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we cannot properly identify the reaction coordinate; this 
raises particular problems for the treatment of kinetic- 
isotope effects. With all of these criticisms Eyring was in 
full agreement. 

The second standpoint from which we must judge 
transition-state theory is: To what extent does it provide 
us with a conceptual framework with the aid of which 
experimental chemists (and others) can gain some insight 
into how chemical processes occur? On this score the 
theory must receive the highest marks; for nearly half a 
century it has been a valuable working tool for those who 
are not concerned with the calculation of absolute rates 
but are helped by gaining some insight into chemical and 
physical processes. The theory provides both a statisti- 
cal-mechanical and a thermodynamic insight-one can 
take one’s choice or use both formulations. It leads to 
extremely useful qualitative predictions, without the need 

for any calculations, of solvent effects, relative rates of 
similar processes, kinetic-isotope ratios, pressure influences, 
and a host of other important effects. 

Porter’s assessment in 196290 of transition-state theory 
makes the point very well: “On the credit side, transi- 
tion-state theory has an indestructable argument in its 
favour. Since its inception, it has provided the basis of 
chemical kinetic theory; imperfect as it may be, it is un- 
doubtedly the most useful theory that we possess. During 
the last twenty-five years its greatest success has been not 
in the accurate prediction of the rates even of the simplest 
reactions, but in providing a framework in terms of which 
even the most complicated reactions can be better 
understood. Most of us would agree that these comments 
remain valid today. 

(90) G. Porter, ref 86, p 2. 
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We review the current status of transition-state theory. We focus on the validity of its basic assumptions and 
of corrections to and improvements of conventional transition-state theory. The review is divided into sections 
concerned in turn with bimolecular reactions in the gas phase, unimolecular reactions in the gas phase, and 
isomerizations and atom-transfer reactions in liquid-phase solutions. Some aspects that are emphasized are 
variational transition-state theory, tunneling, the assumption of an equilibrium distribution of reactants, and 
the frictional effects of solvent molecules. 

1. Introduction 
Transition-state theory has achieved widespread ac- 

ceptance as a tool for the interpretation of chemical re- 
action rates. The theory has, however, been less successful 
in its original goal, the calculation of absolute reaction 
rates. A difficulty with the calculation of absolute reaction 
rates is that it requires very accurate knowledge of po- 
tential energy surfaces. For example, an error of 1 
kcal/mol in an activation barrier causes an error of a factor 
of 5.6 in a rate calculation a t  room temperature, and an 
error of 2 kcal/mol causes an error of a factor of 31. Even 
though very remarkable advances have been made in the 
calculation of potential energy surfaces, it is still very hard 
to calculate activation barriers this accurately even for 

simple reactions. Furthermore, it may be necessary in 
many cases to calculate global regions of the potential 
surface, not just barrier heights, in order, for example, to 
accurately treat systems with large tunneling effects or 
systems with temperature-dependent or energy-dependent 
dynamical bottlenecks. 

Despite the difficulties, many workers remain enthusi- 
astic about the value of absolute rate calculations for a 
variety of reasons. First of all, the methods of electronic 
structure theory and the capabilities of computers are still 
improving rapidly. Accurate ab initio prediction of acti- 
vation barriers for simple reactions and then for increas- 
ingly complicated ones may be “just around the cornerr. 
However, when ab initio methods are still insufficiently 
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accurate, there is always hope for empirical or semi- 
empirical correlations, especially when these are carried 
out in the convenient transition-state-theory formalism of 
enthalpy of activation, entropy of activation, and heat 
capacity of activation.' Furthermore, in some applications, 
as for kinetic isotope effects and high-temperature rate 
constants, the sensitivity of the calculated results to the 
barrier height of the potential energy surface is reduced. 
For other cases, as in choosing between postulated mech- 
anisms for some reactions of complicated species, definite 
conclusions can be drawn even in the face of large un- 
certainties in the absolute rate constants. In still other 
cases, e.g., reactions of mechanistic intermediates or re- 
actions under extreme conditions, there may not be a good 
way to obtain information on rate coefficients by labora- 
tory experiments, so theory may be the only recourse. 
Thus, absolute rate calculations can often be very useful, 
and we may expect them to become more and more useful 
as techniques for both the structural and dynamic parts 
of the calculation improve. Transition-state theory, despite 
its age, is still the method of choice for most attempts a t  
absolute rate calculations. Furthermore, it  appears to be 
almost without competition for more qualitative discus- 
sions of a wide variety of important questions in chemical 
kinetics, such as solvent effects. The reduction of the 
dynamics problem to the consideration of a single structure 
provides unique opportunities for qualitative considera- 
tions; e.g., can this fast a rate constant or these relative 
rates possibly be consistent with this transition-state 
structure? 

