $P=\frac{1}{2}$. Note that r is equivalent to x in our usual notation and $\operatorname{Pr}(r)$, the relative frequency, is equivalent to $f(x) / \Sigma f(x)$. The mean of this distribution is given by

$$
\begin{equation*}
E(r)=\frac{\sum r \times \operatorname{Pr}(r)}{\sum \operatorname{Pr}(r)}=\frac{80 / 32}{32 / 32}=2.5 \tag{3.2}
\end{equation*}
$$

and the variance is given by

$$
\begin{equation*}
V(r)=\frac{\sum r^{2} \times \operatorname{Pr}(r)}{\sum \operatorname{Pr}(r)}-\mu^{2}=\frac{240 / 32}{32 / 32}-2.5^{2}=1.25 \tag{3.3}
\end{equation*}
$$

The mean value tells us that in a family of five children we would expect, on average, two and a half boys. Obviously no single family can be like this; it is the average over all such families. The variance is more difficult to interpret intuitively, but it tells us something about how the number of boys in different families will be spread around the average of 2.5 .

Table 3.1 Calculating the mean and variance of the Binomial distribution

r	$\operatorname{Pr}(r)$	$r \times \operatorname{Pr}(r)$	$r^{2} \times \operatorname{Pr}(r)$
0	$1 / 32$	0	0
1	$5 / 32$	$5 / 32$	$5 / 32$
2	$10 / 32$	$20 / 32$	$40 / 32$
3	$10 / 32$	$30 / 32$	$90 / 32$
4	$5 / 32$	$20 / 32$	$80 / 32$
5	$1 / 32$	$5 / 32$	$25 / 32$
Totals	$32 / 32$	$80 / 32$	$240 / 32$

There is a quicker way to calculate the mean and variance of the Binomial distribution. It can be shown that the mean can be calculated as $n P$, i.e. the number of trials times the probability of success. For example, in a family with five children and an equal probability that each child is a boy or a girl, we expect $n P=5 \times \frac{1}{2}=2.5$ to be boys.

The variance can be calculated as $n P(1-P)$. This gives $5 \times 1 / 2 \times 1 / 2=1.25$, as found above by extensive calculation.

Worked example 3.1 Rolling a die

If a die is thrown four times, what is the probability of getting two or more sixes? This is a problem involving repeated experiments (rolling the die) with but two types of outcome for each roll: success (a six) or failure (anything but a six). Note that we combine several possibilities (scores of $1,2,3,4$ or 5) together and represent them all as failure. The probability of success (one-sixth) does not vary from one experiment to another, and so use of the Binomial distribution is appropriate. The values of the parameters are $n=4$ and $P=1 / 6$. Denoting by r the random variable 'the number of sixes in four rolls of the die', then

$$
\begin{equation*}
r \sim B\left(4, \frac{1}{6}\right) \tag{3.4}
\end{equation*}
$$

Hence

$$
\operatorname{Pr}(r)=n C r \times P^{r}(1-P)^{(n-r)}
$$

where $P=\frac{1}{6}$ and $n=4$. The probabilities of two, three and four sixes are then given by

$$
\begin{aligned}
& \operatorname{Pr}(r=2)=4 C 2\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}=0.116 \\
& \operatorname{Pr}(r=3)=4 C 3\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{1}=0.115 \\
& \operatorname{Pr}(r=4)=4 C 4\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{0}=0.00077
\end{aligned}
$$

Since these events are mutually exclusive, the probabilities can simply be added together to get the desired result, which is 0.132 , or 13.2%. This is the probability of two or more sixes in four rolls of a die.

This result can be illustrated diagrammatically as part of the area under the appropriate Binomial distribution, shown in Figure 3.4.

Exercise 3.1

Exercise 3.2

The darker-shaded areas represent the probabilities of two or more sixes and together their area represents 13.2% of the whole distribution. This illustrates an important principle: that probabilities can be represented by areas under an appropriate probability distribution. We shall see more of this later.
(a) If the probability of a randomly drawn individual having blue eyes is 0.6 , what is the probability that four people drawn at random all have blue eyes?
(b) What is the probability that two of the sample of four have blue eyes?
(c) For this particular example, write down the Binomial formula for the probability of r blueeyed individuals, $r=0 \ldots 4$. Confirm that the calculated probabilities sum to one.
(a) Calculate the mean and variance of the number of blue-eyed individuals in the previous exercise.
(b) Draw a graph of this Binomial distribution and on it mark the mean value and the mean value $+/-$ one standard deviation.

Having introduced the concept of probability distributions using the Binomial, we now move on to the most important of all probability distributions, the Normal.

The Normal distribution

The Binomial distribution applies when there are two possible outcomes to an experiment, but not all problems fall into this category. For instance, the (random) arrival time of a train is a continuous variable and cannot be analysed using the Binomial. There are many probability distributions in statistics, developed to analyse different types of problem. Several of them are covered in this text, and the most important of them is the Normal distribution, to which we now turn. It was discovered by the German mathematician Gauss in the nineteenth century (hence it is also known as the Gaussian distribution), in the course of his work on regression (see Chapter 7).

Many random variables turn out to be Normally distributed. Men's (or women's) heights are Normally distributed. IQ (the measure of intelligence) is also Normally distributed. Another example is of a machine producing (say) bolts with a nominal length of 5 cm which will actually produce bolts of slightly varying length (these differences would probably be extremely small) due to factors such as wear in the machinery, slight variations in the pressure of the lubricant, etc. These would result in bolts whose length varies, in accordance with the Normal distribution. This sort of process is extremely common, with the result that the Normal distribution often occurs in everyday situations.

The Normal distribution tends to arise when a random variable is the result of many independent, random influences added together, none of which dominates the others. A man's height is the result of many genetic influences, plus environmental factors such as diet, etc. As a result, height is Normally distributed. If one takes the height of men and women together, the result is not a Normal distribution, however. This is because one influence dominates the others: gender. Men are, on average, taller than women. Many variables familiar in economics are not

Normal, however - incomes, for example (although the logarithm of income is approximately Normal). We shall learn techniques to deal with such circumstances in due course.

Now that we have introduced the idea of the Normal distribution, what does it look like? It is presented below in graphical and then mathematical forms. Unlike the Binomial, the Normal distribution applies to continuous random variables such as height, and a typical Normal distribution is illustrated in Figure 3.5. Since the Normal distribution is a continuous one, it can be evaluated for any values of x, not just for integers as was the case for the Binomial distribution. The figure illustrates the main features of the distribution:

- It is unimodal, having a single, central peak. If this were men's heights, it would illustrate the fact that most men are clustered around the average height, with a few very tall and a few very short people.
- It is symmetric, the left and right halves being mirror images of each other.
- It is bell-shaped.
- It extends continuously over all the values of x from minus infinity to plus infinity, although the value of $f(x)$ becomes extremely small as these values are approached (the presentation of this figure being of only finite width, this last characteristic is not faithfully reproduced). This also demonstrates that most empirical distributions (such as men's heights) can only be an approximation to the theoretical ideal, although the approximation is close and good enough for practical purposes.

Note that we have labelled the y-axis ' $f(x)$ ' rather than ' $\operatorname{Pr}(x)$ ' as we did for the Binomial distribution. This is because it is areas under the curve that represent probabilities, not the heights. With the Binomial, which is a discrete distribution, one can legitimately represent probabilities by the heights of the bars. For the Normal, although $f(x)$ does not give the probability per se, it does give an indication: you are more likely to encounter values from the middle of the distribution (where $f(x)$ is greater) than from the extremes.

In mathematical terms, the formula for the Normal distribution is (x is the random variable)

$$
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}\left(\frac{(-\mu}{\sigma}\right)^{2}} \tag{3.5}
\end{equation*}
$$

The mathematical formulation is not so formidable as it appears. μ and σ are the parameters of the distribution, like n and P for the Binomial (even though they have different meanings); π is 3.1416 and e is 2.7183 . If the formula is

Figure 3.5 The Normal distribution

Figure 3.6(a) The Normal distribution, $\mu=20, \sigma=5$
evaluated using different values of x, the values of $f(x)$ obtained will map out a Normal distribution. Fortunately, as we shall see, we do not need to use the mathematical formula in most practical problems.

Like the Binomial, the Normal is a family of distributions differing from one another only in the values of the parameters μ and σ. Several Normal distributions are drawn in Figure 3.6 for different values of the parameters.

Whatever value of μ is chosen turns out to be the centre of the distribution. Since the distribution is symmetric, μ is its mean. The effect of varying σ is to narrow (small σ) or widen (large σ) the distribution. σ turns out to be the standard deviation of the distribution. The Normal is another two-parameter family of distributions like the Binomial, and once the mean μ and the standard deviation σ

Figure 3.6(b)
The Normal distribution, $\mu=15, \sigma=2$

Figure 3.6(c)
The Normal distribution, $\mu=0, \sigma=4$

Figure 3.7 The height distribution of men

(or equivalently the variance, σ^{2}) are known, the whole of the distribution can be drawn. The shorthand notation for a Normal distribution is

$$
\begin{equation*}
x \sim N\left(\mu, \sigma^{2}\right) \tag{3.6}
\end{equation*}
$$

meaning 'the variable x is Normally distributed with mean μ and variance σ^{2}. This is similar in form to the expression for the Binomial distribution, although the meanings of the parameters are different.

Use of the Normal distribution can be illustrated using a simple example. The height of adult males is Normally distributed with mean height $\mu=174 \mathrm{~cm}$ and standard deviation $\sigma=9.6 \mathrm{~cm}$. Let x represent the height of adult males; then

$$
\begin{equation*}
x \sim N(174,92.16) \tag{3.7}
\end{equation*}
$$

and this is illustrated in Figure 3.7. Note that (3.7) contains the variance rather than the standard deviation.

What is the probability that a randomly selected man is taller than 180 cm ? If all men are equally likely to be selected, this is equivalent to asking what proportion of men are over 180 cm in height. This is given by the area under the Normal distribution, to the right of $x=180$, i.e. the shaded area in Figure 3.7. The further from the mean of 174 , the smaller the area in the tail of the distribution. One way to find this area would be to use equation (3.5), but this requires the use of sophisticated mathematics.

Since this is a frequently encountered problem, the answers have been set out in the tables of the standard Normal distribution. We can simply look up the solution. However, since there is an infinite number of Normal distributions (one for every combination μ and σ^{2}), it would be impossible to tabulate them all. The standard Normal distribution, which has a mean of zero and variance of one, is therefore used to represent all Normal distributions. Before the table can be consulted, therefore, the data have to be transformed so that they accord with the standard Normal distribution.

The required transformation is the z score, which was introduced in Chapter 1. This measures the distance between the value of interest (180) and the mean, measured in terms of standard deviations. Therefore, we calculate

$$
\begin{equation*}
z=\frac{x-\mu}{\sigma} \tag{3.8}
\end{equation*}
$$

and z is a Normally distributed random variable with mean 0 and variance 1, i.e. $z \sim N(0,1)$.

This transformation shifts the original distribution μ units to the left and then adjusts the dispersion by dividing through by σ, resulting in a mean of 0 and variance $1 . z$ is Normally distributed because x is Normally distributed. The transformation in (3.8) retains the Normal distribution shape, despite the changes to mean and variance. If x followed some other distribution, then z would not be Normal either.

It is easy to verify the mean and variance of z using the rules for E and V operators encountered in Chapter 1:

$$
\begin{aligned}
& \mathrm{E}(z)=\mathrm{E}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma}(\mathrm{E}(x)-\mu)=0 \quad(\text { since } \mathrm{E}(x)=\mu) \\
& \mathrm{V}(z)=\mathrm{V}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} \mathrm{~V}(x) \frac{\sigma^{2}}{\sigma^{2}}=1
\end{aligned}
$$

Evaluating the z score from our data, we obtain

$$
\begin{equation*}
z=\frac{180-174}{9.6}=0.63 \tag{3.9}
\end{equation*}
$$

This shows that 180 is 0.63 standard deviations above the mean, 174 , of the distribution. This is a measure of how far 180 is from 174 and allows us to look up the answer in tables. The task now is to find the area under the standard Normal distribution to the right of 0.63 standard deviations above the mean. This answer can be read off directly from the table of the standard Normal distribution, included as Table A2 in the Appendix. An excerpt from Table A2 is presented in Table 3.2.

The left-hand column gives the z score to one place of decimals. The appropriate row of the table to consult is the one for $z=0.6$, which is shaded. For the second place of decimals (0.03) we consult the appropriate column, also shaded. At their intersection we find the value 0.2643 , which is the desired area and therefore probability. In other words, 26.43% of the distribution lies to the right of 0.63 standard deviations above the mean. Therefore 26.43% of men are over 180 cm in height.

Use of the standard Normal table is possible because, although there is an infinite number of Normal distributions, they are all fundamentally the same, so that the area to the right of 0.63 standard deviations above the mean is the same for all of them. As long as we measure the distance in terms of standard deviations, then we can use the standard Normal table. The process of standardisation turns all Normal distributions into a standard Normal distribution with a mean of zero and a variance of one. This process is illustrated in Figure 3.8.

Table 3.2 Areas of the standard Normal distribution (excerpt from Table A2)

z	0.00	0.01	0.02	0.03	\ldots	0.09
0.0	0.5000	0.4960	0.4920	0.4880	\ldots	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	\ldots	0.4247
\vdots	\vdots	\vdots	\vdots	\vdots	\ldots	\vdots
0.5	0.3085	0.3050	0.3015	0.2981	\ldots	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	\ldots	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	\ldots	0.2148

Figure 3.8(a) The Normal distribution, $\mu=174, \sigma=9.6$

The area in the right-hand tail is the same for both distributions. It is the standard Normal distribution in Figure 3.8(b) which is tabulated in Table A2. To demonstrate how standardisation turns all Normal distributions into the standard Normal, the earlier problem is repeated but taking all measurements in inches. The answer should obviously be the same. Taking $1 \mathrm{inch}=2.54 \mathrm{~cm}$, the figures are

$$
x=70.87 \quad \sigma=3.78 \quad \mu=68.50
$$

What proportion of men are over 70.87 inches in height? The appropriate Normal distribution is now

$$
\begin{equation*}
x \sim N\left(68.50,3.78^{2}\right) \tag{3.10}
\end{equation*}
$$

The z score is

$$
\begin{equation*}
z=\frac{70.87-68.50}{3.78}=0.63 \tag{3.11}
\end{equation*}
$$

which is the same z score as before and therefore gives the same probability.

Worked example 3.2

Packets of cereal have a nominal weight of 750 grams, but there is some variation around this as the machines filling the packets are imperfect. Let us assume that the weights follow a Normal distribution. Suppose that the standard deviation around the mean of 750 is 5 grams. What proportion of packets weigh more than 760 grams?

Summarising our information, we have $x \sim N(750,25)$ where x represents the weight. We wish to find $\operatorname{Pr}(x>760)$. To be able to look up the answer, we need to measure the distance between 760 and 750 in terms of standard deviations. This is

$$
z=\frac{760-750}{5}=2.0
$$

Looking up $z=2.0$ in Table A2 reveals an area of 0.0228 in the tail of the distribution. Thus 2.28% of packets weigh more than 760 grams.

Since a great deal of use is made of the standard Normal tables, it is worth working through a couple more examples to reinforce the method. We have so far calculated that $\operatorname{Pr}(z>0.63)=0.2643$. Since the total area under the graph equals one (i.e. the sum of probabilities must be one), the area to the left of $z=0.63$ must equal 0.7357 , i.e. 73.57% of men are under 180 cm . It is fairly easy to manipulate areas under the graph to arrive at any required area. For example, what proportion of men are between 174 and 180 cm in height? It is helpful to refer to Figure 3.9 at this point.

The size of area A is required. Area B has already been calculated as 0.2643. Since the distribution is symmetric, the area A + B must equal 0.5 , since 174 is at the centre (mean) of the distribution. Area A is therefore $0.5-0.2643=0.2357$. Therefore, 23.57% is the desired result.

Using software to find areas under the standard Normal distribution

Using a spreadsheet program, you can look up the z-distribution directly and hence dispense with tables. In Excel, for example, the function ' = NORM.S.DIST(0.63, TRUE)' gives the answer 0.7357 , i.e. the area to the left of the z score. The area in the right-hand tail is then obtained by subtracting this value from 1, i.e. $1-0.7357=0.2643$. Entering the formula ' $=1-$ NORM.S.DIST(0.63,TRUE)' in a cell will give the area in the right-hand tail directly.

As a final exercise consider the question of what proportion of men are between 166 and 178 cm tall. As shown in Figure 3.10, area C + D is wanted. The only way

Figure 3.9
The proportion of men between 174 cm and 180 cm in height

Figure 3.10 The proportion of men between 166 and 178 cm in height

to find this is to calculate the two areas separately and then add them together. For area D the z score associated with 178 is:

$$
\begin{equation*}
z_{\mathrm{D}}=\frac{178-174}{9.6}=0.42 \tag{3.12}
\end{equation*}
$$

Table A2 indicates that the area in the right-hand tail, beyond $z=0.42$, is 0.3372 , so area $\mathrm{D}=0.5-0.3372=0.1628$. For C , the z score is

$$
\begin{equation*}
z_{C}=\frac{166-174}{9.6}=-0.83 \tag{3.13}
\end{equation*}
$$

The minus sign indicates that it is the left-hand tail of the distribution, below the mean, which is being considered. Since the distribution is symmetric, it is the same as if it were the right-hand tail, so the minus sign may be ignored when consulting the table. Looking up $z=0.83$ in Table A2 gives an area of 0.2033 in the tail, so area C is therefore $0.5-0.2033=0.2967$. Adding areas C and D gives $0.2967+0.1628=0.4595$. So nearly half of all men are between 166 and 178 cm in height.

An alternative interpretation of the results obtained above is that if a man is drawn at random from the adult population, the probability that he is over 180 cm tall is 26.43%. This is in line with the frequentist school of thought. Since 26.43% of the population is over 180 cm in height, that is the probability of a man over 180 cm being drawn at random.
(a) The random variable x is distributed Normally, $x \sim N(40,36)$. Find the probability that $x>50$.
(b) Find $\operatorname{Pr}(x<45)$.
(c) Find $\operatorname{Pr}(36<x<45)$.

Exercise 3.4

The mean $+/-0.67$ standard deviations cuts off 25% in each tail of the Normal distribution. Hence, the middle 50% of the distribution lies within $+/-0.67$ standard deviations of the mean. Use this fact to calculate the inter-quartile range for the distribution $x \sim N(200,256)$.

Exercise 3.5

As suggested in the text, the logarithm of income is approximately Normally distributed. Suppose the \log (to the base 10) of income has the distribution $x \sim N(4.18,256)$. Calculate the inter-quartile range for x and then take anti-logs to find the inter-quartile range of income.

The distribution of the sample mean

One of the most important concepts in statistical inference is the probability distribution of the mean of a random sample, since we often use the sample mean to tell us something about an associated population. Suppose that, from the population of adult males, a random sample of size $n=36$ is taken, their heights measured and the mean height of the sample calculated. What can we infer from this about the true average height of the population? To do this, we need to know about the statistical properties of the sample mean. The sample mean is a random variable because of the chance element of random sampling (different samples would yield different values of the sample mean). Since the sample mean is a random variable, it must have associated with it a probability distribution. We also refer to this as the sampling distribution of the sample mean, since the randomness is due to sampling.

We therefore need to know, first, what is the appropriate distribution and, second, what are its parameters. From the definition of the sample mean we have

$$
\begin{equation*}
\bar{x}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right) \tag{3.14}
\end{equation*}
$$

where each observation, x_{i}, is itself a Normally distributed random variable, with $x_{i} \sim N\left(\mu, \sigma^{2}\right)$, because each comes from the parent distribution with such characteristics. (We stated earlier that men's heights are Normally distributed.) We now make use of the following theorem to demonstrate first that \bar{x} is Normally distributed:

Theorem

Any linear combination of independent, Normally distributed random variables is itself Normally distributed.

A linear combination of two variables x_{1} and x_{2} is of the form $w_{1} x_{1}+w_{2} x_{2}$ where w_{1} and w_{2} are constants. This can be generalised to any number of x values. It is clear that the sample mean satisfies these conditions and is a linear combination of the individual x values (with the weight on each observation equal to $1 / n$). As long as the observations are independently drawn, therefore, the sample mean is Normally distributed.

We now need the parameters (mean and variance) of the distribution. For this we use the E and V operators once again:

$$
\begin{align*}
E(\bar{x}) & =\frac{1}{n}\left(E\left(x_{1}\right)+E\left(x_{2}\right)+\cdots+E\left(x_{n}\right)\right) \tag{3.15}\\
& =\frac{1}{n}(\mu+\mu+\cdots+\mu) \\
& =\frac{1}{n} n \mu \\
& =\mu
\end{align*}
$$

$$
\begin{align*}
\mathrm{V}(\bar{x}) & =\mathrm{V}\left(\frac{1}{n}\left[x_{1}+x_{2}+\cdots+x_{n}\right]\right) \\
& =\frac{1}{n^{2}}\left(\mathrm{~V}\left(x_{1}\right)+\mathrm{V}\left(x_{2}\right)+\cdots+\mathrm{V}\left(x_{n}\right)\right) \\
& =\frac{1}{n^{2}}\left(\sigma^{2}+\sigma^{2}+\cdots+\sigma^{2}\right) \\
& =\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n} \tag{3.16}
\end{align*}
$$

Putting all this together, we have ${ }^{2}$

$$
\begin{equation*}
\bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \tag{3.17}
\end{equation*}
$$

This we may summarise in the following theorem:

Theorem The mean, \bar{x} of a random sample drawn from a population which has a

 Normal distribution with mean μ and variance σ^{2}, has a sampling distribution which is Normal, with mean μ and variance σ^{2} / n, where n is the sample size.The meaning of this theorem is as follows. First, it is assumed that the population from which the samples are to be drawn is itself Normally distributed (this assumption will be relaxed in a moment), with mean μ and variance σ^{2}. From this population many samples are drawn, each of sample size n, and the mean of each sample is calculated. The samples are independent, meaning that the observations selected for one sample do not influence the selection of observations in the other samples. This gives many sample means, \bar{x}_{1}, \bar{x}_{2}, etc. If these sample means are treated as a new set of observations, then the probability distribution of these observations can be derived. The theorem states that this distribution is Normal, with the sample means centred around μ, the population mean, and with variance σ^{2} / n. The argument is set out diagrammatically in Figure 3.11.

Intuitively this theorem can be understood as follows. If the height of adult males is a Normally distributed random variable with mean $\mu=174 \mathrm{~cm}$ and variance $\sigma^{2}=92.16$, then it would be expected that a random sample of (say) nine males would yield a sample mean height of around 174 cm , perhaps a little more, perhaps a little less. In other words, the sample mean is centred around 174 cm , or the mean of the distribution of sample means is 174 cm .

The larger is the size of the individual samples (i.e. the larger n), the closer the sample mean would tend to be to 174 cm . For example, if the sample size is only two, a sample of two very tall people is quite possible, with a high sample mean as a result, well over 174 cm , e.g. 182 cm . But if the sample size were 20, it is very unlikely that 20 very tall males would be selected and the sample mean is likely to be much closer to 174 . This is why the sample size n appears in the formula for the variance of the distribution of the sample mean, σ^{2} / n.

Note that, once again, we have transformed one (or more) random variables, the x_{i}^{\prime} s, with a particular probability distribution into another random variable, \bar{x}, with a (slightly) different distribution. This is common practice in statistics:

[^14]Figure 3.11 The parent distribution and the distribution of sample means

transforming a variable will often put it into a more useful form, e.g. one whose probability distribution is well known.

The above theorem can be used to solve a range of statistical problems. For example, what is the probability that a random sample of nine men will have a mean height greater than 180 cm ? The height of all men is known to be Normally distributed with mean $\mu=174 \mathrm{~cm}$ and variance $\sigma^{2}=92.16$. The theorem can be used to derive the probability distribution of the sample mean. For the population we have:

$$
x \sim N\left(\mu, \sigma^{2}\right), \text { i.e } x \sim N(174,92.16)
$$

Hence for the sample mean:

$$
\bar{x} \sim N\left(\mu, \sigma^{2} / n\right), \text { i.e } \bar{x} \sim N(174,92.16 / 9)
$$

This is shown diagrammatically in Figure 3.12.
To answer the question posed, the area to the right of 180, shaded in Figure 3.12, has to be found. This should by now be a familiar procedure. First the z score is calculated:

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / n}}=\frac{180-174}{\sqrt{92.16 / 9}}=1.88 \tag{3.18}
\end{equation*}
$$

Note that the z score formula is subtly different because we are dealing with the sample mean \bar{x} rather than x itself. In the numerator we use \bar{x} rather than x and in the denominator we use σ^{2} / n, not σ^{2}. This is because \bar{x} has a variance σ^{2} / n, not σ^{2}, which is the population variance. $\sqrt{\sigma^{2} / n}$ is known as the standard error, to

Figure 3.12
The proportion of sample means greater than $\bar{x}=180$

distinguish it from σ, the standard deviation of the population. The principle behind the z score is the same, however: it measures how far a sample mean of 180 is from the population mean of 174 , measured in terms of standard deviations.

Looking up the value of $z=1.88$ in Table A2 gives an area of 0.0311 in the right-hand tail of the Normal distribution. Thus, 3.11% of sample means will be greater than or equal to 180 cm when the sample size is nine. The desired probability is therefore 3.11%.

Since this probability is quite small, we might consider the reasons for this. There are two possibilities:
(a) through bad luck, the sample collected is not very representative of the population as a whole, or
(b) the sample is representative of the population, but the population mean is not 174 cm after all.

Only one of these two possibilities can be correct. How to decide between them will be taken up in Chapter 5 on hypothesis testing.

It is interesting to examine the difference between the answer for a sample size of nine (3.11%) and the one obtained earlier for a single individual (26.43\%). The latter may be considered as a sample of size one from the population. The examples illustrate the fact that the larger the sample size, the closer the sample mean is likely to be to the population mean. Thus larger samples tend to give better estimates of the population mean.

Oil reserves

An interesting application of probability distributions is to the estimation of oil reserves. The quantity of oil in an oil field is not known for certain, but is subject to uncertainty. The proven reserve of an oil field is the amount recoverable with probability of 90% (known as P90 in the oil industry). One can then add up the proven oil reserves around the world to get a total of proven reserves.

However, using probability theory, we can see this might be misleading. Suppose we have 50 fields, where the recoverable quantity of oil is distributed as $x \sim N[100,81]$ in each. From tables we note that $\bar{x}-1.28$ s cuts off the bottom 10% of the Normal distribution, 88.48 in this case. This is the proven reserve for a field. Summing across the 50 fields gives 4424 as total proven reserves. But is there a 90% probability of recovering at least this amount?

The total quantity of oil y is distributed Normally, with mean $E(y)=$ $E\left(x_{1}\right)+\cdots+E\left(x_{50}\right)=5000$ and variance $V(y)=V\left(x_{1}\right)+\cdots+V\left(x_{50}\right)=4050$, assuming independence of the oil fields. Hence we have. $y \sim N(5000,4050)$. Again, the bottom 10% is cut off by $\bar{y}-1.28 \mathrm{~s}$, which is 4919 . This is 11% larger than the 4424 calculated above. Adding up the proven reserves of each field individually underestimates the true total proven reserves. In fact, the probability of total proven reserves being greater than 4424 is almost 100%. The reason the first calculation fails is that it effectively assumes the worst case in every oil field. But this is very unlikely - it is much more likely that some fields will yield plenty of oil, some will yield little.

Note that the numbers given here are for illustration purposes and do not reflect the actual state of affairs. The principle of the calculation is correct, however.

Sampling from a non-Normal population

The previous theorem and examples relied upon the fact that the population followed a Normal distribution. But what happens if it is not Normal? After all, it is not known for certain that the heights of all adult males are exactly Normally distributed, and there are many populations which are not Normal (e.g. wealth, as shown in Chapter 1). What can be done in these circumstances? The answer is to use another theorem about the distribution of sample means (presented without proof). This is known as the Central Limit Theorem:

Theorem

The mean, \bar{x}, of a random sample drawn from a population with mean μ and variance σ^{2}, has a sampling distribution which approaches a Normal distribution with mean μ and variance σ^{2} / n, as the sample size n approaches infinity.

This is very useful, since it drops the assumption that the population is Normally distributed. Note that, according to this theorem, the distribution of sample means is only Normal as long as the sample size is infinite; for any finite sample size the distribution is only approximately Normal. However, the approximation is close enough for practical purposes if the sample size is larger than 25 or so observations. If the population distribution is itself nearly Normal, then a smaller sample size would suffice. If the population distribution is particularly skewed, then more than 25 observations might be desirable. Twenty-five observations constitute a rule of thumb that is adequate in most circumstances. This is another illustration of statistics as an inexact science. It does not provide absolutely clear-cut answers to questions but, used carefully, helps us to arrive at sensible conclusions.

As an example of the use of the Central Limit Theorem, we return to the wealth data of Chapter 1. Recall that the mean level of wealth was 186.875 (measured in $£ 000$) and the variance 80306 . Suppose that a sample of $n=50$ people were drawn from this population. What is the probability that the sample mean is greater than 200 (i.e. $£ 200000$)?

On this occasion we know that the parent distribution is highly skewed, so it is fortunate that we have 50 observations. This should be ample for us to justify applying the Central Limit Theorem. The distribution of \bar{x} is therefore

$$
\begin{equation*}
\bar{x} \sim N\left(\mu, \sigma^{2} / n\right) \tag{3.19}
\end{equation*}
$$

and, inserting the parameter values, this gives ${ }^{3}$

$$
\begin{equation*}
\bar{x} \sim N(186.875,80306 / 50) \tag{3.20}
\end{equation*}
$$

To find the area beyond a sample mean of 200, the z score is first calculated:

$$
\begin{equation*}
z=\frac{200-186.875}{\sqrt{80306 / 50}}=0.33 \tag{3.21}
\end{equation*}
$$

Referring to the standard Normal tables, the area in the tail is then found to be 37.07%. This is the desired probability. So there is a probability of 37.07% of finding a mean of $£ 200000$ or greater with a sample of size 50 . This demonstrates that there is quite a high probability of getting a sample mean which is relatively far from $£ 186875$. This is a consequence of the high degree of dispersion in the distribution of wealth.

Extending this example, we can ask: what is the probability of the sample mean lying within, say, $£ 78000$ either side of the true mean of $£ 186875$ (i.e. between $£ 108875$ and $£ 264875$)? Figure 3.13 illustrates the situation, with the desired area shaded. By symmetry, areas A and B must be equal, so we only need find one of them. For B, we calculate the z score:

$$
\begin{equation*}
z=\frac{264.875-186.875}{\sqrt{80306 / 50}}=1.946 \tag{3.22}
\end{equation*}
$$

From the standard Normal table, this cuts off approximately 2.5% in the upper tail, ${ }^{4}$ so area $B=0.475$. Areas A and B together make up approximately 95% of the distribution, therefore. There is thus a 95% probability of the sample mean falling within the range [108 875, 264 875], and we call this the 95% probability interval for the sample mean. We write this:

$$
\begin{equation*}
\operatorname{Pr}(108875 \leq \bar{x} \leq 264875)=0.95 \tag{3.23}
\end{equation*}
$$

or, in terms of the formulae we have used: ${ }^{5}$

$$
\begin{equation*}
\operatorname{Pr}\left(\mu-1.96 \sqrt{\sigma^{2} / n} \leq \bar{x} \leq \mu+1.96 \sqrt{\sigma^{2} / n}\right)=0.95 \tag{3.24}
\end{equation*}
$$

Figure 3.13
The probability of \bar{x} lying within $£ 78000$ either side of $£ 186875$

[^15]The 95% probability interval and the related concept of the 95% confidence interval (introduced in Chapter 4) play important roles in statistical inference. We deliberately designed the example above to arrive at an answer of 95% for this reason.

Exercise 3.6

(a) If x is distributed as $x \sim N(50,64)$ and samples of size $n=25$ are drawn, what is the distribution of the sample mean \bar{x} ?
(b) If the sample size doubles to 50 , how is the standard error of \bar{x} altered?
(c) Using the sample size of 25 , (i) what is the probability that $\bar{x}>51$? (ii) What is $\operatorname{Pr}(\bar{x}<48)$? (iii) What is $\operatorname{Pr}(49<\bar{x}<50.5)$?

The relationship between the Binomial and Normal distributions

Many statistical distributions are related to one another in some way. This means that many problems can be solved by a variety of different methods (using different distributions), although usually one is more convenient or more accurate than the others. This point may be illustrated by looking at the relationship between the Binomial and Normal distributions.

Recall the experiment of tossing a coin repeatedly and noting the number of heads. We said earlier that this can be analysed via the Binomial distribution. But note that the number of heads, a random variable, is influenced by many independent random events (the individual tosses) added together. Furthermore, each toss counts equally, none dominates. These are just the conditions under which a Normal distribution arises, so it looks like there is a connection between the two distributions.

This idea is correct. Recall that if a random variable r follows a Binomial distribution, then

$$
\begin{equation*}
r \sim B(n, P) \tag{3.1}
\end{equation*}
$$

and the mean of the distribution is $n P$ and the variance $n P(1-P)$. It turns out that as n gets larger, the Binomial distribution takes on approximately the same shape as a Normal distribution with mean $n P$ and variance $n P(1-P)$. This approximation is sufficiently accurate as long as $n P>5$ and $n(1-P)>5$, so the approximation may not be very good (even for large values of n) if P is very close to zero or one. For the coin tossing experiment, where $P=0.5,10$ tosses should be sufficient. Note that this approximation is good enough with only 10 observations even though the underlying probability distribution is nothing like a Normal distribution.

To demonstrate, the following problem is solved using both the Binomial and Normal distributions. Forty students take an exam in statistics which is simply graded pass/fail. If the probability, P, of any individual student passing is 60%, what is the probability of at least 30 students passing the exam?

The sample data are:

$$
\begin{aligned}
P & =0.6 \\
1-P & =0.4 \\
n & =40
\end{aligned}
$$

Binomial distribution method

To solve the problem using the Binomial distribution it is necessary to find the probability of exactly 30 students passing, plus the probability of 31 passing, plus the probability of 32 passing, etc., up to the probability of 40 passing (the fact that the events are mutually exclusive allows this). The probability of 30 passing is

$$
\begin{aligned}
\operatorname{Pr}(r=30) & =n C r \times P^{r}(1-P)^{n-r} \\
& =40 C^{30} \times 0.6^{30} \times 0.4^{10} \\
& =0.020
\end{aligned}
$$

(Note: This calculation assumes that the probabilities are independent, i.e. no copying.) This by itself is quite a tedious calculation, but $\operatorname{Pr}(31), \operatorname{Pr}(32)$, etc., still have to be calculated. Calculating these and summing them gives the result of 3.52% as the probability of at least 30 passing. (It would be a useful exercise for you to do, if only to appreciate how long it takes.)

Normal distribution method

As stated above, the Binomial distribution can be approximated by a Normal distribution with mean $n P$ and variance. $n P(1-P) . n P$ in this case is $24(=40 \times 0.6)$ and $n(1-P)$ is 16 , both greater than 5 , so the approximation can be safely used. Thus

$$
r \sim N(n P, n P(1-P))
$$

and inserting the parameter values gives

$$
r \sim N(24,9.6)
$$

The usual methods are then used to find the appropriate area under the distribution. However, before doing so, there is one adjustment to be made (this only applies when approximating the Binomial distribution by the Normal). The Normal distribution is a continuous one while the Binomial is discrete. Thus, 30 in the Binomial distribution is represented by the area under the Normal distribution between 29.5 and 30.5. The value 31 is represented by 30.5 to 31.5 , etc. Thus, it is the area under the Normal distribution to the right of 29.5 , not 30 , which must be calculated. This is known as the continuity correction. Calculating the z score gives

$$
\begin{equation*}
z=\frac{29.5-24}{\sqrt{9.6}}=1.78 \tag{3.25}
\end{equation*}
$$

This gives an area of 3.75%, not far off the correct answer as calculated by the Binomial distribution. The time saved and ease of calculation would seem to be worth the slight loss in accuracy.

Other examples can be constructed to test this method, using different values of P and n. Small values of n, or values of $n P$ or $n(1-P)$ less than 5 , will give poor results, i.e. the Normal approximation to the Binomial will not be very good.

Exercise 3.7

(a) A coin is tossed 20 times. What is the probability of more than 14 heads? Perform the calculation using both the Binomial and Normal distributions, and compare results.
(b) A biased coin, for which $\operatorname{Pr}(H)=0.7$, is tossed six times. What is the probability of more than four heads? Compare Binomial and Normal methods in this case. How accurate is the Normal approximation?
(c) Repeat part (b) but for the probability of more than five heads.

The Poisson distribution

The section above showed how the Binomial distribution could be approximated by a Normal distribution under certain circumstances. The approximation does not work particularly well for very small values of P, when $n P$ is less than 5 . In these circumstances the Binomial may be approximated instead by a different distribution, the Poisson, which is given by the formula

$$
\begin{equation*}
\operatorname{Pr}(x)=\frac{\mu^{x} \mathrm{e}^{-\mu}}{x!} \tag{3.26}
\end{equation*}
$$

The only parameter of this distribution is μ, which is the mean of the distribution (like μ for the Normal distribution and $n P$ for the Binomial). Like the Binomial, but unlike the Normal, the Poisson is a discrete probability distribution and equation (3.26) is defined only for integer values of x. Furthermore, it is applicable to a series of trials which are independent, as in the Binomial case.

The use of the Poisson distribution is appropriate when the probability P of 'success' is very small and the number of trials n is large. Because of this it is sometimes referred to as the 'rare event' distribution. Its use is illustrated by the following example. A manufacturer gives a two-year guarantee on the TV screens it makes. From past experience it knows that 0.5% of its screens will be faulty and fail within the guarantee period. What is the probability that, of a consignment of 500 screens, (a) none will be faulty, (b) more than three are faulty?

To use the Poisson, we just need its parameter, the mean. In this case it is $\mu=n P=2.5$, like the Binomial. In words, we expect 0.5% of the sample to be faulty on average, and 0.5% of 500 is 2.5 . Therefore

$$
\begin{equation*}
\operatorname{Pr}(x=0)=\frac{2.5^{0} \mathrm{e}^{-2.5}}{0!}=0.0821 \tag{3.27}
\end{equation*}
$$

gives a probability of 8.2% of no failures. The answer to this problem via the Binomial method is

$$
\operatorname{Pr}(r=0)=0.995^{500}=0.0816
$$

Thus, the Poisson method gives a reasonably accurate answer. Using the Poisson approximation to the Binomial is satisfactory if $n P$ is less than about 7 .

The probability of more than three screens expiring is calculated as

$$
\begin{aligned}
& \operatorname{Pr}(x>3)=1-\operatorname{Pr}(x=0)-\operatorname{Pr}(x=1)-\operatorname{Pr}(x=2)-\operatorname{Pr}(x=3) \\
& \operatorname{Pr}(x=1)=\frac{2.5^{1} \mathrm{e}^{-2.5}}{1!}=0.205 \\
& \operatorname{Pr}(x=2)=\frac{2.5^{2} \mathrm{e}^{-2.5}}{2!}=0.256 \\
& \operatorname{Pr}(x=3)=\frac{2.5^{3} \mathrm{e}^{-2.5}}{3!}=0.214
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Pr}(x>3) & =1-0.082-0.205-0.256-0.214 \\
& =0.242
\end{aligned}
$$

Thus, there is a probability of about 24% of more than three failures. The Binomial calculation is much more tedious, but gives an answer of 24.2% also.

The Poisson distribution is also used in problems where events occur over time, such as goals scored in a football match (see Problem 3.25) or queuingtype problems (e.g. arrivals at a bank cash machine). In these problems, there is no natural 'number' of trials but it is clear that, if we take a short interval of time, the probability of an event occurring is small. We can then consider the number of trials to be the number of time intervals. In such problems we cannot identify n and P separately, and hence the Binomial distribution cannot be used. However, we might know the product $n P$, in which case the Poisson can be used.

This is illustrated by the following example. A football team scores, on average, two goals every game (you can vary the example by using your own favourite team plus their scoring record). We therefore have the value of μ, although we do not know the separate values of n and P. Indeed, it is not clear to what n and P would refer in this context. How can we calculate the probability of the team scoring zero or one goal during a game?

The mean of the distribution is 2 , so we have, using the Poisson distribution:

$$
\begin{aligned}
& \operatorname{Pr}(x=0)=\frac{2^{0} \mathrm{e}^{-2}}{0!}=0.135 \\
& \operatorname{Pr}(x=0)=\frac{2^{1} \mathrm{e}^{-2}}{1!}=0.271
\end{aligned}
$$

So $\operatorname{Pr}(x=0$ or 1$)=0.406$. You should continue to calculate the probabilities of 2 or more goals and verify that the probabilities sum to 1 . (In principle you have to calculate the probabilities of $2,3,4, \ldots 100, \ldots$ which is impossible, but you will find that the probabilities soon decline to very small values which can be ignored for practical purposes.)

Oops!

The formula1.com website reported that 'The (Grand Prix motor) race in Singapore has seen a total of five safety car deployments in three races, and carries a 100% safety car probability based on historical data.'

That does not sound right, and indeed it is not. We can find the right answer via the Poisson distribution. In this case, $\mu=5 / 3=1.67$ deployments per race, on average. Hence, the probability of no safety car deployment during a race is

$$
\operatorname{Pr}(x=0)=\frac{1.67^{0} \mathrm{e}^{-1.67}}{0!}=0.189 \text { or about } 19 \%
$$

The correct answer is an 81% chance of a safety car period during the race.

Another type of problem amenable to analysis via the Poisson distribution is queuing. For example, if a shop receives, on average, 20 customers per hour, what is the probability of no customers within a five-minute period while the owner takes a coffee break?

The average number of customers per five-minute period is $20 \times 5 / 60=1.67$. The probability of a free five-minute spell is therefore

$$
\operatorname{Pr}(x=0)=\frac{1.67^{0} \mathrm{e}^{1.67}}{0!}=0.189
$$

a probability of about 19\%. Note again that this problem cannot be solved by the Binomial method since n and P are not known separately, only their product.

Exercise 3.8

(a) The probability of winning a prize in a lottery is 1 in 50 . If you buy 50 tickets, what is the probability that (i) 0 tickets win, (ii) 1 ticket wins, (iii) 2 tickets win. (iv) What is the probability of winning at least one prize?
(b) On average, a person buys a lottery ticket in a supermarket every 5 minutes. What is the probability that 10 minutes will pass with no buyers?

Railway accidents

Andrew Evans of University College London used the Poisson distribution to examine the numbers of fatal railway accidents in Britain between 1967 and 1997. Since railway accidents are, fortunately, rare, the probability of an accident in any time period is very small, and so use of the Poisson distribution is appropriate. He found that the average number of accidents has been falling over time and by 1997 had reached 1.25 p.a. This figure is therefore used as the mean μ of the Poisson distribution, and we can calculate the probabilities of $0,1,2$, etc., accidents each year. Using $\mu=1.25$ and inserting this into equation (3.26), we obtain the following table:

Number of accidents	0	1	2	3	4	5	6
Probability	0.287	0.358	0.224	0.093	0.029	0.007	0.002

and this distribution can be graphed:
Poisson distribution of railway accidents

Thus the most likely outcome is one fatal accident per year, and anything over four is extremely unlikely. In fact, Evans found that the Poisson was not a perfect fit to the data: the actual variation was less than that predicted by the model.

Source: A. W. Evans, Fatal train accidents on Britain's mainline railways, J. Royal Statistical Society, Series A, vol. 163 (1), 2000.

Summary

- The behaviour of many random variables (e.g. the result of the toss of a coin) can be described by a probability distribution (in this case, the Binomial distribution).
- The Binomial distribution is appropriate for problems where there are only two possible outcomes of a chance event (e.g. heads/tails, success/failure) and the probability of success is the same each time the experiment is conducted.
- The Normal distribution is appropriate for problems where the random variable has the familiar bell-shaped distribution. This often occurs when the variable is influenced by many, independent factors, none of which dominates the others. An example is men's heights, which are Normally distributed.
- The Poisson distribution is used in circumstances where there is a very low probability of 'success' and a high number of trials.
- Each of these distributions is actually a family of distributions, differing in the parameters of the distribution. Both the Binomial and Normal distributions have two parameters: n and P in the former case, μ and σ^{2} in the latter. The Poisson distribution has one parameter, its mean μ.
- The mean of a random sample follows a Normal distribution, because it is influenced by many independent factors (the sample observations), none of which dominates in the calculation of the mean. This statement is always true if the population from which the sample is drawn follows a Normal distribution.
- If the population is not Normally distributed, then the Central Limit Theorem states that the sample mean is Normally distributed in large samples. In this case 'large' means a sample of about 25 or more.

Key terms and concepts

Binomial distribution	probability distribution
Central Limit Theorem	probability interval
continuity correction	random variable
Normal distribution	sampling distribution
parameters	standard error
parameters of a distribution	standard Normal distribution
Poisson distribution	

Formulae used in this chapter

Formula	Description	Notes
$n C r=\frac{n!}{r!(n-r)!}$	Combinatorial formula	$n!=n \times(n-1) \times \cdots \times 1$
$\operatorname{Pr}(r)=n C r \times P^{r} \times(1-P)^{n-r}$	Binomial distribution	In shorthand notation, $r \sim B(n, P)$
$\operatorname{Pr}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}\left\{\frac{x-\mu}{\sigma}\right\}^{2}}$	Normal distribution	In shorthand notation, $x \sim N\left(\mu, \sigma^{2}\right)$
$z=\frac{\bar{x}-\mu}{\sigma^{2} / n}$	z score for the sample mean	Used to test hypotheses about the sample mean
$\operatorname{Pr}(x)=\frac{\mu^{x} e^{-\mu}}{x!}$	Poisson distribution	Used when the probability of success is very small. The 'rare event' distribution

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
3.1 Two dice are thrown and the sum of the two scores is recorded. Draw a graph of the resulting probability distribution of the sum and calculate its mean and variance. What is the probability that the sum is 9 or greater?
3.2 Two dice are thrown and the absolute difference of the two scores is recorded. Graph the resulting probability distribution and calculate its mean and variance. What is the probability that the absolute difference is 4 or more?
3.3 Sketch the probability distribution for the likely time of departure of a train. Locate the timetabled departure time on your chart.
3.4 A train departs every half hour. You arrive at the station at a completely random moment. Sketch the probability distribution of your waiting time. What is your expected waiting time?
3.5 Sketch the probability distribution for the number of accidents on a stretch of road in one day.
3.6 Sketch the probability distribution for the number of accidents on the same stretch of road in one year. How and why does this differ from your previous answer?
3.7 Six dice are rolled and the number of sixes is noted. Calculate the probabilities of $0,1, \ldots, 6$ sixes and graph the probability distribution.
3.8 If the probability of a boy in a single birth is $\frac{1}{2}$ and is independent of the sex of previous babies, then the number of boys in a family of 10 children follows a Binomial distribution with mean 5 and variance 2.5. In each of the following instances, describe how the distribution of the number of boys differs from the Binomial described above.
(a) The probability of a boy is $6 / 10$.
(b) The probability of a boy is $\frac{1}{2}$ but births are not independent. The birth of a boy makes it more than an even chance that the next child is a boy.
(c) As (b) above, except that the birth of a boy makes it less than an even chance that the next child will be a boy.
(d) The probability of a boy is $6 / 10$ on the first birth. The birth of a boy makes it a more than even chance that the next baby will be a boy.
3.9 A firm receives components from a supplier in large batches, for use in its production process. Production is uneconomic if a batch containing 10% or more defective components is used. The firm checks the quality of each incoming batch by taking a sample of 15 and rejecting the whole batch if more than one defective component is found.
(a) If a batch containing 10% defectives is delivered, what is the probability of its being accepted?
(b) How could the firm reduce this probability of erroneously accepting bad batches?
(c) If the supplier produces a batch with 3% defective, what is the probability of the firm sending back the batch?
(d) What role does the assumption of a 'large' batch play in the calculation?
3.10 The UK record for the number of children born to a mother is 39,32 of them girls. Assuming the probability of a girl in a single birth is 0.5 and that this probability is independent of previous births:
(a) Find the probability of 32 girls in 39 births (you'll need a scientific calculator or a computer to help with this).
(b) Does this result cast doubt on the assumptions?
3.11 Using equation (3.5) describing the Normal distribution and setting $\mu=0$ and $\sigma^{2}=1$, graph the distribution for the values $x=-2,-1.5,-1,-0.5,0,0.5,1,1.5,2$.
3.12 Repeat the previous problem for the values $\mu=2$ and $\sigma^{2}=3$, Use values of x from -2 in to +6 increments of 1.
3.13 For the standard Normal variable z, find
(a) $\operatorname{Pr}(z>1.64)$
(b) $\operatorname{Pr}(z>0.5)$
(c) $\operatorname{Pr}(z>-1.5)$
(d) $\operatorname{Pr}(-2<z<1.5)$
(e) $\operatorname{Pr}(z=-0.75)$.

For (a) and (d), shade in the relevant areas on the graph you drew for Problem 3.11.
3.14 Find the values of z which cut off
(a) the top 10%
(b) the bottom 15%
(c) the middle 50%
of the standard Normal distribution.
3.15 If $x \sim N(10,9)$, find
(a) $\operatorname{Pr}(x>12)$
(b) $\operatorname{Pr}(x<7)$
(c) $\operatorname{Pr}(8<x<15)$
(d) $\operatorname{Pr}(x=10)$
3.16 IQ (the intelligence quotient) is Normally distributed with mean 100 and standard deviation 16.
(a) What proportion of the population has an IQ above 120 ?
(b) What proportion of the population has an IQ between 90 and 110?
(c) In the past, about 10% of the population went to university. Now the proportion is about 30%. What was the IQ of the 'marginal' student in the past? What is it now?
3.17 Ten adults are selected at random from the population and their IQ measured. (Assume a population mean of 100 and standard deviation of 16 as in Problem 3.16.)
(a) What is the probability distribution of the sample average IQ?
(b) What is the probability that the average IQ of the sample is over 110 ?
(c) If many such samples were taken, in what proportion would you expect the average IQ to be over 110 ?
(d) What is the probability that the average IQ lies within the range 90 to 110 ? How does this answer compare to the answer to part (b) of Problem 3.16? Account for the difference.
(e) What is the probability that a random sample of 10 university students has an average IQ greater than 110 ?
(f) The first adult sampled has an IQ of 150 . What do you expect the average IQ of the sample to be?
3.18 The average income of a country is known to be $£ 10000$ with standard deviation $£ 2500$. A sample of 40 individuals is taken and their average income calculated.
(a) What is the probability distribution of this sample mean?
(b) What is the probability of the sample mean being over $£ 10500$?
(c) What is the probability of the sample mean being below $£ 8000$?
(d) If the sample size were 10, why could you not use the same methods to find the answers to (a)-(c)?
3.19 A coin is tossed 10 times. Write down the distribution of the number of heads,
(a) exactly, using the Binomial distribution,
(b) approximately, using the Normal distribution.
(c) Find the probability of four or more heads, using both methods. How accurate is the Normal method, with and without the continuity correction?
3.20 A machine producing electronic circuits has an average failure rate of 15% (they are difficult to make). The cost of making a batch of 500 circuits is $£ 8400$ and the good ones sell for $£ 20$ each. What is the probability of the firm making a loss on any one batch?
3.21 An experienced invoice clerk makes an error once in every 100 invoices, on average.
(a) What is the probability of finding a batch of 100 invoices without error?
(b) What is the probability of finding such a batch with more than two errors?

Calculate the answers using both the Binomial and Poisson distributions. If you try to solve the problem using the Normal method, how accurate is your answer?
3.22 A firm employing 100 workers has an average absenteeism rate of 4%. On a given day, what is the probability of (a) no workers, (b) one worker, (c) more than six workers being absent?
3.23 (Computer project) This problem demonstrates the Central Limit Theorem at work. In your spreadsheet, use the $=R A N D$ () function to generate a random sample of 25 observations (I suggest entering this function in cells A4:A28, for example). Copy these cells across 100 columns, to generate 100 samples. In row 29, calculate the mean of each sample. Now examine the distribution of these sample means. (Hint: you will find the RAND() function recalculates automatically every time you perform an operation in the spreadsheet. This makes it difficult to complete the analysis. The solution is to copy and then use 'Edit, Paste Special, Values' to create a copy of the values of the sample means. These will remain stable.)
(a) What distribution would you expect them to have?
(b) What is the parent distribution from which the samples are drawn?
(c) What are the parameters of the parent distribution and of the sample means?
(d) Do your results accord with what you would expect?
(e) Draw up a frequency table of the sample means and graph it. Does it look as you expected?
(f) Experiment with different sample sizes and with different parent distributions to see the effect that these have.
3.24 (Project) An extremely numerate newsagent (with a spreadsheet program, as you will need) is trying to work out how many copies of a newspaper he should order. The cost to him per copy is 40 pence, which he then sells at $£ 1.20$. Sales are distributed Normally with an average daily sale of 250 and variance 625 . Unsold copies cannot be returned for credit or refund; he has to throw them away.
(a) What do you think the seller's objective should be?
(b) How many copies should he order?
(c) What happens to the variance of profit as he orders more copies?
(d) Calculate the probability of selling more than X copies. (Create an extra column in the spreadsheet for this.) What is the value of this probability at the optimum number of copies ordered?
(e) What would the price-cost ratio have to be to justify the seller ordering X copies?
(f) The wholesaler offers a sale or return deal, but the cost per copy is 45 p. Should the seller take up this new offer?
(g) Are there other considerations which might influence the seller's decision? Hints:
Set up your spreadsheet as follows:

col. A:	(cells A10:A160) 175, 176, . . up to 325 in unit increments (to represent sales levels).
col. B:	(cells B10:B160) the probability of sales falling between 175 and 176 , between 176 and 177, etc., up to $325-326 . ~(E x c e l ~ h a s ~ t h e ~ ' ~$$=$ NORMDIST()' function to do this - see
the help facility.)	

(cells C10:C160) total cost $(=0.40 \times$ number ordered. Put the latter in cell F3 so you
can reference it and change its value).

Now vary the number ordered (cell F3) to find the maximum value in F161. You can also calculate the variance of profit fairly simply, using an extra column.
3.25 (Project) Using a weekend's football results from the Premier (or other) League, see if the number of goals per game can be adequately modelled by a Poisson process. First calculate the average number of goals per game for the whole league, and then derive the distribution of goals per game using the Poisson distribution. Do the actual numbers of goals per game follow this distribution? You might want to take several weeks' results to obtain more reliable results.
3.26 (Project) A report in The Guardian newspaper (20 June 2010, http://www.guardian.co.uk/education/ 2010/jun/20/internet-plagiarism-rising-in-schools) reports 'Half of university students also prepared to submit essays bought off the internet, according to research.' According to the article, a survey (sample size not specified) found that 45% of students were certain that a peer had cheated during an essay, report, test or exam in the past year. Evaluate this evidence from a statistical point of view. Find a formula to calculate the true proportion, given the reported proportion (adapting the formula in the example in this chapter) and use this to evaluate the claim in the article. Using your formula, what is the true proportion based on the reported figure? If the reported proportion is 100%, what is the estimated true figure? Does this seem right? If not, why not?

The article also reported that they (the students) 'would be prepared to pay more than $£ 300$ for a first class essay'. Comment also upon this finding. What precisely does it mean?

Answers to exercises

Exercise 3.1

(a) $0.6^{4}=0.1296$ or 12.96%.
(b) $0.6^{2} \times 0.4^{2} \times 4 C 2=0.3456$.
(c) $\operatorname{Pr}(r)=0.6^{r} \times 0.4^{4-r} 4 C r$. The probabilities of $r=0 \ldots 4$ are, respectively, 0.0256 , $0.1536,0.3456,0.3456,0.1296$, which sum to one.

Exercise 3.2

(a)

r	$P(r)$	$r \times P(r)$	$r^{2} \times P(r)$
0	0.0256	0	0
1	0.1536	0.1536	0.1536
2	0.3456	0.6912	1.3824
3	0.3456	1.0368	3.1104
4	0.1296	0.5184	2.0736
Totals	1	2.4	6.72

The mean $=2.4 / 1=2.4$ and the variance $=6.72 / 1-2.4^{2}=0.96$. Note that these are equal to $n P$ and $n P(1-P)$.
(b)

Exercise 3.3

(a) $z=(50-40) / \sqrt{36}=1.67$ and from Table A2 the area beyond $z=1.67$ is 4.75 .
(b) $z=-0.83$ so area is 20.33%.
(c) This is symmetric around the mean, $z= \pm 0.67$, and the area within these two bounds is 49.72%.

Exercise 3.4

To obtain the IQR we need to go 0.67 standard deviations above and below the mean, giving $200 \pm 0.67 \times 16=[189.28,210.72]$.

Exercise 3.5

The IQR (in logs) is within $4.18 \pm 0.67 \times \sqrt{2.56}=[3.11,5.25]$. Translated out of logs (using 10^{x}) yields [1288.2, 177827.9]. Thus, we would expect 50% of the population to have incomes within this range of values.

Exercise 3.6

(a) $e \sim N(50,64 / 25)$.
(b) The standard error gets smaller. It is $1 / / 2$ times its previous value.
(c) (i) $z=(51-50) / \sqrt{64 / 25}=0.625$. Hence area in tail $=26.5$. (ii) $z=-1.25$, hence area $=10.56$. (iii) z values are -0.625 and +0.3125 , giving tail areas of 26.5% and 37.8%, totalling 64.3%. The area between the limits is therefore 35.7%.

Exercise 3.7

(a) For this problem we have $p=0.5$ and $n=20$. Binomial method: $\operatorname{Pr}(r)=$ $0.5^{r} \times 0.5^{(20-r)} \times 20 \mathrm{Cr}$. This gives the probabilities of 15,16 , etc., heads as 0.0148 , 0.0046 , etc., which total 0.0207 or 2.1%. By the Normal approximation, $r \sim N(n P, N p(1-P)) .=N(10,5)$ and $z=(14.5-10) / \sqrt{5}=2.01$. The area in the tail is then 2.22%, not far off the correct value (a 10% error). Note that $n p=10=n(1-p)$.
(b) We have $P=0.7, n=6$. Binomial method: $\operatorname{Pr}(5$ or 6 heads $)=0.302+0.118=$ 0.420 or 42%. By the Normal, $r \sim N(4.2,1.26), z=0.267$ and the area is 39.36%, still reasonably close to the correct answer despite the fact that $n(1-P)=1.8$.
(c) By similar methods the answers are 11.8\% (Binomial) and 12.3\% (Normal).

Exercise 3.8

(a) (i) $\mu=1$ in this case $(1 / 50 \times 50)$ so $\operatorname{Pr}(x=0)=\mu^{x} e^{-\mu} / x!=1^{0} e^{-1} / 0$! $=0.368$. (ii) $\operatorname{Pr}(x=1)=1^{1} e^{-1} / 1!=0.368$. (iii) $1^{2} e^{-1} / 2!=0.184$. (iv) $1-0.368=0.632$.
(b) The average number of customers per 10 minutes is $2(=10 / 5)$. Hence, $\operatorname{Pr}(x=0)=2^{0} e^{-2} / 0!=0.135$.

Estimation and confidence intervals

Learning outcomes 164
Introduction 165
Point and interval estimation 165
Rules and criteria for finding estimates 166
Bias 166
Precision 167
Mean squared error 168
The trade-off between bias and precision: the Bill Gates effect 169
Estimation with large samples 170
Estimating a mean 170
Precisely what is a confidence interval? 173
Estimating a proportion 175
Estimating the difference between two means 177
Estimating the difference between two proportions 180
Estimation with small samples: the t distribution 181
Estimating a mean 183
Estimating the difference between two means 184
Estimating proportions 186
Summary 186
Key terms and concepts 187
Formulae used in this chapter 188
Problems 188
Answers to exercises 191
Appendix: Derivations of sampling distributions 193
By the end of this chapter you should be able to:

- recognise the importance of probability theory in drawing valid inferences (or derivingestimates) from a sample of data
- understand the criteria for constructing a good estimate
- construct estimates of parameters of interest from sample data, in a variety of different circumstances
- appreciate that there is uncertainty about the accuracy of any such estimate
- provide measures of the uncertainty associated with an estimate
- recognise the relationship between the size of a sample and the precision of an estimate derived from it.

Introduction

We now come to the heart of the subject of statistical inference. Up until now the following type of question has been examined: given the population parameters μ and σ^{2}, what is the probability of the sample mean \bar{x}, from a sample of size n, being greater than some specified value or within some range of values? The parameters μ and σ^{2} are assumed to be known and the objective is to try to form some conclusions about possible values of \bar{x}. However, in practice it is usually the sample values \bar{x} and s^{2} that are known, while the population parameters μ and σ^{2} are not. Thus a more interesting question to ask is: given the values of \bar{x} and s^{2} from a sample of size n, what can be said about μ and σ^{2} ? For example, if a sample of 50 British families finds an average weekly expenditure on food (\bar{x}) of $£ 37.50$ with a standard deviation (s) of $£ 6.00$, what can be said about the average expenditure (μ) of all British families?

Schematically these issues can be shown as follows:

Sample information		Population parameters
\bar{x}, s^{2}, n	Probability statements about	μ, σ^{2}
\bar{x}, s^{2}, n	\longleftarrow	
	Inferences about	μ, σ^{2}

It is important to recognise the differences between making probability statements about sample statistics such as \bar{x}, and making inferences about unknown parameters such as μ. We will go into this in more detail in this chapter.

This chapter covers the estimation of population parameters such as μ and σ^{2}, while Chapter 5 describes testing hypotheses about these parameters. The two procedures are closely related, being two ways of drawing inferences about the parameters, but there are important differences between them.

Point and interval estimation

There are basically two ways in which an estimate of a parameter can be presented. The first of these is a point estimate, i.e. a single value which is in some sense the best estimate of the parameter of interest. The point estimate is the one which is most prevalent in everyday usage; for example, men spend an average of 43 minutes per day ogling women ${ }^{1}$. Although this is presented as a fact, it is actually an estimate, obtained from a survey. Since it is obtained from a sample, there must be some doubt about its accuracy - the sample will probably not exactly represent the whole population. For this reason, interval estimates are also used, giving a range of values which give an idea of the likely accuracy of the estimate. If the sample size is small, for example, then it is quite possible that the estimate is not very close to the

[^16]true value and this would be reflected in a wide interval estimate, for example, that the average man spends between 33 and 53 minutes ogling women per day ${ }^{2}$. A larger sample, or a better method of estimation, would allow a narrower interval to be derived and thus a more precise estimate of the parameter to be obtained, such as an average ogling time of between 40 and 46 minutes. Interval estimates are better for the consumer of the statistics, since they not only show the estimate of the parameter but also give an idea of the confidence which the researcher has in that estimate. The following sections describe how to construct both types of estimate.

Rules and criteria for finding estimates

In order to estimate a parameter such as the population mean, a rule (or set of rules) is required which describes how to derive the estimate of the parameter from the sample data. Such a rule is known as an estimator. An example of an estimator for the population mean is 'use the sample mean'. It is important to distinguish between an estimator, a rule, and an estimate, which is the value derived as a result of applying the rule to the data.

There are many possible estimators for any parameter, so it is important to be able to distinguish between good and bad estimators. The following examples provide some possible estimators of the population mean:
(1) the sample mean
(2) the smallest sample observation
(3) the first sample observation.

A set of criteria is needed for discriminating between good and bad estimators. Which of the above three estimators is 'best'? Two important criteria by which to judge estimators are bias and precision.

Bias
It is impossible to know if a single estimate of a parameter, derived by applying a particular rule to the sample data, gives a correct estimate of the parameter or not. The estimate might be too low or too high and, since the parameter is unknown, it is impossible to check this. What is possible, however, is to say whether an estimator gives the correct answer on average. An estimator which gives the correct answer on average is said to be unbiased. Another way of expressing this is to say that an unbiased estimator does not systematically mislead the researcher away from the correct value of the parameter. It is important to remember, however, that even using an unbiased estimator does not guarantee that a single use of the estimator will yield a correct estimate of the parameter. Bias (or the lack of it) is a theoretical property.

Formally, an estimator is unbiased if its expected value is equal to the parameter being estimated. Consider trying to estimate the population mean using the

[^17]three estimators suggested above. Taking the sample mean first, we have already learned (see equation (3.15)) that its expected value is μ, i.e.
$$
\mathrm{E}(\bar{x})=\mu
$$
which immediately shows that the sample mean is an unbiased estimator.
The second estimator (the smallest observation in the sample) can easily be shown to be biased, using the result derived above. Since the smallest sample observation must be less than the sample mean, its expected value must be less than μ. Denote the smallest observation by χ_{s}, then
$$
\mathrm{E}\left(x_{\mathrm{s}}\right)<\mu
$$
so this estimator is biased downwards. It underestimates the population mean. The size of the bias is simply the difference between the expected value of the estimator and the value of the parameter, so the bias in this case is
\[

$$
\begin{equation*}
\text { Bias }=\mathrm{E}\left(x_{\mathrm{s}}\right)-\mu \tag{4.1}
\end{equation*}
$$

\]

For the sample mean $\bar{\chi}$ the bias is obviously zero.
Turning to the third rule (the first sample observation), this can be shown to be another unbiased estimator. Choosing the first observation from the sample is equivalent to taking a random sample of size one from the population in the first place. Thus, the single observation may be considered as the sample mean from a random sample of size one. Since it is a sample mean, it is unbiased, as demonstrated earlier.

Precision

Two of the estimators above were found to be unbiased, and, in fact, there are many unbiased estimators (the sample median is another, for example). Some way of choosing between the set of all unbiased estimators is therefore required, which is where the criterion of precision helps. Unlike bias, precision is a relative concept, comparing one estimator to another. Given two estimators A and B, A is more precise than B if the estimates A yields (from all possible samples) are less spread out than those of estimator B. A precise estimator will tend to give similar estimates for all possible samples.

Consider the two unbiased estimators found above: how do they compare on the criteria of precision? It turns out that the sample mean is the more precise of the two, and it is not difficult to understand why. Taking just a single sample observation means that it is quite likely to be unrepresentative of the population as a whole, and thus leads to a poor estimate of the population mean. The single observation might be an extreme value from the population, purely by chance. The sample mean, on the other hand, is based on all the sample observations, and it is unlikely that all of them are unrepresentative of the population. The sample mean is therefore a good estimator of the population mean, being more precise than the single observation estimator.

Just as bias was related to the expected value of the estimator, so precision can be defined in terms of the variance. One estimator is more precise than another if it has a smaller variance. Recall that the probability distribution of the sample mean is

$$
\begin{equation*}
\bar{x} \sim N\left(\mu, \sigma^{2} / n\right) \tag{4.2}
\end{equation*}
$$

Figure 4.1 The sampling distributions of two estimators

in large samples, so the variance of the sample mean is

$$
V(\bar{x})=\sigma^{2} / n
$$

As the sample size n gets larger the variance of the sample mean becomes smaller, so the estimator becomes more precise. For this reason, large samples give better estimates than small samples, and so the sample mean is a better estimator than taking just one observation from the sample. The two estimators can be compared in a diagram (see Figure 4.1) which draws the probability distributions of the two estimators.

It is easily seen that Estimator A (the larger sample) yields estimates which are on average closer to the population mean.

Mean squared error

The two measures, bias and precision, can be combined in the mean squared error (MSE) of the estimate. This is defined, for an estimator θ, as

$$
\mathrm{MSE}=\mathrm{E}\left((\hat{\theta}-\theta)^{2}\right)
$$

where $\hat{\theta}$ is an estimate of θ. The larger the value of the MSE, the further the estimate is likely to be from the true value and hence the poorer the estimator. It can be shown the MSE is equal to the variance of the estimator plus the square of the bias:

$$
\text { MSE }=\text { variance }+ \text { bias }^{2}
$$

The MSE therefore captures both variance and bias and estimators can be compared using this new concept. The estimator with the smaller MSE is considered superior.

Most of the estimators covered in this text turn out to be unbiased, so the MSE is then simply equal to the variance. A related concept using the variance is that of efficiency. The efficiency of one unbiased estimator, relative to another, is given by the ratio of their sampling variances ${ }^{3}$. Thus, the efficiency of the first observation estimator, relative to the sample mean, is given by

$$
\begin{equation*}
\text { Efficiency }=\frac{\operatorname{var}(\bar{x})}{\operatorname{var}\left(x_{1}\right)}=\frac{\sigma^{2} / n}{\sigma^{2}}=\frac{1}{n} \tag{4.3}
\end{equation*}
$$

[^18]Thus the efficiency is determined by the relative sample sizes in this case. Other things being equal, a more efficient estimator is to be preferred.

Similarly, the variance of the median can be shown to be (for a Normal distribution) $\pi / 2 \times \sigma^{2} / n$ in large samples. The efficiency of the median is therefore $2 / \pi \approx 64 \%$ (compared to using the sample mean) and so on this basis the sample mean is a preferred estimator.

The trade-off between bias and precision: the Bill Gates effect

It should be noted that just because an estimator is biased does not necessarily mean that it is imprecise. Sometimes there is a trade-off between an unbiased, but imprecise, estimator and a biased, but precise, one. Figure 4.2 illustrates this.

Although estimator A is biased (it is not centred around μ), it will nearly always yield an estimate which is fairly close to the true value; even though the estimate is expected to be wrong, it is not likely to be far wrong. Estimator B, although unbiased, can give estimates which are far away from the true value, so that A might be the preferred estimator.

As an example of this, suppose we are trying to estimate the average wealth of the US population. Consider the following two estimators:
(1) Use the mean wealth of a random sample of Americans.
(2) Use the mean wealth of a random sample of Americans but, if Bill Gates is in the sample, omit him from the calculation.

Bill Gates, the former Chairman of Microsoft, is one of the world's richest men. He is a dollar billionaire (about $\$ 50 \mathrm{bn}$ or more according to recent reports - it varies with the stock market). His presence in a sample of, say, 30 observations would swamp the sample and give a highly misleading result. Assuming Bill Gates has $\$ 50 \mathrm{bn}$ and the others each have $\$ 200000$ of wealth, the average wealth would be estimated at about $\$ 1.6 \mathrm{bn}$, which is surely wrong.

The first rule could therefore give us a wildly incorrect answer, although the rule is unbiased. The second rule is clearly biased but does rule out the possibility of such an unlucky sample. We can work out the approximate bias. It is the difference between the average wealth of all Americans and the average wealth of all

Figure 4.2
The trade-off between bias and precision

Americans except Bill Gates. If the true average of all 250 million Americans is $\$ 200000$, then total wealth is $\$ 50000 \mathrm{bn}$. Subtracting Bill's $\$ 50 \mathrm{bn}$ leaves $\$ 49$ 950bn shared amongst the rest, giving $\$ 199800$ each, a difference of 0.1%. This is what we would expect the bias to be.

It might seem worthwhile, therefore, to accept this degree of bias in order to improve the precision of the estimate. Furthermore, if we did use the biased rule, we could adjust the sample mean upwards by 0.1% or so to compensate (if only approximately).

Of course, this point applies to any exceptionally rich person, not just Bill Gates. It points to the need to ensure that the rich are not over- (nor under-) represented in the sample. Chapter 9 on sampling methods investigates this point in more detail. In the rest of this text only unbiased estimators are considered, the most important being the sample mean.

Estimation with large samples

For the type of problem encountered in this chapter, the method of estimation differs according to the size of the sample. 'Large' samples, by which is meant sample sizes of 25 or more, are dealt with first, using the Normal distribution. Small samples are considered in a later section, where the t distribution is used instead of the Normal. The differences are relatively minor in practical terms and there is a close theoretical relationship between the t and Normal distributions.

With large samples there are three types of estimation problem we will consider.
(1) The estimation of a mean from a sample of data.
(2) The estimation of a proportion on the basis of sample evidence. This would consider a problem such as estimating the proportion of the population intending to buy an iPhone, based on a sample of individuals. Each person in the sample would simply indicate whether they have bought, or intend to buy, an iPhone. The principles of estimation are the same as in the first case but the formulae used for calculation are slightly different.
(3) The estimation of the difference of two means (or proportions), for example, a problem such as estimating the difference between men's and women's expenditure on clothes. Once again, the principles are the same, the formulae different.

Estimating a mean

To demonstrate the principles and practice of estimating the population mean, we shall take the example of estimating the average wealth of the UK population, the full data for which were given in Chapter 1. Suppose that we did not have this information but were required to estimate the average wealth from a sample of data. In particular, let us suppose that the sample size is $n=100$, the sample mean is $\bar{x}=180$ (in $£ 000$) and the sample variance is $s^{2}=75000$. Evidently, this sample has got fairly close to the true values (see Chapter 1), but we could not know that from the sample alone. What can we infer about the population mean μ from the sample data alone?

For the point estimate of μ the sample mean is a good candidate since it is unbiased, and it is generally more precise than other sample statistics such as the median. The point estimate of μ is simply $£ 180000$, therefore.

The point estimate does not give an idea of the uncertainty associated with the estimate. We are not absolutely sure that the mean is $£ 180000$ (in fact, it is not - it is $£ 186875$). The interval estimate in contrast gives some idea of the uncertainty. It is centred on the sample mean, but gives a range of values to express the uncertainty.

To obtain the interval estimate we first require the probability distribution of \bar{x}, first established in Chapter 3 (equation (3.17)):

$$
\begin{equation*}
\bar{x} \sim N\left(\mu, \sigma^{2} / n\right) \tag{4.4}
\end{equation*}
$$

From this, it was calculated that there is a 95% probability of the sample mean lying within 1.96 standard errors of μ^{4}, i.e.

$$
\operatorname{Pr}\left(\mu-1.96 \sqrt{\sigma^{2} / n} \leq \bar{x} \leq \mu+1.96 \sqrt{\sigma^{2} / n}\right)=0.95
$$

We can manipulate each of the inequalities within the brackets to make μ the subject of the expression:

$$
\mu-1.96 \sqrt{\sigma^{2} / n} \leq \bar{x} \quad \text { implies } \quad \mu \leq \bar{x}+1.96 \sqrt{\sigma^{2} / n}
$$

Similarly

$$
\bar{x} \leq \mu+1.96 \sqrt{\sigma^{2} / n} \quad \text { implies } \quad \bar{x}-1.96 \sqrt{\sigma^{2} / n} \leq \mu
$$

Combining these two new expressions, we obtain

$$
\begin{equation*}
\left[\bar{x}-1.96 \sqrt{\sigma^{2} / n} \leq \mu \leq \bar{x}+1.96 \sqrt{\sigma^{2} / n}\right] \tag{4.5}
\end{equation*}
$$

We have transformed the probability interval. Instead of saying $\bar{\chi}$ lies within 1.96 standard errors of μ, we now say μ lies within 1.96 standard errors of \bar{x}. Figure 4.3 illustrates this manipulation. Figure 4.3(a) shows μ at the centre of a probability interval for \bar{x}. Figure 4.3 (b) shows a sample mean \bar{x} at the centre of an interval relating to the possible positions of μ.

The interval shown in equation (4.5) is called the 95% confidence interval, and this is the interval estimate for μ. In this formula the value of σ^{2} is unknown, but in large ($n \geq 25$) samples it can be replaced by s^{2} from the sample. s^{2} is here used as an estimate of σ^{2} which is unbiased and sufficiently precise in large ($n \geq 25$ or so) samples. The 95% confidence interval is therefore

$$
\begin{align*}
& {\left[\bar{x}-1.96 \sqrt{s^{2} / n} \leq \mu \leq \bar{x}+1.96 \sqrt{s^{2} / n}\right]} \tag{4.6}\\
& =[180-1.96 \sqrt{75000 / 100}, 180+1.96 \sqrt{75000 / 100}] \\
& =[126.3,233.7]
\end{align*}
$$

Thus the 95% confidence interval estimate for the true average level of wealth ranges between $£ 126300$ and $£ 233700$. Note that $£ 180000$ lies exactly at the centre of the interval ${ }^{5}$ (because of the symmetry of the Normal distribution).

[^19]Figure 4.3(a) The 95% probability interval for \bar{x} around the population mean μ

Figure 4.3(b)
The 95% confidence interval for μ around the sample mean \bar{X}

A more compact way of writing the confidence interval for μ, instead of equation (4.6), is

$$
\begin{equation*}
\bar{x} \pm 1.96 \sqrt{s^{2} / n} \tag{4.6b}
\end{equation*}
$$

which highlights the interval lying between the sample mean plus and minus 1.96 standard errors. This is easy to remember and can be used for different types of problem, as we show below.

By examining equation (4.6) or equation (4.6b), one can see that the confidence interval is wider
(1) the smaller the sample size,
(2) the greater the standard deviation of the sample.

The greater uncertainty which is associated with smaller sample sizes is manifested in a wider confidence interval estimate of the population mean. This occurs because a smaller sample has more chance of being unrepresentative (just because of an unlucky sample).

Greater variation in the sample data also leads to greater uncertainty about the population mean and a wider confidence interval. Greater sample variation suggests greater variation in the population so, again, a given sample could include observations which are a long way off the mean. Note that in this example there is great variation of wealth in the population and hence in the sample
also. This means that a sample of 100 is not very informative (the confidence interval is quite wide). We would need a substantially larger sample to obtain a more precise estimate.

Note that the width of the confidence interval does not depend upon the population size - a sample of 100 observations reveals as much about a population of 10000 as it does about a population of 10000000 . In fact, this is not quite correct: if the sample were a large proportion of the population (of say 200 in this case), then the confidence interval should be narrower. However, in most cases this does not apply, and it is the sample size that really matters. This point will be discussed in more detail in Chapter 9 on sampling methods. This is a result that often surprises people, who generally believe that a larger sample is required if the population is larger.

Worked example 4.1

A sample of 50 school students found that they spent 45 minutes doing homework each evening, with a standard deviation of 15 minutes. Estimate the average time spent on homework by all students.

The sample data are $\bar{x}=45, s=15$ and $n=50$. If we can assume the sample is representative, we may use \bar{x} as an unbiased estimate of μ, the population mean. The point estimate is therefore 45 minutes.

The 95% confidence interval is given by equation (4.6b):

$$
\begin{aligned}
& \bar{x} \pm 1.96 \sqrt{s^{2} / n} \\
& =45 \pm 1.96 \sqrt{15^{2} / 50} \\
& =45 \pm 4.2 \text { or }[40.8,49.2]
\end{aligned}
$$

The 95% confidence interval lies between 40.8 and 49.2 minutes. This might then be reasonably expressed as 'between 41 and 49 minutes'.

Exercise 4.1

(a) A sample of 100 is drawn from a population. The sample mean is 25 and the sample standard deviation is 50 . Calculate the point and 95% confidence interval estimates for the population mean.
(b) If the sample size were 64, how would this alter the point and interval estimates?

Exercise 4.2

A sample of size 40 is drawn with sample mean 50 and standard deviation 30 . Is it likely that the true population mean is 60 ?

Precisely what is a confidence interval?

There is often confusion over what a 95% confidence interval actually means. This is not really surprising since the obvious interpretation turns out to be wrong. It does not mean that there is a 95% chance that the true mean lies within the interval. We cannot make such a probability statement because of our definition of probability (based on the frequentist view of a probability). That view states that one can make a probability statement about a random variable (such
as \bar{x}) but not about a parameter (such as μ). μ either lies within the interval or it does not - it cannot lie 95% within it. Unfortunately, we just do not know what the truth is.

It is for this reason that we use the term 'confidence interval' rather than 'probability interval'. Unfortunately, words are not as precise as numbers or algebra, and so most people fail to recognise the distinction. A precise explanation of the 95% confidence interval runs as follows. If we took many samples (all the same size) from a population with mean μ and calculated a confidence interval from each sample, we would find that μ lies within 95% of the calculated intervals. Of course, in practice we do not take many samples, usually just one. We do not know (and cannot know) if our one sample is one of the 95% or one of the 5% that miss the mean.

Figure 4.4 illustrates the point. It shows 95% confidence intervals calculated from 20 samples drawn from a population with a mean of 5 . As expected, we see that 19 of these intervals contain the true mean, while the interval calculated from sample 9 does not contain the true value. This is the expected result, but is not guaranteed. You might obtain all 20 intervals containing the true mean, or fewer than 19. In the long run (with lots of estimates), we would expect 95% of the calculated intervals to contain the true mean.

A second question is, why use a probability (and hence a confidence level) of 95% ? In fact, one can choose any confidence level, and thus confidence interval. The 90% confidence interval can be obtained by finding the z score which cuts off the outer 10% of the Normal distribution (5% in each tail). From Table A2 (see page 450) this is $z=1.64$, so the 90% confidence interval is given by the sample mean plus and minus 1.64 standard errors:

$$
\begin{align*}
& \bar{x} \pm 1.64 \sqrt{s^{2} / n} \tag{4.7}\\
& =180 \pm 1.64 \sqrt{75000 / 100} \\
& =180 \pm 44.9 \text { or }[135.1,224.9]
\end{align*}
$$

Figure 4.4
Confidence intervals calculated from 20 samples

Notice that this is narrower than the 95% confidence level. The greater the degree of confidence desired, the wider the interval has to be. Any confidence level may be chosen, and by careful choice of this level the confidence interval can be made as wide or as narrow as wished. This would seem to undermine the purpose of calculating the confidence interval, which is to obtain some idea of the uncertainty attached to the estimate. This is not the case, however, because the reader of the results can interpret them appropriately, as long as the confidence level is made clear. To simplify matters, the 95% and 99% confidence levels are the most commonly used and serve as conventions. Beware of the researcher who calculates the 76% confidence interval - this may have been chosen in order to obtain the desired answer rather than in the spirit of scientific enquiry. The general formula for the $(100-\alpha) \%$ confidence interval is

$$
\begin{equation*}
\bar{x} \pm z_{\alpha} \sqrt{s^{2} / n} \tag{4.8}
\end{equation*}
$$

where z_{α} is the z score which cuts off the extreme $\alpha \%$ (in both tails, hence $\alpha / 2$ in each tail) of the Normal distribution.

Exercise 4.3 will test your understanding of what a confidence interval really is.

Exercise 4.3

A study finds that the 95% confidence interval estimate for the mean of a population ranges from 0.1 to 0.4. Which of the following statements are true and which false?
(a) The probability that the true mean is greater than 0 is at least 95%.
(b) The probability that the true mean is 0 is less than 5%.
(c) The hypothesis that the true mean is 0 is unlikely to be correct.
(d) There is a 95% probability that the true mean lies between 0.1 and 0.4 .
(e) We can be 95% confident that the true mean lies between 0.1 and 0.4 .
(f) If we were to repeat the experiment many times, then 95% of the time the true mean lies between 0.1 and 0.4 .

Estimating a proportion

It is often the case that we wish to estimate the proportion of the population that has a particular characteristic (e.g. is unemployed), rather than wanting an average. Given what we have already learned, this is fairly straightforward and is based on similar principles. Suppose that, following Chapter 1, we wish to estimate the proportion of educated people who are unemployed. We have a random sample of 200 individuals, of whom 15 are unemployed. What can we infer?

The sample data are:

$$
\begin{aligned}
& n=200, \text { and } \\
& p=0.075(=15 / 200)
\end{aligned}
$$

where p is the (sample) proportion unemployed, 7.5% in this case. We denote the population proportion by the Greek letter π and it is this that we are trying to estimate using data from the sample.

The key to solving this problem is recognising p as a random variable just like the sample mean. This is because its value depends upon the sample drawn and will vary from sample to sample. Once the probability distribution of this random
variable is established, the problem is quite easy to solve, using the same methods as were used for the mean. The sampling distribution of p is ${ }^{6}$

$$
\begin{equation*}
p \sim N\left(\pi, \frac{\pi(1-\pi)}{n}\right) \tag{4.9}
\end{equation*}
$$

This tells us that the sample proportion is centred on the true value but will vary around it, varying from sample to sample. This variation is expressed by the variance of p, whose formula is $\pi(1-\pi) / n$. Having derived the probability distribution of p, we can use the same methods of estimation as for the sample mean. Since the expected value of p is π, the sample proportion is an unbiased estimate of the population parameter. The point estimate of π is simply p, therefore. Thus, it is estimated that 7.5% of all educated people are unemployed.

Given the sampling distribution for p in equation (4.9), the formula for the 95% confidence interval for π can immediately be written down as:

$$
\begin{equation*}
p \pm 1.96 \sqrt{\frac{\pi(1-\pi)}{n}} \tag{4.10}
\end{equation*}
$$

or alternatively

$$
\left[p-1.96 \sqrt{\frac{\pi(1-\pi)}{n}}, p+1.96 \sqrt{\frac{\pi(1-\pi)}{n}}\right]
$$

As usual, the 95% confidence interval limits are given by the point estimate plus and minus 1.96 standard errors.

Since the value of π is unknown, the confidence interval cannot yet be calculated, so the sample value of 0.075 has to be used instead of the unknown π. Like the substitution of s^{2} for σ^{2} in the case of the sample mean above, this is acceptable in large samples. Thus, the 95% confidence interval becomes

$$
\begin{align*}
& 0.075 \pm 1.96 \sqrt{\frac{0.075(1-0.075)}{200}} \tag{4.11}\\
& =0.075 \pm 0.037 \\
& =[0.038,0.112]
\end{align*}
$$

We say that the 95% confidence interval estimate for the true proportion of unemployed people lies between 3.8% and 11.2%.

It can be seen that these two cases apply a common method. The 95% confidence interval is given by the point estimate plus or minus 1.96 standard errors. For a different confidence level, 1.96 would be replaced by the appropriate value from the standard Normal distribution.

With this knowledge, two further cases can be swiftly dealt with.

Worked example 4.2 Music down the phone

Do you get angry when you try to phone an organisation and you get an automated reply followed by music while you hang on? Well, you are not alone. Mintel (a consumer survey company) asked 1946 adults what they thought of

[^20]music played to them while they were trying to get through on the phone; 36% reported feeling angered by the music played to them and more than one in four were annoyed by the automated voice response.

With these data we can calculate a confidence interval for the true proportion of people who dislike the music. First, we assume that the sample is a truly random one. This is probably not strictly true, so our calculated confidence interval will only be an approximate one. With $p=0.36$ and $n=1946$ we obtain the following 95\% interval:

$$
\begin{aligned}
p \pm 1.96 \times \sqrt{\frac{p(1-p)}{n}} & =0.36 \pm 1.96 \times \sqrt{\frac{0.36(1-0.36)}{1946}} \\
& =0.36 \pm 0.021=[0.339,0.381]
\end{aligned}
$$

Mintel further estimated that 2800 million calls were made by customers to call centres per year, so we can be (approximately) 95% confident that between 949 million and 1067 million of those calls have an unhappy customer on the line.

Source: The Times, 10 July 2000.

Estimating the difference between two means

We now move on to estimating differences. In this case we have two samples and want to know whether there is a difference between their respective populations. One sample might be of men, the other of women, or we could be comparing two different countries, etc. A point estimate of the difference is easy to obtain, but once again there is some uncertainty around this figure, because it is based on samples. Hence, we measure that uncertainty via a confidence interval. All we require are the appropriate formulae. Consider the following example.

Thirty-five pupils from school 1 scored an average mark of 70% in an exam, with a standard deviation of 12%; 60 pupils from school 2 scored an average of 62% with standard deviation 18%. Estimate the true difference between the two schools in the average mark obtained.

This is a more complicated problem than those previously treated since it involves two samples rather than one. An estimate has to be found for $\mu_{1}-\mu_{2}$ (the true difference in the mean marks of the schools), in the form of both point and interval estimates. The pupils taking the exams may be thought of as samples of all pupils in the schools who could potentially take the exams.

Notice that this is a problem about sample means, not proportions, even though the question deals in percentages. The point is that each observation in the sample (i.e. each student's mark) can take a value between 0 and 100 , and one can calculate the standard deviation of the marks. For this to be a problem of sample proportions, the mark for each pupil would each have to be of the pass/fail type, so that one could only calculate the proportion who passed.

One might think that the way to approach this problem is to derive one confidence interval for each sample (along the lines set out above), and then to somehow combine them; for example, the degree of overlap of the two confidence intervals could be assessed. This is not the best approach, however. It is sometimes a good strategy, when faced with an unfamiliar problem to solve, to translate it into a more familiar problem and then solve it using known methods. This
procedure will be followed here. The essential point is to keep in mind the concept of a random variable and its probability distribution.

Problems involving a single random variable have already been dealt with above. The current problem deals with two samples and therefore there are two random variables to consider, i.e. the two sample means \bar{x}_{1} and \bar{x}_{2}. Since the aim is to estimate $\mu_{1}-\mu_{2}$, an obvious candidate for an estimator is the difference between the two sample means, $\bar{x}_{1}-\bar{x}_{2}$. We can think of this as a single random variable (even though two means are involved) and use the methods we have already learned. We therefore need to establish the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$. This is derived in the Appendix to this chapter (see page 193) and results in equation (4.12):

$$
\begin{equation*}
\bar{x}_{1}-\bar{x}_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \tag{4.12}
\end{equation*}
$$

This equation states that the difference in sample means will be centred on the difference in the two population means, with some variation around this as measured by the variance. One assumption behind the derivation of (4.12) is that the two samples are independently drawn. This is likely in this example; it is difficult to see how the samples from the two schools could be connected. However, one must always bear this possibility in mind when comparing samples. For example, if one were comparing men's and women's heights, it would be dangerous to take samples of men and their wives as they are unlikely to be independent. People tend to marry partners of a similar height to themselves, so this might bias the results.

The distribution of $\bar{x}_{1}-\bar{x}_{2}$ is illustrated in Figure 4.5. Equation (4.12) shows that $\bar{x}_{1}-\bar{x}_{2}$ is an unbiased estimator of $\mu_{1}-\mu_{2}$. The difference between the sample means will therefore be used as the point estimate of $\mu_{1}-\mu_{2}$. Thus, the point estimate of the true difference between the schools is

$$
\bar{x}_{1}-\bar{x}_{2}=70-62=8 \%
$$

The 95% confidence interval estimate is derived in the same manner as before, making use of the standard error of the random variable. The formula is ${ }^{7}$

$$
\begin{equation*}
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \tag{4.13}
\end{equation*}
$$

Since the values of σ^{2} are unknown, they have been replaced in equation (4.13) by their sample values. As in the single sample case, this is acceptable in large samples. The 95% confidence interval for $\mu_{1}-\mu_{2}$ is therefore

$$
\begin{aligned}
& (70-62) \pm 1.96 \sqrt{\frac{12^{2}}{35}+\frac{18^{2}}{60}} \\
& =[1.95,14.05]
\end{aligned}
$$

The estimate is that school 1's average mark is between 1.95 and 14.05 percentage points above that of school 2 . Notice that the confidence interval does not include the value zero, which would imply possible equality of the two schools' marks. Equality of the two schools can thus be ruled out with 95% confidence.

[^21]

Worked example 4.3

A survey of holidaymakers found that on average women spent 3 hours per day sunbathing, men spent 2 hours. The sample sizes were 36 in each case and the standard deviations were 1.1 and 1.2 hours, respectively. Estimate the true difference between men and women in sunbathing habits. Use the 99% confidence level.

The point estimate is simply one hour, the difference of sample means. For the confidence interval we have:

$$
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 2.57 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
& =(3-2) \pm 2.57 \sqrt{\frac{1.1^{2}}{36}+\frac{1.2^{2}}{36}} \\
& =1 \pm 0.70=[0.30,1.70]
\end{aligned}
$$

This evidence suggests women do spend more time sunbathing than men (zero is not in the confidence interval). Note that we might worry the samples might not be independent here - it could represent 36 couples. If so, the evidence is likely to underestimate the true difference, if anything, as couples are likely to spend time sunbathing together.

Estimating the difference between two proportions

We move again from means to proportions. We use a simple example to illustrate the analysis of this type of problem. Suppose we wish to compare the market share of Apple Mac computers in the United States and the United Kingdom. A survey of 1000 American computer users shows that 160 use Macs while a similar survey of 500 Britons shows 65 using Macs. What is our estimate of the true difference between the two countries?

Here the aim is to estimate $\pi_{1}-\pi_{2}$, the difference between the two population proportions, so the probability distribution of $p_{1}-p_{2}$ is needed, the difference of the sample proportions. The derivation of this follows similar lines to those set out above for the difference of two sample means, so is not repeated. The probability distribution is

$$
\begin{equation*}
p_{1}-p_{2} \sim N\left(\pi_{1}-\pi_{2}, \frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}\right) \tag{4.14}
\end{equation*}
$$

Again, the two samples must be independently drawn for this to be correct.
Since the difference between the sample proportions is an unbiased estimate of the true difference, this will be used for the point estimate. The point estimate is therefore

$$
\begin{aligned}
p_{1}-p_{2} & =160 / 1000-65 / 500 \\
& =0.16-0.13=0.03 \text { or } 3 \% .
\end{aligned}
$$

Note that this means a three percentage point difference in market share, not that the US market is 3\% bigger. The 95% confidence interval is given by

$$
\begin{equation*}
p_{1}-p_{2} \pm 1.96 \sqrt{\frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}} \tag{4.15}
\end{equation*}
$$

π_{1} and π_{2} are unknown so have to be replaced by p_{1} and p_{2} for purposes of calculation, so the interval becomes

$$
\begin{align*}
& 0.16-0.13 \pm 1.96 \sqrt{\frac{0.16 \times 0.84}{1000}+\frac{0.13 \times 0.87}{500}} \tag{4.16}\\
& =0.03 \pm 0.0372 \\
& =[-0.0072,0.0672]
\end{align*}
$$

The 95% confidence interval indicates that the US market share is between -0.7 and 6.7 percentage points larger than in the United Kingdom. Note that this interval includes the value of zero, so we cannot be 95% confident the US share is bigger.

These data are for the purpose of illustrating the methods and are not real. However, they are closely based on figures from StatCounter (http://gs.statcounter.com/)
and are collected automatically based on visitor statistics to 'more than three million web sites'. The market shares for December 2011 are reported as 16.5% and 13.3%. StatCounter does not give sample sizes, so what are we to make of these numbers?

The 'three million' might suggest a huge sample size and hence a much smaller confidence interval. (If there were one million in each country, then the width of the confidence interval would be ± 0.0005.) However, there are likely to be many multiple visits by the same user, so the number of users (as opposed to visits) could be much smaller, we simply do not know. Furthermore, we should think whether there might be any kind of bias to the figures, for example if more US websites were dedicated to Apple customers.

Exercise 4.4

Exercise 4.5

$$
\begin{array}{ll}
\bar{x}_{1}=25 & \bar{x}_{2}=30 \\
s_{1}=18 & s_{2}=25 \\
n_{1}=36 & n_{2}=49
\end{array}
$$

Exercise 4.6

 with the 95% interval?

Use the 95% confidence level. the sexes.
(a) Seven people out of a sample of 50 are left-handed. Estimate the true proportion of lefthanded people in the population, finding both point and interval estimates.
(b) Repeat part (a) but find the 90% confidence interval. How does the 90% interval compare
(c) Calculate the 99% interval and compare to the others.

