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Estimation From Samples
Lisa M. Sullivan, PhD

Estimation is the process of determining a likely value for
a population parameter (eg, the true population mean or

proportion) based on a random sample. In practice, a sample
is drawn from the target population, and sample statistics (eg,
the sample mean or sample proportion) are used to generate
estimates of the unknown parameter. The sample should be
representative of the population, ideally with participants
selected at random from the population. Because different
samples can produce different results, it is necessary to
quantify the sampling error or variation that exists among
estimates from different samples.

Appropriate classification of the key study variable, also
referred to as the outcome or end point, as continuous or
discrete is critically important in estimation and in other
statistical applications. Once a variable or outcome is cor-
rectly classified, other issues such as the number of compar-
ison groups and whether those groups are independent or
dependent (ie, matched or paired) affect the determination of
the appropriate estimation technique.

Two types of estimates can be produced for any population
parameter: point estimates and confidence interval (CI) esti-
mates. A point estimate for a population parameter is a
single-valued estimate of that parameter. A CI estimate is a
range of values for a population parameter with a level of
confidence attached (eg, 95% confidence that the interval
contains the unknown parameter). The CI starts with the point
estimate and builds in a margin of error that incorporates the
confidence level and the sampling variability or standard
error. CIs are presented below for different types of variables.
Sample size determination and issues related to interpretation
and precision follow.

The Basics
A CI is a range of values that are likely to cover the true
population parameter, and the general form is point
estimate�margin of error. The point estimate is determined
first. For estimating a population mean or proportion, the
point estimates are the sample mean or sample proportion,
respectively. Next, a level of confidence is selected that
reflects the likelihood that the CI contains the true, unknown
parameter. Usually, confidence levels of 90%, 95%, and 99%
are chosen, although theoretically any likelihood can be
selected. The confidence level is often represented as
100(1��)%, where � is the level of significance in a 2-sided
test of hypothesis. For example, a 2-sided test with ��0.05

corresponds to a 100(1�0.05)�95% confidence level. For
large samples, the 95% CI takes the following form:

(1) Point estimate�1.96 SE (point estimate)
where 1.96 is the value from the standard normal distribu-

tion reflecting 95% probability and SE (point estimate) is the
standard error of the point estimate. The value 1.96 is
determined from probability tables or statistical algorithms.1

In the standard normal distribution, 95% of the area under the
curve lies between �1.96 and 1.96. Many textbooks use the
notation Z1��/2, where 1��/2 is the lower tail area. For
example, Z0.975�1.96.1 When the sample size is small (n�30),
an appropriate value is selected from the t distribution (as
opposed to the standard normal distribution). The t value is
determined in a similar fashion based on the desired confi-
dence level (eg, 95%, 99%), as well as the exact sample size
(smaller samples will have larger t values translating to larger
margins of error).1,2 The standard error can be estimated from
the sample and depends on the sampling method used, the
estimation technique used, the sample size, and the variability
of the characteristic being estimated. Nonsampling error also
is a factor that affects the precision of an estimate. Nonsam-
pling error includes error resulting from nonresponse or loss
to follow-up. Unfortunately, nonsampling error often is im-
possible to quantify; however, it should be considered when
estimates are interpreted from samples.

Sample Data
Data in Table 1 were measured on participants in the
Framingham Heart Study at Offspring Examinations 4 and 5.3

The examinations were conducted between April 1987 to
September 1991 and January 1991 to August 1995, respec-
tively. A total of 4019 participants attended examination 4;
3799 attended examination 5; and a total of 3626 attended
both. Means and standard deviations are presented for con-
tinuous variables, and numbers and percents of participants
responding affirmatively or with the condition of interest are
presented for dichotomous variables. These data are used to
illustrate estimation techniques in the sections that follow.

Estimates for Continuous Outcomes
It is of interest to estimate the mean of a continuous variable
in a single population, the difference in means when there are
2 independent populations, and the mean difference when
there are 2 dependent, matched, or paired populations. The
last can arise in designs in which each participant is measured

From the Department of Biostatistics, Boston University School of Public Health, Boston, Mass.
Correspondence to Lisa M. Sullivan, PhD, Boston University, School of Public Health, Department of Biostatistics, 715 Albany St, Boston, MA 02118.