As discussed very clearly in the preceding article by 
Laidler and King: the calculation of absolute reaction rates 
from potential energy surfaces was cast in a particularly 
appealing form by Eyring in 193L3 Because of the sim- 
plicity and elegance of the resulting equations, they became 
widely used and are still widely used in their original 1935 
form. Transition-state theory is based on a quasiequili- 
brium hypothesis with a simple physical interpretation. 
Most importantly from a practical standpoint, this qua- 
siequilibrium hypothesis greatly reduces the computational 
requirements of the theory. The reduced computational 
requirements plus the ability of the theory to explain 
general trends in preexponential factors and kinetic isotope 
effects for bimolecular reactions and the energy depen- 
dence of rate constants for unimolecular reactions have 
been the major reasons for its general popularity. 

Modern work, however, is not so constrained by the 
requirement to minimize computing, and a major goal of 
much current research on transition-state theory is to re- 
fine and improve or correct the theory, even at  increased 
computational expense. This is the general goal of the 
rapidly widening field of generalized transition-state the- 
ories. Most attempts to improve the theory are based on 
incorporating more detailed dynamics into it. Concomi- 
tantly there is an effort to test transition-state theory, in 
both its conventional and generalized formulations, against 
more accurate dynamical theories and against experiment. 
The improved understanding of the dynamic basis of 
transition-state theory, the new developments in gener- 
alized transition-state theory, progress in learning how to 
make applications to complicated solution phenomena 
more realistic, and the successes, failures, and ambiguities 

(1) S. W. Benson, "Thermochemical Kinetics", 2nd ed., Wiley, New 

(2) K. J. Laidler and M. C. King, J. Phys. Chem., preceding paper in 
York, 1976. 

this issue. 
(3) H. Eyring, J. Chem. Phys., 3,107 (1935); S. Glasstone, K. Laidler, 

and H. Eyring, "The Theory of Rate Processes", McGraw-Hill, New York, 
1941. 
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of the various testa constitute the current status of tran- 
sition-state theory in physical chemistry, and these are the 
areas with which the present article is concerned. 

Transition-state concepts are so widely used in chemistry 
that complete coverage of all current approaches and ap- 
plications in one article seems impossible. This fact itself 
may be the greatest tribute to the theory and ita founders. 
Recent extensions of the theory exhibit very encouraging 
vitality, however, so we expect that future successes of 
transition-state theory and closely related models de- 
scended from it will continue to make the task of complete 
coverage harder and harder and make our debt to the early 
work described in the preceding paper even greater. 
Having stated up front that it is impossible to be complete, 
we hope there will not be any misimpressions in this re- 
gard, and we will spend the rest of this article summarizing 
a few aspects of the current status of transition-state theory 
that are relevant to the general applicability of the theory. 
We will give representative examples rather than ex- 
haustive references. 

Before starting on the present review we wish to single 
out three recent reviews of transition-state theory by Pe- 
chukas." All are very well written and are recommended 
strongly to anybody interested in the subject of the present 
review. 