A survey of 5016 -year-old girls revealed that 40% had a boyfriend. A survey of 10016 -yearold boys revealed 20% with a girlfriend. Estimate the true difference in proportions between

Estimation with small samples: the t distribution

So far only large samples (defined as sample sizes in excess of 25) have been dealt with, which means that (by the Central Limit Theorem) the sampling distribution of \bar{x} follows a Normal distribution, whatever the distribution of the parent population. Remember, from the two theorems of Chapter 3, that

- if the population follows a Normal distribution, $\bar{\chi}$ is also Normally distributed, and
- if the population is not Normally distributed, $\bar{\chi}$ is approximately Normally distributed in large samples ($n \geq 25$).

In both cases, confidence intervals can be constructed based on the fact that

$$
\begin{equation*}
\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / n}} \sim N(0,1) \tag{4.17}
\end{equation*}
$$

and so the standard Normal distribution is used to find the values which cut off the extreme 5% of the distribution ($z= \pm 1.96$). In practical examples, we
had to replace σ by its estimate, s. Thus the confidence interval was based on the fact that

$$
\begin{equation*}
\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}} \sim N(0,1) \tag{4.18}
\end{equation*}
$$

in large samples. For small sample sizes, equation (4.18) is no longer true. Instead, the relevant distribution is the t distribution, and we have ${ }^{8}$

$$
\begin{equation*}
\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1} \tag{4.19}
\end{equation*}
$$

The random variable defined in equation (4.19) has a t distribution with $n-1$ degrees of freedom. As the sample size gets larger, the t distribution approaches the standard Normal, so the latter can be used for large samples.

The t distribution was derived by W.S. Gossett in 1908 while conducting tests on the average strength of Guinness beer (who says statistics has no impact on the real world?). He published his work under the pseudonym 'Student', since the company did not allow its employees to publish under their own names, so the distribution is sometimes also known as the Student distribution.

The t distribution is in many ways similar to the standard Normal, insofar as it is

- unimodal
- symmetric
- centred on zero
- bell-shaped
- extends from minus infinity to plus infinity.

The differences are that it is more spread out (has a larger variance) than the standard Normal distribution, and has only one parameter rather than two: the degrees of freedom, denoted by the Greek letter ν (pronounced ' $\mathrm{nu}{ }^{\prime 9}$). In problems involving the estimation of a sample mean, the degrees of freedom are given by the sample size minus one, i.e. $\nu=n-1$.

The t distribution is drawn in Figure 4.6 for various values of the parameter ν. Note that the fewer the degrees of freedom (smaller sample size), the more dispersed is the distribution.

To summarise the argument so far, when

- the sample size is small, and
- the sample variance is used to estimate the population variance,
then the t distribution should be used for constructing confidence intervals, not the standard Normal. This results in a slightly wider interval than would be obtained using the standard Normal distribution, which reflects the slightly greater uncertainty involved when s^{2} is used as an estimate of σ^{2} when the sample size is small.

[^22]Figure 4.6
The t distribution drawn for different degrees of freedom

Apart from this, the methods are as before and are illustrated by the examples below. We look first at estimating a single mean, and then at estimating the difference of two means. The t distribution cannot be used for small sample proportions (explained below), so these cases are not considered.

Estimating a mean

The following example would seem to be appropriate. A sample of 15 bottles of beer showed an average specific gravity (a measure of alcohol content) of 1035.6, with standard deviation 2.7. Estimate the true specific gravity of the brew.

The sample information may be summarised as

$$
\begin{aligned}
\bar{x} & =1035.6 \\
s & =2.7 \\
n & =15
\end{aligned}
$$

The sample mean is still an unbiased estimator of μ (this is true regardless of the distribution of the population) and serves as point estimate of μ. The point estimate of μ is therefore 1035.6.

Since σ is unknown, the sample size is small and it can be assumed that the specific gravity of all bottles of beer is Normally distributed (numerous small random factors affect the specific gravity), we should use the t distribution. Thus

$$
\begin{equation*}
\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1} \tag{4.20}
\end{equation*}
$$

The 95% confidence interval estimate is given by

$$
\begin{equation*}
\bar{x} \pm t_{n-1} \sqrt{s^{2} / n} \tag{4.21}
\end{equation*}
$$

where t_{n-1} is the value of the t distribution which cuts off the extreme $5 \%(2.5 \%$ in each tail) of the t distribution with ν degrees of freedom. Table A3 (see page 451) gives percentage points of the t distribution, and part of it is reproduced in Table 4.1.

The structure of the t distribution table is different from that of the standard Normal table. The first column of the table gives the degrees of freedom. In this example we want the row corresponding to $\nu=n-1=14$. The appropriate

Table 4.1 Percentage points of the t distribution (excerpt from Table A3)

	Area in each tail						
ν	0.4	0.25	0.10	0.05	0.025	0.01	0.005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.656
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925
\vdots							
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947

Note: The appropriate t value for constructing the confidence interval is found at the intersection of the shaded row and column.
column of the table is the one headed ' 0.025 ' which indicates the area cut off in each tail. At the intersection of this row and column we find the appropriate value, $t_{14}=2.145$. Therefore, the confidence interval is given by

$$
\begin{aligned}
& 1035.6 \pm 2.145 \sqrt{2.7^{2} / 15} \\
& =1035.6 \pm 1.5 \\
& =[1034.10,1037.10]
\end{aligned}
$$

We are 95% confident that the true specific gravity lies within this range. If the Normal distribution had (incorrectly) been used for this problem, then the t value of 2.145 would have been replaced by a z score of 1.96 , giving a confidence interval of
[1034.23, 1036.97]
This underestimates the true confidence interval and gives the impression of a more precise estimate than is actually the case. Use of the Normal distribution leads to a confidence interval which is about 9% too narrow in this case.

Estimating the difference between two means

As in the case of a single mean, the t distribution needs to be used in small samples when the population variances are unknown. Again, both parent populations must be Normally distributed, and in addition it must be assumed that the population variances are equal, i.e. $\sigma_{1}^{2}=\sigma_{2}^{2}$ (this is required in the mathematical derivation of the t distribution). This latter assumption was not required in the large-sample case using the Normal distribution. Consider the following example as an illustration of the method.

A sample of 20 Labour-controlled local authorities shows that they spend an average of $£ 175$ per taxpayer on administration with a standard deviation of $£ 25$. A similar survey of 15 Conservative-controlled authorities finds an average figure of $£ 158$ with standard deviation of $£ 30$. Estimate the true difference in expenditure between Labour and Conservative authorities.

The sample information available is

$$
\begin{array}{ll}
\bar{x}_{1}=175 & \bar{x}_{2}=158 \\
s_{1}=25 & s_{2}=30 \\
n_{1}=20 & n_{2}=15
\end{array}
$$

We wish to estimate $\mu_{1}-\mu_{2}$. The point estimate of this is $\bar{x}_{1}-\bar{x}_{2}$ which is an unbiased estimate. This gives $175-158=17$ as the expected difference between the two sets of authorities.

For the confidence interval, the t distribution has to be used since the sample sizes are small and the population variances unknown. It is assumed that the populations are Normally distributed and that the samples have been independently drawn. We also assume that the population variances are equal, which seems justified since s_{1} and s_{2} do not differ by much (this kind of assumption is tested in Chapter 6). The confidence interval is given by the formula:

$$
\begin{equation*}
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\nu} \sqrt{\frac{S^{2}}{n_{1}}+\frac{S^{2}}{n_{2}}} \tag{4.22}
\end{equation*}
$$

where

$$
\begin{equation*}
S^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \tag{4.23}
\end{equation*}
$$

is known as the pooled variance and

$$
\nu=n_{1}+n_{2}-2
$$

gives the degrees of freedom associated with the t distribution.
S^{2} is an estimate of (common value of) the population variances. It would be inappropriate to have the differing values s_{1}^{2} and s_{2}^{2} in the formula for this t distribution, for this would be contrary to the assumption that $\sigma_{1}^{2}=\sigma_{2}^{2}$, which is essential for the use of the t distribution. The estimate of the common population variance is just the weighted average of the sample variances, using degrees of freedom as weights. Each sample has $n-1$ degrees of freedom, and the total number of degrees of freedom for the problem is the sum of the degrees of freedom in each sample. The degrees of freedom are thus $20+15-2=33$ and hence the value $t=2.042$ cuts off the extreme 5% of the distribution. The t table in the appendix does not give the value for $\nu=33$ so instead we used $\nu=30$ which will give a close approximation.

To evaluate the 95\% confidence interval, we first calculate S^{2} :

$$
S^{2}=\frac{(20-1) \times 25^{2}+(15-1) \times 30^{2}}{20+15-2}=741.6
$$

Inserting this into equation (4.22) gives

$$
17 \pm 2.042 \sqrt{\frac{741.6}{20}+\frac{741.6}{15}}=[-1.99,35.99]
$$

Thus the true difference is quite uncertain and the evidence is even consistent with Conservative authorities spending more than Labour authorities. The large degree of uncertainty arises because of the small sample sizes and the quite wide variation within each sample.

One should be careful about the conclusions drawn from this test. The greater expenditure on administration could be either because of inefficiency or because of a higher level of services provided. To find out which is the case would require further investigation. The statistical test carried out here examines the levels of expenditure, but not whether they are productive or not.

Estimating proportions

Estimating proportions when the sample size is small cannot be done with the t distribution. Recall that the distribution of the sample proportion p was derived from the distribution of r (the number of successes in n trials), which followed a Binomial distribution (see the Appendix to this chapter (page 193)). In large samples the distribution of r is approximately Normal, thus giving a Normally distributed sample proportion. In small samples it is inappropriate to approximate the Binomial distribution with the t distribution, and indeed is unnecessary since the Binomial itself can be used. Small-sample methods for the sample proportion should be based on the Binomial distribution, therefore, as set out in Chapter 3. These methods are not discussed further here, therefore.

Exercise 4.7

Exercise 4.8

A sample of size $n=16$ is drawn from a population which is known to be Normally distributed. The sample mean and variance are calculated as 74 and 121 . Find the 99% confidence interval estimate for the true mean.

Samples are drawn from two populations to see if they share a common mean. The sample data are:

$$
\begin{array}{ll}
\bar{x}_{1}=45 & \bar{x}_{2}=55 \\
s_{1}=18 & s_{2}=21 \\
n_{1}=15 & n_{2}=20
\end{array}
$$

Find the 95% confidence interval estimate of the difference between the two population means.

Summary

- Estimation is the process of using sample information to make good estimates of the value of population parameters, e.g. using the sample mean to estimate the mean of a population.
- There are several criteria for finding a good estimate. Two important ones are the (lack of) bias and precision of the estimator. Sometimes there is a trade-off between these two criteria - one estimator might have a smaller bias but be less precise than another.
- An estimator is unbiased if it gives a correct estimate of the true value on average. Its expected value is equal to the true value.
- The precision of an estimator can be measured by its sampling variance (e.g. s^{2} / n for the mean of a sample).
- Estimates can be in the form of a single value (point estimate) or a range of values (confidence interval estimate). A confidence interval estimate gives some idea of how reliable the estimate is likely to be.
- For unbiased estimators, the value of the sample statistic (e.g. \bar{x}) is used as the point estimate.
- In large samples the 95% confidence interval is given by the point estimate plus or minus 1.96 standard errors (e.g. $\bar{x} \pm 1.96 \sqrt{s^{2} / n}$ for the mean).
- For small samples the t distribution should be used instead of the Normal (i.e. replace 1.96 by the critical value of the t distribution) to construct confidence intervals of the mean.

Key terms and concepts

95\% confidence interval	interval estimate
bias	mean squared error
confidence interval	point estimate
confidence level	pooled variance
degrees of freedom	precision
efficiency	proportion
estimation	testing hypothesis
estimator	unbiased
inference	

Formulae used in this chapter

Formula	Description	Notes
$\bar{x} \pm 1.96 \sqrt{s^{2} / n}$	95% confidence interval for the mean	Large samples, using Normal distribution
$\bar{x} \pm t_{\nu} \sqrt{s^{2} / n}$	95% confidence interval for the mean	Small samples, using t distribution. t_{v} is the critical value of the t distribution for $\nu=n-1$ degrees of freedom
$p \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$	95% confidence interval for a proportion $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$Large samples only of two means	
$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\nu} \sqrt{\frac{s^{2}}{n_{1}}+\frac{s^{2}}{n_{2}}}$	95% confidence interval for the difference of two means	Small samples. The pooled variance is given by

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
4.1 (a) Why is an interval estimate better than a point estimate?
(b) What factors determine the width of a confidence interval?
4.2 Is the 95% confidence interval (a) twice as wide, (b) more than twice as wide and (c) less than twice as wide, as the 47.5% interval? Explain your reasoning.
4.3 Explain the difference between an estimate and an estimator. Is it true that a good estimator always leads to a good estimate?
4.4 Explain why an unbiased estimator is not always to be preferred to a biased one.
4.5 A random sample of two observations, x_{1} and x_{2}, is drawn from a population. Prove that $w_{1} x_{1}+w_{2} x_{2}$ gives an unbiased estimate of the population mean as long as $w_{1}+w_{2}=1$. (Hint: Prove that $\mathrm{E}\left(w_{1} x_{1}+w_{2} x_{2}\right)=\mu$. $)$
4.6 Following the previous question, prove that the most precise unbiased estimate is obtained by setting $w_{1}=w_{2}=\frac{1}{2}$. (Hint: Minimise $V\left(w_{1} x_{1}+w_{2} x_{2}\right)$ with respect to w_{1} after substituting $w_{2}=1-w_{1}$. You will need a knowledge of calculus to solve this.)
4.7 Given the sample data

$$
\bar{x}=40 \quad s=10 \quad n=36
$$

calculate the 99% confidence interval estimate of the true mean. If the sample size were 20 , how would the method of calculation and width of the interval be altered?
4.8 (a) A random sample of 100 record shops found that the average weekly sale of a particular CD was 260 copies, with standard deviation of 96 . Find the 95% confidence interval to estimate the true average sale for all shops.
(b) To compile the CD chart it is necessary to know the correct average weekly sale to within 5% of its true value. How large a sample size is required?
4.9 Given the sample data $p=0.4, n=50$, calculate the 99% confidence interval estimate of the true proportion.
4.10 A political opinion poll questions 1000 people. Some 464 declare they will vote Conservative. Find the 95% confidence interval estimate for the Conservative share of the vote.
4.11 Given the sample data

$$
\begin{array}{ll}
\bar{x}_{1}=25 & \bar{x}_{2}=22 \\
s_{1}=12 & s_{2}=18 \\
n_{1}=80 & n_{2}=100
\end{array}
$$

estimate the true difference between the means with 95% confidence.
4.12 (a) A sample of 200 women from the labour force found an average wage of $£ 26000$ p.a. with standard deviation $£ 3500$. A sample of 100 men found an average wage of $£ 28000$ with standard deviation $£ 2500$. Estimate the true difference in wages between men and women.
(b) A different survey, of men and women doing similar jobs, obtained the following results:

$$
\begin{aligned}
\bar{x}_{\mathrm{W}} & =£ 27200 & & \bar{x}_{\mathrm{M}}=£ 27600 \\
s_{\mathrm{W}} & =£ 2225 & & s_{\mathrm{M}}=£ 1750 \\
n_{\mathrm{W}} & =75 & & n_{\mathrm{M}}=50
\end{aligned}
$$

Estimate the difference between male and female wages using these new data. What can be concluded from the results of the two surveys?
4.13 Sixty-seven percent out of 150 pupils from school A passed an exam; 62% of 120 pupils at school B passed. Estimate the 99% confidence interval for the true difference between the proportions passing the exam.
4.14 (a) A sample of 954 adults in early 1987 found that 23% of them held shares. Given a UK adult population of 41 million and assuming a proper random sample was taken, find the 95% confidence interval estimate for the number of shareholders in the United Kingdom.
(b) A 'similar' survey the previous year had found a total of 7 million shareholders. Assuming 'similar' means the same sample size, find the 95% confidence interval estimate of the increase in shareholders between the two years.
4.15 A sample of 16 observations from a Normally distributed population yields a sample mean of 30 with standard deviation 5 . Find the 95% confidence interval estimate of the population mean.
4.16 A sample of 12 families in a town reveals an average income of $£ 25000$ with standard deviation $£ 6000$. Why might you be hesitant about constructing a 95% confidence interval for the average income in the town?
4.17 Two samples were drawn, each from a Normally distributed population, with the following results:

$$
\begin{array}{lll}
\bar{x}_{1}=45 & s_{1}=8 & n_{1}=12 \\
\bar{x}_{2}=52 & s_{2}=5 & n_{2}=18
\end{array}
$$

Estimate the difference between the population means, using the 95% confidence level.
4.18 The heights of 10 men and 15 women were recorded, with the following results:

	Mean	Variance
Men	173.5	80
Women	162	65

Estimate the true difference between men's and women's heights. Use the 95% confidence level.
4.19 (Project) Estimate the average weekly expenditure upon alcohol by students. Ask a (reasonably) random sample of your fellow students for their weekly expenditure on alcohol. From this, calculate the 95% confidence interval estimate of such spending by all students.

Answers to exercises

Exercise 4.1

(a) The point estimate is 25 and the 95% confidence interval is $25 \pm 1.96 \times$ $50 / \sqrt{100}=25 \pm 9.8=[15.2,34.8]$.
(b) The CI becomes larger as the sample size reduces. In this case we would have $25 \pm 1.96 \times 50 / \sqrt{64}=25 \pm 12.25=[12.75,37.25]$. Note that the width of the CI is inversely proportional to the square root of the sample size.

Exercise 4.2

The 95% CI is $50 \pm 1.96 \times 30 / \sqrt{40}=50 \pm 9.30=[40.70,59.30]$. The value of 60 lies (just) outside this CI so is unlikely to be the true mean.

Exercise 4.3

All the statements are false. The first four all make probability statements about the population mean, so are invalid according to the classical view of probability. Statement (e) sounds more plausible, but it refers to the CI for this specific sample and we simply do not know if the true mean lies inside or outside the CI for any individual sample. However, it is defensible to use this form of wording as long as we recognise the principles of constructing a CI. In (f), repeated experiments would have different CIs, so we cannot say anything about the range 0.1 to 0.4 in particular. This example comes from Hoekstra et al. (2014, DOI 10.3758/s13423-013-0572-3) who surveyed researchers and students. The respondents, on average, believed (erroneously) about 3.5 out of the 6 statements to be true. Interestingly, there was little difference between experienced researchers and novice students in the results.

Exercise 4.4

(a) The point estimate is $14 \%(7 / 50)$. The 95% CI is given by

$$
0.14 \pm 1.96 \times \sqrt{\frac{0.14 \times(1-0.14)}{50}}=0.14 \pm 0.096
$$

(b) Use 1.64 instead of 1.96 , giving 0.14 ± 0.080.
(c) 0.14 ± 0.126.

Exercise 4.5

$\bar{x}_{1}-\bar{x}_{2}=25-30=-5$ is the point estimate. The interval estimate is given by

$$
\begin{aligned}
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} & =-5 \pm 1.96 \sqrt{\frac{18^{2}}{36}+\frac{25^{2}}{49}} \\
& =-5 \pm 9.14=[-14.14,4.14]
\end{aligned}
$$

Exercise 4.6

The point estimate is $40-20=20 \%$ or 0.2 . The interval estimate is

$$
0.2 \pm 1.96 \times \sqrt{\frac{0.4 \times 0.6}{50}+\frac{0.2 \times 0.8}{100}}=0.2 \pm 0.157=[0.043,0.357]
$$

Exercise 4.7

The 99% CI is given by $74 \pm t^{*} \times \sqrt{121 / 16}=74 \pm 2.947 \times 2.75=74 \pm 8.10=$ [65.90, 82.10].

Exercise 4.8

The pooled variance is given by

$$
S^{2}=\frac{(15-1) \times 18^{2}+(20-1) \times 21^{2}}{15+20-2}=391.36
$$

The 95\% CI is therefore

$$
(45-55) \pm 2.042 \times \sqrt{\frac{391.36}{15}+\frac{391.36}{20}}=-10 \pm 13.80=[-3.8,23.8]
$$

Appendix

Derivations of sampling distributions

Derivation of the sampling distribution of p

The sampling distribution of p is fairly straightforward to derive, given what we have already learned. The sampling distribution of p can be easily derived from the distribution of r, the number of successes in n trials of an experiment, since $p=r / n$. The distribution of r for large n is approximately Normal (from Chapter 3):

$$
\begin{equation*}
r \sim N(n P, n P(1-P)) \tag{4.24}
\end{equation*}
$$

Knowing the distribution of r, is it possible to find that of p ? Since p is simply r multiplied by a constant, $1 / n$, it is also Normally distributed. The mean and variance of the distribution can be derived using the E and V operators. The expected value of p is

$$
\begin{equation*}
\mathrm{E}(p)=\mathrm{E}(r / n)=\frac{1}{n} \mathrm{E}(r)=\frac{1}{n} n P=P=\pi \tag{4.25}
\end{equation*}
$$

The expected value of the sample proportion is equal to the population proportion (note that the probability P and the population proportion π are the same thing and may be used interchangeably). The sample proportion therefore gives an unbiased estimate of the population proportion.

For the variance:

$$
\begin{equation*}
\mathrm{V}(p)=\mathrm{V}\left(\frac{r}{n}\right)=\frac{1}{n^{2}} \mathrm{~V}(r)=\frac{1}{n^{2}} n P(1-P)=\frac{\pi(1-\pi)}{n} \tag{4.26}
\end{equation*}
$$

Hence, the distribution of p is given by

$$
\begin{equation*}
p \sim N\left(\pi, \frac{\pi(1-\pi)}{n}\right) \tag{4.27}
\end{equation*}
$$

Derivation of the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$

This is the difference between two random variables so is itself a random variable. Since any linear combination of Normally distributed, independent random variables is itself Normally distributed, the difference of sample means follows a Normal distribution. The mean and variance of the distribution can be found using the E and V operators. Letting

$$
\begin{aligned}
& \mathrm{E}\left(\bar{x}_{1}\right)=\mu_{1}, \mathrm{~V}\left(\bar{x}_{1}\right)=\sigma_{1}^{2} / n_{1} \text { and } \\
& \mathrm{E}\left(\bar{x}_{2}\right)=\mu_{2}, \mathrm{~V}\left(\bar{x}_{2}\right)=\sigma_{2}^{2} / n_{2}
\end{aligned}
$$

then

$$
\begin{equation*}
\mathrm{E}\left(\bar{x}_{1}-\bar{x}_{2}\right)=\mathrm{E}\left(\bar{x}_{1}\right)-\mathrm{E}\left(\bar{x}_{2}\right)=\mu_{1}-\mu_{2} \tag{4.28}
\end{equation*}
$$

And

$$
\begin{equation*}
\mathrm{V}\left(\bar{x}_{1}-\bar{x}_{2}\right)=\mathrm{V}\left(\bar{x}_{1}\right)+\mathrm{V}\left(\bar{x}_{2}\right)=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} \tag{4.29}
\end{equation*}
$$

Equation (4.29) assumes \bar{x}_{1} and \bar{x}_{2} are independent random variables. The probability distribution of $\bar{x}_{1}-\bar{x}_{2}$ can therefore be summarised as:

$$
\begin{equation*}
\bar{x}_{1}-\bar{x}_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \tag{4.30}
\end{equation*}
$$

This is equation (4.12) in the text.

Hypothesis testing

Learning outcomes 195
Introduction 196
The concepts of hypothesis testing 196
One-tail and two-tail tests 199
The choice of significance level 202
The Prob-value approach 203
Significance, effect size and power 204
Further hypothesis tests 207
Testing a proportion 208
Testing the difference of two means 208
Testing the difference of two proportions 209
Hypothesis tests with small samples 211
Testing the sample mean 211
Testing the difference of two means 212
Are the test procedures valid? 213
Hypothesis tests and confidence intervals 214
Independent and dependent samples 215
Two independent samples 215
Paired samples 216
Issues with hypothesis testing 218
Summary 219
Key terms and concepts 220
References 220
Formulae used in this chapter 221
Problems 221
Answers to exercises 226
By the end of this chapter you should be able to:

- understand the philosophy and scientific principles underlying hypothesis testing
- appreciate that hypothesis testing is about deciding whether a hypothesis is true or false on the basis of a sample of data
- recognise the type of evidence which leads to a decision that the hypothesis is false
- carry out hypothesis tests for a variety of statistical problems
- recognise the relationship between hypothesis testing and a confidence interval
- recognise the shortcomings of hypothesis testing.

Introduction

This chapter deals with issues very similar to those of the previous chapter on estimation, but examines them in a different way. The estimation of population parameters and the testing of hypotheses about those parameters are similar techniques (indeed they are formally equivalent in a number of respects), but there are important differences in the interpretation of the results arising from each method. The process of estimation is appropriate when measurement is involved, such as measuring the true average expenditure on food; hypothesis testing is relevant when decision-making is involved, such as whether to accept that a supplier's products are up to a specified standard. Hypothesis testing is also used to make decisions about the truth or otherwise of different theories, such as whether rising prices are caused by rising wages; and it is here that the issues become contentious. It is sometimes difficult to interpret correctly the results of hypothesis tests in these circumstances. This is discussed further later in this chapter.

The concepts of hypothesis testing

In many ways hypothesis testing is analogous to a criminal trial. In a trial there is a defendant who is initially presumed innocent. The evidence against the defendant is then presented and, if the jury finds this convincing beyond all reasonable doubt, he or she is found guilty; the presumption of innocence is overturned. Of course, mistakes are sometimes made: an innocent person is convicted or a guilty person set free. Both of these errors involve costs (not only in the monetary sense), either to the defendant or to society in general, and the errors should be avoided if at all possible. The laws under which the trial is held may help avoid such errors. The rule that the jury must be convinced 'beyond all reasonable doubt' helps to avoid convicting the innocent, for instance.

The situation in hypothesis testing is similar. First, there is a maintained or null hypothesis which is initially presumed to be true. The empirical evidence, usually data from a random sample, is then gathered and assessed. If the evidence seems inconsistent with the null hypothesis, i.e. it has a low probability of occurring if the hypothesis were true, then the null hypothesis is rejected in favour of an alternative. Once again, there are two types of error one can make, either rejecting the null hypothesis when it is really true, or not rejecting it when in fact it is false. Ideally one would like to avoid both types of error.

An example helps to clarify the issues and the analogy. Suppose that you are thinking of taking over a small business franchise. The current owner claims the weekly turnover of each existing franchise averages $£ 5000$ and at this level you are willing to take on a franchise. You would be more cautious if the turnover is less than this figure. You examine the books of 26 franchises chosen at random and find that the average turnover was $£ 4900$ with standard deviation $£ 280$. What do you do?

The null hypothesis in this case is that average weekly turnover is $£ 5000$ (or more; that would be even more to your advantage). The alternative hypothesis is
that turnover is strictly less than $£ 5000$ per week. We may write these more succinctly as follows:

$$
\begin{aligned}
& H_{0}: \mu=5000 \\
& H_{1}: \mu<5000
\end{aligned}
$$

H_{0} is conventionally used to denote the null hypothesis, H_{1} the alternative. Initially, H_{0} is presumed to be true and this presumption will be tested using the sample evidence. Note that the sample evidence is not used in forming the null or alternative hypotheses.

You have to decide whether the owner's claim is correct $\left(H_{0}\right)$ or not $\left(H_{1}\right)$. The two types of error you could make are as follows:

- Type I error - reject H_{0} when it is in fact true. This would mean missing a good business opportunity.
- Type II error - not rejecting H_{0} when it is in fact false. You would go ahead and buy the business and then find out that it is not as attractive as claimed. You would have overpaid for the business.

The situation is set out in Figure 5.1.
Obviously a good decision rule would give a good chance of making a correct decision and rule out errors as far as possible. Unfortunately, it is impossible to completely eliminate the possibility of errors. As the decision rule is changed to reduce the probability of a Type I error, the probability of making a Type II error inevitably increases. The skill comes in balancing these two types of error.

Again a diagram is useful in illustrating this. Assuming that the null hypothesis is true, then the sample observations are drawn from a population with mean 5000 and some variance, which we shall assume is accurately measured by the sample variance. The distribution of \bar{x} is then given by

$$
\begin{align*}
& \bar{x} \sim N\left(\mu, \sigma^{2} / n\right) \text { or } \tag{5.1}\\
& \bar{x} \sim N\left(5000,280^{2} / 26\right)
\end{align*}
$$

Under the alternative hypothesis the distribution of \bar{x} would be the same except that it would be centred on a value less than 5000 . These two situations are illustrated in Figure 5.2. The distribution of \bar{x} under H_{1} is shown by a dashed curve to signify that its exact position is unknown, only that it lies to the left of the distribution under H_{0}.

A decision rule amounts to choosing a point or dividing line on the horizontal axis in Figure 5.2. If the sample mean lies to the left of this point, then H_{0} is rejected (the sample mean is too far away from H_{0} for it to be credible) in favour of H_{1} and you do not buy the franchise. If \bar{x} lies above this decision point, then H_{0} is not rejected and you go ahead with the purchase. Such a decision point is shown

Figure 5.1 The two different types of error

Figure 5.2 The sampling distributions of \bar{x} under H_{0} and H_{1}

in Figure 5.2, denoted by \bar{x}_{D}. To the left of \bar{x}_{D} lies the rejection (of H_{0}) region; to the right lies the non-rejection region.

Based on this point, we can see the probabilities of Type I and Type II errors. The area under the H_{0} distribution to the left of \bar{x}_{D}, labelled I , shows the probability of rejecting H_{0} given that it is in fact true: a Type I error. The area under the H_{1} distribution to the right of \bar{x}_{D}, labelled II, shows the probability of a Type II error: not rejecting H_{0} when it is in fact false (and H_{1} is true).

Shifting the decision line to the right or left alters the balance of these probabilities. Moving the line to the right increases the probability of a Type I error but reduces the probability of a Type II error. Moving the line to the left has the opposite effect.

The Type I error probability can be calculated for any value of \bar{x}_{D}. Suppose we set \bar{x}_{D} to a value of 4950 . Using the distribution of \bar{x} given in equation (5.1), the area under the distribution to the left of 4950 is obtained using the z score:

$$
\begin{equation*}
z=\frac{\bar{x}_{D}-\mu}{\sqrt{s^{2} / n}}=\frac{4950-5000}{\sqrt{280^{2} / 26}}=-0.91 \tag{5.2}
\end{equation*}
$$

From the tables of the standard Normal distribution we find that the probability of a Type I error is 18.1%. Unfortunately, the Type II error probability cannot be established because the exact position of the distribution under H_{1} is unknown. Therefore, we cannot decide on the appropriate position of \bar{x}_{D} by some balance of the two error probabilities.

The convention therefore is to set the position of \bar{x}_{D} by using a Type I error probability of 5%, known as the significance level ${ }^{1}$ of the test. In other words, we are prepared to accept a 5% probability of rejecting H_{0} when it is, in fact, true. This allows us to establish the position of \bar{x}_{D}. From Table A2 (see page 450) we find that $z=-1.64$ cuts off the bottom 5% of the distribution, so the decision line should be 1.64 standard errors below 5000 . The value -1.64 is known as the critical value of the test. We therefore obtain

$$
\begin{equation*}
\bar{x}_{D}=5000-1.64 \sqrt{280^{2} / 26}=4910 \tag{5.3}
\end{equation*}
$$

Since the sample mean of 4900 lies below 4910 , we reject H_{0} at the 5% significance level or equivalently we reject with 95% confidence. The significance level is

[^23]generally denoted by the symbol α and the complement of this, given by $1-\alpha$, is known as the confidence level (as used in the confidence interval).

An equivalent procedure would be to calculate the z score associated with the sample mean, known as the test statistic, and then compare this to the critical value of the test. This allows the hypothesis testing procedure to be broken down into five neat steps:
(1) Write down the null and alternative hypotheses:

$$
\begin{aligned}
& H_{0}: \mu=5000 \\
& H_{1}: \mu<5000
\end{aligned}
$$

(2) Choose the significance level of the test, conventionally $\alpha=0.05$ or 5\%.
(3) Look up the critical value of the test from statistical tables, based on the chosen significance level. $z^{*}=1.64$ is the critical value in this case.
(4) Calculate the test statistic:

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}}=\frac{-100}{\sqrt{280^{2} / 26}}=-1.82 \tag{5.4}
\end{equation*}
$$

(5) Decision rule. Compare the test statistic with the critical value: if $z<-z^{*}$ reject H_{0} in favour of H_{1}. Since $-1.82<-1.64, H_{0}$ is rejected with 95% confidence. Note that we use $-z^{*}$ here (rather than $+z^{*}$) because we are dealing with the left-hand tail of the distribution.

Worked example 5.1

A sample of 100 workers found the average overtime hours worked in the previous week was 7.8 , with standard deviation 4.1 hours. Test the hypothesis that the average for all workers is 5 hours or less.

We can set out the five steps of the answer as follows:
(1) $H_{0}: \mu=5$

$$
H_{1}: \mu>5
$$

(2) Significance level, $\alpha=5 \%$.
(3) Critical value $z^{*}=1.64$.
(4) Test statistic:

$$
z=\frac{\bar{x}-\mu}{\sqrt{s^{2} n}}=\frac{7.8-5}{\sqrt{4.1^{2} / 100}}=6.8
$$

(5) Decision rule: $6.8>1.64$ so we reject H_{0} in favour of H_{1}. Note that in this case we are dealing with the right-hand tail of the distribution (positive values of z and z^{*}). Only high values of \bar{x} reject H_{0}.

One-tail and two-tail tests

In the above example the rejection region for the test consisted of one tail of the distribution of \bar{x}, since the buyer was only concerned about turnover being less than claimed. For this reason, it is known as a one-tail test. Suppose now that an accountant is engaged to sell the franchise and wants to check the claim about

Figure 5.3 A two-tail hypothesis test

turnover before advertising the business for sale. In this case he or she would be concerned about turnover being either below or above 5000 .

This would now become a two-tail test with the null and alternative hypotheses being

$$
\begin{gathered}
H_{0}: \mu=5000 \\
H_{1}: \mu \neq 5000
\end{gathered}
$$

Now there are two rejection regions for the test. Either a very low sample mean or a very high one will serve to reject the null hypothesis. The situation is presented graphically in Figure 5.3.

The distribution of \bar{x} under H_{0} is the same as before, but under the alternative hypothesis the distribution could be either to the left or to the right, as depicted. If the significance level is still chosen to be 5%, then the complete rejection region consists of the two extremes of the distribution under H_{0}, containing 2.5% in each tail (hence 5% in total). This gives a Type I error probability of 5% as before. In other words, we would make a Type I error if the sample mean falls too far above or below the hypothesised value.

The critical value of the test therefore becomes $z^{*}=1.96$, the values which cut off 2.5% in each tail of the standard Normal distribution. Only if the test statistic falls into one of the rejection regions beyond 1.96 standard errors from the mean is H_{0} rejected.

Using data from the previous example, the test statistic remains $z=-1.82$ so that the null hypothesis cannot be rejected in this case, as -1.82 does not fall beyond -1.96 . To recap, the five steps of the test are:
(1) $H_{0}: \mu=5000$
$H_{1}: \mu \neq 5000$
(2) Choose the significance level: $\alpha=0.05$.
(3) Look up the critical value: $z^{*}=1.96$.
(4) Evaluate the test statistic:

$$
z=\frac{-100}{\sqrt{280^{2} / 26}}=-1.82
$$

(5) Compare test statistic and critical values: if $z<-z^{*}$ or $z>z^{*}$ reject H_{0} in favour of H_{1}. In this case $-1.82>-1.96$, so H_{0} cannot be rejected with 95% confidence.

One- and two-tail tests therefore differ only at steps 1 and 3 . Note that we have come to different conclusions according to whether a one- or two-tail test was
used, with the same sample evidence. There is nothing wrong with this, however, for there are different interpretations of the two results. If the investor always uses his or her rule, he or she will miss out on 5% of good investment opportunities, when sales are (by chance) low. He or she will never miss out on a good opportunity because the investment appears too good (i.e. sales by chance are very high). For the accountant, 5% of the firms with sales averaging $£ 5000$ will not be advertised as such, either because sales appear too low or because they appear too high.

Another way of interpreting the difference between one- and two-tail tests is to say that the former includes some prior information, i.e. that the true value cannot lie above the hypothesised value (or that we are not interested in that region). Hence, although the sample evidence is the same, the overall evidence is not quite the same due to our prior knowledge. This additional knowledge allows us to sometimes reject a null via a one-tail test but not via a two-sided test.

It is tempting on occasion to use a one-tail test because of the sample evidence. For example, the accountant might look at the sample evidence above and decide that the franchise operation can only have true sales less than or equal to 5000 . Therefore, she/he uses a one-tail test. This is a dangerous practice, since the sample evidence is being used to help formulate the hypothesis, which is then tested on that same evidence. This is going round in circles; the hypothesis should be chosen independently of the evidence which is then used to test it^{2}. Presumably the accountant would also use a one-tail test (with $H_{1}: \mu>5000$ as the alternative hypothesis) if she/he noticed that the sample mean was above the hypothesised value. Taking these possibilities together, she/he would in effect be using the 10% significance level, not the 5% level, since there would be 5% in each tail of the distribution. She/he would make a Type I error on 10% of all occasions rather than 5%.

It is acceptable to use a one-tail test when you have independent information about what the alternative hypothesis should be, or when you are not concerned about one side of the distribution (like the investor) and can effectively add that in to the null hypothesis. Otherwise, it is safer to use a two-tail test.

Exercise 5.1

Exercise 5.2
?
(a) Two political parties are debating crime figures. One party says that crime has increased compared to the previous year. The other party says it has not. Write down the null and alternative hypotheses.
(b) Explain the two types of error that could be made in this example and the possible costs of each type of error.
(a) We test the hypothesis $H_{0}: \mu=100$ against $H_{1}: \mu>100$ by rejecting H_{0} if our sample mean is greater than 108. If in fact $\bar{x} \sim N(100,900 / 25)$, what is the probability of making a Type I error?
(b) If we wanted a 5% Type I error probability, what decision rule (value of \bar{x}) should we adopt?
(c) If we knew that μ could only take on the values 100 (under H_{0}) or 112 (under H_{1}) what would be the Type II error probability using the decision rule in part (a)?

Test the hypothesis $H_{0}: \mu=500$ versus $H_{1}: \mu \neq 500$ using the evidence $\bar{x}=530$, $s=90$ from a sample of size $n=30$.

[^24]
The choice of significance level

The explanation above put hypothesis testing into a framework of decision-making between hypotheses, balancing Type I and Type II errors. This was first developed by the statisticians Neyman and Pearson in the 1930s. It is fine for a situation where both null and alternative hypotheses are well defined (as, for example, in a court of law) but, as noted, is not helpful when the alternative hypothesis is only vaguely specified (' $H_{1}: \mu \neq 5000$ ', for instance) and we cannot calculate the Type II error probability.

In an ideal world we would have precisely specified null and alternative hypotheses (e.g. we would test $H_{0}: \mu=5000$ against $H_{1}: \mu=4500$, these being the only possibilities). Then we could calculate the probabilities of both Type I and Type II errors, for any given decision rule. We could then choose the optimal decision rule, which gives the best compromise between the two types of error. This is reflected in a court of law. In criminal cases, the jury must be convinced of the prosecution's case beyond reasonable doubt, because of the cost of committing a Type I error. In a civil case (libel, for example) the jury need only be convinced on the balance of probabilities. In a civil case, the costs of Type I and Type II error are more evenly balanced and so the burden of proof is lessened.

However, in statistics we usually do not have the luxury of two well-specified hypotheses. As in the earlier worked example, the null hypothesis is precisely specified (it has to be or the test could not be carried out) but the alternative hypothesis is imprecise (sometimes called a composite hypothesis because it encompasses a range of values). Statistical inference is often used not so much as an aid to decision-making but to provide evidence for or against a particular theory, to alter one's degree of belief in the truth of the theory. For example, a researcher might believe large firms are more profitable than small ones and wishes to test this. The null and alternative hypotheses would be:
H_{0} : large and small firms are equally profitable
H_{1} : large firms are more profitable
(Note that the null has to be 'equally profitable', since this is a precise statement. 'More profitable' is too vague to be the null hypothesis.). Data could be gathered to test this hypothesis, but it is not possible to calculate the Type II error probability (because 'more profitable' is too vague). Hence we cannot find the optimal balance of Type I and Type II errors in order to make our decision to accept or reject H_{0}. Another statistician, R.A. Fisher, proposed the use of the 5% significance level in this type of circumstance, arguing that a researcher could justifiably ignore any results that fail to reach this standard. Thus our procedures today are actually an uncomfortable mixture of two different approaches: Fisher did not agree with the decision-making framework; Neyman and Pearson did not propose a 5% convention for the Type I error probability.

The five sigma level of certainty

In particle physics the accepted level of certainty for the results of an experiment to be considered a valid discovery is five sigma (i.e. five standard deviations). A distance of five standard deviations cuts off approximately 0.00003% in one tail of the Normal distribution and represents an extremely low significance level. The reason for this is two-fold: (i) scientists are very
reluctant to accept new hypotheses which may later turn out to be false, and (ii) there is a lot of random noise in the results of their experiments, so it would be easy to confuse noise with a valid finding unless a low significance level is chosen.

At the time of writing (February 2011), physicists are getting close to uncovering the existence of the Higgs boson but so far their results are only significant at about the three sigma level.

Update: The existence of the Higgs boson has been confirmed. More data (i.e. larger sample) allowed this conclusion to be reached.

The 5\% significance level really does depend upon convention; therefore, it cannot be justified by reference to the relative costs of Type I and Type II errors. The 5% convention does impose some sort of discipline upon research; it sets some kind of standard which all theories (hypotheses) should be measured against. Beware the researcher who reports that a particular hypothesis is rejected at the 8% significance level; it is likely that the significance level was chosen so that the hypothesis could be rejected, which is what the researcher was hoping for in the first place. As we shall see later, however, this 'discipline upon research' is not a strong one.

The Prob-value approach

Fisher later changed his mind about the 5\% significance level rule. He argued that this was too rigid to apply mechanically in all situations. Instead, one should present the Prob-value (also known as the P-value), which is the actual significance level of the test statistic. In this way one presents information (the likelihood of a false positive) rather than imposing a decision. The reader could then make their own judgement.

The Prob-value is calculated as follows. The test statistic calculated earlier for the investor problem was $z=-1.82$ and the associated Prob-value is obtained from Table A2 as 3.44%, i.e. -1.82 cuts off 3.44% in one tail of the standard Normal distribution. This means that the null hypothesis could be rejected at the 3.44% significance level or, alternatively expressed, with 96.56% confidence.

Notice that Table A2 gives the Prob-value for a one-tail test; for a two-tail test the Prob-value should be doubled. Thus for the accountant, using the two-tail test, the significance level is 6.88%, and this is the level at which the null hypothesis can be rejected. Alternatively, we could say we reject the null with 93.12% confidence. This does not meet the standard 5\% criterion (for the significance level) which is most often used, so would result in non-rejection of the null. (Notice that, despite using P-values, we have slipped back into decision-making mode. It is difficult to avoid doing this.)

An advantage of using the Prob-value approach is that many statistical software programs routinely provide the Prob-value of a calculated test statistic ${ }^{3}$. If one understands the use of Prob-values, then one does not have to look up tables (this applies to any distribution, not just the Normal), which can save time.

[^25]To summarise, one rejects the null hypothesis if either:

- (Method 1) the test statistic is greater than the critical value, i.e. $z>z^{*}$, or
- (Method 2) the Prob-value associated with the test statistic is less than the significance level, i.e. $P<0.05$ (if the 5% significance level is used).

I have found that many students initially find this confusing, because of the opposing inequality in the two versions (greater than and less than). For example, a program might calculate a hypothesis test and report the result as ' $z=1.4$ (P-value $=0.162$)'. The first point to note is that most software programs report the Prob-value for a two-tail test by default. Hence, assuming a 5% significance level, in this case we cannot reject H_{0} because $z=1.4<1.96$ or equivalently because $0.162>0.05$, against a two-tailed alternative (i.e. H_{1} contains \neq).

If you wish to conduct a one-tailed test, you have to halve the reported Probvalue, becoming 0.081 in this example. This is again greater than 5%, so the hypothesis is still accepted, even against a one-sided alternative (H_{1} contains > or $<$). Equivalently, one could compare 1.4 with the one-tail critical value, 1.64 , showing non-rejection of the null, but one has to look up the standard Normal table with this method. Computers cannot guess whether a one- or two-sided test is wanted, so take the conservative option and report the two-sided value. The correction for a one-sided test has to be done manually.

Exercise 5.4

This is a useful exercise to test your understanding of hypothesis tests. You carry out a one-tail hypothesis test and obtain the result $z=2.3, \mathrm{P}$-value $=0.01$. Which of the following statements are true?
(a) You have disproved the null hypothesis.
(b) You have found the probability that the null hypothesis is true.
(c) You have proved the alternative hypothesis to be true.
(d) You can calculate the probability of the alternative hypothesis being true.
(e) If you reject the null, you know the probability of having made the wrong decision.
(f) If this experiment were repeated many times, a statistically significant result would be obtained in 99% of trials.

These questions are adapted from an original questionnaire in Oakes (1986).

Significance, effect size and power

Researchers usually look for 'significant' results; it is the way to get attention and to get published. Academic papers report that 'the results are significant' or that 'the coefficient is significantly different from zero at the 5% significance level'. It is vital to realise that the word 'significant' is used here in the statistical sense and not in its everyday sense of being important. Something can be statistically significant yet still unimportant.

Suppose that we have some more data about the business examined earlier. Data for 100 franchises have been uncovered, revealing an average weekly turnover
of $£ 4975$ with standard deviation $£ 143$. Can we reject the hypothesis that the average weekly turnover is $£ 5000$? The test statistic is

$$
z=\frac{4975-5000}{\sqrt{143^{2} / 100}}=-1.75
$$

Since this is below $-Z^{*}=-1.64$, the null is rejected with 95% confidence. True average weekly turnover is less than $£ 5000$. However, the difference is only $£ 25$ per week, which is 0.5% of $£ 5000$. Common sense would suggest that the difference may be unimportant, even if it is significant in the statistical sense. One should not interpret statistical results in terms of significance alone, therefore; one should also look at the size of the difference (sometimes known as the effect size) and ask whether it is important or not. Even experienced researchers make this mistake; a review of articles in the prestigious American Economic Review reported that 82% of them confused statistical significance for economic significance in some way (McCloskey and Ziliak, 2004).

This problem with hypothesis testing paradoxically gets worse as the sample size increases. For example, if 250 observations reveal average sales of 4985 with standard deviation 143, the null would (just) be rejected at 5% significance. In fact, given a large enough sample size we can virtually guarantee to reject the null hypothesis even before we have gathered the data. This can be seen from equation (5.4) for the z score test statistic: as n gets larger, the test statistic also inevitably gets larger.

A good way to remember this point is to appreciate that it is the evidence which is significant, not the size of the effect or the results of your research. Strictly, it is better to say 'there is significant evidence of difference between . . .' than 'there is a significant difference between . . \therefore '.

A related way of considering the effect of increasing sample size is via the concept of the power of a test. This is defined as

$$
\begin{equation*}
\text { Power of a test }=1-\operatorname{Pr}(\text { Type II error })=1-\beta \tag{5.5}
\end{equation*}
$$

where β is the symbol conventionally used to indicate the probability of a Type II error. Since a Type II error is defined as not rejecting H_{0} when false (equivalent to rejecting H_{1} when true), power is the probability of rejecting H_{0} when false (if H_{0} is false, it must be either accepted or rejected; hence these probabilities sum to one). This is one of the correct decisions identified earlier, associated with the lower right-hand box in Figure 5.1, that of correctly rejecting a false null hypothesis. The power of a test is therefore given by the area under the H_{1} distribution, to the left of the decision line, as illustrated (shaded) in Figure 5.4 (for a one-tail test).

Figure 5.4 The power of a test

It is generally desirable to maximise the power of a test, as long as the probability of a Type I error is not raised in the process. There are essentially three ways of doing this:

- Avoid situations where the null and alternative hypotheses are very similar, i.e. the hypothesised means are not far apart (a small effect size).
- Use a large sample size. This reduces the sampling variance of \bar{x} (under both H_{0} and H_{1}) so the two distributions become more distinct.
- Use good sampling methods which have small sampling variances. This has a similar effect to increasing the sample size.

Worked example 5.2

This example shows how a larger sample size increases the power of a test. Suppose we wish to test the hypothesis $H_{0}: \mu=500$ versus $H_{0}: \mu \leq 500$. We have a choice of two methods to test the hypothesis: (a) use a sample size of 100 , or (b) use a sample size of 49 . Which will give us a better test? Let us use the 5% significance level and assume. $\sigma=200$ For test (a) we would then reject H_{0} if $\bar{x}<467.2$, and for test (b) we would reject if $\bar{x}<453.1$. (You can check that these would lead to a z score of -1.64 in both cases, which cuts of the bottom 5% of the Normal distribution.)

Now what is the probability in each case of rejecting the null if it were false, i.e. what is the power of each test? Suppose the true mean were 470 (so H_{0} above is false and should be rejected). For test (a) the probability of rejecting H_{0} (i.e. $\bar{x}<467.2$) given that the true mean is 470 is obtained by calculating the z score:

$$
z=\frac{467.2-470}{200 / \sqrt{100}}=-0.14
$$

From Table A2, this cuts off 44% in the lower tail, so this is the power of the test. For test (b) the z score is -0.59 , which cuts off only 28%. Hence, test (a) is preferred, having the greater power. Note that the same significance level is required for both tests.

Unfortunately, in economics and business the data (including sample size) are very often given in advance and there is little or no control possible over the sampling procedures. This leads to a neglect of consideration of power, unlike in psychology or biology, for example, where the experiment can often be designed by the researcher. The gathering of sample data will be covered in detail in Chapter 9.

Exercise 5.5

If a researcher believes the cost of making a Type I error is much greater than the cost of a Type II error, should they prefer a 5% or 1% significance level? Explain why.

Exercise 5.6

(a) A researcher uses Excel to analyse data and test a hypothesis. The program reports a test statistic of $z=1.77$ (P -value $=0.077$). Would you reject the null hypothesis if carrying out (i) a one-tailed test (ii) a two-tailed test? Use the 5% significance level.
(b) Repeat part (a) using a 1% significance level.

Exercise 5.7

A researcher wishes to test the hypothesis $H_{0}: \mu=160$ versus $H_{0}: \mu>160$. If the sample size is to be 400 and $\sigma=50$ is assumed:
(a) What value of \bar{x} should be used as the cutoff for rejecting H_{0} at the 5% significance level?
(b) What is the power of the test if the true mean is (i) 163 , (ii) 166 ?

Further hypothesis tests

We now consider a number of different types of hypothesis test, all involving the same principles but differing in details of their implementation. This is similar to the exposition in the last chapter covering, in turn, tests of a proportion, tests of the difference of two means and proportions, and finally problems involving small sample sizes.

Testing a proportion

A car manufacturer claims that no more than 10% of its cars should need repairs in the first three years of their life, the warranty period. A random sample of 50 three-yearold cars found that 8 had required attention. Does this contradict the maker's claim?

This problem can be handled very similarly to the methods used for a mean. The key, once again, is to recognise the sample proportion as a random variable with an associated probability distribution. From Chapter 4 equation (4.9)), the sampling distribution of the sample proportion in large samples is given by

$$
\begin{equation*}
p \sim N\left(\pi, \frac{\pi(1-\pi)}{n}\right) \tag{5.6}
\end{equation*}
$$

In this case $\pi=0.10$ (under the null hypothesis, the maker's claim). The sample data are

$$
\begin{aligned}
& p=8 / 50=0.16 \\
& n=50
\end{aligned}
$$

Thus 16% of the sample required attention within the warranty period. This is substantially higher than the claimed 10%, but is this just because of a nonrepresentative sample or does it reflect the reality that the cars are badly built? The hypothesis test is set out along the same lines as for a sample mean:
(1) Set out the null and alternative hypotheses:
$H_{0}: \pi=0.10$
$H_{1}: \pi>0.10$
(The only concern is the manufacturer not matching its claim; hence a onetail test is appropriate.)
(2) Significance level: $\alpha=0.05$.
(3) The critical value of the one-tail test at the 5% significance level is $z^{*}=1.64$, obtained from the standard Normal table.
(4) The test statistic is

$$
z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}=\frac{0.16-0.10}{\sqrt{\frac{0.1 \times 0.9}{50}}}=1.41
$$

(5) Since the test statistic is less than the critical value, it falls into the non-rejection region. The null hypothesis is not rejected by the data. The manufacturer's claim is not unreasonable.

Note that for this problem, the rejection region lies in the upper tail of the distribution because of the 'greater than' inequality in the alternative hypothesis. The null hypothesis is therefore rejected in this case if $z>z^{*}$.

Do children prefer branded goods only because of the name?

Researchers at Johns Hopkins Bloomberg School of Public Health in Maryland found young children were influenced by the packaging of foods. Sixty-three children were offered two identical meals, save that one was still in its original packaging (from McDonald's). Seventysix per cent of the children preferred the branded French fries.

Is this evidence significant? The null hypothesis is $H_{0}: \pi=0.5$ versus $H_{1}: \pi>0.5$. The test statistic for this hypothesis test is

$$
z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}=\frac{0.76-0.50}{\sqrt{\frac{0.5 \times 0.5}{63}}}=4.12
$$

which is greater than the critical value of $z^{*}=1.64$. Hence we conclude children are influenced by the packaging or brand name.

Source: New Scientist, 11 August 2007.

Testing the difference of two means

Suppose a car company wishes to compare the performance of its two factories producing an identical model of car. The factories are equipped with the same machinery but their outputs might differ due to managerial ability, labour relations, etc. Senior management wishes to know if there is any difference between the two factories. Output is monitored for 30 days, chosen at random, with the following results:

	Factory 1	Factory 2
Average daily output	420	408
Standard deviation of daily output	25	20

Does this produce sufficient evidence of a real difference between the factories, or does the difference between the samples simply reflect random differences such as minor breakdowns of machinery? The information at our disposal may be summarised as

$$
\begin{aligned}
\bar{x}_{1} & =420 & \bar{x}_{2} & =408 \\
s_{1} & =25 & s_{2} & =20 \\
n_{1} & =30 & n_{2} & =30
\end{aligned}
$$

The hypothesis test to be conducted concerns the difference between the factories' outputs, so the appropriate random variable to examine is $\bar{x}_{1}-\bar{x}_{2}$. From Chapter 4 (equation (4.12)), this has the following distribution, in large samples:

$$
\begin{equation*}
\bar{x}_{1}-\bar{x}_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \tag{5.7}
\end{equation*}
$$

The population variances, σ_{1}^{2} and σ_{2}^{2}, may be replaced by their sample estimates, s_{1}^{2} and s_{2}^{2}, if the former are unknown, as here. The hypothesis test is therefore as follows.
(1) $H_{0}: \mu_{1}-\mu_{2}=0$
$H_{1}: \mu_{1}-\mu_{2} \neq 0$
The null hypothesis posits no real difference between the factories. This is a two-tail test since there is no a priori reason to believe one factory is better than the other, apart from the sample evidence.
(2) Significance level: $\alpha=1 \%$. This is chosen since the management does not want to interfere unless it is really confident of some difference between the factories. In order to favour the null hypothesis, a lower significance level than the conventional 5% is set.
(3) The critical value of the test is $z^{*}=2.57$. This cuts off 0.5% in each tail of the standard Normal distribution.
(4) The test statistic is

$$
z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{(420-408)-0}{\sqrt{\frac{25^{2}}{30}+\frac{20^{2}}{30}}}=2.05
$$

Note that this is of the same form as in the single-sample cases. The hypothesised value of the difference (zero in this case) is subtracted from the sample difference and this is divided by the standard error of the random variable.
(5) Decision rule: $z<z^{*}$ so the test statistic falls into the non-rejection region. There does not appear to be a significant difference between the two factories (or, better expressed, there is not significant evidence of a difference between factories).

A number of remarks about this example should be made. First, it is not necessary for the two sample sizes to be equal (although they are in the example); 45 days' output from factory 1 and 35 days' from factory 2 , for example, could have been sampled. Second, the values of s_{1}^{2} and s_{2}^{2} do not have to be equal. They are, respectively, estimates of σ_{1}^{2} and σ_{2}^{2}, and although the null hypothesis asserts that $\mu_{1}=\mu_{2}$ it does not assert that the variances are equal. Management wants to know if the average levels of output are the same; it is not concerned about daily fluctuations in output (although it might be). A test of the hypothesis of equal variances is set out in Chapter 6.

The final point to consider is whether all the necessary conditions for the correct application of this test have been met. The example noted that the 30 days were chosen at random. If the 30 days sampled were consecutive, we might doubt whether the observations were truly independent. Low output on one day (due to a mechanical breakdown, for example) might influence the following day's output (if a special effort were made to catch up on lost production, for example).

Testing the difference of two proportions

The general method should by now be familiar, so we will proceed by example for this case. Suppose that, in a comparison of two holiday companies' customers, of the 75 who went with Happy Days Tours, 45 said they were satisfied, while 48 of the 90 who went with Fly by Night Holidays were satisfied. Is there a significant difference between the companies?

This problem can be handled by a hypothesis test on the difference of two sample proportions. The procedure is as follows. The sample evidence is

$$
\begin{array}{ll}
p_{1}=45 / 75=0.6 & n_{1}=75 \\
p_{2}=48 / 90=0.533 & n_{2}=90
\end{array}
$$

The hypothesis test is carried out as follows
(1) $H_{0}: \pi_{1}-\pi_{2}=0$

$$
H_{1}: \pi_{1}-\pi_{2} \neq 0
$$

(2) Significance level: $\alpha=5 \%$.
(3) Critical value: $z^{*}=1.96$.
(4) Test statistic: The distribution of $p_{1}-p_{2}$ is

$$
p_{1}-p_{2} \sim N\left(\pi_{1}-\pi_{2}, \frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}\right)
$$

so the test statistic is

$$
\begin{equation*}
z=\frac{\left(p_{1}-p_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{\sqrt{\frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}}} \tag{5.8}
\end{equation*}
$$

However, π_{1} and π_{2} in the denominator of equation (5.8) have to be replaced by estimates from the samples. They cannot simply be replaced by p_{1} and p_{2} because these are unequal; to do so would contradict the null hypothesis that they are equal. Since the null hypothesis is assumed to be true (for the moment), it makes no sense to use a test statistic which explicitly supposes the null hypothesis to be false. Therefore, π_{1} and π_{2} are replaced by an estimate of their common value which is denoted $\hat{\pi}$ and whose formula is

$$
\begin{equation*}
\hat{\pi}=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}} \tag{5.9}
\end{equation*}
$$

i.e. a weighted average of the two sample proportions. This yields

$$
\hat{\pi}=\frac{75 \times 0.6+90 \times 0.533}{75+90}=0.564
$$

This, in fact, is just the proportion of all customers who were satisfied, 93 out of 165 . The test statistic therefore becomes

$$
z=\frac{0.6-0.533-0}{\sqrt{\frac{0.564 \times(1-0.564)}{75}+\frac{0.564 \times(1-0.564)}{90}}}=0.86
$$

(5) The test statistic is less than the critical value so the null hypothesis cannot be rejected with 95% confidence. There is not sufficient evidence to demonstrate a difference between the two companies' performance.

Are women better at multi-tasking?

The conventional wisdom is 'yes'. However, the concept of multi-tasking originated in computing and, in that domain, it appears men are more likely to multi-task. Oxford Internet Surveys (http://www.oii.ox.ac.uk/microsites/oxis/) asked a sample of 1578 people if they
multi-tasked while on-line (e.g. listening to music, using the phone); 69% of men said they did, 57% of women did. Is this difference statistically significant?

The published survey does not give precise numbers of men and women respondents for this question, so we will assume equal numbers (the answer is not very sensitive to this assumption). We therefore have the test statistic:

$$
z=\frac{0.69-0.57-0}{\sqrt{\frac{0.63 \times(1-0.63)}{789}+\frac{0.63 \times(1-0.63)}{789}}}=4.94
$$

(0.63 is the overall proportion of multi-taskers). The evidence is significant and clearly suggests this is a genuine difference: men are the multi-taskers.

Exercise 5.8

Exercise 5.9

Exercise 5.10

A survey of 80 voters finds that 65% are in favour of a particular policy. Test the hypothesis that the true proportion is 50%, against the alternative that a majority is in favour.

A survey of 50 teenage girls found that on average they spent 3.6 hours per week chatting with friends over the internet. The standard deviation was 1.2 hours. A similar survey of 90 teenage boys found an average of 3.9 hours, with standard deviation 2.1 hours. Test if there is any difference between boys' and girls' behaviour.

One gambler on horse racing won on 23 of his 75 bets. Another won on 34 out of 95 . Is the second person a better judge of horses, or just luckier?

Hypothesis tests with small samples

As with estimation, slightly different methods have to be employed when the sample size is small $(n<25)$ and the population variance is unknown. When both of these conditions are satisfied, the t distribution must be used rather than the Normal, so a t test is conducted rather than a z test. This means consulting tables of the t distribution to obtain the critical value of a test, but otherwise the methods are similar. These methods will be applied to hypotheses about sample means only, since they are inappropriate for tests of a sample proportion, as was the case in estimation.

Testing the sample mean

A large chain of supermarkets sells 5000 packets of cereal in each of its stores each month. It decides to test-market a different brand of cereal in 15 of its stores. After a month the 15 stores have sold an average of 5200 packets each, with a standard deviation of 500 packets. Should all supermarkets switch to selling the new brand?

The sample information is

$$
\bar{x}=5200, s=500, n=15
$$

From Chapter 4 the distribution of the sample mean from a small sample when the population variance is unknown is based upon

$$
\begin{equation*}
\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}} \sim t_{\nu} \tag{5.10}
\end{equation*}
$$

with $\nu=n-1$ degrees of freedom. The hypothesis test is based on this formula and is conducted as follows:
(1) $H_{0}: \mu=5000$
$H_{1}: \mu>5000$
(Only an improvement in sales is relevant.)
(2) Significance level: $\alpha=1 \%$ (chosen because the cost of changing brands is high).
(3) The critical value of the t distribution for a one-tail test at the 1% significance level with $\nu=-1=14$ degrees of freedom is $t^{*}=2.62$.
(4) The test statistic is

$$
t=\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}}=\frac{5200-5000}{\sqrt{500^{2} / 15}}=1.55
$$

(5) The null hypothesis is not rejected since the test statistic, 1.55 , is less than the critical value, 2.62. It would probably be unwise to switch over to the new brand of cereal.

Testing the difference of two means

A survey of 20 British companies found an average annual expenditure on research and development of $£ 3.7 \mathrm{~m}$ with a standard deviation of $£ 0.6 \mathrm{~m}$. A survey of 15 similar German companies found an average expenditure on research and development of $£ 4.2 \mathrm{~m}$ with standard deviation $£ 0.9 \mathrm{~m}$. Does this evidence lend support to the view often expressed that Britain does not invest enough in research and development?

This is a hypothesis about the difference of two means, based on small sample sizes. The test statistic is again based on the t distribution, i.e.

$$
\begin{equation*}
\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S^{2}}{n_{1}}+\frac{S^{2}}{n_{2}}}} \sim t_{\nu} \tag{5.11}
\end{equation*}
$$

where S^{2} is the pooled variance (as given in equation (4.23)) and the degrees of freedom are given by $\nu=n_{1}+n_{2}-2$.

The hypothesis test procedure is as follows:
(1) $H_{0}: \mu_{1}-\mu_{2}=0$
$H_{1}: \mu_{1}-\mu_{2}<0$
(a one-tail test because the concern is with Britain spending less than Germany.)
(2) Significance level: $\alpha=5 \%$.
(3) The critical value of the t distribution at the 5% significance level for a onetail test with $\nu=n_{1}+n_{2}-2=33$ degrees of freedom is approximately $t^{*}=1.70$.
(4) The test statistic is based on equation (5.11):

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S^{2}}{n_{1}}+\frac{S^{2}}{n_{2}}}}=\frac{3.7-4.2-0}{\sqrt{\frac{0.55}{20}+\frac{0.55}{15}}}=-1.97
$$

where S^{2} is the pooled variance, calculated by

$$
S^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{19 \times 0.6^{2}+14 \times 0.9^{2}}{33}=0.55
$$

(5) The test statistic falls in the rejection region, $t<-t^{*}$, so the null hypothesis is rejected. The data do support the view that Britain spends less on R\&D than Germany.

Exercise 5.11

Exercise 5.12

It is asserted that parents spend, on average, $£ 540$ p.a. on toys for each child. A survey of 24 parents finds expenditure of $£ 490$, with standard deviation $£ 150$. Does this evidence contradict the assertion?

A sample of 15 final-year students were found to spend on average 15 hours per week in the university library, with standard deviation 3 hours. A sample of 20 freshers found they spend on average 9 hours per week in the library, with standard deviation 5 hours. Is this sufficient evidence to conclude that finalists spend more time in the library?

Are the test procedures valid?

A variety of assumptions underlie each of the tests which we have applied above, and it is worth considering in a little more detail whether these assumptions are justified. This will demonstrate that one should not rely upon the statistical tests alone; it is important to retain one's sense of judgement.

The first test concerned the weekly turnover of a series of franchise operations. To justify the use of the Normal distribution underlying the test, the sample observations must be independently drawn. If, for example, all the sample franchises were taken from vibrant and growing cities and avoided those in less fortunate parts of the country, then in some sense the observations would not be independent, and furthermore the sample would not be representative of the whole. The answer to this would be to ensure the sample was properly stratified, representing different parts of the country. This type of sampling issue is covered in Chapter 9.

If one were using time-series data, as in the car factory comparison, similar issues arise. Do the 30 days represent independent observations or might there be an autocorrelation problem (e.g. if the sample days were close together in time)? Suppose that factory 2 suffered a breakdown of some kind which took three days to fix. Output would be reduced on three successive days and factory 2 would almost inevitably appear less efficient than factory 1 . A look at the individual sample observations might be worthwhile, therefore, to see if there are any irregular patterns. It would have been altogether better if the samples had been collected on randomly chosen days over a longer time period to reduce the danger of this type of problem.

If the two factories both obtain their supplies from a common, but limited, source, then the output of one factory might not be independent of the output of the other. A high output of one factory would tend to be associated with a low output from the other, which has little to do with their relative efficiencies. This might leave the average difference in output unchanged but might increase the variance substantially (either a very high positive value of $\bar{x}_{1}-\bar{x}_{2}$ or a very high negative value is obtained). This would lead to a low value of the test statistic and the conclusion of no difference in output. Any real difference in efficiency is masked by the common supplier problem. If the two samples are not independent, then the distribution of $\bar{x}_{1}-\bar{x}_{2}$ may not be Normal.

Hypothesis tests and confidence intervals

Formally, two-tail hypothesis tests and confidence intervals are equivalent. Any value which lies within the 95% confidence interval around the sample mean cannot be rejected as the 'true' value using the 5% significance level in a hypothesis test using the same sample data. For example, our by now familiar accountant could construct a confidence interval for the firm's sales. This yields the 95% confidence interval
[4792, 5008]
Notice that the hypothesised value of 5000 is within this interval and that this value was not rejected by the hypothesis test carried out earlier. As long as the same confidence level is used for both procedures, they are equivalent.

Having said this, their interpretation is different. The hypothesis test forces us into the reject/do not reject dichotomy, which is rather a stark choice. We have already seen how it becomes more likely that a null hypothesis is rejected as the sample size increases. This problem does not occur with estimation. As the sample size increases the confidence interval gets narrower (around the unbiased point estimate) which is entirely beneficial. The estimation approach also tends to emphasise importance over significance in most people's minds. With a hypothesis test one might know that turnover is significantly different from 5000 without knowing how far from 5000 it actually is.

On some occasions a confidence interval is inferior to a hypothesis test, however. Consider the following case. In the United Kingdom only 72 out of 564 judges are women (12.8\%). The Equal Opportunities Commission had earlier commented that since the appointment system is so secretive, it is impossible to tell if there is discrimination or not. What can the statistician say about this? No discrimination (in its broadest sense) would mean half of all judges would be women. Thus, the hypotheses are

$$
\begin{aligned}
& H_{0}: \pi=0.5 \text { (no discrimination) } \\
& H_{1}: \pi<0.5 \text { (discrimination against women) }
\end{aligned}
$$

The sample data are $p=0.128, n=564$. The z score is

$$
z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}=\frac{0.128-0.5}{\sqrt{\frac{0.5 \times 0.5}{564}}}=-17.7
$$

This is clearly significant (and 12.8% is a long way from 50%) so the null hypothesis is rejected. There is some form of discrimination somewhere against women (unless women choose not to be judges). But a confidence interval estimate of the 'true' proportion of female judges would be meaningless. To what population is this 'true' proportion related?

The lesson from all this is that differences exist between confidence intervals and hypothesis tests, despite their formal similarity. Which technique is more appropriate is a matter of judgement for the researcher. With hypothesis testing, the rejection of the null hypothesis at some significance level might actually mean a small (and unimportant) deviation from the hypothesised value. It should be remembered that the rejection of the null hypothesis based on a large sample of data is also consistent with the true value possibly being quite close to the hypothesised value.

Independent and dependent samples

The following example illustrates the differences between independent samples (as encountered so far) and dependent samples (also known as matched or paired samples) where slightly different methods of analysis are required. The example also illustrates how a particular problem can often be analysed by a variety of statistical methods.

Dependent samples occur, for example, when the same individuals are sampled twice, at two points in time. Alternatively, the observations in a first sample might be matched to or related in some way with the observations in the second sample. To ignore these facts in our analysis would be to ignore some potentially valuable information and hence not obtain the optimum results from the data.

To proceed via an example, suppose a company introduces a training programme to raise the productivity of its clerical workers, which is measured by the number of invoices processed per day. The company wants to know if the training programme is effective. How should it evaluate the programme? There is a variety of ways of going about the task, as follows:

- Take two (random) samples of workers, one trained and one not trained, and compare their productivity. This would comprise two independent samples.
- Take a sample of workers and compare their productivity before and after training. This would be a paired sample.
- Take two samples of workers, one to be trained and the other not. Compare the improvement of the trained workers with any change in the other group's performance over the same time period. This would consist of two independent samples but we are controlling for any time effects that are unrelated to the training.

We shall go through each method in turn, pointing out any possible difficulties.

Two independent samples

Suppose a group of 10 workers is trained and compared to a group of 10 nontrained workers, with the following data being relevant:

$$
\begin{aligned}
& \bar{x}_{\mathrm{T}}=25.5 \quad \bar{x}_{\mathrm{N}}=21.00 \\
& s_{\mathrm{T}}=2.55 \quad s_{\mathrm{N}}=2.91 \\
& n_{\mathrm{T}}=10 \quad n_{\mathrm{N}}=10
\end{aligned}
$$

Thus, trained workers process 25.5 invoices per day compared to only 21 by non-trained workers. The question is whether this is significant, given that the sample sizes are quite small.

The appropriate test here is a t test of the difference of two sample means, as follows:

$$
\begin{aligned}
& H_{0}: \mu_{\mathrm{T}}-\mu_{\mathrm{N}}=0 \\
& H_{1}: \mu_{\mathrm{T}}-\mu_{\mathrm{N}}>0 \\
& t=\frac{25.5-21.0}{\sqrt{\frac{7.49}{10}+\frac{7.49}{10}}}=3.68
\end{aligned}
$$

(7.49 is S^{2}, the pooled variance). The t statistic leads to rejection of the null hypothesis; the training programme does seem to be effective.

One problem with this test is that the two samples might have other differences apart from the effect of the training programme. This could be due either to simple random variation or to some selection factor. Poor workers might have been reluctant to take part in training, departmental managers might have selected better workers for training as some kind of reward, or better workers may have volunteered. In a well-designed experiment this should not be allowed to happen, of course, but we do not rule out the possibility. Hence we should consider ways of conducting a fairer test.

Paired samples

If we compare the same workers before and after training, then we are controlling for the inherent quality of the workers. We hence rule out this form of random variation which might otherwise weaken our test. We should therefore obtain a better idea of the true effect of the training programme. This is an example of paired or matched samples, where we can match up and compare the individual observations to each other, rather than just the overall averages. Suppose the sample data are as follows:

Worker	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10
Before	21	24	23	25	28	17	24	22	24	27
After	23	27	24	28	29	21	24	25	26	28

In this case, the observations in the two samples are paired, and this has implications for the method of analysis. One could proceed by assuming these are two independent samples and conduct a t test. The summary data and results of such a test are:

$$
\begin{aligned}
\bar{x}_{\mathrm{B}} & =23.50 & \bar{x}_{\mathrm{A}} & =25.5 \\
s_{\mathrm{B}} & =3.10 & s_{\mathrm{A}} & =2.55 \\
n_{\mathrm{B}} & =10 & n_{\mathrm{A}} & =10
\end{aligned}
$$

The resulting test statistic is $t_{18}=1.58$ which is not significant at the 5% level.
There are two problems with this test and its result. First, the two samples are not truly independent, since the before and after measurements refer to the same group of workers. Second, note that 9 out of 10 workers in the sample have shown an improvement, which is odd in view of the result found above, of no significant improvement. If the training programme really has no effect, then the probability of a single worker showing an improvement is $\frac{1}{2}$. The probability of nine or more workers showing an improvement is, by the Binomial method, $\left(\frac{1}{2}\right)^{10} \times 10 C 9+\left(\frac{1}{2}\right)^{10}$, which is about one in a hundred. A very unlikely event seems to have occurred. Furthermore, the improvement is better measured as a proportion, which is 8.5% (25.5 versus 23.5), and any company would be pleased at such an improvement in productivity. Despite the lack of significance, it is worth investigating further.

The t test used above is inappropriate because it does not make full use of the information in the sample. It does not reflect the fact, for example, that the before
and after scores, 21 and 23, relate to the same worker. The Binomial calculation above does reflect this matching. A re-ordering of the data would not affect the t test result, but would affect the Binomial, since a different number of workers would now show an improvement. Of course, the Binomial does not use all the sample information either - it dispenses with the actual productivity data for each worker and replaces it with 'improvement' or 'no improvement'. It disregards the amount of improvement for each worker.

Better use of the sample data comes by measuring the improvement for each worker, as follows (if a worker had deteriorated, this would be reflected by a negative number):

| Worker | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Improvement | 2 | 3 | 1 | 3 | 1 | 4 | 0 | 3 | 2 | 1 |

These new data can be treated by single sample methods, and account is taken both of the actual data values and of the fact that the original samples were dependent (re-ordering of the data would produce different, and incorrect, improvement figures). The summary statistics of the new data are as follows:

$$
\bar{x}=2.00, s=1.247, n=10
$$

The null hypothesis of no improvement can now be tested as follows:

$$
\begin{aligned}
& H_{0}: \mu=0 \\
& H_{1}: \mu>0 \\
& t=\frac{2.0-0}{\sqrt{\frac{1.247^{2}}{10}}}=5.07
\end{aligned}
$$

This is significant at the 5% level, so the null hypothesis of no improvement is rejected. The correct analysis of the sample data has thus reversed the previous conclusion. It is perhaps surprising that treating the same data in different ways leads to such a difference in the results. It does illustrate the importance of using the appropriate method.

Matters do not end here, however. Although we have discovered an improvement, this might be due to other factors apart from the training programme. For example, if the before and after measurements were taken on different days of the week (that Monday morning feeling . . .), or if one of the days were sunnier, making people feel happier and therefore more productive, this might bias the results. These may seem trivial examples but these effects do exist, for example the 'Friday afternoon car', which has more faults than the average, constructed when workers are thinking ahead to the weekend.

The way to solve this problem is to use a control group, so called because extraneous factors are controlled for, in order to isolate the effects of the factor under investigation. In this case, the productivity of the control group would be measured (twice) at the same times as that of the training group, although no training would be given to them. Ideally, the control group would be matched on other factors (e.g. age) to the treatment group to avoid other factors influencing the results. Suppose that the average improvement of the control group were 0.5 invoices per day with standard deviation 1.0 (again for a group of 10). This
can be compared with the improvement of the training group via the two-sample t test, giving

$$
t=\frac{2.0-0.5}{\sqrt{\frac{1.13^{2}}{10}+\frac{1.13^{2}}{10}}}=2.97
$$

$\left(1.13^{2}\right.$ is the pooled variance). This adds more support to the finding that the training programme is of value.

Exercise 5.13

A group of students' marks on two tests, before and after instruction, were as follows:

Student	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12
Before	14	16	11	8	20	19	6	11	13	16	9	13
After	15	18	15	11	19	18	9	12	16	16	12	13

Test the hypothesis that the instruction had no effect, using both the independent sample and paired sample methods. Compare the two results.

Issues with hypothesis testing

The above exposition has served to illustrate how to carry out a hypothesis test and the rationale behind it. However, the methodology has been subject to criticisms, some of which we have already discussed:

- The decision-making paradigm is problematic since we are not sure what we are choosing between (the alternative hypothesis is vague).
- The 5% significance level is just a convention.
- The focus on 'significance' leads to a neglect of the effect size.
- The experimental (i.e. alternative) hypothesis is never itself tested. This is a pity as it is often the one favoured by the researcher.
- The process is easily and often misunderstood. People tend to confuse the probability of observing the sample data assuming that the null is true with the probability that the null is true given the data. More succinctly, $\operatorname{Pr}\left(\right.$ data $\left.\mid H_{0}\right)$ is confused with $\operatorname{Pr}\left(H_{0} \mid\right.$ data). The significance level (P-value) relates to the former, not the latter.

There are other problems too which we have not yet discussed. It is common in research to be looking at several hypothesis tests rather than just one. Suppose we are trying to improve teaching of statistics to a group of students. We try five alternative approaches: smaller class sizes, regular assignments, online tests, etc. We test each of these with a conventional hypothesis test at the 5% significance level. What is our chance of a Type I error, assuming none of these innovations truly works? The chance that all five come up with 'no effect' is $0.95^{5}=0.77$. Hence the overall Type I error probability is $1-0.77=0.23$. There is a 23% chance that we (erroneously) find something significant. This reveals the danger of looking for things in the data - there is a good chance you will find something, but it will likely be a false positive.

This problem is pervasive, and even the researcher himself herself might be unaware of doing it. He/she investigates whether workers are less productive on a Friday but finds no significant effect. So he/she wonders whether there is a Monday effect and tests that. Or (even worse) he/she notices in the data that productivity looks low on a Wednesday, so he/she tests that. The results of these tests are largely meaningless and the true significance level (P-value) may be much higher than 5%.

Why is it, therefore, that hypothesis testing is so frequently used? One attraction is that it provides clear guidance on what to do, which does not require too much thought to apply. Follow the procedures and you will obtain a result. Moreover, this method will be generally accepted by others and is needed if the researcher wishes to get published.

What can be done to avoid some of these pitfalls? Some suggestions are as follows.

- If doing a hypothesis test, plan it in detail before obtaining the data, i.e. the null hypothesis (or hypotheses) to test, the significance level, how to measure the variables appropriately (e.g. look at wage rates or total earnings?), sample size and so on. Stick to these choices, do not alter them in the light of what you might observe in the data.
- Do not be overawed by significance. Look at the effect size as well. In fact, look at the effect size first. Your significant result could be unimportant.
- Calculating a confidence interval might be a better way of analysing your data than a hypothesis test. It gives more focus to the effect size while also telling you about the reliability of your finding.
- Do not rely only on a hypothesis test, there are lots of ways of gaining insight into a problem. Look at the data using descriptive statistics and charts (and present these results to the reader). Perhaps your significant result occurs because of a few outliers in the data.

If possible, validate your findings on new data. If the effect you have found is genuine, it ought to occur in a new sample. If your original data suggest a new hypothesis to you, you must get new data to test it, you cannot use the same data to test the hypothesis suggested by those data.

Exercise 5.14

Exercise 5.15

Generally, to be published in an academic journal, a study needs to reject the null hypothesis at the 5% significance level. Of all studies published in journals, what proportion of them are likely to be Type I errors, i.e. false positives?

Studies published in journals will usually have an effect size for the subject of study, e.g. smaller class sizes improve pupils' maths skills by 10% points. Would you expect a published effect size to be an underestimate, an accurate (unbiased) estimate, or an overestimate of the true effect size? Note that only 'significant' results get published.

Summary

- Hypothesis testing is the set of procedures for deciding whether a hypothesis is true or false. When conducting the test, we presume the hypothesis, termed the null hypothesis, is true until it is proved false on the basis of some sample evidence.
- If the null is proved false, it is rejected in favour of the alternative hypothesis. The procedure is conceptually similar to a court case, where the defendant is presumed innocent until the evidence proves otherwise.
- Not all decisions turn out to be correct, and there are two types of error that can be made. A Type I error is to reject the null hypothesis when it is in fact true. A Type II error is not to reject the null when it is false.
- Choosing the appropriate decision rule (for rejecting the null hypothesis) is a question of trading off Type I and Type II errors. Because the alternative hypothesis is imprecisely specified, the probability of a Type II error usually cannot be specified.
- The rejection region for a test is therefore chosen to give a 5% probability of making a Type I error (sometimes a 1% probability is chosen). The critical value of the test statistic (sometimes referred to as the critical value of the test) is the value which separates the acceptance and rejection regions.
- The decision is based upon the value of a test statistic, which is calculated from the sample evidence and from information in the null hypothesis.

$$
\left(\mathrm{e} . \mathrm{g} . z=\frac{\bar{x}-\mu}{s / \sqrt{n}}\right)
$$

- The null hypothesis is rejected if the test statistic falls into the rejection region for the test (i.e. it exceeds the critical value).
- For a two-tail test there are two rejection regions, corresponding to very high and very low values of the test statistic.
- Instead of comparing the test statistic to the critical value, an equivalent procedure is to compare the Prob-value of the test statistic with the significance level. The null is rejected if the Prob-value is less than the significance level.
- The power of a test is the probability of a test correctly rejecting the null hypothesis. Some tests have low power (e.g. when the sample size is small) and therefore are not very useful.

Key terms and concepts

alternative hypothesis	one- and two-tail tests
composite hypothesis	paired samples
critical value	power
decision rule	prior information
dependent samples	Prob-value
effect size	rejection region
independent samples	significance level
matched samples	test statistic
non-rejection region	Type I and
null or maintained hypothesis	Type Il errors

References

Michael Oakes, Statistical Inference: A Commentary for the Social and Behavioural Sciences, Wiley, 1986.
McCloskey, D., and S. Ziliak, Size Matters: the Standard Error of Regressions in the American Economic Review, Journal of Socio-Economics, 33, 527-46, 2004.

Formulae used in this chapter

Formula	Description	Notes
$z=\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}}$	Test statistic for $H_{0}:$ mean $=\mu$	Large samples. For small samples, distributed as t with $\nu=n-1$ degrees of freedom
$z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}$	Test statistic for H_{0} : true proportion $=\pi$	Large samples
$z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$	Test statistic for $H_{0}: \mu_{1}-\mu_{2}=0$	Large samples
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s^{2}}{n_{1}}+\frac{s^{2}}{n_{2}}}}$	Test statistic for $H_{0}: \mu_{1}-\mu_{2}=0$	Small samples.
$z=\frac{\left(p_{1}-p_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{\sqrt{\frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}}}$	Test statistic for $H_{0}: \pi_{1}-\pi_{2}=0$	Degrees of freedom $\nu=n_{1}+n_{2}-2$
n_{1}		Large samples $\pi=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}}$

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
5.1 Answer true or false, with reasons if necessary.
(a) There is no way of reducing the probability of a Type I error without simultaneously increasing the probability of a Type II error.
(b) The probability of a Type I error is associated with an area under the distribution of \bar{x} assuming the null hypothesis to be true.
(c) It is always desirable to minimise the probability of a Type I error.
(d) A larger sample, ceteris paribus, will increase the power of a test.
(e) The significance level is the probability of a Type II error.
(f) The confidence level is the probability of a Type II error.
5.2 Consider the investor in the text, seeking out companies with weekly turnover of at least $£ 5000$. He or she applies a one-tail hypothesis test to each firm, using the 5% significance level. State whether each of the following statements is true or false (or not known) and explain why.
(a) 5% of his or her investments are in companies with less than $£ 5000$ turnover.
(b) 5% of the companies he fails to invest in have turnover greater than $£ 5000$ per week.
(c) He invests in 95% of all companies with turnover of $£ 5000$ or over.
5.3 A coin which is either fair or has two heads is to be tossed twice. You decide on the following decision rule: if two heads occur you will conclude it is a two-headed coin, otherwise you will presume it is fair. Write down the null and alternative hypotheses and calculate the probabilities of Type I and Type II errors.
5.4 In comparing two medical treatments for a disease, the null hypothesis is that the two treatments are equally effective. Why does making a Type I error not matter? What significance level for the test should be set as a result?
5.5 A firm receives components from a supplier, which it uses in its own production. The components are delivered in batches of 2000. The supplier claims that there are only 1% defective components on average from its production. However, production occasionally gets out of control and a batch is produced with 10% defective components. The firm wishes to intercept these low-quality batches, so a sample of size 50 is taken from each batch and tested. If two or more defectives are found in the sample, then the batch is rejected.
(a) Describe the two types of error the firm might make in assessing batches of components.
(b) Calculate the probability of each type of error given the data above.
(c) If, instead, samples of size 30 were taken and the batch rejected if one or more rejects were found, how would the error probabilities be altered?
(d) The firm can alter the two error probabilities by choice of sample size and rejection criteria. How should it set the relative sizes of the error probabilities
(i) if the product might affect consumer safety?
(ii) if there are many competitive suppliers of components?
(iii) if the costs of replacement under guarantee are high?
5.6 Computer diskettes (the precursor to USB drives) which do not meet the quality required for highdensity diskettes are sold as low-density diskettes (storing less data) for 80 pence each. High-density diskettes are sold for $£ 1.20$ each. A firm samples 30 diskettes from each batch of 1000 and if any fail the quality test, the whole batch is sold as double-density diskettes. What are the types of error possible and what is the cost to the firm of a Type I error?
5.7 Testing the null hypothesis that $\mu=10$ against $\mu>10$, a researcher obtains a sample mean of 12 with standard deviation 6 from a sample of 30 observations. Calculate the z score and the associated Prob-value for this test.
5.8 Given the sample data $\bar{x}=45, s=16, n=50$, at what level of confidence can you reject $H_{0}: \mu=40$ against a two-sided alternative?
5.9 What is the power of the test carried out in Problem 5.3?
5.10 Given the two hypotheses

$$
H_{0}: \mu=400
$$

$$
H_{1}: \mu=415
$$

and $\sigma^{2}=1000$ (for both hypotheses):
(a) Draw the distribution of \bar{x} under both hypotheses.
(b) If the decision rule is chosen to be: reject H_{0} if $\bar{x} \geq 410$ from a sample of size 40 , find the probability of a Type II error and the power of the test.
(c) What happens to these answers as the sample size is increased? Draw a diagram to illustrate.
5.11 Given the following sample data:

$$
\bar{x}=15 \quad s^{2}=270 \quad n=30
$$

test the null hypothesis that the true mean is equal to 12, against a two-sided alternative hypothesis. Draw the distribution of \bar{x} under the null hypothesis and indicate the rejection regions for this test.
5.12 From experience it is known that a certain brand of tyre lasts, on average, 15000 miles with standard deviation 1250. A new compound is tried and a sample of 120 tyres yields an average life of 15150 miles, with the same standard deviation. Are the new tyres an improvement? Use the 5% significance level.
5.13 Test $H_{0}: \pi=0.5$ against $H_{0}: \pi \neq 0.5$ using $p=0.45$ from a sample of size $n=35$.
5.14 Test the hypothesis that 10% of your class or lecture group are left-handed.
5.15 Given the following data from two independent samples:

$$
\begin{array}{ll}
\bar{x}_{1}=115 & \bar{x}_{2}=105 \\
s_{1}=21 & s_{2}=23 \\
n_{1}=49 & n_{2}=63
\end{array}
$$

test the hypothesis of no difference between the population means against the alternative that the mean of population 1 is greater than the mean of population 2.
5.16 A transport company wants to compare the fuel efficiencies of the two types of lorry it operates. It obtains data from samples of the two types of lorry, with the following results:

Type	Average mpg	Std devn	Sample size
A	31.0	7.6	33
B	32.2	5.8	40

Test the hypothesis that there is no difference in fuel efficiency, using the 99% confidence level.
5.17 (a) A random sample of 180 men who took the driving test found that 103 passed. A similar sample of 225 women found that 105 passed. Test whether pass rates are the same for men and women.
(b) If you test whether the group of people who passed the driving test contained the same proportion of men as the group of people who failed, what result would you expect to find? Carry out the test to check.
(c) Is your finding in part (b) inevitable or one that just arises with these data? Try to support your response with a proof.
5.18 (a) A pharmaceutical company testing a new type of pain reliever administered the drug to 30 volunteers experiencing pain. Sixteen of them said that it eased their pain. Does this evidence support the claim that the drug is effective in combating pain?
(b) A second group of 40 volunteers were given a placebo instead of the drug. Thirteen of them reported a reduction in pain. Does this new evidence cast doubt upon your previous conclusion?
5.19 (a) A random sample of 20 observations yielded a mean of 40 and standard deviation 10 . Test the hypothesis that $\mu=45$ against the alternative that it is not. Use the 5% significance level.
(b) What assumption are you implicitly making in carrying out this test?
5.20 A photo processing company sets a quality standard of no more than 10 complaints per week on average. A random sample of 8 weeks showed an average of 13.6 complaints, with standard deviation 5.3. Is the firm achieving its quality objective?
5.21 Two samples are drawn. The first has a mean of 150 , variance 50 and sample size 12 . The second has mean 130 , variance 30 and sample size 15 . Test the hypothesis that they are drawn from populations with the same mean.
5.22 (a) A consumer organisation is testing two different brands of battery. A sample of 15 of brand A shows an average useful life of 410 hours with a standard deviation of 20 hours. For brand B, a sample of 20 gave an average useful life of 391 hours with standard deviation 26 hours. Test whether there is any significant difference in battery life.
(b) What assumptions are being made about the populations in carrying out this test?
5.23 The output of a group of 11 workers before and after an improvement in the lighting in their factory is as follows:

Before	52	60	58	58	53	51	52	59	60	53	55
After	56	62	63	50	55	56	55	59	61	58	56

Test whether there is a significant improvement in performance
(a) assuming these are independent samples,
(b) assuming they are dependent.
5.24 Another group of workers were tested at the same times as those in Problem 5.23, although their department also introduced rest breaks into the working day.

Before	51	59	51	53	58	58	52	55	61	54	55
After	54	63	55	57	63	63	58	60	66	57	59

Does the introduction of rest days alone appear to improve performance?
5.25 Discuss in general terms how you might 'test' the following:
(a) astrology
(b) extra-sensory perception
(c) the proposition that company takeovers increase profits.
5.26 (Project) Can your class tell the difference between tap water and bottled water? Set up an experiment as follows: fill r glasses with tap water and $n-r$ glasses with bottled water. The subject has to guess which is which. If he or she gets more than p correct, you conclude he or she can tell the difference. Write up a report of the experiment including:
(a) a description of the experimental procedure
(b) your choice of n, r and p, with reasons
(c) the power of your test
(d) your conclusions.
5.27 (Computer project) Use the $=$ RAND () function in your spreadsheet to create 100 samples of size 25 (which are effectively all from the same population). Compute the mean and standard deviation of each sample. Calculate the z score for each sample, using a hypothesised mean of 0.5 (since the $=R A N D()$ function chooses a random number in the range 0-1).
(a) How many of the z scores would you expect to exceed 1.96 in absolute value? Explain why.
(b) How many do exceed this? Is this in line with your prediction?
(c) Graph the sample means and comment upon the shape of the distribution. Shade in the area of the graph beyond $z= \pm 1.96$.
5.28 (Project) This is similar to Problem 5.26 but concerns digital music files. There is debate about whether listeners can tell the difference between high-quality WAV files and compressed MP3 files. Obtain the same song in both formats (most music players will convert a WAV file to MP3) and see if a listener can discern which is which. Some of your class colleagues might be better at this than others. You need to consider the same issues as in Problem 5.26.

The ABX comparison procedure would be interesting to follow (see http://wiki.hydrogenaudio. org/index.php?title=ABX) and you can download the WinABX program which automates much of the procedure (google 'WinABX' to find it).

Answers to exercises

Exercise 5.1

(a) H_{0} : crime is the same as last year, H_{1} : crime has increased.
(b) Type I error - concluding crime has risen, when in fact it has not. Type II - concluding it has not risen, when, in fact, it has. The cost of the former might be employing more police officers which are not in fact warranted; of the latter, not employing more police to counter the rising crime level. (The Economist (19 July 2003) reported that 33% of respondents to a survey in the United Kingdom felt that crime had risen in the previous two years, only 4% thought that it had fallen. In fact, crime had fallen slightly, by about 2%. A lot of people were making a Type I error, therefore.)

Exercise 5.2

(a) $z=(108-100) / \sqrt{ } 36=1.33$. The area in the tail beyond 1.33 is 9.18%, which is the probability of a Type I error.
(b) $z=1.64$ cuts off 5% in the upper tail of the distribution, hence we need the decision rule to be at $\bar{x}+1.64 \times s / \sqrt{ } n=100+1.64 \times \sqrt{ } 36=109.84$.
(c) Under $H_{1}: \mu=112$, we can write $\bar{x} \sim N(112,900 / 25)$. (We assume the same variance under both H_{0} and H_{1} in this case.) Hence $z=(108-112) / \sqrt{ } 36=-0.67$. This gives an area in the tail of 25.14%, which is the Type II error probability. Usually, however, we do not have a precise statement of the value of μ under H_{1} so cannot do this kind of calculation.

Exercise 5.3

$\alpha=0.05$ (significance level chosen), hence the critical value is $z^{*}=1.96$ (two-tail test). The test statistic is $z=(530-500) /(90 / \sqrt{30})=1.83<1.96$ so H_{0} is not rejected at the 5\% significance level.

Exercise 5.4

All of the statements are false. Any statement 'proving' or 'disproving' a hypothesis is wrong, as is one about the probability of a hypothesis being true. That deals with (a) to (d). (e) looks more plausible, but it asks the probability the hypothesis is true after you have rejected it. Again, this asks for a probability about a hypothesis. (f) is called the replication fallacy. It assumes the null is true but we do not know this from a sample.

It might help to recall that the P-value is the probability of obtaining such sample data, assuming the null is true. We may write this as $\operatorname{Pr}\left(\right.$ data $\left.\mid H_{0}\right)$, like a conditional probability. The questions ask, in different ways, for $\operatorname{Pr}\left(H_{0} \mid\right.$ data $)$ which is something quite different.

Exercise 5.5

One wants to avoid making a Type I error if possible, i.e. rejecting H_{0} when true. Hence, set a low significance level (1\%) so that H_{0} is rejected only by very strong evidence.

Exercise 5.6

(a) (i) Reject. The Prob-value should be halved, to 0.0385 , which is less than 5%. Alternatively, think of comparing $1.77>1.64$, the one-tail critical value. (ii) Do not reject, the Prob-value is greater than 5%; equivalently $1.77<1.96$.
(b) In this case, the null is not rejected in both cases. In the one-tailed case, $0.0385>1 \%$, so the null is not rejected.