E-mail lsull@bu.edu
(Circulation. 2006;114:445-449.)
© 2006 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org DOI: 10.1161/CIRCULATIONAHA.105.600189
445

Statistical Primer for Cardiovascular Research



twice (eg, in a crossover trial in which each participant is
measured under 2 different treatments or at 2 different points
in time such as in the Framingham study) or when matched
pairs are formed and each member of each pair is measured.

Estimating the Mean in a Single Population
If a continuous outcome is measured in a single sample, the
CI for the mean of that variable in the population is given by
the following:

(2) X�t1��/2SE(X)

Where X is the mean of the characteristic in the sample, t1��/2

is the value from the t distribution with lower tail area equal
to 1��/2 reflecting the desired confidence level (eg, for large
samples and 95% confidence, t0.975�1.96), and SE(X) is the
standard error or standard deviation of the sample mean. An

estimate of the SE is as follows: SE(X) �
s

�n
, where s is the

standard deviation of the outcome of interest. Equation 2 is
appropriate when either the sample size is large or the
outcome of interest is approximately normally distributed. If
the outcome is highly nonnormal and the sample size is small,
then a transformation (eg, natural log) might be appropriate to
promote normality before computing the CI.

Example 1
Estimate the mean systolic blood pressure (SBP) in the early
1990s based on data collected in the Framingham Heart
Study. Using data measured at examination 5, we can
construct a CI estimate using Equation 2 as follows:

126.3�1.96
18.8

�3626
, 126.3�0.61, or (125.7 to 126.9). The

margin of error is extremely small here because of the large
sample size.

Estimating the Difference of Means in 2
Independent Populations
If a continuous outcome is measured in 2 independent
samples, the CI for the difference in means in the respective
populations is given by the following:

(3) (X1�X2)�t1��/2SE(X1�X2)

where X1 and X2 are the means of the characteristic in the
independent samples, t1��/2 is the value from the t distribution
reflecting the desired confidence level, and SE(X1�X2) is the
standard deviation of the difference in sample means.

SE(X1�X2)�Sp�1

n1
�

1

n2
, where Sp is the pooled estimate of

the standard deviation of the outcome (assuming that the
standard deviations in the populations are similar) computed
as the weighted average of the standard deviations in the

samples �Sp��(n1�1)s2
1�(n1�1)s2

2

n1�n2�2 �. The null (or no effect)

value of the CI for the difference in means3 is zero. If a 95%
CI for the difference in means does not include zero (the null
value), then the difference in means is statistically significant
at the 5% level of significance. The next articles in this
statistical series will discuss hypothesis testing in detail.

Example 2
Estimate the difference in mean blood pressures in persons
taking and not taking antihypertensive therapy. Using data
collected at examination 5, we know that there are n�703
persons (19.5%) on antihypertensive therapy, whereas the
remaining n�2909 are not. Their mean (SD) SBPs are 137.9
(19.8) and 123.5 (17.5) mm Hg, respectively (data not shown
in Table 1). A 95% CI for the difference in mean SBP
between persons taking and not taking antihypertensive
therapy is given by the following: (137.9�123.5)�
1.96(0.76), 14.4�1.49, or (12.9 to 15.9). This difference is
statistically significant at the 5% level of significance (be-
cause the CI does not include zero) with persons taking
antihypertensive therapy having a mean SBP that is 14.4 U
higher, on average, than the mean for persons not taking
antihypertensive therapy.

Estimating the Mean Difference in Matched or
Paired Populations
If a continuous outcome is measured twice in a single sample
or if samples are matched or paired and the characteristic is
measured on each participant in each matched pair, the CI for
the mean difference of that variable is given by the following:

(4) Xd�t1��/2SE(Xd)

where Xd is the mean difference score (where differences are
computed on each participant or between members of a
matched pair), t1��/2 is the value from the t distribution
reflecting the desired confidence level, SE(Xd) is the standard

deviation of the mean difference and equivalent to
Sd

�n
, and Sd

is the standard deviation of the difference scores. The null
value in the CI for the mean difference is zero.