Exercise 5.7
(a) We need to solve $Z^{*}=1.64=\frac{\bar{x}-160}{50 / \sqrt{400}}$ which yields $\bar{x}=164.1$ as the cutoff point.
(b) (i) The power of the test is obtained from the new z score: $z=\frac{164.1-163}{50 / \sqrt{400}}=0.44$, which cuts off 33% in the upper tail, and is the power of the test. (ii) The z score is now $z=\frac{164.1-166}{50 / \sqrt{400}}=-0.76$, which cuts off 78% in the upper tail (note we have a negative z score yet want the right-hand tail, so need the complement of the value given in Table A2).

Exercise 5.8

$$
z=\frac{0.65-0.5}{\sqrt{\frac{0.5 \times 0.5}{80}}}=2.68
$$

hence the null is decisively rejected. $z^{*}=1.64$ (one-tailed test).

Exercise 5.9

We have the data: $\bar{x}_{1}=3.6, s_{1}=1.2, n_{1}=50 ; \bar{x}_{2}=3.9, s_{2}=2.1, n_{2}=90$. The null hypothesis is $H_{0}: \mu_{1}=\mu_{2}$ versus $H_{1}: \mu_{1} \neq \mu_{2}$. The test statistic is

$$
z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{(3.6-3.9)-0}{\sqrt{\frac{1.2^{2}}{50}+\frac{2.1^{2}}{90}}}=-1.08
$$

The test statistic (absolute value) does not exceed the critical value of 1.96 so the null is not rejected at the 5% significance level.

Exercise 5.10

The evidence is $p_{1}=23 / 75, n_{1}=75, p_{2}=34 / 95, n_{2}=95$. The hypothesis to be tested is $H_{0}: \pi_{1}-\pi_{2}=0$ versus $H_{1}: \pi_{1}-\pi_{2}<0$. Before calculating the test statistic, we must calculate the pooled variance as

$$
\hat{\pi}=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}=\frac{75 \times 0.3067+95 \times 0.3579}{75+95}=0.3353
$$

The test statistic is then

$$
z=\frac{0.3067-0.3579-0}{\sqrt{\frac{0.3353 \times(1-0.3353)}{75}+\frac{0.3353 \times(1-0.3353)}{95}}}=-0.70
$$

This is less in absolute magnitude than 1.64 , the critical value of a one tailed test, so the null is not rejected. The second gambler is just luckier than the first, we conclude. We have to be careful about our interpretation, however: one of the gamblers might prefer
longer-odds bets, so wins less often but gets more money each time. Hence, this may not be a fair comparison.

Exercise 5.11

We shall treat this as a two-tailed test, although a one-tailed test might be justified if there were other evidence that spending had fallen. The hypothesis is $H_{0}: \mu=540$ versus $H_{1}: \mu \neq 540$. Given the sample evidence, the test statistic is

$$
t=\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}}=\frac{490-540}{\sqrt{150^{2} / 24}}=-1.63
$$

The critical value of the t distribution for 23 degrees of freedom is 2.069 , so the null is not rejected.

Exercise 5.12

The hypothesis to test is $H_{0}: \mu_{F}-\mu_{N}=0$ versus $H_{1}: \mu_{F}-\mu_{N}>0$ (F indexes finalists, N the new students). The pooled variance is calculated as

$$
S^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{14 \times 3^{2}+19 \times 5^{2}}{33}=18.21
$$

The test statistic is

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S^{2}}{n_{1}}+\frac{S^{2}}{n_{2}}}}=\frac{(15-9)-0}{\sqrt{\frac{18.21}{15}+\frac{18.21}{20}}}=4.12
$$

The critical value of the t distribution with $15+20-2=33$ degrees of freedom is approximately 1.69 (5% significance level, for a one-tailed test). Thus the null is decisively rejected and we conclude finalists do spend more time in the library.

Exercise 5.13

For the case of independent samples, we obtain $\bar{x}_{1}=13, \bar{x}_{2}=14.5, s_{1}=4.29, s_{2}=3.12$, with $n=12$ in both cases. The test statistic is therefore

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S^{2}}{n_{1}}+\frac{S^{2}}{n_{2}}}}=\frac{13-14.5-0}{\sqrt{\frac{14.05}{12}+\frac{14.05}{12}}}=-0.98
$$

with pooled variance

$$
S^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{11 \times 4.29^{2}+11 \times 3.12^{2}}{22}=14.05
$$

The null of no effect is therefore accepted. By the method of paired samples, we have a set of improvements as follows:

Student	1	2	3	4	5	6	7	8	9	10	11	12
Improvement	1	2	4	3	-1	-1	3	1	3	0	3	0

The mean of these is 1.5 and the variance is 3 . The t statistic is therefore

$$
t=\frac{1.5-0}{\sqrt{3 / 12}}=3
$$

This now conclusively rejects the null hypothesis (critical value 1.8), in stark contrast to the former method. The difference arises because 10 out of 12 students have improved or done as well as before, only two have fallen back (slightly). The gain in marks is modest but applies consistently to nearly all candidates.

Another way to look at this question would be to ask, what is the probability of 8 (or more) improvements out of 12 students? This is the basis of Wilcoxon's Sign Test. For this we discard the two observations with zero improvement, leaving 10 . If there were truly no improvement, we would expect 5 improvements out of 10 , whereas we actually have 8 . The probability of 8 or more improvements is given by the Binomial distribution with $n=10$ and $P=0.5$. Hence, $\operatorname{Pr}(8)+\operatorname{Pr}(9)+\operatorname{Pr}(10)=0.5^{10} \times$ $10 \mathrm{C} 8+0.5^{10} \times 10 \mathrm{C} 9+0.5^{10} \times 10 \mathrm{C} 10=0.055$ or 5.5%. This does not quite meet the criterion of 5% significance so we cannot reject the null hypothesis of no improvement. This test fails to find improvement because it discards information about the extent of improvement and hence is not a very powerful test.

Exercise 5.14

You might be tempted to answer 5\% to this. However, the question asks for $\operatorname{Pr}\left(H_{0}\right.$ true | H_{0} rejected), or $\operatorname{Pr}\left(H_{0} \mid \mathrm{R}\right)$ for short. H_{0} indicates there is truly no effect, R indicates that H_{0} is rejected and hence the study is published (with the wrong conclusion). Using Bayes' theorem:

$$
\operatorname{Pr}\left(H_{0} \mid R\right)=\frac{\operatorname{Pr}\left(R \mid H_{0}\right) \times \operatorname{Pr}\left(H_{0}\right)}{\operatorname{Pr}\left(R \mid H_{0}\right) \times \operatorname{Pr}\left(H_{0}\right)+\operatorname{Pr}\left(R \mid H_{1}\right) \times \operatorname{Pr}\left(H_{1}\right)}
$$

We know that $\operatorname{Pr}\left(R \mid H_{0}\right)=0.05$ but we have to assume some values for $\operatorname{Pr}\left(H_{0}\right)$ and $\operatorname{Pr}(R \mid$ H_{1}). If we let $\operatorname{Pr}\left(H_{0}\right)=0.2$ (20% of hypotheses tested are in fact 'null') and $\operatorname{Pr}\left(R \mid H_{1}\right)=0.6$ (this is the power of the test), then we obtain $\operatorname{Pr}\left(H_{0} \mid R\right)=0.020$, only 2% of published studies are Type I errors. However, if we set $\operatorname{Pr}\left(H_{0}\right)=0.8$ (researchers test lots of crazy ideas) and have a low-powered test, $\operatorname{Pr}\left(R \mid H_{1}\right)=0.4$, then we find that one-third of all published studies are false positives.

Exercise 5.15

One would expect published studies to overestimate the effect size. This is because any study's estimate of the effect is subject to random error. If the error is positive, the effect is still significant and so over-estimates will get published. If the error is negative, there will be an underestimate, and, if this means that the 5% significance threshold is not met, then the result is not published. Hence some under-estimates are not published, and published estimates will on average be an over-estimate of the true effect size.

6
 The χ^{2} and F distributions

Learning outcomes 230
Introduction 231
The χ^{2} distribution 231
Estimating a variance 232
Comparing actual and expected values of a variable 234
Combining classes 239
Contingency tables 241
The F distribution 245
Testing the equality of two variances 245
Analysis of variance 248
The result of the hypothesis test 252
The analysis of variance table 252
Summary 255
Key terms and concepts 255
Formulae used in this chapter 256
Problems 256
Answers to exercises 259
Appendix: Use of χ^{2} and F distribution tables 261

By the end of this chapter you should be able to:

- understand the uses of two new probability distributions: χ^{2} and F
- construct confidence interval estimates for a variance
- perform hypothesis tests concerning variances
- analyse and draw inferences from data contained in contingency tables
- construct a simple analysis of variance table and interpret the results.

Introduction

The final two distributions to be studied are the χ^{2} (pronounced 'kye-squared') and F distributions. Both of these distributions have a variety of uses, the most common of which are illustrated in this chapter. These distributions allow us to extend some of the estimation and testing procedures covered in Chapters 4 and 5. The χ^{2} distribution allows us to establish confidence interval estimates for a variance, just as the Normal and t distributions were used in the case of a mean. Further, just as the Binomial distribution was used to examine situations where the result of an experiment could be either 'success' or 'failure', the χ^{2} distribution also allows us to analyse situations where there are more than two categories of outcome. The F distribution enables us to conduct hypothesis tests regarding the equality of two variances and also to make comparisons between the means of multiple samples, not just two. The F distribution also arises in Chapter 7 and 8 on regression analysis.

The χ^{2} distribution

Figure 6.1
The χ^{2} distribution with different degrees of freedom

The χ^{2} distribution has a number of uses. In this chapter we make use of it in three ways:

- To calculate a confidence interval estimate of the population variance.
- To compare actual observations on a variable with the (theoretically) expected values.
- To test for association between two variables in a contingency table.

The use of the distribution is in many ways similar to the Normal and t distributions already encountered. Once again, it is actually a family of distributions depending upon a single parameter, the degrees of freedom, in a similar fashion to the t distribution. The number of degrees of freedom can have slightly different interpretations, depending upon the particular problem, but is often related to sample size in some way. Some typical χ^{2} distributions are drawn in Figure 6.1 for different values of the parameter. Note the distribution has the following characteristics:

- It is always non-negative.
- It is skewed to the right.
- It becomes more symmetric as the number of degrees of freedom increases.

Using the χ^{2} distribution to construct confidence intervals is done in the usual way, by using the critical values of the distribution (given in Table A4 (see page 452)) which cut off an area $\alpha / 2$ in each tail of the distribution. For hypothesis tests, a rejection region is defined which cuts off an area α in either one or both tails of the distribution, whichever is appropriate. These principles should be familiar from previous chapters, so they are not repeated in detail. The following examples show how this works for the χ^{2} distribution.

Estimating a variance

The sample variance is also a random variable like the mean; it takes on different values from sample to sample. We can therefore ask the usual question: given a sample variance, what can we infer about the true value?

To give an example, we use the data on spending by Labour boroughs in the example in Chapter 4 (see page 164). In that sample of 20 boroughs, the average spending on administration was $£ 175$ (per taxpayer), with standard deviation 25 (and hence variance of 625). What can we say about the true variance and standard deviation?

We work in terms of variances (this is more convenient when using the χ^{2} distribution), taking the square root when we need to refer to the standard deviation. First of all, the sample variance is an unbiased estimator of the population variance ${ }^{1}, \mathrm{E}\left(s^{2}\right)=\sigma^{2}$, so we may use this as our point estimate, which is therefore 625. To construct the confidence interval around this we need to know about the distribution of s^{2}. Unfortunately, this does not have a convenient probability distribution, so we transform it to

$$
\begin{equation*}
\frac{(n-1) s^{2}}{\sigma^{2}} \tag{6.1}
\end{equation*}
$$

which does have a χ^{2} distribution, with $\nu=n-1$ degrees of freedom. Again, we state this without a formal mathematical proof.

To construct the 95% confidence interval around the point estimate, we proceed in a similar fashion to the Normal or t distribution. First, we find the critical values of the χ^{2} distribution which cut off 2.5% in each tail. These are no longer symmetric around zero as was the case with the standard Normal and t distributions. Table 6.1 shows an excerpt from the χ^{2} table which is given in full in Table A4 in the Appendix at the end of the text (see page 452).

Like the t distribution, the first column gives the degrees of freedom, so we require the row corresponding to $\nu=n-1=19$.

- For the left-hand critical value (cutting off 2.5% in the left-hand tail), we look at the column headed ' 0.975 ', representing 97.5% in the right-hand tail. This critical value is 8.91.
- For the right-hand critical value, we look up the column headed ' 0.025 ' $(2.5 \%$ in the right-hand tail), giving 32.85 .
The 95% confidence interval for $(n-1) s^{2} / \sigma^{2}$, therefore, lies between these two values, i.e.

$$
\begin{equation*}
\left[8.91 \leq \frac{(n-1) s^{2}}{\sigma^{2}} \leq 32.85\right] \tag{6.2}
\end{equation*}
$$

[^26]Table 6.1 Excerpt from Table A4 - the χ^{2} distribution

$\boldsymbol{\nu}$	0.99	0.975	\ldots	0.10	0.05	0.025	0.01
1	0.0002	0.0010	\ldots	2.7055	3.8415	5.0239	6.6349
2	0.0201	0.0506	\ldots	4.6052	5.9915	7.3778	9.2104
\vdots	\vdots	\vdots	\ldots	\vdots	\vdots	\vdots	\vdots
18	7.0149	8.2307	\ldots	25.9894	28.8693	31.5264	34.8052
19	7.6327	8.9065	\ldots	27.2036	30.1435	32.8523	36.1908
20	8.2604	9.5908	\ldots	28.4120	31.4104	34.1696	37.5663

Note: The two critical values are found at the intersections of the shaded row and columns. Alternatively, you can use Excel. Since Excel 2010 the formula $=$ CHISQ.INV.RT $(0.975,19)$ gives the left-hand critical value, 8.91 ; similarly, $=$ CHISQ.INV.RT $(0.025,19)$ gives the answer 32.85 , the right-hand critical value. In older versions of Excel, use $=\operatorname{CHIINV}(0.975,19)$, etc.

We actually want an interval estimate for σ^{2} so we need to rearrange equation (6.2) so that σ^{2} lies between the two inequality signs. Rearranging yields

$$
\begin{equation*}
\left[\frac{(n-1) s^{2}}{32.85} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{8.91}\right] \tag{6.3}
\end{equation*}
$$

and evaluating this expression leads to the 95% confidence interval for σ^{2} which is

$$
\left[\frac{19 \times 625}{32.85} \leq \sigma^{2} \leq \frac{19 \times 625}{8.91}\right]=[361.5,1332.8]
$$

Note that the point estimate, 625 , is no longer at the centre of the interval but is closer to the lower limit. This is a consequence of the skewness of the χ^{2} distribution.

Worked example 6.1

Given a sample of size $n=51$ yielding a sample variance $s^{2}=81$, we may calculate the 95% confidence interval for the population variance as follows.

Since we are using the 95% confidence level, the critical values cutting off the extreme 5% of the distribution are 32.36 and 71.42 , from Table A4. We can therefore use equation (6.3) to find the interval:

$$
\left[\frac{(n-1) \times s^{2}}{71.42} \leq \sigma^{2} \leq \frac{(n-1) \times s^{2}}{32.36}\right]
$$

Substituting in the values gives

$$
\left[\frac{(51-1) \times 81}{71.42} \leq \sigma^{2} \leq \frac{(51-1) \times 81}{32.36}\right]
$$

yielding a confidence interval of [56.71, 125.15].
Note that if we wished to find a 95% confidence interval for the standard deviation we can simply take the square root of the result to obtain [7.53, 11.19].

The 99% CI for the variance can be obtained by altering the critical values. The values cutting off 0.5% in each tail of the distribution are (again from Table A4) 27.99 and 79.49. Using these critical values results in an interval [50.95, 144.69]. Note that, as expected, the 99% CI is wider than the 95% interval.

Exercise 6.1

(a) Given a sample variance of 65 from a sample of size $n=30$, calculate the 95% confidence interval for the variance of the population from which the sample was drawn.
(b) Calculate the $95 \% \mathrm{Cl}$ for the standard deviation.
(c) Calculate the 99% interval estimate of the variance.

Comparing actual and expected values of a variable

A second use of the χ^{2} distribution provides a hypothesis test, allowing us to compare a set of observed values to expected values, the latter calculated on the basis of some null hypothesis to be tested. If the observed and expected values differ significantly, as judged by the χ^{2} test (the test statistic falls into the rejection region of the χ^{2} distribution), then the null hypothesis is rejected. Again, this is similar in principle to hypothesis testing using the Normal or t distributions, but allows a slightly different type of problem to be handled.

This can be illustrated with a very simple example. Suppose that throwing a die 72 times yields the following data:

Score on die	1	2	3	4	5	6
Frequency	6	15	15	7	15	14

Are these data consistent with the die being unbiased? Previously we might have investigated this problem by testing whether the proportion of (say) sixes is more or less than expected, using the Binomial distribution. One could still do this, but this does not make full use of the information in the sample, it only compares sixes against all other values together. The χ^{2} test allows one to see if there is any bias in the die, for or against a particular number. It therefore answers a slightly different and more general question than if we made use of the Binomial distribution.
A crude examination of the data suggests a slight bias against 1 and 4, but is this truly bias or just a random fluctuation quite common in this type of experiment? First the null and alternative hypotheses are set up:
$H_{0}:$ the die is unbiased
$H_{1}:$ the die is biased

Note that the null hypothesis should be constructed in such a way as to permit the calculation of the expected outcomes of the experiment. Thus the null and alternative hypotheses could not be reversed in this case, since 'the die is biased' is a vague statement (exactly how biased, for example?) and would not permit the calculation of the expected outcomes of the experiment.

On the basis of the null hypothesis, the expected values are based on the uniform distribution, i.e. each number should come up an equal number of times. The expected values are therefore $12(=72 / 6)$ for each number on the die.

This gives the data shown in Table 6.2 with observed and expected frequencies in columns 2 and 3, respectively (ignore columns 4-6 for the moment). These are now compared using the χ^{2} test statistic, constructed using the formula

$$
\begin{equation*}
\chi^{2}=\sum \frac{(O-E)^{2}}{E} \tag{6.4}
\end{equation*}
$$

Table 6.2 Calculation of the χ^{2} statistic for the die problem

Score	Observed frequency (O)	Expected frequency (E)	$O-E$	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
1	6	12	-6	36	3.00
2	15	12	3	9	0.75
3	15	12	3	9	0.75
4	7	12	-5	25	2.08
5	15	12	3	9	0.75
6	14	12	2	4	0.33
Totals	72	72	0		7.66

which has a χ^{2} distribution with $\nu=k-1$ degrees of freedom (k is the number of different outcomes, here 6$)^{2}$. O represents the observed frequencies and E the expected. If the value of this test statistic falls into the rejection region, i.e. the tail of the χ^{2} distribution, then we conclude the die is biased, rejecting the null. The calculation of the test statistic is shown in columns 4-6 of Table 6.2, and is straightforward, yielding a value of the test statistic of $\chi^{2}=7.66$, to be compared to the critical value of the distribution, for $6-1=5$ degrees of freedom.

Trap!

In my experience many students misinterpret formula (6.4) and use

$$
\chi^{2}=\frac{\sum(O-E)^{2}}{\sum E}
$$

instead. This is not the same as the correct formula and gives a wrong answer. Check that you recognise the difference between the two and that you always use the correct version.

Looking up the critical value for this test takes a little care as one needs first to consider if it is a one- or two-tailed test. Looking at the alternative hypothesis suggests a two-sided test, since the error could be in either direction. However, this intuition is wrong, for the following reason. Looking closely at equation (6.4) reveals that large discrepancies between observed and expected values (however occurring) can only lead to large values of the test statistic. Conversely, small values of the test statistic must mean that differences between O and E are small, so the die must be unbiased. Thus the null is only rejected by large values of the χ^{2} statistic or, in other words, the rejection region is in the right-hand tail only of the χ^{2} distribution. It is a one-tailed test. This is illustrated in Figure 6.2.

The critical value of the χ^{2} distribution in this case ($\nu=5,5 \%$ significance level) is 11.1 , found from Table A4. Note that we require 5% of the distribution in the right-hand tail to establish the rejection region. Since the test statistic is less than the critical value $(7.66<11.1)$ the null hypothesis is not rejected. The differences between scores are due to chance rather than to bias in the die. Alternatively, we could find the P-value associated with 7.66 , which is 0.176 (use $=$ CHISQ.DIST.RT(7.66,5) in Excel to obtain this). Since this is greater than 0.05 , the null is not rejected.

[^27]Figure 6.2 The rejection region for the χ^{2} test

An important point to note is that the test should not be carried out on the proportion of occasions on which each number comes up (the expected values would all be $12 / 72=0.167$, and the observed values $8 / 72,13 / 72$, etc.), since information about the 'sample size' (number of rolls of the die, 72) would be lost. As with all sampling experiments, the inferences that can be drawn depend upon the sample size, with larger sample sizes giving more reliable results, so care must be taken to retain information about sample size in the calculations. If the test had been incorrectly conducted in terms of proportions, all O and E values would have been divided by 72 , and this would have reduced the test statistic by a factor of 72 (check the formula to confirm this), reducing it to 0.14 , nowhere near significance. It would be surprising if any data would yield significance given this degree of mistreatment. (See the "Oops!" box later in this chapter.)

A second, more realistic, example will now be examined to reinforce the message about the use of the χ^{2} distribution and to show how the expected values might be generated in different ways. This example looks at road accident figures to see if there is any variation through the year. One might reasonably expect more accidents in the winter months due to weather conditions, poorer light, etc. Quarterly data on the number of fatal accidents on British roads are used, and the null hypothesis is that the number does not vary seasonally.
H_{0} : there is no difference in fatal accidents between quarters H_{1} : there is some difference in fatal accidents between quarters

Such a study might be carried out by government, for example, to try to find the best means of reducing road accidents.

Table 6.3 shows data on road fatalities in 2014 by quarter in Great Britain, adapted from data taken from the UK government's transport data available at https://www. gov.uk/government/statistical-data-sets/ras30-reported-casualties-in-roadaccidents. There does appear some evidence of more accidents in the final two quarters of the year, but is this convincing evidence or just random variation? Under the null hypothesis the total number of fatalities (1775) would be evenly split between the four quarters, yielding Table 6.4 and the χ^{2} calculation that follows.

The calculated value of the test statistic is 22.42 , given at the foot of the final column. The number of degrees of freedom is $\nu=k-1=3$, so the critical value

Table 6.3 Road casualties in Great Britain, 2014

Quarter	I	II	III	IV	Total
Casualties	376	428	457	514	1775

Table 6.4 Calculation of the χ^{2} statistic for road fatalities

Quarter	Observed	Expected	$O-E$	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
I	376	443.75	-67.75	4590.06	10.34
II	428	443.75	-15.75	248.06	0.56
III	457	443.75	13.25	175.56	0.40
IV	514	443.75	70.25	4935.06	11.12
Totals	1775	1775			22.42

Figure 6.3
The seasonal pattern of road casualties

at the 5% significance level is 7.82 . Since the test statistic exceeds this, the null hypothesis is rejected; there is a difference between seasons in the accident rate. Earlier editions of this text analysed data from earlier years and it is useful to compare across the different years. As so often, a graph is a useful way to do this, illustrated in Figure 6.3.

A couple of points are worth making about this chart. First, the quarterly pattern appears to be fairly consistent over time, casualties rising throughout the year. Second is the substantial progress made in reducing casualties since 2006, which is far bigger than seasonal differences.

The reason for the quarterly difference might be the increased hours of darkness during winter months, leading to more accidents. This particular hypothesis can be tested using the same data, but combining quarters I and IV (to represent winter) and quarters II and III (summer). The null hypothesis is of no difference between summer and winter, and the calculation is set out in Table 6.5. The χ^{2} test statistic is now extremely small, and falls below the new critical value ($\nu=1,5 \%$ significance level) of 3.84 , so the null hypothesis is not rejected. Thus, the variation between quarters does not appear to be a straightforward summer/winter effect (providing, of course, that combining quarters I and IV to represent winter and II and III to represent summer is a valid way of combining the quarters).

Another point which the example brings out is that the data can be examined in a number of ways using the χ^{2} technique. Some of the classes were combined to test a slightly different hypothesis from the original one. This is a quite acceptable technique but should be used with caution. In any set of data (even totally random

Table 6.5 Seasonal variation in road casualties

Season	Observed	Expected	$O-E$	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
Summer	885	887.5	-	6.25	0.007
Winter	890	887.5	2.5	6.25	0.007
Totals	1775	1775	0		0.014

data), there is bound to be some way of dividing it up such that there are significant differences between the divisions. The point, however, is whether there is any meaning to the division. In the above example the amalgamation of the quarters into summer and winter has some intuitive meaning, and we have good reason to believe that there might be differences between them. Driving during the hours of darkness might be more dangerous and might have had some relevance to accident prevention policy (e.g. an advertising campaign to persuade people to check that their lights work correctly). The hypothesis is led by some prior theorising and is worth testing.

Road accidents and darkness

The question of the effect of darkness on road accidents has been extensively studied, particularly in relation to putting the clocks forward and back in spring and autumn. A study by H. Green in 1980 reported the following numbers of accidents (involving death or serious injury) on the five weekday evenings before and after the clocks changed:

	Spring		Autumn		
Year	Before	After		Before	After
1975	19	11	20	31	
1976	14	9	23	36	
1977	22	8	12	29	

It is noticeable that accidents fell in spring after the hour change (when it becomes lighter) but increased in autumn (when it becomes darker). This is a better test than simply combining quarterly figures as in our example, so casts doubt upon our result. Evidence from other countries also supports the view that the light level has an important influence on accidents.

Source: H. Green, Some effects on accidents of changes in light conditions at the beginning and end of British Summer Time, Supplementary Report 587, Transport and Road Research Laboratory, 1980. For an update on research, see J. Boughton et al., Influence of light level on the incidence of road casualties, J. Royal Statistical Society, Series A, 162 (2), 1999.

As discussed in Chapter 5, it is dangerous to look at the data and then formulate a hypothesis. From Table 6.4 there appears to be a large difference between the first and second halves of the year. If quarters I and II were combined, and III and IV combined, the χ^{2} test statistic might be significant (in fact it is, $\chi^{2}=15.7$), but does this signify anything? It is extremely easy to look for a big difference somewhere in any set of data and then pronounce it 'significant' according to some test. The probability of making a Type I error (rejecting a correct null) is much greater than 5% in such a case. The point, as usual, is that it is no good looking at data in a vacuum and simply hoping that they will 'tell you something'.

A related warning is that we should be wary of testing one hypothesis and, on the basis of that result, formulating another hypothesis and testing it (as we have done by going on to compare summer and winter). Once again we are (indirectly) using the data to help formulate the hypothesis, and the true significance level of the test is likely to be different from 5% (even though we use the 5% critical value). We have therefore sinned, but is difficult to do research without sometimes resorting to this kind of behaviour. There are some formal methods for dealing with such situations, but they are beyond the scope of this text.

Combining classes

There is one further point to make about carrying out a χ^{2} test, and this involves circumstances where classes must be combined. The theoretical χ^{2} distribution from which the critical value is obtained is a continuous distribution, yet the calculation of the test statistic comes from data which are divided up into a discrete number of classes. The calculated test statistic is therefore only an approximation to a true χ^{2} variable, but this approximation is good enough as long as each expected (not observed) value is greater than or equal to five. It does not matter what the observed values are. If this condition is not satisfied, the class (or classes) with expected values less than five must be combined with other classes until all expected values are at least five. An example of this will be given below.

In all cases of χ^{2} testing the most important part of the analysis is the calculation of the expected values (the rest of the analysis is mechanical). Therefore, it is always worth devoting most of the time to this part of the problem. The expected values are, of course, calculated on the basis of the null hypothesis being true, so different null hypotheses will give different expected values. Consider again the case of road fatalities. Although the null hypothesis ('no differences in accidents between quarters') seems clear enough, it could mean different things. Here it was taken to mean an equal number in each quarter; but another interpretation is an equal number of casualties per car-kilometre travelled in each quarter; in other words, accidents might be higher in a given quarter simply because there are more journeys in that quarter (during holiday periods, for example). Table 6.6 gives an index of average daily traffic flows on British roads in each quarter of the year.

The pattern of accidents might follow the pattern of road usage - the first quarter of the year has the fewest casualties and also the least amount of travel. This may be tested by basing the expected values on the average traffic flow: the 1775 total casualties are allocated to the four quarters proportionally to the traffic. This is shown in Table 6.7, along with the calculation of the χ^{2} statistic.

The χ^{2} test statistic is 17.24 , well in excess of the critical value, 7.82 . This indicates that there are significant differences between the quarters, even after accounting for different amounts of traffic. In fact, the statistic is little changed from before, suggesting either that traffic flows do not affect accident probabilities much or that the flows do not actually vary very much. It is evident that the

Table 6.6 Index of road traffic flows, 2014

	Q1	Q2	Q3	Q4	Total
Index	73.3	78.7	81.5	77.4	310.9

Table 6.7 Calculation with alternative pattern of expected values

Quarter	Observed	Expected	$O-E$	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
I	376	418.5	-42.5	1805.12	4.31
II	428	449.3	-21.3	454.39	1.01
III	457	465.3	-8.3	68.93	0.15
IV	514	441.9	72.1	5199.20	11.77
Totals	1775	1775			17.24

Note: The first expected value is calculated as $1775 \times 95 \div 400=753.4$, the second as $1775 \times 102 \div 400=808.9$ and so on.
variation in traffic flows is much less than the variation in casualties. One possible explanation is that increased traffic means lower speed and hence a lower severity of accidents.

Worked example 6.2

One hundred volunteers each toss a coin twice and note the numbers of heads. The results of the experiment are as follows:

Heads	0	1	2	Total
Frequency	15	55	30	100

Can we reject the hypothesis that a fair coin (or strictly, coins) was used for the experiment?

On the basis of the Binomial distribution the probability of no heads is $0.25(=1 / 2 \times 1 / 2)$, of one head is 0.5 and of two heads is again 0.25 , as explained in Chapter 2. The expected frequencies are therefore 25,50 and 25 . The calculation of the test statistic is set out below:

Number of heads	O	E	$O-E$	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
0	15	25	-10	100	4
1	55	50	5	25	0.5
2	30	25	5	25	1
Totals	100	100			5.5

The test statistic of 5.5 compares to a critical value of $5.99(\nu=2)$ so we cannot reject the null hypothesis of a fair coin being used.

Note that we could also test this hypothesis via a z test, using the methods of Chapter 5. There have been a total of 200 tosses, of which $115(=55+2 \times 30)$ were heads, i.e. a ratio of 0.575 against the expected 0.5 . We can therefore test $H_{0}: \pi=0.5$ against $H_{1}: \pi \neq 0.5$ using the evidence $n=200$ and $p=0.575$. This yields the test statistic

$$
z=\frac{0.575-0.5}{\sqrt{\frac{0.5 \times 0.5}{200}}}=2.12
$$

Interestingly, we now reject the null as the test statistic is greater than the critical value of 1.96 . How can we reconcile these conflicting results?

Note that both results are close to the critical values, so narrowly reject or accept the null. The χ^{2} and z distributions are both continuous ones and in this case are approximations to the underlying Binomial experiment. This is the cause of the problem. If we alter the data very slightly, to $16,55,29$ observed frequencies of no heads, one head and two heads, then both methods accept the null hypothesis. Similarly, for frequencies $14,55,31$ both methods reject the null.

The lesson of this example is to be cautious when the test statistic is close to the critical value. We cannot say decisively that the null has been accepted or rejected.

Exercise 6.2

The following data show the observed and expected frequencies of an experiment with four possible outcomes, A-D.

Outcome	A	B	C	D
Observed	40	60	75	90
Expected	35	55	75	100

Test the hypothesis that the results are in line with expectations using the 5% significance level.

Exercise 6.3

(a) Verify the claim in worked example 6.2, that both χ^{2} and z statistic methods give the same qualitative (accept or reject) result when the observed frequencies are 16, 55, 29 and when they are $14,55,31$.
(b) In each case, look up or calculate (using Excel) the Prob-values for the χ^{2} and z test statistics and compare.

Contingency tables

Data are often presented in the form of a two-way classification as shown in Table 6.8 , known as a contingency table, and this is another situation where the χ^{2} distribution is useful. It provides a test of whether or not there is an association between the two variables represented in the table.

The table shows the voting intentions of a sample of 200 voters, cross-classified by social class. The interesting question that arises from these data is whether there is any association between people's voting behaviour and their social class. Are manual workers (social class C in the table) more likely to vote for the Labour Party than for the Conservative Party? The table would appear to indicate some support for this view, but is this truly the case for the whole population or is the evidence insufficient to draw this conclusion?

This sort of problem is amenable to analysis by a χ^{2} test. The data presented in the table represent the observed values, so expected values need to be calculated and then compared to them using a χ^{2} test statistic. The first task is to formulate a null hypothesis, on which to base the calculation of the expected values, and an alternative hypothesis. These are
H_{0} : there is no association between social class and voting behaviour H_{1} : there is some association between social class and voting behaviour

As always, the null hypothesis has to be precise, so that expected values can be calculated. In this case it is the precise statement that there is no association between the two variables, they are independent.

Table 6.8 Data on voting intentions by social class

Social class	Labour	Conservative	Liberal Democrat	Total
A	10	15	15	40
B	40	35	25	100
C	30	20	10	60
Totals	80	70	50	200

Constructing the expected values

If H_{0} is true and there is no association, we would expect the proportions voting Labour, Conservative and Liberal Democrat to be the same in each social class. Further, the parties would be identical in the proportions of their support coming from social classes A, B and C. This means that, since the whole sample of 200 splits 80:70:50 for the Labour, Conservative and Liberal Democrat parties (see the bottom row of the Table 6.8), each social class should split the same way. Thus of the 40 people of class A, 80/200 of them should vote Labour, 70/200 Conservative and 50/200 Liberal Democrat. This yields:

Split of social class A:

Labour	$40 \times 80 / 200=16$
Conservative	$40 \times 70 / 200=14$
Liberal Democrat	$40 \times 50 / 200=10$
For class B:	
Labour	$100 \times 80 / 200=40$
Conservative	$100 \times 70 / 200=35$
Liberal Democrat	$100 \times 50 / 200=25$

And for C the 60 votes are split Labour 24, Conservative 21 and Liberal Democrat 15.
Both observed and expected values are presented in Table 6.9 (expected values are in brackets). Notice that both the observed and expected values sum to the appropriate row and column totals. It can be seen that, compared with the 'no association' position, Labour gets too few votes from Class A and the Liberal Democrats too many. However, Labour gets disproportionately many class C votes, the Liberal Democrats too few. The Conservatives' observed and expected values are nearly identical, indicating that the propensities to vote Conservative are the same in all social classes.

A quick way to calculate the expected value in any cell is to multiply the appropriate row total by column total and divide through by the grand total (200). For example, to get the expected value for the class A/Labour cell:

$$
\text { expected value }=\frac{\text { row total } \times \text { column total }}{\text { grand total }}=\frac{40 \times 80}{200}=16
$$

In carrying out the analysis care should again be taken to ensure that information is retained about the sample size, i.e. the numbers in the table should be actual numbers and not percentages or proportions. This can be checked by ensuring that the grand total is always the same as the sample size.

As was the case before, the χ^{2} test is only valid if the expected value in each cell is not less than five. In the event of one of the expected values being less than five, some of the rows or columns have to be combined. How to do this is a matter of choice and depends upon the aims of the research. Suppose for example that the

Table 6.9 Observed and expected values (latter in brackets)

Social class	Labour	Conservative	Liberal Democrat	Total
A	$10(16)$	$15(14)$	$15(10)$	40
B	$40(40)$	$35(35)$	$25(25)$	100
C	$30(24)$	$20(21)$	$10(15)$	60
Totals	80	70	50	200

expected number of class C voting Liberal Democrat were less than five. There are four options open:
(1) Combine the Liberal Democrat column with the Labour column.
(2) Combine the Liberal Democrat column with the Conservative column.
(3) Combine the class C row with the class A row.
(4) Combine the class C row with the class B row.

Whether rows or columns are combined depends upon whether interest centres more upon differences between parties or differences between classes. If the main interest is the difference between class A and the others, option 4 should be chosen. If it is felt that the Liberal Democrat and Conservative parties are similar, option 2 would be preferred, and so on. If there are several expected values less than five, rows and columns must be combined until all are eliminated.

The χ^{2} test on a contingency table is similar to the one carried out before, the formula being the same:

$$
\begin{equation*}
\chi^{2}=\Sigma \frac{(O-E)^{2}}{E} \tag{6.5}
\end{equation*}
$$

with the number of degrees of freedom this time given by $\nu=(r-1) \times(c-1)$ where r is the number of rows in the table and c is the number of columns. In this case $r=3$ and $c=3$, so

$$
\nu=(3-1) \times(3-1)=4
$$

The reason why there are only four degrees of freedom is that once any four interior cells of the contingency table have been filled, the other five are constrained by the row and column totals. The number of 'free' cells can always be calculated as the number of rows less one, times the number of columns less one, as given above.

Calculation of the test statistic

The evaluation of the test statistic then proceeds as follows, cell by cell:

$$
\begin{aligned}
& \frac{(10-16)^{2}}{16}+\frac{(15-14)^{2}}{14}+\frac{(15-10)^{2}}{10} \\
& +\frac{(40-40)^{2}}{40}+\frac{(35-35)^{2}}{35}+\frac{(25-25)^{2}}{25} \\
& +\frac{(30-24)^{2}}{24}+\frac{(20-21)^{2}}{21}+\frac{(10-15)^{2}}{15} \\
& =2.25+0.07+2.50+0+0+0+1.5+0.05+1.67 \\
& =8.04
\end{aligned}
$$

This must be compared with the critical value from the χ^{2} distribution with four degrees of freedom. At the 5% significance level this is 9.50 (from Table A4).

Since $8.04<9.50$ the test statistic is smaller than the critical value, so the null hypothesis cannot be rejected. The evidence is not strong enough to support an association between social class and voting intention. We cannot reject the null of the lack of any association with 95% confidence. Note, however, that the test statistic is fairly close to the critical value, so there is some weak evidence of an association, but not enough to satisfy conventional statistical criteria.

Oops!

A leading firm of chartered accountants produced a report for the UK government on education funding. One question it asked of schools was: Is the school budget sufficient to provide help to pupils with special needs? This produced the following table:

	Primary schools	Secondary schools
Yes	34%	45%
No	63%	50%
No response	3%	5%
Totals	100%	100%
$n=$	137	159
$\chi^{2}=3.50$ n.s.		

Their analysis produces the conclusion that there is no significant difference between primary and secondary schools. But the χ^{2} statistic is based on the percentage figures. Using frequencies (which can be calculated from the sample size figures) gives a correct χ^{2} figure of 5.05 . Fortunately for the accountants, this is still not significant.

Source: Adapted for Local Management in School Report,1988 by Coopers and Lybrand for the UK government. Contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www. nationalarchives.gov.uk/doc/open-government-licence/open-government

Cohabitation

J. Ermisch and M. Francesconi examined the rise in cohabitation in the United Kingdom and asked whether it led on to marriage or not. One of their tables shows the relation between employment status and the outcome of living together. Their results, including the calculation of the χ^{2} statistic for association between the variables, are shown in the figure.

2 Microsoft Excel - Cohabiting.xls										
[近] Eile Edt Yiew Insert Format Iools Data Window Help										
C22 $* f r x=(\text { C8-C15 })^{\wedge} 2 / C 15$										
	A	B	C	D	E	F	G	H	1	J
6		Actual values								
7			Marry	Continue	Split up	Total				
8		Employed	105	380	46	531				
9		Not employed	17	107	23	147				
10		Student	1	8	7	16				
11		Total	123	495	76	694				
12										
13		Expected valu								
14			Marry	Continue	Split up	Total				
15		Employed	94.1	378.7	58.1	531				
16		Not employed	26.1	104.8	16.1	147				
17		Student	2.8	11.4	1.8	16				
18		Total	123	495	76	694				
19										
20		Chi-squared calculation								
21 21 Cols										
22			1.260	0.004	2.539					
23			3.146	0.044	2.959					
24			1.188	1.020	15.718					
25										
26		Test statistic		27.878						
28										

There were 694 cohabiting women in the sample. Of the 531 who were employed, 105 of them went on to marry their partner, 46 split up and 380 continued living together. Similar figures are shown for unemployed women and for students. The expected values for the contingency table then appear (based on the null hypothesis of no association), followed by the calculation of the χ^{2} test statistic. You can see the formula for one of the elements of the calculation in the formula bar.

The test statistic is significant at the 5% level (critical value 9.49 for four degrees of freedom), so there is an association. The biggest contribution to the test statistic comes from the bottom right-hand cell, where the actual value is much higher than the expected. It appears that, unfortunately, those student romances often do not turn out to be permanent.

However, a reader of an earlier edition of this text pointed out that two of the expected values are less than five, so use of the χ^{2} statistic is strictly inappropriate in this context.

Source: J. Ermisch and M. Francesconi, Cohabitation: not for long but here to stay, J. Royal Statistical Society, Series A, 163 (2), 2000.

Exercise 6.4

Suppose that the data on educational achievement and employment status in Chapter 1 were obtained from a sample of people, as follows:

	Higher education	A-levels	Other qualification	No qualification	Total
In work	257	145	269	52	723
Unemployed	10	11	31	10	62
Inactive	33	38	87	56	214
Total	300	194	387	118	999

(These values reflect the proportions in the population data.) Test whether there is an association between education and employment status, using the 5% significance level for the test.

The F distribution

The second distribution we encounter in this chapter is the F distribution. It has a variety of uses in statistics; in this section we look at two of these: testing for the equality of two variances and conducting an analysis of variance (ANOVA) test. Both of these are variants on the hypothesis test procedures which should by now be familiar. The F distribution will also be encountered in later chapters on regression analysis.

The F family of distributions resembles the χ^{2} distribution in shape: it is always non-negative and is skewed to the right. It has two sets of degrees of freedom (these are its parameters, labelled ν_{1} and ν_{2}) and these determine its precise shape. Typical F distributions are shown in Figure 6.4. As usual, for a hypothesis test we define an area in one or both tails of the distribution to be the rejection region. If a test statistic falls into the rejection region, then the null hypothesis upon which the test statistic was based is rejected. Once again, examples will clarify the principles.

Testing the equality of two variances

Just as one can conduct a hypothesis test on a mean, so it is possible to test the variance. It is unusual to want to conduct a test of a specific value of a variance, since we usually have little intuitive idea of what the variance should be in most

Figure 6.4 The F distribution, for different $\nu_{1}\left(\nu_{2}=25\right)$

circumstances. A more likely circumstance is a test of the equality of two variances (across two samples). In Chapter 5 two car factories were tested for the equality of average daily output levels. One can also test whether the variance of output differs or not. A more consistent output (lower variance) from a factory might be beneficial to the firm, e.g. dealers can be reassured that they are more likely to be able to obtain models when they require them. In the example in Chapter 5, one factory had a standard deviation of daily output of 25 , the second of 20 , both from samples of size 30 (i.e. 30 days' output was sampled at each factory). We can now test whether the difference between these figures is significant or not.

Such a test is set up as follows. It is known as a variance ratio test for reasons which will become apparent.

The null and alternative hypotheses are

$$
\begin{aligned}
& H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \\
& H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

or, equivalently

$$
\begin{align*}
& H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2}=1 \tag{6.6}\\
& H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2} \neq 1
\end{align*}
$$

It is appropriate to write the hypotheses in the form shown in (6.6) since the random variable and test statistic we shall use is in the form of the ratio of sample variances, s_{1}^{2} / s_{2}^{2}. This is a random variable which follows an F distribution with $\nu_{1}=n_{1}-1$, $\nu_{2}=n_{2}-1$ degrees of freedom. We require the assumption that the two samples are independent for the variance ratio to follow an F distribution. Thus we write:

$$
\begin{equation*}
\frac{s_{1}^{2}}{s_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1} \tag{6.7}
\end{equation*}
$$

The F distribution thus has two parameters, the two sets of degrees of freedom, one $\left(\nu_{1}\right)$ associated with the numerator, the other $\left(\nu_{2}\right)$ associated with the denominator of the formula. In each case, the degrees of freedom are given by the relevant sample size minus one.

Note that s_{2}^{2} / s_{1}^{2} is also an F distribution (i.e. it doesn't matter which variance goes into the numerator) but with the degrees of freedom reversed, $\nu_{1}=n_{2}-1$, $\nu_{2}=n_{1}-1$.

The sample data are:

$$
\begin{aligned}
& s_{1}=25, s_{2}=20 \\
& n_{1}=30, n_{2}=30
\end{aligned}
$$

Table 6.10 Excerpt from the F distribution: upper 2.5% points

ν_{2}	ν_{1}	1	2	3	\ldots	20	24	30	40
1	647.7931	799.4822	864.1509	\ldots	993.0809	997.2719	1001.4046	1005.5955	
2	38.5062	39.0000	39.1656	\ldots	39.4475	39.4566	39.4648	39.4730	
3	17.4434	16.0442	15.4391	\ldots	14.1674	14.1242	14.0806	14.0365	
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots	\vdots	\vdots	
28	5.6096	4.2205	3.6264	\ldots	2.2324	2.1735	2.1121	2.0477	
29	5.5878	4.2006	3.6072	\ldots	2.2131	2.1540	2.0923	2.0276	
30	5.5675	4.1821	3.5893	\ldots	2.1952	2.1359	2.0739	2.0089	
40	5.4239	4.0510	3.4633	\ldots	2.0677	2.0069	1.9429	1.8752	

Note: The critical value lies at the intersection of the shaded row and column. Alternatively, use Excel or another computer package to give the answer. In Excel 2010 and later, the formula $=F \cdot I N V . R T(0.025,29,29)$ will give the answer 2.09 , the upper 2.5% critical value of the F distribution with $\nu_{1}=29, \nu_{2}=29$ degrees of freedom.

The test statistic is simply the ratio of sample variances. In testing it is less confusing if the larger of the two variances is made the numerator of the test statistic (you will see why soon). Therefore, we have the following test statistic:

$$
\begin{equation*}
F=\frac{25^{2}}{20^{2}}=1.5625 \tag{6.8}
\end{equation*}
$$

This must be compared to the critical value of the F distribution with $\nu_{1}=29$, $\nu_{2}=29$ degrees of freedom.

The rejection regions for the test are the two tails of the distribution, cutting off 2.5% in each tail. Since we have placed the larger variance in the denominator, only large values of F reject the null hypothesis so we need only consult the upper critical value of the F distribution, i.e. that value which cuts off the top 2.5% of the distribution. (This is the advantage of putting the larger variance in the numerator of the test statistic.)

Table 6.10 shows an excerpt from the F distribution. The degrees of freedom for the test are given along the top row $\left(\nu_{1}\right)$ and down the first column $\left(\nu_{2}\right)$. The numbers in the table give the critical values cutting off the top 2.5% of the distribution. The critical value in this case is 2.09 , at the intersection of the row corresponding to $\nu_{2}=29$ and the column corresponding to $\nu_{1}=30\left(\nu_{1}=29\right.$ is not given so 30 is used instead; this gives a very close approximation to the correct critical value). Since the test statistic 1.56 does not exceed the critical value of 2.09 , the null hypothesis of equal variances cannot be rejected with 95% confidence.

Exercise 6.5

Samples of 3-volt batteries from two manufacturers yielded the following outputs, measured in volts:

Brand A	3.1	3.2	2.9	3.3	2.8	3.1	3.2
Brand B	3.0	3.0	3.2	3.4	2.7	2.8	

Test whether there is any difference in the variance of output voltage of batteries from the two companies. Why might the variance be an important consideration for the manufacturer or for customers?

Analysis of variance

In Chapter 5 we learned how to test the hypothesis that the means of two samples are the same, using a z or t test, depending upon the sample size. This type of hypothesis test can be generalised to more than two samples using a technique called analysis of variance (ANOVA), based on the F distribution. Although it is called analysis of variance, it actually tests differences in means. The reason for this will be explained below. Using this technique, we can test the hypothesis that the means of all the samples are equal, versus the alternative hypothesis that at least one of them is different from the others. To illustrate the technique, we shall extend the example in Chapter 5 where different car factories' outputs were compared.

The assumptions underlying the analysis of variance technique are essentially the same as those used in the t test when comparing two different means. We assume that the samples are randomly and independently drawn from Normally distributed populations which have equal variances.

Suppose there are three factories, whose outputs have been sampled, with the results shown in Table 6.11. We wish to answer the question whether this is evidence of different outputs from the three factories, or simply random variation around a (common) average output level. The null and alternative hypotheses are therefore:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{1}: \text { at least one mean is different from the others }
\end{aligned}
$$

This is the simplest type of ANOVA, known as one-way analysis of variance. In this case there is only one factor which affects output - the factory. The factor which may affect output is also known as the independent variable. In more complex designs, there can be two or more factors which influence output. The output from the factories is the dependent or response variable in this case.

Figure 6.5 presents a chart of the output from the three factories, which shows the greatest apparent difference between factories 2 and 3 . Their ranges scarcely overlap, which does suggest some genuine difference between them, but as yet we cannot be sure that this is not just due to sampling variation. Factory 1 appears to be mid-way between the other two and this must also be included in the analysis.

Table 6.11 Samples of output from three factories

Observation	Factory 1	Factory 2	Factory 3
1	415	385	408
2	430	410	415
3	395	409	418
4	399	403	440
5	408	405	425
6	418	400	
7		399	

Figure 6.5
Chart of factory output on sample days

To decide whether or not to reject H_{0}, we compare the variance of output within factories to the variance of output between (the means of) the factories. Figure 6.6 provides an illustration. Where the variance between factories is large relative to the variance within each factory (Figure 6.6(a)), one is likely to reject H_{0} and instead conclude there is a genuine difference. Alternatively, where the variance between factories is small relative to the within factory variance (Figure 6.6(b)), we are likely to accept H_{0}. The statistical test allows us to decide when the differences are large enough to warrant a particular conclusion and not just due to random variation.

Both between and within variance measures provide estimates of the overall true variance of output and, under the null hypothesis that factories make no difference, should provide similar estimates. The ratio of the variances should then be approximately unity. If the null is false however, the between-samples estimate will tend to be larger than the within-samples estimate and their ratio will exceed unity. This ratio has an F distribution and so if it is sufficiently large that it falls into the upper tail of the distribution, then H_{0} is rejected.

Figure 6.6
Illustration of when to reject H_{0}

To formally test the hypothesis, we break down the total variance of all the observations into
(1) the variance due to differences between factories, and
(2) the variance due to differences within factories (also known as the error variance).

Initially we work with sums of squares rather than variances. Recall from Chapter 1 that a sample variance is given by

$$
\begin{equation*}
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \tag{6.9}
\end{equation*}
$$

The numerator of the right-hand side of this expression, $\Sigma(x-\bar{x})^{2}$, gives the sum of squares, i.e. the sum of squared deviations from the mean.

Accordingly, we work with three sums of squares:

- The total sum of squares measures (squared) deviations from the overall or grand average using all the 18 observations. It ignores the existence of the different factors (factories).
- The between sum of squares measures how the three individual factor means vary around the grand average.
- The within sum of squares is based on squared deviations of observations from their own factor mean.

It can be shown that there is a relationship between these sums of squares, i.e.

$$
\begin{align*}
& \text { Time sum } \tag{6.10}\\
& \text { of squares }
\end{aligned}=\begin{aligned}
& \text { Between sum } \\
& \text { of squares }
\end{aligned} ~+\begin{aligned}
& \text { Within sum } \\
& \text { of squares }
\end{align*}
$$

The larger is the between sum of squares relative to the within sum of squares, the more likely it is that the null is false.

Because we have to sum over factors and over observations within those factors, the formulae look somewhat complicated, involving double summation signs. It is therefore important to follow the example showing how the calculations are actually done.

The total sum of squares is given by the formula:

$$
\begin{equation*}
\text { Total sum of squares }=\sum_{j=1}^{n_{i}} \sum_{i=1}^{k}\left(x_{i j}-\bar{x}\right)^{2} \tag{6.11}
\end{equation*}
$$

where $x_{i j}$ is the output from factory i on day j and \bar{x} is the grand average of all observations. The index i runs from 1 to 3 in this case (there are three classes or groups for this factor) and the index j (indexing the observations) goes from 1 to 6 , 7 , or 5 (for factories 1,2 and 3 , respectively). Note that we do not require the same number of observations from each factory.

Although this looks complex, it simply means that we calculate the sum of squared deviations from the overall mean. The overall mean of the 18 values is 410.11 and the total sum of squares may be calculated as:

$$
\begin{aligned}
& \text { Total sum of squares }=(415-410.11)^{2}+(430-410.11)^{2} \\
& +\cdots+(440-410.11)^{2}+(425-410.11)^{2}=2977.778
\end{aligned}
$$

An alternative formula for the total sum of squares is

$$
\begin{equation*}
\text { Total sum of squares }=\sum_{j=1}^{n_{i}} \sum_{i=1}^{k} x_{i j}^{2}-n \bar{x}^{2} \tag{6.12}
\end{equation*}
$$

where n is the total number of observations. The sum of the squares of all the observations $\left(\sum x^{2}\right)$ is $415^{2}+430^{2}+\cdots+425^{2}=3030418$ and the total sum of squares is then given by

$$
\begin{equation*}
\sum_{j=1}^{n_{i}} \sum_{i=1}^{k} x_{i j}^{2}-n \bar{x}^{2}=3030418-18 \times 410.11^{2}=2977.778 \tag{6.13}
\end{equation*}
$$

as before.
The between sum of squares is calculated using the formula

$$
\begin{equation*}
\text { Between sum of squares }=\sum_{j} \sum_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} \tag{6.14}
\end{equation*}
$$

where \bar{x}_{i} denotes the mean output of factor i. This part of the calculation effectively ignores the differences that exist within factors and compares the differences between them. It does this by replacing the observations within each factor by the mean for that factor. Hence, all the factor 1 observations are replaced by 410.83 , for factor 2 they are replaced by the mean 401.57 and for factor 3 by 421.2^{3}. We then calculate the sum of squared deviations of these values from the grand mean:

$$
\begin{aligned}
\text { Between sum of squares }= & 6 \times(410.83-410.11)^{2}+7 \times(401.57-410.11)^{2} \\
& +5 \times(421.2-410.11)^{2}=1128.43
\end{aligned}
$$

Note that we take account of the number of observations within each factor in this calculation.

Once again there is an alternative formula which may be simpler for calculation purposes:

$$
\begin{equation*}
\text { Between sum of squares }=\sum_{i} n_{i} \bar{x}_{i}^{2}-n \bar{x}^{2} \tag{6.15}
\end{equation*}
$$

Evaluating this results in the same answer as above:

$$
\begin{align*}
\sum_{i} n_{i} \bar{x}_{i}^{2}-n \bar{x}^{2} & =6 \times 410.83^{2}+7 \times 401.57^{2}+5 \times 421.2^{2}-18 \times 410.10^{2} \\
& =1128.43 \tag{6.16}
\end{align*}
$$

We have arrived at the result that 37% ($=1128.43 / 2977.78$) of the total variation (sum of squared deviations) is due to differences between factories and the remaining 63% is therefore due to variation (day to day) within factories. We can therefore immediately calculate the within sum of squares by straightforward subtraction as:

$$
\begin{aligned}
\text { Within sum of squares } & =\text { Total sum of squares }- \text { Between sum of squares } \\
& =2977.778-1128.430=1849.348
\end{aligned}
$$

For completeness, the formula for the within sum of squares is

$$
\begin{equation*}
\text { Within sum of squares }=\sum_{j} \sum_{i}\left(x_{i j}-\bar{x}_{i}\right)^{2} \tag{6.17}
\end{equation*}
$$

[^28]The term $x_{i j}-\bar{x}_{i}$ measures the deviations of the observations from the factor mean and so the within sum of squares gives a measure of dispersion within the classes. Hence, it can be calculated as:

$$
\begin{aligned}
\text { Within sum of squares }= & (415-410.83)^{2}+\cdots+(418-410.83)^{2} \\
& +(385-401.57)^{2}+\cdots+(399-401.57)^{2} \\
& +(408-421.2)^{2}+\cdots+(425-421.2)^{2} \\
= & 1849.348
\end{aligned}
$$

This is the same value as obtained by subtraction.

The result of the hypothesis test

The F statistic is based upon comparing between and within sums of squares (BSS and WSS) but we must also take account of the degrees of freedom for the test. The degrees of freedom adjust for the number of observations and for the number of factors. Formally, the test statistic is

$$
F=\frac{B S S /(k-1)}{W S S /(n-k)}
$$

which has $k-1$ and $n-k$ degrees of freedom. k is the number of factors, 3 in this case, and n the overall number of observations, 18 . We thus have

$$
F=\frac{1128.43 /(3-1)}{1849.348 /(18-3)}=4.576
$$

The critical value of F for 2 and 15 degrees of freedom at the 5% significance level is 3.682 . As the test statistic exceeds the critical value, we reject the null hypothesis of no difference between factories.

The analysis of variance table

ANOVA calculations are conventionally summarised in an analysis of variance table. Figure 6.7 shows such a table, as produced by Excel. Excel can produce the

Figure 6.7
One-way analysis of variance: Excel output

	A	B	C	D	E	F	G	H
13								
14								
15								
16	Anova: Single Factor							
17								
18	SUMMARY							
19	Groups	Count	Sum	Average	Variance			
20	Factory 1	6	2465	410.833	166.967			
21	Factory 2	7	2811	401.571	70.619			
22	Factory 3	5	2106	421.200	147.700			
23								
24								
25	ANOVA							
26	Source of Variation	SS	df	MS	F	P-value	F crit	
27	Between Groups	1128.430	2	564.215	4.576	0.028	3.682	
28	Within Groups	1849.348	15	123.290				
29								
30	Total	2977.778	17					
31								
32								

table automatically from data presented in the form shown in Table 6.11 and there is no need to do any of the calculations by hand. (In Excel you need to install the Analysis ToolPak in order to perform ANOVA. Other software packages, such as SPSS or Stata, also have routines to perform ANOVA.)

The first part of the table summarises the information for each factory, in the form of means and variances. Note that the means were used in the calculation of the between sum of squares. The ANOVA section of the output then follows, giving sums of squares and other information.

The column of the ANOVA table headed 'SS' gives the sums of squares, which we calculated above. It can be seen that the between-group sum of squares makes up about 37% of the total, suggesting that the differences between factories (referred to as 'groups' by Excel) do make a substantial contribution to the total variation in output.

The ' $d f$ ' column gives the degrees of freedom associated with each sum of squares. These degrees of freedom are given by

Between sum of squares	$k-1$
Within sum of squares	$n-k$
Total sum of squares	$n-1$

The ' $M S^{\prime}$ ' ('mean square') column divides the sums of squares by their degrees of freedom, and the F column gives the F statistic, which is the ratio of the two values in the MS column, i.e. $4.576=564.215 / 123.290$. This is the test statistic for the hypothesis test, which we calculated manually above. Excel helpfully gives the critical value of the test (at the 5% significance level) in the final column, 3.682. The P-value is given in the penultimate column and reveals that only 2.8% of the F distribution lies beyond the test statistic value of 4.576 .

The test has found that the between sum of squares is 'large' relative to the within sum of squares, too large to be due simply to random variation, and this is why the null hypothesis of equal outputs is rejected. The rejection region for the test consists of the upper tail only of the F distribution; small values of the test statistic would indicate small differences between factories and hence non-rejection of H_{0}.

This simple example involves only three groups, but the extension to four or more follows the same principles, with different values of k in the formulae, and is fairly straightforward. Also, we have covered only the simplest type of ANOVA, with a one-way classification. More complex experimental designs are possible, with a two-way classification, for example, where there are two independent factors affecting the dependent variable. This is not covered in this text, although Chapter 8 on the subject of multiple regression does examine a method of modelling situations where two or more explanatory variables influence a dependent variable.

Worked example 6.3

ANOVA calculations are quite complex and are most easily handled by software which calculates all the results directly from the initial data. However, this is a kind of 'black box' approach to learning, so this example shows all the calculations mechanically.

Suppose we have six observations on each of three factors, as follows:

A	B	C
44	41	48
35	36	37
60	58	61
28	32	37
43	40	44
55	59	61

(These might be, for example, scores of different groups of pupils in a test.) We wish to examine whether there is a significant difference between the different groups. We need to see how the differences between the groups compare to those within groups.

First, we calculate the total sum of squares by ignoring the groupings and treating all 18 observations together. The overall mean is 45.5 so the squared deviations are $(44-45.5)^{2},(41-45.5)^{2}$, etc. Summing these gives 2020.5 as the TSS.

For the between sum of squares we first calculate the means of each factor. These are $44.17,44.33$ and 48 . We compare these to the grand average. The squared deviations are therefore $(44.17-45.5)^{2}$, $(44.33-45.5)^{2}$ and $(48-45.5)^{2}$. Rather than sum these, we must take account of the number of observations in each group which in this case is 6 . Hence we obtain

$$
\begin{aligned}
\text { Between sum of squares }= & 6 \times(44.17-45.5)^{2}+6 \times(44.33-45.5)^{2} \\
& +6 \times(48-45.5)^{2}=56.33
\end{aligned}
$$

The within sum of squares can be explicitly calculated as follows. For group A, the squared deviations from the group mean are $(44-44.17)^{2},(35-44.17)^{2}$, etc. Summing these for group A gives 714.8. Similar calculations give 653.3 and 596 for groups B and C. These sum to 1964.2, which is the within sum of squares. As a check, we note:

$$
2020.5=56.3+1964.2
$$

The degrees of freedom are $k-1=3-1=2$ for the between sum of squares, $n-k=18-3=15$ for the within sum of squares and $n-1=18-1=17$. The test statistic is therefore

$$
F=\frac{56.33 / 2}{1964.2 / 15}=0.22
$$

The critical value at the 5% significance level is 3.68 , so we cannot reject the null of no difference between the factors.

Exercise 6.6

The reaction times of three groups of sportsmen were measured on a particular task, with the following results (time in milliseconds):

Racing drivers	31	28	39	42	36	30	
Tennis players	41	35	41	48	44	39	38
Boxers	44	47	35	38	51		

Test whether there is a difference in reaction times between the three groups.

Summary

- The χ^{2} and F distributions play important roles in statistics, particularly in problems relating to the goodness of fit of the data to that predicted by a null hypothesis.
- A random variable based on the sample variance, $(n-1) s^{2} / \sigma^{2}$, has a χ^{2} distribution with $n-1$ degrees of freedom. Based on this fact, the χ^{2} distribution may be used to construct confidence interval estimates for the variance σ^{2}. Since the χ^{2} is not a symmetric distribution, the confidence interval is not symmetric around the (unbiased) point estimate s^{2}.
- The χ^{2} distribution may also be used to compare actual and expected values of a variable and hence to test the hypothesis upon which the expected values were constructed.
- A two-way classification of observations is known as a contingency table. The independence or otherwise of the two variables may be tested using the χ^{2} distribution, by comparing observed values with those expected under the null hypothesis of independence.
- The F distribution is used to test a hypothesis of the equality of two variances. The test statistic is the ratio of two sample variances which, under the null hypothesis, has an F distribution with $n_{1}-1, n_{2}-1$ degrees of freedom.
- The F distribution may also be used in an analysis of variance, which tests for the equality of means across several samples. The results are set out in an analysis of variance table, which compares the variation of the observations within each sample to the variation between samples.

Key terms and concepts

actual and expected values	grand average independent variable
analysis of variance	one-way analysis of variance
ANOVA table	sums of squares
between sum of squares	total sum of squares
classes or groups	uniform distribution
contingency table	variance ratio test
dependent or response variable	within sum of squares
error variance	
factor	

Formulae used in this chapter

Formula	Description	Notes
$\left[\frac{(n-1) s^{2}}{U} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{L}\right]$	Confidence interval for the variance	U and L are the upper and lower limits of the χ^{2} distribution for the chosen confidence level, with $n-1$ degrees of freedom
$\chi^{2}=\sum \frac{(O-E)^{2}}{E}$	Test statistic for independence in a contingency table	$\nu=(r-1) \times(c-1)$, where r is the number of rows, c the number of columns
$F=\frac{s_{1}^{2}}{s_{2}^{2}}$	Test statistic for H_{0} : $\sigma_{1}^{2}=\sigma_{2}^{2}$	$\nu=n_{1}-1, n_{2}-1$. Place larger sample variance in the numerator to ensure rejection region is in right-hand tail of the F distribution
$\sum_{j=1}^{n_{i}} \sum_{i=1}^{k} x_{i j}^{2}-n \bar{x}^{2}$	Total sum of squares (ANOVA)	n is the total number of observations, k is the number of groups
$\sum_{i} n_{i} \bar{x}_{i}^{2}-n \bar{x}^{2}$	Between sum of squares (ANOVA)	$A n_{i}$ represents the number of observations in group i and \bar{x}_{i} is the mean of the group
$\sum_{j} \sum_{i}\left(x_{i j}-\bar{x}_{i}\right)^{2}$	Within sum of squares (ANOVA)	

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
6.1 A sample of 40 observations has a standard deviation of 20 . Estimate the 95% confidence interval for the standard deviation of the population.
6.2 Using the data $n=70, s=15$, construct a 99% confidence interval for the true standard deviation.
6.3 Use the data in Table 6.3 to see if there is a significant difference between road casualties in quarters I and III on the one hand and quarters II and IV on the other.
6.4 A survey of 64 families with five children found the following gender distribution:

Number of boys	0	1	2	3	4	5
Number of families	1	8	28	19	4	4

Test whether the distribution can be adequately modelled by the Binomial distribution.
6.5 Four different holiday firms which all carried equal numbers of holidaymakers reported the following numbers who expressed satisfaction with their holiday:

Firm	A	B	C	D
Number satisfied	576	558	580	546

Is there any significant difference between the firms? If told that the four firms carried 600 holidaymakers each, would you modify your conclusion? What do you conclude about your first answer?
6.6 A company wishes to see whether there are any differences between its departments in staff turnover. Looking at their records for the past year, the company finds the following data:

Department	Personnel	Marketing	Admin.	Accounts
Number in post at start of year	23	16	108	57
Number leaving	3	4	20	13

Do the data provide evidence of a difference in staff turnover between the various departments?
6.7 A survey of 100 firms found the following evidence regarding profitability and market share:

Profitability	Market share		
	$<15 \%$	$15-30 \%$	$>30 \%$
Low	18	7	8
Medium	13	11	8
High	8	12	15

Is there evidence that market share and profitability are associated?
6.8 The following data show the percentages of firms using computers in different aspects of their business:

Firm size	Computers used in			Total numbers of firms
	Admin.	Design	Manufacture	
Small	60%	24%	20%	450
Medium	65%	30%	28%	140
Large	90%	44%	50%	45

Is there an association between the size of firm and its use of computers?
6.9 (a) Do the accountants' job properly for them (see the Oops! box in the text (page 244)).
(b) It might be justifiable to omit the 'no responses' entirely from the calculation. What happens if you do this?
6.10 A roadside survey of the roadworthiness of vehicles obtained the following results:

	Roadworthy	Not roadworthy
Private cars	114	30
Company cars	84	24
Vans	36	12
Lorries	44	20
Buses	36	12

Is there any association between the type of vehicle and the likelihood of it being unfit for the road?
6.11 Given the following data on two sample variances, test whether there is any significant difference. Use the 1% significance level.

$$
\begin{array}{ll}
s_{1}^{2}=55 & s_{2}^{2}=48 \\
n_{1}=25 & n_{2}=30
\end{array}
$$

6.12 An example in Chapter 5 compared R\&D expenditure in Britain and Germany. The sample data were:

$$
\begin{array}{ll}
\bar{x}_{1}=3.7 & \bar{x}_{2}=4.2 \\
s_{1}=0.6 & s_{2}=0.9 \\
n_{1}=20 & n_{2}=15
\end{array}
$$

Is there evidence, at the 5% significance level, of difference in the variances of R\&D expenditure between the two countries? What are the implications, if any, for the test carried out on the difference of the two means, in Chapter 4?
6.13 Groups of children from four different classes in a school were randomly selected and sat a test, with the following test scores:

Class	Pupil						
	1	2	3	4	5	6	7
A	42	63	73	55	66	48	59
B	39	47	47	61	44	50	52
C	71	65	33	49	61		
D	49	51	62	48	63	54	

(a) Test whether there is any difference between the classes, using the 95% confidence level for the test.
(b) How would you interpret a 'significant' result from such a test?
6.14 Lottery tickets are sold in different outlets: supermarkets, smaller shops and outdoor kiosks. Sales were sampled from several of each of these, with the following results:

Supermarkets	355	251	408	302
Small shops	288	257	225	299
Kiosks	155	352	240	

Does the evidence indicate a significant difference in sales? Use the 5% significance level.
6.15 (Project) Conduct a survey among fellow students to examine whether there is any association between:
(a) gender and political preference, or
(b) subject studied and political preference, or
(c) star sign and personality (introvert/extrovert - self-assessed: I am told that Aries, Cancer, Capricorn, Gemini, Leo and Scorpio are associated with an extrovert personality), or
(d) any other two categories of interest.
6.16 (Computer project) Use your spreadsheet or other computer program to generate 100 random integers in the range 0 to 9 . Draw up a frequency table and use a χ^{2} test to examine whether there is any bias towards any particular integer. Compare your results with those of others in your class.

Answers to exercises

Exercise 6.1

(a) The values cutting off the outer 2.5% in each tail of the χ^{2} distribution $(d f=29)$ are 16.05 and 45.72 (see Appendix Table A4). Using

$$
\left[\frac{(n-1) \times s^{2}}{45.72} \leq \sigma^{2} \leq \frac{(n-1) \times 65}{16.05}\right]
$$

we therefore obtain

$$
\left[\frac{(30-1) \times 65}{45.72} \leq \sigma^{2} \leq \frac{(30-1) \times 65}{16.05}\right]
$$

which yields the interval [41.2, 117.4]
(b) $[6.4,10.8]$, by taking the square roots of the answer to part (a).
(c) [36.0, 143.7], by similar methods but using critical values of 13.12 and 52.34

Exercise 6.2

The calculation of the test statistic is:

Outcome	Observed	Expected	$O-E$	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
A	40	35	5	25	0.714
B	60	55	5	25	0.455
C	75	75	0	0	0
D	90	100	-10	100	1
Total					2.169

This is smaller than the critical value of 7.81 (for three degrees of freedom) so the null is not rejected.

Exercise 6.3

The test statistics are for $(16,55,29) \chi^{2}=4.38$ (Prob-value $=0.112$) and $z=1.84$ $($ Prob-value $=0.066)$ and for $(14,55,31) \chi^{2}=6.78$ (Prob-value $\left.=0.038\right)$ and $z=2.40$ $($ Prob-value $=0.016)$. The two methods agree on the results (whether or not to reject the hypothesis), although the Prob-values are different.

Exercise 6.4

The expected values are:

	Higher education	A levels	Other qualifications	No qualifications	Total
In work	217	140	280	85	723
Unemployed	19	12	24	7	62
Inactive	64	42	83	25	214
Totals	300	194	387	118	999

(These are calculated by multiplying row and column totals and dividing by the grand total, e.g. $217=723 \times 3000 / 999$.)

The test statistic is:

$$
7.3+0.2+0.4+13.1+4.0+0.1+2.0+1.0+15.2+0.3+0.2+37.3=81.1
$$

This should be compared to a critical value of $12.59(\nu=(3-1) \times(4-1)=6)$, so the null is rejected.

Exercise 6.5

The two variances are $s_{A}^{2}=0.031$ and $s_{B}^{2}=0.066$. We therefore form the ratio $F=0.066 / 0.031=2.09$, which has an F distribution with 5 and 6 degrees of freedom. The 5% critical value is therefore 4.39 and the null is not rejected. There appears no difference between manufacturers. The variance is important because consumers want a reliable product - they would not be happy if an incorrect voltage broke their MP3 player.

Exercise 6.6

The answer is summarised in this Excel table:

SUMMARY

Groups	Count	Sum	Average	Variance
Racing drivers	6	206	34.333	30.667
Tennis players	7	286	40.857	17.810
Boxers	5	215	43.000	42.500

ANOVA

Source of variation	SS	$d f$	MS	F	P-value	F crit
Between groups	233.421	2	116.710	4.069	0.039	3.682
Within groups	430.190	15	28.679			
Totals	663.611	17				

The result shows that there is a difference between the three groups, with an F statistic of 4.069 (P-value 3.9%). The difference appears to be largely between racing drivers and the other two types.

Use of χ^{2} and F distribution tables

Tables of the χ^{2} distribution

Table A4 presents critical values of the χ^{2} distribution for a selection of significance levels and for different degrees of freedom. As an example, to find the critical value of the χ^{2} distribution at the 5% significance level, for $\nu=20$ degrees of freedom, the cell entry in the column labelled ' 0.05 ' and the row labelled ' 20 ' are consulted. The critical value is 31.4. A test statistic greater than this value implies rejection of the null hypothesis at the 5% significance level.

An Excel function can alternatively be used to find this value. The formula $'=$ CHIISQ.INV.RT(0.05, 20)' will give the result 31.4.

Tables of the F distribution

Table A5 (see page 454) presents critical values of the F distribution. Since there are two sets of degrees of freedom to be taken into account, a separate table is required for each significance level. Four sets of tables are provided, giving critical values cutting off the top $5 \%, 2.5 \%, 1 \%$ and 0.5% of the distribution (Tables A5(a), A5(b), A5(c) and A5(d) respectively). These allow both one- and two-tail tests at the 5% and 1% significance levels to be conducted. Its use is illustrated by example.

Two-tail test

To find the critical values of the F distribution at the 5% significance level for degrees of freedom ν_{1} (numerator) $=10, \nu_{2}=20$. The critical values in this case cut off the extreme 2.5% of the distribution in each tail, and are found in Table A5(b):

- Right-hand critical value: this is found from the cell of the table corresponding to the column $\nu_{1}=10$ and row $\nu_{2}=20$. Its value is 2.77 .
- Left-hand critical value: this cannot be obtained directly from the tables, which only give right-hand values. However, it is obtained indirectly as follows:
(a) Find the right-hand critical value for $\nu_{1}=20, \nu_{2}=10$ (note reversal of degrees of freedom). This gives 3.42.
(b) Take the reciprocal to obtain the desired left-hand critical value. This gives $1 / 3.42=0.29$.

The rejection region thus consists of values of the test statistic less than 0.29 and greater than 2.77.

An Excel function can alternatively be used to find these values. The formula '=F.INV.RT($0.025,10,20$)' will give the result 2.77. The formula ' $=$ F.INV.RT($0.975,10,20$)' will give 0.29 , the left hand value. Note that you do not need to reverse the degrees of freedom in the formula, Excel understands that the left-hand critical value is needed from the ' 0.975 ' figure.

One-tail test

To find the critical value at the 5% significance level for $\nu_{1}=15, \nu_{2}=25$. As long as the test statistic has been calculated with the larger variance in the numerator, the critical value is in the right-hand tail of the distribution and can be obtained directly from Table A5(a). For $\nu_{1}=15, \nu_{2}=25$ the value is 2.09 . The null hypothesis is rejected, therefore, if the test statistic is greater than 2.09 . Once again, in Excel, ${ }^{\prime=F . I N V . R T}(0.05,15,25) ’=2.09$.

Correlation and regression

Learning outcomes 263
Introduction 264
What determines the birth rate in developing countries? 265
Correlation 267
Are the results significant? 269
Are significant results important? 270
Correlation and causality 271
The coefficient of rank correlation 272
Regression analysis 276
Calculation of the regression line 278
Interpretation of the slope and intercept 279
Measuring the goodness of fit of the regression line 280
Inference in the regression model 283
Analysis of the errors 283
Confidence interval estimates of α and β 285
Testing hypotheses about the coefficients 286
Testing the significance of R^{2} : the F test 287
Interpreting computer output 288
Prediction 289
Route map of calculations 291
Some other issues in regression 293
Units of measurement 293
How to avoid measurement problems: calculating the elasticity 294
Non-linear transformations 294
Gapminder again 297
Summary 298
Key terms and concepts 299
References 299
Formulae used in this chapter 300
Problems 301
Answers to exercises 304

By the end of this chapter you should be able to:

- understand the principles underlying correlation and regression
- calculate and interpret a correlation coefficient and relate it to an $X Y$ graph of the two variables
- calculate the line of best fit (regression line) and interpret the result
- recognise the statistical significance of the results, using confidence intervals and hypothesis tests
- recognise the importance of the units in which the variables are measured and of transformations to the data
- use computer software (Excel) to derive the regression line and interpret the computer output.

Introduction

Correlation and regression are techniques for investigating the statistical relationship between two, or more, variables. In Chapter 1 we examined the relationship between investment and GDP using graphical methods (the XY chart). Although visually helpful, this did not provide any precise measurement of the strength of the relationship. In Chapter 6 the χ^{2} test did provide a test of the significance of the association between two category-based variables, but this test cannot be applied to variables measured on a ratio scale. Correlation and regression fill in these gaps: the strength of the relationship between two (or more) ratio scale variables can be measured and the significance tested.

Correlation and regression are the techniques most often used by economists and forecasters. They can be used to answer such questions as

- Is there a link between the money supply and the price level?
- Do bigger firms produce at lower cost than smaller firms?
- Does spending more on advertising increase sales?

Each of these questions is about economics or business as much as about statistics. The statistical analysis is part of a wider investigation into the problem; it cannot provide a complete answer to the problem but, used sensibly, is a vital input. Correlation and regression techniques may be applied to time-series or cross-section data. The methods of analysis are similar in each case, although there are differences of approach and interpretation which are highlighted in this chapter and the next.

This chapter begins with the topic of correlation and simple (i.e. two variable) regression, using as an example the determinants of the birth rate in developing countries. In Chapter 8, multiple regression is examined, where a single dependent variable is explained by more than one explanatory variable. This is illustrated using time-series data pertaining to imports into the United Kingdom. This shows how a small research project can be undertaken, avoiding the many possible pitfalls along the way. Finally, a variety of useful additional techniques, tips and traps is set out, to help you understand and overcome a number of problems that can arise in regression analysis.

What determines the birth rate in developing countries?

This example follows the analysis in Michael Todaro's book, Economic Development in the Third World (3rd edn, pp. 197-200), where he tries to establish which of three variables (GNP per capita, the growth rate, or income inequality) is most important in determining a country's birth rate. (This analysis has been dropped from later editions of Todaro's book.)

The analysis is instructive as an example of correlation and regression techniques in a number of ways. First, the question is an important one; it was discussed at the UN International Conference on Population and Development in Cairo in 1995. It is felt by many that reducing the birth rate is a vital factor in economic development (birth rates in developed countries average around 12 per 1000 population, in developing countries around 30). Second, Todaro uses the statistical analysis to arrive at a questionable conclusion.

The data used by Todaro are shown in Table 7.1 using a sample of 12 developing countries. Two points need to be made initially. First, this is a very small sample which only includes developing countries, so the results will not give an allembracing explanation of the birth rate. Different factors might be relevant to developed countries, for example. Second, there is the important question of why these particular countries were chosen as the sample and others ignored. The choice of country was limited by data availability, and one should ask whether countries with data available are likely to be representative of all countries. Data were, in fact, available for more than 12 countries, so Todaro was selective. You are asked to explore the implications of this in some of the problems at the end of the chapter.

The variables are defined as follows:
Birth rate: the number of births per 1000 population in 1981.
GNP per capita:
Growth rate: 1981 gross national product p.c., in US dollars.

Income ratio:
the growth rate of GNP p.c. p.a., 1961-81.
the ratio of the income share of the richest 20% to that of the poorest 40%. A higher value of this ratio indicates greater inequality.

Table 7.1 Todaro's data on birth rate, GNP, growth and inequality

Country	Birth rate	1981 GNP p.c.	GNP growth	Income ratio
Brazil	30	2200	5.1	9.5
Colombia	29	1380	3.2	6.8
Costa Rica	30	1430	3.0	4.6
India	35	260	1.4	3.1
Mexico	36	2250	3.8	5.0
Peru	36	1170	1.0	8.7
Philippines	34	790	2.8	3.8
Senegal	48	430	-0.3	6.4
South Korea	24	1700	6.9	2.7
Sri Lanka	27	1170	2.5	2.3
Taiwan	21	770	6.2	3.8
Thailand	30		4.6	3.3

Figure 7.1 Graphs of the birth rate against (a) GNP, (b) growth and (c) income ratio

We leave aside the concerns about the sample until later and concentrate first on analysing the data. The first thing to do is to graph the variables to see if anything useful is revealed. $X Y$ graphs (see Chapter 1) are the most suitable in this case, and they are shown in Figure 7.1. From these we see a reasonably tidy relationship between the birth rate and the growth rate, with a negative slope; there is a looser relationship with the income ratio, with a positive slope; and there is little discernible pattern (apart from a flat line) in the graph of birth rate against GNP.

Todaro asserts that the best relationship is between the birth rate and income inequality. He rejects the growth rate as an important determinant of the birth rate because of the four countries near the top of the chart, which have very different growth rates, yet similar birth rates. In the following sections we shall see whether Todaro's conclusions are justified.

Correlation

Figure 7.2
Perfect positive correlation

The graphs are helpful, but it would be useful to have a simple numerical summary measure of each relationship. For this purpose, we use the correlation coefficient between any pair of variables. We illustrate this by calculating the correlation coefficient between the birth rate (B) and growth (G), although we also present the results for the other cases. Just as the mean is a number that summarises information about a single variable, so the correlation coefficient is a number which summarises the relationship between two variables.

The different types of possible relationship between any two variables, X and Y, may be summarised as follows:

- High values of X tend to be associated with low values of Y and vice versa. This is termed negative correlation and appears to be the case for B and G.
- High (low) values of X tend to be associated with high (low) values of Y. This is positive correlation and reflects (rather weakly) the relationship between B and the income ratio (IR).
- No relationship between X and Y exists. High (low) values of X are associated about equally with high and low values of Y. This is zero, or the absence of, correlation. There appears to be little correlation between the birth rate and per capita GNP.

It should be noted that positive correlation does not mean that high values of X are always associated with high values of Y, but usually they are. It is also the case that correlation only measures a linear relationship between the two variables. As a counter-example, consider the backward-bending labour supply curve, as suggested by economic theory (higher wages initially encourage extra work effort, but above a certain point the benefit of higher wage rates is taken in the form of more leisure). The relationship is non-linear and the measured degree of correlation between wages and hours of work is likely to be low, even though the former obviously influences the latter.

The sample correlation coefficient, r, is a numerical statistic which distinguishes between the types of cases shown in Figure 7.1. It has the following properties:

- It always lies between -1 and +1 . This makes it relatively easy to judge the strength of an association.
- A positive value of r indicates positive correlation, a higher value indicating a stronger correlation between X and Y (i.e. the observations lie closer to a straight line). A value of $r=1$ indicates perfect positive correlation and means that all the observations lie precisely on a straight line with positive slope, as Figure 7.2 illustrates.

Table 7.2 Calculation of the correlation coefficient, r

Country	Birth rate Y	GNP growth X	Y^{2}	X^{2}	$X Y$
Brazil	30	5.1	900	26.01	153.0
Colombia	29	3.2	841	10.24	92.8
Costa Rica	30	3.0	900	9.00	90.0
India	35	1.4	1225	1.96	49.0
Mexico	36	3.8	1296	14.44	136.8
Peru	36	1.0	1296	1.00	36.0
Philippines	34	2.8	1156	7.84	95.2
Senegal	48	-0.3	2304	0.09	-14.4
South Korea	24	6.9	576	47.61	165.6
Sri Lanka	27	2.5	729	6.25	67.5
Taiwan	21	6.2	441	38.44	130.2
Thailand	30	4.6	900	21.16	138.0
Totals	380	40.2	12564	184.04	1139.7

Note: In addition to the X and Y variables in the first two columns, three other columns are needed, for X^{2}, Y^{2} and $X Y$ values.

- A negative value of r indicates negative correlation. Similar to the above, a larger negative value indicates stronger negative correlation and $r=-1$ signifies perfect negative correlation.
- A value of $r=0$ (or close to it) indicates a lack of correlation between X and Y.
- The relationship is symmetric, i.e. the correlation between X and Y is the same as between Y and X. It does not matter which variable is labelled Y and which is labelled X.

The formula ${ }^{1}$ for calculating the correlation coefficient is given in equation (7.1):

$$
\begin{equation*}
r=\frac{n \sum X Y-\sum X \sum Y}{\sqrt{\left(n \sum X^{2}-\left(\sum X\right)^{2}\right)\left(n \sum Y^{2}-\left(\sum Y\right)^{2}\right)}} \tag{7.1}
\end{equation*}
$$

Although this looks rather complicated, it uses just six items which are easily calculated from the data: $n, \Sigma X, \Sigma Y, \Sigma X^{2}, \Sigma Y^{2}$ and $\Sigma X Y$. These are shown in Table 7.2 for the relationship between birth rate (Y) and growth (X) variables, and r is then calculated in equation (7.2):

$$
\begin{equation*}
r=\frac{12 \times 1139.7-40.2 \times 380}{\sqrt{\left(12 \times 184.04-40.2^{2}\right)\left(12 \times 12564-380^{2}\right)}}=-0.824 \tag{7.2}
\end{equation*}
$$

This result indicates a fairly strong negative correlation between the birth rate and growth, at least for this sample. Countries which have higher economic growth rates also tend to have lower birth rates. The result of calculating the correlation coefficient for the case of the birth rate and the income ratio is $r=0.35$, which is positive as expected. Hence greater inequality (higher IR) is associated with a higher birth rate, although the degree of correlation is not particularly strong and less than the correlation with the growth rate. Between the birth rate and GNP per capita, the value of r is only -0.26 , indicating only a modest degree of correlation. All of this begins to cast doubt upon Todaro's interpretation of the data.

[^29]
Exercise 7.1

(a) Perform the required calculations to confirm that the correlation between the birth rate and the income ratio is 0.35 .
(b) In Excel, use the $=\operatorname{CORREL}($) function to confirm your calculations in part (a). (For example, the function $=\operatorname{CORREL}(\mathrm{A} 1: \mathrm{A} 12, \mathrm{~B} 1: \mathrm{B} 12)$ would calculate the correlation between a variable X in cells A1:A12 and Y in cells B1:B12.)
(c) Calculate the correlation coefficient between the birth rate and the income ratio again, but expressing the birth rate per 100 population and dividing the income ratio by 100. Your calculation should confirm that changing the units of measurement leaves the correlation coefficient unchanged.

Are the results significant?

These results come from a (small) sample, one of many that could have been collected (either for different countries or different time periods). Once again we may ask the question, what can we infer about the population (of all developing countries) from the sample? Assuming the sample was drawn at random (which may not be justified) we can use the principles of hypothesis testing introduced in Chapter 5. As usual, there are two possibilities:
(1) The truth is that there is no correlation (in the population) and that our sample exhibits such a large (absolute) value by chance.
(2) There really is a correlation between the birth rate and the growth rate and the sample correctly reflects this.

By denoting the true but unknown population correlation coefficient by ρ (the Greek letter 'rho'), the possibilities can be expressed in terms of a hypothesis test:

$$
\begin{gathered}
H_{0}: \rho=0 \\
H_{1}: \rho \neq 0
\end{gathered}
$$

The test statistic in this case is not r itself but a transformation of it:

$$
\begin{equation*}
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \tag{7.3}
\end{equation*}
$$

which has a t distribution with $n-2$ degrees of freedom. The five steps of the test procedure are therefore:
(1) Write down the null and alternative hypotheses (shown above).
(2) Choose the significance level of the test: 5% by convention.
(3) Look up the critical value of the test for $n-2=10$ degrees of freedom: $t_{10}^{*}=2.228$ for a two-tail test.
(4) Calculate the test statistic using equation (7.3):
$t=\frac{-0.824 \sqrt{12-2}}{\sqrt{1-(-0.824)^{2}}}=-4.59$
(5) Compare the test statistic with the critical value. In this case $t<-t_{10}^{*}$ so H_{0} is rejected. There is a less than 5% chance of the sample evidence occurring if the null hypothesis were true, so the latter is rejected. There does appear to be a genuine association between the birth rate and the growth rate.

Performing similar calculations (see Exercise 7.2) for the income ratio and for GNP reveals that in both cases the null hypothesis cannot be rejected at the 5%

Figure 7.3
Variables with different degrees of correlation
significance level. These observed associations could well have arisen by chance so the evidence is much less convincing.

Are significant results important?

Following the discussion in Chapter 5, we might ask if a certain value of the correlation coefficient is economically important as well as significant. We saw earlier that 'significant' results need not be important. The difficulty in this case is that we have little intuitive understanding of the correlation coefficient. Is $\rho=0.5$ important, for example? Would it make much difference if it were only 0.4 ?

Our understanding may be helped if we look at some graphs of variables with different correlation coefficients (these data were generated artificially to illustrate the point). Three are shown in Figure 7.3. Panel (a) of the figure graphs two variables with a correlation coefficient of 0.2 . Visually there seems little association between the variables, yet the correlation coefficient is (just) significant: $t=2.06$ ($n=100$ and the Prob-value is 0.046). This is a significant result which does not impress much.
(a)

$$
n=100, r=0.2, t=2.06
$$

(b)

$$
n=100, r=0.5, t=5.72
$$

Figure 7.3 (cont'd)

Exercise 7.2

(c)

$$
n=1000, r=0.1, t=3.18
$$

In panel (b) the correlation coefficient is 0.5 and the association seems a little stronger visually, although there is still a substantial scatter of the observations around a straight line. Yet the t statistic in this case is 5.72 , highly significant (Prob-value 0.000).

Finally, panel (c) shows an example where $n=1000$. To the eye this looks much like a random scatter, with no discernible pattern. Yet the correlation coefficient is 0.1 and the t statistic is 3.18, again highly significant (Prob-value $=0.002$).

The lessons from this seem fairly clear. What looks like a random scatter on a chart may in fact reveal a relationship between variables which is statistically significant, especially if there are a large number of observations. On the other hand, a high t statistic and correlation coefficient can still indicate a lot of variation in the data, revealed by the chart. Panel (b) suggests, for example, that we are unlikely to get a very reliable prediction of the value of y, even if we know the value of x.
(a) Test the hypothesis that there is no association between the birth rate and the income ratio.
(b) Look up the Prob-value associated with the test statistic and confirm that it does not reject the null hypothesis.

Correlation and causality

It is important to test the significance of any result because almost every pair of variables will have a non-zero correlation coefficient, even if they are totally unconnected (the chance of the sample correlation coefficient being exactly zero is very, very small). Therefore, it is important to distinguish between correlation coefficients which are significant and those which are not, using the t test just outlined. But even when the result is significant one should beware of the danger of 'spurious' correlation. Many variables which clearly cannot be related turn out to be 'significantly' correlated with each other. One now famous example is between the price level and cumulative rainfall. Since they both rise year after year, it is easy to see why they are correlated, yet it is hard to think of a plausible reason why they should be causally related to each other.

Apart from spurious correlation, there are four possible reasons for a non-zero value of r :
(1) X influences Y.
(2) Y influences X.
(3) X and Y jointly influence each other.
(4) Another variable, Z, influences both X and Y.

Correlation alone does not allow us to distinguish between these alternatives. For example, wages (X) and prices (Y) are highly correlated. Some people believe this is due to cost-push inflation, i.e. that wage rises lead to price rises. This is case (1) above. Others believe that wages rise to keep up with the cost of living (i.e. rising prices), which is (2). Perhaps a more convincing explanation is (3), a wageprice spiral where each feeds upon the other. Others would suggest that it is the growth of the money supply, Z, which allows both wages and prices to rise. To distinguish between these alternatives is important for the control of inflation, but correlation alone does not allow that distinction to be made.

Correlation is best used therefore as a suggestive and descriptive piece of analysis, rather than a technique which gives definitive answers. It is often a preparatory piece of analysis, which gives some clues to what the data might yield, to be followed by more sophisticated techniques such as regression.

The coefficient of rank correlation

On occasion it is inappropriate or impossible to calculate the correlation coefficient as described above and an alternative approach is helpful. Sometimes the original data are unavailable but the ranks are. For example, schools may be ranked in terms of their exam results, but the actual pass rates are not available. Similarly, they may be ranked in terms of spending per pupil, with actual spending levels unavailable. Although the original data are missing, one can still test for an association between spending and exam success by calculating the correlation between the ranks. If extra spending improves exam performance, schools ranked higher on spending should also be ranked higher on exam success, leading to a positive correlation.

Second, even if the raw data are available, they may be highly skewed and hence the correlation coefficient may be influenced heavily by a few outliers. In this case the hypothesis test for correlation may be misleading as it is based on the assumption of underlying Normal distributions for the data. In this case we could transform the values to ranks, and calculate the correlation of the ranks. In a similar manner to the median, described in Chapter 1, this can effectively deal with heavily skewed distributions.

Note the difference between the two cases. In the first, we would prefer to have the actual school pass rates and expenditures because our analysis would be better. We could actually see how much extra we have to spend in order to get better results. In the second case we actually prefer to use the ranks because the original data might mislead us, through the presence of outliers for example. Non-parametric statistics are those which are robust to the distribution of the data, such as the calculation of the median, rather than the mean which is a parametric measure. We do not cover many examples of the former in this text, but the rank correlation coefficient is one of them.

Spearman's coefficient of rank correlation is a measure that is robust to the underlying distribution of the data. It does not matter, for example, if the data are skewed. (The 'standard' correlation coefficient described above is more fully known as Pearson's product-moment correlation coefficient, to distinguish it.) The formula to be applied is the same as before, although there are a few tricks to be learned about constructing the ranks, and also the hypothesis test is conducted in a different manner.

Using the ranks is generally less efficient than using the original data, because one is effectively throwing away some of the information (e.g. by how much do countries' growth rates differ?). However, there is a trade-off: the rank correlation coefficient is more robust, i.e. it is less influenced by outliers or highly skewed distributions. If one suspects this is a risk, it may be better to use the ranks. This is similar to the situation where the median can prove superior to the mean as a measure of central tendency.

We will calculate the rank correlation coefficient for the data on birth and growth rates, to provide a comparison with the ordinary correlation coefficient calculated earlier. It is unlikely that the distributions of birth or of growth rates are particularly skewed (and we have too few observations to reliably tell), so the Pearson measure might generally be preferred, but we calculate the Spearman coefficient for comparison. Table 7.3 presents the data for birth and growth rates in the form of ranks. Calculating the ranks is fairly straightforward, although there are a couple of points to note.

The country with the highest birth rate has the rank of 1 , the next highest 2 , and so on. Similarly, the country with the highest growth rate ranks 1 , etc. One could reverse a ranking, so the lowest birth rate ranks 1 , for example; the direction of ranking is somewhat arbitrary. This would leave the rank correlation coefficient unchanged in value, but the sign would change, e.g. -0.691 would become +0.691 . This could be confusing as we would now have a 'positive' correlation rather than a negative one (though the birth rate variable would now have to be redefined). It is better to use the 'natural' order of ranking for each variable, i.e. rank both variables in ascending order or both in descending order.

Table 7.3 Calculation of Spearman's rank correlation coefficient

Country	Birth rate Y	Growth rate X	Rank $Y R_{Y}$	Rank $X R_{X}$	R_{Y}^{2}	R_{X}^{2}	$R_{X} R_{Y}$
Brazil	30	5.1	7	3	49	9	21
Colombia	29	3.2	9	6	81	36	54
Costa Rica	30	3.0	7	7	49	49	49
India	35	1.4	4	10	16	100	40
Mexico	36	3.8	2.5	5	6.25	25	12.5
Peru	36	1.0	2.5	11	6.25	121	27.5
Philippines	34	2.8	5	8	25	64	40
Senegal	48	-0.3	1	12	1	144	12
South Korea	24	6.9	11	1	121	1	11
Sri Lanka	27	2.5	10	9	100	81	90
Taiwan	21	6.2	12	2	144	4	24
Thailand	30	4.6	7	4	49	16	28
Totals			78	78	647.5	650	409

Note: The country with the highest growth rate (South Korea) is ranked 1 for variable X; Taiwan, the next fastest growth nation, is ranked 2, etc. For the birth rate, Senegal is ranked 1 , having the highest birth rate, 48. Taiwan has the lowest birth rate and so is ranked 12 for variable Y.

Confusion will usually follow if you rank one variable in ascending order, the other descending.

Where two or more observations are the same, as are the birth rates of Mexico and Peru, then they are given the same rank, which is the average of the relevant ranking values. For example, both countries are given the rank of 2.5 , which is the average of 2 and 3. Similarly, Brazil, Costa Rica and Thailand are all given the rank of 7 , which is the average of 6,7 and 8 . The next country, Colombia, is then given the rank of 9 .

Excel warning

Microsoft Excel has a rank.avg() function built in, which takes a variable and calculates a new variable consisting of the ranks, similar to the above table. This can obviously save a bit of work. A word of warning, however: the rank() and rank.eq() functions, also in Excel, will give incorrect answers if there are ties in the data. The rank.avg() function is new from Excel 2010 onwards, earlier versions of Excel only have the unreliable functions.

We now apply formula (7.1) to the ranked data, giving:

$$
\begin{aligned}
r_{s} & =\frac{n \sum X Y-\sum X \sum Y}{\sqrt{\left(n \sum X^{2}-\left(\sum X\right)^{2}\right)\left(n \sum Y^{2}-\left(\sum Y\right)^{2}\right)}} \\
& =\frac{12 \times 409-78 \times 78}{\sqrt{\left(12 \times 650-78^{2}\right)\left(12 \times 647.5-78^{2}\right)}}=-0.691
\end{aligned}
$$

This indicates a negative rank correlation between the two variables, as with the standard correlation coefficient ($r=-0.824$), but with a slightly smaller absolute value.

To test the significance of the result a hypothesis test can be performed on the value of ρ_{s}, the corresponding population parameter:

$$
\begin{aligned}
& H_{0}: \rho_{s}=0 \\
& H_{1}: \rho_{s} \neq 0
\end{aligned}
$$

This time the t distribution cannot be used (because we are no longer relying on the parent distribution being Normal), but prepared tables of the critical values for ρ_{s} itself may be consulted; these are given in Table A6 (see page 462), and an excerpt is given in Table 7.4.

The critical value at the 5% significance level, for $n=12$, is 0.591 . Hence the null hypothesis is rejected if the rank correlation coefficient falls outside the range

Table 7.4 Excerpt from Table A6: Critical values of the rank correlation coefficient

n	10%	5%	2%	1%
5	0.900			
6	0.829	0.886	0.943	\vdots
\vdots	\vdots	\vdots	0.763	0
11	0.523	0.623	0.703	0.794
12	0.497	0.596	0.673	0.780
13	0.475			

Note: The critical value is given at the intersection of the shaded row and column.
[-0.591, 0.591], which it does in this case. Thus the null can be rejected with 95% confidence; the data do support the hypothesis of a relationship between the birth rate and growth. This critical value shown in the table is for a two-tail test. For a one-tail test, the significance level given in the top row of the table should be halved, so we could reject the null at the 2.5% significance level or 97.5% confidence level in this case.

Exercise 7.3

(a) Rank the observations for the income ratio across countries (highest $=1$) and calculate the coefficient of rank correlation with the birth rate.
(b) Test the hypothesis that $\rho_{\mathrm{s}}=0$.
(c) Reverse the rankings for both variables and confirm that this does not affect the calculated test statistic.
(d) Reverse the rankings of just the income ratio variable. How would you expect this to affect the value of the rank correlation coefficient?

Worked example 7.1

To illustrate all the calculations and bring them together without distracting explanation, we work through a simple example with the following data on X and Y :

Y	17	18	19	20	27	18
X	3	4	7	6	8	5

An $X Y$ graph of the data reveals the following picture, which suggests positive correlation:

Note that one point appears to be something of an outlier. All the calculations for correlations may be based on the following table:

Obs	Y	X	Y^{2}	X^{2}	$X Y$	Rank $Y R_{Y}$	Rank $X R_{X}$	R_{Y}^{2}	R_{X}^{2}	$R_{X} R_{Y}$
1	17	3	289	9	51	6	6	36	36	36
2	18	4	324	16	72	4.5	5	20.25	25	22.5
3	19	7	361	49	133	3	2	9	4	6
4	20	6	400	36	120	2	3	4	9	6
5	27	8	729	64	216	1	1	1	1	1
6	18	5	324	25	90	4.5	4	20.25	16	18
Totals	119	33	2427	199	682	21	21	90.5	91	89.5

The (Pearson) correlation coefficient r is therefore:

$$
\begin{aligned}
r & =\frac{n \sum X Y-\sum X \sum Y}{\sqrt{\left(n \sum X^{2}-\left(\sum X\right)^{2}\right)\left(n \sum Y^{2}-\left(\sum Y\right)^{2}\right)}} \\
& =\frac{6 \times 682-33 \times 119}{\sqrt{\left(6 \times 199-33^{2}\right)\left(6 \times 2427-119^{2}\right)}}=0.804
\end{aligned}
$$

The hypothesis $H_{0}: \rho=0$ versus $H_{1}: \rho \neq 0$ can be tested using the t test statistic:

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=\frac{0.804 \times \sqrt{6-2}}{\sqrt{1-0.804^{2}}}=2.7
$$

which is compared to a critical value of 2.776 , so the null hypothesis is not rejected, narrowly. This is largely due to the small number of observations, and anyway, it may be unwise to use the t distribution on such a small sample. The rank correlation coefficient is calculated as (using the R_{X}, R_{Y} etc., values)

$$
\begin{aligned}
r & =\frac{n \sum X Y-\sum X \sum Y}{\sqrt{\left(n \sum X^{2}-\left(\sum X\right)^{2}\right)\left(n \sum Y^{2}-\left(\sum Y\right)^{2}\right)}} \\
& =\frac{6 \times 89.5-21 \times 21}{\sqrt{\left(6 \times 91-21^{2}\right)\left(6 \times 90.5-21^{2}\right)}}=0.928
\end{aligned}
$$

The critical value at the 5% significance level is 0.886 , so the rank correlation coefficient is significant, in contrast to the previous result. Not too much should be read into this, however; with few observations the ranking process can easily alter the result substantially.

Regression analysis

Regression analysis is a more sophisticated way of examining the relationship between two (or more) variables than is correlation. The major differences between correlation and regression are the following:

- Regression can investigate the relationships between two or more variables.
- A direction of causality is asserted, from the explanatory variable (or variables) to the dependent variable.
- The influence of each explanatory variable upon the dependent variable is measured.
- The significance of each explanatory variable's influence can be ascertained.

Thus regression permits answers to such questions as:

- Does the growth rate influence a country's birth rate?
- If the growth rate increases, by how much might a country's birth rate be expected to fall?
- Are other variables important in determining the birth rate?

Figure 7.4 The line of best fit

In this example we assert that the direction of causality is from the growth rate (X) to the birth rate (Y) and not vice versa. The growth rate is therefore the explanatory variable (also referred to as the independent or exogenous variable) and the birth rate is the dependent variable (also called the explained or endogenous variable).

Regression analysis describes this causal relationship by fitting a straight line drawn through the data, which best summarises them. It is sometimes called 'the line of best fit' for this reason. This is illustrated in Figure 7.4 for the birth rate and growth rate data. Note that (by convention) the explanatory variable is placed on the horizontal axis, the explained on the vertical axis. This regression line is downward sloping (its derivation will be explained shortly) for the same reason that the correlation coefficient is negative, i.e. high values of Y are generally associated with low values of X and vice versa.

Since the regression line summarises knowledge of the relationship between X and Y, it can be used to predict the value of Y given any particular value of X. In Figure 7.4 the value of $X=3$ (the observation for Costa Rica) is related via the regression line to a value of Y (denoted ${ }^{2}$ by \hat{Y}) of 32.6 . This predicted value is close (but not identical) to the actual birth rate of 30 . The difference reflects the absence of perfect correlation between the two variables.

The difference between the actual value, Y, and the predicted value, \hat{Y}, is called the error term or residual. It is labelled 'Error', e, in Figure 7.4 ${ }^{3}$. Why should such errors occur? The relationship is never going to be an exact one for a variety of reasons. There are bound to be other factors besides growth which might affect the birth rate (e.g. the education of women) and these effects are all subsumed into the error term. There might additionally be simple measurement error (of Y) and, of course, people do act in a somewhat random fashion rather than follow rigid rules of behaviour.

All of these factors fall into the error term, and this means that the observations lie around the regression line rather than on it. If there are many of these factors, none of which is predominant, and they are independent of each other, then these errors may be assumed to be Normally distributed about the regression line.

[^30]Why not include these factors explicitly? On the face of it this would seem to be an improvement, making the model more realistic. However, the costs of doing this are that the model becomes more complex, calculation becomes more difficult (not so important now with computers) and it is generally more difficult for the reader (or researcher) to interpret what is going on. If these other factors have only small effects upon the dependent variable, then it might be better to ignore them, adopt a simple model and focus upon the main relationship of interest. There is a virtue in simplicity, as long as the simplified model still gives an undistorted view of the relationship. In Chapter 10 on multiple regression the trade-off between simplicity and realism will be further discussed, particularly with reference to the problems which can arise if relevant explanatory variables are omitted from the analysis.

Calculation of the regression line

The equation of the sample regression line may be written

$$
\begin{equation*}
\hat{Y}_{i}=a+b X_{i} \tag{7.6}
\end{equation*}
$$

where \hat{Y}_{i} is the predicted value of Y for observation (country) i, X_{i} is the value of the explanatory variable for observation i, and a and b are fixed coefficients to be estimated; a measures the intercept of the regression line on the Y-axis, b measures its slope. This is illustrated in Figure 7.5.

The first task of regression analysis is to find the values of a and b so that the regression line may be drawn. To do this we proceed as follows. The difference between the actual value, Y_{i}, and its predicted value, \hat{Y}_{i}, is e_{i}, the error. Thus

$$
\begin{equation*}
Y_{i}=\hat{Y}_{i}+e_{i} \tag{7.7}
\end{equation*}
$$

Substituting equation (7.6) into equation (7.7), the regression equation can be written as

$$
\begin{equation*}
Y_{i}=a+b X_{i}+e_{i} \tag{7.8}
\end{equation*}
$$

Equation (7.8) shows that observed birth rates are made up of two components:
(1) that part explained by the growth rate, $a+b X_{i}$, and
(2) an error component, e_{i}.

In a good model, part (1) should be large relative to part (2) and the regression line is based upon this principle. The line of best fit is therefore found by finding

Figure 7.5 Intercept and slope of the regression line

the values of a and b which minimise the sum of squared errors ($\left.\sum e_{i}^{2}\right)$ from the regression line. For this reason, this method is known as 'the method of least squares' or simply 'ordinary least squares' (OLS). The use of this criterion will be justified later on, but it can be said in passing that the sum of the errors is not minimised because that would not lead to a unique answer for the values a and b. In fact, there is an infinite number of possible lines through the data which all yield a sum of errors equal to zero. Minimising the sum of squared errors does yield a unique answer.

The task is therefore to

$$
\begin{equation*}
\text { minimise } \sum e_{i}^{2} \tag{7.9}
\end{equation*}
$$

by choice of a and b.
Rearranging equation (7.8), the error is given by

$$
\begin{equation*}
e_{i}=Y_{i}-a-b X_{i} \tag{7.10}
\end{equation*}
$$

so equation (7.9) becomes

$$
\begin{equation*}
\operatorname{minimise} \sum\left(Y_{i}-a-b X_{i}\right)^{2} \tag{7.11}
\end{equation*}
$$

by choice of a and b.
Finding the solution to (7.11) requires the use of differential calculus, and is not presented here. The resulting formulae for a and b are

$$
\begin{equation*}
b=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}} \tag{7.12}
\end{equation*}
$$

and

$$
\begin{equation*}
a=\bar{Y}-b \bar{X} \tag{7.13}
\end{equation*}
$$

where \bar{X} and \bar{Y} are the mean values of X and Y, respectively. The values necessary to evaluate equations (7.12) and(7.13) can be obtained from Table 7.2 which was used to calculate the correlation coefficient. These values are repeated for convenience:

$$
\begin{array}{rlrl}
\sum Y & =380 & \sum Y^{2} & =12564 \\
\sum X & =40.2 & \sum X^{2} & =184.04 \\
\sum X Y & =1139.70 & n & =12
\end{array}
$$

Using these values, we obtain

$$
b=\frac{12 \times 1139.70-40.2 \times 380}{12 \times 184.04-40.2^{2}}=-2.700
$$

and

$$
a=\frac{380}{12}-(-2.700) \times \frac{40.2}{12}=40.711
$$

Thus the regression equation can be written, to two decimal places for clarity, as

$$
Y_{i}=40.71-2.70 X_{i}+e_{i}
$$

Interpretation of the slope and intercept

The most important part of the result is the slope coefficient $b=-0.27$ since it measures the effect of X upon Y. This result implies that a unit increase in the
growth rate (e.g. from 2% to 3% p.a.) would lower the birth rate by 2.7 , e.g. from 30 births per 1000 population to 27.3. Given that the growth data refer to a 20 -year period (1961-81), this increase in the growth rate might need to be sustained over such a time, not an easy task. It is unlikely that an increase in the growth rate in one year would have such an immediate effect on the birth rate. How big is the effect upon the birth rate? The average birth rate in the sample is 31.67 , so a reduction of 2.7 for an average country would be a fall of $8.5 \%(2.7 / 31.67 \times 100)$. This is reasonably substantial (though not enough to bring the birth rate down to developed country levels) but would need a considerable, sustained increase in the growth rate to bring it about.

The value of a, the intercept, may be interpreted as the predicted birth rate of a country with zero growth (since $\hat{Y}_{i}=a$ at $X=0$). This value of 40.71 is fairly close to that of Senegal, which actually had negative growth over the period and whose birth rate was 48 , a little higher than the intercept value. Although a has a sensible interpretation in this case, this is not always so. For example, in a regression of the demand for a good on its price, a would represent demand at zero price, which is unlikely ever to be observed.
(a) Calculate the regression line relating the birth rate to the income ratio.
(b) Interpret the coefficients of this equation.

Measuring the goodness of fit of the regression line

Having calculated the regression line, we now ask whether it provides a good fit for the data, i.e. do the observations tend to lie close to, or far away from, the line? Even though we have fitted a regression line, by itself this tells us nothing about the closeness of the fit. If the fit is poor, perhaps the effect of X upon Y is not so strong after all. Note that even if X has no true effect upon Y, we can still calculate a regression line and its slope coefficient b. Although b is likely to be small, it is unlikely to be exactly zero. Measuring the goodness of fit of the data to the line helps us to distinguish between good and bad regressions.

We proceed by comparing the three competing models explaining the birth rate. Which of them fits the data best? Using the income ratio and the GNP variable gives the following regressions (calculations not shown) to compare with our original model:
for the income ratio (IR): $\quad B=26.44+1.045 \times \mathrm{IR}+e$
for GNP: $\quad B=34.72-0.003 \times \mathrm{GNP}+e$
for growth: $\quad B=40.71-2.70 \times$ GROWTH $+e$
How can we decide which of these three is 'best' on the basis of the regression equations alone? From Figure 7.1 it is evident that some relationships appear stronger than others, yet this is not revealed by examining the regression equation alone. More information is needed. (You cannot choose the best equation simply by looking at the size of the coefficients. Consider why that is so.)

The goodness of fit is calculated by comparing two lines: the regression line and the 'mean line' (i.e. a horizontal line drawn at the mean value of Y). The regression line must fit the data better (if the mean line were the best fit, that is

also where the regression line would be) but the question is how much better? This is illustrated in Figure 7.6, which demonstrates the principle behind the calculation of the coefficient of determination, denoted by R^{2} and usually more simply referred to as 'R squared'.

The figure shows the mean value of Y, the calculated sample regression line and an arbitrarily chosen sample observation $\left(X_{i}, Y_{i}\right)$. The difference between Y_{i} and \bar{Y} (length $Y_{i}-\bar{Y}$) can be divided up into:
(1) That part 'explained' by the regression line, $\hat{Y}_{i}-\bar{Y}$ (i.e. explained by the value of X_{i}).
(2) The error term $e_{i}=Y_{i}-\hat{Y}_{i}$.

In algebraic terms,

$$
\begin{equation*}
Y_{i}-\bar{Y}=\left(Y-\hat{Y}_{i}\right)+\left(\hat{Y}_{i}-\bar{Y}\right) \tag{7.14}
\end{equation*}
$$

A good regression model should 'explain' a large part of the differences between the Y_{i} values and \bar{Y}, i.e. the length $\left(\hat{Y}_{i}-\bar{Y}\right)$ should be large relative to $Y_{i}-\bar{Y}$. A measure of fit could therefore be $\left(\hat{Y}_{i}-\bar{Y}\right) /\left(Y_{i}-\bar{Y}\right)$. We need to apply this to all observations rather than just a single one; hence we could sum this expression over all the sample observations. A problem with this is that some of the terms would take a negative value and offset the positive terms. To measure the goodness of fit, we do not want the positive and negative terms to cancel each other out. Hence, to get round this problem, we square each of the terms in equation (7.14) to make them all positive, and then sum over the observations. This gives

$$
\begin{aligned}
& \sum\left(Y_{i}-\bar{Y}\right)^{2}, \text { known as the total sum of squares (TSS) } \\
& \sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \text {, the regression sum of squares (RSS), and } \\
& \sum\left(Y_{i}-\hat{Y}_{i}\right)^{2} \text {, the error sum of squares (ESS) }
\end{aligned}
$$

The measure of goodness of fit, R^{2}, is then defined as the ratio of the regression sum of squares to the total sum of squares, i.e.

$$
\begin{equation*}
R^{2}=\frac{\mathrm{RSS}}{\mathrm{TSS}} \tag{7.15}
\end{equation*}
$$

The better the divergences between Y_{i} and \bar{Y} are explained by the regression line, the better the goodness of fit, and the higher the calculated value of R^{2}. Further, it is true that

$$
\begin{equation*}
\text { TSS }=\text { RSS }+\mathrm{ESS} \tag{7.16}
\end{equation*}
$$

From equations (7.15) and (7.16) we can then see that R^{2} must lie between 0 and 1 (note that since each term in equation (7.16) is a sum of squares, none of them can be negative). Thus

$$
0 \leq R^{2} \leq 1
$$

A value of $R^{2}=1$ (and hence ESS $=0$) indicates that all the sample observations lie exactly on the regression line (equivalent to perfect correlation). If $R^{2}=0$, then the regression line is of no use at all $-X$ does not influence Y (linearly) at all, and to try to predict a value of Y one might as well use the mean \bar{Y} rather than the value X_{i} inserted into the sample regression equation.

To calculate R^{2}, alternative formulae to those above make the task easier. Instead we use:

$$
\begin{align*}
\mathrm{TSS} & =\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum Y_{i}^{2}-n \bar{Y}^{2}=12564-12 \times 31.67^{2}=530.667 \tag{7.17a}\\
\mathrm{ESS} & =\sum\left(Y_{i}-\hat{Y}\right)^{2}=\sum Y_{i}^{2}-a \sum Y_{i}-b \sum X_{i} Y_{i} \\
& =12564-40.711 \times 380-(-2.7) \times 1139.70=170.754 \tag{7.17b}\\
\mathrm{RSS} & =\mathrm{TSS}-\mathrm{ESS}=530.667-170.754=359.913 \tag{7.17c}
\end{align*}
$$

This gives the result

$$
R^{2}=\frac{\text { RSS }}{\text { TSS }}=\frac{359.913}{530.667}=0.678
$$

This is interpreted as follows. Countries' birth rates vary around the overall mean value of 31.67 and 67.8% of this variation is explained by variation in countries' growth rates. This is quite a respectable figure to obtain, leaving only 32.8% of the variation in Y left to be explained by other factors (or pure random variation). The regression seems to make a worthwhile contribution to explaining why birth rates differ. However, it does not explain the mechanism by which higher growth leads to a lower birth rate.
It turns out that in simple regression (i.e. where there is only one explanatory variable), R^{2} is simply the square of the correlation coefficient between X and Y. Thus, for the income ratio and for GNP, we have:

$$
\begin{array}{ll}
\text { for IR: } & R^{2}=0.35^{2}=0.13 \\
\text { for GNP: } & R^{2}=-0.26^{2}=0.07
\end{array}
$$

This shows, once again, that these other variables are not terribly useful in explaining why birth rates differ. Each of them explains only a small proportion of the variation in Y.

It should be emphasised at this point that R^{2} is not the only criterion (or even an adequate one in all cases) for judging the quality of a regression equation and that other statistical measures, set out below, are also helpful.

Exercise 7.5

(a) Calculate the R^{2} value for the regression of the birth rate on the income ratio, calculated in Exercise 7.4.
(b) Confirm that this result is the same as the square of the correlation coefficient between these two variables, calculated in Exercise 7.1.

Inference in the regression model

So far, regression has been used as a descriptive technique, to measure the relationship between the two variables. We now go on to draw inferences from the analysis about what the true regression line might look like. As with correlation, the estimated relationship is in fact a sample regression line, based upon data for 12 countries. The estimated coefficients a and b are random variables, since they would differ from sample to sample. What can be inferred about the true (but unknown) regression equation?

The question is best approached by first writing down a true or population regression equation, in a form similar to the sample regression equation:

$$
\begin{equation*}
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i} \tag{7.18}
\end{equation*}
$$

As usual, Greek letters denote true, or population, values. α and β are thus the population parameters, of which a and b are (point) estimates, using the method of least squares. ε is the population error term. If we could observe the individual error terms ε_{i}, then we would be able to get exact values of α and β (even from a sample), rather than just estimates.

Given that a and b are estimates, we can ask about their properties: whether they are unbiased and how precise they are, compared to alternative estimators. Under reasonable assumptions (see, for example, Maddala and Lahiri (2009), Chapter 3) it can be shown that the OLS estimates of the coefficients are unbiased. Thus, OLS provides useful point estimates of the parameters (the true values α and β). This is one reason for using the least squares method. It can also be shown that, among the class of linear unbiased estimators, OLS has the minimum variance, i.e. the method provides the most precise estimates. This is another, powerful justification for the use of OLS.

Analysis of the errors

So far, we have found point estimates and we have learnt they are unbiased. However, just because they are unbiased (correct on average) does not mean that we might not get an estimate which is a long way from the truth. For some insight into this we need, as usual, a confidence interval estimate. To find the confidence intervals for α and β, we need to know which statistical distribution we should be using, i.e. the distributions of a and b. These can be derived, based on the assumptions that the error term ε in equation (7.18) is Normally distributed and that the errors are statistically independent of each other. Since we are using cross-section data from countries which are different geographically, politically and socially, it seems reasonable to assume the errors are independent.

To check the Normality assumption, we can graph the residuals calculated from the sample regression line. If the true errors are Normal, it seems likely that these residuals should be approximately Normal also. The residuals are calculated according to equation (7.10). For example, to calculate the residual for Brazil, we subtract the fitted value from the actual value. The fitted value is calculated by substituting the growth rate into the estimated regression equation, yielding $\hat{Y}=40.712-2.7 \times 5.1=26.9$. Subtracting this from the actual value gives

Table 7.5 Calculation of residuals

	Actual birth rate	Fitted values	Residuals
Brazil	30	26.9	3.1
Colombia	29	32.1	-3.1
Costa Rica	30	32.6	-2.6
	\vdots	\vdots	\vdots
Sri Lanka	27	34.0	-7.0
Taiwan	21	24.0	-3.0
Thailand	30	28.3	1.7

$Y_{i}-\hat{Y}=30-26.9=3.1$ Other countries' residuals are calculated in similar manner, yielding the results shown in Table 7.5.

These residuals may then be gathered together in a frequency table (as in Chapter 1) and graphed. This is shown in Figure 7.7.

Although the number of observations is small (and therefore the graph is not a smooth curve), the chart does have the greater weight of frequencies in the centre as one would expect, with less weight as one moves into the tails of the distribution. The assumption that the true error term is Normally distributed does not seem unreasonable.

If the residuals from the sample regression equation appeared distinctly nonNormal (heavily skewed, for example), then one should be wary of constructing confidence intervals using the formulae below, based on a small sample. Instead, one might consider transforming the data (see below) before continuing, since such a data transformation might make the new residuals Normally distributed. There are more formal tests for Normality of the residuals ${ }^{4}$, but they are beyond the scope of this text. Drawing a graph is an informal alternative which can be useful, but remember that graphical methods can be misinterpreted.

If one were using time-series data one should also check the residuals for autocorrelation at this point. This occurs when the error in period t is dependent in

Figure 7.7
Bar chart of residuals from the regression equation

[^31]some way on the error in the previous period(s) and implies that the method of least squares may not be the best way of estimating the relationship. In this example we have cross-section data, so it is not appropriate to check for autocorrelation, since the ordering of the data does not matter. The next chapter, on multiple regression, covers this topic.

Confidence interval estimates of α and β

Having checked that the residuals appear reasonably Normal, we can proceed with inference. This means finding interval estimates of the parameters α and β and, later on, conducting hypothesis tests. As usual, the 95% confidence interval is obtained by adding and subtracting approximately two standard errors from the point estimate. We therefore need to calculate the standard errors of a and of b and we also need to look up tables to find the precise number of standard errors to add and subtract. The principle is just the same as for the confidence interval estimate of the sample mean, covered in Chapter 4.

The estimated sampling variance of b, the slope coefficient, is given by

$$
\begin{equation*}
s_{b}^{2}=\frac{s_{e}^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}} \tag{7.19}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{e}^{2}=\frac{\sum e_{i}^{2}}{n-2}=\frac{\mathrm{ESS}}{n-2} \tag{7.20}
\end{equation*}
$$

is the estimated variance of the error term, ε.
The sampling variance of b measures the uncertainty associated with the estimate. Note that the uncertainty is greater (i) the larger the error variance s_{e}^{2} (i.e. the more scattered are the points around the regression line) and (ii) the lower the dispersion of the X observations. When X does not vary much (less spread out along the x-axis) it is then more difficult to measure the effect of changes in X upon Y, and this is reflected in the formula.

First we need to calculate s_{e}^{2}. The value of this is

$$
\begin{equation*}
s_{e}^{2}=\frac{170.754}{10}=17.0754 \tag{7.21}
\end{equation*}
$$

and so the estimated variance of b is

$$
\begin{equation*}
s_{b}^{2}=\frac{17.0754}{49.37}=0.346 \tag{7.22}
\end{equation*}
$$

(Use $\sum\left(X_{i}-\bar{X}\right)^{2}=\sum X_{i}^{2}-n \bar{X}^{2}$ in calculating (7.22) - it makes the calculation easier.) The estimated standard error of b is the square root of (7.22),

$$
\begin{equation*}
s_{b}=\sqrt{0.346}=0.588 \tag{7.23}
\end{equation*}
$$

To construct the confidence interval around the point estimate, $b=-2.7$, the t distribution is used (in regression this applies to all sample sizes, not just small ones). The 95% confidence interval is thus given by

$$
\begin{equation*}
b \pm t_{\nu} s_{b} \tag{7.24}
\end{equation*}
$$

where t_{ν} is the (two-tail) critical value of the t distribution at the appropriate significance level (5% in this case), with $\nu=n-2$ degrees of freedom. The critical value is 2.228 . Thus the confidence interval evaluates to:

$$
-2.7 \pm 2.228 \times 0.588=[-4.01,-1.39]
$$

Thus we can be 95% confident that the true value of β lies within this range. Note that the interval only includes negative values: we can rule out an upwardsloping regression line.

For the intercept a, the estimate of the variance is given by

$$
\begin{equation*}
s_{a}^{2}=s_{e}^{2} \times\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right)=17.0754 \times\left(\frac{1}{12}+\frac{3.35^{2}}{49.37}\right)=5.304 \tag{7.25}
\end{equation*}
$$

and the estimated standard error of a is the square root of this, 2.303. The 95% confidence interval for α, again using the t distribution, is

$$
40.71 \pm 2.228 \times 2.303=[35.57,45.84]
$$

The results so far can be summarised as follows:

$$
\begin{aligned}
& Y_{i}=40.711-2.70 X_{i}+e_{i} \\
& \text { s.e. }(2.30) \quad(0.59) \\
& R^{2}=0.678 \quad n=12
\end{aligned}
$$

This conveys, at a glance, all the necessary information to the reader, who can then draw the inferences deemed appropriate. Any desired confidence interval (not just the 95% one) can be quickly calculated with the aid of a set of t tables.

Testing hypotheses about the coefficients

As well as calculating confidence intervals, one can use hypothesis tests as the basis for statistical inference in the regression model. These tests are quickly and easily explained given the information already assembled. Consider the following hypothesis:

$$
\begin{gathered}
H_{0}: \beta=0 \\
H_{1}: \beta \neq 0
\end{gathered}
$$

This null hypothesis is interesting because it implies no influence of X upon Y at all (i.e. the slope of the true regression line is flat and Y_{i} can be equally well predicted by \bar{Y}). The alternative hypothesis asserts that X does in fact influence Y.

The procedure is in principle the same as in Chapter 5 on hypothesis testing. We measure how many standard errors separate the observed value of b from the hypothesised value. If this is greater than an appropriate critical value, we reject the null hypothesis. The test statistic is calculated using the formula:

$$
\begin{equation*}
t=\frac{b-\beta}{s_{b}}=\frac{-2.7-0}{0.588}=-4.59 \tag{7.26}
\end{equation*}
$$

Thus the sample slope coefficient b differs by 4.59 standard errors from its hypothesised value $\beta=0$. This is compared to the critical value of the t distribution, using $n-2$ degrees of freedom. Since $t<-t_{10}^{*}(=-2.228)$, in this case, the null hypothesis is rejected with 95% confidence. X does have some influence on Y. Similar tests using the income ratio and GDP to attempt to explain the birth rate
show that in neither case is the slope coefficient significantly different from zero, i.e. neither of these variables appears to influence the birth rate.

Rule of thumb for hypothesis tests

A quick and reasonably accurate method for establishing whether a coefficient is significantly different from zero is to see if it is at least twice its standard error. If so, it is significant. This works because the critical value (at 95%) of the t distribution for reasonable sample sizes is about 2.

Sometimes regression results are presented with the t statistic (as calculated above), rather than the standard error, below each coefficient. This implicitly assumes that the hypothesis of interest is that the coefficient is zero. This is not always appropriate: in the consumption function a test for the marginal propensity to consume being equal to 1 might be of greater relevance, for example. In a demand equation, one might want to test for unit elasticity. For this reason, it is better to present the standard errors rather than the t statistics.

Note that the test statistic $t=-4.59$ is exactly the same result as in the case of testing the correlation coefficient. This is no accident, for the two tests are equivalent. A non-zero slope coefficient means there is a relationship between X and Y which also means the correlation coefficient is non-zero. Both null hypotheses are rejected.

Testing the significance of R^{2} : the F test

Another check of the quality of the regression equation is to test whether the R^{2} value, calculated earlier, is significantly greater than zero. This is a test using the F distribution and turns out once again to be equivalent to the two previous tests $H_{0}: \beta=0$ and $H_{0}: \rho=0$, conducted in previous sections, using the t distribution.

The null hypothesis for the test is $H_{0}: R^{2}=0$, implying once again that X does not influence Y (hence equivalent to $\beta=0$). The test statistic is

$$
\begin{equation*}
F=\frac{R^{2} / 1}{\left(1-R^{2}\right) /(n-2)} \tag{7.27}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
F=\frac{\mathrm{RSS} / 1}{\mathrm{ESS} /(n-2)} \tag{7.28}
\end{equation*}
$$

The F statistic is therefore the ratio of the regression sum of squares to the error sum of squares, each divided by their degrees of freedom (for the RSS there is one degree of freedom because of the one explanatory variable, for the ESS there are $n-2$ degrees of freedom). A high value of the F statistic (i.e. RSS is large relative to ESS) rejects H_{0} in favour of the alternative hypothesis, $H_{1}: R^{2}>0$. Evaluating (7.27) gives

$$
\begin{equation*}
F=\frac{0.678 / 1}{(1-0.678) / 10}=21.078 \tag{7.29}
\end{equation*}
$$

The critical value of the F distribution at the 5% significance level, with $\nu_{1}=1$ and $\nu_{2}=10$, is $F_{1,10}^{*}=4.96$. The test statistic exceeds this, so the regression as a
whole is significant. It is better to use the regression model to explain the birth rate than to use the simpler model which assumes all countries have the same birth rate (the sample average).

As stated before, this test is equivalent to those carried out before using the t distribution. The F statistic is, in fact, the square of the t statistic calculated earlier $\left(-4.59^{2}=21.078\right)$ and reflects the fact that, in general,

$$
F_{1, n-2}=t_{n-2}^{2}
$$

The Prob-value associated with both statistics is the same (approximately 0.001 in this case), so both tests reject the null at the same level of significance. However, in multiple regression with more than one explanatory variable, the relationship no longer holds and the tests do fulfil different roles, as we shall see in the next chapter.

Exercise 7.6

(a) For the regression of the birth rate on the income ratio, calculate the standard errors of the coefficients and hence construct 95% confidence intervals for both.
(b) Test the hypothesis that the slope coefficient is zero against the alternative that it is not zero.
(c) Test the hypothesis $H_{0}: R^{2}=0$.

Interpreting computer output

Having shown how to use the appropriate formulae to derive estimates of the parameters, their standard errors and to test hypotheses, we now present all these results as they would be generated by a computer software package, in this case Excel. This removes all the effort of calculation and allows us to concentrate on more important issues such as the interpretation of the results. Table 7.6 shows the computer output.

The table presents all the results we have already derived, plus a few more.

- The regression coefficients, standard errors and t ratios are given at the bottom of the table, suitably labelled. The column headed ' P -value' gives some additional information - it shows the significance level of the t statistic. For example, the slope coefficient is significant at the level of $0.1 \%^{5}$, i.e. there is this probability of getting such a sample estimate by chance. This is much less than our usual 5% criterion, so we conclude that the sample evidence did not arise by chance.
- The program helpfully calculates the 95% confidence interval for the coefficients also, which were derived above in equation (7.24).
- Moving up the table, there is a section headed 'ANOVA'. This is similar to the ANOVA covered in Chapter 6. This table provides the sums of squares values (RSS, ESS and TSS, in that order) and their associated degrees of freedom in the ' $d f$ column. The ' $M S$ ' ('mean square') column calculates the sums of squares each divided by their degrees of freedom, whose ratio gives the F statistic in the next column. This is the value calculated in equation (7.29). The 'Significance F ' value is similar to the P-value discussed previously: it shows the level at which the F statistic is significant (0.1% in this case) and saves us looking up the F tables.

[^32]Table 7.6 Regression output from Excel

4	A	B	C	D	E	F	G	H
25								
26								
27								
28		Regression S	atistics					
29		Multiple R	0.824					
30		R Square	0.678					
31		Adjusted R Square	0.646					
32		Standard Error	4.132					
33		Observations	12					
34								
35		ANOVA						
36			df	SS	MS	F	Significance F	
37		Regression	1	359.913	359.913	21.078	0.001	
38		Residual	10	170.754	17.075			
39		Total	11	530.667				
40								
41			Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
42		Intercept	40.71	2.30	17.68	7.15E-09	35.58	45.84
43		GR	-2.70	0.59	-4.59	0.001	-4.01	-1.39
44								

- At the top of the table is given the R^{2} value and the standard error of the error term, s_{e}, labelled 'Standard Error', which we have already come across. 'Multiple R^{\prime} ' is simply the square root of R^{2}; 'Adjusted $R^{2 \prime}$ (sometimes called ' R-bar squared' and written \bar{R}^{2}) adjusts the R^{2} value for the degrees of freedom. This is an alternative measure of fit, which is not affected by the number of explanatory variables, unlike R^{2}. See Maddala and Lahiri (2009, Chapter 4) for a more detailed explanation.

Prediction

Earlier we showed that the regression line could be used for prediction, using the figures for Costa Rica. The point estimate of Costa Rica's birth rate is calculated simply by putting its growth rate into the regression equation and assuming a zero value for the error, i.e.

$$
\hat{Y}=a+b X+0=40.711-2.7 \times 3+0=32.6
$$

This is a point estimate, which is unbiased, around which we can build a confidence interval. There are, in fact, two confidence intervals we can construct, the first for the position of the regression line at $X=3$, the second for an individual observation (on Y) at $X=3$. Using the 95% confidence level, the first interval is given by the formula

$$
\begin{equation*}
\hat{Y} \pm t_{n-2} \times s_{e} \sqrt{\frac{1}{n}+\frac{\left(X_{P}-\bar{X}\right)^{2}}{\sum(X-\bar{X})^{2}}} \tag{7.30}
\end{equation*}
$$

where X_{P} is the value of X for which the prediction is made. t_{n-2} denotes the critical value of the t distribution at the 5% significance level (for a two-tail test) with $n-2$ degrees of freedom. This evaluates to

$$
\begin{aligned}
& 32.6 \pm 2.228 \times 4.132 \sqrt{\frac{1}{12}+\frac{(3-3.35)^{2}}{49.37}} \\
& =[29.90,35.30]
\end{aligned}
$$

Figure 7.8 Confidence and prediction intervals

This means that we predict with 95% confidence that the average birth rate of all countries growing at 3% p.a. is between 29.9 and 35.3.

The second type of interval, for the value of Y itself at $X_{P}=3$, is somewhat wider, because there is an additional element of uncertainty: individual countries do not lie on the regression line, but around it. This is referred to as the 95% prediction interval. The formula for this interval is

$$
\begin{equation*}
\hat{Y} \pm t_{n-2} \times s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(X_{P}-\bar{X}\right)^{2}}{\sum(X-\bar{X})^{2}}} \tag{7.31}
\end{equation*}
$$

Note the extra ' 1 ' inside the square root sign. When evaluated, this gives a 95% prediction interval of [23.01, 42.19]. Thus we are 95% confident that an individual country growing at 3% p.a. will have a birth rate within this range.

The two intervals are illustrated in Figure 7.8. The smaller confidence interval is shown in a darker shade, with the wider prediction interval being about twice as big. Note from the formulae that the prediction is more precise (the interval is smaller):

- the closer the sample observations lie to the regression line (smaller s_{e}),
- the greater the spread of sample X values (larger $\Sigma(X-\bar{X})^{2}$),
- the larger the sample size (larger n),
- the closer to the mean of X the prediction is made (smaller $X_{P}-\bar{X}$).

This last characteristic is evident in the diagram, where the intervals are narrower towards the centre of the diagram.

There is an additional danger of predicting far outside the range of sample X values, if the true regression line is not linear as we have assumed. The linear sample regression line might be close to the true line within the range of sample X values but diverge substantially outside. Figure 7.9 illustrates this point.

In the birth rate sample, we have a fairly wide range of X values; few countries grow more slowly than Senegal or faster than Korea.

Use Excel's regression tool (or other software) to confirm your answers to Exercises 7.4 to 7.6.

Figure 7.9 The danger of prediction outside the range of sample data

Exercise 7.8

(a) Predict (point estimate) the birth rate for a country with an income ratio of 10.
(b) Find the 95% confidence interval prediction for a typical country with $I \mathrm{R}=10$.
(c) Find the 95% confidence interval prediction for an individual country with $\mathrm{IR}=10$.

Route map of calculations

Figure 7.10
Route map of regression calculations

By now we have been through a lot of formulae and calculations, and the reader might be a little bewildered. Hence we summarise here in Figure 7.10, and in the worked example below, the order in which these calculations are carried out, a kind of route map. It is possible to vary parts of the ordering slightly, which is not important.

Worked example 7.2

We continue the previous worked example, completing the calculations needed for regression. The previous table contains most of the preliminary calculations. To find the regression line we use:

$$
b=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}}=\frac{6 \times 682-33 \times 119}{6 \times 199-33^{2}}=1.57
$$

and

$$
a=19.83-1.57 \times 5.5=11.19
$$

Hence we obtain the equation:

$$
Y_{i}=11.19+1.57 X_{i}+e_{i}
$$

For inference, we start with the sums of squares:

$$
\begin{aligned}
\mathrm{TSS} & =\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum Y_{i}^{2}-n \bar{Y}^{2} \\
& =2427-6 \times 19.83^{2}=66.83 \\
\mathrm{ESS} & =\sum\left(Y_{i}-\hat{Y}\right)^{2}=\sum Y_{i}^{2}-a \sum Y_{i}-b \sum X_{i} Y_{i} \\
& =2427-11.19 \times 119-1.57 \times 682=23.62 \\
\text { RSS } & =\mathrm{TSS}-\mathrm{ESS}=66.83-23.62=43.21
\end{aligned}
$$

We then get $R^{2}=$ RSS $/$ TSS $=43.21 / 66.83=0.647$ or 64.7% of the variation in Y explained by variation in X.

To obtain the standard errors of the coefficients, we first calculate the error variance as $s_{e}^{2}=\mathrm{ESS} /(n-2)=23.62 / 4=5.905$ and the estimated variance of the slope coefficient is:

$$
s_{b}^{2}=\frac{s_{e}^{2}}{\sum(X-\bar{X})^{2}}=\frac{5.905}{17.50}=0.338
$$

and the standard error of b is therefore $\sqrt{0.338}=0.581$.
Similarly, for a we obtain:

$$
s_{a}^{2}=s_{e}^{2} \times\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum(X-\bar{X})^{2}}\right)=5.905 \times\left(\frac{1}{6}+\frac{5.5^{2}}{17.50}\right)=11.19
$$

and the standard error of a is therefore 3.34.
Confidence intervals for a and b can be constructed using the critical value of the t distribution, $2.776(5 \%, \nu=4)$, yielding $1.57 \pm 2.776 \times 0.581=$ [$-0.04,3.16]$ for b and $[1.90,20.47]$ for a. Note that zero is inside the confidence interval for b. This is also reflected in the test of $H_{0}: \beta=0$ which is

$$
t=\frac{1.57-0}{0.581}=2.71
$$

which falls just short of the two-tailed critical value, 2.776 . Hence H_{0} cannot be rejected.

The F statistic to test $H_{0}: R^{2}=0$ is:

$$
F=\frac{\mathrm{RSS} / 1}{\operatorname{ESS} /(n-2)}=\frac{43.21 / 1}{23.62 /(6-2)}=7.32
$$

which compares to a critical value of $F(1,4)$ of 7.71 . So, again, the null cannot be rejected (remember that this and the t test on the slope coefficient are equivalent in simple regression).

We shall predict the value of Y for a value of $X=10$, yielding $\hat{Y}=$ $11.19+1.57 \times 10=26.90$. The 95% confidence interval for this prediction is calculated using (7.30) which gives

$$
26.90-2.776 \times 2.43 \sqrt{\frac{1}{6}+\frac{(10-5.5)^{2}}{17.50}}=[19.14,34.66] .
$$

The 95% prediction interval for an actual observation at $X=10$ is given by (7.31), resulting in

$$
26.90 \pm 2.776 \times 2.43 \sqrt{1+\frac{1}{6}+\frac{(10-5.5)^{2}}{17.50}}=[16.62,37.18]
$$

Some other issues in regression

We have now completed our review of the main calculations and interpretation of the regression results. We now look at a few additional issues which often arise, and it is useful to be aware of them.

Units of measurement

The measurement and interpretation of the regression coefficients depend upon the units in which the variables are measured. For example, suppose we had measured the birth rate in births per hundred (not thousand) of population; what would be the implications? Obviously nothing fundamental is changed; we ought to get the same qualitative result, with the same interpretation. However, the regression coefficients cannot remain the same: if the slope coefficient remained $b=-2.7$, this would mean that an increase in the growth rate of one percentage point reduces the birth rate by 2.7 births per hundred, which is clearly wrong. The right answer should be 0.27 births per hundred (equivalent to 2.7 per thousand) so the coefficient should change to $b=-0.27$. Thus, in general, the sizes of the coefficients depend upon the units in which the variables are measured. This is why one cannot judge the importance of a regression equation from the size of the coefficients alone.

It is easiest to understand this in graphical terms. A graph of the data will look exactly the same, except that the scale on the Y-axis will change; it will be divided by 10 . The intercept of the regression line will therefore change to $a=4.0711$ and the slope to $b=-0.27$ (i.e. both are divided by 10). Thus the regression equation becomes

$$
\begin{aligned}
& Y_{i}=4.0711-0.27 X_{i}+e_{i}^{\prime} \\
& \left(e_{i}^{\prime}=e_{i} / 10\right)
\end{aligned}
$$

Since nothing fundamental has altered, any hypothesis test must yield the same result and, in particular, the same test statistic. Thus, t and F statistics are unaltered by changes in the units of measurement; nor is R^{2} altered. However, standard errors will be divided by 10 (they have to be to preserve the t statistics; see equation (7.26) for example). Table 7.7 sets out the effects of changes in the

Table 7.7 The effects of data transformations

Factor (k) multiplying ...		Effect upon				
Y	x	a	s_{a}	b		s_{b}
k	1					
1	k				divided by k	
k	k				Unchanged	

units of measurement (of either the X or Y variable) upon the coefficients and standard errors. In the table it is assumed that the variables have been multiplied by a constant k; in the above case $k=1 / 10$ was used.

It is important to be aware of the units in which the variables are measured. If not, it is impossible to know how large is the effect of X upon Y. It may be statistically significant, but we have no idea of how important it is. This may occur if, for instance, one of the variables is presented as an index number (see Chapter 10) rather than in the original units.

How to avoid measurement problems: calculating the elasticity

A neat way to avoid the problems of measurement is to calculate the elasticity, i.e. the proportionate change in Y divided by the proportionate change in X. The proportionate changes are the same whatever units the variables are measured in. The proportionate change in X is given by $\Delta X / X$, where ΔX indicates the change in X. Thus if X changes from 100 to 110, the proportionate change is $\Delta X / X=10 / 100=0.1$ or 10%. The elasticity, η, is therefore given by

$$
\begin{equation*}
\eta=\frac{\Delta Y / Y}{\Delta X / X} \text { or equivalently } \eta=\frac{\Delta Y}{\Delta X} \times \frac{X}{Y} \tag{7.32}
\end{equation*}
$$

The second form of the equation is more useful, since $\Delta Y / \Delta X$ is simply the slope coefficient b. We simply need to multiply this by the ratio X / Y, therefore. But what values should be used for X and Y ? The convention is to use the means, so we obtain the following formula for the elasticity, from a linear regression equation:

$$
\begin{equation*}
\eta=b \times \frac{\bar{X}}{\bar{Y}} \tag{7.33}
\end{equation*}
$$

This evaluates to $-2.7 \times 3.35 / 31.67=-0.29$. This is interpreted as follows: a 1% increase in the growth rate would lead to a 0.29% decrease in the birth rate. Equivalently, and perhaps a little more usefully, a 10\% rise in growth (from say 3\% to 3.3% p.a.) would lead to a 2.9% decline in the birth rate (e.g. from 30 to 29.13). This result is the same whatever units the variables X and Y are measured in.

Note that this elasticity is measured at the means; it would have a different value at different points along the regression line. Later on we show an alternative method for estimating the elasticity, in this case the elasticity of demand which is familiar in economics.

Non-linear transformations

So far only linear regression has been dealt with, that is fitting a straight line to the data. This can sometimes be restrictive, especially when there is good reason to believe that the true relationship is non-linear (e.g. the labour supply curve). Poor results would be obtained by fitting a straight line through the data in Figure 7.11, yet the shape of the relationship seems clear at a glance.

Figure 7.11
Graph of Y against X

Figure 7.12 Transformation of Figure 7.11: Y against $1 / X$

Fortunately, this problem can be solved by transforming the data, so that when graphed a linear relationship between the two variables appears. Then a straight line can be fitted to these transformed data. This is equivalent to fitting a curved line to the original data. All that is needed is to find a suitable transformation to 'straighten out' the data. Given the data represented in Figure 7.11, if Y were graphed against $1 / X$, the relationship shown in Figure 7.12 would appear.

Thus, if the regression line

$$
\begin{equation*}
Y_{i}=a+b \frac{1}{X_{i}}=e_{i} \tag{7.34}
\end{equation*}
$$

were fitted, this would provide a good representation of the data in Figure 7.11. The procedure is straightforward. First, calculate the reciprocal of each of the X values and then use these new values (together with the original data for Y), using exactly the same methods as before. This transformation appears inappropriate for the birth rate data (see Figure 7.1) but serves as an illustration. The transformed X values are $0.196(=1 / 5.1)$ for Brazil, $0.3125(=1 / 3.2)$ for Colombia, etc. The resulting regression equation is

$$
\begin{align*}
& Y_{i}=31.92-3.96 \frac{1}{X_{i}}+e_{i} \tag{7.35}\\
& \text { s.e. }(1.64) \quad(1.56) \\
& R^{2}=0.39, F=6.44, n=12
\end{align*}
$$

This appears worse than the original specification (the R^{2} is low and the slope coefficient is not significantly different from zero), so the transformation does not appear to be a good one. Note also that it is difficult to calculate the effect of X upon Y in this equation. We can see that a unit increase in $1 / X$ reduces the birth rate by 3.96, but we do not have an intuitive feel for the inverse of the growth rate. This latest result also implies that a fall in the growth rate (hence, $1 / X$ rises) lowers the birth rate - the converse of our previous result. In the next chapter, we deal with a different example where a non-linear transformation does improve matters.

Table 7.8 presents a number of possible shapes for data, with suggested data transformations which will allow the relationship to be estimated using linear regression. In each case, once the data have been transformed, the methods and formulae used above can be applied.

It is sometimes difficult to know which transformation (if any) to apply. A graph of the data is unlikely to be as tidy as the diagrams in Table 7.8. Economic theory rarely suggests the form which a relationship should follow, and there are no simple statistical tests for choosing alternative formulations. The choice can sometimes be made after visual inspection of the data, or on the basis of convenience. The double log transformation is often used in economics as it has some very convenient properties. Unfortunately, it cannot be used with the growth rate data here because Senegal's growth rate was negative. It is impossible to take the logarithm of a negative number. We therefore postpone the use of the log transformation in regression until the next chapter.

Table 7.8 Data transformations

Name	Graph of relationship	Original relationship	Transformed relationship	Regression
Double log		$Y=a X^{b} e$	$\ln Y-\ln a+b \ln X+\ln e$	$\ln Y$ on $\ln X$
Reciprocal	$\frac{1}{x}$	$Y=a+b / X+e$	$Y=a+b \frac{1}{X}+e$	$Y \text { on } \frac{1}{x}$
Semi-log		$e^{y}=a X^{b} e$	$Y=\ln a+b \ln X+\ln e$	Y on $\ln X$
Exponential		$Y=e^{a+b x+e}$	$\ln Y=a+b X+e$	$\ln Y$ on X

Gapminder again

Source: From www.gapminder.org, Visualization from Gapminder World, powered by Trendalyzer from www.gapminder.org.

It is instructive to return to Gapminder again (encountered in Chapter 1) to see what it can reveal with similar data but using more countries, in this case 92 . This is a mixture of developing (mainly) and developed countries. First, we note that (as is often the case) it is difficult to replicate our earlier relationship between the birth rate and growth because (i) Gapminder has birth rate data for 1983, not 1981, and (ii) Gapminder only has 'Growth over the next 10 years' readily prepared for graphing, i.e. we would have to use the birth rate in 1983 and the growth rate over 1983 to 1993. Fortunately, one can download the underlying data and do the analysis ${ }^{6}$. This reveals a regression equation:

$$
\begin{aligned}
& \mathrm{BR}=41.8-4.08 \text { growth rate }+ \text { error } \\
& \text { s.e. }(2.03) \quad(0.66) \\
& R^{2}=0.30, F_{1,90}=38.4, n=92
\end{aligned}
$$

The slope coefficient uncovered earlier, using just 12 countries, was -2.70 (s.e. 0.59). Thus, the larger sample has found a much steeper relationship between the variables. The Gapminder data are slightly different (even for the same countries) from Todaro's, so we can also use the Gapminder data for the original 12 countries, revealing a slope coefficient of -3.24 (s.e. 0.38) which is not so different from Todaro.

It is easier to examine the birth rate/income relationship, since Gapminder can readily do this. It gives the following graph.

[^33]Note that Gapminder, by default, uses the log of income, rather than income itself. This makes it a little difficult to compare with Figure 7.1(b), showing Todaro's data, which used income. Is it better to use income or log income? From looking at the Gapminder data there appears to be a curvilinear relationship between the birth rate and income, and a linear regression would not fit well. Also, income is highly skewed with some very high values (e.g. Kuwait) which will tend to have a large influence on the regression line's position. Taking the log of income addresses this issue. The birth rate data are not so skewed so there is less need to transform them.

Comparing regression results, we have:

	Income coefficient (s.e.)	R^{2}	N
Todaro	$-0.003(0.003)$	0.07	12
Gapminder	$-0.0006(0.0001)$	0.26	155
Gapminder (log income)	$-7.81(0.56)$	0.56	155

The results using log income appear best, with the highest R^{2} value (note the dependent variable is the same in all cases) and with a significant slope coefficient. The only tricky part is interpreting the coefficient - what does it mean? This is a useful exercise to work through. The initial interpretation is that a unit increase in log income leads to a 7.81 fall in the birth rate. But what is a unit increase in the (natural) log? The answer is that it corresponds to a 172% increase in income (because $\ln (2.72)=1)$. This is not the easiest of results to digest. Easier would be to ask, what is the effect of doubling a country's income? In this case, $\ln (2)=0.69$, and this would be the increase in the log. This would imply a $0.69 \times 7.81=5.4$ fall in the birth rate. Thus, a doubling of a country's income reduces the birth rate by about five births per 1000 population (approximately a 15% reduction at the mean).

Exercise 7.9

(a) Calculate the elasticity of the birth rate with respect to the income ratio, using the results of previous exercises.
(b) Give a brief interpretation of the meaning of this figure.

Exercise 7.10
Calculate a regression relating the birth rate to the inverse of the income ratio $1 / I R$.

Summary

- Correlation refers to the extent of association between two variables. The (sample) correlation coefficient is a measure of this association, extending from $r=-1$ to $r=+1$.
- Positive correlation ($r>0$) exists when high values of X tend to be associated with high values of Y and low X values with low Y values.
- Negative correlation $(r<0)$ exists when high values of X tend to be associated with low values of Y and vice versa.
- Values of r around 0 indicate an absence of correlation.
- As the sample correlation coefficient is a random variable, we can test for its significance, i.e. test whether the true value is zero or not. This test is based upon the t distribution.
- The existence of correlation (even if 'significant') does not necessarily imply causality. There can be other reasons for the observed association.
- Regression analysis extends correlation by asserting a causality from X to Y and then measuring the relationship between the variables via the regression line, the 'line of best fit'.
- The regression line $Y=a+b X$ is defined by the intercept a and slope coefficient b. Their values are found by minimising the sum of squared errors around the regression line.
- The slope coefficient b measures the responsiveness of Y to changes in X.
- A measure of how well the regression line fits the data is given by the coefficient of determination, R^{2}, varying between 0 (very poor fit) and 1 (perfect fit).
- The coefficients a and b are unbiased point estimates of the true values of the parameters. Confidence interval estimates can be obtained, based on the t distribution. Hypothesis tests on the parameters can also be carried out using the t distribution.
- A test of the hypothesis $R^{2}=0$ (implying the regression is no better at predicting Y than simply using the mean of Y) can be carried out using the F distribution.
- The regression line may be used to predict Y for any value of X by assuming the residual to be zero for that observation.
- The measured response of Y to X (given by b) depends upon the units of measurement of X and Y. A better measure is often the elasticity, which is the proportionate response of Y to a proportionate change in X.
- Data are often transformed prior to regression (e.g. by taking logs) for a variety of reasons (e.g. to fit a curve to the original data).

Key terms and concepts

autocorrelation	Pearson's product-moment correlation coefficient
coefficient of determination $\left(R^{2}\right)$	positive correlation
correlation coefficient	prediction
dependent (endogenous) variable	prediction interval
elasticity	rank correlation coefficient
error sum of squares	regression line or equation
error term (or residual)	regression sum of squares
estimated variance of the error term	slope
explained (endogenous) variable	Spearman's coefficient of rank correlation
explanatory variable	standard error
independent (exogenous) variable	t distribution
intercept	total sum of squares
negative correlation	zero correlation
non-parametric statistics	

References

Formulae used in this chapter

Formula	Description	Notes
$r=\frac{n \sum X Y-\sum X \sum Y}{\sqrt{\left(n \sum X^{2}-\left(\sum X\right)^{2}\right)\left(n \sum Y^{2}-\left(\sum Y\right)^{2}\right)}}$	Correlation coefficient	$-1 \leq r \leq 1$
$t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}$	Test statistic for H_{0} : $\rho=0$	$\nu=n-2$
$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}$	Spearman's rank correlation coefficient	$-1 \leq r_{s} \leq 1 . d$ is the difference in ranks between the two variables. Only works if there are no tied ranks. Otherwise use standard correlation formula.
$b=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}}$	Slope of the regression line (simple regression)	
$a=\bar{Y}-b \bar{X}$	Intercept (simple regression)	
TSS $=\sum Y^{2}-n \bar{Y}^{2}$	Total sum of squares	
ESS $=\sum Y^{2}-a \sum Y-b \sum X Y$	Error sum of squares	
RSS $=$ TSS - ESS	Regression sum of squares	
$R^{2}=\frac{\mathrm{RSS}}{\mathrm{TSS}}$	Coefficient of determination	
$s_{e}^{2}=\frac{E S S}{n-2}$	Variance of the error term in regression	Replace $n-2$ by $n-k-1$ in multiple regression
$s_{b}^{2}=\frac{s_{e}^{2}}{\sum(X-\bar{X})^{2}}$	Variance of the slope coefficient in simple regression	
$s_{a}^{2}=s_{e}^{2}=\sqrt{\frac{1}{n}+\frac{\bar{X}^{2}}{\sum(X-\bar{X})^{2}}}$	Variance of the intercept in simple regression	
$b \pm t_{\nu} \times s_{b}$	Confidence interval estimate for b in simple regression	t_{v} is the critical value of the t distribution with $\nu=n-2$ degrees of freedom
$t=\frac{b-\beta}{s_{b}}$	Test statistic for H_{0} : $\beta=0$	$\nu=n-2$ in simple regression, $n-k-1$ in multiple regression
$F=\frac{\mathrm{RSS} / 1}{\mathrm{ESS} /(n-2)}$	Test statistic for $H_{0}: R^{2}=0$	$\nu=k, n-k-1$ in multiple regression
$\hat{Y} \pm t_{\nu} \times s_{e} \sqrt{\frac{1}{n}+\frac{\left(X_{P}-\bar{X}\right)^{2}}{\sum(X-\bar{X})^{2}}}$	Confidence interval for a prediction (simple regression) at $X=X_{P}$	$\nu=n-2$
$\hat{Y} \pm t_{\nu} \times s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(X_{P}-\bar{X}\right)^{2}}{\sum(X-\bar{X})^{2}}}$	Confidence interval for an observation on Y at $X=X_{P}$	$\nu=n-2$

Some of the more challenging problems are indicated by highlighting the problem number in colour.
7.1 The other data which Todaro might have used to analyse the birth rate were:

Country	Birth rate	GNP	Growth	Income ratio
Bangladesh	47	140	0.3	2.3
Tanzania	47	280	1.9	3.2
Sierra Leone	46	320	0.4	3.3
Sudan	47	380	-1.3	3.9
Kenya	55	420	2.9	6.8
Indonesia	35	530	4.1	3.4
Panama	30	1910	3.1	8.6
Chile	25	2560	0.7	3.8
Venezuela	35	4220	2.4	5.2
Turkey	33	1540	3.5	4.9
Malaysia	31	1840	4.3	5.0
Nepal	44	150	0.0	4.7
Malawi	56	200	2.7	2.4
Argentina	20	2560	1.9	3.6

For one of the three possible explanatory variables (in class, different groups could examine each of the variables):
(a) Draw an $X Y$ chart of the data above and comment upon the result.
(b) Would you expect a line of best fit to have a positive or negative slope? Roughly, what would you expect the slope to be?
(c) What would you expect the correlation coefficient to be?
(d) Calculate the correlation coefficient, and comment.
(e) Test to see if the correlation coefficient is different from zero. Use the 95% confidence level.
(Analysis of this problem continues in Problem 7.5.)
7.2 The data below show alcohol expenditure and income (both in fs per week) for a sample of 17 families.

Family	Alcohol expenditure	Income	Family	Alcohol expenditure	Income
1	26.17	487	10	13.32	370
2	19.49	574	11	9.24	299
3	17.87	439	12	47.35	531
4	16.90	367	13	26.80	506
5	4.21	299	14	33.44	613
6	32.08	743	15	21.41	472
7	30.19	433	16	16.06	253
8	22.62	547	17	24.98	374

(a) Draw an $X Y$ plot of the data and comment.
(b) From the chart, would you expect the line of best fit to slope up or down? In theory, which way should it slope?
(c) What would you expect the correlation coefficient to be, approximately?
(d) Calculate the correlation coefficient between alcohol spending and income.
(e) Is the coefficient significantly different from zero? What is the implication of the result?
(The following totals will reduce the burden of calculation: $\sum Y=137.990 ; \sum X=7610$; $\sum Y^{2}=9$ 918.455; $\Sigma X^{2}=3680748 ; \sum X Y=181911.250 ; Y$ is consumption, X is income. If you wish, you could calculate a logarithmic correlation. The relevant totals are: $\sum y=50.192$; $\sum x=103.079 ; \quad \sum y^{2}=153.567 ; \quad \sum x^{2}=626.414 ; \quad \sum x y=306.339$, where $y=\ln Y$ and $x=\ln X$.)
(Analysis of this problem continues in Problem 7.6.)
7.3 What would you expect to be the correlation coefficient between the following variables? Should the variables be measured contemporaneously or might there be a lag in the effect of one upon the other?
(a) Nominal consumption and nominal income.
(b) GDP and the imports/GDP ratio.
(c) Investment and the interest rate.
7.4 As Problem 7.3, for
(a) real consumption and real income;
(b) individuals' alcohol and cigarette consumption;
(c) UK and US interest rates.
7.5 Using the data from Problem 7.1, calculate the rank correlation coefficient between the variables and test its significance. How does it compare with the ordinary correlation coefficient?
7.6 (a) Calculate the rank correlation coefficient between income and quantity for the data in Problem 7.2. How does it compare to the ordinary correlation coefficient?
(b) Is there significant evidence that the ranks are correlated?
7.7 (a) For the data in Problem 7.1, find the estimated regression line and calculate the R^{2} statistic. Comment upon the result. How does it compare with Todaro's findings?
(b) Calculate the standard error of the estimate and the standard errors of the coefficients. Is the slope coefficient significantly different from zero? Comment upon the result.
(c) Test the overall significance of the regression equation and comment.
(d) Taking your own results and Todaro's, how confident do you feel that you understand the determinants of the birth rate?
(e) What do you think will be the result of estimating your equation using all 26 countries' data? Try it. What do you conclude?
7.8 (a) For the data given in Problem 7.2, estimate the sample regression line and calculate the R^{2} statistic. Comment upon the results.
(b) Calculate the standard error of the estimate and the standard errors of the coefficients. Is the slope coefficient significantly different from zero?
(c) Test the overall significance of the regression and comment upon your result.
7.9 From your results for the birth rate model, predict the birth rate for a country with either (a) GNP equal to $\$ 3000$, (b) a growth rate of 3% p.a., or (c) an income ratio of 7 . How does your prediction compare with one using Todaro's results? Comment.
7.10 Predict alcohol consumption given an income of $£ 700$. Use the 99% confidence level for the interval estimate.
7.11 (Project) Update Todaro's study using more recent data.
7.12 Try to build a model of the determinants of infant mortality. You should use cross-section data for 20 countries or more and should include both developing and developed countries in the sample.

Write up your findings in a report which includes the following sections: discussion of the problem; data gathering and transformations; estimation of the model; interpretation of results. Useful data may be found in the Human Development Report (use Google to find it online) or on the World Bank website.

Answers to exercises

Exercise 7.1

(a) The calculation is:

	Birth rate Y	Income ratio X	Y^{2}	X^{2}	$X Y$
Brazil	30	9.5	900	90.25	285
Colombia	29	6.8	841	46.24	197.2
Costa Rica	30	4.6	900	21.16	138
India	35	3.1	1225	9.61	108.5
Mexico	36	5	1296	25	180
Peru	36	8.7	1296	75.69	313.2
Philippines	34	3.8	1156	14.44	129.2
Senegal	48	6.4	2304	40.96	307.2
South Korea	24	2.7	576	7.29	64.8
Sri Lanka	27	2.3	729	5.29	62.1
Taiwan	21	3.8	441	14.44	79.8
Thailand	30	3.3	900	10.89	99
Totals	380	60	12564	361.26	1964

$$
r=\frac{12 \times 1964-60 \times 380}{\sqrt{\left(12 \times 136.26-60^{2}\right)\left(12 \times 12564-380^{2}\right)}}=0.355
$$

(b) As for (a) except $\sum X=0.6, \quad \sum Y=38, \quad \sum X^{2}=0.036126, \quad \sum Y^{2}=125.64$, $\Sigma X Y=1.964$. Hence

$$
r=\frac{12 \times 1.964-0.6 \times 38}{\sqrt{\left(12 \times 0.036126-0.6^{2}\right)\left(12 \times 125.64-38^{2}\right)}}=0.355
$$

Exercise 7.2

(a) $t=\frac{0.355 \sqrt{12-2}}{\sqrt{1-(0.355)^{2}}}=1.20<2.228=t^{*}$ (5\% significance level, two-tailed test)
(b) The Prob-value, for a two-tailed test, is 0.257 or 25%. This is greater than 5% so we do not reject the null of no correlation.

Exercise 7.3

(a) The calculation is:

	Birth rate Y	Income ratio X	Rank of Y	Rank of X	Y^{2}	X^{2}	$X Y$
Brazil	30	9.5	7	1	49	1	7
Colombia	29	6.8	9	3	81	9	27
Costa Rica	30	4.6	7	6	49	36	42
India	35	3.1	4	10	16	100	40
Mexico	36	5	2.5	5	6.25	25	12.5
Peru	36	8.7	2.5	2	6.25	4	5
Philippines	34	3.8	5	7.5	25	56.25	37.5
Senegal	48	6.4	1	4	1	16	4
South Korea	24	2.7	11	11	121	121	121
Sri Lanka	27	2.3	10	12	100	144	120
Taiwan	21	3.8	12	7.5	144	56.25	90
Thailand	30	3.3	7	9	49	81	63
Totals			78	78	647.5	649.5	569

$$
r_{s}=\frac{12 \times 569-78^{2}}{\sqrt{\left(12 \times 649.5-78^{2}\right)\left(12 \times 647.5-78^{2}\right)}}=0.438
$$

(b) This is less than the critical value of 0.591 so the null of no rank correlation cannot be rejected.
(c) Reversing the rankings does not alter the result of the calculation.
(d) Reversing just the income ratio ranking changes the sign of the rank correlation coefficient but preserves the absolute value.

Exercise 7.4

(a) Using the data and calculations in the answer to Exercise 7.1 we obtain:

$$
\begin{aligned}
& b=\frac{12 \times 1964-60 \times 380}{12 \times 361.26-60^{2}}=1.045 \\
& a=\frac{380}{12}-(1.045) \times \frac{60}{12}=26.443
\end{aligned}
$$

(b) A unit increase in the measure of inequality (e.g. from four to five) leads to approximately one additional birth per 1000 mothers. This is not a very helpful interpretation as it is hard to envisage such a change in the ratio and how it would impact on families. The constant has no useful interpretation. The income ratio cannot be zero (in fact, it cannot be less than 0.5).

Exercise 7.5

(a) $\mathrm{TSS}=\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum Y_{i}^{2}-n \bar{Y}^{2}$

$$
\begin{aligned}
& =12564-12 \times 31.67^{2}=530.667 \\
\mathrm{ESS} & =\sum\left(Y_{i}-\hat{Y}\right)^{2}=\sum Y_{i}^{2}-a \sum Y_{i}-b \sum X_{i} Y_{i} \\
& =12564-26.443 \times 380-1.045 \times 1139.70=463.804 \\
\mathrm{RSS} & =\mathrm{TSS}-\mathrm{ESS}=530.667-463.804=66.863 \\
R^{2} & =0.126
\end{aligned}
$$

Hence only 12.6% of the variation in the birth rate is explained by variation in the income ratio.
(b) This is the square of the correlation coefficient, calculated earlier as 0.355 .

Exercise 7.6

(a) $s_{e}^{2}=\frac{463.804}{10}=46.3804$
and so

$$
s_{b}^{2}=\frac{46.3804}{61.26}=0.757
$$

and

$$
s_{b}=\sqrt{0.757}=0.870
$$

For a the estimated variance is

$$
s_{a}^{2}=s_{e}^{2} \times\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right)=46.3804 \times\left(\frac{1}{12}+\frac{5^{2}}{61.26}\right)=22.793
$$

and hence $s_{a}=4.774$. The 95% CIs are therefore $1.045 \pm 2.228 \times 0.87=$ $[-0.864,2.983]$ for b and $26.443 \pm 2.228 \times 4.774=[15.806,37.081]$ for a
(b) $t=\frac{1.045-0}{0.870}=1.201$

Not significant. The critical value of the t statistic is again 2.228.
(c) $F=\frac{\mathrm{RSS} / 1}{\mathrm{ESS} /(n-2)}=\frac{66.863 / 1}{463.804 /(12-2)}=1.44<4.96=F^{*}$
(5% significance level, with 1 and 10 degrees of freedom).

Exercise 7.7

Excel should give the same answers.

Exercise 7.8

(a) $\hat{B R}=26.44+1.045 \times 10=36.9$.
(b) $\left[36.9-2.228 \times 6.81 \sqrt{\frac{1}{12}+\frac{(10-5)^{2}}{61.26}}, 36.9+2.228 \times 6.81 \sqrt{\frac{1}{12}+\frac{(10-5)^{2}}{61.26}}\right]$ $=[26.3,47.5]$
(c) $\left[36.9-2.228 \times 6.81 \sqrt{1+\frac{1}{12}+\frac{(10-5)^{2}}{61.26}}\right.$,
$\left.36.9+2.228 \times 6.81 \sqrt{1 \frac{1}{12}+\frac{(10-5)^{2}}{61.26}}\right]$
$=[18.4,55.4]$

Exercise 7.9

(a) $e=1.045 \times \frac{5}{31.67}=0.165$,
where 5 and 31.67 are the means of X and Y, respectively.
(b) A 10% rise in the inequality measure (e.g. from 4 to 4.4) raises the birth rate by 1.65% (e.g. from 30 to 30.49).

Exercise 7.10

$$
\begin{align*}
& B R=38.82-29.61 \times \frac{1}{I R}+e \\
& \text { s.e. } \quad(19.0) \tag{19.0}\\
& R^{2}=0.19, F(1.10)=2.43 .
\end{align*}
$$

Note that taking the inverse is a non-linear transformation, so there is no simple relationship between the coefficient in the original regression (1.045) and the coefficient of this regression. For example, we do not simply get the inverse of the coefficient (which would be $1 / 1.045=0.957$) but a very different figure. The sign of the coefficient does change however, which we would expect. In general, this regression is rather poor and the F statistic is not significant.

Multiple regression

Learning outcomes 307
Introduction 308
Principles of multiple regression 309
What determines imports into the United Kingdom? 310
Theoretical issues 310
Data 311
Data transformations 311
Estimation 316
The significance of the regression as a whole 318
Are the results satisfactory? 319
Improving the model - using logarithms 320
Graphing the regression coefficients 322
Comparison of models and predictions 323
Testing the accuracy of the forecasts: the Chow test 325
Analysis of the errors 327
Finding the right model 330
Testing compound hypotheses 332
Omitted variable bias 334
Dummy variables and trends 335
Multicollinearity 337
Measurement error 337
Some final advice on regression 338
Summary 338
Key terms and concepts 339
References 339
Formulae used in this chapter 340
Problems 340
Answers to exercises 344
By the end of this chapter you should be able to:

- understand the extension of simple regression to multiple regression, with more than one explanatory variable
- use computer software to calculate a multiple regression equation and interpret its output
- recognise the role of (economic) theory in deriving an appropriate regression equation
- interpret the effect of each explanatory variable on the dependent variable
- understand the statistical significance of the results
- judge the adequacy of the model and know how to improve it.

Introduction

In the previous chapter we analysed the 'simple' regression model with just one explanatory variable. However, simple regression is rather limited, as it assumes that there is only the one explanatory factor affecting the dependent variable, which is unlikely to be true in most situations. Price and income affect demand, for example. Multiple regression, the subject of this chapter, overcomes this problem by allowing several explanatory variables (though still only one dependent variable) in a model. The techniques are an extension of those used in simple, or bivariate, regression. Multivariate regression allows more general and more helpful models to be estimated, although this does involve new problems as well as advantages.

The regression relationship now becomes

$$
\begin{equation*}
Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{k} X_{k}+e \tag{8.1}
\end{equation*}
$$

where there are now k explanatory variables. The principles used in multiple regression are basically the same as in the two-variable case: the coefficients $b_{0}, \ldots, b_{\mathrm{k}}$ are found by minimising the sum of squared errors; a standard error can be calculated for each coefficient; R^{2}, t ratios, etc., can be calculated and hypothesis tests performed. However, there are a number of additional issues which arise, and these are dealt with in this chapter.

The formulae for calculating coefficients, standard errors, etc., become very complicated in multiple regression and are time-consuming (and error-prone) when done by hand. For this reason, these calculations are invariably done by computer nowadays. Therefore, the formulae are not given in this text: instead we present the results of computer calculations (which you can replicate) and concentrate on understanding and interpreting the results. This is as it should be; the calculations themselves are the means to an end, not the end in itself.

Abstract

Using spreadsheet packages Standard spreadsheet packages such as Excel can perform multiple regression analysis and are sufficient for most straightforward tasks. A regression equation can be calculated via menus and dialogue boxes and no knowledge of the formulae is required. However, when problems such as autocorrelation (see below) are present, specialised packages such as Stata or EViews are much easier to use and provide more comprehensive results.

We also introduce a new example in this chapter, estimating a demand equation for imports into the United Kingdom over the period 1973 to 2005. There are a number of reasons for this switch, for we could have continued with the birth rate example (you are asked to do this in the exercises). First, it allows us to work through a small 'research project' from beginning to end, including the gathering of data, data transformations, interpretation of results, etc. Second, the example uses time-series data, and this allows us to bring out some of the particular issues that arise in such cases, in contrast to the cross-section data used in the previous chapter. Time-series data do not generally constitute a random sample of observations such as we have dealt with in the rest of this text. This is because the observations are constrained to follow one another in time rather than being randomly
chosen. The proper analysis of time-series data goes far beyond the scope of this text; however, students often want or need to analyse such data using elementary techniques. This chapter therefore also emphasises the checking of the adequacy of the regression equation for such data. For a fuller treatment of the issues, the reader should consult a more advanced text such as Maddala and Lahiri (2009).

Principles of multiple regression

Figure 8.1
The regression plane in three dimensions

We illustrate some of the principles involved in multiple regression using two explanatory variables, X_{1} and X_{2}. Since we are using time-series data, we replace the subscript i with a subscript t to denote the individual observations. This is not essential but reminds us that t represents time.

The sample regression equation now becomes

$$
\begin{equation*}
Y_{t}=b_{0}+b_{1} X_{1 t}+b_{2} X_{2 t}+e_{t} \quad t=1, \ldots, T \tag{8.2}
\end{equation*}
$$

with three coefficients, b_{0}, b_{1} and b_{2}, to be estimated. Note that b_{0} now signifies the constant. Rather than fitting a line through the data, the task is now to fit a plane to the data, in three dimensions, as shown in Figure 8.1.

The plane is drawn sloping down in the direction of X_{1} and up in the direction of X_{2}. The observations are now points dotted about in three-dimensional space (with coordinates $X_{1 t}, X_{2 t}$ and Y_{t}) and the task of regression analysis is to find the equation of the plane so as to minimise the sum of squares of vertical distances from each point to the plane. The principle is the same as in simple regression and the regression plane is the one that best summarises the data.

The coefficient b_{0} gives the intercept on the Y-axis, b_{1} is the slope of the plane in the direction of the X_{1}-axis and b_{2} is the slope in the direction of the X_{2}-axis. Thus, b_{1} gives the effect upon Y of a unit change in X_{1} assuming X_{2} remains constant ${ }^{1}$. Similarly, b_{2} gives the response of Y to a unit change in X_{2}, assuming no

[^34]change in X_{1}. If X_{1} and X_{2} both change by 1 , then the effect on Y is $b_{1}+b_{2}$. Note that b_{1} and b_{2} are estimates of the (unknown) true parameters β_{1} and β_{2} and so standard errors and confidence intervals can be calculated, implying that we are not absolutely certain about the true position of the plane. In general, the smaller these standard errors, the better, since it implies less uncertainty about the true relationship between Y and the X variables.

When there are more than two explanatory variables, more than three dimensions are needed to draw a picture of the data. The reader will understand that this is a difficult (if not impossible) task; however, it is possible to estimate such a model and interpret the results in a similar manner to that set out below, for the two explanatory variable case.

What determines imports into the United Kingdom?

To illustrate multiple regression, we suppose that we have the job of finding out what determines the volume of imports into the United Kingdom and whether there are any policy implications of the result. We are given this very open-ended task, which we have to carry through from start to finish. We end up by estimating a demand equation for imports, so the analysis serves as a model for any demand estimation, for example, a firm trying to find out about the demand for its product.

How should we set about this task? The project can be broken down into the following steps:
(1) Theoretical considerations: what can economic theory tell us about the problem and how will this affect our estimation procedures?
(2) Data gathering: what data do we need? Are there any definitional problems, for example?
(3) Data transformation: are the data suitable for the task? We might want to transform one or more variables before estimation.
(4) Estimation: this is mainly done automatically, by the computer, although sometimes we have to choose the method of estimation.
(5) Interpretation of the results: what do the results tell us? Do they appear satisfactory? Do we need to improve the model? Are there any policy conclusions?

Although this appears reasonably clear-cut, in practice these steps are often mixed up. A researcher might gather the data, estimate a model and then not be happy with the results, realising he has overlooked some factors. He therefore goes back and gets some different data, perhaps some new variables, or maybe tries a different method of investigation until 'satisfactory' results are obtained. There is usually some element of data 'fishing' involved. These methodological issues are examined in more detail later on.

Theoretical issues

What does economic theory tell us about imports? Like any market, the quantity transacted depends upon supply and demand. Strictly, therefore, we should estimate a simultaneous equation model of both the demand and supply equations. Since this is beyond the scope of this text (see Maddala and Lahiri (2009),

Chapter 9, for analyses of such models) we simplify by assuming that, as the United Kingdom is a small economy in the world market, we can buy any quantity of imports that we demand (at the prevailing price). In other words, foreign supply is never a constraint, and the UK demand never influences the world price. This assumption, which seems reasonable, means that we can concentrate on estimating the demand equation alone.

Second, economic theory suggests that demand depends upon income and relative prices, particularly the prices of close substitutes and complements. Furthermore, rational consumers do not suffer from money illusion, so real variables should be used throughout.

Economic theory does not tell us some things, however. It does not tell us whether the relationship is linear or not. Nor does it tell us whether demand responds immediately to price or income changes, or whether there is a lag. For these questions, the data are more likely to give us the answer.

Data

The raw data are presented in Table 8.1, obtained from official UK statistics. Note that there is some slight rounding of the figures: imports are measured to the nearest $£ 0.1$ bn ($£ 100 \mathrm{~m}$) so there is a possible (rounding) error of up to about 0.1%. This is unlikely to substantially affect our estimates.

The variables are defined as follows:

- Imports (variable M): imports of goods and services into the United Kingdom, at current prices, in $£$ bn.
- Income (GDP): UK gross domestic product at factor cost, at current prices, in £bn.
- The GDP deflator $\left(P_{\mathrm{GDP}}\right)$: an index of the ratio of nominal to real GDP, $1985=$ 100. This is an index of general prices and may be used to transform nominal GDP to real GDP.
- The price of imports $\left(P_{M}\right)$: the unit value index of imports, $1990=100$.
- The price of competing products (P): the retail price index (RPI), 1985 = 100 .

These variables were chosen from a wide range of possibilities. To take income as an example, we could use personal disposable income or GDP. Since firms as well as consumers import goods, the wider measure is used here. Then there is the question of whether to use GDP or GNP, and whether to measure them at factor cost or market prices. Because there is little difference between these different magnitudes, this is not an important decision in this case. However, in a research project one might have to consider such issues in more detail.

Data transformations

Before calculating the regression equation, we must transform the data in Table 8.1. This is because the expenditures on imports and GDP have not been adjusted for price changes (inflation). Part of the observed increase in the imports series is due to prices increasing over time, not increased consumption of imported goods. It is the latter we are trying to explain.

Since expenditure on any good (including imports) can be expressed as the quantity purchased multiplied by the price, to obtain the quantity of imports

Table 8.1 Original data for study of imports

Year	Imports	GDP	GDP deflator	Price of imports	RPI all items
1973	18.8	74.0	24.6	21.5	25.1
1974	27.0	83.8	28.7	31.3	29.1
1975	28.7	105.9	35.7	35.6	36.1
1976	36.5	125.2	41.4	43.6	42.1
1977	42.3	145.7	47.0	50.5	48.8
1978	45.2	167.9	52.5	52.4	52.8
1979	54.2	197.4	60.6	55.8	59.9
1980	57.4	230.8	71.5	65.5	70.7
1981	60.2	253.2	79.7	71.3	79.1
1982	67.6	277.2	85.8	77.3	85.9
1983	77.4	303.0	90.3	84.2	89.8
1984	92.6	324.6	94.9	91.8	94.3
1985	98.7	355.3	100.0	96.4	100.0
1986	100.9	381.8	103.8	91.9	103.4
1987	111.4	420.2	109.0	94.7	107.7
1988	124.7	469.0	116.3	93.7	113.0
1989	142.7	514.9	124.6	97.8	121.8
1990	148.3	558.2	134.1	100.0	133.3
1991	142.1	587.1	142.9	101.3	141.1
1992	151.7	612.0	148.5	102.1	146.4
1993	170.1	642.7	152.5	112.4	148.7
1994	185.4	681.0	155.3	116.1	152.4
1995	207.2	719.7	159.4	123.6	157.6
1996	227.7	765.2	164.6	123.4	161.4
1997	232.3	811.2	169.6	115.2	166.5
1998	239.2	860.8	174.1	109.3	172.2
1999	255.2	906.6	177.8	107.6	174.8
2000	287.0	953.2	180.6	111.2	180.0
2001	299.9	997.0	184.5	110.2	183.2
2002	307.4	1048.8	189.9	107.5	186.3
2003	314.8	1110.3	195.6	106.7	191.7
2004	333.7	1176.5	201.0	106.2	197.4
2005	366.5	1224.7	205.4	110.7	202.9

('real' imports) we must divide the expenditure by the price of imports. In algebraic terms:

$$
\begin{aligned}
& \text { expenditure }=\text { price } \times \text { quantity, hence } \\
& \text { quantity }=\frac{\text { expenditure }}{\text { price }}
\end{aligned}
$$

We therefore adjust both imports and GDP for the effect of price changes in this way. P_{M} is used to deflate the imports series and $P_{\text {GDP }}$ used to adjust GDP. This process is covered in more detail in Chapter 10 on index numbers (you may wish to read that before proceeding with this chapter, although it is not essential for understanding the rest of this chapter).

We also need to adjust the import price series, which influences the demand for imports. People make their spending decisions by looking at the price of an imported good relative to prices generally. Hence, we divide the price of imports by the retail price index to give the relative, or real, price of imports.

In summary, the transformed variables are derived as follows:

- Real imports $\left(M / P_{M}\right)$: this series is obtained by dividing the nominal series for imports by the unit value index (i.e. the import price index). The series gives imports at 1990 prices (in $£ b n$). (Note that the nominal and real series are identical in 1990.)
- Real income (GDP/P P_{GDP}): this is the nominal GDP series divided by the GDP deflator to give GDP at 1990 prices (in $£$ bn).
- Real import prices $\left(P_{M} / P\right)$: the unit value index is divided by the RPI to give this series. It is an index number series, with its value set to 100 in 1990. It shows the price of imports relative to the price of all goods. The higher this price ratio, the less attractive imports would be relative to domestically produced goods.

The transformed variables are shown in Table 8.2. Do not worry if you have not fully understood the process of transforming to real terms. You can simply begin

Table 8.2 Transformed data

Year	Real imports	Real GDP	Real import prices
1973	87.4	403.4	114.2
1974	86.3	391.6	143.4
1975	80.6	397.8	131.5
1976	83.7	405.5	138.0
1977	83.8	415.7	137.9
1978	86.3	428.9	132.3
1979	97.1	436.8	124.2
1980	87.6	432.9	123.5
1981	84.4	426.0	120.2
1982	87.5	433.2	120.0
1983	91.9	450.0	125.0
1984	100.9	458.7	129.8
1985	102.4	476.5	128.5
1986	109.8	493.3	118.5
1987	117.6	517.0	117.2
1988	133.1	540.8	110.5
1989	145.9	554.2	107.0
1990	148.3	558.2	100.0
1991	140.3	550.9	95.7
1992	148.6	552.7	93.0
1993	151.3	565.2	100.8
1994	159.7	588.0	101.5
1995	167.6	605.5	104.5
1996	184.5	623.4	101.9
1997	201.6	641.4	92.2
1998	218.8	663.0	84.6
1999	237.2	683.8	82.1
200	258.1	707.8	82.3
2001	272.1	724.6	80.2
2002	286.0	740.6	76.9
2003	295.0	761.2	74.2
204	314.2	784.9	71.7
2005	331.1	799.6	72.7

Figure 8.2 Time-series plot of imports, GDP and import prices (real terms)

Figure 8.3 $X Y$ chart of imports against GDP
with the data in Table 8.2, recognising them as the quantity of imports demanded, the level of real income or output and the price of imports relative to all goods.

We should now 'eyeball' the data using appropriate graphical techniques. This will give a broad overview of the characteristics of the data and any unusual or erroneous observations which may be spotted. This is an important step in the analysis.

Figure 8.2 shows a time-series plot of the three variables. The graph shows that both imports and GDP increase smoothly over the period, and that there appears to be a fairly close relationship between them. This is confirmed by the $X Y$ plot of imports and GDP in Figure 8.3, which shows an approximately linear relationship. One should take care in interpreting this however, since it shows only the partial relationship between two of the three variables. However, it does appear to be fairly strong.

Figure 8.4 $X Y$ chart of imports against import prices

Real imports

The price of imports (measured on the right-hand scale in the chart) has declined by about 35% over the period (this is relative to all goods generally), so this might also have contributed to the rise in imports. Figure 8.4 provides an $X Y$ chart of these two variables. There appears to be a clear negative relationship between imports and their price. On the basis of the graphs we might expect a positive relationship between imports and GDP, and a negative one between imports and their price. Both of these expectations are in line with what economic theory would predict.

Note that one does not always (or even often) get such neat graphs in line with expectations. In multivariate analyses the relationships between the variables can be complex and are not revealed by simple bivariate graphs. One needs to do a multiple regression to uncover more precise detail.

Exercise 8.1

?

For the exercises in this chapter we will be looking at the determinants of travel by car in the United Kingdom, which has obviously been increasing steadily and causes concern because of issues such as pollution and congestion. Data for these exercises are as follows:

Year	Car travel (billions of passenger-kilometres)	Real price of car travel	Real price of rail travel	Real price of bus travel	Real personal disposable income
1980	388	107.0	76.2	78.9	54.2
1981	394	107.1	77.8	79.3	54.0
1982	406	104.2	82.3	84.6	53.8
1983	411	106.4	83.4	85.5	54.9
1984	432	103.8	79.8	83.3	57.0
1985	441	101.7	80.4	81.6	58.9
1986	465	97.4	82.7	87.1	61.3
1987	500	99.5	84.1	88.4	63.6
1988	536	98.4	85.4	88.4	67.0
1989	581	95.9	85.7	88.6	70.2
1990	588	93.3	86.3	88.9	72.6
1991	582	96.4	89.9	92.4	74.1
1992	583	98.3	93.5	94.7	76.2
1993	584	101.6	97.6	97.3	78.3

Year	Car travel (billions of passenger-kilometres)	Real price of car travel	Real price of rail travel	Real price of bus travel	Real personal disposable income
1994	591	101.3	99.2	99.2	79.4
1995	596	99.7	100.4	100.5	81.3
1996	606	101.4	101.1	103.1	83.3
1997	614	102.7	100.6	105.1	86.6
1998	618	102.1	101.5	106.6	86.9
1999	613	103.9	103.2	109.3	89.8
2000	618	103.7	102.2	110.0	95.3
2001	624	101.2	102.9	112.0	100.0

(a) Draw time-series graphs of car travel and its price and comment on the main features.
(b) Draw $X Y$ plots of car travel against (i) price and (ii) income. Comment upon the major features of the graphs.
(c) In a multiple regression of car travel on its price and on income, what would you expect the signs of the two slope coefficients to be? Explain your answer.
(d) If the prices of bus and rail travel are added as further explanatory variables, what would you expect the signs on their coefficients to be? Justify your answer.

Estimation

The model to be estimated is therefore

$$
\begin{equation*}
\left(\frac{M}{P_{M}}\right)_{t}=b_{0}+b_{1}\left(\frac{\mathrm{GDP}}{P_{\mathrm{GDP}}}\right)_{t}+b_{2}\left(\frac{P_{M}}{P}\right)_{t}+e_{t} \tag{8.3}
\end{equation*}
$$

expressed in terms of the original variables. To simplify notation, we rewrite this in terms of the transformed variables, as

$$
\begin{equation*}
m_{t}=b_{0}+b_{1} \mathrm{GDP}_{t}+b_{2} p m_{t}+e_{t} \tag{8.4}
\end{equation*}
$$

The results of estimating this equation are shown in Table 8.3 , which shows the output using Excel. We have used the data in years 1973 to 2003 for estimation purposes, ignoring the observations for 2004 and 2005. Later on we will use the results to predict imports in 2004 and 2005.

The print-out gives all the results we need, which may be summarised as

$$
\begin{gather*}
m_{t}=-172.61+0.59 \mathrm{GDP}_{t}+0.05 p m_{t}+e_{t} \tag{8.5}\\
(0.06) \quad(0.37) \\
R^{2}=0.96, F_{2,26}=368.23, n=31
\end{gather*}
$$

How do we judge and interpret these results? As expected, we obtain a positive coefficient on income but, surprisingly, a positive one on price too. Note that it is difficult to give a sensible interpretation to the constant. The coefficients should be judged in two ways: in terms of their size and their significance.

Size
As noted earlier, the size of a coefficient depends upon the units of measurement. How 'big' is the coefficient 0.59 , for income? This is the marginal propensity to import. It tells us that a rise in GDP, measured in 1990 prices, of $£ 1$ bn would raise imports, also measured in 1990 prices, by $£ 0.59$ bn. This is a bit cumbersome. It is better to interpret everything in proportionate terms, and calculate the elasticity of

Table 8.3 Regression results using Excel
SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.98
R square	0.96
Adjusted R square	0.96
Standard error	13.24
Observations	31

ANOVA

	$d f$	SS	MS	\boldsymbol{F}	Significance F	
Regression	2	129031.05	64515.52	368.23	$7.82 \mathrm{E}-21$	
Residual	28	4905.70	175.20			
Total	30	133936.75				
	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value	Lower 95\%	Upper 95\%
Intercept	-172.61	73.33	-2.35	0.03	-322.83	-22.39
Real GDP	0.59	0.06	9.12	0.00	0.45	0.72
Real import prices	0.05	0.37	0.13	0.90	-0.70	0.79

imports with respect to income. This is the proportionate change in imports divided by the proportionate change in income:

$$
\begin{equation*}
\eta_{\mathrm{GDP}}=\frac{\Delta m / m}{\Delta \mathrm{GDP} / \mathrm{GDP}} \tag{8.6}
\end{equation*}
$$

which can be evaluated (see equation (7.33)) as:

$$
\begin{equation*}
\eta_{\mathrm{GDP}}=b_{1} \times \frac{\overline{\mathrm{GDP}}}{\bar{m}}=0.59 \times \frac{536.4}{146.3}=2.16 \tag{8.7}
\end{equation*}
$$

which shows that imports are highly responsive to income. A 3% rise in real GDP (a fairly typical annual figure) leads to an approximate 6% rise in imports, as long as prices do not change at the same time. Thus as income rises, imports rise substantially faster. More generally we would interpret the result as showing that a 1% rise in GDP leads to a 2.16% rise in imports.

This does seem a large response and we might consider whether this estimate could be true in the long run. If GDP rises by 3% p.a. while imports rise by 6% p.a., then this is not sustainable. Imports will grow and grow as a percentage of GDP and, unless exports grow similarly quickly, this is likely to lead to a balance of payments crisis. Hence we might question our statistical finding because it is inconsistent with long run equilibrium of the economy. We are beginning to see that good modelling should fit with theoretical insights as well as with the data.

A similar calculation for the price variable yields

$$
\begin{equation*}
\eta_{p m}=0.05 \times \frac{109.4}{146.3}=0.04 \tag{8.8}
\end{equation*}
$$

This yields the 'wrong' sign for the elasticity: a 10\% price rise (relative to domestic prices) would raise import demand by 0.4%. This is an extremely small effect and for practical purposes can be regarded as zero.

Significance

We can test whether each coefficient is significantly different from zero, i.e. whether the variable truly affects imports or not, using a conventional hypothesis test. For income we have the test statistic

$$
t=\frac{0.59-0}{0.06}=9.12
$$

as shown in Table 8.3. This has a t distribution with $n-k-1=31-2-1=$ 28 degrees of freedom (k is the number of explanatory variables excluding the constant, so $k=2$). The critical value for a two-tail test at the 95% confidence level is 2.048 . Since the test statistic comfortably exceeds this we reject $H_{0}: \beta_{1}=0$ in favour of $H_{1}: \beta_{1} \neq 0$. Hence, income does indeed affect imports; the sample data are unlikely to have arisen purely by chance. Note that this t ratio is given on the Excel print-out.