Example 3
Estimate change in systolic and diastolic blood pressure
(DBP) over 4 years using data collected in the Framingham
Heart Study. To construct the CIs for the mean differences in
SBP and DBP, difference scores must be computed for each
participant. This is done here by subtracting the SBPs and

TABLE 1. Description of Participants Attending Framingham
Offspring Examinations 4 and 5

Characteristic
Examination 4*

(n�3626)
Examination 5†

(n�3626)

Dates Apr 1987–Sep 1991 Jan 1991–Aug 1995

Mean (SD) age, y 51.4 (10.0) 55.6 (10.0)

Male, n (%) 1724 (47.6) 1724 (47.6)

Mean (SD) SBP, mm Hg 126.5 (18.6) 126.3 (18.8)

Mean (SD) DBP, mm Hg 79.1 (10.0) 74.5 (10.0)

On antihypertensive therapy, n (%) 638 (17.6) 703 (19.5)

With diabetes, n (%) 241 (6.7) 333 (9.2)

With prevalent CVD, n (%) 269 (7.4) 358 (9.9)

*n�4019 attended examination 4 (n�3626 attended both examinations 4
and 5).

†n�3799 attended examination 5 (n�3626 attended both examinations 4
and 5).
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DBPs measured at examination 4 from those measured at
examination 5. A positive difference reflects an increase over
time; a negative difference reflects a decrease. The means
(standard deviations) of the difference scores for SBP and
DBP are �0.11 (14.78) and �4.49 (9.06), respectively. The
SBPs did not change much over time, whereas DBPs de-
creased by 4.49 U on average over time. The standard
deviations are the standard deviations of the difference
scores. A 95% CI estimate of the mean difference in SBP

over 4 years is given by the following: �0.11�1.96
14.78

�3626
,

�0.11�0.48, or (�0.59 to 0.37). The change in SBP over
time is not statistically significant at the 5% level. A 95% CI
estimate of the mean difference in DBP over 4 years is given

by: �4.49�1.96
9.06

�3626
, �4.49�0.29, or (�4.78 to �4.20),

which is statistically significant at the 5% level (CI does not
include zero).

In estimation and other statistical inference applications, it
is critically important to appropriately identify the unit of
analysis. Units of analysis are independent entities. In the
1-sample and 2-independent-samples applications, partici-
pants are the units of analysis. In the 2-dependent-samples
application, the pair is the unit (and not the number of
measurements, which is twice the number of units).

Estimates for Dichotomous Outcomes
When the outcome of interest is dichotomous, estimates of
the population proportion are produced. If there is a single
population, estimates of the proportion in that population are
produced; if there are 2 independent populations, estimates of
the difference in proportions or the ratio of proportions are
produced.

Estimating the Proportion in a Single Population
If a dichotomous outcome is measured in a single sample, it
is of interest to generate an estimate of the proportion in the
population based on data observed in the sample. The CI is
given by the following:

(5) p̂�Z1��/2SE(p̂)

where p̂ is the sample proportion, Z1��/2 is the value from the
Z distribution reflecting the desired confidence level (eg, for
95% confidence Z0.975�1.96), and SE(p̂) is the standard

deviation of the sample proportion, which is �p̂(1�p̂)

n
. The

above is appropriate for large samples, defined in these
applications as at least 5 participants in each of the 2 response
categories. When there are �5 positive or negative responses,
then exact methods based on the binomial distribution as
opposed to a normal approximation should be used to
estimate the population proportion.4

Example 4
Estimate the prevalence of cardiovascular disease (CVD) in
1992. Using data collected at examination 5, we know that
n�358 (9.9%) of the sample had prevalent CVD. A 95% CI
estimate for the prevalence of CVD is given by 0.099�0.055
or (0.089 to 0.108), equivalent to (8.9% to 10.8%).

Estimating the Difference in Proportions in 2
Independent Populations
Several measures are used to compare proportions in 2
independent populations. The absolute difference, sometimes
called the risk difference or excess risk, is computed by
taking the difference in proportions between comparison
groups and is similar to the estimate of the difference in
means for a continuous outcome.3 The risk difference can be
interpreted as the excess risk of outcome associated with the
characteristic that defines the groups. The relative risk, also
called the risk ratio, is another useful measure to compare
proportions between 2 independent populations. It is com-
puted by taking the ratio of proportions. Generally, the
reference group (eg, unexposed persons, persons without a
risk factor, or persons assigned to the control group in a
clinical trial setting) is considered in the denominator of the
ratio. The relative risk is often thought to be a better measure
of the strength of an effect than the risk difference because it
is relative to a baseline or comparative level.

The CI for the difference in risks is given by the following:

(6) (p̂1�p̂2)�Z1��/2SE(p̂1�p̂2)

where p̂1 and p̂2 are the sample proportions in the indepen-
dent samples, Z1��/2 is the value from the Z distribution
reflecting the desired confidence level, and SE(p̂1�p̂2)�

�p̂1(1�p̂1)

n1
�

p̂2(1�p̂2)

n2
. This formula is appropriate for

large samples, defined as at least 5 participants in each of
the 2 response categories in each sample. The null value in
the CI for the risk difference is zero.

Example 5a
Estimate the difference in incidence of CVD over 4 years
between persons with and without diabetes. There are
n�3357 participants free of CVD at offspring examination 4
(n�3626�269 with prevalent CVD). Each participant is
followed up for 4 years for the development of CVD. There
are 24 of 271 (8.9%) incident CVD events in participants with
diabetes and 65 of 3086 (2.1%) incident CVD events in
participants free of diabetes (data not shown in Table 1).

A 95% CI for the difference in risks of incident CVD
between diabetics and nondiabetics is (0.089�0.021)�
1.96(0.017), 0.068�0.033, or (0.035 to 0.101), equivalent to
(3.5% to 10.1%). The excess risk in incident CVD attribut-
able to diabetes is between 3.5% and 10.1%, which is
statistically significant at the 5% level. Note that the above
does not account for other confounding factors such as age,
sex, blood pressure, and smoking.

A point estimate for the population relative risk is given by

R̂R�
p̂1

p̂2
. The relative risk is a ratio and is not normally

distributed. The natural log (Ln) of the R̂ R is approximately
normally distributed and is used to produce the CI:

(7) ln(R̂R)�Z1�
�

2
�Var[ln(R̂R)]

The variance is5

Var[ln(R̂R)]��(1�p̂1)

n1p̂1
�

(1�p̂2)

n2p̂2
.
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The limits of the 100(1��)% CI for the population relative
risk are produced by taking the antilog of the upper and lower
limits produced by the above. The null value in the CI for the
relative risk is 1. If a 95% CI for the relative risk does not
include 1, the risks are statistically significantly different at
the 5% level of significance.

Example 5b
Estimate the relative risk of incident CVD over 4 years
between persons with and without diabetes. A point estimate
for the relative risk of incident CVD in diabetics compared

with nondiabetics is
0.089

0.021
� 4.2. A 95% CI for the relative

risk of incident CVD for diabetics compared with nondiabet-

ics is computed as follows: Ln�0.089

0.021��1.96 (0.230), equiv-

alent to 1.44�0.45 or (0.99 to 1.90). Taking the antilog of
each limit (eg, e0.99�2.69) produces the CI for the relative
risk: 2.69 and 6.68, which is statistically significant at the 5%
level. Again, this relative risk is not adjusted for other
confounding factors.

In some study designs, it is not possible to estimate a
relative risk (eg, the case-control study). This and other issues
related to estimating relative risks and odds ratios, as well as
issues related to interpretation, can be found in Rothman and
Greenland’s book.6

Interpreting the Confidence Level
The Figure shows 40 different 95% CIs for the mean of a
population, �. In theory, when a 95% confidence level is
used, 38 (95% of 40) CIs will cover or include the true mean
�. In practice, 1 random sample is selected, and a single CI is
produced. The interval may or may not cover the true mean;
the observed interval may overestimate or underestimate �.
The 95% CI is the likely range of the true, unknown
parameter. It is important to note that a CI does not reflect the
variability in the unknown parameter; rather, it provides a
range of values that is likely to include the unknown
parameter.

Sample Size Determination for Estimation
If the goal of an analysis is to generate an estimate of an
unknown population parameter, the number of participants
required to ensure a prespecified level of precision should be
determined before data are collected. Formulas to determine
sample sizes required to estimate a mean, the difference
between means, the mean difference, a proportion, and the
difference in proportions are given in Table 2. To implement
the formulas for means, an appropriate estimate of the
population standard deviation (�) is required. Suitable esti-
mates are based on values reported from other comparable
studies, historical data, or a pilot study. The estimate of the

Interpreting CIs (95% CI for �).