For price, the test statistic is

$$
t=\frac{0.05-0}{0.37}=0.13
$$

which is smaller than 1.701 (the critical value for a one-tail test), so does not fall into the rejection region. $H_{0}: \beta_{2}=0$ cannot be rejected, therefore. We use a onetailed test in this case since it is reasonable to expect a demand curve to slope downwards, on theoretical grounds. So not only is the coefficient on price quantitatively small, it is insignificantly different from zero, i.e. there is a reasonable probability of this result arising simply by chance. The fact that we had a positive coefficient is thus revealed as unimportant; it was just a small random fluctuation around zero. This result arises despite the fact that the graph of imports against price seemed to show a strong negative relationship. That graph was in fact somewhat misleading. The regression tells us that the more important relationship is with income and, once that is accounted for, price provides little additional explanation of imports. Well, that is the story so far.

The significance of the regression as a whole

We can test the overall significance via an F test as we did for simple regression. This is a test of the hypothesis that all the slope coefficients are simultaneously zero (equivalent to the hypothesis that $R^{2}=0$):

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2}=0 \\
& H_{1}: \beta_{1} \neq \beta_{2} \neq 0
\end{aligned}
$$

This tests whether either income or price (or both) affects demand. Since we have already found that income is a significant explanatory variable, via the t test, it would be surprising if this null hypothesis were not rejected. The test statistic is similar ${ }^{2}$ to equation (7.28):

$$
\begin{equation*}
F=\frac{\mathrm{RSS} / k}{\mathrm{ESS} /(n-k-1)} \tag{8.9}
\end{equation*}
$$

[^35]which has an F distribution with k and $n-k-1$ degrees of freedom. Substituting in the appropriate values gives
$$
F=\frac{129031.05 / 2}{4905.70 /(31-2-1)}=368.23
$$
which is in excess of the critical value for the $F_{2,28}$ distribution of 3.34 (at 5% significance), so the null hypothesis is rejected, as expected. The actual significance level is given by Excel as ' $7.82 \mathrm{E}-21$ ', i.e. 7.82×10^{-21}, effectively zero and certainly less than 5%.

Does corruption harm investment?

The World Bank examined this question in its 1997 World Development Report, using regression methods. There is a concern that levels of corruption in many countries harm investment and hence also economic growth.

The study looked at the relationship between investment (measured as a percentage of GDP) and the following variables: the level of corruption, the predictability of corruption, the level of secondary school enrolment, GDP per capita and a measure of 'policy distortion'. Both the level and predictability of corruption were based upon replies to surveys of businesses in the 39 countries studied, which asked questions such as 'Do you have to make additional payments to get things done?' The policy distortion variable measures how badly economic policy is run, based on openness to trade, the exchange rate, etc. Higher values of the index indicate poorer economic management.

The regression obtained was

$$
\begin{aligned}
& \frac{I n v}{G D P}=19.5-5.8 \text { CORR }+6.3 \text { PRED_CORR }+2.0 \text { SCHOOL }-1.1 \text { GDP - } 2.0 \text { DISTORT } \\
& \begin{array}{lll}
(\text { s.e. }) & (13.5) & (2.2) \\
R^{2}= & (2.6)
\end{array}
\end{aligned}
$$

Thus only the corruption variables prove significant at the 5% level. A rise in the level of corruption lowers investment (note the negative coefficient, -5.8) as expected, but a rise in the predictability of corruption raises it. This is presumably because people learn how to live with corruption. Unfortunately, units of measurement are not given, so it is impossible to tell just how important are the sizes of the coefficients and, in particular, to find the trade-off between corruption and its predictability.

Adapted from: World Development Report, 1997.

Exercise 8.2

(a) Using the data from Exercise 8.1, calculate a regression explaining the level of car travel, using price and income as explanatory variables. Use only the observations from 1980 to 1999. As well as calculating the coefficients you should calculate standard errors and t ratios, R^{2} and the F statistic.
(b) Interpret the results. You should evaluate the size of the effect of the explanatory variables as well as their significance and evaluate the goodness of fit of the model.

Are the results satisfactory?

The results so far appear reasonably satisfactory: we have found one significant coefficient, the R^{2} value is quite high at 96% (although R^{2} values tend to be high
in time-series regressions, sometimes artificially so) and the result of the F test proves the regression is worthwhile. Nevertheless, it is perhaps surprising to find no effect from the price variable; we might as well drop it from the equation and just regress imports on GDP.

A more stringent test is to use the equation for forecasting, since this uses out-of-sample information for the test. So far, the diagnostic tests such as the F test are based on the same data that were used for estimation. A more suitable test might be to see if the equation can forecast imports to within (say) 4% of the correct value. Since real imports increased by about 4.1% p.a. on average between 1973 and 2003, a simple forecasting rule would be to increase the current year's figure by 4.1%. The regression model might be compared to this standard.

Forecasts for 2004 and 2005^{3} are obtained by inserting the values of the explanatory variables for these years into the regression equation, giving

$$
\begin{aligned}
& \text { 2004: } \hat{m}=-172.61+0.59 \times 784.9+0.05 \times 71.7=290.0 \\
& \text { 2005: } \hat{m}=-172.61+0.59 \times 799.6+0.05 \times 72.7=298.6
\end{aligned}
$$

Table 8.4 summarises the actual and forecast values, with the error between them. The percentage error is about 8% in 2004, 11% in 2005. This is not very good; both years are under-predicted by a large amount. The simple growth rule would have given predictions of $295.0 \times 1.04=306.8$ and $295.0 \times 1.04^{2}=319.1$ which are much closer. More work needs to be done.

Improving the model - using logarithms

There are various ways in which we might improve our model. We might try to find additional variables to improve the fit (although since we already have $R^{2}=0.96$, this might be difficult), or we might try lagged variables (e.g. the previous year's price) as explanatory variables, on the grounds that the effects do not work through instantaneously. Alternatively, we might try a different functional form for the equation. We have presumed that the regression should be a straight line, although we made no justification for this. Indeed, the graph of imports against income showed some degree of curvature (see Figure 8.3). Hence, we might try a non-linear transformation of the data, as briefly discussed at the end of Chapter 7.

We shall re-estimate the regression equation, having transformed all the data using (natural) logarithms. Remember (from Chapter 1) that logarithms are useful for representing multiplicative processes, such as we have here (where one year's figure tends to be a multiple of the previous year's). Not only does this method fit a curve to the data but has the additional advantage of giving more direct estimates of the elasticities, as we shall see. Because of such advantages, estimating a

Table 8.4 Actual, forecast and error values

Year	Actual	Forecast	Error
2004	314.2	290.0	24.2
2005	331.1	298.6	32.5

${ }^{3}$ Remember that data from 2004 and 2005 were not used to estimate the regression equation.

Table 8.5 Data in natural logarithm form

Year	Real imports	$\ln m$	Real GDP	$\ln G D P$	Real import prices	$\ln p m$
1973	87.4	4.47	403.4	6.00	114.2	4.74
1974	86.3	4.46	391.6	5.97	143.4	4.97
1975	80.6	4.39	397.8	5.99	131.5	4.88
1976	83.7	4.43	405.5	6.01	138.0	4.93
\vdots						
2001	272.1	5.61	724.6	6.59	80.2	4.38
2002	286.0	5.66	740.6	6.61	76.9	4.34
2003	295.0	5.69	761.2	6.63	74.2	4.31
2004	314.2	5.75	784.9	6.67	71.7	4.27
2005	331.1	5.80	799.6	6.68	72.7	4.29

Note: You can obtain the natural logarithm by using the 'In' key on your calculator or the 'In' function in Excel (or other software). Thus we have $\ln (87.4)=4.47$, etc.
regression equation in logs is extremely common in economics and analysts often start with the logarithmic form in preference to the linear form.

We will therefore estimate the equation

$$
\ln m_{t}=b_{0}+b_{1} \ln G D P_{t}+b_{2} \ln p m_{t}+e_{t}
$$

where $\ln m_{\mathrm{t}}$ indicates the logarithm of imports in period t, etc. We therefore need to transform our three variables into logarithms, as shown in Table 8.5 (selected years only).

We now use the new data for the regression, with $\ln m$ as the dependent variable, $\ln G D P$ and $\ln p m$ as the explanatory variables. We also use exactly the same formulae as before, applied to this new data. This gives the following results:

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.99
R square	0.98
Adjusted R square	0.98
Standard error	0.05
Observations	31

ANOVA

	$d f$	SS	MS	\boldsymbol{F}		Significance F
Regression	2	5.309	2.655	901.43	$3.83 \mathrm{E}-26$	
Residual	28	0.082	0.003			
Total	30	5.391				
	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value	Lower 95\%	Upper 95\%
Intercept	-3.60	1.65	-2.17	0.04	-6.98	-0.21
In GDP	1.66	0.15	11.31	0.00	1.36	1.97
In import prices	-0.41	0.16	-2.56	0.02	-0.74	-0.08

The regression equation we have is therefore

$$
\operatorname{lm} m_{t}=-3.60+1.66 \ln G D P_{t}-0.41 \ln p m_{t}
$$

Because we have transformed the variables the slope coefficients are very different from the values we had before, from the linear equation. However, the interpretation of the log regression equation is different. A big advantage of this formulation is that the coefficients give direct estimates of the elasticities; there is no need to multiply by the ratio of the means, as with the linear form (see equation (8.7).

Hence the income elasticity of demand is estimated as 1.66 and the price elasticity is -0.41 . These contrast with the values calculated from the linear equation, of 2.16 and 0.04 , respectively. The contrast with the previous estimate of the price elasticity is particularly stark. We have gone from an estimate which was positive (though very small and statistically insignificant) to one which is negative and significant.

It is difficult to say which is the 'right' answer, both are estimates of the unknown, true values. One advantage of the log model is that the elasticity does not vary along the demand curve, as it does with the linear model. With the latter we had to calculate the elasticity at the means of the variables, but the value inevitably varies along the curve. For example, taking 2003 values for imports and income we obtain an elasticity of

$$
\eta_{\mathrm{GDP}}=0.59 \times \frac{761.2}{295.0}=1.52
$$

This is quite different from the value at the mean, 2.16. A convenient mathematical property of the log formulation is that the elasticity does not change along the curve. Hence, we can talk about 'the' elasticity, which is very convenient.

Graphing the regression coefficients

Regression results are usually presented in the form of a table, as above. However, this can result in complex and dense arrays of numbers which are not easy to read or interpret. In Chapter 1 we found that graphs were often a useful way to present complex information, and we will illustrate this again using our regression results.

The results of the first, linear model can be shown as follows:

There is a horizontal line for each variable, showing the width of the confidence interval, with the point estimate of the coefficient marked at its centre. The vertical line is drawn at $\beta=0$, indicating no effect of that variable.

The implications are immediately clear. The GDP coefficient is positive, measured fairly precisely and is statistically significant (since zero is not in the confidence interval). By contrast, the price effect is unclear (wide CI) and the point estimate is close to zero.

If we draw a similar diagram for the model with variables in logs, we obtain

Qualitatively, little has changed for the income variable. It is still positive, statistically significant and with a small confidence interval. The price effect is different, however. The confidence interval is smaller than before, the coefficient is negative and significant. The chart might still lead us to be cautious about the price effect, since zero is not far outside the confidence interval.

This type of chart can therefore be useful. If making several estimates of the same coefficient (e.g. using different models, functional forms, etc.), one could draw a bar for each estimate and it would be easy to compare them, much easier than comparing across different tables (or columns of a table), with each estimate having a different standard error needed for the confidence interval.

Comparison of models and predictions

We can compare the linear and log models further to judge which is preferable. The log model has a higher price elasticity and is 'significant' ($t=-2.56$), so we can now reject the hypothesis that price has no effect upon import demand. This is more in line with what economic theory would predict. The R^{2} value is also higher (0.98 versus 0.96), but this is a misleading comparison. R^{2} tells us how much of the variation in the dependent variable is explained by the explanatory variables. However, we have a different dependent variable now: the log of imports

Figure 8.5
Chart of predictions up to 2010

rather than imports. Although they are both measuring imports, they are different variables, making direct comparison of R^{2} invalid.

We can also compare the predictive abilities of the two models. For the log model we have the following predictions:

$$
\begin{aligned}
& \text { 2004: } \ln \hat{m}=-3.60+1.66 \times 6.67-0.41 \times 4.27=5.73 \\
& 2005: \ln \hat{m}=-3.60+1.66 \times 6.68-0.41 \times 4.29=5.76
\end{aligned}
$$

These are log values, so we need to take anti-logs to get back to the original units:

$$
e^{5.73}=308.2 \text { and } e^{5.76}=316.0
$$

These predictions are substantially better than from the linear equation, as we see below:

Year	Actual	Fitted	Error	\% error
2004	314.2	308.2	6.0	1.9
2005	331.1	316.0	15.1	4.8

The errors are less than half the size they were in the linear formulation and, overall, the log regression is beginning to look the better. If we forecast further ahead, up to 2010, we get the results as illustrated in Figure 8.5.

The predictions track the actual values quite well, even up to seven years ahead. Note that this is not a true forecast - to obtain the prediction for 2010, for example, we have used the values of income and prices in 2010, which would not be known back in 2003. This picture shows that the relationship remains fairly stable over time even when imports turn down around 2006 and the economy is then hit by a severe financial crisis.

The log transformation: a subtle trap

By using the log regression, we find the expected value of $\ln Y$ for a given value of $\ln X$, i.e. $\mathrm{E}(\ln Y \mid \ln X)$, by setting the error term to zero. For 2004 this prediction turned out to be 5.73. Of course, we really want the expected value of Y. How do we obtain $E(Y)$ for a
given value of X ? We simply raised e to the power $\ln Y: e^{5.73}=308.2$, but this is not strictly correct.

The problem lies in the fact that the logarithm is a non-linear transformation and hence $e^{E(\ln Y)} \neq E(Y)$. The correct formula to use is:

$$
E(\eta)=e^{E\left(\ln \eta+s^{2} / 2\right.}
$$

where s^{2} is the error variance in the regression. In this example it makes very little difference, since $s=0.05$ and we obtain

$$
\mathrm{E}(Y)=e^{5.73+0.05^{2} / 2}=308.35
$$

which is a trivial difference. The small difference is due the very small standard error of the regression or equivalently the very good fit. If the regression fits less well, with a standard error of, say, 0.5 , the estimate of $E(Y)$ would be underestimated by about 13%.

Matters do not end here. The transformation $e^{\mathrm{E}(\ln \eta)}$ could be defended on the grounds that it provides an estimate of the median level of Y and this might give a better idea of a 'typical' value of Y if the original data are heavily skewed (refer back to the wealth data of Chapter 1). Fuller discussion is beyond our scope but does suggest that if your regression standard error is more than 0.5 or so, you should consider the implications of this when transforming back from logs.

Choosing between alternative models is a matter of judgement. The criteria are convenience, conformity with economic theory and the general statistical 'fit' of the model to the data. In this case the log model seems superior on all counts. It is more convenient as we get direct estimates of the elasticities. It is more in accord with economic theory as it suggests a significant price effect and also because the variables are growing over time, which is usually better represented by the log transformation. Finally, the model seems to fit the data better and, in particular, it gives better forecasts. There are more formal statistical methods for choosing between different models, but they are beyond the scope of this text.

The rest of this chapter looks at more advanced topics relating to the regression model. These are not essential as far as estimation of the regression model goes but are useful 'diagnostic tools' which allow us to check the quality of the estimates in more depth.

Testing the accuracy of the forecasts: the Chow test

There is a formal test for the accuracy of the forecasts (which can be applied to both linear and log forms of the equation), based on the F distribution. This is the Chow test (named after its inventor). The null hypothesis is that the true prediction errors are all equal to zero, so the errors we do observe are just random variation from the regression line. Alternatively, we can interpret the hypothesis as asserting that the same regression line applies to both estimation and prediction periods. If the predictions lie too far from the estimated regression line, then the null is rejected. The alternative hypothesis is that the model has changed in some way and that a different regression line should be applied to the prediction period.

The test procedure is as follows:
(1) Use the first n_{1} observations for estimation, the last n_{2} observations for the forecast. In this case we have $n_{1}=31, n_{2}=2$.
(2) Estimate the regression equation using the first n_{1} observations, as above, and obtain the error sum of squares, ESS_{1}.
(3) Re-estimate the equation using all $n_{1}+n_{2}$ observations, and obtain the pooled error sum of squares, ESS $_{P}$.
(4) Calculate the F statistic:
$F=\frac{\left(\mathrm{ESS}_{\mathrm{P}}-\mathrm{ESS}_{1}\right) / n_{2}}{\operatorname{ESS}_{1} /\left(n_{1}-k-1\right)}$
We then compare this test statistic with the critical value of the F distribution with $n_{2}, n_{1}-k-1$ degrees of freedom. If the test statistic exceeds the critical value, the model fails the prediction test. A large value of the test statistic indicates a large divergence between ESS ${ }_{p}$ and $E S S_{1}$ (adjusted for the different sample sizes), suggesting that the model does not fit the two periods equally well. The bigger the prediction errors, the more ESS $_{P}$ will exceed ESS ${ }_{1}$, leading to a large F statistic.

Evaluating the test (for the log regression), we have ESS ${ }_{1}=0.08246$ (the Excel printout rounded this to 0.08). Estimating over the whole sample, 1973 to 2005, gives:

$$
\begin{aligned}
& \ln m_{t}=-3.54+1.67 \ln G D P_{t}-0.42 \ln p m_{t} \\
& R^{2}=0.99, F_{2,30}=1202.52, \mathrm{ESS}_{\mathrm{P}}=0.08444
\end{aligned}
$$

so the test statistic is

$$
F=\frac{(0.08444-0.08246) / 2}{0.08246 / 28}=0.34
$$

The critical value of the F distribution for 2, 28 degrees of freedom is 3.34 , so the equation passes the test, i.e. the same regression line may be considered valid for both sub-periods and the errors in the forecasts are just random errors around the regression line. Repeating the calculation for the forecast period up till 2010 reveals a similar result with $F=0.43$ (7 and 28 degrees of freedom).

It is noticeable that the predictions are always too low (for all the models); the errors in both years are positive. This suggests a slight 'boom' in imports relative to what one might expect (despite the result of the Chow test). Perhaps we have omitted an explanatory variable which has changed markedly in 2004 to 2005 , or perhaps the errors are not truly random. Alternatively, we still could have the wrong functional form for the model. Since we already have an R^{2} value of 0.98 , we are unlikely to find another variable which adds significantly to the explanatory power of the model. We have already tried two functional forms. Therefore, we shall examine the errors in the model to see if they appear random.

Exercise 8.3

(a) Use the regression equation from Exercise 8.2 to forecast the level of car travel in 2000 and 2001. How accurate are your forecasts? Is this a satisfactory result?
(b) Convert the variables to (natural) logarithms and repeat the regression calculation. Interpret your result and compare to the linear equation.
(c) Calculate price and income elasticities from the linear model and compare to those obtained from the log model.
(d) Forecast car travel in 2000 and 2001 using the log model and compare the results to those from the linear model. (Use the function e^{x} to convert the forecasts in logs back to the original units.)
(e) Use a Chow test to test whether the forecasts are accurate. Is there any difference between linear and log models?

Analysis of the errors

Why analyse the errors, as surely they are just random? In setting out our model (equation 8.2) we asserted the error is random, but this does depend upon our formulating the correct model. Hence, if we study the errors and find they are not random, in some way, this suggests the model is not correct and hence could be improved. This is another important part of the checking procedure, to see if the model is adequate or whether it is mis-specified (e.g. has the wrong functional form, or a missing explanatory variable). If the model is a good one, then the error term should be random and ideally should be unpredictable. If there are any predictable elements to it, then we could use this information to improve our model and forecasts. Unlike forecasting, this is a within-sample procedure. Furthermore, we expect the observed errors to be approximately Normally distributed, since this assumption underlies the t and F distributions used for inference. If the errors are not Normal, this would cast doubt on our use of t and F statistics for inference purposes.

A complete, formal, treatment of these issues is beyond the scope of this text (see, for example, Maddala and Lahiri (2009), Chapters 5, 6 and 12). Instead, we give an outline of how to detect the problems and some simple procedures which might overcome them. At least, if you are aware of the problem, you will know that you should consult a more advanced text.

First, we can quickly deal with the issue of Normality of the errors. In this example we have only 31 observations, which is not really sufficient to check for a Normal distribution. Drawing a histogram of the errors (left as an exercise) does not give a nice, smooth distribution because of the few observations and it is hard to tell if it looks Normal or not. More formal methods also require more observations to be reliable, so we will have to take the assumption of Normality on trust in this case.

Second, we can examine the error term for evidence of autocorrelation. This was introduced briefly in Chapter 1. To recapitulate: autocorrelation occurs when one error observation is correlated with an earlier (often the previous) one. It only occurs with time-series data (in cross-section, the ordering of the observations does not matter, so there is not a natural 'preceding' observation). Autocorrelation often occurs in time-series data: if inflation is 'high' this month, it is likely to be high next month also; if low, it is likely to be low next month also. Many economic variables are 'sticky' in this way. Imports are likely to behave this way too, as the factors affecting imports (mainly GDP) change slowly.

This characteristic has not been incorporated into our model. If it were, we might improve our forecasts: noting that the actual value of imports in 2003 is above the predicted value (a positive error), we might expect another positive error in 2004. However, our forecast was made by setting the error for 2004 to zero (i.e. using the fitted value from the regression line). In light of this, perhaps we should not be surprised that the predicted value is below the actual value.

Table 8.6 Calculation of residuals

Observation	Actual	Predicted	Residual
1973	4.47	4.43	0.04
1974	4.46	4.29	0.17
1975	4.39	4.35	0.04
1976	4.43	4.36	0.07
\vdots	\vdots	\vdots	\vdots
2000	5.55	5.50	0.05
2001	5.61	5.55	0.05
2002	5.66	5.61	0.05
2003	5.69	5.67	0.02

Note: in logs, the residual is approximately the percentage error. So, for example, the first residual 0.04 indicates the error is of the order of 4%.

One should therefore check for this possibility before making forecasts by examining the errors (up to 2003) for the presence of autocorrelation. Poor forecasting is not the only consequence of autocorrelation - the estimated standard errors can also be affected (often biased downwards in practice) leading to incorrect inferences being drawn.

Checking for autocorrelation

The errors to be examined are obtained by subtracting the fitted values from the actual observations. Using time-series data, we have:

$$
\begin{equation*}
e_{t}=Y_{t}-\hat{Y}_{t}=Y_{t}-b_{0}-b_{1} X_{1 t}-b_{2} X_{2 t} \tag{8.10}
\end{equation*}
$$

The errors obtained from the import demand equation (for the logarithmic model of import demand) are shown in Table 8.6 and are graphed in Figure 8.6. The graph suggests a definite pattern, that of positive errors initially, followed by a series of negative errors, followed in turn by more positive errors. This is surely not a random pattern: a positive error is likely to be followed by a positive error, a negative error by another negative error. From this graph we might reasonably predict that the two errors for 2004 to 2005 will be positive (as in fact they are). This means our regression equation is inadequate in some way - we are expecting it to under-predict. If so, we ought to be able to improve it.

The phenomenon we have uncovered (positive errors usually following positive, negative following negative) is known as positive autocorrelation. In other words, there appears to be a positive correlation between successive errors e_{t} and e_{t-1}. A

Figure 8.6
Time-series graph of the errors from the import demand equation

Figure 8.7 The Durbin-Watson test statistic

truly random series would have a low or zero correlation. Less common in economic models is negative autocorrelation, where positive errors tend to follow negative ones, negative follow positive. We will concentrate on positive autocorrelation.

This non-randomness can be summarised and tested numerically by the Durbin-Watson (DW) statistic (named after its two inventors). This is routinely printed out by specialist software packages but, unfortunately, not by spreadsheet programs. The statistic is a one-tailed test of the null hypothesis of no autocorrelation against the alternative of positive, or of negative, autocorrelation. The test statistic always lies in the range $0-4$ and is compared to critical values d_{L} and d_{U} (given in Appendix Table A7, see page 463). The decision rule is best presented graphically, as in Figure 8.7.

Low values of DW (below d_{L}) suggest positive autocorrelation, high values (above $4-d_{L}$) suggest negative autocorrelation and a value near 2 (between d_{U} and $4-d_{U}$) suggests the problem is absent. There are also two regions where the test is, unfortunately, inconclusive (between the d_{L} and d_{U} values).

The test statistic can be calculated by the formula ${ }^{4}$

$$
\begin{equation*}
\mathrm{DW}=\frac{\sum_{t=2}^{n}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{n} e_{t}^{2}} \tag{8.11}
\end{equation*}
$$

This is relatively straightforward to calculate using a spreadsheet program. Table 8.7 shows part of the calculation.

Hence we obtain:

$$
\mathrm{DW}=\frac{0.0705}{0.0825}=0.855
$$

Table 8.7 Calculation of the DW statistic

Year	e_{t}	e_{t-1}	$e_{t}-e_{t-1}$	$\left(e_{t}-e_{t-1}\right)^{2}$	e_{t}^{2}
1973	0.0396				0.0016
1974	0.1703	0.0396	0.1308	0.0171	0.0290
1975	0.0401	0.1703	-0.1302	0.0170	0.0016
1976	0.0658	0.0401	0.0258	0.0007	0.0043
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
2000	0.0517	0.0236	0.0281	0.0008	0.0027
2001	0.0548	0.0517	0.0031	0.0000	0.0030
2002	0.0509	0.0548	-0.0039	0.0000	0.0026
2003	0.0215	0.0509	-0.029	0.0009	0.0005
Totals				0.0705	0.0825

[^36]The result suggests positive autocorrelation ${ }^{5}$ of the errors. For $n=30$ (close enough to $n=31$) the critical values are $d_{L}=1.284$ and $d_{U}=1.567$ (using the 95% confidence level, see Table A7), so we clearly reject the null of no autocorrelation.

Consequences of autocorrelation

The presence of autocorrelation in this example causes our forecasts to be too low. If we took account of the pattern of errors over time, we could improve the forecasting performance of the model. A second general consequence of autocorrelation is that the standard errors are often under-estimated, resulting in excessive t and F statistics. This leads us to think the estimates are 'significant' when they might not, in fact, be so. We may have what is sometimes known as a spurious regression - it looks good but is misleading. The bias in the standard errors and t statistics can be large, and this is potentially a serious problem.

This danger occurs particularly when the variables used in the analysis are trended (as many economic variables are) over time. Variables trending over time appear to be correlated with each other, but there may be no true underlying relationship. The now-famous study by Hendry ${ }^{6}$ noted a strong correlation between cumulative rainfall and the price level (both increase over time but are unlikely to be related). It has been suggested that a low value of the DW statistic (typically, less than the R^{2} value) can be a symptom of such a problem. The fact that economic theory supports the idea of a causal relationship between demand, prices and income should make us a little more confident that we have found a valid economic relationship rather than a spurious one in this case.

This topic goes well beyond the scope of this text (once again), but it is raised because it is important to be aware of the potential shortcomings of simple models. If you estimate a time-series regression equation, check the DW statistic to test for autocorrelation. If present, you may want to seek further advice rather than accept the results as they are, even if they appear to be good. The cause of the autocorrelation is often (though not always) the omission of lagged variables in the model, i.e. a failure to recognise that it may take time for the effect of the independent variables to work through to the dependent variable.

Exercise 8.4

(a) Using the log model explaining car travel, calculate the residuals from the regression equation and draw a line graph of them. Do they appear to be random or is some timedependence apparent?
(b) Calculate the Durbin-Watson statistic and interpret the result.
(c) If autocorrelation is present, what are the implications for your estimates?

Finding the right model

How do you know that you have found the 'right' model for the data? Can you be confident that another researcher, using the same data, would arrive at the same results? How can you be sure there isn't a relevant explanatory variable out there that you have omitted from your model? Without trying them all it is difficult to

[^37]be sure. Good modelling is based on theoretical considerations (e.g. models that are consistent with economic or business principles) and statistical ones (e.g. significant t ratios). One can identify two different approaches to modelling:

- General to specific: this starts off with a comprehensive model, including all the likely explanatory variables, then simplifies it.
- Specific to general: this begins with a simple model that is easy to understand, then explanatory variables are added to improve the model's explanatory power.

There is something to be said for both approaches, but it is not guaranteed that the two will end up with the same model. The former approach is usually favoured nowadays; it suffers less from the problem of omitted variable bias (discussed below), and the simplifying procedure is usually less ad hoc than that of generalising a simple model. A very general model will almost certainly initially contain a number of irrelevant explanatory variables. However, this is not much of a problem (and less serious than omitted variable bias): standard errors on the coefficients tend to be higher than otherwise, but this is remedied once the irrelevant variables are excluded.

It is rare for either of these approaches to be adopted in its pure, ideal form. For example, in the import demand equation we should have started out with several lags on the price variable, since we cannot be sure how long imports take to adjust to price changes. Therefore, we might have started with (assuming a maximum lag of one year is 'reasonable'):

$$
\begin{equation*}
m_{t}=b_{0}+b_{1} \mathrm{GDP}_{t}+b_{2} \mathrm{GDP}_{t-1}+b_{3} p m_{t}+b_{4} p m_{t-1}+b_{5} m_{t-1}+e_{t} \tag{8.12}
\end{equation*}
$$

If b_{4} proved to be not significantly different from zero, we would then reestimate the equation without $p m_{t-1}$ and obtain new coefficient estimates. If the new b_{2} proved to be not significant, we would omit GDP_{t-1} and re-estimate. This process would continue until all the remaining coefficients had significant t ratios. We would then have the final, simplified model. At each stage we would omit the variable with the least significant coefficient. Having found the right model, we could then test it on new data, to see if it can explain the new observations.

Uncertainty regarding the correct model

The remarks about finding the right model apply to many of the other techniques used in this text. For example, we might employ the Poisson distribution to model manufacturing faults in televisions, but we are assuming this is the correct distribution to use. In the example of railway accidents recounted in Chapter 4, it was found that the Poisson distribution did not fit the data precisely - the real world betrayed less variation than predicted by the model.

Our estimates of parameters, and the associated confidence intervals, are based on the assumption that we are using the correct model. To our uncertainty about the estimates we should ideally add the uncertainty about the correct model, but unfortunately this is difficult to measure. It may be that if we used a different model we would obtain a different conclusion. If possible, therefore, it is a good idea to try out different models to see if the results are robust, and also to inform the reader about alternative methods that have been tried but not reported.

In practice the procedure is not as mechanical (nor as pure) as this, and more judgement should be exercised. You may not want to exclude all the price variables from a demand equation even though the t ratios are small. A coefficient may be large in size even though it is not significant. 'Not significant' does not mean the same as 'not important', rather that there is a lot of uncertainty about its true value. In modelling imports, we used the 2004 and 2005 observations to test the model's forecasts. When it failed, we revised the model and applied the forecast test again. But this is no longer a strictly independent test, since we used the 2004 to 2005 observations to decide upon revision to the model.

Abstract

Interpreting the R^{2} coefficient Students often worry that their R^{2} value is not large enough, hence their regression is a poor one. However, interpretation of the statistic is tricky. It is easier to 'explain' aggregate data than it is to explain individual observations, hence a regression using country level data typically has a higher R^{2} value than a similar one using individual data (the values might vary between 0.6 for the former but 0.1 for the latter). Also, time-series data typically have much higher R^{2} values (e.g. 0.95) than cross-section data. Estimating a regression using first differences of the data (i.e. explaining the change in Y by changes in the X values) typically lowers the R^{2} value substantially, even though the underlying phenomena are the same. The size of the R^{2} statistic needs to be considered in the light of the type of data used in the model.

To briefly sum up a complex and contentious debate, a good model should be:

- consistent with theory: an estimated demand curve should not slope upwards, for example.
- statistically satisfactory: there should be good explanatory power (e.g. R^{2}, F statistics), the coefficients should be statistically significant (t ratios) and the errors should be random. It should also predict well, using new data (i.e. data not used in the estimation procedure).
- simple: although a very complicated model predicts better, it might be difficult for the reader to understand and interpret.

Sometimes these criteria conflict and then the researcher must use his or her judgement and experience to decide between them.

Testing compound hypotheses

Simplifying a general model is largely based on hypothesis testing. Usually this means a hypothesis of the form $H_{0}: \beta=0$ using a t test. Accepting this hypothesis would mean we can simplify by dropping that variable from the equation. Sometimes, however, the hypothesis is more complex, as in the following examples:

- You want to test the equality of two coefficients, $H_{0}: \beta_{1}=\beta_{2}$.
- You want to test if a group of coefficients are all zero, $H_{0}: \beta_{1}=\beta_{2}=0$.

A general method for testing these compound hypotheses is to use an F test, comparing the general (unrestricted) model with a more restricted version. An unrestricted model will always fit the data better (higher R^{2}) than a restricted
version. However, if the restricted version fits almost as well, we conclude that the restriction is valid and that the simpler restricted model is the more appropriate one to use.

We illustrate this by examining whether consumers suffer from money illusion in the import demand equation. We assumed, in line with economic theory, that only relative prices matter and used the real price of imports P_{M} / P as an explanatory variable. But suppose consumers actually respond differently to changes in P_{M} and in P ? In that case we should enter P_{M} and P as separate explanatory variables and they would have different coefficients. In other words, we should estimate (using the log form ${ }^{7}$):

$$
\begin{equation*}
\ln m_{t}=c_{0}+c_{1} \ln G D P_{t}+c_{2} \ln P_{\mathrm{M} t}+c_{3} \ln P_{t}+e_{t} \tag{8.13}
\end{equation*}
$$

rather than

$$
\begin{equation*}
\ln m_{t}=b_{0}+b_{1} \ln G D P_{t}+b_{2} \ln p m_{t}+e_{t} \tag{8.14}
\end{equation*}
$$

where P_{M} is the nominal price of imports and P is the nominal price level. We would expect $c_{2}<0$ and $c_{3}>0$. Note that (8.14) is a restricted form of (8.13), with the restriction $c_{2}=-c_{3}$ imposed. A lack of money illusion implies that this restriction should be valid and that (8.14) is the correct form of model. The hypothesis to test is therefore $H_{0}: c_{2}=-c_{3}$ (or alternatively $H_{0}: c_{2}+c_{3}=0$).

If the restriction is valid, (8.13) and (8.14) should fit equally well and thus have similar error sums of squares. Conversely, if they have very different ESS values, then we would reject the validity of the restriction. To carry out the test, we therefore do the following:

- Estimate the unrestricted model (8.13) and obtain the unrestricted ESS from it (ESS ${ }_{\mathrm{U}}$).
- Estimate the restricted model (8.14) and obtain the restricted ESS (ESS ${ }_{\mathrm{R}}$). Note that by definition, ESS $_{U} \leq$ ESS $_{R}$.
- Compare the ESS values using the test statistic

$$
\begin{equation*}
F=\frac{\left(\mathrm{ESS}_{\mathrm{R}}-\mathrm{ESS}_{\mathrm{U}}\right) / q}{\mathrm{ESS}_{\mathrm{U}} /(n-k-1)} \tag{8.15}
\end{equation*}
$$

where q is the number of restrictions (1 in this case) and k is the number of explanatory variables in the unrestricted model.

- Compare the test statistic with the critical value of the F distribution with q and $n-k-1$ degrees of freedom. If the test statistic exceeds the critical value, reject the restricted model in favour of the unrestricted one.

We have already estimated the restricted model (equation (8.14)) and from that we obtain $\mathrm{ESS}_{\mathrm{R}}=0.08246$. Estimating the unrestricted model gives

$$
\begin{equation*}
\ln m_{t}=-8.77+2.31 \ln G D P_{t}-0.20 \ln P_{M t-1}+0.02 \ln P_{t-1+e t} \tag{8.16}
\end{equation*}
$$

with $E S S_{U}=0.02720$. The test statistic is therefore

$$
\begin{equation*}
F=\frac{(0.08246-0.02720) / 1}{0.02720 /(31-3-1)}=54.85 \tag{8.17}
\end{equation*}
$$

[^38]The critical value ${ }^{8}$ at the 95% confidence level is 4.21 , so the restriction is rejected. Consumers do not use relative prices alone in making decisions, but are somehow influenced by the general rate of inflation as well. This is contrary to what one would expect from economic theory. Interestingly, the equation using nominal prices does not suffer from autocorrelation, so imposing the restriction (estimating with the real price of imports) induces autocorrelation, another indication that the restriction might be inappropriate.

To our earlier finding we might therefore add that consumers appear to take account of nominal prices. We do not have space to investigate this issue in more detail, but further analysis of these nominal effects would be worthwhile. There may be a theoretical reason for nominal prices to have an influence. Alternatively, there could be measurement problems with the data or inadequacies in the model which mask the truth that it is, after all, relative prices that matter.

Whatever the results, this method of hypothesis testing is quite general: it is possible to test any number of (linear) restrictions by estimating the restricted and unrestricted forms of the equation and comparing how well they fit the data. The unrestricted will always fit the data better but if the restricted model fits almost as well, it is preferred on the grounds of simplicity. The F test is the criterion by which we compare the fit of the two models, using error sums of squares.

Omitted variable bias

Omitting a relevant explanatory variable from a regression equation can lead to serious problems. Not only is the model inadequate because there is no information about the effect of the omitted variable but, in addition, the coefficients on the variables which are included are usually biased. This is called omitted variable bias (OVB).

We encountered an example of this in the model of import demand. Notice how the coefficient on income changed from 1.66 to 2.31 when nominal prices were included. This is a substantial change and shows that the original equation with only the real price of imports included may be misleading with respect to the effect of income upon imports. The coefficient on income was biased downwards.

The direction of OVB depends upon two things: the correlation between the omitted and included explanatory variables and the sign of the coefficient on the omitted variable. Thus, if you have to omit what you believe is a relevant explanatory variable (because the observations are unavailable, for example) you might be able to infer the direction of bias on the included variable(s). Table 8.8 summarises the possibilities, where the true model is $Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}+e$ but the estimated model omits the X_{2} variable. Table 8.8 only applies to a single omitted variable; when there are several, matters are more complicated (see Maddala and Lahiri (2009), Chapter 4).

In addition to coefficients being biased, their standard errors are biased upwards as well, so that inferences and confidence intervals will be incorrect. The best advice, therefore, is to ensure you don't omit a relevant variable.

[^39]Table 8.8 The effects of omitted variable bias

Sign of omitted coefficient, b_{2}	Correlation between X_{1} and X_{2}	Direction of bias of b_{1}	Example values of b_{1}	
			True	Estimated
>0	>0	upwards	0.5	0.9
			-0.5	-0.1
>0	<0	downwards	0.5	0.1
			-0.5	-0.9
<0	>0	downwards	0.5	0.1
			-0.5	-0.9
<0	<0	upwards	0.5	0.9
			-0.5	-0.1

Exercise 8.5

(a) Calculate the simple correlation coefficients between price, income, the price of rail travel and the price of bus travel.
(b) The prices of rail and bus travel may well influence the demand for car travel. If so, the models calculated in previous exercises are mis-specified. What are the possible consequences of this? How might the correlations calculated in part (a) help?
(c) Extend the regression equation to include these two extra prices. (Estimate in logs, using 1980-99.) Does this change any of your conclusions?
(d) One might expect the bus and rail price variables to have similar coefficients, as they are both substitutes for car travel. Test the hypothesis $H_{0}: \beta_{\text {rail }}-\beta_{\text {bus }}=0$ by comparing error sums of squares from restricted and unrestricted regressions.

Dummy variables and trends

These are types of artificial variable which can be very useful in regression. A dummy variable is one that takes on a restricted range of values, usually just 0 and 1 . Despite this simplicity, it can be useful in a number of situations. For example, suppose we suspect that the United Kingdom's import demand function shifted after the rise in oil prices in 1979. Ideally, we might include oil prices in our model, but suppose these data are unavailable. How could we then explore this possibility empirically?

One answer is to construct a variable, D_{t}, which takes the value 0 for the years 1973-79, and 1 thereafter (i.e. $0,0, \ldots, 0,1,1, \ldots, 1$, the switch occurring after 1979). We then estimate:

$$
\begin{equation*}
\ln m_{t}=b_{0}+b_{1} \ln G D P_{t}+b_{2} \ln p m_{t}+b_{3} D_{t}+e_{t} \tag{8.18}
\end{equation*}
$$

The coefficient b_{3} gives the size of the shift in 1979. The constant in this equation is now given by $b_{0}+b_{3} D_{t}$, which evaluates to b_{0} for 1973-79, when $D_{t}=0$, and to $b_{0}+b_{3}$ thereafter, when $D_{t}=1$. The sign of b_{3} shows the direction of any shift, and one can also test its significance, via the t ratio. If it turns out not to be significant, then there was probably no shift in the relationship.

Note that we do not use the \log of D - this would be impossible as $\ln 0$ is not defined. In any case, a dummy variable only needs to have two different values, it does not matter what they are (although 0,1 is convenient for interpretation). Note also that b_{3} will give the change in $\ln m$, which is approximately ${ }^{9}$ the percentage change in m.

[^40]Figure 8.8 The dummy variable effect

Estimating equation (8.18) yields the following result:

$$
\begin{aligned}
& \ln m_{t}=-4.98+1.85 \ln G D P_{t}-0.35 \ln p m_{t}-0.11 D_{t}+e_{t} \\
& \text { s.e. } \\
& R^{2}=0.99 \\
& \hline
\end{aligned} \quad F(3,27)=1029.1 \quad n=31 \%(0.02)
$$

We note that the dummy variable has a significant coefficient and that after 1979 imports were 11% lower than before, after taking account of any price and income effects. We presume the oil shock has caused this, but in fact it could be due to anything that changed in 1979. Figure 8.8 shows the effect of introducing such a dummy variable, and from the figure we can see that the effect of the dummy variable is to shift the regression line downwards for the years from 1979 onwards.

Trap!

There were, in fact, two oil shocks - in 1973 and 1979. With a longer series of data you might therefore be tempted to use a dummy variable $\{0,0, \ldots, 0,1, \ldots, 1,2, \ldots, 2\}$, with the first switch in 1973, the second in 1979 (this assumes you have some pre-1973 observations). This is incorrect because it implicitly assumes that the two shocks had the same effect upon the dependent variable. The correct technique is to use two dummies, both using only zeros and ones. The first dummy would switch from 0 to 1 in 1973, the second would switch in 1979. Their individual coefficients would then measure the size of each shock.

A time trend is another useful type of dummy variable used with time-series data. It takes the values $\{1,2,3,4, \ldots, T\}$ where there are T observations. It is used as a proxy for a variable which we cannot measure and which we believe increases in a linear fashion. For example, suppose we are trying to model petrol consumption of cars. Price and income would obviously be relevant explanatory variables; but in addition, technical progress has made cars more fuel-efficient over time. It is difficult to measure this accurately, so we use a time trend as an additional regressor. In this case it should have a negative coefficient which would measure the annual reduction in consumption due to more fuel-efficient cars. Remember also that if the dependent variable is in logs, the coefficient on the time trend shows the percentage change per annum (or per time period), e.g. a coefficient of -0.05 would indicate a 5% p.a. fall in the dependent variable, independent of movements in other explanatory variables.

Exercise 8.6

?
(a) The graph of car travel suggests a possible break in 1990. Test whether this break is significant or not using a dummy variable with a value of 0 up to (and including) 1990, 1 thereafter. (Estimate in logs using all three prices and income, 1980-99.)
(b) The quality of cars has improved steadily over time, perhaps leading to increased travel by car. Add a time trend to the regression equation in part (a) and re-estimate. Is there evidence to support this idea?

Multicollinearity

Sometimes some or all of the explanatory variables are highly correlated (in the sample data), which means that it is difficult to tell which of them is influencing the dependent variable. This is known as multicollinearity. Since all variables are correlated to some degree, multicollinearity is a problem of degree also. For example, if GDP and import prices both rise over time, it may be difficult to tell which of them influences imports. There has to be some independent movement of the explanatory variables for us to be able to disentangle their separate influences.

The symptoms of multicollinearity are:

- high correlation between two or more of the explanatory variables
- high standard errors of the coefficients leading to low t ratios
- a high value of R^{2} (and significant F statistic) in spite of the insignificance of the individual coefficients.

In this situation, one might conclude that a variable is insignificant because of a large standard error, when, in fact, multicollinearity is to blame. It may be useful, therefore, to examine the correlations between all the explanatory variables to see if such a problem is apparent. For example, the correlation between nominal import prices and the retail price index is 0.97 . Hence, it may be difficult to disentangle their individual effects.

The best cure is to obtain more data which might exhibit more independent variation of the explanatory variables. This is not always possible, however, for example if a sample survey has already been completed. An alternative is to drop one of the correlated variables from the regression equation, although the choice of which to exclude is somewhat arbitrary. Another procedure is to obtain alternative estimates of the effects of one of the collinear variables (for example, from another study). These effects can then be allowed for when estimates of the remaining coefficients are made.

Measurement error

The variables in a regression equation are rarely measured without error. Chapter 9 has an example showing that the measured balance of payments (exports minus imports) for 1970 varied considerably as better information became available in later years. The question therefore arises whether measurement error in the data is a problem for our estimates.

Measurement error could either affect the standard errors of the regression coefficients or, worse, it could cause bias. If the measurement error is systematic rather than random, then biased estimates can arise. For example, if transport costs are left out of the measured price of imported goods, and these costs have declined over time, then there is systematic measurement error in the price variable. The actual
price fall (as experienced by the consumer) is less than the measured fall. The estimated price elasticity of imports might therefore have a bias away from zero (consumers have reacted to a price fall but we attribute this to a smaller price change, hence we estimate that price changes have a bigger effect than they really do).

Even when the measurement error is random, this can bias coefficient estimates. Such error in the explanatory variable generally biases the coefficient towards zero and lowers the t statistic. Hence, one might mistakenly conclude that X does not affect Y when in fact it does. The more severe the problem is, the greater is the variance of the measurement error relative to the variance of X. For example, if the variance of measurement error is 25% the size of the variance of X, then the coefficient of X will be biased downward by about 20%.

Exercise 8.7

We noted in Exercise 8.5 that rail and bus prices were highly correlated. This may be why they both appear to be 'insignificant' in the regression equation. It could be the case that either of them could be influencing demand, but we cannot tell which. We can examine this by testing the hypothesis $H_{0}: \beta_{\text {rail }}=\beta_{\text {bus }}=0$. The restricted regression therefore excludes these two variables, the unrestricted regression includes them. One can then use equation (8.15) with $q=2$ restrictions to test the hypothesis. What is the result? (Do not include dummy or trend in the equation.)

Some final advice on regression

- As always, large samples are better than small. Reasonable results were obtained above with only 31 observations, but this is rather a small sample size on which to base solid conclusions.
- Check the data carefully before calculation. This is especially true if a computer is used to analyse the data. If the data are entered incorrectly, every subsequent result will be wrong. A substantial part of any research project should be devoted to verifying the data, checking the definitions of variables, etc. The work is tedious, but important.
- Do not go fishing. This is searching through the data hoping something will turn up. Some idea of what the data are expected to reveal, and why, allows the search to be conducted more effectively. It is easy to see imaginary patterns in data if an aimless search is being conducted. Try looking at the table of random numbers (Table A1, see page 448), which will probably soon reveal something 'significant', like your telephone number or your credit card number.
- Do not be afraid to start with fairly simple techniques. Draw a graph of demand against price to see what it looks like, if it looks linear or log linear, if there are any outliers (a data error?), etc. This will give an overview of the problem which can be kept in mind when more refined techniques are used.

Summary

- Multiple regression extends the principles of simple regression to models using several explanatory variables to explain variation in Y.
- The multiple regression equation is derived by minimising the sum of squared residuals, as in simple regression. This principle leads to the formulae for slope coefficients, standard errors, etc.
- The significance of the individual slope coefficients can be tested using the t distribution and the overall significance of the model is based on the F distribution.
- It is important to check the adequacy of the model. This can be done in various ways, including examining the accuracy of predictions and checking that the residuals appear random.
- One important form of non-randomness is termed autocorrelation, where the error in one period is correlated with earlier errors (this can occur in time-series data). This can lead to incorrect inferences being drawn.
- The Durbin-Watson statistic is one diagnostic test for autocorrelation. If there is a problem of autocorrelation, it can often be eliminated by including lagged regressors.
- A good model should be (i) consistent with economic (or some other) theory, (ii) statistically satisfactory and (iii) simple. Sometimes there is a trade-off between these different criteria.
- Complex hypothesis tests can often be performed by comparing restricted and unrestricted forms of the model. If the former fits the data almost as well as the latter, then the (simplifying) restrictions specified in the null hypothesis are accepted.
- Omitting relevant explanatory variables from the model is likely to cause bias to the estimated coefficients. This suggests it is often best to start off with a fairly general model and simplify it.
- Regression analysis can become very complicated (well beyond the scope of this text), involving issues such as multicollinearity and simultaneous equations. However, the methods given in this chapter can provide helpful insights into a range of problems, especially if the potential shortcomings of the model are appreciated.

```
Key terms and concepts
autocorrelation omitted variable bias
Chow test positive autocorrelation
dummy variables regression coefficients
Durbin-Watson statistic simultaneous equation model
measurement error spurious regression
multicollinearity time trend
negative autocorrelation
```


Reference

Formulae used in this chapter

Formula	Description	Notes
$F=\frac{\left(E^{\prime} S_{p}-E_{1}\right) / n_{2}}{\mathrm{ESS}_{1} /\left(n_{1}-k-1\right)}$	Chow test for a prediction	First n_{1} observations used for estimation, last n_{2} for prediction
$\mathrm{DW}=\frac{\sum\left(e_{t}-e_{t-1}\right)^{2}}{\sum e_{t}^{2}}$	Durbin-Watson statistic for testing autocorrelation	
$F=\frac{\left(\mathrm{ESS}_{R}-\mathrm{ESS}_{U}\right) / q}{\mathrm{ESS}_{U} /(n-k-1)}$	Test statistic for testing q restrictions in the regression model	$v=q, n-k-1$

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
8.1 (a) Using the data in Problem 7.1 (page 301), estimate a multiple regression model of the birth rate explained by GNP, the growth rate and the income ratio. Comment upon:
(i) the sizes and signs of the coefficients,
(ii) the significance of the coefficients,
(iii) the overall significance of the regression.
(b) How would you simplify the model?
(c) Test for the joint significance of the coefficients on growth and the income ratio.
(d) Repeat the above steps for all 26 observations. Comment.
(e) Do you feel your understanding of the birth rate is improved after estimating the multiple regression equation?
(f) What other possible explanatory variables do you think it might be worth investigating?
8.2 The following data show the number of adults in each of 17 households and whether or not the family contains at least one person who smokes, to supplement the data in Problem 7.2 on alcohol spending (see page 301).

Family	Adults	Smoker	Family	Adults	Smoker
1	2	0	10	2	1
2	2	0	11	1	1
3	1	1	12	4	1
4	2	0	13	2	1
5	1	0	14	2	0
6	2	1	15	3	0
7	2	0	16	1	1
8	2	0	17	2	0
9	1	0			

(a) Estimate a multiple regression model of expenditure on alcohol, using income, the number of adults and whether there is a smoker in the household as the three explanatory variables. Do the coefficients have the expected signs? Interpret your results.
(b) Test the significance of the individual coefficients and of the regression as a whole.
(c) Should the model be simplified?
(d) Calculate the elasticity of alcohol expenditure with respect to income. Do this first using the linear model and then one based on logarithms of these two variables (but keep 'Adults' and 'Smokers' in linear form).
(e) Estimate the effect of one additional adult in the family on their spending on alcohol.
(f) To compare the alcohol expenditure of families with a smoker and families without, one could try two different methods:
(i) use a two sample t test to compare mean expenditures, or
(ii) run a regression of alcohol expenditure on the 'Smoker’ variable, using all 17 observations.

Try both of these methods. What do you conclude?
8.3 Using the results from Problem 8.1, forecast the birth rate of a country with the following characteristics: GNP equal to $\$ 3000$, a growth rate of 3% p.a. and an income ratio of 7 . (Construct the point estimate only).
8.4 (This problem continues the analysis from Problem 8.2.) Given the following data for a family:

Family	Income	Adults	Smoker
18	700	2	1

(a) Predict the level of alcohol expenditure for this family.
(b) If their actual expenditure turned out to be 32.50 , how accurate would you judge the prediction?
8.5 How would you most appropriately measure the following variables?
(a) social class in a model of alcohol consumption
(b) crime
(c) central bank independence from political interference.
8.6 As Problem 8.5, for
(a) the output of a car firm, in a production function equation,
(b) potential trade union influence in wage bargaining,
(c) the performance of a school.
8.7 Would it be better to use time-series or cross-section data in the following models?
(a) the relationship between the exchange rate and the money supply
(b) the determinants of divorce
(c) the determinants of hospital costs.

Explain your reasoning.
8.8 As Problem 8.7, for
(a) measurement of economies of scale in the production of books,
(b) the determinants of cinema attendances,
(c) the determinants of the consumption of perfume.
8.9 How would you estimate a model explaining the following variables?
(a) airline efficiency,
(b) infant mortality,
(c) bank profits.

You should consider such issues as whether to use time-series or cross-section data; the explanatory variables to use and any measurement problems; any relevant data transformations; the expected results.
8.10 As Problem 8.9, for
(a) investment,
(b) the pattern of UK exports (i.e. which countries they go to),
(c) attendance at football matches.
8.11 R. Dornbusch and S. Fischer (in R.E. Caves and L.B. Krause, Britain's Economic Performance, Brookings, 1980) report the following equation for predicting the UK balance of payments:

$$
\begin{aligned}
& B=0.29+0.24 U+0.17 \ln Y-\underset{y}{0} 0.004 t-0.10 \ln P-0.24 \ln C \\
& t \quad(.56) \quad(5.9)(2.5)(3.8)(3.2) \\
& R^{2}=0.76, s_{e}=0.01, n=36 \text { (quarterly data 1970:1-1978:1) }
\end{aligned}
$$

where
B : the current account of the balance of payments as a percentage of gross domestic product (a balance of payments deficit of 3% of GDP would be recorded as -3.0 , for example)
U : the rate of unemployment
Y : the OECD index of industrial production
t : a time trend
P : the price of materials relative to the GDP deflator (price index)
C : an index of UK competitiveness (a lower value of the index implies greater competitiveness).
(In indicates the natural logarithm of a variable)
(a) Explain why each variable is included in the regression. Do they all have the expected sign for the coefficient?
(b) Which of the following lead to a higher BOP deficit (relative to GDP): (i) higher unemployment; (ii) higher OECD industrial production; (iii) higher material prices and (iv) greater competitiveness?
(c) What is the implied shape of the relationship between B and (i) U, (ii) Y ?
(d) Why cannot a double log equation be estimated for this data? What implications does this have for obtaining elasticity estimates? Why are elasticity estimates not very useful in this context?
(e) Given the following values of the explanatory variables, estimate the state of the current account (point estimate): unemployment rate $=10$, OECD index $=110$, time trend $=37$, materials price index $=100$, competitiveness index $=90$.
8.12 In a cross-section study of the determinants of economic growth (National Bureau of Economic Research, Macroeconomic Annual, 1991), Stanley Fischer obtained the following regression equation:

$$
\begin{aligned}
& G Y=1.38-0.52 R G D P 70+2.51 P R I M 70+11.16 I N V-4.75 I N F+0.17 S U R \\
& \text { (-5.9) (2.69) (3.91) (2.7) } \\
& -0.33 \text { DEBT80 - 2.02SSA - 1.98LAC } \\
& (-0.79) \quad(-3.71) \quad(-3.76) \\
& R^{2}=0.60, n=73
\end{aligned}
$$

where
GY: \quad growth per capita, 1970-85
RGDP: real GDP per capita, 1970
PRIM70: primary school enrolment rate, 1970
INV: investment/GNP ratio
INF: inflation rate
SUR: budget surplus/GNP ratio
DEBT80: foreign debt/GNP ratio
SSA: dummy for sub-Saharan Africa
LAC: dummy for Latin America and the Caribbean.
(a) Explain why each variable is included. Does each have the expected sign on its coefficient? Are there any variables which are left out, in your view?
(b) If a country were to increase its investment ratio by 0.05 , by how much would its estimated growth rate increase?
(c) Interpret the coefficient on the inflation variable.
(d) Calculate the F statistic for the overall significance of the regression equation. Is it significant?
(e) What do the SSA and LAC dummy variables tell us?
8.13 (Project) Build a suitable model to predict car sales in the United Kingdom. You should use time-series data (at least 20 annual observations). You should write a report in a similar manner to Problem 7.12.

Answers to exercises

Exercise 8.1

(a) Demand rises rapidly until around 1990, then rises more slowly

Car travel 1980-2001

Price falls quite quickly until 1990, then rises. This may relate to the pattern of travel demand, above.

> The cost of car travel

(b) The cross-plot of travel (vertical axis) against price is not clear-cut. There may be a slight negative relationship.

Again, there is not an obvious bivariate relationship between travel and income. For both graphs it looks as if a single line might not represent all of the data and therefore it might be that both explanatory variables are needed. The bivariate graphs are not very informative.

(c) Economic theory would suggest a negative price coefficient and a positive income coefficient.
(d) If bus and rail are substitutes for car travel, one would expect positive coefficients on their prices. However, they might be complements - commuters may drive to the station to catch the train.

Exercise 8.2

(a) The regression is: ${ }^{10}$

Source	SS	df		MS	Number of obs $=20$		
						2, 17)	$=483.10$
Model	138136.46	2		69068.23		b > F	$=0.0000$
Residual	2430.48	17		142.96		squared	$=0.9827$
						j-squared	$=0.9807$
Total	140566.95	19		7398.26		t MSE	11.96
car	Coef.	Std.	Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
rpcar	-6.39		. 76	-8.37	0.000	-8.00	-4.77
rpdi	6.04		. 23	25.85	0.000	5.55	6.54
_cons	748.11		83.85	8.92	0.000	571.18	925.03

(b) The signs of the coefficients are as expected. A unit increase in price lowers demand by 6.4 units; a unit rise in income raises demand by about 6 units. Without knowledge of the units of measurement it is hard to give a more precise interpretation. Both coefficients are highly significant, as is the F statistic. Ninety-eight per cent of the variation of car travel demand is explained by these two variables, a high figure.

Exercise 8.3

(a) The forecast values are 661.9 and 706.3 in 2000 and 2001. These compare with actual values of 618 and 624 , so the errors are -6.6% and -11.7%. Assuming 2000 and 2001 would be the same as 1999 would actually give better results.
(b) In logs the results are:

Source	SS	df	MS	Number of obs	$=\quad 20$	
				F (2, 17)	$=599.39$	
Model	. 557417045	2	.278708523	Prob $>\mathrm{F}$	$=0.0000$	
Residual	. 007904751	17	.000464985	R -squared	$=0.9860$	
				Adj R-squared	$=0.9844$	
Total	. 565321796	19	. 029753779	Root MSE	$=.02156$	
lcar	Coef.	Std.	Err. t	P>\|t	[95\% Conf.	Interval]
lrpcar	-1.19		. $14-8.45$	$0.000-1.49$	-. 89	
lrpdi	. 84		. 0328.35	0.000 .78	. 90	
_cons	8.19		. $71 \quad 11.61$	$0.000 \quad 6.70$	9.68	

Demand is elastic with respect to price $(e=-1.19)$ and slightly less than elastic for income ($e=0.84$). The coefficients are again highly significant.
${ }^{10} \mathrm{Th}$ ese results were produced using Stata. The layout is similar to that of Excel. Prob-values are indicated by 'Prob $>\mathrm{F}$ ' and ' $\mathrm{P}>|\mathrm{t}|$ '. 'rpcar' indicates the real price of car travel, 'rpdi' indicates real personal disposable income. Later on, an ' l ' in front of a variable name indicates it is in log form.
(c) Priceandincomeelasticities from the linearmodelare $-6.4 \times 101.1 / 526.5=-1.23$ and $6.0 \times 70.2 / 526.5=0.8$. These are very similar to the log coefficients.
(d) The forecasts in logs are 6.492 and 6.561 which translate into 659.8 and 706.8. The predictions (and errors) are similar to the linear model.
(e) For the linear model the Chow test is

$$
F=\frac{\left(\operatorname{ESS}_{\mathrm{P}}-\mathrm{ESS}_{1}\right) / n_{2}}{\operatorname{ESS}_{1} /\left(n_{1}-k-1\right)}=\frac{(7672.6-2430.5) / 2}{2430.5 /(20-2-1)}=18.3
$$

The critical value is $F(2,17)=3.59$, so there appears to be a change between estimation and forecast periods. A similar calculation for the \log model yields an F statistic of $13.9\left(\mathrm{ESS}_{\mathrm{P}}=0.0208\right)$, also significant.

Exercise 8.4

(a) The residuals from the log regression are as follows:

There is some evidence of positive autocorrelation and, in particular, the last two residuals (from the forecast period) are substantially larger than the rest.
(b) The Durbin-Watson statistic is DW $=1.52$, against an upper critical value of $d_{U}=1.54$. The test statistic (just) falls into the uncertainty region, but the evidence for autocorrelation is very mild.
(c) Autocorrelation would imply biased standard errors, so inference would be dubious, but the coefficients themselves are still unbiased.

Exercise 8.5

(a) The correlations are:

	rpcar	rpdi	rprail	rpbus
rpcar	1.0000			
rpdi	-0.3112	1.0000		
rprail	-0.1468	0.9593	1.0000	
rpbus	-0.1421	0.9632	0.9827	1.0000

The price of car travel has a low correlation with the other variables, which are all highly correlated with each other ($r>0.95$).
(b) There may be omitted variable bias. Since the omitted variables are correlated with income, the income coefficient we have observed may be misleading. The car price
variable is unlikely to be affected much, as it has a low correlation with the omitted variables.
(c) The results are:

Source	SS	df	MS	Number of obs		20
				F (4, 15)		$=285.36$
Model	. 557989155	4.1	. 139497289	Prob $>\mathrm{F}$		$=0.0000$
Residual	. 007332641	15.000488843		R -squared		$=0.9870$
				Adj R-squared		$=0.9836$
Total	. 565321796	19.0	. 029753779	Root MSE		$=.02211$
lcar	Coef. Std. Err.		t		[95\% Conf	Interval]
lrpcar	-1.195793	. 1918915	-6.23	0.000	-1.6048	-. 786786
lrpdi	. 8379483	. 1372577	6.10	0.000	. 5453904	1.130506
lrprail	. 3104458	. 3019337	1.03	0.320	-. 3331106	. 9540023
lrpbus	-. 3085937	. 3166891	-0.97	0.345	-. 9836004	. 3664131
_cons	8.22269	. 7318088	11.24	0.000	6.662877	9.782503

The new price variables are not significant, so there is unlikely to have been a serious OVB problem. Neither car price nor income coefficients have changed. The simpler model seems to be preferred.
(d) The restricted equation is $y=\beta_{1}+\beta_{2} P_{\text {car }}+\beta_{3} R P D I+\beta_{4}\left(P_{\text {rail }}+P_{\text {bus }}\right)+u$ (in logs) and estimating this yields $\mathrm{ESS}_{\mathrm{R}}=0.007901$. The test statistic is therefore

$$
F=\frac{(0.007901-0.007333) / 1}{0.007333 /(20-4-1)}=1.16
$$

This is not significant, so the hypothesis of equal coefficients is accepted.

Exercise 8.6

(a) The result is:

The new coefficient, -0.03 , suggests car travel is 3% lower after 1990 than before, ceteris paribus. However, the coefficient is not significantly different from zero, so there is little evidence of structural break. The change in car usage appears due to changes in prices and income.
(b) The result is:

The trend is not significant. Note that the income coefficient has changed substantially. This is due to the high correlation between income and the trend ($r=0.99$). It seems preferable to keep income and exclude the trend.

Exercise 8.7

The F statistic is

$$
F=\frac{(0.007905-0.007333) / 2}{0.007333 /(20-4-1)}=0.59
$$

This is less than the critical value of $F(2,15)=3.68$, so the hypothesis that both coefficients are zero is accepted.

Data collection and sampling methods

Learning outcomes 349
Introduction 350
Using secondary data sources 351
Make sure you collect the right data 351
Get the most up-to-date figures 352
Keep a record of your data sources 352
Check your data 354
Collecting primary data 355
Random sampling 356
Types of random sample 357
Simple random sampling 358
Stratified sampling 358
Cluster sampling 362
Multi-stage sampling 363
Quota sampling 364
Calculating the required sample size 365
Collecting the sample 367
The sampling frame 367
Choosing from the sampling frame 368
Interviewing techniques 368
Case study: the UK Living Costs and Food Survey 370
Introduction 370
Choosing the sample 370
The sampling frame 370
Collection of information 371
Sampling errors 371
Summary 371
Key terms and concepts 372
References 372
Formulae used in this chapter 373
Problems 373

By the end of this chapter you should be able to:

- recognise the distinction between primary and secondary data sources
- avoid a variety of common pitfalls when using secondary data
- make use of electronic sources to gather data
- recognise the main types of random sample and understand their relative merits
- appreciate how such data are collected
- conduct a small sample survey yourself.

Introduction

It may seem a little odd to look at data collection now, after several chapters covering the analysis of data. Collection of data logically comes first, but the fact is that most people's experience is as a user of data, which determines their priorities. Also, it is difficult to have the motivation for learning about data collection when one does not know what it is subsequently used for. Having spent considerable time learning how to analyse data, it is now time to look at its collection and preparation.

There are two reasons why you might find this chapter useful. First, it will help if you have to carry out some kind of survey yourself. Second, it will help you in your data analysis, even if you are using someone else's data. Knowing the issues involved in data collection can help your judgement of the quality of the data you are using. The material in this chapter has been reorganised a little for this edition to reflect the fact that most data are nowadays available in electronic format and that collecting numbers from dusty tomes of statistics is now a rarity.

When conducting statistical research, there are two ways of obtaining data:
(1) use secondary data sources, such as from the World Bank, or
(2) collect sample data personally, a primary data source.

Using secondary data sources sounds simple, but it is easy to waste valuable time by making elementary errors. The first part of this chapter provides some simple advice to help you avoid such mistakes.

Much of this text has been concerned with the analysis of sample evidence and the inferences that can be drawn from it. It has been stressed that this evidence must come from randomly drawn samples and, although the notion of randomness was discussed in Chapter 2, the practical details of random sampling have not been set out.

The second part of this chapter is therefore concerned with the problems of collecting sample survey data prior to its analysis. The decision to collect the data personally depends upon the type of problem faced, the current availability of data relating to the problem and the time and cost needed to conduct a survey. It should not be forgotten that the first question that needs answering is whether the answer obtained is worth the cost of finding it. It is probably not worthwhile for the government to spend $£ 50000$ to find out how many biscuits people eat, on average (though it may be worth biscuit manufacturers doing this). The sampling procedure is always subject to some limit on cost, therefore, and the researcher is trying to obtain the best value for money. The emergence of online surveys has greatly altered the cost of collecting data and allowed very large samples to be gathered. However, there are particular issues around such data.

Using secondary data sources

Much of the research in economics and finance is based on secondary data sources, i.e. data which the researcher did not collect himself or herself. The data may be in the form of official statistics such as those published in Economic Trends or they may come from unofficial surveys. In either case one has to use the data as presented; there is no control over sampling procedures. Nevertheless, knowing how the data were collected is likely to influence how we analyse and interpret the data. For example, if we know that a particular group is underrepresented in the sample, we might want to give more weight to those observations we do have.

It may seem easy enough to look up some figures in a publication or online, but there are a number of pitfalls for the unwary. The following advice comes from experience, some of it painful, and it may help you to avoid wasting time and effort. I have also learned much from the experiences of my students, whom I have also watched suffer.

Make sure you collect the right data

This may seem obvious, but most variables can be measured in a variety of different ways. Suppose you want to measure the cost of labour (over time) to firms. Should you use the wage rate or earnings? The latter includes payment for extra hours such as overtime payments and reflects general changes in the length of the working week. Is the wage measured per hour or per week? Does it include parttime workers? If so, a trend in the proportion of part-timers will bias the wage series. Does the series cover all workers, men only or women only? Again, changes in the composition might influence the wage series. What about tax and social security costs? Are they included? There are many questions one could ask.

One needs to have a clear idea, therefore, of the precise variable one needs to collect. This will presumably depend upon the issue in question. Economic theory might provide some guidance: for instance, theory suggests that firms care about real wage rates (i.e. after taking account of inflation, so related to the price of the goods the firm sells), so this is what one should measure. Check the definition of any series you collect (this is often in a separate supplement giving explanatory notes and definitions, or at the back of the printed publication). Make sure that the definition has not changed over the time period you require: the definition of unemployment used in the United Kingdom changed about 20 times in the 1980s, generally with the effect of reducing measured unemployment, even if actual unemployment was unaffected. In the United Kingdom the geographical coverage of data may vary: one series may relate to the United Kingdom, another to Great Britain and yet another to England and Wales. Care should obviously be taken if one is trying to compare such series.

To illustrate how the measurement of a variable can matter, Figure 9.1 shows two measures of inflation, the RPI and the CPI (the retail and the consumer price index, respectively). The major differences are that the RPI includes housing costs, whereas the CPI does not, and also that the former is calculated as an arithmetic mean of the separate items in the index whereas the CPI is a geometric mean. The UK has recently switched the indexation of certain benefits, including pensions,

Figure 9.1 The CPI and RPI
Source: Adapted from Office of National Statistics (ONS) data.

from the RPI to the CPI. This means that a pension is worth about 11% less after 25 years, a substantial difference.

Get the most up-to-date figures

Many macroeconomic series are revised as more information becomes available. The balance of payments serves as a good example. The first edition of this text showed the balance of payments (current balance, in $£ \mathrm{~m}$ for the United Kingdom) for 1970, as published in successive years, as follows:

1971	1972	1973	1974	1975	1976	1977	1978	\ldots	1986
579	681	692	707	735	733	695	731	\ldots	795

The difference between the largest and smallest figures is of the order of 37%, a wide range. In the third edition of this text the figure was (from the 1999 edition of Economic Trends Annual Supplement) $£ 911 \mathrm{~m}$, which is 57% higher than the initial estimate. The latest figure at the time of writing is $£ 361 \mathrm{~m}$. Most series are better than this. The balance of payments is hard to measure because it is the small difference between two large numbers, exports and imports. A 5\% increase in measured exports and a 5% decrease in measured imports could thus change the measured balance by 100% or more.

One should always try to get the most up-to-date figures, therefore, which often means working backwards through printed data publications, i.e. use the current issue first and get data back as far as is available, then get the previous issue to go back a little further, etc. This can be tedious but it will also give some idea of the reliability of the data from the size of data revisions. This should be less of a problem with electronic sources where you can download the latest data in one go.

Keep a record of your data sources

You should always keep precise details of where you obtained each item of data. If you need to go back to the original source (to check on the definition of a series, for example), you will then be able to find it easily. It is easy to spend hours (if not
days) trying to find the source of some interesting numbers that you wish to update. For online data this means taking down the URL of the site you visit. Remember that some sites generate the page 'on demand', so the web address is not a permanent one and typing it in later on will not take you back to the same source. In these circumstances it may be better to note the 'root' part of the address (e.g. www.imf.org/data/) rather than the complete detail. You should also take a note of the date you accessed the site; this may be needed if you put the source into a bibliography.

Keeping data in Excel or another spreadsheet

Spreadsheets are ideal for keeping your data. It is often a good idea to keep the data all together in one worksheet and extract portions of them as necessary and analyse them in another worksheet. Alternatively, it is usually quite easy to transfer data from the spreadsheet to another program (e.g. SPSS or Stata) for more sophisticated analysis. In most spreadsheets you can attach a comment to any cell, so you can use this to keep a record of the source of each observation, changes of definition, etc. Thus you can retain all the information about your data together in one place.

For printed sources you should retain the name of the publication, issue number or date, and table or page number. It also helps to keep the library reference number of the publication if it is obscure. It is best to take a photocopy of the data (but check copyright restrictions) rather than just copy it down, if possible.

Tips on downloading data

- If you are downloading a spreadsheet, save it to your hard disk then include the URL of the source within the spreadsheet itself. You will always know where it came from. You can do the same with Word documents.
- You often cannot do this with PDF files, which are read-only, but if the document is not protected you can add a comment, containing the source address. Alternatively, you could save the file to your disk, including the URL within the file name. (Avoid putting extra full stops in the file name, that confuses the operating system. Replace them with hyphens.)
- You can use the 'Text select tool' within Acrobat to copy items of data from a PDF file and then paste them into a spreadsheet.
- Often, when pasting several columns of such data into Excel, all the numbers go into a single column. You can fix this using the Data, Text to Columns menu. Experimentation is required, but it works well.

Since there are now so many online sources (and they are constantly changing), a list of useful data sites rapidly becomes out of date. The following sites seem to have withstood the test of time so far and have a good chance of surviving throughout the life of this edition.

- The UK Office for National Statistics is at http://www.ons.gov.uk/ons/index. html and is a source of all official statistics. However, it is hugely frustrating to use (even after a recent re-design) and very difficult to find what you want. The 'Time series explorer' section of the site is a little better.
- It is easier to access time-series ONS data via the Econstats website (http://www. econstats.com/) which puts the data into some kind of manageable order. It also contains similar data for a range of other countries.
- Another alternative is the OECD site at http://stats.oecd.org/. This is a wellorganised site which allows easy customisation of the data you want and then allows downloading the data in Excel or other formats.
- The IMF's World Economic Database is at http://www.imf.org/ (follow the link to Data). It has macroeconomic series for most countries going back many years.
- The Penn World Tables are at http://cid.econ.ucdavis.edu/pwt.html and provide national accounts data on a comparable basis for most countries.
- The World Bank provides a lot of information, particularly relating to developing countries, at http://www.worldbank.org. It is now very easy to download the data into a spreadsheet or specialist software such as Stata (using the 'wbopendata' add-in, see the WB website).
- Bill Goffe's Resources for Economists site (http://rfe.org) contains a data section which is a good starting-off point for data sources.
- Financial and business databases are often supplied by commercial enterprises and hence are not freely available. One useful free (or partially free) site is Yahoo Finance (http://finance.yahoo.com/).
- Google is possibly the most useful website of all. Intelligent use of this search tool is often the best way to find what you want.

With the continuing development of the web there is also the ability now to 'scrape' data from websites such as Amazon, Facebook, etc. Such data can be useful for both businesses and academic researchers. For a useful guide see Edelman (2012).

Check your data

Once you have collected your data, you must check it. Once you have done this, you must check it again. Better, get someone else to help with the second check. Note that if your data are wrong, then all your subsequent calculations could be incorrect and you will have wasted much time. I have known many students who have spent months or even years on a dissertation or thesis who have then found an error in the data they collected earlier.

Obtaining data electronically should avoid input errors and provide consistent, up-to-date figures. However, this is not always guaranteed. For example, the UK Office for National Statistics (ONS) online databank provides plenty of information, but some of the series clearly have breaks in them, and there is little warning of this in the on-screen documentation. The series for revenue per admission to cinemas (roughly the price of admission) was obtained as follows:

1963	1964	1965	1966	1967
37.00	40.30	45.30	20.60	21.80

which strongly suggests an artificial break in the series in 1966 (especially as admissions fell by 12% between 1965 and 1966). Later in the series, the observations
appear to be divided by 100. The lesson is that, even with electronic data, you should check the numbers to ensure they are correct ${ }^{1}$.

A useful first step to check the data is to graph it (e.g. a time-series plot). Obvious outliers or other unexpected features will show up and you can investigate them for possible errors. Do not just rely on the graphs, however, look through your data and check it against the original source. It can then be useful to calculate some summary descriptive statistics; for example, does the average level of the weekly earnings data you have downloaded look approximately correct? Does the rate of growth of a time-series variable look reasonable? If not, go back and check. Better that you find an error in the data than someone else finds the error in your results.

Collecting primary data

Primary data are data that you have collected yourself from original sources, often by means of a sample survey. This has the advantage that you can design the questionnaire to include the questions of interest to you and you have total control over all aspects of data collection. You can also choose the size of the sample (as long as you have sufficient funds available) so as to achieve the desired width of any confidence intervals.

Almost all surveys rely upon some method of sampling, whether random or not. The probability distributions and formulae which have been used in previous chapters as the basis of the techniques of estimation and hypothesis testing rely upon the samples having been drawn at random from the population. If this is not the case, then the formulae for confidence intervals, hypothesis tests, etc., are incorrect and not strictly applicable (they may be reasonable approximations, but it is difficult to know how reasonable). In addition, the results about the bias and precision of estimators will be incorrect. For example, suppose an estimate of the average expenditure on servicing by car owners were obtained from a sample survey. A poor estimate would arise if only Rolls-Royce owners were sampled, since they are not representative of the population as a whole. These are expensive cars, with commensurately high servicing costs, not representative of the majority of cars on the road.

Thus, some form of random sampling method is needed to be able to use the theory of the probability distributions of random variables. Nor should it be believed that the theory of random sampling can be ignored if a very large sample is taken, as the following cautionary tale shows. In 1936 the Literary Digest tried to predict the result of the forthcoming US election by sending out 10 million mail questionnaires. Two million were returned, but even with this enormous sample size Roosevelt's vote was incorrectly estimated by a margin of 19 percentage points, and the Digest predicted the wrong candidate winning the presidency. The problem here was two-fold: first, the questionnaires may have not been sent out to a representative sample of voters, and second, those who respond to questionnaires are not necessarily a random sample of those who receive them.

[^41]
Random sampling

The definition of random sampling is that every element of the population should have a known, non-zero probability of being included in the sample. The problem with the sample of cars used above was that Ford cars (for example) had a zero probability of being included. Many sampling procedures give an equal probability of being selected to each member of the population, but this is not an essential requirement. It is possible to adjust the sample data to take account of unequal probabilities of selection. If, for example, Rolls-Royce had a much greater chance of being included than Ford, then the estimate of the population mean (of servicing costs) would be calculated as a weighted average of the sample observations, with greater weight being given to the few 'Ford' observations than to relatively abundant 'Rolls-Royce' observations. A very simple illustration of this is given below. Suppose that for the population we have the following data:

	Rolls-Royce	Ford
Number in population	20000	2000000
Annual servicing cost	$£ 1000$	$£ 200$

Then the true average repair bill is

$$
\mu=\frac{20000 \times 1000+2000000 \times 200}{2020000}=207.92
$$

Suppose the sample data are as follows:

	Rolls-Royce	Ford
Number in sample	20	40
Probability of selection	$1 / 1000$	$1 / 50000$
Servicing cost	$£ 990$	$£ 205$

To calculate the average cost from the sample data we use a weighted average, using the relative population sizes as weights, not the sample sizes:

$$
\bar{x}=\frac{20000 \times 990+2000000 \times 205}{2020000}=212.77
$$

If the sample sizes were used as weights, the average would come out at $£ 466.67$, which is substantially incorrect.

As long as the probability of being in the sample is known (and hence the relative population sizes must be known), the weight can be derived; but if the probability is zero, this procedure breaks down.

Other theoretical assumptions necessary for deriving the probability distribution of the sample mean or proportion are that the population is of infinite size and that each observation is independently drawn. In practice the former condition is never satisfied, since no population is of infinite size, but most populations are large enough that it does not matter. For each observation to be independently drawn (i.e. the fact of one observation being drawn does not alter the probability of others in the sample being drawn) strictly requires that sampling be done with replacement, i.e. each observation drawn is returned to the population before the
next observation is drawn. Again in practice this is often not the case, sampling being done without replacement, but again this is of negligible practical importance where the population is large relative to the sample.

On occasion, the population is quite small and the sample constitutes a substantial fraction of it. In these circumstances the finite population correction (fpc) should be applied to the formula for the variance of \bar{x}, the fpc being given by

$$
\begin{equation*}
\mathrm{fpc}=(1-n / N) \tag{9.1}
\end{equation*}
$$

where N is the population size and n the sample size. The table below illustrates its usage:

Variance of \bar{x} from infinite population	Variance of \bar{x} from finite population	Example values of fpc				
		$n=20$	25	50	100	
σ^{2} / n	$\sigma^{2} / n \times(1-n / N)$	0.60	0.75	0.95	0.90	

The finite population correction serves to narrow the confidence interval because a sample size of (say) 25 reveals more about a population of 100 than about a population of 100000 , so there is less uncertainty about population parameters. When the sample size constitutes only a small fraction of the population (e.g. 5% or less) the finite population correction can be ignored in practice. If the whole population is sampled $(n=N)$ then the variance becomes zero and there is no uncertainty about the population mean.

A further important aspect of random sampling occurs when there are two samples to be analysed, when it is important that the two samples are independently drawn. This means that the drawing of the first sample does not influence the drawing of the second sample. This is a necessary condition for the derivation of the probability distribution of the difference between the sample means (or proportions).

Types of random sample

The meaning and importance of randomness in the context of sampling has been explained. However, there are various different types of sampling, all of them random, but which have different statistical properties. Some methods lead to greater precision of the estimates, while others can lead to considerable cost savings in the collection of the sample data, but at the cost of lower precision. The aim of sampling is usually to obtain the most precise estimates of the parameter in question, but the best method of sampling will depend on the circumstances of each case. If it is costly to sample individuals, a sampling method which lowers cost may allow a much larger sample size to be drawn and thus good (precise) estimates to be obtained, even if the method is inherently not very precise. These issues are investigated in more detail below, as we will look at a number of different methods:

- simple random sampling - the simplest type, on which our earlier formulae for confidence intervals, etc., were based
- stratified sampling - a method which ensures the sample is more representative of the population (ruling out some forms of unrepresentative samples)
- cluster sampling (a relatively cheap method of sampling, allowing a larger sample size)
- quota sampling (a non-random method, carried out because it is cheap)
- multi-stage sampling (a method which combines the advantages of some of the above types).

Simple random sampling

This type of sampling has the property that every possible sample that could be obtained from the population has an equal chance of being selected. This implies that each element of the population has an equal probability of being included in the sample, but this is not the defining characteristic of simple random sampling. As will be shown below, there are sampling methods where every member of the population has an equal chance of being selected, but some samples (i.e. certain combinations of population members) can never be selected.

The statistical methods in this text are based upon the assumption of simple random sampling from the population. It leads to the most straightforward formulae for estimation of the population parameters. Although many statistical surveys are not based upon simple random sampling, the use of statistical tests based on simple random sampling is justified since the sampling process is often hypothetical. For example, if one were to compare annual growth rates of two countries over a 30 -year period, a z test on the difference of two sample means (i.e. the average annual growth rate in each country) would be conducted. In a sense the data are not a sample since they are the only possible data for those two countries over that time period. Why not just regard the data as constituting the whole population, therefore? Then it would just be a case of finding which country had the higher growth rate; there would be no uncertainty about it.

The alternative way of looking at the data would be to suppose that there exists some hypothetical population of annual growth rates and that the data for the two countries were drawn by (simple) random sampling from this population. Is this story consistent with the data available? In other words, could the data we have simply arise by chance? If the answer to this is no (i.e. the z score exceeds the critical value) then there is something causing a difference between the two countries (it may not be clear what that something is). In this case it is reasonable to assume that all possible samples have an equal chance of selection, i.e. that simple random sampling takes place. Since the population is hypothetical, one might as well suppose it to have an infinite number of members, again required by sampling theory.

Stratified sampling

Returning to the practical business of sampling, one problem with simple random sampling is that it is possible to collect 'bad' samples, i.e. those which are unrepresentative of the population. Suppose that we are investigating how often people buy a daily newspaper, where it is the case that older people tend to buy one more frequently (with younger people more likely to use the internet as a news source, for example). The situation can be illustrated in Figure 9.2.

Now suppose that we take a random sample from this population which, by bad luck or bad design, contains exclusively or predominately the young. It is

Figure 9.2
Differences in newspaper buying habits

clear that average frequency of purchase would be estimated at around 120 days per year and that this is an underestimate for the population as a whole.

To remedy this problem, we should ensure that each of the age groups is fairly represented in the sample. Hence, the proportion of younger people in the sample should reflect the proportion in the population, and the same goes for the other groups. The age groups are referred to as strata and each should be fairly represented in the sample. Suppose the strata are made up as follows:

Percentage of population in age group		
Elderly	Middle aged	Young
20%	50%	30%

Suppose a sample of size 100 is taken. With luck it would contain 20 older people, 50 who are middle-aged and 30 young people, and thus would be representative of the population as a whole. But if, by bad luck (or bad sample design), all 100 people in the sample were young, poor results will be obtained since newspaper buying differs between age groups.

To avoid this type of problem a stratified sample is taken, which ensures that all age groups are represented in the sample. This means that the survey would have to ask people about their age as well as their reading habits. The simplest form of stratified sampling is equiproportionate sampling, whereby a stratum which constitutes (say) 20% of the population also makes up 20% of the sample. For the example above the sample would be made up as follows:

Class	Elderly	Middle-aged	Young	Total
Number in sample	20	50	30	100

It should be clear why stratified sampling constitutes an improvement over simple random sampling, since it rules out 'bad' samples, i.e. those not representative of the population. It is simply impossible to get a sample consisting completely of young people. In fact, it is impossible to get a sample in anything but the
proportions 20:50:30, as in the population; this is ensured by the method of collecting the sample.

It is easy to see when stratification leads to large improvements over simple random sampling. If there were no difference between strata (age groups) in buying habits, then there would be no gain from stratification. If behaviour were the same regardless of age group, there would be no point in dividing up the population according to that factor. On the other hand, if there were large differences between strata, but within strata reading habits were similar, then the gains from stratification would be large. (The fact that newspaper habits are similar within strata means that even a small sample from a single stratum should give an accurate picture of that stratum.)

Stratification is beneficial, therefore, when

- the between-strata differences are large, and
- the within-strata differences are small.

These benefits take the form of greater precision of the estimates, i.e. narrower confidence intervals ${ }^{2}$. The greater precision arises because stratified sampling makes use of supplementary information - i.e. the proportion of the population in each age group. Simple random sampling does not make use of this. Obviously, therefore, if those proportions of the population are unknown, stratified sampling cannot be carried out. However, even if the proportions are only known approximately, there could be a gain in precision.

In this example age is a stratification factor, i.e. a variable which is used to divide the population into strata. Other factors could, of course, be used, such as income or even height. A good stratification factor is one which is related to the subject of investigation. Income would probably be a good stratification factor, therefore, since it is likely to be related to reading habits, but height is not since there is probably little difference between tall and short people in newspaper purchases. What is a good stratification factor obviously depends upon the subject of study. A bed manufacturer might well find height to be a good stratification factor if conducting an enquiry into preferences about the size of beds. Although good stratification factors improve the precision of estimates, bad factors do not make them worse; there will simply be no gain over simple random sampling. It would be as if there were no differences between the age groups in reading habits, so that ensuring the right proportions in the sample is irrelevant, but it has no detrimental effects.

Proportional allocation of sample observations to the different strata (as done above) is the simplest method but is not necessarily the best. For the optimal allocation there should generally be a divergence from proportional allocation, and the sample should have more observations in a particular stratum (relative to proportional allocation):

- the more diverse the stratum, and
- the cheaper it is to sample the stratum.

[^42]Starting from the 20：50：30 proportional allocation derived earlier，suppose that older people are all very similar in their buying habits but that youngsters vary considerably in their behaviour．Then the representation of youngsters in the sample should be increased and that of older people reduced．If it were true that every elderly person bought a newspaper every day，then a single observation from that class would be sufficient to yield all there is to know about it． Furthermore，if it is cheaper to sample younger readers，perhaps because they are easier to contact than older people，then again the representation of youngsters in the sample should be increased．This is because，for a given budget，it will allow a larger total sample size．

Stratified sampling is also useful when it is desired to look in detail at some or all of the strata．For example，if one wanted to look at the variation in buying behaviour by the young，it would be inconvenient if one＇s sample contained（by chance）very few young people．Stratified sampling avoids this by ensuring that each stratum is adequately covered．

Surveying concert－goers

A colleague and I carried out a survey of people attending a concert in Brighton（by Jamiroquai－I hope they are still popular by the time you read this）to find out who they were，how much they spent in the town and how they travelled to the concert．The spread－ sheet gives some of the results．

§ Microsoft Excel－Book1						
：近］Eile Edit Yiew Insert Format Iools Data Whindow Help						
吅 8 日						
M17＊$f \times$						
	A	B	C	D	E	F
3						
4		Number	\％	Cumulative \％		
5	Work in Brighton	11	15.1	15.1		
6	Student in Brighton	19	26.0	41.1		
7	Work outside Brighton	42	57.5	98.6		
8	Not working	1	1.4	100.0		
9	Total	73	100.0			
10						
11	Method of travelling to concert：					
12		Number	\％	Cumulative \％		
13	Car	23	31.5	31.5		
14	Car share	24	32.9	64.4		
15	Bus／coach	4	5.5	69.9		
16	On foot	9	12.3	82.2		
17	Train	10	13.7	95.9		
18	Taxi	3	4.1	100.0		
19	Total	73	100.0			
20						

The data were collected by face-to-face interviews before the concert. We did not have a sampling frame, so the (student) interviewers simply had to choose the sample themselves on the night. The one important instruction about sampling we gave them was that they should not interview more than one person in any group. People in the same group are likely to be influenced by each other (e.g. travel together) so we would not get independent observations, reducing the effective sample size.

From the results you can see that 41.1\% either worked or studied in Brighton and that only one person in the sample was neither working nor studying. The second half of the table shows that 64.4% travelled to the show in a car (obviously adding to congestion in the town), about half of whom shared a car ride. Perhaps surprisingly, Brighton residents were just as likely to use their car to travel as were those from out of town.

The average level of spending was $£ 24.20$, predominantly on food ($£ 7.38$), drink ($£ 5.97$) and shopping ($£ 5.37$). The last category had a high variance associated with it - many people spent nothing, one person spent $£ 200$ in the local shops.

Cluster sampling

A third form of sampling is cluster sampling which, although intrinsically inefficient, can be much cheaper than other forms of sampling, allowing a larger sample size to be collected. Drawing a simple or a stratified random sample of size 100 from the whole of Britain would be very expensive to collect since the sample observations would be geographically very spread out. Interviewers would have to make many long and expensive journeys simply to collect one or two observations. To avoid this, the population can be divided into 'clusters' (for example, regions or local authorities), and one or more of these clusters are then randomly chosen. Sampling takes place only within the selected clusters, is therefore geographically concentrated and the cost of sampling falls, allowing a larger sample to be collected for the same expenditure of money.

Within each cluster one can have either a 100% sample or a lower sampling fraction, which is called multi-stage sampling (this is explained further below). Cluster sampling gives unbiased estimates of population parameters but, for a given sample size, these are less precise than the results from simple or stratified sampling. This arises in particular when the clusters are very different from each other, but fairly homogeneous within themselves. In this case once a cluster is chosen, if it is unrepresentative of the population, a poor (inaccurate) estimate of the population parameter is inevitable. The ideal circumstances for cluster sampling are when all clusters are very similar, since in that case examining one cluster is almost as good as examining the whole population.

Dividing up the population into clusters and dividing it into strata are similar procedures, but the important difference is that sampling is from one or at most a few clusters, but from all strata. This is reflected in the characteristics which make for good sampling. In the case of stratified sampling, it is beneficial if the betweenstrata differences are large and the within-strata differences small. For cluster sampling this is reversed: it is desirable to have small between-cluster differences but heterogeneity within clusters. Cluster sampling is less efficient (precise) for a given sample size, but is cheaper and so can offset this disadvantage with a larger sample size. In general, cluster sampling needs a much larger sample to be effective, so is only worthwhile where there are significant gains in cost.

Multi-stage sampling

Multi-stage sampling was briefly referred to in the previous section and is commonly found in practice. It may consist of a mixture of simple, stratified and cluster sampling at the various stages of sampling. Consider the problem of selecting a random sample of 1000 people from a population of 25 million to find out about voting intentions. A nationwide simple random sample would be extremely expensive to collect, for the reasons given above, so an alternative method must be found. Suppose further that it is suspected that voting intentions differ according to whether one lives in the north or south of the country and whether one is a home owner or renter. How is the sample to be selected? The following would be one appropriate method.

First, the country is divided up into clusters of counties or regions, and a random sample of these taken, say one in five. This would be the first way of reducing the cost of selection, since only one-fifth of all counties now need to be visited. This one-in-five sample would be stratified to ensure that north and south were both appropriately represented. To ensure that each voter has an equal chance of being in the sample, the probability of a county being drawn should be proportional to its adult population. Thus, a county with twice the population of another should have twice the probability of being in the sample.

Having selected the counties, the second stage would be to select a random sample of local authorities within each selected county. This might be a 1-in-10 sample from each county and would be a simple random sample within each cluster. Finally, a selection of voters from within each local authority would be taken, stratified according to tenure. This might be a 1-in-500 sample. The sampling fractions would therefore be

$$
\frac{1}{5} \times \frac{1}{10} \times \frac{1}{500}=\frac{1}{25000}
$$

So from the population of 25 million voters a sample of 1000 would be collected. For different population sizes the sampling fractions could be adjusted so as to achieve the goal of a sample size of 1000 .

The sampling procedure is a mixture of simple, stratified and cluster sampling. The two stages of cluster sampling allow the selection of 50 local authorities for study and so costs are reduced. The north and south of the country are both adequately represented and housing tenures are also correctly represented in the sample by the stratification at the final stage. The resulting confidence intervals will be complicated to calculate and may in fact be wider than for a simple random sample of the same size (see the discussion of the UK Time Use Survey), but this more complicated procedure will be much less costly to implement.

The UK Time Use Survey

The UK Time Use Survey provides a useful example of the effects of multi-stage sampling. It uses a mixture of cluster and stratified sampling and the results are weighted to compensate for unequal probabilities of selection into the sample and for the effects of nonresponse. Together, these act to increase the size of standard errors, relative to those obtained from a simple random sample of the same size. This increase can be measured by
the design factor, defined as the ratio of the true standard error to the one arising from a simple random sample of the same size. For the time use survey, the design factor is typically 1.5 or more. Thus the standard errors are increased by 50% or more, but a simple random sample of the same size would be much more expensive to collect (for example, the clustering means that only a minority of geographical areas are sampled).

The following table shows the average amount of time spent sleeping by 16 to 24 year olds (in minutes per day):

	Mean	True s.e.	95% CI	Design factor	n	Effective sample size
Male	544.6	6.5	$[531.9,557.3]$	1.63	1090	412
Female	545.7	4.2	$[537.3,554.0]$	1.14	1371	1058

The true standard error, taking account of the sample design, is 6.5 minutes for men. The design factor is 1.63 , meaning this standard error is 63% larger than for a similar sized ($n=1090$) simple random sample. Equivalently, a simple random sample of size $n=412$ ($=1090 / 1.63^{2}$) would achieve the same precision (but at greater cost).

How the design factor is made up is shown in the following table:

Design factor (deft)	Deft due to stratification	Deft due to clustering	Deft due to weighting
1.63	1.00	1.17	1.26

It can be seen that stratification has no effect on the standard error, but both clustering and the post-sample weighting serve to increase the standard errors.

Source: The UK 2000 Time Use Survey, Technical Report 2003, HMSO.