TABLE 2. Sample Sizes Required to Estimate Population Parameters

Parameter Sample Size(s) Inputs*

Mean n��Z1��/2�

E �2

��Standard deviation of the outcome of interest

Difference in means ni�2�Z1��/2�p

E �2

,i�1,2 �p�Common or pooled or standard deviation

Mean difference npairs��Z1��/2�d

E �2

�d�Standard deviation of the difference scores

Proportion n�p(1�p)�Z1��/2

E �2

p�Estimate of the true population proportion

Difference in Proportions ni�2pp(1�pp)�Z1��/2

E �2

,i�1,2 pp�Estimate of the common or pooled population proportion

*Z1��/2 reflects the confidence level that will be used in the analysis (usually Z1�0.05/2�1.96); E is the prespecified margin of error.
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standard deviation should always be conservative. Specifi-
cally, when estimating the standard deviation, one should err
of the side of selecting a larger value that will produce a
larger sample size. Should the standard deviation prove to be
smaller than anticipated, a larger sample size will ensure the
desired precision. However, if the standard deviation proves
to be larger than anticipated, the sample size will not be
adequate to ensure the desired precision. To estimate the
difference between means, an estimate of the common or
pooled standard deviation (�p) is required. In a clinical trial
setting, the standard deviation of the outcome in an untreated
or placebo arm is often used. To implement the formulas for
proportions, an estimate of the population proportion (p) is
required. A suitable estimate can be derived from other
studies and again should be conservative. The sample size is
maximized for p�0.5; thus, if there are no available data,
then p�0.5 should be used to produce the most conservative
(largest) sample size.

Example 6
Determine the sample size required to estimate SBP to within
5 U of the true value with 95% confidence. The formula to

determine sample size is given by n��Z1��/2�

� �2

. In this

example E�5 U and Z0.975�1.96. An appropriate estimate of
the standard deviation (�) also is needed. On the basis of the
data in Table 1, an appropriate estimate is 18.8 (the larger
value). To ensure that the CI for SBP has a margin of error
not exceeding 5 U, a total of 55 participants are needed:
n�[1.96(18.8)/5]2�54.3 (always round up). If the desired
margin of error was 4 U, a sample of size 85 would be
required. If the goal of the analysis was to estimate the
proportion of hypertensive patients in a population, the

sample size would be determined by n�p(1�p)�Z1��/2

� �2

.

Suppose that the plan was to develop a 95% CI and that a
margin of error not exceeding 3% was desired. A sample size
of 1068 would be required: n�0.5(1�0.5)(1.96/0.03)2; with-
out data on the prevalence of hypertension, p�0.5 was used.
If data were available on prevalence, eg, p�0.20 in a similar
population, 683 participants would be required.

Precision
Precision refers to reproducibility and addresses the likeli-
hood of observing similar results when a study or experiment
is repeated. In estimation, precision is quantified by the
margin of error in the CI. A larger margin of error produces
a wider interval and indicates less precision. A study may
report a relative risk of incident disease of 5.0, suggesting a
5-fold increase in risk of disease in one comparison group
compared with the other. However, the 95% CI may be from

0.5 to 12.7. Because the interval includes 1, the null value,
there is no statistically significant difference between groups
in terms of risk. The wide CI suggests that the study is small.
A second study may report a relative risk of 1.8 with a 95%
CI of 1.7 to 2.0. The effect is smaller, but the estimate of
effect is precise. The factors that affect the precision of an
estimate include the level of confidence (Higher levels of
confidence result in wider intervals), the variability of the
point estimate (More variability results in wider intervals),
and the sample size (Smaller samples result in wider inter-
vals). Of these components, the sample size is controlled
most easily by the investigator. It is important to perform
sample size computations before mounting studies to ensure
that resultant CIs will be adequately precise to address the
research question.

Reporting Confidence Intervals
Most medical journals request that CIs be provided. A CI is
a range of likely values for an unknown population parame-
ter. In analyses that compare means or proportions, it is often
of interest to assess whether the observed difference provides
sufficient evidence to conclude that there is a difference in the
population at a preselected level of significance. These
assessments are often summarized by actual significance
levels or probability values. Although probability values are
important, they address only statistical significance. To assess
clinical significance, the magnitude of the difference is
important, as is the range of plausible values for the differ-
ence. CIs are particularly useful when a difference between
groups fails to reach statistical significance. Nonsignificant P
value indicates no statistically significant difference, but the
CI provides additional data that might be useful, for example,
in planning future studies.7

Disclosures
None.
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