Quota sampling

Quota sampling is a non-random method of sampling and therefore it is impossible to use sampling theory to calculate confidence intervals from the sample data, or to find whether or not the sample will give biased results. Quota sampling simply means obtaining the sample information as best one can, for example, by asking people in the street (hence it is sometimes called 'convenience sampling'). However, it is by far the cheapest method of sampling and so allows much larger sample sizes and can be carried out quickly. As shown above, large sample sizes can still give biased results if sampling is non-random; but in some cases the budget is too small to afford even the smallest properly conducted random sample, so a quota sample is the only alternative.

Even with quota sampling, where the interviewer is simply told to go out and obtain (say) 1000 observations, it is worth making some crude attempt at stratification. The problem with human interviewers is that they are notoriously nonrandom, so that when they are instructed to interview every 10th person they see (a reasonably random method), if that person turns out to be a shabbily dressed tramp slightly the worse for drink, they are quite likely to select the 11 th person instead. Shabbily dressed tramps, slightly the worse for drink, are therefore underrepresented in the sample. To combat this sort of problem the interviewers are given quotas to fulfil, for example, 20 men and 20 women, 10 old-age pensioners,
one shabbily dressed tramp, etc., so that the sample will at least broadly reflect the population under study and give reasonable results.

It is difficult to know how accurate quota samples are, since it is rare for their results to be checked against proper random samples or against the population itself. Probably the most common quota samples relate to voting intentions and so can be checked against actual election results. The 1992 UK general election provides an interesting illustration. The opinion polls predicted a fairly substantial Labour victory, but the outcome was a narrow Conservative majority. An enquiry concluded that the erroneous forecast occurred because a substantial number of voters changed their minds at the last moment and that there was 'differential turn-out', i.e. Conservative supporters were more likely to vote than Labour ones. Since then, pollsters have tried to take this factor into account when trying to predict election outcomes.

Unfortunately, the pollsters were caught out again in 2015, this time predicting a tie between the two major parties when the election resulted in a clear majority for the Conservative Party. This time the blame was put on unrepresentative samples, with some groups under-represented (e.g. 45-64 year olds). Attempts to correct this via weighting of the sample results proved ineffective. Interestingly, a proper random sample (the British Election Survey) did get the right result, but this was one carried out after the election and so is difficult to compare impartially with the quota samples.

Can you always believe surveys?

Many surveys are more interested in publicising something than in finding out the facts. One has to be wary of surveys finding that people enjoy high-rise living ... when the survey is sponsored by an elevator company, for example. In July 2007 a survey of 1000 adults found that 'the average person attends 3.4 weddings each year'. This sounds suspiciously high to me. I have never attended three or more weddings in a year, nor have friends I have asked. Let us do some calculations. There were 283730 weddings in the United Kingdom in 2005. There are about 45 m adults, so if they each attend 3.4 weddings, that makes $45 \times 3.4=153$ million attendees. This means 540 per wedding. That seems excessively high (remember this excludes children) and probably means the sample design was poor, obtaining an unrepresentative result.

A good way to make a preliminary judgement on the likely accuracy of a survey is to ask 'who paid for this?'

Calculating the required sample size

Before collecting sample data, it is obviously necessary to know how large the sample size has to be. The required sample size will depend upon two factors:

- the desired level of precision of the estimate, and
- the funds available to carry out the survey.

The greater the precision required, the larger the sample size needs to be, other things being equal. But a larger sample will obviously cost more to collect, and this might conflict with a limited amount of funds being available. There is a

Figure 9.3
The desired width of the confidence interval

trade-off, therefore, between the two desirable objectives of high precision and low cost. The following example shows how these two objectives conflict.

A firm producing sweets wishes to find out the average amount of pocket money children receive per week. It wants to be 99% confident that the estimate is within 20 pence of the correct value. How large a sample is needed?

The problem is one of estimating a confidence interval, turned on its head. Instead of having the sample information \bar{x}, s and n, and calculating the confidence interval for μ, the desired width of the confidence interval is given and it is necessary to find the sample size n which will ensure this. The formula for the 99% confidence interval, assuming a Normal rather than t distribution (i.e. it is assumed that the required sample size will be large), is

$$
\begin{equation*}
\bar{x} \pm 2.58 \times \sqrt{s^{2} / n} \tag{9.2}
\end{equation*}
$$

Diagrammatically this can be represented as in Figure 9.3.
The firm wants the distance between \bar{x} and μ to be no more than 20 pence in either direction, which means that the confidence interval must be 40 pence wide. The value of n which makes the confidence interval 40 pence wide has to be found. This can be done by solving the equation

$$
20=2.58 \times \sqrt{s^{2} / n}
$$

and hence, by rearranging:

$$
\begin{equation*}
n=\frac{2.58^{2} \times s^{2}}{20^{2}} \tag{9.3}
\end{equation*}
$$

All that is now required to solve the problem is the value of s^{2}, the sample variance; but since the sample has not yet been taken, this is not available. There are a number of ways of trying to get round this problem:

- using the results of existing surveys if available,
- conducting a small, preliminary, survey, and
- guessing.

These may not seem very satisfactory (particularly the last), but something has to be done and some intelligent guesswork should give a reasonable estimate of s^{2}. Suppose, for example, that a survey of children's spending taken five years previously showed a standard deviation of 30 p . It might be reasonable to expect that the standard deviation of spending would be similar to the standard deviation of
income, so 30p (updated for inflation) can be used as an estimate of the standard deviation. Suppose that five years' inflation turns the 30p into 50p. Using $s=50$, we obtain

$$
n=\frac{2.58^{2} \times 50^{2}}{20^{2}}=41.6
$$

giving a required sample size of 42 (the sample size has to be an integer). This is a large ($n \geq 25$) sample size, so the use of the Normal distribution was justified.

Is the firm willing to pay for such a large sample? Suppose it was willing to pay out $£ 1000$ in total for the survey, which costs $£ 600$ to set up and then $£ 6$ per person sampled. The total cost would be $£ 600+42 \times 6=£ 852$, which is within the firm's budget. If the firm wished to spend less than this, it would have to accept a smaller sample size and thus a lower precision or a lower level of confidence. For example, if only a 95% confidence level were required, the appropriate z score would be 1.96 , yielding

$$
n=\frac{1.96^{2} \times 50^{2}}{20^{2}}=24.01
$$

A sample size of 24 would only cost $£ 600+6 \times 24=£ 804$. (At this sample size the assumption that $\bar{\chi}$ follows a Normal distribution becomes less tenable, so the results should be treated with caution. Use of the t distribution is tricky, because the appropriate t value depends upon the number of degrees of freedom which in turn depends on sample size, which is what is being looked for.)

The general formula for finding the required sample size is

$$
\begin{equation*}
n=\frac{z_{\alpha}^{2} \times s^{2}}{p^{2}} \tag{9.4}
\end{equation*}
$$

where z_{α} is the z score appropriate for the $(100-\alpha) \%$ confidence level and p is the desired accuracy (20 pence in this case).

Caution should be used with this type of calculation as the result is true for a simple random sample only. If a different type of sampling is used (e.g. cluster sampling) then the sample might need to be bigger, perhaps double the size for simple random sample.

Collecting the sample

The sampling frame

We now move on to the fine detail of how to select the individual observations which make up the sample. In order to do this, it is necessary to have some sort of sampling frame, i.e. a list of all the members of the population from which the sample is to be drawn. This can be a problem if the population is extremely large, for example the population of a country, since it is difficult to manipulate so much information (cutting up 65 million pieces of paper to put into a hat for a random draw is a tedious business). Alternatively, the list might not even exist or, if it does, not be in one place convenient for consultation and use. In this case there is often an advantage to multi-stage sampling, for the selection of regions or even local
authorities is fairly straightforward and not too time-consuming. Once at this lower level the sampling frame is more manageable (each local authority has an electoral register, for example) and individual observations can be relatively easily chosen. Thus it is not always necessary to have a complete sampling frame for the entire population in one place.

Choosing from the sampling frame

There is a variety of methods available for selecting a sample of (say) 1000 observations from a sampling frame of 25000 names, varying from the manual to the electronic. The oldest method is to cut up 25000 pieces of paper, put them in a (large) hat, shake it (to randomise) and pick out 1000. This is fairly time-consuming, however, and has some pitfalls - if the pieces are not all cut to the same size, is the probability of selection the same? It is much better if the population in the sampling frame is numbered in some way, for then one only has to select random numbers. This can be done by using a table of random numbers (see Table A1 on page 448, for example), or a computer. The use of random number tables for such purposes is an important feature of statistics, and in 1955 the Rand Corporation produced a book entitled A Million Random Digits with 100000 Normal Deviates. This book, as the title promises, contained nothing but pages of random numbers which allowed researchers to collect random samples. Interestingly, the authors did not bother to fully proofread the text, since a few (random) errors here and there would not matter. These numbers were calculated electronically and nowadays every computer has a facility for rapidly choosing a set of random numbers. (It is an interesting question how a computer, which follows rigid rules of behaviour, can select random numbers which, by definition, are unpredictable by any rule.)

A further alternative, if a 1 -in- 25 sample is required, is to select a random starting point between 1 and 25 and then select every subsequent 25 th observation (e.g. the 3rd, 28th, 53 rd , etc.). This is a satisfactory procedure if the sampling frame is randomly sorted to start with, but otherwise there can be problems. For example, if the list is sorted by income (poorest first), a low starting value will almost certainly give an underestimate of the population mean. If all the numbers were randomly sorted, this 'error' in the starting value would not be important.

Interviewing techniques

Good training of interviewers is vitally important to the results of a survey. It is very easy to lead an interviewee into a particular answer to a question. Consider the following two sets of questions:

A

(1) Do you know how many people were killed by the atomic bomb at Hiroshima?
(2) Do you think nuclear weapons should be banned?

B
(1) Do you believe in nuclear deterrence?
(2) Do you think nuclear weapons should be banned?
$A 2$ is almost certain to get a higher 'yes' response than $B 2$. Even a different ordering of the questions can have an effect upon the answers (consider asking
$A 2$ before $A 1$). The construction of the questionnaire has to be done with care, therefore. The manner in which the questions are asked is also important, since it can often suggest the answer. Good interviewers are trained to avoid these problems by sticking precisely to the wording of the question and not to suggest an expected answer.

Telephone surveys

An article by M. Collins in the Journal of the Royal Statistical Society reveals some of the difficulties in conducting surveys by telephone. First, the sampling frame is incomplete since, although most people have a telephone, some are not listed in the directory. In the late 1980s this was believed to be around 12% of all numbers, but it has been growing since, to around 40%. (Part of this trend, of course, may be due to people getting fed up with being pestered by salespersons and 'market researchers'.) Researchers have responded with 'random digit dialling' which is made easier by modern computerised equipment.

Matters are unlikely to improve for researchers in the future. The answering machine is often used as a barrier to unwanted calls and some residential lines connect to fax machines. Increasing deregulation and mobile phone use mean it will probably become more and more difficult to obtain a decent sampling frame for a proper survey.

Source: M. Collins, Sampling for UK telephone surveys, J. Royal Statistical Society, Series A, 162 (1), 1999.

Even when these procedures are adhered to there can be various types of response bias. The first problem is of non-response, due to the subject not being at home when the interviewer calls. There might be a temptation to remove that person from the sample and call on someone else, but this should be resisted. There could well be important differences between those who are at home all day and those who are not, especially if the survey concerns employment or spending patterns, for example. Continued efforts should be made to contact the subject. One should be wary of surveys which have low response rates, particularly where it is suspected that the non-response is in some way systematic and related to the goal of the survey.

A second problem is that subjects may not answer the question truthfully for one reason or another, sometimes inadvertently. An interesting example of this occurred in the survey into sexual behaviour carried out in Britain in 1992 (see Nature, 3 December 1992). Amongst other things, this found the following:

- The average number of heterosexual partners during a woman's lifetime is 3.4.
- The average number of heterosexual partners during a man's lifetime is 9.9.

This may be in line with one's beliefs about behaviour, but, in fact, the figures must be wrong. The total number of partners of all women must by definition equal the total number for all men. Since there are approximately equal numbers of males and females in the United Kingdom, the averages must therefore be about the same. So how do the above figures come about?

It is too much to believe that international trade holds the answer. It seems unlikely that British men are so much more attractive to foreign women than British women are to foreign men. Nor is an unrepresentative sample likely. It was carefully chosen and quite large (around 20000 respondents). The answer would appear to be that some people are lying. Either women are being excessively
modest or (more likely?) men are boasting. Perhaps the answer is to divide by three whenever a man talks about his sexual exploits.

For an update on this story, see the article by J. Wadsworth et al., What is a mean? An examination of the inconsistency between men and women in reporting sexual partnerships, J. Royal Statistical Society, 1996, Series A. 159 (1).

Case study: the UK Living Costs and Food Survey

Introduction

The Living Costs and Food Survey (LCF) is an example of a large government survey which examines households' expenditure patterns (with a particular focus on food expenditures) and income receipts. It is worth having a brief look at it, therefore, to see how the principles of sampling techniques outlined in this chapter are put into practice. The LCF succeeded the Expenditure and Food Survey in 2008, which used a similar design. The LCF is used for many different purposes, including the calculation of weights to be used in the UK Consumer Price Index and the assessment of the effects of changes in taxes and state benefits upon different households.

Choosing the sample

The sample design which follows is known as a multi-stage, stratified random sample with clustering. This is obviously quite a complex design so will be examined in a little detail.

Stage 1

The primary sampling unit (PSU) is the Postcode Sector, a small geographical area. There are 638 of these selected at random each year (from a total of around 10,600 sectors in the country), stratified according to

- region,
- socio-economic classification, and
- car ownership.

This ensures the chosen areas are representative of the country as a whole on these characteristics.

Stage 2

Eighteen households are drawn at random from each postcode sector, giving a prospective sample size of $638 \times 18=11484$ households. To capture spending patterns throughout the year, interviewing takes place in approximately 53 sectors each month. The response rate to the survey is approximately 50%, having fallen in recent years, hence the number of households providing information is around 5700.

The sampling frame

The Postcode Address File, a list of all postal delivery addresses, is used as the sampling frame. Previously the register of electors in each ward had been used but had
some drawbacks: it was under-representative of those who have no permanent home or who move frequently (e.g. tramps, students, etc.). The fact that many people took themselves off the register in the early 1990s in order to avoid paying the Community Charge could also have affected the sample.

Collection of information

The data are collected by interview, and by asking participants to keep a diary in which they record everything they purchase over a two-week period. Highly skilled interviewers are required to ensure accuracy and compliance with the survey, and each participating family is visited several times. As an inducement to cooperate, each member of the family is paid a small sum of money - it is to be hoped that the anticipation of this does not distort their expenditure patterns.

Sampling errors

Given the complicated survey design, it is difficult to calculate sampling errors exactly. The multi-stage design of the sample actually tends to increase the sampling error relative to a simple random sample, but, of course, this is offset by cost savings which allow a greatly increased sample size. Overall, the results of the survey are of good quality and can be verified by comparison with other statistics, such as retail sales, for example.

Summary

- A primary data source is one where you obtain the data yourself, designed the questions and have access to all the original observations.
- A secondary data source is one collected by others, perhaps for a different purpose to your own. You may have access to all the original observations (typical with electronic sources) or a summary, usually in the form of tables.
- When collecting data always keep detailed notes of the sources of all information, how it was collected, precise definitions of the variables, etc.
- Most data can be obtained electronically, which saves having to type it into a computer, but the data still need to be checked for errors.
- There are various types of random sample, including simple, stratified and clustered random samples. The methods are sometimes combined in multi-stage samples.
- The type of sampling affects the size of the standard errors of the sample statistics. The most precise sampling method is not necessarily the best if it costs more to collect (since the overall sample size that can be afforded will be smaller).
- Quota sampling is a non-random method of sampling which has the advantage of being extremely cheap. It is often used for opinion polls and surveys.
- The sampling frame is the list (or lists) from which the sample is drawn. If it omits important elements of the population, its use could lead to biased results.
- Careful interviewing techniques are needed to ensure reliable answers are obtained from participants in a survey.

Key terms and concepts

cluster sampling	sampling frame
design factor	sampling methods
finite population correction	secondary data
multi-stage sampling	simple random sampling
online data	strata
primary data	stratification factor
quota sampling	stratified sampling

References Barnett, V., Sample Survey Principles and Methods, Wiley, 2002.
Edelman, B., Using Internet Data for Economic Research, Journal of Economic Perspectives, 26(2), 189-206, 2012.
Moser, C.A., and G. Kalton, Survey Methods in Social Investigations, Heinemann, 1971.

Rand Corporation, A Million Random Digits with 100000 Normal Deviates, The Glencoe Press, 1955.

Formulae used in this chapter

Formula	Description	Note
$f p c=1-n / N$	Finite population correction for the variance of \bar{x}	
$n=\frac{z_{\alpha}^{2} \times s^{2}}{p^{2}}$	Required sample size to obtain desired confidence interval	p is the desired accuracy (half the width of the Cl$), Z_{\alpha}$ is the critical value from the Normal distribution (depends on confidence level specified).

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
9.1 What issues of definition arise in trying to measure 'output'?
9.2 What issues of definition arise in trying to measure 'unemployment'?
9.3 Find the gross domestic product for both the United Kingdom and the United States for the period 1995 to 2003. Obtain both series in constant prices.
9.4 Find figures for the monetary aggregate MO for the years 1995 to 2003 in the United Kingdom, in nominal terms.
9.5 A firm wishes to know the average weekly expenditure on food by households to within $£ 2$, with 95% confidence. If the variance of food expenditure is thought to be about 400 , what sample size does the firm need to achieve its aim?
9.6 A firm has $£ 10000$ to spend on a survey. It wishes to know the average expenditure on gas by businesses to within $£ 30$ with 99% confidence. The variance of expenditure is believed to be about 40000 . The survey costs $£ 7000$ to set up and then $£ 15$ to survey each firm. Can the firm achieve its aim with the budget available?
9.7 (Project) Visit your college library or online sources to collect data to answer the following question. Have females' earnings risen relative to men's over the past 10 years? You should write a short report on your findings. This should include a section describing the data collection process, including any problems encountered and decisions you had to make. Compare your results with those of other students. It might be interesting to compare your experiences of using online and offline sources of data.
9.8 (Project) Do a survey to find the average age of cars parked on your college campus. (A letter or digit denoting the registration year can be found on the number plate (applies to the United Kingdom, other countries will differ) - precise details can be obtained in various guides to usedcar prices.) You might need stratified sampling (e.g. if administrators have newer cars than faculty and students, for example). You could extend the analysis by comparing the results with a public car park. You should write a brief report outlining your survey methods and the results you obtain. If several students do such a survey you could compare results.
Learning outcomes 374
Introduction 375
A simple index number 376
A price index with more than one commodity 377
Using base-year weights: the Laspeyres index 378
Using current-year weights: the Paasche index 382
Units of measurement 383
Using expenditures as weights 385
Comparison of the Laspeyres and Paasche indices 386
The story so far - a brief summary 387
Quantity and expenditure indices 387
The Laspeyres quantity index 387
The Paasche quantity index 388
Expenditure indices 389
Relationships between price, quantity and expenditure indices 389
Chain indices 392
The Consumer Price Index 393
Discounting and present values 394
An alternative investment criterion: the internal rate of return 396
Nominal and real interest rates 397
Inequality indices 399
The Lorenz curve 399
The Gini coefficient 402
Is inequality increasing? 404
A simpler formula for the Gini coefficient 405
Concentration ratios 407
Summary 409
Key terms and concepts 409
Reference 410
Formulae used in this chapter 411
Problems 411
Answers to exercises 416
Appendix: Deriving the expenditure share form of the Laspeyres price index 419

By the end of this chapter you should be able to:

- represent a set of data in index number form
- understand the role of index numbers in summarising or presenting data
- recognise the relationship between price, quantity and expenditure index numbers
- turn a series measured at current prices into one at constant prices (or in volume terms)
- splice separate index number series together
- measure inequality using index numbers.

Introduction

'Consumer price index up 3.8\%. Retail price index up 4.6\%.' (UK, June 2008)
'Vietnam reports an inflation rate of 27.04\%' (July 2008)
'Zimbabwe inflation at 2,200,000\%' (July 2008)
The above headlines reveal startling differences between the inflation rates of three different countries. This chapter is concerned with how such measures are constructed and then interpreted. Index numbers are not restricted to measuring inflation, although that is one of the most common uses. There are also indexes of national output, of political support, of corruption in different countries of the world, and even of happiness (Danes are the happiest, it seems).

An index number is a descriptive statistic, in the same sense as the mean or standard deviation, which summarises a mass of information into some readily understood statistic. As such, it shares the advantages and disadvantages of other summary statistics: it provides a useful overview of the data but misses out the finer detail. The retail price index (RPI) referred to above is one example, which summarises information about the prices of different goods and services, aggregating them into a single number. We have used index numbers earlier in the text (for example, in the chapters on regression), without fully explaining their derivation or use. This will now be remedied.

Index numbers are most commonly used for following trends in data over time, such as the consumer price index (CPI) measuring the price level or the index of industrial production (IIP) measuring the output of industry. The CPI (or the similar retail price index, RPI) also allows calculation of the rate of inflation, which is simply the rate of change of the price index; and from the IIP it is easy to measure the rate of growth of output. Index numbers are also used with cross-section data, for example, an index of regional house prices would summarise information about the different levels of house prices in different regions of the country at a particular point in time. There are many other examples of index numbers in use, common ones being the Financial Times All Share index, the trade weighted exchange rate index, and the index of the value of retail sales.

This chapter will explain how index numbers are constructed from original data and the problems which arise in doing this. There is also a brief discussion of the CPI to illustrate some of these problems and to show how they are resolved in practice. Finally, a different set of index numbers is examined, which are used to measure inequality, such as inequality in the distribution of income, or in the market shares held by different firms competing in a market. Constructing index numbers is not the most glamorous part of statistics but it is important for any applied researcher to understand them.

A simple index number

We begin with the simplest case, where we wish to construct an index number series for a single commodity. In this case, we shall construct an index number series representing the price of coal. This is a series of numbers showing, in each year, the price of coal and how it changes over time. More precisely, we measure the cost of coal to industrial users, for the years 2006 to 2010 (as I wrote above, not the most glamorous part of statistics). Later in the chapter we will expand the analysis to include other fuels and thereby construct an index of the price of energy as a whole. The raw data for coal are given in Table 10.1 (adapted from the Digest of UK Energy Statistics, available on-line). We assume that the product itself has not changed from year to year, so that the index provides a fair representation of costs. This means, for example, that the quality of coal has not changed during the period.

To construct a price index from these data, we choose one year as the reference year (we will use 2006 in this case) and set the price index in that year equal to 100. The prices in the other years are then measured relative to the reference year figure of 100. The index, and its construction, are presented in Table 10.2.

All we have done so far is to change the form in which the information is presented. We have perhaps gained some degree of clarity (for example, it is easy to see that the price in 2010 is 62.5% higher than in 2006), but we have lost the original information about the actual level of prices. Since it is usually relative prices that are of interest, this loss of information about the actual price level is not too serious, and information about relative prices is retained by the price index. For example, using either the index or actual prices, we can see that the price of coal was 6.6% higher in 2007 than in 2006.

In terms of a formula we have calculated, for each year:

$$
P^{t}=\frac{\text { price of coal in year } t}{\text { price of coal in } 2006} \times 100
$$

where P^{t} represents the value of the index in year t.
Table 10.1 The price of coal, 2006-10

	2006	2007	2008	2009	2010
Price (£/tonne)	43.63	46.49	60.31	59.60	70.90

Table 10.2 The price index for coal, $2006=100$

Year	Price	Index	
2006	43.63	100.0	$\left(=\frac{43.63}{43.63} \times 100\right)$
2007	46.49	106.6	$\left(=\frac{46.49}{43.63} \times 100\right)$
2008	60.31	138.2	$\left(=\frac{60.31}{43.63} \times 100\right)$
2009	59.60	136.6	etc.
2010	70.90	162.5	

Table 10.3 The price index for coal, $2008=100$

Year	Price	Index	
2006	43.63	72.3	$\left(=\frac{43.63}{60.31} \times 100\right)$
2007	46.49	77.1	$\left(=\frac{46.49}{60.31} \times 100\right)$
2008	60.31	100.0	$\left(=\frac{60.31}{60.31} \times 100\right)$
2009	59.60	98.8	etc.
2010	70.90	117.6	

The choice of reference year is arbitrary and we can easily change it for a different year. If we choose 2008 to be the reference year, then we set the price in that year equal to 100 and again measure all other prices relative to it. The formula is thus

$$
P^{t}=\frac{\text { price of coal in year } t}{\text { price of coal in } 2008} \times 100
$$

This calculation is shown in Table 10.3 which can be derived from Table 10.2 or directly from the original data on prices. You should choose whichever reference year is most convenient for your purposes. Whichever year is chosen, the informational content is the same. The values of the index with 2008 as reference year are all 72.3% of the corresponding values of the index with 2006 as reference year.

Exercise 10.1

(a) Average house prices in the United Kingdom for 2000-4 were:

Year	2000	2001	2002	2003	2004
Price (£)	86095	96337	121137	140687	161940

Turn this into an index with a reference year of 2000.
(b) Recalculate the index with reference year 2003.
(c) Check that the ratio of house prices in 2004 relative to 2000 is the same for both indexes.

A price index with more than one commodity

Constructing an index for a single commodity is a simple process but only of limited use, mainly for presentation purposes. Once there is more than a single commodity, index numbers become more useful but are a little more difficult to calculate. Industry uses other sources of energy as well as coal, such as gas, petroleum and electricity, and managers might wish to know the overall price of energy, which affects their costs. This is a more common requirement in reality, rather than the simple index number series calculated above. If the price of each fuel were rising at the same rate, say at 5% per year, then it is straightforward to say that the price of energy is also rising at 5% per year. But supposing, as is likely, that the prices are all rising at different rates, as shown in Table 10.4. Is it now possible to say how fast the price of energy is increasing? Several different prices now have

Table 10.4 Fuel prices to industry, 2006-10

Year	Coal ($£ /$ tonne $)$	Petroleum ($£ /$ tonne $)$	Electricity $(£ / \mathrm{MWh})$	Gas $(£ / \mathrm{MWh})$
2006	43.63	260.47	55.07	18.04
2007	46.49	269.68	54.49	14.74
2008	60.31	392.94	68.36	21.14
2009	59.60	383.22	72.70	19.06
2010	70.90	471.46	65.12	17.38

to be combined in order to construct an index number, a more complex process than the simple index number calculated above.

From the data presented in Table 10.4 we can calculate that the price of coal has risen by 63% over the five-year period, petroleum has risen by 81%, electricity by 18% and gas has fallen by 4%. It is fairly clear prices are volatile and increasing at very different rates. How do we combine these to measure the rise in the price of energy?

Using base-year weights: the Laspeyres index

We find the desired index by constructing a hypothetical 'shopping basket' of the fuels used by industry, and measure how the cost of this basket has risen (or fallen) over time. We therefore take a weighted average of the price changes of the individual fuels, the weights being derived from the quantities of each fuel used by the industry (the 'shopping basket'). Thus, if industry uses relatively more coal than petrol, more weight is given to the rise in the price of coal in the calculation.

Table 10.5 gives the quantities of each fuel consumed by industry in 2006 (again from the Digest of UK Energy Statistics) and it is this which forms the shopping basket. The year 2006 is referred to as the base year since the quantities consumed in this year are used to make up the shopping basket.

The cost of this basket is obtained by multiplying together the prices and quantities, as shown in Table 10.6 (using information from Tables 10.4 and 10.5).

The final column of the table shows the expenditure on each of the four energy inputs and the total cost of the basket is 10457.93 (this is in $£ \mathrm{~m}$, so altogether about $£ 10.5$ bn was spent on energy by industry). This sum may be written algebraically as:

$$
\sum_{i=1}^{4} p_{0 i} q_{0 i}=10457.93
$$

Table 10.5 Quantities of fuel used by industry, 2006

Coal (m. tonnes)	1.76
Petroleum (m. tonnes)	5.52
Electricity (m. MWh)	114.90
Gas (m. MWh)	145.00

Table 10.6 Cost of the energy basket, 2006

	Price	Quantity	Price \times quantity
Coal (£/tonne)	43.63	1.76	76.79
Petroleum (£/tonne)	260.47	5.52	1437.79
Electricity $(£ / \mathrm{MWh})$	55.07	114.90	6327.54
Gas $(£ / \mathrm{MWh})$	18.04	145.00	2615.80
Total			10457.93

Table 10.7 The cost of the 2006 energy basket at 2007 prices

	2007 Price	2006 Quantity	Price \times quantity
Coal (£/tonne)	46.49	1.76	81.82
Petroleum ($£$ /tonne)	269.68	5.52	1488.63
Electricity $(£ /$ MWh $)$	54.49	114.90	6260.90
Gas (£/MWh)	14.740	145.00	2137.30
Total			9968.66

where the summation is calculated over all the four fuels. Here, p refers to prices, q to quantities. The first subscript (0) refers to the year, the second (i) to each energy source in turn. We refer to 2006 as year 0, 2007 as year 1, etc., for brevity of notation. Thus, for example, p_{01} means the price of coal in 2006, q_{12} the consumption of petroleum by industry in 2007.

We now need to find what the 2006 basket of energy would cost in each of the subsequent years, using the prices pertaining to those years. For example, for 2007 we value the same 2006 basket using the 2007 prices. This calculation is shown in Table 10.7 and yields a cost of $£ 9968.66$ bn.

Firms would therefore have to spend $£ 489$ m less ($=9969$ - 10458) in 2007 to buy the same quantities of energy as in 2006, mainly due to the fall in the price of gas. This amounts to a saving of 4.7% over the expenditure in 2006. The sum of $£ 9969 \mathrm{~m}$ may be expressed as $\Sigma p_{1 i} q_{0 i}$, since it is obtained by multiplying the prices in year 1 (2007) by quantities in year 0 (2006).

Similar calculations for subsequent years produce the costs of the 2006 basket as shown in Table 10.8.

It can be seen that if firms had purchased the same quantities of each energy source in the following years, they would have had to pay more in each subsequent year up until another small drop in 2010.

To obtain the energy price index from these numbers we simply calculate an index of the values in the final column of Table 10.8. In other words, we measure the cost of the basket in each year relative to its 2006 cost, i.e. we divide the cost of the basket in each successive year by $\Sigma p_{0 i} q_{0 i}$ and multiply by 100 .

This index is given in Table 10.9 and is called the Laspeyres price index, after its inventor. We say that it uses base-year weights (i.e. quantities in the base year 2006 form the weights in the basket). We have set the value of the index to 100 in 2006, i.e. the reference year and the base year coincide; this is convenient although not essential.

Figure 10.1 charts the prices of the four individual fuels over the period as well as the Laspeyres index just calculated. One can see that the index tracks the electricity price fairly closely, with a small influence from the other fuel prices. Later

Table 10.8 The cost of the energy basket, 2006-10

	Formula	
2006	$\sum p_{0} q_{0}$	10457.93
2007	$\sum p_{1} q_{0}$	9968.66
2008	$\sum p_{2} q_{0}$	13195.04
2009	$\sum p_{3} q_{0}$	13337.20
2010	$\sum p_{4} q_{0}$	12729.63

Note: For brevity, we have dropped the i subscript in the formula.

Table 10.9 The Laspeyres price index

Year	Formula	Index	
2006	$\frac{\sum p_{0} q_{0}}{\sum p_{0} q_{0}} \times 100$	100	$\left(=\frac{10457.93}{10457.93} \times 100\right)$
2007	$\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}} \times 100$	95.32	$\left(=\frac{9968.66}{10457.93} \times 100\right)$
2008	$\frac{\sum p_{2} q_{0}}{\sum p_{0} q_{0}} \times 100$	126.17	etc.
2009	$\frac{\sum p_{3} q_{0}}{\sum p_{0} q_{0}} \times 100$	127.53	
2010	$\frac{\sum p_{4} q_{0}}{\sum p_{0} q_{0}} \times 100$	121.72	

Figure 10.1
Fuel prices and the Laspeyres index

we will see that about 60% of firms' expenditure on energy goes on electricity, which is why the index closely tracks the electricity price.

In general, the Laspeyres index for year n with the base year as year 0 is given by the following formula:

$$
\begin{equation*}
P_{L}^{n}=\frac{\sum p_{n i} q_{0 i}}{\sum p_{0 i} q_{0 i}} \times 100 \tag{10.1}
\end{equation*}
$$

(Henceforth we shall omit the i subscript on prices and quantities in the formulae for index numbers, for brevity.) The index shows that energy prices increased by 21.72% over the period. This might seem slightly surprising, given the large increases in coal and petroleum prices noted earlier. The reason for the modest overall increase is that industry uses little coal and petroleum, relative to electricity and gas. The rise amounts to an average increase of 5% p.a. in the cost of energy. During the same period, prices in general rose by 12.9% (or 3.1% p.a.), so in relative terms energy became more expensive.

The choice of 2006 as the base year for the index was an arbitrary one; any year will do. If we choose 2007 as the base year, then the cost of the 2007 basket is evaluated in each year (including 2006), and this will result in a slightly different

Table 10.10 The Laspeyres price index using the 2007 basket

Year	Cost of 2007 basket	Laspeyres index $2007=100$	Laspeyres index $2006=100$ $(2007$ basket)	Laspeyres index using 2006 basket
2006	10189.58	104.60	100	
2007	9741.04	100	95.60	100
2008	12878.54	132.21	126.39	95.32
2009	13040.69	133.87	127.98	126.17
2010	12464.08	127.95	122.32	127.53

Note: The quantities used in the 2007 basket can be found in Table 10.11, in the second row of data.
These are multiplied by the relevant prices each year (see Table 10.4) to give the cost of the 2007 basket.

Laspeyres index. The calculations are in Table 10.10. The final two columns of the table compare the Laspeyres index constructed using the 2007 and 2006 baskets, respectively (the former adjusted to $2006=100$). A very small difference can be seen, which is due to the fact that consumption patterns were very similar, although not identical, in 2006 and 2007. It would not be uncommon to get a larger difference between the series than in this instance.

The Laspeyres price index shows the increase in the price of energy for the 'average' firm, i.e. one which consumes energy in the same proportions as the 2006 basket overall. There are probably very few such firms: most would use perhaps only one or two energy sources. Individual firms may therefore experience price rises quite different from those shown here. For example, a firm depending upon coal alone would face a 63% price increase over the four years, significantly different from the figure of 21.7% suggested by the Laspeyres index.

Exercise 10.2

(a) The prices of fuels used by industry 2002-6 were:

Year	Coal ($£$ /tonne)	Petroleum ($£$ /tonne)	Electricity $(£ / \mathrm{MWh})$	Gas $(£ / \mathrm{MWh})$
2002	36.97	132.24	29.83	7.80
2003	34.03	152.53	28.68	8.09
2004	37.88	153.71	31.26	9.61
2005	44.57	204.28	42.37	13.87
2006	43.63	260.47	55.07	18.04

and quantities consumed by industry were:

Year	Coal (m. tonnes)	Petroleum (m. tonnes)	Electricity (m. MWh)	Gas (m. MWh)
2002	1.81	5.70	112.65	165.17

Calculate the Laspeyres price index of energy based on these data. Use 2002 as the reference year.
(b) Recalculate the index making 2004 the reference year.
(c) The quantities consumed in 2003 were:

	Coal (m tonnes)	Petroleum (m tonnes)	Electricity (m MWh)	Gas (m therms)
2003	1.86	6.27	113.36	166.22

Calculate the Laspeyres index using this basket and compare to the answer to part (a).

Using current-year weights: the Paasche index

Firms do not of course consume the same basket of energy every year. One would expect them to respond to changes in the relative prices of fuels and to other factors. Technological progress means that the efficiency with which the fuels can be used changes, causing fluctuations in demand. Table 10.11 shows the quantities consumed in 2006 and later years, indicating that firms did indeed alter their pattern of consumption.

Any of these annual patterns of consumption could be used as the 'shopping basket' for the purpose of constructing a Laspeyres index and each would give a slightly different price index, as we saw with the usage of the 2006 and 2007 baskets. One cannot say that one of these is more correct than the others. One further problem is that whichever basket is chosen remains the same over time and eventually becomes unrepresentative of the current pattern of consumption.

The Paasche index (denoted P_{P}^{n} to distinguish it from the Laspeyres index) overcomes these problems by using current-year weights to construct the index; in other words the basket is continually changing. Suppose 2006 is to be the reference year, so $P_{P}^{0}=100$. To construct the Paasche index value for 2007 we use the 2007 weights (or basket), for the 2008 value of the index we use the 2008 weights, and so on. An example will clarify matters.

The Paasche index for 2007 will be the cost of the 2007 basket at 2007 prices relative to its cost at 2006 prices, i.e.

$$
P_{P}^{1}=\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}} \times 100
$$

The cost of the 2007 basket at 2006 prices ($\sum p_{0} q_{1}$) has already been calculated in Table 10.10, as 10 189.58. The numerator of the formula, $\Sigma p_{1} q_{1}$, is calculated ${ }^{1}$ as $46.49 \times 1.9+269.68 \times 5.53+54.49 \times 113.8+14.74 \times 133=9741.04$. The formula therefore evaluates to:

$$
P_{P}^{1}=\frac{9741.04}{10189.58} \times 100=95.60
$$

This is the value of the Paasche index for 2007, with $2006=100$ as the reference year.

The general formula for the Paasche index in year n is given in equation (10.2).

$$
\begin{equation*}
P_{P}^{n}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{n}} \times 100 \tag{10.2}
\end{equation*}
$$

Table 10.11 Quantities of energy used, 2006-10

Year	Coal (m. tonnes)	Petroleum (m. tonnes)	Electricity (m. MWh)	Gas (m. MWh)
2006	1.76	5.52	114.90	145.00
2007	1.90	5.53	113.80	133.00
2008	1.94	5.08	114.51	139.00
2009	1.74	4.51	100.84	116.00
2010	1.72	4.53	104.50	122.00

[^43]Table 10.12 The Paasche price index

	Cost of basket:		
	At current prices: $\sum p_{n} q_{n}$	At 2006 prices $\sum p_{0} q_{n}$	Index
2006	10457.93	10457.93	100
2007	9741.04	10189.58	95.60
2008	12879.50	10221.46	126.00
2009	11374.05	8896.53	127.85
2010	11183.06	9210.67	121.41

Table 10.12 shows the calculation of this index for all years.
The Paasche formula gives a slightly different result to the Laspeyres formula, as is usually the case. The Paasche should generally give a slower rate of increase than does the Laspeyres index. This is because one would expect profit-maximising firms to respond to changing relative prices by switching their consumption in the direction of the inputs which are becoming relatively cheaper. The Paasche index, by using the current weights, captures this change, but the Laspeyres, assuming fixed weights, does not. This may happen slowly, as it takes time for firms to switch to different fuels, even if technically possible. This is why the Paasche can increase faster than the Laspeyres in some years (e.g. 2007) although in the long run it should increase more slowly.

Is one of the indices more 'correct' than the other? The answer is that neither is definitively correct, they are different interpretations of the phrase 'the cost of energy'. It can be shown theoretically that the 'true' value lies somewhere between the two, but it is difficult to say exactly where. If all the items which make up the index increase in price at the same rate, then the Laspeyres and Paasche indices would give the same answer, so it is the change in relative prices and the resultant change in consumption patterns which causes problems.

Units of measurement

It is important that the units of measurement in the price and quantity tables be consistent. Note that in the example, the price of coal was measured in $£$ /tonne and the consumption was measured in millions of tonnes. The other fuels were similarly treated (in the case of electricity, one MWh equals one million watthours). But suppose we had measured electricity consumption in kWh instead of $\mathrm{MWh}(1 \mathrm{MWh}=1000 \mathrm{kWh})$, but still measured its price in $£$ per MWh? We would then have 2006 data of 55.07 for price as before, but 114900 for quantity. It is as if electricity consumption has been boosted 1000 -fold, and this would seriously distort the results. The (Laspeyres) energy price index would be (by a similar calculation to the one above):

2006	2007	2008	2009	2010
100	98.94	124.14	132.01	118.26

This gives an incorrect result. By chance it is not a large distortion because electricity prices were rising at about the same rate as the average for all fuels. If we had mis-measured the coal data in a similar manner, there would have been a much larger discrepancy.

The Human Development Index

One of the more interesting indices to appear in recent years is the Human Development Index (HDI), produced by the United Nations Development Programme (UNDP). The HDI aims to provide a more comprehensive socioeconomic measure of a country's progress than GDP (national output). Output is a measure of how well-off we are in material terms, but makes no allowance for the quality of life and other factors.

The HDI combines a measure of well-being (GDP per capita) with longevity (life expectancy) and knowledge (based on years of schooling). As a result, each country obtains a score, from 0 (poor) to 1 (good). Some selected values are given in the table.

Country	HDI 1980	HDI 2008	HDI 2013	Rank (HDI)	Rank (GDP)
New Zealand	0.793	0.899	0.910	7	30
United Kingdom	0.735	0.890	0.892	14	27
Hong Kong	0.698	0.877	0.891	15	10
Gabon	0.468	0.525	0.674	124	65
Senegal	0.443	0.474	0.485	163	159

One can see that there is an association between the HDI and GDP, but not a perfect one. New Zealand has the world's 30th highest GDP per capita but is 7 th in the HDI rankings. In contrast, Gabon, some way up the GDP rankings (for a developing country), is much lower when the HDI is calculated.

So how is the HDI calculated from the initial data? How can we combine life expectancy (which can stretch from 0 to 80 years or more) with literacy (the proportion of the population who can read and write)? The answer is to score all of the variables on a scale from 0 to 100.

The HDI sets a range for (national average) life expectancy between 25 and 85 years. A country with a life expectancy of 52.9 (the case of Gabon) therefore scores 0.465 , i.e. 52.9 is 46.5% of the way between 25 and 85 .

Adult literacy can vary between 0% and 100% of the population, so it needs no adjustment. Gabon's figure is 0.625 . The scale used for years of schooling is 0 to 15 , so Gabon's very low average of 2.6 yields a score of 0.173 . Literacy and schooling are then combined in a weighted average (with a $2 / 3$ weight on literacy) to give a score for knowledge of $2 / 3 \times 0.625+1 / 3 \times 0.173=0.473$.

For income, Gabon's average of $\$ 3498$ is compared to the global average of $\$ 5185$ to give a score of 0.636 . (Incomes above $\$ 5185$ are manipulated to avoid scores above 1.)

A simple average of $0.465,0.473$ and 0.636 then gives Gabon's final figure of 0.525 (2008 figures). One can see that its average income is brought down by the poorer scores in the two other categories, resulting in a poorer HDI ranking.

The construction of this index number shows how disparate information can be brought together into a single index number for comparative purposes. Further work by UNDP adjusts the HDI on the basis of gender and reveals the stark result that no country treats its women as well as it does its men.

Source: http://hdr.undp.org/en/content/table-2-human-development-index-trends-1980-2013.

It is possible to make some manipulations of the units of measurement (usually to make calculation easier) as long as all items are treated alike. If, for example, all prices were measured in pence rather than pounds (so all prices in Table 10.4 were multiplied by 100) then this would have no effect on the resultant index, as you would expect. Similarly, if all quantity figures were measured in thousands of
tonnes and thousands of MWh, there would be no effects on the index, even if prices remained in $£$ /tonne, etc. But if electricity were measured in pence per MWh, while all other fuels were in $£ /$ tonne or $£ / \mathrm{MWh}$, a wrong answer would again be obtained. Quantities consumed should also be measured over the same time period, e.g. millions of MWh p.a. It does not matter what the time period is (days, weeks, months or years) as long as all the items are treated similarly.

Exercise 10.3

The quantities of energy used in subsequent years were:

Year	Coal (m. tonnes)	Petroleum (m. tonnes)	Electricity (m. MWh)	Gas (m. MWh)
2004	1.85	6.45	115.84	153.95
2005	1.79	6.57	118.52	151.44
2006	1.71	6.55	116.31	144.54

Calculate the Paasche index for 2002-6 with 2002 as reference year. Compare this to the Laspeyres index result.

Using expenditures as weights

On occasion the quantities of each commodity consumed are not available, but expenditures are, and a price index can still be constructed using slightly modified formulae. It is often easier to find the expenditure on a good than to know the actual quantity consumed (think of housing as an example). We shall illustrate the method with a simplified example, using the data on energy prices and consumption for the years 2006 and 2007 only.

The data for consumption are assumed to be no longer available, but only the expenditure on each energy source as a percentage of total expenditure. Expenditure is derived as the product of price and quantity consumed. The calculation of expenditure shares for 2006 is shown in Table 10.13.

The formula for the Laspeyres index can be easily manipulated to suit the data as presented in Table 10.13. Note that it confirms the earlier claim that 60% of firms' energy expenditure goes on electricity, dominating the other fuel costs.

The Laspeyres index formula based on expenditure shares is given in equation (10.3): ${ }^{2}$

$$
\begin{equation*}
P_{L}^{n}=\sum \frac{p_{n}}{p_{0}} \times s_{0} \times 100 \tag{10.3}
\end{equation*}
$$

Table 10.13 Expenditure shares, 2006

	Prices	Quantity	Expenditure	Share
Coal (£/tonne)	43.63	1.76	76.79	0.7%
Petroleum (£/tonne)	260.47	5.52	1437.79	13.7%
Electricity $(£ / \mathrm{MWh})$	55.07	114.9	6327.54	60.5%
Gas (£/MWh)	18.04	145	2615.80	25.0%
Total			10457.93	100.0%

Note: The 0.7% share of coal, for example, is calculated as $(76.79 / 10457.93) \times 100$. Other shares are calculated similarly.

[^44]Equation (10.3) is made up of two component parts. The first, p_{n} / p_{0}, is simply the price in year n relative to the base-year price for each energy source. The second component, $s_{0}\left(=p_{0} q_{0} / \Sigma p_{0} q_{0}\right)$, is the share or proportion of total expenditure spent on each energy source in the base year, the data for which are in Table 10.13. It should be easy to see that the sum of the s_{0} values is 1 , so that equation (10.3) calculates a weighted average of the individual price increases, the weights being the expenditure shares.

The calculation of the Laspeyres index for 2007 using 2006 as the base year is therefore:

$$
\begin{aligned}
P_{L}^{\mathrm{L}} & =\frac{46.49}{43.63} \times 0.007+\frac{269.68}{260.47} \times 0.137+\frac{54.49}{55.07} \times 0.605+\frac{14.74}{18.04} \times 0.250 \\
& =0.9532
\end{aligned}
$$

giving the value of the index as $0.9532 \times 100=95.32$, the same value as derived earlier using the more usual methods. Values of the index for subsequent years are calculated by appropriate application of equation (10.3). This is left as an exercise for the reader, who may use Table 10.9 to verify the answers.

The Paasche index may similarly be calculated from data on prices and expenditure shares, as long as these are available for each year for which the index is required. The formula for the Paasche index is

$$
\begin{equation*}
P_{P}^{n}=\frac{1}{\sum \frac{p_{0}}{p_{n}} s_{n}} \times 100 \tag{10.4}
\end{equation*}
$$

The calculation of the Paasche index using this formula is also left as an exercise.

Comparison of the Laspeyres and Paasche indices

The advantages of the Laspeyres index are that it is easy to calculate and that it has a fairly clear intuitive meaning, i.e. the cost each year of a particular basket of goods. The Paasche index involves more computation, and it is less easy to envisage what it refers to. As an example of this point, consider the following simple case. The Laspeyres index values for 2008 and 2009 are 126.17 and 127.53. The ratio of these two numbers, 1.011 , would suggest that prices rose by 1.1% between these years. What does this figure actually represent? The 2009 Laspeyres index has been divided by the same index for 2008, i.e.

$$
\frac{P_{L}^{3}}{P_{L}^{2}}=\frac{\sum p_{3} q_{0}}{\sum p_{0} q_{0}} / \frac{\sum p_{2} q_{0}}{\sum p_{0} q_{0}}=\frac{\sum p_{3} q_{0}}{\sum p_{2} q_{0}}
$$

which is the ratio of the cost of the 2006 basket at 2009 prices to its cost at 2008 prices. This makes some intuitive sense. Note that it is not the same as the Laspeyres index for 2009 with 2008 as base year, which would require using q_{2} (2008 quantities) in the calculation.

If the same is done with the Paasche index numbers, a rise of 1.5% is obtained between 2008 and 2009, a similar result. But the meaning of this is not so clear, since the relevant formula is:

$$
\frac{P_{P}^{3}}{P_{P}^{2}}=\frac{\sum p_{3} q_{3}}{\sum p_{0} q_{3}} / \frac{\sum p_{2} q_{2}}{\sum p_{0} q_{2}}
$$

which does not simplify further. This is a curious mixture of 2008 and 2009 quantities, and 2006, 2008 and 2009 prices.

The major advantage of the Paasche index, however, is that the weights are continuously updated, so that the basket of goods never becomes out of date. In the case of the Laspeyres index the basket remains unchanged over a period, becoming less and less representative of what is being bought by consumers. When revision is finally made (an updated shopping basket is used) there may therefore be a large change in the weighting scheme. The extra complexity of calculation involved in the Paasche index is less important now that computers do most of the work.

Exercise 10.4

(a) Calculate the share of expenditure going to each of the four fuel types in the previous exercises and use this result to re-calculate the Laspeyres and Paasche indexes using equations (10.3) and(10.4).
(b) Check that the results are the same as calculated in previous exercises.

The story so far - a brief summary

We have encountered quite a few different concepts and calculations thus far and it might be worthwhile to briefly summarise what we have covered before moving on. In order, we have examined:

- A simple index for a single commodity
- A Laspeyres price index, which uses base year weights
- A Paasche price index, which uses current year weights and is an alternative to the Laspeyres formulation
- The same Laspeyres and Paasche indices, but calculated using the data in a slightly different form, using expenditure shares rather than quantities.

We now move on to examine quantity and expenditure indices, then look at the relationship between them all.

Quantity and expenditure indices

Just as one can calculate price indices, it is also possible to calculate quantity and value (or expenditure) indices. We first concentrate on quantity indices, which provide a measure of the total quantity of energy consumed by industry each year. The problem again is that we cannot easily aggregate the different sources of energy. It makes no sense to add together tonnes of coal and petroleum, with megawatts of electricity and gas. Some means has to be found to put these different fuels on a comparable basis. To do this, we now reverse the roles of prices and quantities: the quantities of the different fuels are weighted by their different prices (prices represent the value to the firm, at the margin, of each different fuel). As with price indices, one can construct both Laspeyres and Paasche quantity indices.

The Laspeyres quantity index

The Laspeyres quantity index for year n is given by

$$
\begin{equation*}
Q_{L}^{n}=\frac{\sum q_{n} p_{0}}{\sum q_{0} p_{0}} \times 100 \tag{10.5}
\end{equation*}
$$

i.e. it is the ratio of the cost of the year n basket to the cost of the year 0 basket, both valued at year 0 prices. Note that it is the same as equation (10.1) but with prices and quantities interchanged.

Using 2006 as the base year, the cost of the 2007 basket at 2006 prices is ${ }^{3}$:

$$
\begin{aligned}
\sum q_{1} p_{0} & =1.90 \times 43.63+5.53 \times 260.47+113.80 \times 55.07+133.00 \times 18.04 \\
& =10189.58
\end{aligned}
$$

and the cost of the 2006 basket at 2006 prices is 10457.93 (calculated earlier). The value of the quantity index for 2007 is therefore

$$
Q_{L}^{1}=\frac{10189.58}{10457.93} \times 100=97.43
$$

In other words, energy consumption fell by 2.57% between 2006 and 2007. If prices had remained at their 2006 levels firms would have spent 2.57% less on energy.

The value of the index for subsequent years is shown in Table 10.14, using the formula given in equation (10.5). Note that the quantity of energy consumed falls significantly, particularly in 2009. Much of this is due to the financial crisis of 2007 and subsequent recession.

The Paasche quantity index

Just as there are Laspeyres and Paasche versions of the price index, the same is true for the quantity index. The Paasche quantity index is given by

$$
\begin{equation*}
Q_{P}^{n}=\frac{\sum q_{n} p_{n}}{\sum q_{0} p_{n}} \times 100 \tag{10.6}
\end{equation*}
$$

and is the analogue of equation (10.2) with prices and quantities swapped. The calculation of this index is shown in Table 10.15, which shows a similar trend to the Laspeyres index in Table 10.14. Normally one would expect the Paasche to show a slower increase than the Laspeyres quantity index: firms should switch to inputs whose relative prices fall; the Paasche gives lesser weight (current prices) to these quantities than does the Laspeyres (base-year prices) and thus shows a slower rate of increase.

Table 10.14 Calculation of the Laspeyres quantity index

	$\sum p_{0} q_{n}$	Index	
2006	10457.93	100	$\left(=\frac{10457.93}{10457.93} \times 100\right)$
2007	10189.58	97.43	$\left(=\frac{10189.58}{10457.93} \times 100\right)$
2008	10221.46	97.74	etc.
2009	8896.53	85.07	
2010	9210.67	88.07	

[^45]Table 10.15 Calculation of the Paasche quantity index

	$p_{n} q_{n}$	$\sum p_{n} q_{0}$	Index
2006	10457.93	10457.93	100
2007	9741.04	9968.66	97.72
2008	12879.50	13195.04	97.61
2009	11374.05	13337.20	85.28
2010	11183.06	12729.63	87.85

Note: The final column is calculated as the ratio of the previous two columns, then multiplied by 100 .

In summary, quantity indices are similar to price indices but measure the changes in quantity over time, combining together several different commodities into one overall index.

Expenditure indices

The expenditure or value index is simply an index of the cost of the year n basket at year n prices and so it measures how expenditure changes over time. The formula for the index in year n is

$$
\begin{equation*}
E^{n}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{0}} \times 100 \tag{10.7}
\end{equation*}
$$

There is obviously only one value index and one does not distinguish between Laspeyres and Paasche formulations. The index can be easily derived, as shown in Table 10.16. The expenditure index shows how industry's expenditure on energy is changing over time. Thus, expenditure in 2010 was 7% higher than in 2006, for example.

The increase in expenditure over time is a consequence of two effects: (i) changes in the prices of energy and (ii) changes in quantities purchased. It should therefore be possible to decompose the expenditure index into price and quantity effects. You may not be surprised to learn that these effects can be measured by the price and quantity indices we have already covered. We look at this decomposition in more detail in the next section.

Relationships between price, quantity and expenditure indices

Just as multiplying a price by a quantity gives total value, or expenditure, the same is true of index numbers. The value index can be decomposed as the product of a price index and a quantity index. In particular, it is the product of a Paasche quantity index and a Laspeyres price index, or the product of a Paasche price index and a

Table 10.16 The expenditure index

	$\sum p_{n} q_{n}$	Index
2006	10457.93	100
2007	9741.04	93.15
2008	12879.50	123.16
2009	11374.05	108.76
2010	11183.06	106.93

Note: The expenditure index is a simple index of the expenditures in the previous column.

Laspeyres quantity index. This can be very simply demonstrated using Σ notation:

$$
\begin{equation*}
E^{n}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{0}}=\frac{\sum p_{n} q_{n}}{\sum p_{n} q_{0}} \times \frac{\sum p_{n} q_{0}}{\sum p_{0} q_{0}}=Q_{P}^{n} \times P_{L}^{n} \tag{10.8}
\end{equation*}
$$

(Paasche quantity times Laspeyres price index)
or

$$
\begin{equation*}
E^{n}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{0}}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{n}} \times \frac{\sum p_{0} q_{n}}{\sum p_{0} q_{0}}=P_{P}^{n} \times Q_{L}^{n} \tag{10.9}
\end{equation*}
$$

(Paasche price times Laspeyres quantity index)
Thus increases in value or expenditure can be decomposed into price and quantity effects. Two decompositions are possible and give slightly different answers.

It is also evident that a quantity index can be constructed by dividing a value index by a price index, since by simple manipulation of (10.8) and (10.9) we obtain

$$
\begin{equation*}
Q_{P}^{n}=E^{n} / P_{L}^{n} \tag{10.10}
\end{equation*}
$$

and

$$
Q_{L}^{n}=E^{n} / P_{P}^{n}
$$

Note that dividing the expenditure index by a Laspeyres price index gives a Paasche quantity index, and dividing by a Paasche price index gives a Laspeyres quantity index. In either case we go from a series of expenditures to one representing quantities, having taken out the effect of price changes. This is known as deflating a series and is a widely used and very useful technique. We shall illustrate this using our earlier data. Table 10.17 provides the detail. Column 2 of the table shows the expenditure on fuel at current prices or in cash terms. This is simply the total expenditures each year (see Table 10.16). Column 3 contains the Laspeyres price index repeated from Table 10.9 above. Deflating (dividing) column 2 by column 3 and multiplying by 100 yields column 4 which shows expenditure on fuel in quantity or volume terms. The final column turns the volume series in column 4 into an index with $2006=100$.

This final index is identical to the Paasche quantity index, as illustrated by equation (10.10) and can be seen by comparison with Table 10.15.

Trap!

A common mistake is to believe that once a series has been turned into an index, it is inevitably in real (or volume) terms. This is not the case. One can have an index of a cash (or nominal) series (e.g. in Table 10.16) or of a real series (the final column of Table 10.17). An index number is really just a change of the units of measurement to something more useful for presentation purposes; it is not the same as deflating the series.

In the example above we used the energy price index to deflate the expenditure series. However, it is also possible to use a general price index (such as the consumer price index or the GDP deflator) to deflate. This gives a slightly different result, both in numerical terms and in its interpretation. Deflating by a general price index yields a series of expenditures in constant prices or in real terms. Deflating by a specific price index (e.g. of energy) results in a quantity or volume series.

Table 10.17 Deflating the expenditure series

Year	Expenditure at current prices	Laspeyres price index	Expenditure in volume terms	Index
2006	10457.93	100	10457.93	100
2007	9741.04	95.32	10219.14	97.72
2008	12879.50	126.17	10207.84	97.61
2009	11374.05	127.53	8918.59	85.28
2010	11183.06	121.72	9187.35	87.85

An example should clarify this (see Problem 10.11 for data). The government spends billions of pounds each year on the health service. If this cash expenditure series is deflated by a general price index (e.g. the GDP deflator), then we obtain expenditure on health services at constant prices, or real expenditure on the health service. If the NHS pay and prices index is used as a deflator, then the result is an index of the quantity or volume of health services provided. Since the NHS pay and prices index tends to rise more rapidly than the GDP deflator, the volume series rises more slowly than the series of expenditure at constant prices. This can lead to a vigorous, if pointless, political debate. The government claims it is spending more on the health service, in real terms, while the opposition claims that the health service is getting fewer resources. As we have seen, both can be right.

Exercise 10.5

(a) Use the data from earlier exercises to calculate the Laspeyres quantity index.
(b) Calculate the Paasche quantity index.
(c) Calculate the expenditure index.
(d) Check that dividing the expenditure index by the price index gives the quantity index (remember that there are two ways of doing this).

The real rate of interest

Another example of 'deflating' is calculating the 'real' rate of interest. This adjusts the actual (sometimes called 'nominal') rate of interest for changes in the value of money, i.e. inflation. If you earn a 7% rate of interest on your money over a year, but the price level rises by 5% at the same time, you are clearly not 7% better off. The real rate of interest in this case would be given by

$$
\begin{equation*}
\text { real interest rate }=\frac{1+0.07}{1+0.05}-1=0.019=1.9 \% \tag{10.12}
\end{equation*}
$$

In general, if r is the interest rate and i is the inflation rate, the real rate of interest is given by

$$
\begin{equation*}
\text { real interest rate }=\frac{1+r}{1+i}-1 \tag{10.13}
\end{equation*}
$$

A simpler method is often used in practice, which gives virtually identical results for small values of r and i. This is to subtract the inflation rate from the interest rate, giving $7 \%-5 \%=2 \%$ in this case.

Chain indices

Whenever an index number series over a long period of time is wanted, it is usually necessary to link together a number of separate, shorter indices, resulting in a chain index. Without access to the original raw data it is impossible to construct a proper Laspeyres or Paasche index for the complete time period, so the result will be a mixture of different types of index number; but it is the best that can be done in the circumstances.

Suppose that the following two index number series are available. Access to the original data is assumed to be impossible.

Laspeyres price index for energy, 2006-10 (from Table 10.9)

2006	2007	2008	2009	2010
100	95.32	126.17	127.53	121.72

Laspeyres price index for energy, 2002-6

2002	2003	2004	2005	2006
100	101.68	115.22	161.31	209.11

The two series have different reference years and use different shopping baskets of consumption. The first index measures the cost of the 2006 basket in each of the subsequent years. The second measures the price of the 2002 basket in subsequent years. There is an 'overlap' year which is 2006 . How do we combine these into one continuous index covering the whole period?

The obvious method is to use the ratio of the costs of the two baskets in 2006, $209.11 / 100=2.0911$, to alter one of the series. To base the continuous series on $2002=100$ requires multiplying each of the post-2006 figures by 2.0911 , as is demonstrated in Table 10.18. Alternatively, the continuous series could just as easily be based on $2006=100$ by dividing the pre-2006 numbers by 2.0911.

The continuous series is not a proper Laspeyres index number as can be seen if we examine the formulae used. We shall examine the 2010 figure, 254.53, by way of example. This figure is calculated as $254.53=2.0911 \times 121.72$ which in terms of our formulae is

$$
\begin{equation*}
\frac{\sum p_{10} q_{06}}{\sum p_{06} q_{06}} \times \frac{\sum p_{06} q_{02}}{\sum p_{02} q_{02}} / 100 \tag{10.14}
\end{equation*}
$$

Table 10.18 A chain index of energy prices, 2002-10

	'Old' index	'New' index	Chain index
2002	100		100
2003	101.68		101.68
2004	115.22		115.22
2005	161.31	100	161.31
2006	209.11	95.32	209.11
2007		126.17	199.33
2008		127.53	263.84
2009		121.72	266.68
2010		254.53	

Note: After 2006, the chain index values are calculated by multiplying the 'new' index by 2.0911 ; e.g. $199.33=95.32 \times 2.0911$ for 2007.

The proper Laspeyres index for 2010 using 2002 weights is

$$
\begin{equation*}
\frac{\sum p_{10} q_{02}}{\sum p_{02} q_{02}} \times 100 \tag{10.15}
\end{equation*}
$$

There is no way that this latter equation can be derived from equation (10.14), proving that the former is not a properly constructed Laspeyres index number. Although it is not a proper Laspeyres index number series, it should be a reasonable approximation and it does have the advantage of the weights being revised (once, in 2006) and therefore more up-to-date.

Similar problems arise when deriving a chain index from two Paasche index number series. Investigation of this is left to the reader; the method follows that outlined above for the Laspeyres case.

The Consumer Price Index

To consider a real-world example, we examine the UK Consumer Price Index (CPI), which is one of the more sophisticated of index numbers, involving the recording of the prices of around 700 items each month and weighting them on the basis of households' expenditure patterns (derived from the National Accounts and based on surveys such as the Living Costs and Food Survey, explained in more detail in Chapter 9 on sampling methods). The principles involved in the calculation are similar to those set out earlier, with a number of small complications which we shall discuss below.

The CPI is compiled in accordance with international standards and replaces the older Retail Prices Index (RPI). The CPI is the inflation measure that the UK government monitors and targets and is also the measure used to uprate pensions and benefits. There is a variant of the CPI (called CPIH) which includes some additional measures of housing costs, which we won't consider further. Both CPI measures, and the older RPI, track each other closely over time; there is not a lot of difference between them, at least over a short time period.

The CPI is something of a compromise between a Laspeyres and a Paasche index. It is calculated monthly, and within each calendar year the weights used remain constant, so that it takes the form of a Laspeyres index. Each January, however, the weights are updated on the basis of household spending patterns, so that the index is in fact a set of chain-linked Laspeyres indices, the chaining taking place in January each year. Despite the formal appearance as a Laspeyres index, the CPI measured over a period of years has the characteristics of a Paasche index, due to the annual change in the weights.

Some further adjustments need to be made for the index to be accurate. A change in the quality of goods purchased can be problematic, as alluded to earlier. If a manufacturer improves the quality of a product and charges more, is it fair to say that the price has gone up? Sometimes it is possible to measure improvement (if the power of a vacuum cleaner is increased, for example), but other cases are more difficult, such as if the punctuality of a train service is improved. By how much has quality improved? In many circumstances the statistician has to make a judgement about the best procedure to adopt. The ONS does make explicit allowance for the increase in quality of personal computers,
for example, taking account of such as factors as increased memory and processing speed.

Prices in the long run

Table 10.19 shows how prices have changed over the longer term. The 'inflation-adjusted' column shows what the item would have cost if it had risen in line with the overall retail price index. It is clear that some relative prices have changed substantially and you can try to work out the reasons.

Table 10.19 Eighty years of prices: 1914-94

Item	1914 price	Inflation-adjusted price	1994 price
Car	$£ 730$	$£ 36971$	$£ 6995$
London-Manchester 1st class rail fare	$£ 2.45$	$£ 124.08$	$£ 130$
Pint of beer	$1 p$	$53 p$	$£ 1.38$
Milk (quart)	$1.5 p$	$74 p$	$70 p$
Bread	$2.5 p$	$£ 1.21$	$51 p$
Butter	$6 p$	$£ 3.06$	$68 p$
Double room at Savoy Hotel, London	$£ 1.25$	$£ 63.31$	$£ 195$

The Office for National Statistics has gone back even further and shown that, since 1750, prices have increased about 140 times. Most of this occurred after 1938: up till then prices had only risen by about three times (over two centuries, about half a percent per year on average), since then prices have risen 40 -fold, or about 6% p.a.

Exercise 10.6

The Laspeyres index of energy prices for the years 1999-2003 was:

1999	2000	2001	2002	2003
100	101.01	109.49	99.40	99.22

Use these data to calculate a chain index from 1999 to 2010, setting 1999=100.

Discounting and present values

Deflating makes expenditures in different years comparable by correcting for the effect of inflation. The future sum is deflated (reduced) because of the increase in the general price level. Discounting is a similar procedure for comparing amounts across different years, correcting for time preference. For example, suppose that by investing $£ 1000$ today a firm can receive $£ 1100$ in a year's time. To decide if the investment is worthwhile, the two amounts need to be compared, to see which the firm prefers.

If the prevailing interest rate is 12%, then the firm could simply place its $£ 1000$ in the bank and earn $£ 120$ interest, giving it $£ 1120$ at the end of the year. Hence the firm should not invest in this particular project; it does better keeping money in the bank. The investment is not undertaken because

$$
£ 1000 \times(1+r)>£ 1100
$$

where r is the interest rate, 12% or 0.12 . Alternatively, this inequality may be expressed as

$$
1000>\frac{1100}{(1+r)}=\frac{1100}{1+0.12}=982.14
$$

The expression on the right-hand side of the inequality sign is the present value (PV) of $£ 1100$ received in one year's time, $£ 982.14$. Here, r is the rate of discount and is equal to the rate of interest in this example because this is the rate at which the firm can transform present into future income, and vice versa. In what follows, we use the terms interest rate and discount rate interchangeably. The term $1 /(1+r)$ is known as the discount factor. Multiplying an amount by the discount factor results in the present value of the sum.

We can also express the inequality as follows (by subtracting $£ 1000$ from each side):

$$
0>-1000+\frac{1100}{(1+r)}=-17.86
$$

The right-hand side of this expression is known as the net present value (NPV) of the project. It represents the difference between the initial outlay and the present value of the return generated by the investment. Since this is negative, the investment is not worthwhile (the money would be better placed on deposit in a bank). The general rule is to invest if the $N P V$ is positive.

Similarly, the present value of $£ 1100$ to be received in two years' time is

$$
P V=\frac{£ 1100}{(1+r)^{2}}=\frac{£ 1100}{(1+0.12)^{2}}=£ 876.91
$$

When $r=12 \%$. In general, the $P V$ of a sum S to be received in t years is

$$
P V=\frac{S}{(1+r)^{t}}
$$

The $P V$ may be interpreted as the amount a firm would be prepared to pay today to receive an amount S in t years' time. Thus a firm would not be prepared to make an outlay of more than $£ 876.91$ in order to receive $£ 1100$ in two years' time. It would gain more by putting the money on deposit and earning 12% interest p.a.

Most investment projects involve an initial outlay followed by a series of receipts over the following years, as illustrated by the figures in Table 10.20. In order to decide if the investment is worthwhile, the present value of the income stream needs to be compared to the initial outlay. The $P V$ of the income stream is obtained by adding together the present value of each year's income. Thus we calculate ${ }^{4}$

$$
\begin{equation*}
P V=\frac{S_{1}}{(1+r)}+\frac{S_{2}}{(1+r)^{2}}+\frac{S_{3}}{(1+r)^{3}}+\frac{S_{4}}{(1+r)^{4}} \tag{10.16}
\end{equation*}
$$

or more concisely, using \sum notation:

$$
\begin{equation*}
P V=\sum \frac{S_{t}}{(1+r)^{t}} \tag{10.17}
\end{equation*}
$$

[^46]Table 10.20 The cash flows from an investment project

Year	Outlay or income	Discount factor	Discounted income	
2005	Outlay	-1000		
2006	Income	300	0.893	267.86
2007		400	0.797	318.88
2008	450	0.712	320.30	
2009	200	0.636	127.10	
Total			1034.14	

Note: The discount factors are calculated as $0.893=1 /(1.12), 0.797=1 /(1.12)^{2}$, etc.

Columns 3 and 4 of the table show the calculation of the present value. The discount factors, $1 /(1+r)^{t}$, are given in column 3 . Multiplying column 2 by column 3 gives the individual elements of the $P V$ calculation (as in equation (10.16)) and their sum is 1034.14, which is the present value of the returns. Since the $P V$ is greater than the initial outlay of 1000 , the investment generates a return of at least 12% and so is worthwhile.

An alternative investment criterion: the internal rate of return

The investment rule can be expressed in a different manner, using the internal rate of return (IRR). This is the rate of discount which makes the NPV equal to zero, i.e. the present value of the income stream is equal to the initial outlay. An IRR of 10% equates $£ 1100$ received next year to an outlay of $£ 1000$ today. Since the $I R R$ is less than the market interest rate (12\%), this indicates that the investment is not worthwhile: it only yields a rate of return of 10%. The rule 'invest if the $I R R$ is greater than the market rate of interest' is similar to the rule 'invest if the net present value is positive, using the interest rate to discount future revenues'.

In general, it is mathematically difficult to find the $I R R$ of even a simple project by hand - a computer needs to be used. The IRR is the value of r which sets the NPV equal to zero, i.e. it is the solution to

$$
\begin{equation*}
N P V=-S_{0}+\sum \frac{S_{t}}{(1+r)^{t}}=0 \tag{10.18}
\end{equation*}
$$

where S_{0} is the initial outlay. Fortunately, most spreadsheet programs have an internal routine for its calculation. This is illustrated in Figure 10.2 which shows the calculation of the IRR for the data in Table 10.20.

Cell C13 contains the formula ' $=\operatorname{IRR}(\mathrm{C} 6: \mathrm{C} 10,0.1)$ ' - this can be seen just above the column headings - which is the function used in Excel to calculate the internal rate of return. The financial flows of the project are in cells C6:C10; the value $0.1(10 \%)$ in the formula is an initial guess at the answer Excel starts from this value and then tries to improve upon it. The IRR for this project is found to be 13.7% which is indeed above the market interest rate of 12%. The final two columns confirm that the $P V$ of the income stream, when discounted using this internal rate of return, is equal to the initial outlay (as it should be). The discount factors in the penultimate column are calculated using $r=13.7 \%$.

Figure 10.2 Calculation of the IRR using Excel

23 Microsoft Excel - IRR calculation.xis								
1通 Eile Edit Yiew Insert Format Iools Data Window Help								
C13 * $f_{x}=\operatorname{IRR}(\mathrm{C6:} \mathrm{C10,0.1)}$								
	A	B	C	D	E	F	G	H
4								
5	Year	Outlay or income		Discount factor	Discounted income	Discount factor using IRR	Discounted income	
6	2005	Outlay	-1000					
7	2006	Income	300	0.893	267.86	0.880	263.96	
8	2007		400	0.797	318.88	0.774	309.66	
9	2008		450	0.712	320.3	0.681	306.52	
10	2009		200	0.636	127.1	0.599	119.86	
11	Total				1034.14		1000.00	
12								
13	Internal rat	e of return	13.7\%					
14								
15								
16								

The IRR is particularly easy to calculate if the income stream is a constant monetary sum. If the initial outlay is S_{0} and a sum S is received each year in perpetuity (like a bond), then the IRR is simply

$$
I R R=\frac{S}{S_{0}}
$$

For example, if an outlay of $£ 1000$ yields a permanent income stream of $£ 120$ p.a. then the $I R R$ is 12%. This should be intuitively obvious, since investing $£ 1000$ at an interest rate of 12% would give you an annual income of $£ 120$.

Although the NPV and IRR methods are identical in the above example, this is not always the case in more complex examples. When comparing two investment projects of different sizes, it is possible for the two methods to come up with different rankings. Delving into this issue is beyond the scope of this text but, in general, the $N P V$ method is the more reliable of the two.

Nominal and real interest rates

The above example took no account of possible inflation. If there were a high rate of inflation, part of the future returns to the project would be purely inflationary gains and would not reflect real resources. Is it possible our calculation is misleading under such circumstances?
There are two ways of dealing with this problem:
(a) use the actual cash flows and the nominal (market) interest rate to discount, or
(b) use real (inflation-adjusted) flows and the real interest rate.

These two methods should give the same answer.
If an income stream has already been deflated to real terms, then the present value should be obtained by discounting by the real interest rate, not the nominal

Table 10.21 Discounting a real income stream

Year	Cash flows	Price index	Real income	Real discount factor (4)	Discounted sums (5)
2005	Outlay	-1000	100	(2)	
2006	Income	300	107.0	280.37	0.955
2007		400	114.5	349.38	0.913
2008	450	122.5	367.33	0.872	367.86
2009	200	131.1	152.58	0.833	320.30
Total					

(market) rate. Table 10.21 illustrates the principle. Column (1) repeats the income flows in cash terms from Table 10.20. Assuming an inflation rate of $i=7 \%$ p.a. gives the price index shown in column (2), based on $2005=100$. This is used to deflate the cash series to real terms, shown in column (3). This is in constant (2005) prices. If we were presented only with the real income series and could not obtain the original cash flows we would have to discount the real series by the real interest rate r_{r}, defined by

$$
\begin{equation*}
1+r_{r}=\frac{1+r}{1+i} \tag{10.19}
\end{equation*}
$$

With a (nominal) interest rate of 12% and an inflation rate of 7% this gives

$$
\begin{equation*}
1+r_{r}=\frac{1+0.12}{1+0.07}=1.0467 \tag{10.20}
\end{equation*}
$$

so that the real interest rate is 4.67% and in this example is the same every year. The one-year discount factor is therefore $1 / 1.0467=0.955$, for two years it is $1 / 1.0467^{2}=0.913$, etc. The discount factors used to discount the real income flows are shown in column (4) of the table, based on the real interest rate; the discounted sums are in column (5) and the present value of the real income series is $£ 1034.14$. This is the same as was found earlier, by discounting the cash figures by the nominal interest rate. Thus one can discount either the nominal (cash) values using the nominal discount rate, or the real flows by the real interest rate. Make sure you do not confuse the nominal and real interest rates.

The real interest rate can be approximated by subtracting the inflation rate from the nominal interest rate, i.e. $12 \%-7 \%=5 \%$. This gives a reasonably accurate approximation for low values of the interest and inflation rates (below about 10% p.a.). Because of the simplicity of the calculation, this method is often preferred.
(a) An investment of $£ 100000$ yields returns of $£ 25000, £ 35000, £ 30000$ and $£ 15000$ in each of the subsequent four years. Calculate the present value of the income stream and compare to the initial outlay, using an interest rate of 10% p.a.
(b) Calculate the internal rate of return on this investment.

Exercise 10.8

(a) An investment of $£ 50000$ yields cash returns of $£ 20000, £ 25000, £ 30000$ and $£ 10000$ in each subsequent year. The rate of inflation is a constant 5% and the rate of interest is constant at 9\%. Use the rate of inflation to construct a price index and discount the cash flows to real terms.
(b) Calculate the real discount rate.
(c) Use the real discount rate to calculate the present value of the real income flows.
(d) Compare the result in part (c) to the answer obtained using the nominal cash flows and nominal interest rate.

Inequality indices

A separate set of index numbers is used specifically in the measurement of inequality, such as inequality in the distribution of income. We have already seen how we can measure the dispersion of a distribution (such as that of wealth) via the variance and standard deviation. This is based upon the deviations of the observations about the mean. An alternative idea is to measure the difference between every pair of observations, and this forms the basis of a statistic known as the Gini coefficient. This would probably have remained an obscure measure, due to the complexity of calculation, were it not for Konrad Lorenz, who showed that there is an attractive visual interpretation of it, now known as the Lorenz curve, and a relatively simple calculation of the Gini coefficient, based on this curve.

We start off by constructing the Lorenz curve, based on data for the UK income distribution in 2006 to 2007, and proceed then to calculate the Gini coefficient. We then use these measures to look at inequality both over time (in the United Kingdom) and across different countries.

We then examine another manifestation of inequality, in terms of market shares of firms. For this analysis we look at the calculation of concentration ratios and at their interpretation.

The Lorenz curve

Table 10.22 shows the data for the distribution of income in the United Kingdom based on data from the Family Resources Survey 2006 to 2007, published by the ONS. The data report the total weekly income of each household, which means that income

Table 10.22 The distribution of gross income in the United Kingdom, 2006-7

Range of weekly household income	Mid-point of interval	Numbers of households
$0-$	50	516
$100-$	150	3095
$200-$	250	3869
$300-$	350	3095
$400-$	450	2579
$500-$	550	2063
$600-$	650	2063
$700-$	750	1548
$800-$	850	1290
$900-$	950	1032
$1000-$		4385
Total		25535

Figure 10.3
A typical Lorenz curve

is recorded after any cash benefits from the state (e.g. a pension) have been received but before any taxes have been paid.

The table indicates a substantial degree of inequality. For example, the poorest $14 \%((516+3095) / 25,535)$ of households earn $£ 200$ per week or less, while the richest 17% earn more than $£ 1000$, five times as much. Although these figures give some idea of the extent of inequality, they relate only to relatively few households at the extremes of the distribution. A Lorenz curve is a way of graphically presenting the whole distribution. A typical Lorenz curve is shown in Figure 10.3.

Households are ranked along the horizontal axis, from poorest to richest, so that the median household, for example, is halfway along the axis. On the vertical axis is measured the cumulative share of income, which goes from 0% to 100%. A point such as A on the diagram indicates that the poorest 30% of households earn 5% of total income. Point B shows that the poorest half of the population earn only 18% of income (and hence the other half earn 82%). Joining up all such points maps out the Lorenz curve.

A few things are immediately obvious about the Lorenz curve:

- Since 0% of households earn 0% of income, and 100% of households earn 100% of income, the curve must run from the origin up to the opposite corner.
- Since households are ranked from poorest to richest, the Lorenz curve must lie below the 45° line, which is the line representing complete equality. The further below the 45° line is the Lorenz curve, the greater is the degree of inequality.
- The Lorenz curve must be concave from above: as we move to the right we encounter successively richer individuals, so the cumulative income grows faster.

Table 10.23 shows how to generate the data points from which the Lorenz curve may be drawn, for the data given in Table 10.22. The task is to calculate

Table 10.23 Calculation of the Lorenz curve coordinates

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Range of income \\
(1)
\end{tabular} \& Mid-point

(2) \& \begin{tabular}{l}
Numbers of households

(3)

 \&

Total income

(4)

 \&

\% Households

(5)

 \&

\% Cumulative households

(x)

(6)

 \& \&

\%

Cumulative income

(y)

(8)
\end{tabular}

\hline 0- \& 50 \& 516 \& 25792 \& 2.0\% \& 2.0\% \& 0.2\% \& 0.2\%

\hline 100- \& 150 \& 3095 \& 464256 \& 12.1\% \& 14.1\% \& 3.1\% \& 3.3\%

\hline 200- \& 250 \& 3869 \& 967200 \& 15.2\% \& 29.3\% \& 6.5\% \& 9.8\%

\hline 300- \& 350 \& 3095 \& 1083264 \& 12.1\% \& 41.4\% \& 7.3\% \& 17.1\%

\hline 400- \& 450 \& 2579 \& 1160640 \& 10.1\% \& 51.5\% \& 7.8\% \& 24.8\%

\hline 500- \& 550 \& 2063 \& 1134848 \& 8.1\% \& 59.6\% \& 7.6\% \& 32.5\%

\hline 600- \& 650 \& 2063 \& 1341184 \& 8.1\% \& 67.7\% \& 9.0\% \& 41.5\%

\hline 700- \& 750 \& 1548 \& 1160640 \& 6.1\% \& 73.7\% \& 7.8\% \& 49.3\%

\hline 800- \& 850 \& 1290 \& 1096160 \& 5.1\% \& 78.8\% \& 7.4\% \& 56.6\%

\hline 900- \& 950 \& 1032 \& 980096 \& 4.0\% \& 82.8\% \& 6.6\% \& 63.2\%

\hline 1000- \& 1250 \& 4385 \& 5480800 \& 17.2\% \& 100.0\% \& 36.8\% \& 100.0\%

\hline \& \& 25535 \& 14894880 \& 100.0\% \& \& 100.0\% \&

\hline
\end{tabular}

Notes:

Column (4) $=$ column (2) \times column (3)
Column (5) $=$ column (3) $\div 25535$
Column (6) $=$ column (5) cumulated
Column (7) $=$ column (4) $\div 14894880$
Column (8) $=$ column (7) cumulated
the $\{x, y\}$ coordinates for the Lorenz curve, where y is the percentage share of total income earned by the poorest $x \%$ of the population. These values are given in columns (6) and (8), respectively, of the table. Their calculation is as follows:

- Column (3) gives the number of households in each income class and column (5) gives this as a percentage of all households.
- Column (6) cumulates the percentage shares in column (5), giving the percentage of households below a given income level. Thus, for example, 29.3\% of households have income below $£ 300$ per week. These figures are the ones used for the x coordinates.
- The total income accruing to each income class is shown in column (4), obtained by multiplying the number of households by the mid-point of the class interval. The share of total income accruing to each class is then calculated in column (7), with these shares cumulated in column (8). These are the y coordinates for the chart.

Using columns (6) and (8) of the table we can see, for instance, that the poorest 2% of the population have about 0.2% of total income (one-tenth of their 'fair share'); the poorer half have about 25% of income (half of their fair share); and the top 20% have about 46% of total income. Figure 10.4 shows the Lorenz curve plotted, using the data in columns (6) and (8) of Table 10.23.

Figure 10.4 Lorenz curve for income data

The Gini coefficient

in coefficient is a numerical representation of the degree of inequality in a distribution and can be derived directly from the Lorenz curve. The Lorenz curve is illustrated once again in Figure 10.5 and the Gini coefficient is simply the ratio of area A to the sum of areas A and B .

Denoting the Gini coefficient by G, we have

$$
\begin{equation*}
G=\frac{\mathrm{A}}{\mathrm{~A}+\mathrm{B}} \tag{10.21}
\end{equation*}
$$

and it should be obvious that G must lie between 0 and 1 . When there is total equality the Lorenz curve coincides with the 45° line, since 10% of the population

Figure 10.5
Calculation of the Gini coefficient from the Lorenz curve

Cumulative \% incomes

earns 10% of the income, 20% earns 20%, etc. In this case, area A disappears, and $G=0$ indicating no inequality. With total inequality (one household having all the income), area B disappears, and $G=1$. Neither of these extremes is likely to occur in real life; instead one will get intermediate values, but the lower the value of G, the less inequality there is (though see the caveats listed below). One could compare two countries, for example, simply by examining the values of their Gini coefficients.

One interesting interpretation of the Gini is as follows. If you were to choose two people at random from the population, by how much would you expect their income to differ? Now the greater is inequality (greater G) the larger you would expect the difference to be. It can be shown that the expected difference is actually $2 G$ as a proportion of the mean.

To give an example, if the Gini coefficient is 0.25 or 25%, then one would expect the difference between the two people to be 50% of mean income. In a country whose mean annual income is $£ 30000$ (consistent with Table 10.22) one would expect a difference of $£ 15000$, therefore.

The Gini coefficient may be calculated from the following rather cumbersome formulae for areas A and B , using the x and y coordinates from Table 10.23:

$$
\begin{align*}
\mathrm{B}= & \frac{1}{2}\left\{\left(x_{1}-x_{0}\right)\right. \tag{10.22}\\
& \times\left(x_{1}+y_{0}\right) \\
& \left.\times\left(x_{1}\right) \quad \times y_{2}+y_{1}\right) \\
& \vdots \\
& \left.+\left(x_{k}-x_{k-1}\right) \times\left(y_{k}+y_{k-1}\right)\right\}
\end{align*}
$$

$x_{0}=y_{0}=0$ and $x_{k}=y_{k}=100$ represent the two end-points of the Lorenz curve and the other x and y values are the coordinates of the intermediate points. k is the number of classes for income in the frequency table. Area A is then given by: ${ }^{5}$

$$
\begin{equation*}
A=5000-B \tag{10.23}
\end{equation*}
$$

and the Gini coefficient is then calculated as:

$$
\begin{equation*}
G=\frac{\mathrm{A}}{\mathrm{~A}+\mathrm{B}} \text { or } \frac{\mathrm{A}}{5000} \tag{10.24}
\end{equation*}
$$

Thus for the data in Table 10.23 we have:

$$
\begin{align*}
\mathrm{B}= & \frac{1}{2} \times(2.0-0) \times(0.2+0) \tag{10.25}\\
& +(14.1-2.0) \times(3.3+0.2) \\
& +(29.3-14.1) \times(9.8+3.3) \\
& +(41.4-29.3) \times(17.1+9.8) \\
& +(51.5-41.4) \times(24.8+17.1) \\
& +(59.6-51.5) \times(32.5+24.8) \\
& +(67.7-59.6) \times(41.5+32.5) \\
& +(73.7-67.7) \times(49.3+41.5) \\
& +(78.8-73.7) \times(56.6+49.3) \\
& +(82.8-78.8) \times(63.2+56.6) \\
& +(100-82.8) \times(100+63.2) \\
= & 3210.5
\end{align*}
$$

[^47]Therefore, area $\mathrm{A}=5000-3210.5=1789.5$ and we obtain

$$
\begin{equation*}
G=\frac{1789.5}{5000}=0.3579 \tag{10.26}
\end{equation*}
$$

or approximately 36%. Based on the earlier discussion, this means that the expected income difference between two randomly selected people is about 70\% of the mean, which equates to $£ 21000$ approximately.

This method implicitly assumes that the Lorenz curve is made up of straight line segments connecting the observed points, which is in fact not quite true - it should be a smooth curve. Since the straight lines will lie inside the true Lorenz curve, area B is over-estimated and so the calculated Gini coefficient is biased downwards. The true value of the Gini coefficient is slightly greater than 36%, therefore. The bias will be greater (a) the fewer the number of observations and (b) the more concave is the Lorenz curve (i.e. the greater is inequality). The bias is unlikely to be substantial, however, so is best left untreated.

Is inequality increasing?

The Gini coefficient is only useful as a comparative measure, for looking at trends in inequality over time or for comparing different countries or regions. Table 10.24 shows the value of the Gini coefficient for the United Kingdom over the past 20 years or so and shows how it was affected by the tax system. The results are based on equivalised income, i.e. after making a correction for differences in family size. ${ }^{6}$ For this reason there is a slight difference from the Gini coefficient calculated above, which uses unadjusted data.

Using equivalised income appears to make little difference in this case (compare the 'gross income' column with the earlier calculation).

The table shows essentially two things:
(1) The Gini coefficient changes little over time, suggesting that inequality is persistent. This is in spite of other recent evidence which tends to show growing inequality at the top of the income distribution.
(2) The biggest reduction in inequality comes through cash benefits paid out by the state, rather than through taxes. In fact, the tax system appears to increase inequality rather than to reduce it, primarily because of the effects of taxes other than the income tax.

Table 10.24 Gini coefficients for the United Kingdom, 1989-2009/10

	Original income	Gross income	Disposable income	Post-tax income
1989	49.7	36.3	34.4	37.8
$1999 / 00$	52.5	38.7	35.8	40.0
$2009 / 10$	52.0	37.2	33.5	37.1

Note: Gross income is original income plus certain state benefits, such as pensions. Taking off direct taxes gives disposable income and subtracting other taxes gives post-tax income.
Source: The effects of taxes and benefits on household income, 2009/10, Office of National Statistics, 2011.

[^48]Table 10.25 Gini coefficients in past times

Year	Gini
1688	0.55
$1801-3$	0.56
1867	0.52
1913	$0.43-0.63$

Recent increases in inequality are a reversal of the historical trend. The figures presented in Table 10.25, from L. Soltow, ${ }^{7}$ provide estimates of the Gini coefficient in earlier times. These figures suggest that a substantial decline in the Gini coefficient has occurred in the last century or so, perhaps related to the process of economic development. It is difficult to compare Soltow's figures directly with the modern ones because of such factors as the quality of data and different definitions of income.

Using the Gini coefficient to compare countries shows that the United Kingdom has one of the higher figures among advanced nations. OECD figures ${ }^{8}$ show, for 2012, a Gini of 0.35 for the United Kingdom, 0.29 for Germany, 0.27 for Sweden and 0.33 for Italy, for example. The United States is one country that has more inequality than the UK, its Gini being 0.39. The average for all OECD countries is 0.32 .

A simpler formula for the Gini coefficient

Kravis, Heston and Summers ${ }^{9}$ provide estimates of 'world' GDP by decile and these figures, presented in Table 10.26, will be used to illustrate another method of calculating the Gini coefficient.

These figures show that the poorer half of the world population earns only about 10% of world income and that a third of world income goes to the richest 10% of the population. This suggests a higher degree of inequality than for a single country such as the United Kingdom, as one might expect.

When the class intervals contain equal numbers of households (for example, when the data are given for deciles of the income distribution, as here) formula (10.22) for area B simplifies to:

$$
\begin{equation*}
\mathrm{B}=\frac{100}{2 k}\left(y_{0}+2 y_{1}+2 y_{2}+\cdots+2 y_{k-1}+y_{k}\right)=\frac{100}{k}\left(\sum_{i=0}^{i=k} y_{i}-50\right) \tag{10.27}
\end{equation*}
$$

where k is the number of intervals (e.g. 10 in the case of deciles, 5 for quintiles). Thus you simply sum the y values, subtract $50,{ }^{10}$ and divide by the number

Table 10.26 The world distribution of income by decile

Decile	1	2	3	4	5	6	7	8	9	10
\% GDP	1.5	2.1	2.4	2.4	3.3	5.2	8.4	17.1	24.1	33.5
Cumulative \%	1.5	3.6	6.0	8.4	11.7	16.9	25.3	42.4	66.5	100.0

[^49]of classes k. The y values for the Kravis et al. data appear in the final row of Table 10.26, and their sum is 282.3 . We therefore obtain
\[

$$
\begin{equation*}
B=\frac{100}{10}(282.3-50)=2323 \tag{10.28}
\end{equation*}
$$

\]

Hence

$$
\begin{equation*}
A=5000-2323=2677 \tag{10.29}
\end{equation*}
$$

and

$$
\begin{equation*}
G=\frac{2677}{5000}=0.5354 \tag{10.30}
\end{equation*}
$$

or about 53%. This is surprisingly similar to the figure for original income in the United Kingdom, but, of course, differences in definition, measurement, etc., may make direct comparison invalid. While the Gini coefficient may provide some guidance when comparing inequality over time or across countries, one needs to take care in its interpretation.

Exercise 10.9

Exercise 10.10

Given shares of total income of $8 \%, 15 \%, 22 \%, 25 \%$ and 30% by each quintile of a country's population, calculate the Gini coefficient.

Inequality and development

Table 10.27 presents figures for the income distribution in selected countries around the world. They are in approximately ascending order of national income.

The table shows that countries have very different experiences of inequality, even for similar levels of income (compare Bangladesh and Kenya, for example). Hungary, the only (former) communist country, shows the greatest equality, although whether income accurately measures people's access to resources in such a regime is perhaps debatable. Note that countries with fast growth (such as Korea and Hong Kong) do not have to have a high degree of inequality. Developed countries seem to have uniformly low Gini coefficients.

Table 10.27 Income distribution figures in selected countries

	Year	Quintiles						Top 10%
		1	2	3	4	5		
Bangladesh	$1981-82$	6.6	10.7	15.3	22.1	45.3	29.5	0.36
Kenya	1976	2.6	6.3	11.5	19.2	60.4	45.8	0.51
Côte d'lvoire	$1985-86$	2.4	6.2	10.9	19.1	61.4	43.7	0.52
El Salvador	$1976-77$	5.5	10.0	14.8	22.4	47.3	29.5	0.38
Brazil	1972	2.0	5.0	9.4	17.0	66.6	50.6	0.56
Hungary	1982	6.9	13.6	19.2	24.5	35.8	20.5	0.27
Korea, Rep.	1976	5.7	11.2	15.4	22.4	45.3	27.5	0.36
Hong Kong	1980	5.4	10.8	15.2	21.6	47.0	31.3	0.38
New Zealand	$1981-82$	5.1	10.8	16.2	23.2	44.7	28.7	0.37
United Kingdom	1979	7.0	11.5	17.0	24.8	39.7	23.4	0.31
Netherlands	1981	8.3	14.1	18.2	23.2	36.2	21.5	0.26
Japan	1979	8.7	13.2	17.5	23.1	37.5	22.4	0.27

Source: World Development Report 2006.

Concentration ratios

Another type of inequality is the distribution of market shares of the firms in an industry. We all know that Microsoft currently dominates the software market with a large market share. In contrast, an industry such as bakery products has many different suppliers and there is little tendency towards dominance. The concentration ratio is a commonly used measure to examine the distribution of market shares among firms competing in a market. Of course, it would be possible to measure this using the Lorenz curve and Gini coefficient, but the concentration ratio has the advantage that it can be calculated on the basis of less information and also tends to focus attention on the largest firms in the industry. The concentration ratio is often used as a measure of the competitiveness of a particular market but, as with all statistics, it requires careful interpretation.

A market is said to be concentrated if most of the demand is met by a small number of suppliers. The limiting case is monopoly where the whole of the market is supplied by a single firm. We shall measure the degree of concentration by the fivefirm concentration ratio, which is the proportion of the market held by the largest five firms, and it is denoted C_{5}. The larger is this proportion, the greater the degree of concentration and potentially the less competitive is that market. Table 10.28 gives the (imaginary) sales figures of all the firms in a particular industry.

For convenience the firms have already been ranked by size from A (the largest) to J (smallest). The output of the five largest firms is 482 , out of a total of 569 , so the five-firm concentration ratio is $C_{5}=84.7 \%$, i.e. 84.7% of the market is supplied by the five largest firms.

Table 10.28 Sales figures for an industry (millions of units)

Firm	A	B	C	D	E	F	G	H	I	J
Sales	180	115	90	62	35	25	19	18	15	10

Without supporting evidence, it is hard to interpret this figure. Does it mean that the market is not competitive and the consumer being exploited? Some industries, such as the computer industry, have a very high concentration ratio, yet it is hard to deny that they are fiercely competitive. On the other hand, some industries with no large firms have restrictive practices, entry barriers, etc., which means that they are not very competitive (lawyers might be one example). A further point is that there may be a threat of competition from outside the industry which keeps the few firms acting competitively.

Concentration ratios can be calculated for different numbers of largest firms, e.g. the three-firm or four-firm concentration ratio. Straightforward calculation reveals them to be 67.7% and 78.6%, respectively for the data given in Table 10.28. There is little reason in general to prefer one measure to the others, and they may give different pictures of the degree of concentration in an industry.

The concentration ratio calculated above relates to the quantity of output produced by each firm, but it is possible to do the same with sales revenue, employment, investment or any other variable for which data are available. The interpretation of the results will be different in each case. For example, the largest firms in an industry, while producing the majority of output, might not provide the greater part of employment if they use more capital-intensive methods of production. Concentration ratios obviously have to be treated with caution, therefore, and are probably best combined with case studies of the particular industry before conclusions are reached about the degree of competition.

Concentration in the banking industry

A study of the banking industry by Beck et al. looked at the relationship between concentration in the industry, measured by the three firm concentration ratio, and the existence of systemic banking crises, using data for 1980-97. A selection of their data is shown below:

Country	Concentration ratio	Crisis years
Germany	0.48	None
Italy	0.35	$1990-95$
Japan	0.24	$1992-97$
Sweden	0.89	$1990-93$
UK	0.57	None
USA	0.19	$1980-92$

The authors found that there was a negative relationship between the concentration ratio (based on a measure of banks' assets) and crises; in other words, countries with more concentrated industries were generally safer (despite the evidence from Sweden, above). However, they found that a more competitive banking industry need not be risky, if there were a good system of regulation in place. Note that this study was completed before the major financial crisis of 2007, so the conclusions might no longer be valid.

Source: T. Beck et al., Bank concentration and fragility: impact and dynamics, NBER Working Paper 11500, http:// www.nber.org/papers/w11500.

Exercise 10.11

Total sales in an industry are $\$ 400 \mathrm{~m}$. The largest five firms have sales of $\$ 180 \mathrm{~m}, \$ 70 \mathrm{~m}, \$ 40 \mathrm{~m}$, $\$ 25 \mathrm{~m}$ and $\$ 15 \mathrm{~m}$. Calculate the three- and five-firm concentration ratios.

Summary

- An index number summarises the variation of a variable over time or across space in a convenient way.
- Several variables can be combined into one index, providing an average measure of their individual movements. The consumer price index is an example.
- The Laspeyres price index combines the prices of many individual goods using base-year quantities as weights. The Paasche index is similar but uses currentyear weights to construct the index.
- Laspeyres and Paasche quantity indices can also be constructed, combining a number of individual quantity series using prices as weights. Base-year prices are used in the Laspeyres index, current-year prices in the Paasche.
- A price index series multiplied by a quantity index series results in an index of expenditures. Rearranging this demonstrates that deflating (dividing) an expenditure series by a price series results in a volume (quantity) index. This is the basis of deflating a series in cash (or nominal) terms to one measured in real terms (i.e. adjusted for price changes).
- Two series covering different time periods can be spliced together (as long as there is an overlapping year) to give one continuous chain index.
- Discounting the future is similar to deflating but corrects for the rate of time preference rather than inflation. A stream of future income can thus be discounted and summarised in terms of its present value.
- An investment can be evaluated by comparing the discounted present value of the future income stream to the initial outlay. The internal rate of return of an investment is a similar but alternative way of evaluating an investment project.
- The Gini coefficient is a form of index number that is used to measure inequality (e.g. of incomes). It can be given a visual representation using a Lorenz curve diagram.
- For measuring the inequality of market shares in an industry, the concentration ratio is commonly used.

Key terms and concepts

base year	discounting
base-year weights	expenditure or value index
cash terms	five-firm concentration ratio
chain index	Gini coefficient
concentration ratio	index number
constant prices	internal rate of return
Consumer Price Index (CPI)	Laspeyres price index
current prices	Lorenz curve
current-year weights	net present value
deflating a data series	Paasche index
discount factor	present value

quantity indices	time preference
real interest rate	value (or expenditure) indices
real terms	volume series
reference year	volume terms
retail price index	weighted average

Reference
Soltow, L., Long Run Changes in British Income Inequality, Economic History Review, 21(1), 17-29, 1968.

Formulae used in this chapter

Formula	Description	Notes
$P_{L}^{n}=\frac{\sum p_{n} q_{0}}{\sum p_{0} q_{0}} \times 100$	Laspeyres price index for year n with base year 0	
$P_{L}^{n}=\frac{\sum p_{n}}{\sum p_{0}} \times s_{0} \times 100$	Laspeyres price index using expenditure weights s in base year	
$P_{P}^{n}=\frac{\sum p_{n} q_{0}}{\sum p_{0} q_{n}} \times 100$	Paasche price index for year n	
$P_{P}^{n}=\frac{1}{\sum \frac{p_{0}}{p_{n}} \times s_{n}} \times 100$	Paasche price index using expenditure weights s in current year	
$Q_{L}^{n}=\frac{\sum q_{n} p_{0}}{\sum q_{0} p_{0}} \times 100$	Laspeyres quantity index	
$Q_{P}^{n}=\frac{\sum q_{n} p_{n}}{\sum q_{0} p_{n}} \times 100$	Paasche quantity index	
$E^{n}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{0}} \times 100$	Expenditure index	
$P V=\frac{S}{(1+r)^{t}}$	Present value	The value now of a sum S to be received in t years' time, using discount rate r
$N P V=-S_{0}+\sum \frac{S_{t}}{(1+r)^{t}}$	Net present value	The value of an investment S_{0} now, yielding S_{t} p.a., discounted at a constant rate r

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
10.1 The data below show exports and imports for the United Kingdom, 2005-10, in fbn at current prices.

	2005	2006	2007	2008	2009	2010
Exports	331.1	379.1	374.0	422.9	395.6	440.9
Imports	373.8	419.8	416.7	462.0	421.2	477.6

(a) Construct index number series for exports and imports, setting the index equal to 100 in 2005 in each case.
(b) Is it possible, using only the two indices constructed in part (a), to construct an index number series for the balance of trade (exports minus imports)? If so, do so; if not, why not?
10.2 The following data show the gross operating surplus of companies, 2005-10, in the United Kingdom, in fm.

2005	2006	2007	2008	2009	2010
224811	244309	257995	255260	233436	243036

(a) Turn the data into an index number series with 2005 as the reference year.
(b) Transform the series so that 2008 is the reference year.
(c) What increase has there been in profits between 2005 and 2010? Between 2008 and 2010?
10.3 The following tables show energy prices and consumption in 1999-2003 (analogous to the data in the chapter for the years 2006-10).

	Coal ($£$ /tonne)	Petroleum ($£ /$ tonne $)$	Electricity $(£ / \mathrm{MWh})$	Gas $(£ / \mathrm{MWh})$
1999	34.77	104.93	36.23	5.46
2000	35.12	137.9	34.69	6.06
2001	38.07	148.1	31.35	8.16
2002	34.56	150.16	29.83	7.80
2003	34.5	140	28.44	8.07
Year	Coal (m. tonnes)	Petroleum (m. tonnes)	Electricity (m. MWh)	Gas (m. MWh)
1999	2.04	5.33	110.98	176.82
2000	0.72	5.52	114.11	183.44
2001	1.69	6.6	111.34	179.84
2002	1.1	5.81	112.37	165.42
2003	0.69	6.69	113.93	172.16

(a) Construct a Laspeyres price index using 1999 as the base year.
(b) Construct a Paasche price index. Compare this result with the Laspeyres index. Do they differ significantly?
(c) Construct Laspeyres and Paasche quantity indices. Check that they satisfy the conditions that $E^{n}=P_{L} \times Q_{P}$ etc.
10.4 The prices of different house types in south-east England are given in the table below:

Year	Terraced houses	Semi-detached	Detached	Bungalows	Flats
1991	59844	77791	142630	89100	47676
1992	55769	73839	137053	82109	43695
1993	55571	71208	129414	82734	42746
1994	57296	71850	130159	83471	44092

(a) If the numbers of each type of house in 1991 were $1898,1600,1601,499$ and 1702 , respectively, calculate the Laspeyres price index for 1991-94, based on $1991=100$.
(b) Calculate the Paasche price index, based on the following numbers of dwellings:

Year	Terraced houses	Semi-detached	Detached	Bungalows	Flats
1992	1903	1615	1615	505	1710
1993	1906	1638	1633	511	1714
1994	1911	1655	1640	525	1717

(c) Compare Paasche and Laspeyres price series.
10.5 (a) Using the data in Problem 10.3, calculate the expenditure shares on each fuel in 1999 and the individual price index number series for each fuel, with $1999=100$.
(b) Use these data to construct the Laspeyres price index using the expenditures shares approach. Check that it gives the same answer as in Problem 10.3(a).
10.6 The following table shows the weights in the retail price index and the values of the index itself, for 1990 and 1994.

| | Food | Alcohol
 and
 tobacco | | Housing
 and
 light | Fuel
 items | | Clothing
 goods | Personal | Travel |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Leisure

(a) Calculate the Laspeyres price index for 1994, based on $1990=100$.
(b) Draw a bar chart of the expenditure weights in 1990 and 1994 to show how spending patterns have changed. What major changes have occurred? Do individuals seem to be responding to changes in relative prices?
(c) The pensioner price index is similar to the general index calculated above, except that it excludes housing. What effect does this have on the index? What do you think is the justification for this omission?
(d) If consumers spent, on average, $£ 188$ per week in 1990 and $£ 240$ per week in 1994 , calculate the real change in expenditure on food.
(e) Do consumers appear rational, i.e. do they respond as one would expect to relative price changes? If not, why not?
10.7 Construct a chain index from the following data series:

	1998	2006	2000	2001	2006	2010	2008
Series 1	100	110	115	122	125		
Series 2			100	107	111	119	121

What problems arise in devising such an index and how do you deal with them?
10.8 Construct a chain index for 2001-10 using the following data, setting $2004=100$.

2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
87	95	100	105						
			98	93	100	104	110		
						100	106	112	

10.9 Industry is always concerned about the rising price of energy. It demands to be compensated for any rise over 5% in energy prices between 2007 and 2008. How much would this compensation cost? Which price index should be used to calculate the compensation and what difference would it make? (Use the energy price data in the chapter.)
10.10 Using the data in Problem 10.6, calculate how much the average consumer would need to be compensated for the rise in prices between 1990 and 1994.
10.11 The following data show expenditure on the National Health Service (in cash terms), the GDP deflator, the NHS pay and prices index, population and population of working age:

Year	NHS expenditure $(£ m)$	GDP Deflator $1973=100$	NHS pay and price index $1973=100$	Population (000)	Population of working age
	(1)	(2)	(3)	(4)	(000)

(In all the following answers, set your index to $1987=100$.)
(a) Turn the expenditure cash figures into an index number series.
(b) Calculate an index of 'real' NHS expenditure using the GDP deflator. How does this alter the expenditure series?
(c) Calculate an index of the volume of NHS expenditure using the NHS pay and prices index. How and why does this differ from the answer arrived at in (b)?
(d) Calculate indices of real and volume expenditure per capita. What difference does this make?
(e) Suppose that those not of working age cost twice as much to treat, on average, as those of working age. Construct an index of the need for health care and examine how health care expenditures have changed relative to need.
(f) How do you think the needs index calculated in (e) could be improved?
10.12 (a) If w represents the wage rate and p the price level, what is w / p ?
(b) If Δw represents the annual growth in wages and i is the inflation rate, what is $\Delta w-i$?
(c) What does $\ln (w)-\ln (p)$ represent? (In= natural logarithm.)
10.13 A firm is investing in a project and wishes to receive a rate of return of at least 15% on it. The stream of net income is:

Year	1	2	3	4
Income	600	650	700	400

(a) What is the present value of this income stream?
(b) If the investment costs $£ 1600$, should the firm invest? What is the net present value of the project?
10.14 A firm uses a discount rate of 12% for all its investment projects. Faced with the following choice of projects, which yields the higher NPV?

Project	Outlay	Income stream						
		1	2	3	4	5	6	
A	5600	1000	1400	1500	2100	1450	700	
B	6000	800	1400	1750	2500	1925	1200	

10.15 Calculate the internal rate of return for the project in Problem 10.13. Use either trial and error methods or a computer to solve.
10.16 Calculate the internal rates of return for the projects in Problem 10.14.
10.17 (a) Draw a Lorenz curve and calculate the Gini coefficient for the wealth data in Table 1.3 (Chapter 1).
(b) Why is the Gini coefficient typically larger for wealth distributions than for income distributions?
10.18 (a) Draw a Lorenz curve and calculate the Gini coefficient for the 1979 wealth data contained in Problem 1.5 (Chapter 1). Draw the Lorenz curve on the same diagram as you used in Problem 10.17.
(b) How does the answer compare to 2005 wealth data?
10.19 The following table shows the income distribution by quintile for the United Kingdom in 2006-7, for various definitions of income:

Quintile	Income measure			
	Original	Gross	Disposable	Post-tax
1 (bottom)	3%	7%	7%	6%
2	7%	10%	12%	11%
3	15%	16%	16%	16%
4	24%	23%	22%	22%
5 (top)	51%	44%	42%	44%

(a) Use equation (10.27) to calculate the Gini coefficient for each of the four categories of income.
(b) For the 'original income' category, draw a smooth Lorenz curve on a piece of gridded paper and calculate the Gini coefficient using the method of counting squares. How does your answer compare to that for part (a)?
10.20 For the Kravis, Heston and Summers data (Table 10.26), combine the deciles into quintiles and calculate the Gini coefficient from the quintile data. How does your answer compare with the answer given in the text, based on deciles? What do you conclude about the degree of bias?
10.21 Calculate the three-firm concentration ratio for employment in the following industry:

Firm	A	B	C	D	E	F	G	H
Employees	3350	290	440	1345	821	112	244	352

10.22 Compare the degrees of concentration in the following two industries. Can you say which is likely to be more competitive?

Firm	A	B	C	D	E	F	G	H	I
Sales	337	384	696	321	769	265	358	521	880
Sales	556	899	104	565	782	463	477	846	911

10.23 (Project) The World Development Report contains data on the income distributions of many countries around the world (by quintile). Use these data to compare income distributions across countries, focusing particularly on the differences between poor countries, middle-income and rich countries. Can you see any pattern emerging? Are there countries which do not fit into this pattern? Write a brief report summarising your findings.

Answers to exercises

Exercise 10.1

(a) $100,111.9,140.7,163.4,188.1$.
(b) 61.2, 68.5, 86.1, 100, 115.1.
(c) $115.1 / 61.2=1.881$.

Exercise 10.2

	2002	2003	2004	2005	2006
(a) $2002=100$	100	100.52	110.68	151.92	196.49
(b) $2004=100$	90.35	90.83	100	137.26	177.53
(c) Using 2003 basket	100	100.71	110.75	151.94	196.48

Exercise 10.3

The Paasche index is:

2002	2003	2004	2005	2006
100	100.71	110.48	151.18	195.31

Exercise 10.4

(a) Expenditure shares in 2002 are:

	Expenditure	Share
Coal	66.92	1.2%
Petroleum	753.77	13.8%
Electricity	3360.35	61.4%
Gas	1288.33	23.6%

giving the Laspeyres index for 2003 as

$$
\begin{aligned}
P_{1}^{n} & =\frac{34.03}{36.97} \times 0.012+\frac{152.53}{132.24} \times 0.138+\frac{28.68}{29.83} \times 0.614+\frac{8.09}{7.80} \times 0.236 \\
& =1.0052 \text { or } 100.52
\end{aligned}
$$

The expenditure shares in 2003 are $0.3 \%, 8.9 \%, 46.3 \%$ and 44.4% which allows the 2003 Paasche index to be calculated as

$$
\begin{aligned}
P_{1}^{n} & =\frac{1}{\frac{36.97}{34.03} \times 0.012+\frac{132.24}{152.53} \times 0.149+\frac{29.83}{28.68} \times 0.606+\frac{7.80}{8.09} \times 0.233} \times 100 \\
& =1.0071 \text { or } 100.71 .
\end{aligned}
$$

Later years can be calculated in similar fashion.

Exercise 10.5

(a/b) The Laspeyres and Paasche quantity indexes are:

	Laspeyres index	Paasche index
2002	100	100
2003	101.95	102.14
2004	101.98	101.80
2005	103.33	102.83
2006	101.04	100.43

(c) The expenditure index is $100,102.67,112.67,156.22$ and 197.34 .
(d) The Paasche quantity index times Laspeyres price index (or vice versa) gives the expenditure index.

Exercise 10.6

The full index is (using Laspeyres indexes):

			Chain index
1999	100		100
2000	101.01	100	101.01
2001	99.40	100.52	109.49
2002	99.22	110.68	99.40
2003		151.92	
2004	196.49		99.22
2005			100
2006		95.32	149.95
2007		126.17	193.95
2008		127.53	184.88
2009			244.71
2010			247.35

Exercise 10.7
(a) The discounted figures are:

Year	Investment/yield	Discount factor	Discounted yield
0	-100000		
1	25000	0.9091	22727.3
2	35000	0.8264	28925.6
3	30000	0.7513	22539.4
4	15000	0.6830	10245.2
Total			84437.5

The present value is less than the initial outlay.
(b) The internal rate of return is 2.12%.

Exercise 10.8
(a) Deflating to real income gives:

Year	Investment/yield	Price index	Real income
0	-50000	100	-50000.0
1	20000	105	19047.6
2	25000	110.250	22675.7
3	30000	115.763	25915.1
4	10000	121.551	8227.0

(b) The real discount rate is $1.09 / 1.05=1.038$ or 3.8% p.a.

Nominal values	Discount factor	Discounted value	Real values	Discount factor	Discounted value
-50000			-50000.0		
20000	0.917	18348.6	19047.6	0.963	18348.6
25000	0.842	21042.0	22675.7	0.928	21042.0
30000	0.772	23165.5	25915.1	0.894	23165.5
10000	0.708	7084.3	8227.0	0.861	7084.3
Totals		69640.4			69640.38

The present value is the same in both cases and exceeds the initial outlay.

Exercise 10.9

(b)Range of income	Mid- point	Number of households	Total income	$\%$ Households	$\%$ Cumulative households	$\%$ Income	$\%$ Cumulative Income
						x	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$0-$	100	3611	361100	14.1%	14.1%	2.4%	2.4%
$200-$	300	6964	2089200	27.3%	41.4%	14.1%	16.5%
$400-$	500	4643	2321500	18.2%	59.6%	15.6%	32.1%
$600-$	700	3611	2527700	14.1%	73.7%	17.0%	49.1%
$800-$	900	2321	2088900	9.1%	82.8%	14.0%	63.1%
$1000-$	1250	4385	5481250	17.2%	100.0%	36.9%	100.0%
Totals		25535	14869650	100.0%		100.0%	

The Gini coefficient is then calculated as follows: $\mathrm{B}=0.5 \times\{14.1 \times(2.4+0)+$ $27.3 \times(16.5+2.4)+18.2 \times(32.1+16.5)+14.1 \times(49.1+32.1)+9.1 \times(63.1+$ $49.1)+17.2 \times(100+63.1)=3201$.$\} Area \mathrm{A}=5000-3301=1799$. Hence Gini $=1799 / 5000=0.360$, very similar to the value in the text using more categories of income.

Exercise 10.10

Using formula (10.28) we obtain $B=100 / 5 \times(246-50)=3920$. Hence $A=1080$ and Gini $=0.216$. The sum of the cumulative y values is 246 .

Exercise 10.11

$$
C_{3}=290 / 400=72.5 \% \text { and } C_{5}=82.5 \%
$$

Appendix

Deriving the expenditure share form of the Laspeyres

 price indexWe can obtain the expenditure share version of the formula from the standard formula given in equation (10.1):

$$
\begin{aligned}
P_{L}^{n} & =\frac{\sum p_{n} q_{0}}{\sum p_{0} q_{0}}=\frac{\sum \frac{p_{n}}{p_{0}} p_{0} q_{0}}{\sum \frac{p_{0}}{p_{0}} p_{0} q_{0}} \\
& =\frac{\sum \frac{p_{n}}{p_{0}} \frac{p_{0} q_{0}}{\sum \frac{p_{0}}{p_{0}} \frac{p_{0} q_{0}}{\sum p_{0} q_{0}}}=\sum \frac{p_{n}}{p_{0}} \frac{p_{0} q_{0}}{\sum p_{0} q_{0}}}{} \\
& =\sum \frac{p_{n}}{p_{0}} \times s_{0}
\end{aligned}
$$

which is equation (10.3) in the text (apart from the ' $\times 100$ ', omitted for simplicity in the derivation).

Seasonal adjustment of time-series data

Learning outcomes 420
Introduction 421
The components of a time series 421
Isolating the trend 424
Isolating seasonal factors 427
Seasonal adjustment 429
An alternative method for finding the trend 431
Forecasting 432
Further issues 433
Using adjusted or unadjusted data 434
Summary 434
Key terms and concepts 435
Problems 436
Answers to exercises 438

By the end of this chapter you should be able to:

- recognise the different elements that make up a time series
- isolate the trend from a series, by either the additive or multiplicative method, or by using linear regression
- find the seasonal factors in a series
- use the seasonal factors to seasonally adjust the data
- forecast the series, taking account of seasonal factors
- appreciate the issues involved in the process of seasonal adjustment.
'Economists noticed some signs in the data that suggest a turning point may be in the offing. The claimant count, although down, also showed February's figure had been revised to show a rise of 600 between January and February, the first occasion in 17 months that there had been an increase.'

The Guardian, 17 April 2008.
The quote above describes economists trying to spot a 'turning point' in the unemployment data, early in 2008. This is an extremely difficult task for several reasons:

- By definition, a turning point is a point at which a previous trend changes.
- Data are 'noisy', containing a lot of random movements.
- There may be seasonal factors involved (e.g. perhaps February's figures are usually considerably higher than January's, so what are we to make of a small increase?).

This chapter is concerned with the interpretation of time-series data, such as unemployment, retail sales, stock prices, etc. Agencies such as government, businesses and trade unions are interested in knowing how the economy is changing over time. Government may want to lower interest rates in response to an economic slowdown, businesses may want to know how much extra stock they need for Christmas, and trade unions will find pay bargaining more difficult if economic conditions worsen. For all of them, an accurate picture of the economy is important.

In this chapter we will show how to decompose a time series such as unemployment into its component parts: trend, cycle, seasonal and random. We then use this breakdown to seasonally adjust the original data, i.e. to remove any variation due solely to time of year effects (a vivid example would be the Christmas season in the case of retail sales). This allows us to more easily see any changes to the underlying data. Knowing the seasonal pattern to data also helps with forecasting: knowing that unemployment tends to be above trend in September can aid us in forecasting future levels in that month.

The methods used in this chapter are relatively straightforward compared to other, more sophisticated, methods that are available. However, they do illustrate the essential principles and give similar answers to the more advanced methods. Later in the chapter we discuss some of the more complex issues that can arise.

The components of a time series

Unemployment data will be used to illustrate the methods involved in decomposing a time series into its component parts. A similar analysis could be carried out for other time-series data, common examples being monthly sales data for a firm or quarterly data on the money supply. As always, one should begin by looking at the raw data, and the best way of doing this is via a time-series chart.

Table 11.1 presents the monthly unemployment figures for the period January 2012 to December 2014, and Figure 11.1 shows a plot of the data. The chart shows

Table 11.1 UK unemployment 2012-14

	2012	2013	2014
January	2612	2536	2220
February	2611	2509	2191
March	2565	2460	2105
April	2458	2407	2001
May	2472	2449	1992
June	2561	2495	2003
July	2584	2563	2013
August	2586	2558	2015
September	2573	2470	1998
October	2512	2325	1888
November	2442	2271	1771
December	2432	2245	1750

Note: The data are in 000 s, so there were 2612000 people unemployed in January 2012.
Source: Adapted from data from the Office for National Statistics, UK unemployed aged over 16, not seasonally adjusted, licensed under the Open Government Licence v.1.0

Figure 11.1 Chart of unemployment data 2012-14

a downward trend to unemployment, particularly after mid-2013, around which there also appears to be a cycle of some kind.

Any time series such as this is made up of two types of elements:
(1) systematic components, such as a trend, cycle and seasonals, and
(2) random elements, which are by definition unpredictable.

It would be difficult to analyse a series which is completely random (such as the result of tossing a coin, see Figure 2.1 in Chapter 2). A look at the unemployment data, however, suggests that the series is definitely non-random - there is evidence of a downward trend and there does appear to be a seasonal component. The latter can be seen better if we superimpose each year on the same graph, as shown in Figure 11.2.

Note: 2011 and 2015 are also shown on the graph to provide more comparisons of the seasonal pattern.

The series generally show peaks around February and August/September, with dips around May and December time. The autumn peak occurs a little earlier in 2013. The other feature to note is that unemployment is generally falling over time, the lines for later years being below those for earlier years. If one wished to

Figure 11.2
Superimposed time-series graphs of unemployment Note: 2003 and 2007 have also been graphed to emphasise the similarity across several years.

predict unemployment for February 2016, the trend would be projected forward and account also taken of the fact that unemployment tends to be slightly above the trend in February. This also sheds some light upon the Guardian quote at the top of the chapter. A slight rise in unemployment in February is not surprising and may not indicate a longer-term increase in unemployment (though note the quote refers to the claimant count measure of unemployment, slightly different from the measure used in Table 11.1).

A time series can be decomposed into four components, three of them systematic and one random. These are:
(1) A trend: many economic variables are trended over time, as noted in Chapter 1 (the investment series). This measures the longer-term direction of the series, whether increasing, decreasing or unchanging.
(2) A cycle: most economies tend to progress unevenly, mixing periods of rapid growth with periods of relative stagnation. This business cycle can vary in length, which makes it difficult to analyse. Consequently, it is often ignored or combined together with the trend.
(3) A seasonal component: this is a regular, short-term (one year) cycle. Sales of ice cream vary seasonally, for obvious reasons. Since it is a regular cycle, it is relatively easy to isolate.
(4) A random component: this is what is left over after the above factors have been taken into account. By definition it cannot be predicted.
These four elements can be combined in either an additive or multiplicative model. The additive model of unemployment is

$$
\begin{equation*}
X_{t}=T+C+S+R \tag{11.1}
\end{equation*}
$$

where X represents unemployment, T the trend component, C the cycle, S the seasonal component and R the random element.

The multiplicative model is

$$
\begin{equation*}
X_{t}=T \times C \times S \times R \tag{11.2}
\end{equation*}
$$

There is little to choose between the two alternatives; the multiplicative formulation will be used in the rest of this chapter. This is the method generally used by the Office of National Statistics in officially published series.

The analysis of unemployment proceeds as follows:
(1) First the trend is isolated from the original data by the method of moving averages.
(2) Second, the actual employment figures are then compared to the trend to see which months tend to have unemployment above trend. This allows seasonal factors to be extracted from the data.
(3) Finally, the seasonal factors are used to seasonally adjust the data, so that the underlying movement in the figures can be observed.

Isolating the trend

There is a variety of methods for isolating the trend from time-series data. The method used here is that of moving averages, one of several methods of smoothing the data. These smoothing methods iron out the short-term fluctuations in the data by averaging successive observations. For example, to calculate the three-month moving average figure for the month of July, one would take the average of the unemployment figures for June, July and August. The three-month moving average for August would be the average of the July, August and September figures. The figures are therefore as follows (for 2012):

$$
\begin{aligned}
& \text { July: } \quad \frac{2561+2584+2586}{3}=2577 \\
& \text { August: } \frac{2584+2586+2573}{3}=2581
\end{aligned}
$$

Note that two values (2584 and 2586) are common to the two calculations, so that the two averages tend to be similar and the data series is smoothed out. Thus the moving average is calculated by moving month by month through the data series, taking successive three-month averages.

The choice of the three-month moving average was arbitrary, it could just as easily have been a $4-, 5$ - or 12 -month moving average process. How should the appropriate length of the moving average process be chosen? This depends upon the degree of smoothing of the data which is desired, and upon the nature of the fluctuations. The longer the period of the moving average process, the greater the smoothing of the data, since the greater is the number of terms in the averaging process. In the case of unemployment data, the fluctuations are probably fairly consistent from year to year since, for example, school leavers arrive on the unemployment register at the same time every year, causing a jump in the figures. A 12-month moving average process would therefore be appropriate to smooth this data series.

Table 11.2 shows how the 12 -month moving average series is calculated. The calculation is the same in principle as the three-month moving average, but there is one slight complication, that of centring the data. The unemployment column (1) of the table repeats the raw data from Table 11.1. In column (2) is calculated the successive 12 -month totals. Thus the total of the first 12 observations (Jan-Dec 2012) is 30408 and this is placed in the middle of 2012, between the months of June and July. The sum of observations 2 to 13 is 30332 and falls between July and August, and so on. Notice that it is impossible to calculate any total before June/July by the moving average process, using the data from the table. A similar effect occurs at the end of the series, in the second half of 2014. Values at the beginning and end of the period in question are always lost by this

Table 11.2 Calculation of the moving average series

Month	Unemployment (1)	12-month total (2)	Centred 12-month total (3)	Moving average (4)
2012 Jan	2612			
2012 Feb	2611			
2012 Mar	2565			
2012 Apr	2458			
2012 May	2472			
2012 Jun	2561	30408		
2012 Jul	2584	30332	30370.0	2530.8
2012 Aug	2586	30230	30281.0	2523.4
2012 Sep	2573	30125	30177.5	2514.8
2012 Oct	2512	30074	30099.5	2508.3
2012 Nov	2442	30051	30062.5	2505.2
2012 Dec	2432	29985	30018.0	2501.5
2013 Jan	2536	29964	29974.5	2497.9
2013 Feb	2509	29936	29950.0	2495.8
2013 Mar	2460	29833	29884.5	2490.4
2013 Apr	2407	29646	29739.5	2478.3
2013 May	2449	29475	29560.5	2463.4
2013 Jun	2495	29288	29381.5	2448.5
2013 Jul	2563	28972	29130.0	2427.5
2013 Aug	2558	28654	28813.0	2401.1
2013 Sep	2470	28299	28476.5	2373.0
2013 Oct	2325	27893	28096.0	2341.3
2013 Nov	2271	27436	27664.5	2305.4
2013 Dec	2245	26944	27190.0	2265.8
2014 Jan	2220	26394	26669.0	2222.4
2014 Feb	2191	25851	26122.5	2176.9
2014 Mar	2105	25379	25615.0	2134.6
2014 Apr	2001	24942	25160.5	2096.7
2014 May	1992	24442	24692.0	2057.7
2014 Jun	2003	23947	24194.5	2016.2
2014 Jul	2013	23517		
2014 Aug	2015			
2014 Sep	1998			
2014 Oct	1888			
2014 Nov	1771			
2014 Dec	1750			

Note: In column (2) are the 12-month totals, e.g. 30408 is the sum of the values from 2612 to 2432 . In column (3) these totals are centred on the appropriate month, e.g. $30177.5=(30230+30125) / 2$ The final column is column (3) divided by 12 .
method of smoothing. The greater the length of the moving average process the greater the number of observations lost.

It is inconvenient to have this series falling between the months, so it is centred in column (3). This is done by averaging every two consecutive months' figures, so the June/July and July/August figures are averaged to give the July figure, as follows:

$$
\frac{30408+30332}{2}=30370
$$

This centring problem always arises when the length of the moving average process is an even number. An alternative to having to centre the data is to use a

Figure 11.3 Unemployment and its moving average

13-month moving average. This gives virtually identical results, but it seems more natural to use a 12 -month average for monthly data.

Column (4) of Table 11.2 is equal to column (3) divided by 12 , and so gives the average of 12 consecutive observations, and this is the moving average series.

Comparison of the original data with the smoothed series shows the latter to be free of the short-term fluctuations present in the former. The two series are graphed together in Figure 11.3. Note that for this chart, we have used data from late 2011 and early 2015 (not shown in Table 11.2) to derive the moving average values at the beginning and end of the period, i.e. we have filled in the missing values in Table 11.2.

The chart shows the downward trend clearly, starting around January 2013, and also reveals how this trend appears to level off towards the end of 2014. Note that actual unemployment is still decreasing quite rapidly at that point. Actual unemployment stops falling in 2015 (not shown) and the moving average anticipates the movements in unemployment. This is not really so surprising since future values of unemployment are used in the calculation of the moving average figure for each month.

The moving average captures the trend and the cycle. How much of the cycle is included is debatable - the longer the period of the moving average, the less the cycle is captured (i.e. the smoother the series), in general. The difficulty of disentangling the cyclical element is that it is unclear how long the cycle is, or even whether it exists in the data. For the sake of argument, we will assume that our moving average fully captures both trend and cycle.

Use the quarterly data below to calculate the (four quarter) moving average series and draw a graph of the two series for 2009-12:

	Q1	Q2	Q3	Q4
2008	-	-	152	149
2009	155	158	155	153
2010	159	166	160	155
2011	162	167	172	172
2012	170	179	-	160
2013	175		-	

Isolating seasonal factors

Having obtained the trend-cycle (henceforth we refer to this as the trend, for brevity), the original data may be divided by the trend values (from Table 11.2, column (4)) to leave only the seasonal and random components. This can be understood by manipulating equation (11.2). Ignoring the cyclical component, we have

$$
\begin{equation*}
X=T \times S \times R \tag{11.3}
\end{equation*}
$$

Dividing the original data series X by the trend values T therefore gives the seasonal and random components:

$$
\begin{equation*}
\frac{X}{T}=S \times R \tag{11.4}
\end{equation*}
$$

Table 11.3 gives the results of this calculation where, once again, we have filled in the trend values for early 2012 and late 2014 using data from 2011 and 2015 for the calculation (calculation not shown but analogous to that used in Table 11.2).

The final column of the table shows the ratio of the actual unemployment level to the trend value. The value for January 2012, 1.005, shows the unemployment level in that month to be 0.5% above the trend. The July 2012 figure is $1.021,2.1 \%$ above trend, etc. Other months' figures can be interpreted in the same way. Closer examination of the table shows that unemployment tends to be above its trend in the summer months (July to September), below trend in winter (November to January) and around the trend line during April to May. These figures reflect the seasonal pattern observed in Figure 11.2 earlier.

The next task is to disentangle the seasonal and random components which together make up the 'Ratio' value in the final column of the table. We make the assumption that the random component has a mean value of zero. Then, if we average the 'Ratio' values for a particular month, the random components should approximately cancel out, leaving just the seasonal component.

Hence the seasonal factor S can be obtained by averaging the three $S \times R$ components (for 2012, 2013, 2014) for each month. For example, for January, the seasonal component is obtained as follows:

$$
\begin{equation*}
S=\frac{1.005+1.015+0.999}{3}=1.006 \tag{11.5}
\end{equation*}
$$

The more years we have available entering this averaging process, the more accurate is the estimate of the seasonal component. The seasonal component in this case for January is therefore $1.006-1=0.006=0.6 \%$, so January is typically 0.6% above trend. The random components are therefore (virtually) zero, positive and negative in 2012, 2013 and 2014, respectively.

Table 11.4 shows the calculation of the seasonal components for each month using the method described above.

Previous editions of this text calculated seasonal factors for earlier time periods, and Table 11.5 provides a comparison of four time periods. First, it should be stated that the definition and measurement of unemployment changed between preand post-2000 figures so one has to be wary of the comparison. It is noticeable,

Table 11.3 Isolating seasonal and random components

	Unemployment	Trend	Ratio
Jan 2012	2612	2600.3	1.005
Feb 2012	2611	2591.6	1.007
Mar 2012	2565	2579.6	0.994
Apr 2012	2458	2565.6	0.958
May 2012	2472	2551.7	0.969
Jun 2012	2561	2539.6	1.008
Jul 2012	2584	2530.8	1.021
Aug 2012	2586	2523.4	1.025
Sep 2012	2573	2514.8	1.023
Oct 2012	2512	2508.3	1.001
Nov 2012	2442	2505.2	0.975
Dec 2012	2432	2501.5	0.972
Jan 2013	2536	2497.9	1.015
Feb 2013	2509	2495.8	1.005
Mar 2013	2460	2490.4	0.988
Apr 2013	2407	2478.3	0.971
May 2013	2449	2463.4	0.994
Jun 2013	2495	2448.5	1.019
Jul 2013	2563	2427.5	1.056
Aug 2013	2558	2401.1	1.065
Sep 2013	2470	2373.0	1.041
Oct 2013	2325	2341.3	0.993
Nov 2013	2271	2305.4	0.985
Dec 2013	2245	2265.8	0.991
Jan 2014	2220	2222.4	0.99
Feb 2014	2191	2176.9	1.006
Mar 2014	2105	2134.6	0.986
Apr 2014	2001	2096.7	0.954
May 2014	1992	2057.7	0.968
Jun 2014	2003	2016.2	0.993
Jul 2014	2013	1977.7	1.018
Aug 2014	2015	1943.3	1.037
Sep 2014	1998	1911.8	1.045
Oct 2014	1888	1886.0	1.001
Nov 2014	1771	1866.1	0.949
Dec 2014	1750	1849.2	0.946

Note: The 'Ratio' column is simply unemployment divided by its trend value, e.g. $1.005=2612 / 2600.3$.
Table 11.4 Calculating the seasonal factors

	2012	2013	2014	Average
January	1.005	1.015	0.999	1.006
February	1.007	1.005	1.006	1.006
March	0.994	0.988	0.986	0.989
April	0.958	0.971	0.954	0.961
May	0.969	0.994	0.968	0.977
June	1.008	1.019	0.993	1.007
July	1.021	1.056	1.018	1.032
August	1.025	1.065	1.037	1.042
September	1.023	1.041	1.045	1.036
October	1.001	0.993	1.001	0.999
November	0.975	0.985	0.949	0.970
December	0.972	0.991	0.946	0.970

Table 11.5 Comparison of seasonal factors in different decades

	$1982-84$	$1991-93$	$2004-6$	$2012-14$
January	1.042	1.028	0.979	1.006
February	1.033	1.028	0.992	1.006
March	1.019	1.022	0.988	0.989
April	1.009	1.021	0.972	0.961
May	0.983	0.997	0.980	0.977
June	0.963	0.980	1.008	1.007
July	0.982	1.006	1.032	1.032
August	0.983	1.018	1.036	1.042
September	1.001	0.979	1.033	1.036
October	0.992	0.982	1.013	0.999
November	0.997	1.004	0.985	0.970
December	1.002		0.969	0.970

however, that the apparent seasonal pattern has become more pronounced post-2000. This demonstrates that a seasonal pattern is not necessarily fixed for all time but can be altered by factors such as changes in the law (unemployment benefit entitlements, school leaving age, etc.) and the changing pattern of the labour market in general.

Exercise 11.2

Using the data from Exercise 11.1, calculate the seasonal factors for each quarter.

Seasonal adjustment

Having found the seasonal factors, the original data can now be seasonally adjusted. This procedure eliminates the seasonal component from the original series leaving only the trend, cyclical and random components. It therefore removes the regular, month by month, differences and makes it easier to directly compare one month with another. Seasonal adjustment is now simple - the original data are divided by the seasonal factors shown in Table 11.4. Equation (11.6) demonstrates the principle:

$$
\begin{equation*}
\frac{X}{S}=T \times C \times R \tag{11.6}
\end{equation*}
$$

Table 11.6 shows the calculation of the seasonally adjusted figures.
The final column of the table adds the official seasonally adjusted figures available from Eurostat. Although that uses slightly more sophisticated methods of adjustment, the results are similar to those we have calculated. Figure 11.4 graphs unemployment and the seasonally adjusted series.

Note that in some months the two series move in opposite directions. For example, in November 2013 the unadjusted series showed a fall in unemployment (of about 2.3%) yet the adjusted series rose slightly (by about 0.6%). In other words, the fall in unemployment was discounted as unemployment usually falls in November (compare October and November seasonal factors) and this observed fall was relatively small and expected.

Table 11.6 Seasonally adjusted unemployment

	Unemployment	Seasonal factor	Seasonally adjusted series	S.A. series from Eurostat
Jan 2012	2612	1.006	2596	2619
Feb 2012	2611	1.006	2594	2596
Mar 2012	2565	0.989	2592	2590
Apr 2012	2458	0.961	2557	2535
May 2012	2472	0.977	2530	2518
Jun 2012	2561	1.007	2543	2548
Jul 2012	2584	1.032	2505	2518
Aug 2012	2586	1.042	2481	2499
Sep 2012	2573	1.036	2483	2498
Oct 2012	2512	0.999	2516	2499
Nov 2012	2442	0.970	2518	2491
Dec 2012	2432	0.970	2508	2488
Jan 2013	2536	1.006	2520	2542
Feb 2013	2509	1.006	2493	2494
Mar 2013	2460	0.989	2486	2484
Apr 2013	2407	0.961	2504	2481
May 2013	2449	0.977	2507	2493
Jun 2013	2495	1.007	2478	2482
Jul 2013	2563	1.032	2485	2498
Aug 2013	2558	1.042	2454	2468
Sep 2013	2470	1.036	2383	2393
Oct 2013	2325	0.999	2328	2315
Nov 2013	2271	0.970	2342	2322
Dec 2013	2245	0.970	2315	2299
Jan 2014	2220	1.006	2206	2229
Feb 2014	2191	1.006	2177	2182
Mar 2014	2105	0.989	2127	2132
Apr 2014	2001	0.961	2082	2073
May 2014	1992	0.977	2039	2033
Jun 2014	2003	1.007	1989	1989
Jul 2014	2013	1.032	1951	1949
Aug 2014	2015	1.042	1933	1926
Sep 2014	1998	1.036	1928	1921
Oct 2014	1888	0.999	1891	1877
Nov 2014	1771	0.970	1826	1821
Dec 2014	1750	0.970	1805	1805

Note: The adjusted series is obtained by dividing the 'Unemployment' column by the 'Seasonal factor' column.
Figure 11.4
Unemployment and seasonally adjusted unemployment

Unemployment (000s)

Figure 11.5
Excel version of moving average

Fitting a moving average to a series using Excel

Many software programs can automatically produce a moving average of a data series. Microsoft Excel does this using a 12-period moving average which is not centred but located at the end of the averaged values. For example, the average of the Jan-Dec 2012 figures is placed against December 2012, not between June and July as was done above. This cuts off 11 observations at the beginning of the period but none at the end. Figure 11.5 compares the moving averages calculated by Excel and by the centred moving average method described earlier.

The Excel method appears much less satisfactory: it is always lagging behind the actual series, in contrast to the centred method. However, it has the advantage that the trend value for the latest month can always be calculated.

Exercise 11.3

Again using the data from Exercise 11.1, construct the seasonally adjusted series for 2009-12 and graph the unadjusted and adjusted series.

An alternative method for finding the trend

Chapter 9 on regression showed how a straight line could be fitted to a set of data as a means of summarising it. This offers an alternative means of smoothing data and finding a trend line. The dependent variable in the regression is unemployment, which is regressed on a time trend variable. This is simply measured by the values $1,2,3, \ldots 36$ and is denoted by the letter t. January 2012 is therefore represented by 1 , February 2012 by 2 , etc. Since the trend appears to be non-linear however, a fitted linear trend is unlikely to be accurate for forecasting. The regression equation can be made non-linear by including a t^{2} term, for example. For January 2012 this would be 1, for February 2012 it would be 4, etc. The equation thus becomes

$$
\begin{equation*}
X_{t}=\mathrm{a}+\mathrm{b} t+\mathrm{c} t^{2}+e_{t} \tag{11.7}
\end{equation*}
$$

where e_{t} is the error term which, in this case, is composed of the cyclical, seasonal and random elements of the cycle. The trend component is given by $\mathrm{a}+\mathrm{b} t+\mathrm{c} t^{2}$. The calculated regression equation is (calculation not shown)

$$
\begin{equation*}
X_{t}=2527.2+10.84 t-0.90 t^{2}+e \tag{11.8}
\end{equation*}
$$

The trend values for each month can easily be calculated from this equation, by inserting the values $t=1,2,3$, etc., as appropriate. January 2012, for example, is found by substituting $t=1$ and $t^{2}=1^{2}$ into equation (11.8), giving

$$
\begin{equation*}
X_{t}=2527.2+10.84 \times 1-0.90 \times 1^{2}=2537.14 \tag{11.9}
\end{equation*}
$$

which compares to 2595.82 using the moving average method. For July 2012 ($t=7$) we obtain

$$
\begin{equation*}
X_{t}=2527.2+10.84 \times 7-0.90 \times 7^{2}=2559.06 \tag{11.10}
\end{equation*}
$$

compared to the moving average estimate of 2504.93 . The two methods give slightly different results, but not by a great deal.

The rest of the analysis can then proceed as before. The seasonal factors are calculated for each month and year by first dividing the actual value by the estimated trend value (hence $2612 / 2537.14=1.030$ for January 2012) and then averaging the January values across the three years gives the January seasonal factor. This is left as an exercise (see Exercise 11.4 and Problem 11.5) and gives similar results to the moving average method. One final point to note is that the regression method has the advantage of not losing observations at the beginning and end of the sample period.

Exercise 11.4

(a) Using the data from Exercise 11.1, calculate a regression of X on t and t^{2} (and a constant) to find the trend cycle series. Use observations for 2009-12 only for the regression equation.
(b) Graph the original series and the calculated trend line.
(c) Use the new trend line to calculate the seasonal factors.

Forecasting

It is possible to forecast future levels of unemployment based on the methods outlined above. Each component of the series is forecast separately and the results multiplied together. As an example the level of unemployment for January 2015 will be forecast.

The trend can only be forecast using the regression method, since the moving average method requires future values of unemployment, which is what is being forecast. January 2015 corresponds to time period $t=37$ so the forecast of the trend by the regression method is

$$
\begin{equation*}
X_{t}=2527.2+10.84 \times 37-0.90 \times 37^{2}=1698.73 \tag{11.11}
\end{equation*}
$$

The seasonal factor for January is 1.010 so the trend figure is multiplied by this, giving

$$
\begin{equation*}
1796.9 \times 0.988=1776.2 \quad 1698.73 \times 1.010=1715.71 \tag{11.12}
\end{equation*}
$$

The cyclical component is ignored and the random component set to a value of 1 (in the multiplicative model, zero in the additive model). This leaves 1715.71 as the forecast for January 2015. In the event the actual figure was 1790 , so the forecast is not very good, with an error of approximately 4.2%. A chart of unemployment, the trend (using the regression method) and the forecast for the first six months of 2015 reveals the problem (see Figure 11.6).

Figure 11.6 Forecasting unemployment

Unemployment (000s)

The forecast relentlessly follows the trend line downwards. Because it is only a quadratic trend (i.e. involving terms up to t^{2}) it cannot predict another turning point, which seems to have occurred around the end of 2014. Nevertheless, the error in the forecast for January 2015 would alert observers to the likelihood that some kind of change has occurred and that unemployment is no longer following its downward trend.

Exercise 11.5

Use the results of Exercise 11.4 to forecast the values of X for 2013Q1 and 2013Q2. How do they compare to the actual values?

Further issues

As stated earlier, official methods of seasonal adjustment are more sophisticated than those shown here, although with similar results. The main additional features that we have omitted are as follows:

- Ad hoc adjustments - the original data may be 'incorrect' for an obvious reason. A strike, for example, might lower output in a particular month. This not only gives an atypical figure for the month but will also affect the calculation of the seasonal factors. Hence, such an observation might be corrected in some way before the seasonal factors are calculated.
- Calendar effects - months are not all of the same length so retail sales, for example, might vary simply because there are more shopping days (especially if a month happens to have five weekends). Overseas trade statistics are routinely adjusted for the numbers of days in each month. Easter is another problem, because it is not on a regular date and so can affect monthly figures in different ways, depending where it falls.
- Forecasting methods - the trend is calculated by a mixture of regression and moving average methods, avoiding some of the problems exhibited above when forecasting.

The above analysis has taken a fairly mechanical approach to the analysis of time series, and has not sought the reasons why the data might vary seasonally.

The seasonal adjustment factors are simply used to adjust the original data for regular monthly effects, whatever the cause. Further investigation of the causes might be worthwhile as they might improve forecasting. For example, unemployment varies seasonally because of (among other things) greater employment opportunities in summer (e.g. deck chair attendants) and school leavers entering the unemployment register in September. The availability of summer jobs might be predictable (based on forecasts of the number of tourists, weather, etc.), and the number of school leavers next year can presumably be predicted by the number of pupils at present in their final year. These sorts of considerations should provide better forecasts rather than slavishly following the rules set out above.

Using adjusted or unadjusted data

Seasonal adjustment can also introduce problems into data analysis as well as resolve them. Although seasonal adjustment can help in interpreting figures, if the adjusted data are then used in further statistical analysis, they can mislead. It is well known, for example, that seasonal adjustment can introduce a cyclical component into a data series which originally had no cyclical element to it. This occurs because a large (random) deviation from the trend will enter the moving average process for 12 different months (or whatever is the length of the moving average process), and this tends to turn occasional, random disturbances into a cycle. Note also that the adjusted series will start to rise before the random shock in these circumstances.

The question then arises as to whether adjusted or unadjusted data are best used in, say, regression analysis. Use of unadjusted data means that the coefficient estimates may be contaminated by the seasonal effects; using adjusted data runs into the kind of problems outlined above. A suitable compromise is to follow the method outlined in Chapter 10: use unadjusted data with seasonal dummy variables. In this case the estimation of parameters and seasonal effects is dealt with simultaneously and generally gives the best results.

A further advantage of this regression method is that it allows the significance of the seasonal variations to be established. An F test for the joint significance of the seasonal coefficients will tell you whether any of the seasonal effects are statistically significant. If not, seasonal dummies need not be included in the regression equation.

Finally, it should be remembered that decomposing a time series is not a clearcut procedure. It is often difficult to disentangle the separate effects, and different methods will give different results. The seasonally adjusted unemployment figures given by Eurostat are slightly different from the series calculated here, due to slightly different techniques being applied. The differences are not great and the direction of the seasonal effects are the same even if the sizes are slightly different.

Summary

- Seasonal adjustment of data allows us to see some of the underlying features, shorn of the distraction of seasonal effects (such as the Christmas effect on retail sales).
- The four components of a time series are the trend, the cycle, the seasonal component and the random residual.
- These components may be thought of either as being multiplied together or added together to make up the series. The former method is more common.
- The trend (possibly mixed with the cycle) can be identified by the method of moving averages or by the use of a regression equation.
- Removing the trend cycle values from a series leaves only the seasonal and random components.
- The residual component can then be eliminated by averaging the data over successive years (e.g. take the average of the January seasonal and random component over several years).
- Having isolated the seasonal effect in such a manner, it can be eliminated from the original series, leaving the seasonally adjusted series.
- Knowledge of the seasonal effects can be useful in forecasting future values of the series.

Key terms and concepts

```
additive model random residual
calendar effects
cycle
forecasting
moving average
multiplicative model
random component
random elements
```

seasonal adjustment
seasonal component
seasonal factor
smoothing
systematic components three-month moving average trend

Problems

Some of the more challenging problems are indicated by highlighting the problem number in colour.
11.1 The following table contains data for consumers' non-durables expenditure in the United Kingdom, in constant 2003 prices.
(a) Graph the series and comment upon any apparent seasonal pattern. Why might it occur?
(b) Use the method of centred moving averages to find the trend values for 2000-14.
(c) Use the moving average figures to find the seasonal factors for each quarter (use the multiplicative model).
(d) By approximately how much does expenditure normally increase in the fourth quarter?
(e) Use the seasonal factors to obtain the seasonally adjusted series for non-durable expenditure.
(f) Were retailers happy or unhappy at Christmas in 2000? How about 2014?

	Q1	Q2	Q3	Q4
1999	-	-	153888	160187
2000	152684	155977	160564	164437
2001	156325	160069	165651	171281
2002	161733	167128	171224	176748
2003	165903	172040	176448	182769
2004	171913	178308	182480	188733
2013	175174	180723	184345	191763
2014	177421	183785	187770	196761
2007	183376	188955	-	-

Source: Data adapted from the Office for National Statistics licensed under the Open Government Licence v.1.0.
11.2 Repeat the exercise using the additive model. (In Problem 11.1(c), subtract the moving average figures from the original series. In (e), subtract the seasonal factors from the original data to get the adjusted series.) Is there a big difference between this and the multiplicative model?
11.3 The following data relate to car production in the United Kingdom (not seasonally adjusted).

	2003	2004	2005	2006	2007
January	-	141.3	136	119.1	124.2
February	-	141.1	143.5	131.2	115.6
March	-	163	153.3	159	138
April	-	129.6	139.8	118.6	120.4
May	-	143.1	132	132.3	127.4
June	-	155.5	144.3	139.3	137.5
July	146.3	140.5	130.2	117.8	129.7
August	91.4	83.2	97.1	73	-
September	153.5	155.3	149.9	122.3	-
October	153.4	135.1	124.8	116.1	-
November	142.9	149.3	149.7	128.6	-
December	112.4	109.7	95.3	84.8	-

Source: Data adapted from the Office for National Statistics licensed under the Open Government Licence v.1.0.
(a) Graph the data for 2004-14 by overlapping the three years (as was done in Figure 11.2) and comment upon any seasonal pattern.
(b) Use a 12-month moving average to find the trend values for 2004-14.
(c) Find the monthly seasonal factors (multiplicative method). Describe the seasonal pattern that emerges.
(d) By how much is the August production figure below the July figure in general?
(e) Obtain the seasonally adjusted series. Compare it with the original series and comment.
(f) Compare the seasonal pattern found with that for consumers' expenditure in Problem 11.1.
11.4 Repeat Problem 11.3 using the additive model and compare results.
11.5 (a) Using the data of Problem 11.1, fit a regression line through the data, using t and t^{2} as explanatory variables (t is a time trend 1-36). Use only the observations from 2000 to 2014. Calculate the trend values using the regression.
(b) Calculate the seasonal factors (multiplicative model) based upon this trend. How do they compare to the values found in Problem 11.1?
(c) Predict the value of consumers' expenditure for 2007 Q4.
(d) Calculate the seasonal factors using the additive model and predict consumers' expenditure for 2007 Q4.
11.6 (a) Using the data from Problem 11.3 (2004-14 only), fit a linear regression line to obtain the trend values. By how much, on average, does car production increase per year?
(b) Calculate the seasonal factors (multiplicative model). How do they compare to the values in Problem 11.3?
(c) Predict car production for April 2007.
11.7 A computer will be needed to solve this and the next problem.
(a) Repeat the regression equation from Problem 11.5 but add three seasonal dummy variables (for quarters 2, 3 and 4) to the regressors. (The dummy for quarter 2 takes the value 1 in Q2, 0 in the other quarters. The Q3 dummy takes the value 1 in Q3, 0 otherwise, etc.) How does this affect the coefficients on the time trend variables? (Use data for 2000-14 only.)
(b) How do the t ratios on the time coefficients compare with the values found in Problem 11.5? Account for the difference.
(c) Compare the coefficients on the seasonal dummy variables with the seasonal factors found in Problem 11.5(d). Comment on your results.
11.8 (a) How many seasonal dummy variables would be needed for the regression approach to the data in Problem 11.3?
(b) Do you think the approach would bring as reliable results as it did for consumers' expenditure?
11.9 (Project) Obtain quarterly (unadjusted) data for a suitable variable (some suggestions are given below) and examine its seasonal pattern. Write a brief report on your findings. You should:
(a) Say what you expect to find, and why.
(b) Compare different methods of adjustment.
(c) Use your results to try to forecast the value of the variable at some future date.
(d) Compare your results, if possible, with the 'official' seasonally adjusted series. Some suitable variables are: the money stock, retail sales, rainfall, interest rates, house prices, corporate profits.

Answers to exercises

Exercise 11.1

The calculations are as follows:

Quarter	X	4th quarter total	Centred	Moving average
2008 Q3	152	-	-	-
2008 Q4	149	-	-	-
2009 Q1	155	614	615.5	153.875
2009 Q2	158	617	619.0	154.750
2009 Q3	155	621	623.0	155.750
2009 Q4	153	625	629.0	157.250
2010 Q1	159	633	635.5	158.875
2010 Q2	166	638	639.0	159.750
2010 Q3	160	640	641.5	160.375
2010 Q4	155	643	643.5	160.875
2011 Q1	162	644	646.0	161.500
2011 Q2	167	648	650.5	162.625
2011 Q3	164	653	657.0	164.250
2011 Q4	160	661	663.5	165.875
2012 Q1	170	666	670.0	167.500
2012 Q2	172	674	676.5	169.125
2012 Q3	172	679	681.5	170.375
2012 Q4	165	684	687.5	171.875
2013 Q1	175	691	693.0	173.250
2013 Q2	179	-	-	-

The chart of these data is:

Exercise 11.2
The seasonal factors are calculated as follows:

	X	Moving average	Ratio	Seasonal factor
2009 Q1	155	153.875	1.007	1.007
2009 Q2	158	154.750	1.021	1.026
2009 Q3	155	155.750	0.995	1.000
2009 Q4	153	157.250	0.973	0.965
2010 Q1	159	158.875	1.001	1.007
2010 Q2	166	159.750	1.039	1.026
2010 Q3	160	160.375	0.998	1.000
2010 Q4	155	160.875	0.963	0.965
2011 Q1	162	161.500	1.003	1.007
2011 Q2	167	162.625	1.027	1.026
2011 Q3	164	164.250	0.998	1.000
2011 Q4	160	165.875	0.965	0.965
2012 Q1	170	167.500	1.015	1.007
2012 Q2	172	169.125	1.017	1.026
2012 Q3	172	170.375	1.010	1.000
2012 Q4	165	171.875	0.960	0.965

Note: The first seasonal factor, 1.007, is calculated as the average of 1.007, 1.001, 1.003 and 1.015.

Exercise 11.3

The adjusted series is calculated as follows:

Quarter	X	Seasonal factor	Seasonally adjusted figure
2009 Q1	155	1.007	153.994
2009 Q2	158	1.026	153.995
2009 Q3	155	1.000	154.967
2009 Q4	153	0.965	158.507
2010 Q1	159	1.007	157.968
2010 Q2	166	1.026	161.792
2010 Q3	160	1.000	159.966
2010 Q4	155	0.965	160.579
2011 Q1	162	1.007	160.949
2011 Q2	167	1.026	162.767
2011 Q3	164	1.000	163.965
2011 Q4	160	0.965	165.759
2012 Q1	170	1.007	168.897
2012 Q2 Q3	172	1.026	167.640
2012 Q4	172	1.000	171.963

And the series are graphed as follows:

Exercise 11.4

(a) The regression equation is $X=153.9+0.85 t+0.01 t^{2}$ (note the coefficient on t^{2} is very small, so this is virtually a straight line).
(b)

(c) The seasonal factors are calculated as follows:

Quarter	X	Predicted X	Ratio	Seasonal factor
2009 Q1	155	154.737	1.002	1.006
2009 Q2	158	155.617	1.015	1.026
2009 Q3	155	156.518	0.990	1.001
2009 Q4	153	157.440	0.972	0.967
2010 Q1	159	158.382	1.004	1.006
2010 Q2	166	159.345	1.042	1.026
2010 Q3	160	160.329	0.998	1.001
2010 Q4	155	161.333	0.961	0.967
2011 Q1	162	162.358	0.998	1.006
2011 Q2	167	163.404	1.022	1.026
2011 Q3	164	164.470	0.997	1.001
2011 Q4	160	165.557	0.966	0.967
2012 Q1	170	166.665	1.020	1.006
2012 Q2	172	167.793	1.025	1.026
2012 Q3	172	168.942	1.018	1.001
2012 Q4	165	170.112	0.970	0.967

Exercise 11.5

Substituting $t=17$ and $t=18$ into the regression equation gives predicted values of 171.302 and 172.513 , for Q1 and Q2 respectively. Multiplying by the relevant seasonal factors (1.006 and 1.026) gives 172.304 and 177.005 . These are close to, but slightly below, the actual values. The errors are 1.6% and 1.1%, respectively.

Formulae

Formula	Description	Notes
$\mu=\frac{\sum x}{N}$	Mean of a population	Use when all individual observations are available. N is the population size.
$\mu=\frac{\sum f x}{\sum f}$	Mean of a population	Use with grouped data. f represents the class or group frequencies, x represents the midpoint of the class interval.
$\bar{x}=\frac{\sum x}{n}$	Mean of a sample	n is the number of observations in the sample.
$\bar{x}=\frac{\sum f x}{\sum f}$	Mean of a sample	Use with grouped data.
$m=x_{\mathrm{L}}+\left(x_{\mathrm{U}}-x_{\mathrm{L}}\right)\left\{\frac{\frac{N+1}{2}-F}{f}\right\}$	Median (where data are grouped)	x_{L} and x_{U} represent the lower and upper limits of the interval containing the median. F represents the cumulative frequency up to (but excluding) the interval.
$\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}$	Variance of a population	N is the population size.
$\sigma^{2}=\frac{\sum f(x-\mu)^{2}}{\sum f}$	Population variance (grouped data)	
$s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$	Sample variance	
$s^{2}=\frac{\sum f(x-\bar{x})^{2}}{n-1}$	Sample variance (grouped data)	
$c . v .=\frac{\sigma}{\mu}$	Coefficient of variation	The ratio of the standard deviation to the mean. A measure of dispersion.

Formula	Description	Notes
$z=\frac{x-\mu}{\sigma}$	z score	Measures the distance from observation x to the mean μ measured in standard deviations.
$\frac{\sum f(x-\mu)^{3}}{N \sigma^{3}}$	Coefficient of skewness	A positive value means the distribution is skewed towards the right (long tail to the right).
$g=\sqrt[T-1]{\frac{x_{T}}{x_{1}}}-1$	Rate of growth	Measures the average annual rate of growth between years 1 and T.
$\sqrt[n]{\Pi x}$	Geometric mean (of n observations on x)	
$1-\frac{1}{k^{2}}$	Chebyshev's inequality	Minimum proportion of observations lying within k standard deviations of the mean of any distribution.
$n C r=\frac{n!}{r!(n-r)!}$	Combinatorial formula	$n!=n \times(n-1) \times \cdots \times 1$
$\operatorname{Pr}(r)=n C r \times P^{r} \times(1-P)^{n-r}$	Binomial distribution	In shorthand notation, $r \sim B(n, P)$.
$\operatorname{Pr}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}\left\{\frac{x-\mu}{\sigma}\right\}^{2}}$	Normal distribution	In shorthand notation, $x \sim N\left(\mu, \sigma^{2}\right)$.
$\bar{z}=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / n}}$	z score for the sample mean	Used to test hypotheses about the sample mean.
$\operatorname{Pr}(x)=\frac{\mu^{x} e^{-\mu}}{x!}$	Poisson distribution	Used when the probability of success is very small. The 'rare event' distribution.
$\bar{x} \pm 1.96 \sqrt{s^{2} / n}$	95\% confidence interval for the mean	Large samples, using Normal distribution.
$\bar{x} \pm t_{\nu} \sqrt{s^{2} / n}$	95\% confidence interval for the mean	Small samples, using t distribution. t_{V} is the critical value of the t distribution for $\nu=n-1$ degrees of freedom.
$p \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$	95\% confidence interval for a proportion	Large samples only.

Formula	Description	Notes
$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$	95\% confidence interval for the difference of two means	Large samples.
$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\nu} \sqrt{\frac{S^{2}}{n_{1}}+\frac{S^{2}}{n_{2}}}$	95\% confidence interval for the difference of two means	Small samples. The pooled variance is given by $\begin{aligned} & S^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}, \\ & \nu=n_{1}+n_{2}-2 \end{aligned}$
$z=\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}}$	Test statistic for H_{0} : mean $=\mu$	Large samples. For small samples, distributed as t with $\nu=n-1$ degrees of freedom.
$z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}$	Test statistic for H_{0} : true proportion $=\pi$	Large samples.
$z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$	Test statistic for $H_{0}: \mu_{1}-\mu_{2}=0$	Large samples.
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S^{2}}{n_{1}}+\frac{S^{2}}{n_{2}}}}$	Test statistic for $H_{0}: \mu_{1}-\mu_{2}=0$	Small samples. S^{2} as defined above. Degrees of freedom $v=n_{1}+n_{2}-2$.
$z=\frac{\left(p_{1}-p_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n_{1}}+\frac{\hat{\pi}(1-\hat{\pi})}{n_{2}}}}$	Test statistic for $H_{0}: \pi_{1}-\pi_{2}=0$	Large samples. $\hat{\pi}=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}$
$\chi^{2}=\sum \frac{(O-E)^{2}}{E}$	Test statistic for independence in a contingency table	$\nu=(r-1) \times(c-1)$, where r is the number of rows, c the number of columns.
$F=\frac{s_{1}^{2}}{s_{2}^{2}}$	Test statistic for H_{0} : $\sigma_{1}^{2}=\sigma_{2}^{2}$	$\nu=n_{1}-1, n_{2}-1$. Place larger sample variance in the numerator to ensure rejection region is in righthand tail of the F distribution.
$\sum_{j=1}^{n_{i}} \sum_{i=1}^{k} x_{i j}^{2}-n \bar{x}^{2}$	Total sum of squares (ANOVA)	n is the total number of observations, k is the number of groups.

Formula	Description	Notes
$\sum_{i} n_{i} \bar{x}_{i}^{2}-n \bar{x}^{2}$	Between sum of squares (ANOVA)	$A n_{\mathrm{i}}$ represents the number of observations in group i and \bar{x}_{i} is the mean of the group.
$\sum_{j} \sum_{i}\left(x_{i j}-\bar{x}_{i}\right)^{2}$	Within sum of squares (ANOVA)	
$r=\frac{n \sum X Y-\sum X \sum Y}{\sqrt{\left(n \sum X^{2}-\left(\sum X\right)^{2}\right)\left(n \sum Y^{2}-\left(\sum Y\right)^{2}\right)}}$	Correlation coefficient	$-1 \leq r \leq 1$.
$t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}$	Test statistic for $H_{0}: \rho=0$	$v=n-2$.
$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}$	Spearman's rank correlation coefficient	$-1 \leq r_{s} \leq 1 . d$ is the difference in ranks between the two variables. Only works if there are no tied ranks. Otherwise use standard correlation formula.
$b=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}}$	Slope of the regression line (simple regression)	
$a=\bar{Y}-b \bar{X}$	Intercept (simple regression)	
$\mathrm{TSS}=\sum Y^{2}-n \bar{Y}^{2}$	Total sum of squares	
ESS $=\sum Y^{2}-a \sum Y-b \sum X Y$	Error sum of squares	
RSS $=$ TSS - ESS	Regression sum of squares	
$R^{2}=\frac{\mathrm{RSS}}{\mathrm{TSS}}$	Coefficient of determination	
$s_{e}^{2}=\frac{\mathrm{ESS}}{n-2}$	Variance of the error term in regression	Replace $n-2$ by $n-k-1$ in multiple regression.
$s_{b}^{2}=\frac{s_{e}^{2}}{\sum(X-\bar{X})^{2}}$	Variance of the slope coefficient in simple regression	
$s_{a}^{2}=s_{e}^{2} \times \sqrt{\frac{1}{n}+\frac{\bar{X}^{2}}{\sum(X-\bar{X})^{2}}}$	Variance of the intercept in simple regression	

Formula	Description	Notes
$b \pm t_{v} \times s_{b}$	Confidence interval estimate for b in simple regression	t_{v} is the critical value of the t distribution with $v=n-2$ degrees of freedom.
$f p c=1-n / N$	Finite population correction for the variance of \bar{x}	
$n=\frac{Z_{\alpha}^{2} \times S^{2}}{p^{2}}$	Required sample size to obtain desired confidence interval	p is the desired accuracy (half the width of the CI), Z_{α} is the critical value from the Normal distribution (depends on confidence level specified).
$P_{L}^{n}=\frac{\sum p_{n} q_{0}}{\sum p_{0} q_{0}} \times 100$	Laspeyres price index for year n with base year 0	
$P_{L}^{n}=\frac{\sum p_{n}}{\sum p_{0}} \times s_{0} \times 100$	Laspeyres price index using expenditure weights s in base year	
$P_{P}^{n}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{n}} \times 100$	Paasche price index for year n	
$P_{P}^{n}=\frac{1}{\sum \frac{p_{0}}{p_{n}} \times s_{n}} \times 100$	Paasche price index using expenditure weights s in current year	
$Q_{L}^{n}=\frac{\sum q_{n} p_{0}}{\sum q_{0} p_{0}} \times 100$	Laspeyres quantity index	
$Q_{P}^{n}=\frac{\sum q_{n} p_{n}}{\sum q_{0} p_{n}} \times 100$	Paasche quantity index	
$E^{n}=\frac{\sum p_{n} q_{n}}{\sum p_{0} q_{0}} \times 100$	Expenditure index	
$P V=\frac{S}{(1+r)^{t}}$	Present value	The value now of a sum S to be received in t years' time, using discount rate r

Formula	Description	Notes
$N P V=-S_{0}+\sum \frac{S_{t}}{(1+r)^{t}}$	Net present value	The value of an investment S_{0} now, yielding S_{t} per annum, discounted at a constant rate r.
$t=\frac{b-\beta}{s_{b}}$	Test statistic for $H_{0}: \beta=0$	$\nu=n-2$ in simple regression, $n-k-1$ in multiple regression.
$F=\frac{\mathrm{RSS} / 1}{\operatorname{ESS} /(n-2)}$	Test statistic for $H_{0}: R^{2}=0$	$\nu=k, n-k-1$ in multiple regression.
$\hat{Y} \pm t_{\nu} \times s_{e} \sqrt{\frac{1}{n}+\frac{\left(X_{P}-\bar{X}\right)^{2}}{\sum(X-\bar{X})^{2}}}$	Confidence interval for a prediction (simple regression) at $X=X_{P}$	$\nu=n-2$.
$\hat{Y} \pm t_{\nu} \times s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(X_{P}-\bar{X}\right)^{2}}{\sum(X-\bar{X})^{2}}}$	Confidence interval for an observation on Y at $X+X_{P}$	$\nu=n-2$.
$F=\frac{\left(\mathrm{ESS}_{P}-\mathrm{ESS}_{1}\right) / n_{2}}{\operatorname{ESS}_{1} /\left(n_{1}-k-1\right)}$	Chow test for a prediction	First n_{1} observations used for estimation, last n_{2} for prediction.
$D W=\frac{\sum\left(e_{t}-e_{t-1}\right)^{2}}{\sum e_{t}^{2}}$	Durbin-Watson statistic for testing autocorrelation	
$F=\frac{\left(\operatorname{ESS}_{R}-\mathrm{ESS}_{U}\right) / q}{\operatorname{ESS}_{U} /(n-k-1)}$	Test statistic for testing q restrictions in the regression model	$\nu=q, n-k-1$.

Tables

Table A1 Random number table

This table contains 1000 random numbers within the range 0 to 99 . Each number within the range has an equal probability of occurrence. The range may be extended by combining successive entries in the table. Thus 7399 becomes the first of 500 random numbers in the range 0 to 9999 . To obtain a sample of random numbers, choose an arbitrary starting point in the table and go down the columns collecting successive values until the required sample is obtained. If the population has been numbered, this method can be used to select a random sample from the population. Alternatively, the method can simulate sampling experiments such as the tossing of a coin (an even number representing a head and an odd number a tail).

73	23	41	53	38	87	71	79	3	55	24	7	7	17	19	70
99	13	91	13	90	72	84	15	64	90	56	68	38	40	73	78
97	16	58	2	67	3	92	83	50	53	59	60	33	75	44	95
73	10	29	14	9	92	35	47	21	47	82	25	71	68	87	53
99	79	29	68	44	90	65	33	55	85	7	57	77	84	83	5
71	97	98	60	62	18	49	80	4	51	8	74	81	64	29	45
41	26	41	30	82	38	52	81	89	64	17	10	49	28	72	99
60	87	77	81	91	57	6	1	30	47	93	82	81	67	4	3
95	84	74	92	15	10	37	52	8	10	96	38	69	9	65	41
59	19	2	61	40	67	80	25	31	18	1	36	54	31	100	27
35	3	54	83	62	28	21	23	91	46	73	85	11	63	63	49
66	18	31	17	72	15	8	46	10	3	64	22	100	62	85	16
3	4	42	8	4	6	40	73	97	0	37	34	91	56	48	98
28	20	23	98	86	41	41	13	53	61	16	92	95	31	79	36
74	49	86	5	74	82	12	58	80	14	94	4	88	95	g	32
80	80	2	47	91	100	76	84	0	57	17	69	87	29	52	39
65	67	0	39	11	10	54	80	74	56	55	91	94	52	32	18
67	44	89	50	7	73	70	52	18	28	89	43	54	60	20	10
48	33	61	66	2	71	74	91	31	45	63	2	97	62	30	90
3	18	54	19	17	87	3	91	41	64	78	10	99	24	1	20
69	35	12	53	97	30	96	69	59	55	65	64	30	3	100	17
15	0	33	86	93	73	52	57	77	77	83	10	64	54	85	18
87	79	51	68	5	23	50	15	68	67	14	59	42	61	83	2
69	52	34	86	34	34	78	51	48	65	57	91	8	74	72	36
11	1	11	43	51	85	6	47	72	43	34	54	20	56	31	81
59	14	78	32	94	24	19	44	16	49	65	16	30	86	0	65
18	86	62	47	96	46	73	67	79	40	45	82	96	61	34	60
99	63	2	81	58	93	81	37	53	20	64	87	3	27	19	55
34	55	14	29	10	59	7	69	13	8	54	97	56	7	57	16
88	90	6	98	32	55	37	17	35	93	31	66	67	84	15	14
78	30	30	78	41	59	79	77	21	89	76	59	30	9	64	9
67	10	37	14	62	3	85	2	16	74	40	85	30	83	29	5
93	50	83	76	42	86	92	41	27	73	31	70	25	40	11	88

Table A1 Continued

35	68	98	18	67	22	95	34	19	27	21	90	66	20	32	48
32	52	29	78	68	96	94	44	38	95	27	85	53	76	63	78
92	100	75	77	26	39	61	33	88	66	77	76	25	67	90	1
40	73	28	5	50	73	92	32	82	23	78	30	26	52	28	94
57	41	64	50	78	35	12	60	25	4	5	82	82	57	68	43
82	41	67	79	30	43	15	72	98	48	6	22	46	92	43	41
100	11	21	44	43	51	76	89	4	90	48	31	19	89	97	45
94	8	20	67	32	42	39	6	38	25	97	10	18	85	9	60
21	59	27	39	13	81	2	47	83	12	17	54	84	68	56	29
63	62	36	6	57	96	6	36	24	13	70	32	90	92	81	86
91	42	57	99	55	31	58	21	21	65	70	4	37	28	59	9
91	27	61	86	36	57	11	35	92	15	79	30	19	85	39	49
97	39	12	28	35	37	90	93	88	20	99	76	81	61	95	70
64	89	32	80	9	66	73	71	84	69	70	12	10	56	59	56
45	34	1	32	80	99	39	52	25	87	76	91	22	26	46	67
21	65	14	1	78	35	35	63	21	66	34	3	47	51	24	37
85	64	69	93	47	82	55	87	22	56	53	85	43	66	23	66
21	37	62	29	44	39	4	4	99	3	6	82	67	53	14	0
23	8	62	9	19	31	81	92	63	10	65	78	79	96	65	33
84	14	92	85	9	16	51	70	26	60	7	7	55	66	5	51
70	37	11	7	93	63	48	12	35	95	32	5	64	5	63	28
80	27	32	92	81	27	55	98	71	22	66	64	78	79	34	73
66	13	16	48	74	51	78	83	42	31	97	72	25	75	34	40
1	51	47	84	82	27	77	40	99	13	66	52	56	27	2	19
84	26	0	38	55	30	45	80	50	20	17	78	87	4	88	86
95	28	57	33	51	39	18	12	37	100	89	63	22	50	10	22
45	76	48	43	18	24	19	1	65	93	16	48	8	60	32	76

Table A2 The standard Normal distribution

The table shows the area in the upper tail of the standard Normal distribution, for the z score shown in the margins.										
								$0 \quad z$		
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010

Table A3 Percentage points of the t distribution
The table gives critical values of the t distribution cutting off an area α in each tail, shown by the top row of the table.

Area (α) in each tail

v	0.4	0.25	0.1	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.320	318.310	636.620
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.598
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.214	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291
1										

Table A4 Critical values of the χ^{2} distribution
The values in the table give the critical values of χ^{2} which cut off the area in the right-hand tail given at the top of the column.

Area in right-hand tail

v	0.995	0.990	0.975	0.950	0.900	0.750	0.500
1	392704.10^{-10}	157088.10^{-9}	982069.10 ${ }^{-9}$	393214.10^{-8}	0.0157908	0.1015308	0.454936
2	0.0100251	0.0201007	0.0506356	0.102587	0.210721	0.575364	1.38629
3	0.0717218	0.114832	0.215795	0.351846	0.584374	1.212534	2.36597
4	0.206989	0.297109	0.484419	0.710723	1.063623	1.92256	3.35669
5	0.411742	0.554298	0.831212	1.145476	1.61031	2.67460	4.35146
6	0.675727	0.872090	1.23734	1.63538	2.20413	3.45460	5.34812
7	0.989256	1.239043	1.68987	2.16735	2.83311	4.25485	6.34581
8	1.34441	1.64650	2.17973	2.73264	3.48954	5.07064	7.34412
9	1.73493	2.08790	2.70039	3.32511	4.16816	5.89883	8.34283
10	2.15586	2.55821	3.24697	3.94030	4.86518	6.73720	9.34182
11	2.60322	3.05348	3.81575	4.57481	5.57778	7.58414	10.3410
12	3.07382	3.57057	4.40379	5.22603	6.30380	8.43842	11.3403
13	3.56503	4.10692	5.00875	5.89186	7.04150	9.29907	12.3398
14	4.07467	4.66043	5.62873	6.57063	7.78953	10.1653	13.3393
15	4.60092	5.22935	6.26214	7.26094	8.54676	11.0365	14.3389
16	5.14221	5.81221	6.90766	7.96165	9.31224	11.9122	15.3385
17	5.69722	6.40776	7.56419	8.67176	10.0852	12.7919	16.3382
18	6.26480	7.01491	8.23075	9.39046	10.8649	13.6753	17.3379
19	6.84397	7.63273	8.90652	10.1170	11.6509	14.5620	18.3377
20	7.43384	8.26040	9.59078	10.8508	12.4426	15.4518	19.3374
21	8.03365	8.89720	10.28293	11.5913	13.2396	16.3444	20.3372
22	8.64272	9.54249	10.9823	12.3380	14.0415	17.2396	21.3370
23	9.26043	10.19567	11.6886	13.0905	14.8480	18.1373	22.3369
24	9.88623	10.8564	12.4012	13.8484	15.6587	19.0373	23.3367
25	10.5197	11.5240	13.1197	14.6114	16.4734	19.9393	24.3266
26	11.1602	12.1981	13.8439	15.3792	17.2919	20.8434	25.3365
27	11.8076	12.8785	14.5734	16.1514	18.1139	21.7494	26.3363
28	12.4613	13.5647	15.3079	16.9279	18.9392	22.6572	27.3362
29	13.1211	14.2565	16.0471	17.7084	19.7677	23.5666	28.3361
30	13.7867	14.9535	16.7908	18.4927	20.5992	24.4776	29.3360
40	20.7065	22.1643	24.4330	26.5093	29.0505	33.6603	39.3353
50	27.9907	29.7067	32.3574	34.7643	37.6886	42.9421	49.3349
60	35.5345	37.4849	40.4817	43.1880	46.4589	52.2938	59.3347
70	43.2752	45.4417	48.7576	51.7393	55.3289	61.6983	69.3345
80	51.1719	53.5401	57.1532	60.3915	64.2778	71.1445	79.3343
90	59.1963	61.7541	65.6466	69.1260	73.2911	80.6247	89.3342
100	67.3276	70.0649	74.2219	77.9295	82.3581	90.1332	99.3341

v	0.250	0.100	0.050	0.025	0.010	0.005	0.001
1	1.32330	2.70554	003.84146	5.02389	6.63490	7.87944	10.828
2	2.77259	4.60517	5.99146	7.37776	9.21034	10.5966	13.816
3	4.10834	6.25139	7.81473	9.34840	11.3449	12.8382	16.266
4	5.38527	7.77944	9.48773	11.1433	13.2767	14.8603	18.467
5	6.62568	9.23636	11.0705	12.8325	15.0863	16.7496	20.515
6	7.84080	10.6446	12.5916	14.4494	16.8119	18.5476	22.458
7	9.03715	12.0170	14.0671	16.0128	18.4753	20.2777	24.322
8	10.2189	13.3616	15.5073	17.5345	20.0902	21.9550	26.125
9	11.3888	14.6837	16.9190	19.0228	21.6660	23.5894	27.877
10	12.5489	15.9872	18.3070	20.4832	23.2093	25.1882	29.588
11	13.7007	17.2750	19.6751	21.9200	24.7250	26.7568	31.264
12	14.8454	18.5493	21.0261	23.3367	26.2170	28.2995	32.909
13	15.9839	19.8119	22.3620	24.7356	27.6882	29.8195	34.528
14	17.1169	21.0641	23.6848	26.1189	29.1412	31.3194	36.123
15	18.2451	22.3071	24.9958	27.4884	30.5779	32.8013	37.697
16	19.3689	23.5418	26.2962	28.8454	31.9999	34.2672	29.252
17	20.4887	24.7690	27.5871	30.1910	33.4087	35.7185	40.790
18	21.6049	25.9894	28.8693	31.5264	34.8053	37.1565	42.312
19	22.7178	27.2036	30.1435	32.8523	36.1909	38.5823	43.820
20	23.8277	28.4120	31.4104	34.1696	37.5662	39.9968	45.315
21	24.9348	29.6151	32.6706	35.4789	38.9322	41.4011	46.797
22	26.40393	30.8133	33.9244	36.7807	40.2894	42.7957	48.268
23	27.1413	32.0069	35.1725	38.0756	41.6384	44.1813	49.728
24	28.2412	33.1962	36.4150	39.3641	42.9798	45.5585	51.179
25	29.3389	34.3816	37.6525	40.6465	44.3141	46.9279	52.618
26	30.4346	35.5632	38.8851	41.9232	45.6417	48.2899	54.052
27	31.5284	36.7412	40.1133	43.1945	46.9629	49.6449	55.476
28	32.6205	37.9150	41.3371	44.4608	48.2782	50.9934	56.892
29	33.7109	39.0875	42.5570	45.7223	49.5879	52.3356	58.301
30	34.7997	40.2560	43.7730	46.9792	50.8922	53.6720	59.703
40	45.6160	51.8051	55.7585	59.3417	63.6907	66.7660	73.402
50	56.3336	63.1671	67.5048	71.4202	76.1539	79.4900	86.661
60	66.9815	74.3970	79.0819	83.2977	88.3794	91.9517	99.607
70	77.5767	85.5270	90.5312	95.0232	100.425	104.215	112.317
80	88.1303	96.5782	101.879	106.629	112.329	116.321	124.839
90	98.6499	107.565	113.145	118.136	124.116	128.299	137.208
100	109.141	118.498	124.342	129.561	135.807	140.169	149.449

Table A5(a) Critical values of the F distribution (upper 5\% points)
The entries in the table give the critical values of F cutting off 5% in the right-hand tail of the distribution. v_{1} gives the degrees of freedom in the numerator, v_{2} those in the denominator.

	1	2	3	4	5	6	7	8	9
v_{2}									
1	161.45	199.50	215.71	224.58	230.16	230.99	236.77	238.88	240.54
2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
20	4.3512	3.4928	2.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
24	4.2597	3.4028	3.0088	2.7763	2.6307	2.5082	2.4226	2.3551	2.3002
25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821
26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107
40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
∞	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799

v_{1}										
	10	12	15	20	24	30	40	60	120	∞
v_{2}										
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
3	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.5720	8.5494	8.5264
4	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.7170	5.6877	5.6581	5.6281
5	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.3650
6	4.0600	3.999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3.2298
8	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475	2.7067
10	2.9782	2.9130	2.8450	2.7740	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	2.8536	2.7876	2.7186	2.6464	2.6090	2.5705	2.5309	2.4901	2.4480	2.4045
12	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.3410	2.2962
13	2.6710	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	2.6022	2.5342	2.4630	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.1040	2.0584	2.0107	1.9604
18	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	2.3779	2.3080	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.8780
20	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	2.3210	2.2504	2.1757	2.0960	2.0540	2.0102	1.9645	1.9165	1.8657	1.8117
22	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.9380	1.8894	1.8380	1.7831
23	2.2747	2.2036	2.1282	2.0476	2.0050	1.9605	1.9139	1.8648	1.8128	1.7570
24	2.2547	2.1834	2.1077	2.0267	1.9838	1.9390	1.8920	1.8424	1.7896	1.7330
25	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.7110
26	2.2197	2.1479	2.0716	1.9898	1.9464	1.9010	1.8533	1.8027	1.7488	1.6906
27	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	2.1900	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.7918	1.7396	1.6835	1.6223
40	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766	1.5089
60	1.9926	1.9174	1.8364	1.7480	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.4290	1.3519	1.2539
∞	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.3940	1.3180	1.2214	1.0000

Table A5(b) Critical values of the F distribution (upper 2.5% points)
The entries in the table give the critical values of F cutting off 2.5% in the right-hand tail of the distribution. v_{1} gives the degrees of freedom in the numerator, v_{2} in the denominator.

	1	2	3	4	5	6	7	8	9
v_{2}									
1	647.79	799.50	864.16	899.58	921.85	937.11	948.22	956.66	963.28
2	38.506	39.000	39.165	39.248	39.298	39.331	39.355	39.373	39.387
3	17.443	16.044	15.439	15.101	14.885	14.735	14.624	14.540	14.473
4	12.218	10.649	9.9792	9.6045	9.3645	9.1973	9.0741	8.9796	8.9047
5	10.007	8.4336	7.7636	7.3879	7.1464	6.9777	6.8531	6.7572	6.6811
6	8.8131	7.2599	6.5988	6.2272	5.9876	5.8198	5.6955	5.5996	5.5234
7	8.0727	6.5415	5.8898	5.5226	5.2852	5.1186	4.9949	4.8993	4.8232
8	7.5709	6.0595	5.4160	5.0526	4.8173	4.6517	4.5286	4.4333	4.3572
9	7.2093	5.7147	5.0781	4.7181	4.4844	4.3197	4.1970	4.1020	4.0260
10	6.9367	5.4564	4.8256	4.4683	4.2361	4.0721	3.9498	3.8549	3.7790
11	6.7241	5.2559	4.6300	4.2751	4.0440	3.8807	3.7586	3.6638	3.5879
12	6.5538	5.0959	4.4742	4.1212	3.8911	3.7283	3.6065	3.5118	3.4358
13	6.4143	4.9653	4.3472	3.9959	3.7667	3.6043	3.4827	3.3880	3.3120
14	6.2979	4.8567	4.2417	3.8919	3.6634	3.5014	3.3799	3.2853	3.2093
15	6.1995	4.7650	4.1528	3.8043	3.5764	3.4147	3.2934	3.1987	3.1227
16	6.1151	4.6867	4.0768	3.7294	3.5021	3.3406	3.2194	3.1248	3.0488
17	6.0420	4.6189	4.0112	3.6648	3.4379	3.2767	3.1556	3.0610	2.9849
18	5.9781	4.5597	3.9539	3.6083	3.3820	3.2209	3.0999	3.0053	2.9219
19	5.9216	4.5075	3.9034	3.5587	3.3327	3.1718	3.0509	2.9563	2.8801
20	5.8715	4.4613	3.8587	3.5147	3.2891	3.1283	3.0074	2.9128	2.8365
21	5.8266	4.4199	3.8188	3.4754	3.2501	3.0895	2.9686	2.8740	2.7977
22	5.7863	4.3828	3.7829	3.4401	3.2151	3.0546	2.9338	2.8392	2.7628
23	5.7498	4.3492	3.7505	3.4083	3.1835	3.0232	2.9023	2.8077	2.7313
24	5.7166	4.3187	3.7211	3.3794	3.1548	2.9946	2.8738	2.7791	2.7027
25	5.6864	4.2909	3.6943	3.3530	3.1287	2.9685	2.8478	2.7531	2.6766
26	5.6586	4.2655	3.6697	3.3289	3.1048	2.9447	2.8240	2.7293	2.6528
27	5.6331	4.2421	3.6472	3.3067	3.0828	2.9228	2.8021	2.7074	2.6309
28	5.6096	4.2205	3.6264	3.2863	3.0626	2.9027	2.7820	2.6872	2.6106
29	5.5878	4.2006	3.6072	3.2674	3.0438	2.8840	2.7633	2.6686	2.5919
30	5.5675	4.1821	3.5894	3.2499	3.0265	2.8667	2.7460	2.6513	2.5746
40	5.4239	4.0510	3.4633	3.1261	2.9037	2.7444	2.6238	2.5289	2.4519
60	5.2856	3.9253	3.3425	3.0077	2.7863	2.6274	2.5068	2.4117	2.3344
120	5.1523	3.8046	3.2269	2.8943	2.6740	2.5154	2.3948	2.2994	2.2217
∞	5.0239	3.6889	3.1161	2.7858	2.5665	2.4082	2.2875	2.1918	2.1136

v_{1}										
	10	12	15	20	24	30	40	60	120	∞
v_{2}										
1	968.63	976.71	984.87	993.10	997.25	1001.4	1005.6	1009.8	1014.0	1018.3
2	39.398	39.415	39.431	39.448	39.456	39.465	39.473	39.481	39.400	39.498
3	14.419	14.337	14.253	14.167	14.124	14.081	14.037	13.992	13.947	13.902
4	8.8439	8.7512	8.6565	8.5599	8.5109	8.4613	8.4111	8.3604	8.3092	8.2573
5	6.6192	6.5245	6.4277	6.3286	6.2780	6.2269	6.1750	6.1225	$6.069 ?$	6.0153
6	5.4613	5.3662	5.2687	5.1684	5.1172	5.0652	5.0125	4.9589	4.9044	4.8491
7	4.7611	4.6658	4.5678	4.4667	4.4150	4.3624	4.3089	4.2544	4.1989	4.1423
8	4.2951	4.1997	4.1012	3.9995	3.9472	3.8940	3.8398	3.7844	3.7279	3.6702
9	3.9639	3.8682	3.7694	3.6669	3.6142	3.5604	3.5055	3.4493	3.3918	3.3329
10	3.7168	3.6209	3.5217	3.4185	3.3654	3.3110	3.2554	3.1984	3.1399	3.0798
11	3.5257	3.4296	3.3299	3.2261	3.1725	3.1176	3.0613	3.0035	2.9441	2.8828
12	3.3736	3.2773	3.1772	3.0728	3.0187	2.9633	2.9063	2.8478	2.7874	2.7249
13	3.2497	3.1532	3.0527	2.9477	2.8932	2.8372	2.7797	2.7204	2.6590	2.5955
14	3.1469	3.0502	2.9493	2.8437	2.7888	2.7324	2.6742	2.6142	2.5519	2.4872
15	3.0602	2.9633	2.8621	2.7559	2.7006	2.6437	2.5850	2.5242	2.4611	2.3953
16	2.9862	2.8890	2.7875	2.6808	2.6252	2.5678	2.5085	2.4471	2.3831	2.3163
17	2.9222	2.8249	2.7230	2.6158	2.5598	2.5020	2.4422	2.3801	2.3153	2.2474
18	2.8664	2.7689	2.6667	2.5590	2.5027	2.4445	2.3842	2.3214	2.2558	2.1869
19	2.8172	2.7196	2.6171	2.5089	2.4523	2.3937	2.3329	2.2696	2.2032	2.1333
20	2.7737	2.6758	2.5731	2.4645	2.4076	2.3486	2.2873	2.2234	2.1562	2.0853
21	2.7348	2.6368	2.5338	2.4247	2.3675	2.3082	2.2465	2.1819	2.1141	2.0422
22	2.6998	2.6017	2.4984	2.3890	2.3315	2.2718	2.2097	2.1446	2.0760	2.0032
23	2.6682	2.5699	2.4665	2.3567	2.2989	2.2389	2.1763	2.1107	2.0415	1.9677
24	2.6396	2.5411	2.4374	2.3273	2.2693	2.2090	2.1460	2.0799	2.0099	1.9353
25	2.6135	2.5149	2.4110	2.3005	2.2422	2.1816	2.1183	2.0516	1.9811	1.9055
26	2.5896	2.4908	2.3867	2.2759	2.2174	2.1565	2.0928	2.0257	1.9545	1.8781
27	2.5676	2.4688	2.3644	2.2533	2.1946	2.1334	2.0693	2.0018	1.9299	1.8527
28	2.5473	2.4484	2.3438	2.2324	2.1735	2.1121	2.0477	1.9797	1.9072	1.8291
29	2.5286	2.4295	2.3248	2.2131	2.1540	2.0923	2.0276	1.9591	1.8861	1.8072
30	2.5112	2.4120	2.3072	2.1952	2.1359	2.0739	2.0089	1.9400	1.8664	1.7867
40	2.3882	2.2882	2.1819	2.0677	2.0069	1.9429	1.8752	1.8028	1.7242	1.6371
60	2.2702	2.1692	2.0613	1.9445	1.8817	1.8152	1.7440	1.6668	1.5810	1.4821
120	2.1570	2.0548	1.9450	1.8249	1.7597	1.6899	1.6141	1.5299	1.4327	1.3104
∞	2.0483	1.9447	1.8326	1.7085	1.6402	1.5660	1.4835	1.3883	1.2684	1.0000

Table A5(C) Critical values of the F distribution (upper 1\% points)
The entries in the table give the critical values of F cutting off 1% in the right-hand tail of the distribution. v_{1} gives the degrees of freedom in the numerator, v_{2} in the denominator.

v_{1}									
	1	2	3	4	5	6	7	8	9
v_{1}									
1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761
7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188
8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106
9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511
10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424
11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.6315
12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.3875
13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.1911
14	8.8618	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.0297
15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.8948
16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.7804
17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.6822
18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.5971
19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.5225
20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.4567
21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.3981
22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.3458
23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.2986
24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.2560
25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3439	3.2172
26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.1818
27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.1494
28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195
29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920
30	7.5625	5.3903	4.5097	4.0179	3.6990	3.4735	3.3045	3.1726	3.0665
40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2.9930	2.8876
60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.7185
120	6.8509	4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.5586
∞	6.6349	4.6052	3.7816	3.3192	3.0173	2.8020	2.6393	2.5113	2.4073

v_{1}										
	10	12	15	20	24	30	40	60	120	∞
v_{2}										
1	6055.8	6106.3	6157.3	6208.7	6234.6	6260.6	6286.8	6313.0	6339.4	6365.9
2	99.399	99.416	99.433	99.449	99.458	99.466	99.474	99.482	99.491	99.499
3	27.229	27.052	26.872	26.690	26.598	26.505	26.411	26.316	26.221	26.125
4	14.546	14.374	14.198	14.020	13.929	13.838	13.745	13.652	13.558	13.463
5	10.051	9.8883	9.7222	9.5526	9.4665	9.3793	9.2912	9.2020	9.1118	9.0204
6	7.8741	7.7183	7.5590	7.3958	7.3127	7.2285	7.1432	7.0567	6.9690	6.8800
7	6.6201	6.4691	6.3143	6.1554	6.0743	5.9920	5.9084	5.8236	5.7373	5.6495
8	5.8143	5.6667	5.5151	5.3591	5.2793	5.1981	5.1156	5.0316	4.9461	4.8588
9	5.2565	5.1114	4.9621	4.8080	4.7290	4.6486	4.5666	4.4831	4.3978	4.3105
10	4.8491	4.7059	4.5581	4.4054	4.3269	4.2469	4.1653	4.0819	3.9965	3.9090
11	4.5393	4.3974	4.2509	4.0990	4.0209	3.9411	3.8596	3.7761	3.6904	3.6024
12	4.2961	4.1553	4.0096	3.8584	3.7805	3.7008	3.6192	3.5355	3.4494	3.3608
13	4.1003	3.9603	3.8154	3.6646	3.5868	3.5070	3.4253	3.3413	3.2548	3.1654
14	3.9394	3.8001	3.6557	3.5052	3.4274	3.3476	3.2656	3.1813	3.0942	3.0040
15	3.8049	3.6662	3.5222	3.3719	3.2940	3.2141	3.1319	3.0471	2.9595	2.8684
16	3.6909	3.5527	3.4089	3.2587	3.1808	3.1007	3.0182	2.9330	2.8447	2.7528
17	3.5931	3.4552	3.3117	3.1615	3.0835	2.0032	2.9205	2.8348	2.7459	2.6530
18	3.5082	3.3706	3.2273	3.0771	2.9990	2.9185	2.8354	2.7493	2.6597	2.5660
19	3.4338	3.2965	3.1533	3.0031	2.9249	2.8442	2.7608	2.6742	2.5839	2.4893
20	3.3682	3.2311	3.0880	2.9377	2.8594	2.7785	2.6947	2.6077	2.5168	2.4212
21	3.3098	3.1730	3.0300	2.8796	2.8010	2.7200	2.6359	2.5484	2.4568	2.3603
22	3.2576	3.1209	2.9779	2.8274	2.7488	2.6675	2.5831	2.4951	2.4029	2.3055
23	3.2106	3.0740	2.9311	2.7805	2.7017	2.6202	2.5355	2.4471	2.3542	2.2558
24	3.1681	3.0316	2.8887	2.7380	2.6591	2.5773	2.4923	2.4035	2.3100	2.2107
25	3.1294	2.9931	2.8502	2.6993	2.6203	2.5383	2.4530	2.3637	2.2696	2.1694
26	3.0941	2.9578	2.8150	2.6640	2.5848	2.5026	2.4170	2.3273	2.2325	2.1315
27	3.0618	2.9256	2.7827	2.6316	2.5522	2.4699	2.3840	2.2938	2.1985	2.0965
28	3.0320	2.8959	2.7530	2.6017	2.5223	2.4397	2.3535	2.2629	2.1670	2.0642
29	3.0045	2.8685	2.7256	2.5742	2.4946	2.4118	2.3253	2.2344	2.1379	2.0342
30	2.9791	2.8431	2.7002	2.5487	2.4689	2.3860	2.2992	2.2079	2.1108	2.0062
40	2.8005	2.6648	2.5216	2.3689	2.2880	2.2034	2.1142	2.0194	1.9172	1.8047
60	2.6318	2.4961	2.3523	2.1978	2.1154	2.0285	1.9360	1.8363	1.7263	1.6006
120	2.4721	2.3363	2.1915	2.0346	1.9500	1.8600	1.7628	1.6557	1.5330	1.3805
∞	2.3209	2.1847	2.0385	1.8783	1.7908	1.6964	1.5923	1.4730	1.3246	1.0000

Table A5(d) Critical values of the F distribution (upper 0.5% points)
The entries in the table give the critical values of F cutting off 0.5% in the right-hand tail of the distribution. v_{1} gives the degrees of freedom in the numerator, v_{2} in the denominator.

	1	2	3	4	5	6	7	8	9
v_{1}									
1	16211	20000	21615	22500	23056	23437	23715	23925	24091
2	198.50	199.00	199.17	199.25	199.30	199.33	199.36	199.37	199.39
3	55.552	49.799	47.467	46.195	45.392	44.838	44.434	44.126	43.882
4	31.333	26.284	24.259	23.155	22.456	21.975	21.622	21.352	21.139
5	22.785	18.314	16.530	15.556	14.940	14.513	14.200	13.961	13.772
6	18.635	14.544	12.917	12.028	11.464	11.073	10.786	10.566	10.391
7	16.236	12.404	10.882	10.050	9.5221	9.1553	8.8854	8.6781	8.5138
8	14.688	11.042	9.5965	8.8051	9.3018	7.9520	7.6941	7.4959	7.3386
9	13.614	10.107	8.7171	7.9559	7.4712	7.1339	6.8849	6.6933	6.5411
10	12.826	9.4270	8.0807	7.3428	6.8724	6.5446	6.3025	6.1159	5.9676
11	12.226	8.9122	7.6004	6.8809	6.4217	6.1016	5.8648	5.6821	5.5368
12	11.754	8.5096	7.2258	6.5211	6.0711	5.7570	5.5245	5.3451	5.2021
13	11.374	8.1865	6.9258	6.2335	5.7910	5.4819	5.2529	5.0761	4.9351
14	11.060	7.9216	6.6804	5.9984	5.5623	5.2574	5.0313	4.8566	4.7173
15	10.798	7.7008	6.4760	5.8029	5.3721	5.0708	4.8473	4.6744	3.5364
16	10.575	7.5138	6.3034	5.6378	5.2117	4.9134	4.6920	4.5207	4.3838
17	10.384	7.3536	6.1556	5.4967	5.0746	4.7789	4.5594	4.3894	4.2535
18	10.218	7.2148	6.0278	5.3746	3.9560	4.6627	4.4448	3.2759	4.1410
19	10.073	7.0935	5.9161	5.2681	4.8526	4.5614	4.3448	4.1770	4.0428
20	9.9439	6.9865	5.8177	5.1743	4.7616	4.4721	4.2569	4.0900	3.9564
21	9.8295	6.8914	5.7304	5.0911	4.6809	4.3931	4.1789	4.0128	3.8799
22	9.7271	6.8064	5.6524	5.0168	4.6088	4.3225	4.1094	3.9440	3.8116
23	9.6348	6.7300	5.5823	4.9500	3.5441	4.2591	4.0469	3.8822	3.7502
24	9.5513	6.6609	5.5190	4.8898	4.4857	4.2019	3.9905	3.8264	3.6949
25	9.4753	6.5982	5.4615	4.8351	4.4327	4.1500	3.9394	3.7758	3.6447
26	9.4059	6.5409	5.4091	4.7852	4.3844	4.1027	3.8928	3.7297	3.5989
27	9.3423	6.4885	5.3611	4.7396	4.3402	4.0594	3.8501	3.6875	3.5571
28	9.2838	6.4403	5.3170	4.6977	4.2996	4.0197	3.8110	3.6487	3.5186
29	9.2297	6.3958	5.2764	4.6591	4.2622	3.9831	3.7749	3.6131	3.4832
30	9.1797	6.3547	5.2388	4.6234	4.2276	3.9492	3.7416	3.5801	3.4504
40	8.8279	6.0664	4.9758	4.3738	3.9860	3.7129	3.5088	3.3498	3.2220
60	8.4946	5.7950	4.7290	4.1399	3.7599	3.4918	3.2911	3.1344	3.0083
120	8.1788	5.5393	4.4972	3.9207	3.5482	3.2849	3.0874	2.9330	2.8083
∞	7.894	5.2983	4.2794	3.7151	3.3499	3.0913	2.8968	2.7444	2.6210

v_{1}										
	10	12	15	20	24	30	40	60	120	∞
v_{2}										
1	24224	24426	24630	24836	24940	25044	25148	25253	25359	25464
2	199.40	199.42	199.43	199.45	199.46	199.47	199.47	199.48	199.49	199.50
3	43.686	43.387	43.085	42.778	42.622	42.466	42.308	42.149	41.989	41.828
4	20.967	20.705	20.438	20.167	20.030	19.892	19.752	19.611	19.468	19.325
5	13.618	13.384	13.146	12.903	12.780	12.656	12.530	12.402	12.274	12.144
6	10.250	10.034	9.8140	9.5888	9.4742	9.3582	9.2408	9.1219	9.0015	8.8793
7	8.3803	8.1764	7.9678	7.7540	7.6450	7.5345	7.4224	7.3088	7.1933	7.0760
8	7.2106	7.0149	6.8143	6.6082	6.5029	6.3961	6.2875	6.1772	6.0649	5.9506
9	6.4172	6.2274	6.0325	5.8318	5.7292	5.6248	5.5186	5.4104	5.3001	5.1875
10	5.8467	5.6613	5.4707	5.2740	5.1732	5.0706	4.9659	4.8592	4.7501	4.6385
11	5.4183	5.2363	5.0489	4.8552	4.7557	4.6543	4.5508	4.4450	4.3367	4.2255
12	5.0855	4.9062	4.7213	4.5299	4.4314	4.3309	4.2282	5.1229	4.0149	3.9039
13	4.8199	4.6429	4.4600	4.2703	4.1726	4.0727	3.9704	3.8655	3.7577	3.6465
14	4.6034	4.4281	4.2468	4.0585	3.9614	3.8619	3.7600	3.6552	3.5473	3.4359
15	4.4235	4.2497	4.0698	3.8826	3.7859	3.6867	3.5850	3.4803	3.3722	3.2602
16	4.2719	4.0994	3.9205	3.7342	3.6378	3.5389	3.4372	3.3324	3.2240	3.1115
17	4.1424	3.9709	3.7929	3.6073	3.5112	3.4124	3.3108	3.2058	3.0971	2.9839
18	4.0305	3.8599	3.6827	3.4977	3.4017	3.3030	3.2014	3.0962	2.9871	2.8732
19	3.9329	3.7631	4.5866	3.4020	3.3062	3.2075	3.1058	3.0004	2.8908	2.7762
20	3.8470	3.6779	3.5020	3.3178	3.2220	3.1234	3.0215	2.9159	2.8058	2.6904
21	3.7709	3.6024	3.4270	3.2431	3.1474	3.0488	2.9467	2.7408	2.7302	2.6140
22	3.7030	3.5350	3.3600	3.1764	3.0807	2.9821	2.8799	2.7736	2.6625	2.5455
23	3.6420	3.4745	3.2999	3.1165	3.0208	2.9221	2.8197	2.7132	2.6015	2.4837
24	3.5870	3.4199	3.2456	3.0624	2.9667	2.8679	2.7654	2.6585	2.5463	2.4276
25	3.5370	3.3704	3.1963	3.0133	2.9176	2.8187	2.7160	2.6088	2.4961	2.3765
26	3.4916	3.3252	3.1515	2.9685	2.8728	2.7738	2.6709	2.5633	2.4501	2.3297
27	3.4499	3.2839	3.1104	2.9275	2.8318	2.7327	2.6296	2.5217	2.4079	2.2867
28	3.4117	3.2460	3.0727	2.8899	2.7941	2.6949	2.5916	2.4834	2.3690	2.2470
29	3.3765	3.2110	3.0379	2.8551	2.7594	2.6600	2.5565	2.4479	2.3331	2.2102
30	3.3440	3.1787	3.0057	2.8230	2.7272	2.6278	2.5241	2.4151	2.2998	2.1760
40	3.1167	2.9531	2.7811	2.5984	2.5020	2.4015	2.2958	2.1838	2.0636	1.9318
60	2.9042	2.7419	2.5705	2.3872	2.2898	2.1874	2.0789	1.9622	1.8341	1.6885
120	2.7052	2.5439	2.3727	2.1881	2.0890	1.9840	1.8709	1.7469	1.6055	1.4311
∞	2.5188	2.3583	2.1868	1.9998	1.8983	1.7891	1.6691	1.5325	1.3637	1.0000

Table A6 Critical values of Spearman's rank correlation coefficient
Entries in the table show critical values of Spearman's rank correlation coefficient. The value at the top of each column shows the significance level for a two-tailed test. For a one-tailed test, the significance level is half that shown.

N	10\%	5\%	2\%	1\%
5	0.900	-	-	-
6	0.829	0.886	0.943	-
7	0.714	0.786	0.893	-
8	0.643	0.738	0.833	0.881
9	0.600	0.683	0.783	0.833
10	0.564	0.648	0.745	0.818
11	0.523	0.623	0.763	0.794
12	0.497	0.591	0.703	0.780
13	0.475	0.566	0.673	0.746
14	0.457	0.545	0.646	0.716
15	0.441	0.525	0.623	0.689
16	0.425	0.507	0.601	0.666
17	0.412	0.490	0.582	0.645
18	0.399	0.476	0.564	0.625
19	0.388	0.462	0.549	0.608
20	0.377	0.450	0.534	0.591
21	0.368	0.438	0.521	0.576
22	0.359	0.428	0.508	0.562
23	0.351	0.418	0.496	0.549
24	0.343	0.409	0.485	0.537
25	0.336	0.400	0.475	0.526
26	0.329	0.392	0.465	0.515
27	0.323	0.385	0.456	0.505
28	0.317	0.377	0.448	0.496
29	0.311	0.370	0.440	0.487
30	0.305	0.364	0.432	0.478

Source: Annals of Statistics, 1936 and 1949.

Table A7 Critical values for the Durbin-Watson test at 5\% significance level

Sample	Number of explanatory variables											
size	1		2		3		4		5			
n	d_{L}	d_{U}	d_{L}	d_{U}	d_{L}	d_{U}	d_{L}	d_{U}	d_{L}	d_{U}		
10	0.879	1.320	0.697	1.641	0.525	2.016	0.376	2.414	0.243	2.822		
11	0.927	1.324	0.758	1.604	0.595	1.928	0.444	2.283	0.316	2.645		
12	0.971	1.331	0.812	1.579	0.658	1.864	0.512	2.177	0.379	2.506		
13	1.010	1.340	0.861	1.562	0.715	1.816	0.574	2.094	0.445	2.390		
14	1.045	1.350	0.905	1.551	0.767	1.779	0.632	2.030	0.505	2.296		
15	1.077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2.220		
20	1.201	1.411	1.100	1.537	0.998	1.676	0.894	1.828	0.792	1.991		
25	1.288	1.454	1.206	1.550	1.123	1.654	1.038	1.767	0.953	1.886		
30	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833		
35	1.402	1.519	1.343	1.584	1.283	1.653	1.222	1.726	1.160	1.803		
40	1.442	1.544	1.391	1.600	1.338	1.659	1.285	1.721	1.230	1.786		
50	1.503	1.585	1.462	1.628	1.421	1.674	1.378	1.721	1.335	1.771		
100	1.654	1.694	1.634	1.715	1.613	1.736	1.592	1.758	1.571	1.780		
200	1.758	1.778	1.748	1.789	1.738	1.799	1.728	1.810	1.718	1.820		

Answers and Commentary on Problems

Answers to Chapter 1

Problem 1.1

(a)

Comparison is complicated because the data for women only are from a survey, hence the absolute numbers are much smaller. Also, we compare women here with the total for men and women in the text. We have to infer what the difference between men and women is. The major difference apparent is that there are relatively more women in the 'Other qualification' category, and relatively fewer in the higher education category.
(b) 1000

There is not a great difference apparent between this graph and the one in the text. Closer inspection of the figures suggests a higher proportion of women are 'inactive' and a lower proportion in work, but this detail is difficult to discern from the graph alone.
(c)

This chart brings out a little more clearly that there is a slightly higher degree of inactivity amongst women, particularly in the lower education categories.
(d)

Higher education
\square A levels
\square Other qualification
No qualification

This again brings out the higher proportion with 'other' qualifications and the fewer with higher education.

Problem 1.3
(a) Higher education, 88%.
(b) Those in work, 20%.

Problem 1.5
Bar chart

Histogram

Histogram

The difference between bar chart and histogram is similar to that for the 2005 distribution. The overall shape of the histogram is similar (heavily skewed to right). Comparison is difficult because of different wealth levels (due to inflation), and grouping into classes can affect the precise shape of the graph.

Problem 1.7

(a) Mean 16.399 (£000); median 8.92; mode 0-1 (£000) group has the greatest frequency density. They differ because of skewness in the distribution.
(b) Q1 = 3.295, Q3 = 18.399, IQR = 15.044; variance $=652.88 ;$ s.d. $=25.552$; coefficient of variation $=1.56$.
(c) $95,469.32 / 25.55^{3}=5.72>0$ as expected. Ask your class whether this number is revealing to them. Is there any intuition?
(d) Comparison in text.
(e) This would increase the mean substantially (to 31.12), but the median and mode would be unaffected.

Problem 1.9
$(33 \times 134+40 \times 139+25 \times 137) /(33+40+25)=136.8$ pence/litre

Problem 1.11

(a) $z=1.5(=(83-65) / \sqrt{ } 144)$ and $-1.5(=(47-65 / \sqrt{ } 144)$ respectively.
(b) Using Chebyshev's theorem with $k=1.5$, we have that at least $\left(1-1 / 1.5^{2}\right)=$ $0.56(56 \%)$ lies within 1.5 standard deviations of the mean, so at most 0.44 (44 students) lies outside the range.
(c) As Chebyshev's theorem applies to both tails, we cannot answer this part. You cannot halve 0.44 as the distribution may be skewed.

Problem 1.13
(a)

The series shows an initial peak in 1989, then a slow recovery from 1991 to 2003. After this the market turns down again. The series is quite volatile with long upward and downward swings.
(b) Change in registrations

This form of the graphs shows that recessions can be quite severe for the vehicle market, while upswings show smaller per annum increases. The log graphs are very similar to the levels graphs. There is not always an advantage in drawing these.

Problem 1.15

(a) $(1994.6 / 2212.6)^{1 / 23}=-0.0045$ or -0.45% p.a. (note that this is not particularly representative - most years had positive growth but there were sharp falls at the beginning and end of the period).
(b) 0.084 (around the geometric mean).
(c) The standard deviations of the two growth rates are similar (it was 0.0766 for investment), so this suggests a similar level of volatility. Note that, since the means are very different (6.37% p.a. for investment) and for registrations is actually negative, there is a big difference in volatility if one relies upon the coefficient of variation. This latter is misleading in this case, however - it reflects differences in the means rather than in volatility.

Problem 1.17
(a) Non-linear, upward trend. It is likely to be positively autocorrelated. Variation around the trend is likely to grow over time (heteroscedasticity).
(b) Similar to (a), except that the trend would be shallower after deflation. Probably there will be less heteroscedasticity because price variability has been removed, which may also increase the autocorrelation of the series.
(c) Unlikely to show a trend in the very long run, but there might be one over, say, five years, if inflation is increasing. Likely to be homoscedastic, with some degree of autocorrelation.

Problem 1.19
(a) Rearranging $S_{t}=S_{0}(1+r)^{t}$, we can obtain $S_{0}=S_{t} /(1+r)^{t}$. Setting $S_{t}=1000$, $r=0.07$, and $t=5$ gives $S_{0}=712.99$. Price after two years: 816.30 (use $t=3$ to obtain this). If r rose after two years to 10%, the bond would fall to $1000 /(1+0.10)^{3}=751.31$
(b) The income stream should be discounted to the present using
$\frac{200}{1+r}+\frac{200}{(1+r)^{2}}+\frac{200}{(1+r)^{3}}+\frac{200}{(1+r)^{4}}+\frac{200}{(1+r)^{5}}=820.04$,
so the bond should sell for $£ 820.04$. It is worth more than the previous bond because the return is obtained earlier.

Problem 1.21

(a) 17.9% p.a. for BMW, 14% p.a. for Mercedes
(b) Depreciated values are as shown in this table,

BMW 525i	22275	18284	15008	12319	10112	8300
Merc 200E	21900	18833	16196	13928	11977	10300

which are close to actual values. Depreciation is initially slower than the average, then speeds up, for both cars.

Problem 1.23
$\mathrm{E}(x+k)=\frac{\sum(x+k)}{n}=\frac{\sum x+n k}{n}=\frac{\sum x}{n}+k=\mathrm{E}(x)+k$

Problem 1.25
The mistake is comparing non-comparable averages. A first-time buyer would have an above-average mortgage and purchase a below-average priced house, hence the amount of buyer's equity would be small. The original argument came from the Morning Star newspaper many years ago. With reasoning like this, no wonder communism failed.

Answers to exercises on Σ notation
Problem 1A. 1
20, 90, 400, 5, 17, 11.

Problem 1A. 2

40, 360, 1600, 25, 37, 22.
Problem 1A. 3
88, 372, 16, 85.

Problem 1A. 4
352, 2976, 208, 349.

Problem 1A. 5

113, 14, 110.
Problem 1A. 6
56, 8, 48.
Problem 1A. 7

$$
\frac{\sum f(x-k)}{\sum f}=\frac{\sum f x-k \sum f}{\sum f}=\frac{\sum f x}{\sum f}-k
$$

Problem 1A. 8

$$
\begin{aligned}
\frac{\sum f(x-\mu)^{2}}{\sum f} & =\frac{\sum f\left(x^{2}-2 \mu x+\mu^{2}\right)}{\sum f}=\frac{\sum f x^{2}-2 \mu \sum f x+\mu^{2} \sum f}{\sum f} \\
& =\frac{\sum f x^{2}}{\sum f}-2 \mu^{2}+\mu^{2}=\frac{\sum f x^{2}}{\sum f}-\mu^{2}
\end{aligned}
$$

Answers to exercises on logarithms

Problem 1C. 1
$-0.8239,0.17609,1.17609,2.17609,3.17609,1.92284,0.96142$, impossible.
Problem 1C. 2
$-0.09691,0.90309,1.90309,0.60206,1.20412$, impossible.

Problem 1C. 3

$-1.89712,0.40547,2.70705,5.41610$, impossible.
Problem 1C. 4
01.20397, 1, $1.09861,3.49651$, impossible.

Problem 1C. 5
$0.15,12.58925,125.8925,1258.925,10^{12}$
Problem 1C. 6
0.8, 199.5262, 1995.2623, 1995262.3

Problem 1C. 7
15, 40.77422, 2.71828, 22026.4658
Problem 1C. 8
33, 1,202,604.284, 3,269,017.372, 0.36788
Problem 1C. 9
3.16228, 1.38692, 1.41421, $0.0005787,0.008$

Answers to Chapter 2

Problem 2.1

(a) $4 / 52$ or $1 / 13$. (There are four aces in a pack of 52 cards.)
(b) $12 / 52$ or $3 / 13$. Again, this is calculated simply by counting the possibilities, 12 court cards (three in each suit)
(c) $1 / 2$.
(d) $4 / 52 \times 3 / 52 \times 2 / 52=3 / 17576(0.017)$.
(e) $(4 / 52)^{3}=0.000455$.

Problem 2.3
(a) 0.25 (three to one against means one win for every three losses, so one win in four races), $0.4,5 / 9$.
(b) 'Probabilities' are $0.33,0.4,0.5$, which sum to 1.23 . These cannot be real probabilities, therefore. The difference leads to a (expected) gain to the bookmaker.
(c) Suppose the true probabilities of winning are proportional to the odds, i.e. $0.33 / 1.23,0.4 / 1.23,0.5 / 1.23$, or $0.268,0.325,0.407$. If $£ 1$ was bet on each horse, then the bookie would expect to pay out $0.268 \times 3+0.325 \times 1.5+0.407 \times$ $0.8=1.6171$, plus one of the $£ 1$ stakes i.e., $£ 2.62$ in total. He would thus gain 38 pence on every $£ 3$ bet, or about 12.7%.

Problem 2.5

A number of factors might help: statistical ones such as the ratio of exports to debt interest, the ratio of GDP to external debt, the public sector deficit, etc., and political factors such as the policy stance of the government. More insight could be gained by looking at the current interest rate on the debt. A high interest rate suggests investors believe there is a greater chance of default, other things equal.

Problem 2.7

(a) Is the more probable, since it encompasses her being active or not active in the feminist movement. Many people get this wrong, which shows how one's preconceptions can mislead. People tend to read part (a) as 'Judy is a bank clerk, not active in the feminist movement'. A simple way of stating this mathematically is $\operatorname{Pr}(B) \geq \operatorname{Pr}(B$ and $A)$ where B indicates a bank clerk and A indicates and activist. It has to be true since $\operatorname{Pr}(A) \leq 1$.

Problem 2.9

The advertiser is a trickster and guesses at random. Every correct guess $(P=0.5)$ nets a fee, every wrong one costs nothing except reimbursing the fee. The trickster would thus keep half the money sent in. You should be wary of such advertisements!

Problem 2.11

(a) $\mathrm{E}($ winning $)=0.520 \times £ 1$ billion $+(1-0.520) \times-£ 100=£ 853.67$
(b) Despite the positive expected value, most would not play because of their aversion to risk. Would you? The size of the prize is also not credible - would they actually pay up?

Problem 2.13

(a), (b) and (d) are independent, though legend says that rain on St Swithin's Day means rain for the next 40 days, so (d) is arguable according to legend.

Problem 2.15

(a) There are 15 ways where a $4-2$ score could be arrived at, of which this is one. Hence the probability is $1 / 15$.
(b) Six of the routes through the tree diagram involve a $2-2$ score at some stage, so the probability is 6/15.

Problem 2.17
$\operatorname{Pr}($ guessing all six $)=6 / 50 \times 5 / 49 \times \cdots 1 / 45=1 / 15890700$.
$\operatorname{Pr}($ six from 10 guesses $)=10 / 50 \times 9 / 49 \times \cdots \times 5 / 45=151200 / 11441304000$. This is exactly 210 times the first answer, so there is no discount for bulk gambling.

Problem 2.19

	Prior	Likelihood	Prior \times likelihood	Posterior
Fair coin	0.5	0.25	0.125	0.2
Two heads	0.5	1.00	0.500	0.8
			0.625	

Problem 2.21

(a) Write the initial probability of guilt as $\operatorname{Pr}(G)=1 / 2$. The probability the witness says the defendant is guilty, given they are guilty, is $\operatorname{Pr}(W \mid G)=p$. Using Bayes' theorem, the probability of guilt, given the witness's statement, $\operatorname{Pr}(\mathrm{G} \mid \mathrm{W})$ is

$$
\frac{\operatorname{Pr}(W \mid G) \times \operatorname{Pr}(G)}{\operatorname{Pr}(W \mid G) \times \operatorname{Pr}(G)+\operatorname{Pr}(W \mid \text { not }-G) \times \operatorname{Pr}(\text { not- } G)}=\frac{p \times 0.5}{p \times 0.5+(1-p) \times 0.5}=p
$$

(b) Again using Bayes' theorem, and writing $\operatorname{Pr}(2 W \mid G)$ for the probability that both witnesses claim the defendant is guilty, etc., we obtain $\operatorname{Pr}(G \mid 2 W)$ as

$$
\begin{aligned}
& \frac{\operatorname{Pr}(2 W \mid G) \times \operatorname{Pr}(G)}{\operatorname{Pr}(2 W \mid G) \times \operatorname{Pr}(G)+\operatorname{Pr}(2 W \mid \text { not }-G) \times \operatorname{Pr}(\text { not }-G)} \\
& =\frac{p^{2} \times 0.5}{p^{2} \times 0.5+(1-p)^{2} \times 0.5}=\frac{p^{2}}{p^{2}+(1-p)^{2}}
\end{aligned}
$$

(c) If $p<0.5$, then the value in part (b) is less than the value in (a). The agreement of the second witness reduces the probability that the defendant is guilty. Intuitively, this seems unlikely. The fallacy is that they can lie in many different ways, so Bayes' theorem is not applicable here.

Problem 2.23

(a) Expected Values are $142,148.75$ and 146, respectively. Hence B is chosen.
(b) The minima are $100,130,110$, so B has the greatest minimum. The maxima are $180,170,200$, so C is chosen.
(c) The regret table is

	low	middle	high	Max
A	30	5	20	30
B	0	0	30	30
C	20	15	0	20

so C has the minimax regret figure.
(d) The EV assuming perfect information is 157.75 , against an EV of 148.75 for project B , so the value of information is 9 .

Problem 2.25

The probability of no common birthday is $365 / 365 \times 364 / 365 \times 363 / 365 \times \cdots \times$ $341 / 365=0.43$. (This is obtained by noting that the probability of the second person having a birthday on a different day from the first is $364 / 365$, the probability that the third has a birthday different from the first two is $363 / 365$, etc.) Hence the probability of at least one birthday in common is 0.57 , or greater than one-half. Most people underestimate this probability by a large amount. (This result could form the basis of a useful source of income at parties.)

Problem 2.27

(a) Choose low confidence. The expected score is $0.6 \times 1+0.4 \times 0=0.6$. For medium confidence the score would be $0.6 \times 2+0.4 \times-2=0.4$, and for high confidence $0.6 \times 3+0.4 \times-6=-0.6$.
(b) Let p be the probability desired. We require E (score \mid medium) $=p \times 2+$ $(1-p) \times-2>p=\mathrm{E}$ (score \mid low)-the payoff to medium confidence should be greater than low confidence. Hence $4 p-2>p \Rightarrow p>2 / 3$. Similarly, we also require $p \times 2+(1-p) \times-2>p \times 3+(1-p) \times-6$ (the payoff to medium has to exceed the payoff to high). This implies $p<4 / 5$. Hence $2 / 3<p<4 / 5$.
(c) Given $p=0.85$, the expected scores are $p=0.85$ (low), $2 p-2(1-p)=1.4$ (medium) and $3 p-6(1-p)=1.65$. Hence the expected loss would by $1.65-1.4=0.25$ if opting for medium confidence and $1.65-0.85=0.8$ if opting for low confidence.

Answers to Chapter 3

Problem 3.1

The graph looks like a pyramid, centred on the value of 7 , which is the mean of the distribution. The probabilities of scores of $2,3, \ldots, 12$ are (out of 36): $1,2,3,4,5,6,5,4$, $3,2,1$, respectively. The probability that the sum is nine or greater is therefore $10 / 36(4+3+2+1$, divided by 36$)$. The variance is 5.83 .

Problem 3.3

The distribution should be sharply peaked (at or just after the departure time as shown in the time table) and should be skewed to the right.

Problem 3.5

Similar to the train departure time, except it is a discrete distribution. The mode would be zero accidents, and the probability above one accident per day very low indeed.

Problem 3.7

The probabilities are $0.33,0.40,0.20,0.05,0.008,0.000,0.000$ of $0-6$ sixes, respectively, using the Binomial formula. For example, 0.33 is calculated as $(5 / 6) 6$.

Problem 3.9

(a) $\operatorname{Pr}(0)=0.915=0.21, \operatorname{Pr}(1)=15 \times 0.914 \times 0.1=0.34$, hence $\operatorname{Pr}(0$ or 1$)=0.55$.
(b) By taking a larger sample or tightening the acceptance criteria, e.g. only accepting if the sample is defect free.
(c) $\operatorname{Pr}(0$ or 1$)=0.9715+15 \times 0.9714 \times 0.03=0.927$ so the probability of sending it back is 7.3%.
(d) The assumption of a large batch means that the probability of a defective component being selected does not alter significantly as the sample is drawn.

Problem 3.11
The y-axis coordinates are:

0.05	0.13	0.24	0.35	0.40	0.35	0.24	0.13	0.05

This gives the outline of the central part of the Normal distribution.

Problem 3.13
(a) 5%
(b) 30.85%
(c) 93.32%
(d) 91.04%
(e) Zero. (You must have an area for a probability.)

Problem 3.15

$z=\frac{12-10}{\sqrt{9}}=0.67$, area $=25 \% ; z=-1$, area $=15.87 \%, Z_{L}=-0.67, Z_{\mathrm{U}}=1.67$, area $=70.11 \%$, zero again.

Problem 3.17

(a) $I \bar{Q} \sim N\left(100,16^{2} / 10\right)$;
(b) $z=1.98, \operatorname{Pr}=2.39 \%$.
(c) 2.39% (same as (b)).
(d) 95.22%. It is much greater than the previous answer. This question refers to the distribution of sample means, which is less dispersed than the population.
(e) Since the marginal student has an IQ of 108 (see previous question), nearly all university students will have an IQ above 110 and so, to an even greater extent, the sample mean will be above 110 . Note that the distribution of students' IQ is not Normal but skewed to the right, since it is taken from the upper tail of a Normal distribution. The small sample size means we cannot safely use the Central Limit Theorem here.
(f) 105 , not 100 . The expected value of the last nine is 100 , so the average is 105 .

Problem 3.19

(a) $r \sim B\left(10, \frac{1}{2}\right)$.
(b) $r \sim N(5,2.5)$.
(c) Binomial: $\operatorname{Pr}=0.828 ;$ Normal: 73.57% (82.9% using the continuity correction).

Problem 3.21

(a) By the Binomial, $\operatorname{Pr}($ no errors $)=0.99^{100}=36.6 \%$. By the Poisson, $n P=1$, so

$$
\operatorname{Pr}(x=0)=\frac{1^{0} e^{-1}}{0!}=36.8 \%
$$

(b) $\operatorname{Pr}(r=1)=100 \times 0.99^{99} \times 0.01=0.370 ; \operatorname{Pr}(r=2)=100 C 2 \times 0.99^{98} \times 0.01^{2}=$ 0.185 . Hence $\operatorname{Pr}(r \leq 2)=0.921$. Poisson method: $\operatorname{Pr}(x=1)=1^{1} \times e^{-1} / 1 .=0.368$; $\operatorname{Pr}(x=2)=1^{2} \times e^{-1} / 2 .=0.184$. Hence $\operatorname{Pr}(x \leq 2)=0.920$. Hence the probability
of more than two errors is about 8% using either method. Using the Normal method, we would have $x \sim N(1,0.99)$. So, the probability of $x>2.5$ (taking account of the continuity correction) is given by $z=(2.5-1) / \sqrt{0.99}=1.51$, giving an answer of 6.55%, a significant underestimate of the true value.

Problem 3.23
(a) Normal.
(b) Uniform distribution between zero and one (look up the $=R A N D()$ function in your software documentation).
(c) mean $=0.5$, variance $=5 / 12=0.42$ for parent, mean $=0.5$, variance $=0.42 / 5$ for sample means (Normal distribution)

Problem 3.25
Looking at goals scored in the English Premier League 2010-11 (http://en.wikipedia. org/wiki/2010\%E2\%80\%9311_Premier_League\#Scoring) reveals the following frequency table:

Goals	Actual	Expected
0	25	23.17
1	54	64.81
2	95	90.65
3	93	84.53
4	61	59.11
5	26	33.07
6	19	15.42
7	4	6.16
8	3	2.15
9	0	0.67
Totals	380	379.75

Thus 25 games saw no goals, 54 had one goal, etc. The 'Expected' column gives the expected frequency based on the Poisson formula (3.26). The expected values reveal a close match to the actual numbers.

Answers to Chapter 4

Problem 4.1

(a) It gives the reader some idea of the reliability of an estimate, around the point value of the estimate.
(b) The population variance (or its sample estimate) and the sample size.

Problem 4.3

An estimator is the rule used to find the estimate or a parameter. A good estimator does not guarantee a good estimate, only that it is correct on average (if the estimator is unbiased) and close to the true value (if precise).

Problem 4.5
$\mathrm{E}\left(w_{1} x_{1}+w_{2} x_{2}\right)=w_{1} \mathrm{E}\left(x_{1}\right)+w_{2} \mathrm{E}\left(x_{2}\right)=w_{1} \mu+w_{2} \mu=\mu$ if $w_{1}+w_{2}=1$.

Problem 4.7

$40 \pm 2.57 \times \sqrt{10^{2} / 36}=[35.71,44.28]$. If $n=20$, the t distribution should be used, giving $40 \pm 2.861 \times \sqrt{10^{2} / 20}=[33.60,46.40]$

Problem 4.9

$0.4 \pm 2.57 \times \sqrt{0.4 \times 0.6 / 50}=[0.22,0.58]$

Problem 4.11

$(25-22) \pm 1.96 \times \sqrt{12^{2} / 80+18^{2} / 100}=[-1.40,7.40]$

Problem 4.13

$(0.67-0.62) \pm 2.57 \times \sqrt{\frac{0.67 \times 0.33}{150}+\frac{0.62 \times 0.38}{120}}=[-0.10,0.20]$
Problem 4.15
$30 \pm 2.131 \times \sqrt{5^{2} / 16}=[27.34,32.66]$.

Problem 4.17
$(45-52) \pm 2.048 \times \sqrt{40.32 / 12+40.32 / 18}=[-2.15,-11.85]$.
40.32 is the pooled variance.

Answers to Chapter 5

Problem 5.1

(a) False. You can alter the sample size. Increasing n will reduce the probability of both types of error by shrinking the width of the distributions under H_{0} and H_{1}.
(b) True.
(c) False. You need to consider the Type II error probability also. Reducing the Type I error probability will increase the Type II probability (for a given sample size).
(d) True. The probability of a Type II error falls, therefore increasing power.
(e) False. The significance level is the probability of a Type I error.
(f) False. The confidence level is one $-\operatorname{Pr}$ (Type I error) or the probability of accepting H_{0} when true.

Problem 5.3

H_{0} : fair coin, $(\operatorname{Pr}(H)=1 / 2), H_{1}$: two heads $(\operatorname{Pr}(H)=1)$. A Type I error is two heads from a fair coin, so $\operatorname{Pr}($ Type I error $)=(1 / 2)^{2}=1 / 4$; A Type II error is less than two heads from a two-headed coin, which is impossible, so $\operatorname{Pr}($ Type II error $)=0$.

Problem 5.5

(a) Rejecting a good batch or accepting a bad batch.
(b) $H_{0}: \mu=0.01$ and $H_{1}: \mu=0.10$ are the hypotheses. Under $H_{0}, \operatorname{Pr}($ zero or one defective in sample) $=0.99^{50} \times 0.99^{49} \times 0.01 \times 50=0.911=91.1 \%$, hence an 8.9% chance of rejecting a good batch. Under $H_{1}, \operatorname{Pr}(0$ or 1$)=0.90^{50} \times 0.90^{49} \times$ $0.10 \times 50=0.034$, hence a 3.4% chance of accepting a bad batch. One could also use the Normal approximation to the Binomial, giving probabilities of 7.78% and 4.95%.
(c) $\operatorname{Pr}($ Type I error $)=26 \% ; \operatorname{Pr}($ Type $I I$ error $)=4.2 \%$.
(d) (i) Try to avoid faulty batches, hence increase the risk of rejecting good batches, the significance level of the test. (ii) Since there are alternative suppliers, it can again increase the risk of rejecting good batches (which upsets its supplier). (iii) Avoid accepting bad batches.

Problem 5.7

$z=(12-10) /(6 / \sqrt{30})=1.83$, hence Prob-value is 3.36\%

Problem 5.9

Power is $1-\operatorname{Pr}$ (Type II error). The Type II error probability is zero (see the answer to 5.3 above), so the power of this test is 100%. You will always reject H_{0} when false.

Problem 5.11

$z=(15-12) / \sqrt{ }(270 / 30)=1<1.96$, the critical value at the 95% confidence level. The hypothesis is not rejected. The rejection region is the area in the right hand tail, beyond $z=1$.

Problem 5.13
$z=(0.45-0.5) / \sqrt{ }(0.5 \times(1-0.5) / 35)=0.59<1.96$, not significant, so do not reject H_{0}.

Problem 5.15

$z=(115-105) / \sqrt{21^{2} / 49+23^{2} / 63}=2.4>1.64$, the critical value, hence reject with 95% confidence.

Problem 5.17
(a) $z=\frac{0.57-0.47}{\sqrt{\frac{0.513 \times(1-0.513)}{180}+\frac{0.513 \times(1-0.513)}{225}}}=2.12$.

This is significant using either a one- or a two-tail test. The pooled variance in this case is calculated using $\hat{\pi}=0.513=208 / 405$, the overall proportion of people who pass. Whether you used a one- or a two-tail test reveals something about your prejudices. In the United Kingdom, the proportions passing are the actual ones for 1992, on the basis of 1.85 million tests altogether. You might have an interesting class discussion about what these statistics prove. Insurance statistics, on the other hand, suggest women are safer drivers.
(b) You should get the same t statistic. The proportion of men in the 'Pass' group is 49.5% and in the 'Fail' group is 39.1%. The overall proportion of men is 44.4%. Putting these values into the same formula as in part (a) gives the same t value. The same result is obtained if you use the proportion of women in each group.
(c) This result is inevitable. This can be demonstrated algebraically, though it is lengthy and not included here.

Problem 5.19
(a) $t=-5 \sqrt{10^{2} / 20}=-2.24<-2.093$, the critical value, hence reject H_{0}.
(b) The parent distribution is Normal.

Problem 5.21
$S^{2}=\frac{(12-1) \times 50+(15-1) \times 30}{12+15-2}=38.8$, and $t=\frac{150-130}{\sqrt{\frac{38.8}{12}+\frac{38.8}{15}}}=8.29$,
so H_{0} is rejected. The critical value is $t^{*}=2.060$ (95% confidence, 25 degrees of freedom).

Problem 5.23

(a) For the 'Before' sample, the mean is 55.5 and the variance 12.3. For the 'After' sample, the mean is 57.5 with variance 14.1. Hence the pooled variance is 13.16 and the test statistic is $t_{20}=1.18$.
(b) Measuring the differences between the before and after figures, the mean is 1.8 and the variance 13.8. This gives a test statistic of $t_{10}=1.63$. Neither is significant at the 5% level, though the latter is closer. Note that only one worker performs worse, but this one does substantially worse, perhaps because of other factors.

Problem 5.25

(a) It would be important to check all the predictions of the astrologer. Too often, correct predictions are highlighted ex-post and incorrect ones ignored.
(b) Like astrology, a fair test is important, in which it is possible to pass or fail, with known probabilities. Then performance can be judged.
(c) Samples of both taken-over companies and independent companies should be compared, with as little difference in other respects between samples as possible.

Problem 5.27

(a) The sample means should be Normally distributed so approximately 5% of the z scores should lie beyond ± 1.96.
(b) Your outcome should be similar to that described in part (a). You might get a slightly different result due the vagaries of random sampling.
(c) Your graph should look approximately like a Normal distribution.

Answers to Chapter 6

Problem 6.1

The 95% c.i. for the variance is $\frac{39 \times 20^{2}}{59.34} \leq \sigma^{2} \leq \frac{39 \times 20^{2}}{24.43}$ in which 24.43 and 59.34 are the limits cutting off 2.5% in each tail of the χ^{2} distribution with 40 degrees of freedom (close to the correct 39), so the c.i. for σ is [16.21, 25.29].

Problem 6.3

Observed values are 833 and 942 with expected values of 887.5 in each case. Hence we obtain $\chi^{2}=6.69>3.84$, the 95% critical value, and there is an apparent difference between quarters I/III and II/IV. (Note that the previous edition of this book used data from 2006, which found a different result.)

Problem 6.5

Using the data as presented, with expected values of 565 (the average of the four numbers), yields $\chi^{2}(3)=1.33$, not significant. However, with the additional information, adding the dissatisfied customers $(24,42,20,54)$ and constructing a contingency table yields $\chi^{2}(3)=22.94$, highly significant. The differences between the small numbers of dissatisfied customers adds most to the test statistic. The former result should be treated with suspicion since it is fairly obvious that there would be small numbers of dissatisfied customers.

Problem 6.7

$\chi^{2}(4)=8.12$ which is not significant at the 5% significance level. There appears no relationship between size and profitability.

Problem 6.9

(a) The correct observed and expected values are

$47.0(54.9)$	$72.0(64.1)$
$86.0(76.6)$	$80.0(89.4)$
$4.0(5.5)$	$8.0(6.5)$

and this yields a χ^{2} value of 5.05 against a critical value of 5.99 (5\% significance level, 2 degrees of freedom).
(b) Omitting the non-responses leads to a 2×2 contingency table with a test statistic of 4.22, against a critical value of 3.84 , yielding a significant result. It is debatable whether it is better to omit the non-responses. The real problem here is that the test statistic is close to the critical value, so it is easy for our decision to change with small changes to the data.

Problem 6.11
$F=55 / 48=1.15<2.76$, the 1% critical value for 24 and 29 degrees of freedom. There is no significant difference, therefore.

Problem 6.13

(a) Between Sum of Squares $=335.8$, Within Sum of Squares $=2088$, Total Sum of Squares $=2424 . F=(335.8 / 3) /(2088 / 21)=1.126<3.07$, the critical value for 3,21 degrees of freedom. There appears to be no significant difference between classes.
(b) A significant result would indicate some difference between the classes, but this could be because of any number of factors which have not been controlled for, e.g. different teachers, different innate ability, different gender ratios and so on.

Answers to Chapter 7

Problem 7.1

(a)

(b) We would expect similar slopes to those using Todaro's data, but the graphs for growth and the income ratio do not look promising. It is difficult to discern any relationship between them. The GNP graph suggests a negative relationship.
(c) There seems to exist a psychological propensity to overestimate the degree of correlation when viewing a graph. See (d) below to see if you did so.
(d) $r=-0.73,-0.25,-0.22$ for GNP, growth and the income ratio, respectively. Note that $r<0$ for the income ratio, in contrast with the result in the text.
(e) $t=-3.7,-0.89,-0.78$, so only the first is significant. The critical value is 1.78 (for a one-tail test) or 2.18 if using a two-tail test.

Problem 7.3

(a) Very high and positive. This is because (i) income is a major determinant of people's consumption, (ii) measuring the variables at national level means a great deal of smoothing of individual variation and (iii) the effects of inflation have not been corrected for.
(b) A medium degree of negative correlation (bigger countries can provide a greater variety of goods and services for themselves so need to import less).
(c) Theoretically negative, but empirically the association tends to be weak, especially using the real interest rate.

There might be lags in (a) and (c). (b) would best be estimated in cross section.

Problem 7.5
Rank correlations are:

	birth rate
GNP	-0.77
Growth	-0.27
Inc	-0.37
ratio	

These are similar to the ordinary r values. Only, the first is significant at 5%.

Problem 7.7

(a) The regression results for the three equations are:

	GNP	growth	income ratio
a	47.18	42.88	45.46
b	-0.006	-1.77	-1.40
R^{2}	0.53	0.061	0.047

These results are quite different from what was found before. GNP appears the best, not worst, explanatory variable, using the R^{2} value as a guide.
(b)-(c)

	GNP	growth	income ratio
S_{e}	7.83	11.11	11.20
S_{b}	0.0017	1.99	1.82
t	-3.71	-0.89	-0.77
F	13.74	0.78	0.59

Only in the case of GNP is the t ratio significant. Same is true for the F statistic.
(d) You should be starting to have serious doubts. Two samples produce quite different results. We should think more carefully about how to model the birth rate and about what data to apply it to.
(e) Using all 26 observations gives:

	GNP	growth	IR
a	42.40	43.06	36.76
b	-0.01	-2.77	-0.20
R	0.31	0.28	0.002
F	11.02	9.52	0.04
s_{b}	0.00	0.90	1.01
t	-3.32	-3.08	-0.20

The results seem quite sensitive to the data employed; they are not very robust. This suggests something is missing from our model(s). Perhaps we need to take account of each country's cultural context or geographical location, or something.

Problem 7.9

(a) 27.91 (34.71)
(b) 37.58 (32.61)
(c) 35.67 (33.76)
(predictions in brackets obtained from Todaro's data). Again, different samples, different results, which does not inspire confidence. The predictions from this set of data are more diverse than from those using Todaro's data.

Problem 7.11

A good source of data for this project is the World Bank (http://data.worldbank.org/ topic). From this, the following relationship between the birth rate and GDP per capita was found (data for 182 countries, for 2009):

with regression

$$
\begin{aligned}
& \mathrm{BR}=25.6-0.00027 \mathrm{GDPpc}+\mathrm{e} \\
& t(31.5)(-7.78) \\
& R^{2}=0.25
\end{aligned}
$$

Although demonstrating a negative relationship and highly significant, it is evident from the graph that the wrong functional form has been used. Taking logs of both variables, we obtain:

with regression

$$
\begin{aligned}
& \ln \mathrm{BR}=5.05-0.25 \ln \mathrm{GDPpc}+\mathrm{e} \\
& t(43.2)(-18.0) \\
& R^{2}=0.64 .
\end{aligned}
$$

This seems a better characterisation of the data. Analyses with the other explanatory variables should be done in similar manner and might yield better results, perhaps not.

Answers to Chapter 8

Problem 8.1

(a) $B=46.77-0.0064 \mathrm{GNP}-0.55 \mathrm{GROWTH}+0.34 \mathrm{IR}$

$$
\text { s.e. } \quad(0.002)
$$

$R^{2}=0.54, F=3.91$
(i) Calculating elasticities: GNP: $-0.0064 \times 17050 / 551=-0.19 ;$ growth: $-0.55 \times 27.9 / 551=-0.03 ;$ IR $-0.34 \times 61.1 / 551=0.04$. All seem quite small, although the first suggests a 10% rise in GNP should lower the birth rate by 2%.
(ii) Only GNP appears significant. Note that the R^{2} value is only just greater than in the simple regression on GNP.
(iii) The F statistic is just significant at the 5% level (3.71 is the critical value).
(b) It looks like the growth and income ratio variables should be dropped.
(c) We need to compare the regression in part (a) above with the restricted regression $B=b_{0}+b_{1}$ GNP (i.e. the coefficients on GROWTH and IR are both equal to zero). From the former, we obtain error sum of squares of $\mathrm{ESS}_{U}=726.96$; from the latter (equation estimated as part of problem 7.7), $\mathrm{ESS}_{\mathrm{R}}=736.17$. The restricted model seems to fit almost as well. To check this, we conduct an F test: $F=\frac{(736.17-726.96) / 2}{726.96 / 10}=0.063$, less than the critical value $\left(F^{*}(2,10)=4.10\right)$ so the variables can be omitted.
(d) $B=43.61-0.005 \mathrm{GNP}-2.026 \mathrm{GROWTH}+0.69 \mathrm{IR}$

$$
\begin{equation*}
(0.0017) \quad(0.845) \tag{0.81}
\end{equation*}
$$

$R^{2}=0.48, F=6.64, n=26$.
The GNP and IR coefficients are of similar orders of magnitude and significance levels. The GROWTH coefficient changes markedly and is now significant. The F-statistic for exclusion is 3.365 , against a critical value of 3.44 at 5%, suggesting both could be excluded, in spite of the significant t-ratio on the growth variable.
(e) Not much progress has been made. More planning of the research is needed.
(f) Women's education, religion and health expenditures are possibilities.

Problem 8.3

28.29 from 14 countries; 27.93 from all 26 countries.

Problem 8.5

(a) A set of dummy variables, one for each class.
(b) Difficult, because crime is so heterogeneous. One could use the number of recorded offences, but this would equate a murder with bicycle theft. It would be better to model the different types of crime separately.
(c) A proxy variable could be constructed, using such factors as the length of time for which the bank governor is appointed, whether appointed by the government, and so on. This would be somewhat arbitrary, but possibly better than nothing.

Problem 8.7

(a) Time-series data, since the main interest is in movements of the exchange rate in response to changes in the money supply. The relative money stock movements in the two countries might be needed.
(b) Cross-section (cross-country) data would be affected by enormous cultural and social differences, which would be hard to measure. Regional (within country) data might not yield many observations and might simply vary randomly. Time series data might be better, but it would still be difficult to measure the gradual change in cultural and social influences. Best would be cross-section data on couples (both divorced and still married).
(c) Cross-section data would be of more interest. There would be many observations, with substantial variation across hospitals. This rich detail would not be so easily observable in time-series data.

Problem 8.9

Suitable models would be:
(a) $C=b_{0}+b_{1} P+b_{2} F+b_{3} L+b_{4} W$ where C : total costs, P : passenger miles flown; F : freight miles flown; L : $\%$ of long haul flights; W : wage rates faced by the firm. This would be estimated using cross-section data, each airline constituting an observation. P^{2} and F^{2} terms could be added, to allow the cost function to be non-linear. Alternatively, it could be estimated in logs to get elasticity estimates. One would expect $b_{1}, b_{2}, b_{4}>0, b_{3}<0$.
(b) $\mathrm{IM}=b_{0}+b 1$ GNP $+b_{2}$ FEMED $+b_{3}$ HLTHEXP where IM: infant mortality (deaths per thousand births); FEMED: a measure of female education (e.g. the literacy rate); HLTHEXP: health expenditure (ideally on women, as \% of GNP). One would expect $b_{1}, b_{2}, b_{3}<0$. This would be a cross-country study. There is likely to be a 'threshold' effect of GNP, so a non-linear (e.g. log) form should be estimated.
(c) $\mathrm{BP}=b_{0}+b_{1} \Delta \mathrm{GNP}+b_{2} R$ where BP: profits; $\Delta \mathrm{GNP}$: growth; R: the interest rate. This would be estimated on time-series data. BP and growth should be measured in real terms, but the nominal interest rate might be appropriate. Bank profits depend upon the spread of interest rates, which tends to be greater when the rate is higher.

Problem 8.11

(a) Higher U reduces the demand for imports; higher OECD income raises the demand for UK exports; higher materials prices (the UK imports materials) lowers demand, but the effect on expenditure (and hence the BOP) depends upon the elasticity. Here, higher P leads to a greater BoP deficit, implying inelastic demand; higher C (lower competitiveness) worsens the BoP.
(b) (iii) higher material prices.
(c) U : linear, Y : non-linear
(d) Since B is sometimes negative, a log transformation cannot be performed. This means elasticity estimates cannot be obtained directly. Since B is sometimes positive, sometimes negative, an elasticity estimate would be hard to interpret.
(e) 1.80 , a surplus.

Problem 8.13

Suitable explanatory variables might be: personal disposable income, company profits (because of company cars), car price index (ideally adjusted for quality), interest rates, petrol prices and lagged sales. Sales might follow a cycle if, for example, firms tend to replace their cars after three years.

Answers to Chapter 9

Problem 9.1

Should you use: GNP or GDP; gross or net national product; measured at factor cost or market prices; coverage (United Kingdom, Great Britain, England and Wales); and current or constant prices are some of the issues.

Problem 9.3

The following are measures of UK and US GDP, both at year 2000 prices. The UK figures are in $£ b \mathrm{~b}$, the US figures are in $\$$ bn. Your own figures may be slightly different but should be highly correlated with these numbers.

	1995	1996	1997	1998	1999	2000	2001	2002
UK	821.4	843.6	875.0	897.7	929.7	961.9	979.2	997.5
US	8031.7	8328.9	8703.5	9066.9	9470.3	9817.0	9890.7	10074.8

Problem 9.5
$n=1.96^{2} \times 400 / 2^{2}=385$

Answers to Chapter 10

Problem 10.1
(a)

Year	2005	2006	2007	2008	2009	2010
Exports	100.0	114.5	113.0	127.7	119.5	133.2
Imports	100.0	112.3	111.5	123.6	112.7	127.8

(b) No. Using the indices, information about the levels of imports and exports is lost.

Problem 10.3

(a)-(c)

Year	E	P_{L}	P_{P}	Q_{L}	Q_{P}
1999	100	100	100	100	100
2000	104.28	101.99	102.03	102.20	102.24
2001	106.83	103.07	104.04	102.68	103.64
2002	98.87	99.01	98.76	100.10	99.86
2003	99.53	96.14	96.48	103.16	103.52

Problem 10.5
(a)

Year	Coal	Petroleum	Electricity	Gas
1999	100	100	100	100
2000	101.01	131.42	95.75	110.99
2001	109.49	141.14	86.53	149.45
2002	99.40	143.10	82.34	142.86
2003	99.22	133.42	78.50	147.80
Shares	1.3%	10.0%	71.6%	17.2%

(b) Answer as in Problem 10.3(a).

Problem 10.7

The chain index is $100,110,115,123.1,127.7,136.9,139.2$, using 2000 as the common year. Using one of the other years to chain yields a slightly different index. There is no definitive right answer because series 1 and 2 are likely to based on slightly different baskets of goods, rising in price at different rates. Hence the date at which they are spliced will make a slight difference to the chained index.

Problem 10.9

Expenditure on energy in 2007 was $£ 9741.04$ m. The Laspeyres price index increased from 95.32 to 126.17 between 2007 and 2008, an increase of 32.4%. Hence compensation of 32.4% of $£ 9741.04$ is needed, amounting to $£ 3156.10 \mathrm{~m}$. The Paasche index rose by 31.8% over that period, implying compensation of 31.8% of $£ 9741.04$ m, i.e. $£ 3097.65 \mathrm{~m}$. This is about $£ 58 \mathrm{~m}$ cheaper than using the Laspeyres index.

Problem 10.11

The index number series are as follows:

	Cash expenditure	Real expenditure	Volume of expenditure	Real expenditure per capita (d)	Volume of expenditure per capita (e)	Needs index	Spending deflated by need.
	(a)	(b)	(c)	(f)	(g)		
1987	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1988	109.8	102.6	99.4	102.4	99.2	100.2	99.2
1989	120.5	105.7	101.9	105.1	101.3	100.5	101.4
1990	132.7	107.5	104.5	106.6	103.6	100.8	103.6
1991	150.4	113.6	108.8	111.9	107.1	101.6	107.1

(a) $109.8=23601 / 21495 \times 100 ; 120.5=25906 / 21495 \times 100$; and so on.
(b) This series is obtained by dividing column 1 by column 2 (and setting 1987 as the reference year). Clearly, much of the increase in column 1 is because of inflation.
(c) This series is column 1 divided by column 3. Since the NHS price index rose faster than the GDP deflator, the volume of expenditure rises more slowly than the real figure.
(d) Per capita figures are obtained by dividing by the population in column 4.
(e) A Needs index can be calculated as working population $+2 \times$ non-working population, and then set to 100 in 1987. Once the needs index is calculated, it can be used to deflate the volume expenditure, giving the final column above. This shows little difference to the per capita series.
(f) Needs index could be improved by finding the true cost of treating people of different ages.

Problem 10.13
(a) 1702.20 .
(b) Yes, 102.20.

Problem 10.15

18.3%. There can be multiple solutions to the Internal Rate of Return calculation, which can be problematic and students should be aware of this. It should not be a problem if there is a single initial outlay followed by a stream of returns - in this case a unique solution occurs.

Problem 10.17
(a) The x and y co-ordinate values for the Lorenz curve are:

Households	8.9	16.0	22.3	25.8	29.2	35.0	41.4	58.9	71.7	87.2	95.1	98.5	99.5	100.0
Income	0.2	0.9	2.0	2.8	3.8	6.0	9.1	20.8	32.8	53.5	70.4	83.9	92.4	100.0

and from this we can calculate:
Area $\mathrm{A}=0.227, \mathrm{~B}=0.273$, Gini $=0.546$.
(b) The elderly have had a lifetime to accumulate wealth, whereas the young have not. This does not apply to income. Also, via inheritance, some families can build up wealth over time, increasing the disparity.

Problem 10.19
(a) The Gini coefficients are $45.2 \%, 33.2 \%, 33.2 \%$ and 36.0%, respectively.
(b) These differ from the values given in Table 10.24 of the text, substantially so in the case of original and gross. The figures based on quintiles are all lower than the figures in Table 10.24, as expected, although the bias is large in some cases.

Problem 10.21

79.3\%.

Answers to Chapter 11

Problem 11.1

(a) Expenditure

There is an obvious increase throughout each year, followed by a fall in the subsequent Q1. High spending in Q4 is likely a Christmas effect, followed by a lack of spending afterwards, in Q1.
(b) and (c) The calculations are:

	Non-durable expenditure	4-qtr total	Centred 4-qtr total	Moving average	Ratio	Seasonal factor	Adjusted series
2000 Q1	152684	629412	626074	156519	0.976	0.967	157967
2000 Q2	155977	633662	631537	157884	0.988	0.990	157607
2000 Q3	160564	637303	635483	158871	1.011	1.008	159291
2000 Q4	164437	641395	639349	159837	1.029	1.037	158576
2001 Q1	156325	646482	643939	160985	0.971	0.967	161733
2001 Q2	160069	653326	649904	162476	0.985	0.990	161741
2001 Q3	165651	658734	656030	164008	1.010	1.008	164337
2001 Q4	171281	665793	662264	165566	1.035	1.037	165176
2002 Q1	161733	671366	668580	167145	0.968	0.967	167329
2002 Q2	167128	676833	674100	168525	0.992	0.990	168874
2002 Q3	171224	681003	678918	169730	1.009	1.008	169866
2002 Q4	176748	685915	683459	170865	1.034	1.037	170448
2003 Q1	165903	691139	688527	172132	0.964	0.967	171643
2003 Q2	172040	697160	694150	173537	0.991	0.990	173837
2003 Q3	176448	703170	700165	175041	1.008	1.008	175049
2003 Q4	182769	709438	706304	176576	1.035	1.037	176254
2004 Q1	171913	715470	712454	178114	0.965	0.967	177861
2004 Q2	178308	721434	718452	179613	0.993	0.990	180171
2004 Q3	182480	724695	723065	180766	1.009	1.008	181033
2004 Q4	188733	727110	725903	181476	1.040	1.037	182006
2005 Q1	175174	728975	728043	182011	0.962	0.967	181235
2005 Q2	180723	732005	730490	182623	0.990	0.990	182611
2005 Q3	184345	734252	733129	183282	1.006	1.008	182883
2005 Q4	191763	737314	735783	183946	1.042	1.037	184928
2006 Q1	177421	740739	739027	184757	0.960	0.967	183559
2006 Q2	183785	745737	743238	185810	0.989	0.990	185705
2006 Q3	187770	751692	748715	187179	1.003	1.008	186281
2006 Q4	196761	756862	754277	188569	1.043	1.037	189748

(d) From the table above, the seasonal factor for Q 4 is 1.037 , so Q 4 is approximately 3.7% above the rest of the year.
(e) See table above, final column.
(f) Christmas 2000 was a poor one (SA figure declines from the previous quarter) whereas 2006 proved a good year.

Problem 11.3
Car production

(a) There are obvious troughs in production in August (summer holidays) and December (Christmas break)
(b) and (c) The calculations are:

	Production	12-month total	Centred 12-month total	Moving average	Ratio	Seasonal factor	Adjusted series
Jan-04	141.3	1667.7	1670.6	139.2	1.015	0.984	143.6
Feb-04	141.1	1659.5	1663.6	138.6	1.018	1.039	135.8
Mar-04	163.0	1661.3	1660.4	138.4	1.178	1.196	136.3
Apr-04	129.6	1643.0	1652.2	137.7	0.941	0.981	132.1
May-04	143.1	1649.4	1646.2	137.2	1.043	1.037	138.0
Jun-04	155.5	1646.7	1648.1	137.3	1.132	1.122	138.5
Jul-04	140.5	1641.4	1644.1	137.0	1.026	0.996	141.1
Aug-04	83.2	1643.8	1642.6	136.9	0.608	0.652	127.5
Sep-04	155.3	1634.1	1639.0	136.6	1.137	1.105	140.5
Oct-04	135.1	1644.3	1639.2	136.6	0.989	0.978	138.1
Nov-04	149.3	1633.2	1638.8	136.6	1.093	1.115	133.9
Dec-04	109.7	1622.0	1627.6	135.6	0.809	0.757	144.9
Jan-05	136.0	1611.7	1616.9	134.7	1.009	0.984	138.2
Feb-05	143.5	1625.6	1618.7	134.9	1.064	1.039	138.2
Mar-05	153.3	1620.2	1622.9	135.2	1.134	1.196	128.2
Apr-05	139.8	1609.9	1615.1	134.6	1.039	0.981	142.5
May-05	132.0	1610.3	1610.1	134.2	0.984	1.037	127.3
Jun-05	144.3	1595.9	1603.1	133.6	1.080	1.122	128.6
Jul-05	130.2	1579.0	1587.5	132.3	0.984	0.996	130.7
Aug-05	97.1	1566.7	1572.9	131.1	0.741	0.652	148.8
Sep-05	149.9	1572.4	1569.6	130.8	1.146	1.105	135.6
Oct-05	124.8	1551.2	1561.8	130.2	0.959	0.978	127.6
Nov-05	149.7	1551.5	1551.4	129.3	1.158	1.115	134.2
Dec-05	95.3	1546.5	1549.0	129.1	0.738	0.757	125.9
Jan-06	119.1	1534.1	1540.3	128.4	0.928	0.984	121.0
Feb-06	131.2	1510.0	1522.1	126.8	1.034	1.039	126.3
Mar-06	159.0	1482.4	1496.2	124.7	1.275	1.196	133.0
Apr-06	118.6	1473.7	1478.1	123.2	0.963	0.981	120.9
May-06	132.3	1452.6	1463.2	121.9	1.085	1.037	127.5
Jun-06	139.3	1442.1	1447.4	120.6	1.155	1.122	124.1
Jul-06	117.8	1447.2	1444.7	120.4	0.979	0.996	118.3
Aug-06	73.0	1431.6	1439.4	120.0	0.609	0.652	111.9
Sep-06	122.3	1410.6	1421.1	118.4	1.033	1.105	110.7
Oct-06	116.1	1412.4	1411.5	117.6	0.987	0.978	118.7
Nov-06	128.6	1407.5	1410.0	117.5	1.095	1.115	115.3
Dec-06	84.8	1405.7	1406.6	117.2	0.723	0.757	112.0

(d) $0.652 / 0.996=0.655$, about a 35% decline.
(e) See table above, final column, for the adjusted series. This is much smoother than the original series.
(f) It is obviously a monthly seasonal pattern, rather than the quarterly one for consumer expenditure. Consumer expenditure shows no decline in summer, unlike car production, and the Christmas effect is negative for cars, but positive for consumer expenditures.

Problem 11.5

(a) The regression equation is $C=153420.6+1603.011 t-11.206 t^{2}$. (The t^{2} term is not significant in the regression, so a simpler regression using t only might suffice instead.). Fitted values (abridged) are:

$2000 q 1$	155012.5
2000 q 2	156581.8
2000 q 3	158128.8
2000 q 4	159653.4
2001 q 1	161155.5
\vdots	\vdots
$2005 q 4$	185438.2
$2006 q 1$	186492.1
$2006 q 2$	187523.6
$2006 q 3$	188532.7
$2006 q 4$	189519.4

(b) Seasonal factors are:

Q1	Q2	Q3	Q4
0.967	0.990	1.008	1.036

(c) For 2007Q4 $(t=32)$ we have: $C=\left(153420.6+1603.011 \times 32-11.206 \times 32^{2}\right) \times$ $1.036=200154.65$. (The actual value in that quarter was 202017 .)
(d) For the additive model we use the same regression equation, but subtract the predicted values from the actual ones. Averaging by quarter then gives the following seasonal factors:

Q1	Q2	Q3	Q4
-5769.78	-1802.08	1270.17	6301.69

The predicted value from the regression line for 2007 Q4 is 193242.0 and adding 6301.69 to this gives 199 543.69. The actual value is 202017 , so there is an error of -1.2%.

Problem 11.7

(a) The regression equation is:

	Coef.	Std. Err.	T-ratio
trend	1528.55	129.89	11.77
trendsq	-11.28	4.34	-2.60
Q2	4044.27	716.40	5.65
Q3	7193.25	718.40	10.01
Q4	12301.66	721.91	17.04
cons	148637.1	903.60	164.49

The coefficients on t and t^{2} are similar to the previous values. This is because the additional dummy variables are not correlated with the trend or its square (the correlation coefficient is less than 0.05).
(b) The t ratios are bigger in this equation. The seasonal dummies take care of seasonal effects and allows more precise estimates of the coefficients on trend and trend squared.
The t ratios in the equation without quarterly dummies are 3.39 and -0.71 , compared with the values 11.77 and -2.60 when the quarterly dummies are included.
(c) The seasonal factors from 11.5(d) above are:

Q1	Q2	Q3	Q4
-5769.78	-1802.08	1270.17	6301.69

If we adjust these so that Q1 is set as zero (as is effectively done in the regression, by adding 5769.78) we get:

Q1	Q2	Q3	Q4
-5769.78	-1802.08	1270.17	6301.69
0.00	3967.70	7039.95	12071.47

These values are very close to the coefficients in the regression equation in part (a) above.

Index

absolute dispersion 42
actual values, expected values comparison with 234-8
addition rule 100-2
additive model 423
adjusted $R^{2} 289$
AIDS 22
alternative hypothesis 196-7, 200, 202
analysis of variance (ANOVA) 245, 248-54
one-way 248
analysis of variance table 252-4
area graph 55
arithmetic mean (average) 27-9, 35, 60
autocorrelation 284-5, 327-30
checking 328-30
consequences of 330
negative 329
positive 328
average (arithmetic mean) 27-9, 35, 60
average growth rate 58-9, 61
axiomatic approach 96
bar charts 10-14
base year 378
base-year weights 378-81
Bayes' theorem 110-12
Bayesian statistics 96, 110
between sum of squares 250, 251, 445
bias 166-7
and precision, trade-off between 169-70
Bill Gates effect 169-70
Bill Goffe's Resources for Economists 354
Binomial distribution 129-30, 131-7, 444
mean and variance of 135-7
and Normal distribution, relationship between 151-2
parameters 132-4
birth rate in developing countries 265-93
correlation 267-76
inference in regression model 283-93
regression analysis 276-82
bivariate data, graphing 63-5
box and whiskers diagram 47-8
branded goods 208
calendar effects 433
cash terms 390
causality, correlation and 271-2
Central Limit Theorem 149-50
chain index 392-3
'chart junk' 56
Chebyshev's inequality 44-5, 443
checking data 354-5
chi-squared $\left(x^{2}\right)$ distribution 231-45
actual values $v s$. expected values $234-8$
constructing expected values 242-3
contingency tables 241
tables of 261, 453-4
test statistic, calculation of 243-5
variance, estimation of 232-4
Chow test 325-7, 448
class intervals 17
class widths 17, 18-20
classical statistics 110
cluster sampling 358, 362
coefficient of determination $\left(R^{2}\right)$
281-2, 332, 446
adjusted 289
testing significance of 287-8
coefficient of rank correlation 272-6
coefficient of skewness 45-6, 443
coefficient of variation 42,442
cohabitation 244-5
column percentages 13
combinations 108-9
combinatorial formula 108, 444
common logarithms 92
complement, of outcome 98
composite hypothesis 202
compound event 100
compound growth 59
compound hypotheses 332-4
compound interest 61
concentration ratios 399, 407-8
conditional probability 104, 106-7
confidence interval 5, 171-81
calculating required sample size 365-7
for difference of two means 177-80, 184-5
hypothesis tests and 214
for observation 448
for prediction 289, 290, 448
for sample mean 183-4
for sample proportion 175-6
confidence level 174, 199
constant prices 390
Consumer Price Index (CPI) 351-2, 375, 392-3
contingency tables 241
continuity correction 152
control group 217
correlation 264, 267-76
and causality 271-2
coefficient of rank correlation 272-6
negative 267, 268
positive 267
correlation coefficient 267-75, 276, 446
corruption 319
critical value 198
cross-section data 9, 16-26
frequency tables 16-18
histograms 18-21
relative and cumulative frequency distributions 21-6
cross-tabulation 10
cumulative frequency distribution 21-6
current prices 390
current-year weights 382-3
cycle 423, 427
data collection 350-5
electronic data sources 70-2, 297-8, 350
primary data 350,355
record of data sources 352-4
secondary data sources $350,351-5$
data mining 72
data smoothing 424
moving average 424-6
data transformations 13, 67-70
multiple regression 311-16
non-linear 294-6, 325
data visualization 70-2, 297-8
deciles 33
decision analysis 112-16
decision criteria 113-14
decision rule 197-8
deflating, data series 70, 390
degree of belief 96
degrees of freedom 182, 185, 231
demand estimation 310-30
dependent samples 215, 216-18
dependent variable 248, 277
depreciation rate 61
descriptive statistics 1-2, 7-87
box and whiskers diagram 47-8
cross-section data 9, 16-26
data transformations 13, 67-70
E and V operators 90
graphical techniques 1-2, 10-26
graphing bivariate data 63-5
logarithm 41-2, 51-2, 69, 91-2
numerical techniques 2, 27-47
overview 8-9
sigma (Σ) notation 88-90
time-series data 9-10, 48-63, 308-9
design factor 364
differences
of two means 177-80, 184-5, 208-9, 212-13
of two proportions 180-1, 209-10
differencing 69
discount factor 395
discounting 394-6
dispersion, measure of 27, 35-45
division
by constant 69
using logarithms 91
double log transformation 296
dummy variables 335-7
Durbin-Watson (DW) statistic 329, 464
for testing autocorrelation 448

E operator 30, 90, 141
education, and employment 10-14
effect size 205
efficiency 168-9
elasticities 69, 294
electronic data sources 70-2, 297-8, 350
employment, education and 10-14
endogenous variable 277
equiproportionate sampling 359-60
error sum of squares (ESS) 281, 446

Index
error term/residual
estimated variance 285, 446
regression 277, 285
error variance 250
estimated variance of the error term 285
estimation 164-92
confidence intervals 171-81
derivations of sampling distributions 193-4
interval 165-6
large samples 170-3
multiple regression 316-18
point 165-6
rules and criteria for finding 166-70
small samples 181-6
estimators 166-9
events 98-9
compound 100
exhaustive 98
independent 104
mutually exclusive 100
Excel
analysis of variance table 252-4
correlation coefficient 274
descriptive statistics 41
downloading spreadsheet 353
moving average 431
producing charts using 14
record of data sources 353
regression analysis using 289, 308
standard Normal distribution 143
exhaustive event 98
exogenous variable 277
expected value
comparison with actual values 234-8
constructing 242-3
maximising 113-14
mean as 30
of perfect information 115-16
Expenditure and Food Survey (EFS) see Living
Costs and Food Survey (LCF)
expenditure index 389, 443, 447
price index/quantity index and 389-91
expenditures, as weights 385-7
experiment, probability 97
explained variable 277
explanatory variable 277
exponential transformation 296
F distribution 231, 245-7
ANOVA 248-54
multiple regression 318
tables of 261-2, 455-62
testing equality of two variances 245-7
testing the significance of R^{2} 287-8
Family Resources Survey 399
finite population correction (fpc) 357, 445, 447
five-firm concentration ratio 407
forecasting see prediction
frequency 10, 17
frequency density 19
frequency polygon 20
frequency tables 16-18
frequentist view 95-6

Gapminder 70-2, 297-8
Gaussian distribution see Normal distribution
general to specific approach 331
geometric mean 60, 443
Gini coefficient 399, 402-7
goodness of fit see coefficient of
determination $\left(R^{2}\right)$
Google 72, 354
grand average 250
graphical methods 1-2, 10-26
bar charts 10-14
box and whiskers diagram 47-8
histograms 18-21
pie charts $15-16$
scatter diagrams 63-5
grouping 68-9
growth factor 59, 60
growth rate 58-61, 443
heteroscedasticity 50
histograms 18-21
homoscedasticity 50
Human Development Index (HDI) 384
hypothesis testing 195-229
chi-squared (x^{2}) distribution see chi-squared $\left(x^{2}\right)$ distribution
compound hypotheses 332-4
concept of 196-203
and confidence intervals 214
correlation 269
independent and dependent samples 215-18
inference in regression model 286-7
issues with 218-19
multiple regression 318
Prob-value 203-4, 288
proportion testing 207-8
validity of test procedures 213
result of 252
significance, effect size and power 204-7
with small samples 211-13
testing difference of two means 208-9, 212-13
testing difference of two proportions 209-10

IMF World Economic Database 354
imports into United Kingdom 310-30
data 311
data transformations 311-16
errors, analysis of 327-30
estimation 316-18
forecasts, testing accuracy of 325-7
satisfactory results 319-20
significance of regression as whole 318-19
theoretical issues 310-11
independence
multiplication rule and 104-5
of units of measurement 42
independent events 104
independent samples 215-16
independent variable 248, 277
index numbers
consumer price index 351-2, 375, 393-4
defined 375
discounting 394-6
expenditure index see expenditure index
expenditure weights 385-7
inequality indices 399-407
price index 46, 377-85
quantity index 387-9
retail price index 351-2, 375
simple 376-7
inequality indices 399-407
concentration ratios 407-8
Gini coefficient 399, 402-7
Lorenz curve 399-402
inference 1, 2, 165
probability theory and 94
in regression model 283-93
inflation 46
Zimbabwe 68
inter-quartile range 36-7
intercept 278, 446
interpretation of 280
variance of 446
interest rate, real 397-8
internal rate of return (IRR) 396-7
intersection, of sets 101
interval estimates 165-6
interviewing techniques 355-6, 371
investment, corruption and 319
investment expenditures 9-10, 48-63
joint probabilities 107
large samples, estimation with 170-3
Laspeyres price index 378-81, 443, 447
based on expenditure shares 385-6
chain index 392-3
expenditure share form of 419
Paasche index vs. 383, 386-7
Laspeyres quantity index 387-8, 443, 447
least squares method 279, 283
likelihoods 111
Living Costs and Food Survey (LCF) 370-1
location, measure of 27-35
logarithm 69, 91-2
investment expenditures 51-2
multiple regression 320-2
standard deviation of 43-4
Lorenz curve 399-402
maintained hypothesis see null hypothesis
marginal probabilities 107
matched samples see paired samples
maximax criterion 114-15
maximin criterion 114-15
Mayor of London's Datastore 72
mean
arithmetic 27-9, 35, 60
of Binomial distribution 135-7
estimating difference between 177-80, 184-5, 208-9, 212-13
as expected value 30
geometric 60, 443
population 30, 442
sample 30, 145-51, 442
of time series 58-9
mean squared error 168-9
measurement error 337-8
measurement problems 294

Index
median 32-3, 34, 442
Microsoft Excel see Excel
mid-point 28
minimax regret criterion 114-15
modal class interval 20
mode 34-5
model selection 330-8
moving averages 424-6
multi-stage sampling 358 , 363, 370
multi-tasking 210-11
multicollinearity 337
multiple bar chart 11-12
multiple regression 307-48
determinants of imports into United Kingdom 308, 310-30
finding right model 330-8
principles of 309-10
multiple time-series graph 53-6
multiplication
by constant 69
using logarithms 91
multiplication rule 102
combining addition rule and 106-7
multiplicative model 423
mutually exclusive 97
mutually exclusive events 100
natural logarithms 92
negative autocorrelation 329
negative correlation 267, 268
net present value (NPV) 395, 444, 447
95\% confidence interval 171-81, 444
nominal scale 9
non-linear 49
non-linear transformation 294-6, 325
non-parametric statistics 272
non-rejection region 198
Normal distribution 129-30, 137-45, 444
and Binomial distribution, relationship between 151-2
parameters 138-9
of sample mean 145-51
standard 140, 451
null hypothesis 196, 200, 202, 204
numerical techniques 2, 27-47
measure of dispersion 27, 35-45
measure of location 27-35
measure of skewness $27,45-6$

Office of National Statistics (ONS) 48, 353, 354
oil reserves 148-9
omitted variable bias (OVB) 331, 334-5
one-tail test 199-201, 204, 262
one-way analysis of variance 248
online data 353
sources of 70-2, 297-8, 350
operators 100
E 30, 90, 141
V 90, 141
ordinal scale 9
ordinary least squares (OLS) 279, 283
outcomes, of experiment 97
outliers 47, 51

Paasche price index 382-3, 443, 447
Laspeyres index vs. 383, 386-7
Paasche quantity index 388-9, 443, 447
paired samples 215, 216-18
parameters, of distribution 130
Binomial distribution 132-4
Normal distribution 138-9
Pearson's product-moment correlation coefficient 273
Penn World Tables 354
percentage 13, 49
percentiles 33
perfect information
defined 115
expected value of 116
permutations 108-9
pie charts $15-16$
point estimate 165-6
Poisson distribution 153-5
pooled variance 185
population mean 30,442
population variance $39,40,442$
positive autocorrelation 328
positive correlation 267
positively skewed 45
posterior beliefs 96
posterior probabilities 111
power, of test 205
powers 91-2
precision 166, 167-8
bias and, trade-off between 169-70
prediction 289-93
prediction interval 290
present value 113, 395, 444, 447
presentation tables 73
price index 46, 377-85
CPI 351-2, 375, 393-4
current-year weights 378-81
expenditure weights 385-7
Laspeyres index see Laspeyres price index
Paasche index 382-3, 386-7, 443, 447
quantity index/expenditure index and 389-91
RPI 351-2, 375
units of measurement 383-5
primary data 350,355
prior beliefs 96
prior information 201
prior probability 111
Prob-value 203-4, 288
probability distributions 128-63
Binomial distribution 129-30, 131-7, 151-2
defined 129
Normal distribution 129-30, 137-45, 151-2
Poisson distribution 153-5
random variables $129,130-1$
sample mean distribution 145-51
probability interval 150-1
probability/probability theory 93-127
Bayes' theorem 110-12
building blocks 97-8
conditional 104, 106-7
decision analysis 112-16
defined 94-6
frequentist view 95-6
joint 107
marginal 107
of outcome 97-8
posterior 111
prior 111
statistical inference 94
subjective view 96
proportion 13-14, 49, 95
estimating 175-6, 180-1, 186, 209-10
testing 207-8
quantiles 33
quantity index 387-9
price index/expenditure indiex and 389-91
quantity series 390
quartiles 33
quintiles 33
quota sampling 358, 364-5
R^{2} see coefficient of determination railway accidents 155
random component 423
random elements 422
random number tables 368, 449-50
random residual 434
random sampling 356-65
cluster sampling 358, 362
multi-stage sampling 358, 363, 370
quota sampling 358, 364-5
simple 357,358
stratified sampling 357, 358-61, 370
random variables $129,130-1$
range 36-7
rank correlation coefficient 272-6
ratio scale 9,16
real interest rate 390, 397-8
real terms 390
transforming to 313
reciprocal transformation 69, 296
record of data sources 353
reference tables 73
reference year 376
regression analysis $264,276-82$
analysis of errors 283-5
confidence interval estimates 285-6, 446
F test 287-8
hypothesis testing for coefficients 286-7
inference in regression model 283-93
interpreting computer output 288-9
measurement problems 294
multiple see multiple regression
non-linear transformations 294-6
prediction 289-93
units of measurement 293-4
regression line 277-82
calculation 278-9
interpretation of slope and intercept 279-80
measuring goodness of fit 280-2
regression plane 309-10
regression sum of squares (RSS) 281, 446
rejection region 198, 232, 234
relative dispersion 42
relative frequency distribution 21-6
residual see error term/residual
response variable 248
retail price index (RPI) 351-2, 375
road accidents 237-40

Index
roots 91-2
rounding 68
sample mean 30, 442
estimating difference between 177-80, 184-5, 208-9, 212-13
estimation for large sample 170-3
estimation for small sample 183-5
hypothesis testing 196-203, 211-13
sampling distribution of 145-51
sample space 97,101
sample variance $39,40,442$
sampling 356-70
collecting sample 367-70
methods 358-65
from non-Normal population 149-51
random 356-65
sample size calculation 365-7
sampling distributions 145-51, 176, 178
derivation of 193-4
sampling errors 371
sampling frame $367,368,370-1$
scatter diagrams 2-3, 63-5, 314-15
seasonal adjustment, time-series data 421-35
components of time series 421-32
forecasting 432-3
using adjusted or unadjusted data 434
seasonal component 423
seasonal dummy variables 335-7
seasonal factors 424
seasonally adjust 424
secondary data sources $350,351-5$
checking data 354-5
collecting right data 351-2
up-to-date figures 352
semi-log transformation 296
serial correlation 50
sigma (Σ) notation 88-90
significance level 198
choice of 202-3
simple random sampling 357, 358
simultaneous equation model 310
skewness 20
coefficient of 45-6, 443
defined 45
measures of $27,45-6$
slope of regression line 446
interpretation of 279-80
small samples
estimation 181-6
hypothesis testing with 211-13
smoothing data 424
moving average 424-6
Spearman's coefficient of rank correlation 273, 445, 462
specific to general approach 331
spreadsheet packages 308
see also Excel
spurious regression 330
stacked bar chart 12
standard deviation 38-9
alternative formulae for calculating 40-1
of logarithm 43-4
sample 39
standard errors 147, 285, 289
standard Normal distribution 140, 451
standard width 17
states of the world 112
statistical inference see inference
statistical reports $72-5$
graphs in 74
tables in 73-4
writing 73
statistical significance 204-5
strata 359
stratification factor 360
stratified sampling 357, 358-61, 370
student distribution see t distribution
subjective view 96
sums of squares 250-2
surveys
Family Resources Survey 399
interviewing techniques 355-6
Living Costs and Food Survey 370-1
telephone 369
UK Time Use Survey 363-4
systematic components 422
t distribution 285
estimation with small samples 181-6
percentage points of 452
test for paired examples 216-18
testing difference of two means 212-13
teenage weapons 134-5
telephone surveys 369
test statistic 445,448
calculation of 243-5
correlation 269
difference of two means 209
proportion testing 207-8
sample mean 199, 212
testing hypotheses 165
time preference 394
time series, components of 421-32
time-series data 9-10, 48-63, 308-9
geometric mean 60
mean 58-9
seasonal adjustment of see seasonal adjustment, time-series data
variance 62-3
time-series graph 49, 50
multiple 53-6
time trends 336
Todaro, M. 265-6
total sum of squares (TSS) 281, 446
ANOVA 250, 445
tree diagrams 103
trend $49,336,423$
isolating 424-6
trial 97
two-tail tests 199-201, 204, 261
Type I and Type II errors 197, 198, 202-3
UK Living Costs and Food Survey 370-1
UK Time Use Survey 363-4
unbiased estimate, of population variance 39
unbiased estimator 166
unemployment
forecasting 432-3
seasonal adjustment of time-series data 421-32
uniform distribution 234
union, of sets 101
units of measurement
independence of 42
price index 383-5
regression coefficients 293-4

V operator 90, 141
validity of test procedures 213
value index see expenditure index
variance 4, 37-8, 90
alternative formulae for calculating 40-1
of Binomial distribution 135-7
error 250
of error term 446
estimation with x^{2} distribution 232-4
of intercept 446
pooled 185
population $39,40,442$
sample 39, 40, 442
of slope coefficient 446
testing equality of two 245-7
of time series 62-3
variance ratio test 246
Venn diagram 101, 102
volume series 390
volume terms 390
wage-price spiral 272
wealth distribution 9, 16-64
comparison of 2005 and 1979
distributions 46-7
frequency tables and charts 16-18
histograms 18-21
measure of dispersion 27
measure of location 27-35
measure of skewness $27,45-6$
relative and cumulative frequency distributions 21-6
weighted average 30-1, 365
Wilcoxon's Sign Test 229
within sum of squares 250, 251-2, 445
World Bank 319, 354
World Economic Database 354
$X Y$ charts (scatter diagrams) 2-3, 63-5, 314-15

Yahoo Finance 72
z score 44, 140-1, 443, 444
zero correlation 267

[^0]: ${ }^{1}$ https://www.ons.gov.uk/

[^1]: ${ }^{1}$ See the original at http://www.economicsnetwork.ac.uk/projects/surveys/employers14-15. This is the author's rendition, which tries to mimic the original as accurately as possible.

[^2]: ${ }^{2}$ Mathematicians pronounce it like this, but modern Greeks do not. For them, it is ' mi '.

[^3]: ${ }^{3}$ The concept of bias is treated in more detail in Chapter 4.

[^4]: ${ }^{4}$ See Appendix 1C if you are unfamiliar with logarithms. Note that we use the natural logarithm here, but the effect would be the same using logs to base 10 .

[^5]: ${ }^{5}$ This is a different meaning of the term 'nominal' from that used earlier to denote data measured on a nominal scale, i.e. data grouped into categories without an obvious ordering. Unfortunately, both meanings of the word are in common (statistical) usage, though it should be obvious from the context which use is meant.

[^6]: ${ }^{6}$ The delta symbol, Δ, is often used to indicate the change in a variable.

[^7]: ${ }^{7}$ See http://www.ons.gov.uk/ons/rel/international-transactions/outward-foreign-affiliates-statistics/how-important-is-the-european-union-to-uk-trade-and-investment-/ sty-eu.html. This is the author's rendition, so the colours do not quite match the more vivid original.

[^8]: ${ }^{8}$ http://www.theguardian.com/news/datablog/2015/jul/01/greece-life-satisfaction-rating-oecd-countries

[^9]: ${ }^{9}$ UNECE, Making Data Meaningful, parts 1 and 2, available at http://www.unece.org/stats/ documents/writing/.

[^10]: ${ }^{10}$ This is equivalent to saying $10^{x} \times 10^{y}=10^{x+y}$.

[^11]: ${ }^{1}$ We assume each outcome is equally likely so the probability of each the six numbers occurring is $1 / 6$.

[^12]: ${ }^{2} n$! is read ' n factorial' and is defined as the product of all the integers up to and including n. Thus, for example, $3!=3 \times 2 \times 1=6$.

[^13]: ${ }^{1}$ The identification of a boy with 'success' is a purely formal one and is not meant to be pejorative.

[^14]: ${ }^{2}$ Don't worry if you didn't follow the derivation of this formula, just accept that it is correct.

[^15]: ${ }^{3}$ Note that if we used 186875 for the mean, we would have 80306000000 as the variance. Using $£ 000$ keeps the numbers more manageable. The z score is the same in both cases.
 ${ }^{4}$ The precise figure is 2.58% but it is convenient to round this down to 2.5% in the discussion.
 ${ }^{5} 1.96$ is the precise value cutting off 2.5% in each tail.

[^16]: ${ }^{1}$ Daily Telegraph, 4 August 2009. The survey was sponsored by an optician and was used to encourage people to get their eyesight checked. It also claimed that women spend an average of 20 minutes per day ogling men.

[^17]: ${ }^{2}$ The survey did not provide an interval estimate, so I have invented these figures to illustrate. The figure of 43 minutes did come from the survey, although its reliability must be suspect.

[^18]: ${ }^{3}$ For biased estimators we can take the ratio of their MSEs.

[^19]: ${ }^{4}$ See equation (3.24) in Chapter 3 to remind yourself of this. Remember that ± 1.96 is the z score which cuts off 2.5% in each tail of the Normal distribution.
 ${ }^{5}$ The two values are the lower and upper limits of the interval, separated by a comma. This is the standard way of writing a confidence interval.

[^20]: ${ }^{6}$ See the Appendix to this chapter (page 193) for the derivation of this formula.

[^21]: ${ }^{7}$ The term under the square root sign is the standard error for $\bar{x}_{1}-\bar{x}_{2}$.

[^22]: (4.19) to be true.
 ${ }^{9}$ Once again, the Greeks pronounce this differently, as 'ni'. They also pronounce π 'pee' rather than 'pie' as in English. This makes statistics lectures in English hard for Greeks to understand.

[^23]: ${ }^{1}$ The term size of the test is also used, not to be confused with the sample size. We use the term 'significance level' in this text.

[^24]: $\overline{{ }^{2} \text { Alternatively, we could say this is assuming the sample evidence provides the additional }}$ prior information that might justify a one-tail test. However, it is not additional evidence, and it would be wrong to use the sample evidence for two purposes in this way.

[^25]: ${ }^{3}$ It is sometimes referred to as the ' P -value' in the statistical results. Excel uses this notation.

[^26]: ${ }^{1}$ This was stated, without proof, in Chapter 1, see page 38.

[^27]: ${ }^{2}$ Note that, on this occasion, the degrees of freedom are not based on the sample size.

[^28]: ${ }^{3}$ Note that this is not the same as using the three factor means and calculating their variance.

[^29]: ${ }^{1}$ The formula for r can be written in a variety of different ways. The one given here is the most convenient for calculation.

[^30]: ${ }^{2} \mathrm{~A}$ 'hat' (\wedge) over a symbol is often used to indicate the estimate of that variable.
 ${ }^{3}$ The italic e denoting the error term should not be confused with the use of the same letter as the base for natural logarithms (see the Appendix to Chapter 1, page 91). The correct interpretation should be clear from the context.

[^31]: ${ }^{4}$ One example is the Jarque-Bera test.

[^32]: ${ }^{5}$ This is the area in both tails, so it is for a two-tail test.

[^33]: ${ }^{6}$ Gapminder only produces graphs, it does not perform regression analysis. For this, you need to download the data and do it yourself.

[^34]: ${ }^{1}$ Of course X_{2} does not generally remain constant, so it might be better to say that b_{1} shows the effect of a unit change in X_{1}, adjusting for the effect on Y of any contemporaneous change in X_{2}.

[^35]: ${ }^{2}$ Note that the formula now contains $n-k-1$ in the denominator, rather than $n-2$, to reflect the fact that we now have k explanatory variables.

[^36]: ${ }^{4}$ The DW statistic can also be approximated using the correlation coefficient r between e_{t} and e_{t-1}, and then $\mathrm{DW} \approx 2 \times(1-r)$. The closer the approximation, the larger the sample size. It should be reasonably accurate if you have 20 observations or more.

[^37]: ${ }^{5}$ The correlation between e_{t} and e_{t-1} is, in fact, 0.494 .
 ${ }^{6}$ Hendry, D.F., Econometrics - Alchemy or Science? in Economica, 47 (1980), 387-406.

[^38]: ${ }^{7}$ Note that it is much easier to test the restriction in \log form, since P_{M} and P are entered additively. It would be much harder to do this in levels form.

[^39]: ${ }^{8}$ Because only large values of the F statistic reject H_{0}, we use the critical value cutting off the upper tail of the distribution.

[^40]: ${ }^{9}$ This approximation is reasonably accurate for values of b between -0.3 and +0.3 . It is more accurate to calculate $e^{b}-1$ to obtain the percentage change, especially outside this range of values.

[^41]: ${ }^{1}$ I wrote this for a previous edition of this text. I can no longer find the same data on the ONS site, it seems to have disappeared into the ether.

[^42]: ${ }^{2}$ The formulae for calculating confidence intervals with stratified sampling are not given here, since they merit a whole book to themselves. The classic reference is C.A. Moser and G. Kalton, Survey Methods in Social Investigation, Heinemann, 1971. A more recent text is Barnett, Sample Survey Principles and Methods, Wiley, 2002.

[^43]: ${ }^{1}$ Prices from Table 10.4, quantities from Table 10.11.

[^44]: ${ }^{2}$ See the appendix to this chapter (page 419) for the derivation of this formula.

[^45]: ${ }^{3}$ The values for the calculation can be found in Tables 10.11 and 10.4, respectively.

[^46]: ${ }^{4}$ This present value example has only four terms, but in principle there can be any number of terms stretching into the future.

[^47]: ${ }^{5}$ The value 5000 is correct if one uses percentages, as here (it is $100 \times 100 \times$ the area of the triangle). If one uses percentages expressed as decimals, then $\mathrm{A}=0.5-\mathrm{B}$.

[^48]: ${ }^{6}$ This is because a larger family needs more income to have the same living standard as a smaller one.

[^49]: ${ }^{7}$ Long run changes in British income inequality, Economic History Review, 21, 17-29, 1968.
 ${ }^{8}$ http://stats.oecd.org/Index.aspx?DataSetCode=IDD
 ${ }^{9}$ Real GDP per capita for more than one hundred countries, Economic Journal, 88 (349), 215-42, 1978.
 ${ }^{10}$ If using decimal percentages, subtract 0.5