2. Dynamical Foundations and Key Concepts 
A good reference to mark the beginning of the modern 

era of transition-state theory is the classic paper of Eliason 
and Hirschfelder.' They formulated the equilibrium rate 
constant in terms of a Maxwell-Boltzmann average over 
state-to-state reaction cross sections, and in a very stim- 
ulating appendix they considered more rigorously than had 
been done previously how one may make a series of ap- 
proximations leading to transition-state theory. They 
considered state-dependent transition states and proposed 
the idea of locating a generalized transition state to max- 
imize the free energy of activation. Later Marcus6 was to 
utilize the idea of state-dependent transition states very 
fruitfully, and Laidler and co-workersg and Szwarc'O fur- 
ther developed the idea of maximizing the free energy of 
activation. These ideas form the basis, resepdively, of the 
adiabatic theory of reactionsl1*l2 and canonical variational 
theory,12 two important approaches in current work on 
generalized transition-state theory. Reexpression of the 
equilibrium rate constant as a thermal average of reaction 
cross sections plays an essential role in the use of modern 
collision theory13J4 to calculate rate constants without the 
assumptions of transition-state theory, and thereby to 

(4) P. P e c h h  in 'Dynamics of Molecular Collisions, Part B", W. H. 

(5) P. Pechukas, Annu. Rev. Phys. Chem., 32, 159 (1981). 
(6) P. Pechukas, Ber. Bunsenges. Phys. Chem., 86,372 (1982). 
(7) M. A. Eliason and J. 0. Hirschfelder, J .  Chem. Phys., 30, 1426 

(1959). 
(8) R. A. Marcus, J. Chem. Phys., 45,2139,2630 (1966); R. A. Marcus 

in "Investigation of Rates and Mechaniims of Reactions", Part I, 3rd ed., 
E. J. Lewis, Ed., Wiley-Interscience, New York, 1974, p 13. 

(9) C. Steel and K. J. Laidler, J .  Chem. Phys., 34, 1827 (1961); K. J. 
Laidler and J. C. Polanyi, h o g .  React. Kinet., 3 , l  (1965); K. J. Laidler, 
"Theories of Chemical Kinetics", McGraw-Hill, New York, 1969 A. 
Tweedale and K. J. Laidler, J.  Chem. Phys., 53, 2045 (1970). 

(IO) M. Szwarc in "The Transition State, a Symposium held in 
Sheffield on 3-4 April 1962", Chemical Society, London, 1962, p 25. 

(11) D. G.  Tmhlar, J.  Chem. Phys., 53, 2041 (1970). See also D. G. 
M a r  and R. E. Wyatt, Annu. Rev. Phys. Chem., 27,l (1976). 

(12) B. C. Garrett and D. G. Truhlar, J. Phys. Chem., 83,1052,1079, 
3085(E) (1979); 84,682(E) (1980). 

(13) R. B. Bernatein, Ed., 'Atom-Molecule Collision Theory", Plenum 
Press, New York, 1979. 

(14) R. B. Walker and J. C. Light, Annu. Reu. Phys. Chem., 31,401 
(1980). 

Miller, Ed., Plenum Press, New York, 1976, p 239. 
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check and improve the transition-state theory. A major 
assumption which must be made for practical applications 
of either transition-state theory or the Eliason-Hirsch- 
felder formulation in terms of cross sections is that the 
observed rate constant may be approximated by the 
equilibrium one, or more precisely, the local-equilibrium 
one, which is the rate constant when reactant internal 
states are in equilibrium with each other and products are 
missing. (This assumption is necessary but not sufficient 
for the validity of transition-state theory.) 

The variational approach to transition-state theory was 
formalized by Keck,15 following up on early work of Wig- 
n e P  and Horiuti,I7 in a paper and a review that laid a 
detailed classical mechanical foundation for much current 
activity. A prerequisite to the variational theory is the 
recognition of the conventional transition state as a con- 
figuration-space surface (actually hypersurface) obtained 
by deleting nonbound normal coordinates from a coordi- 
nate space centered at a saddle point on a potential energy 
surface. Then the fundamental assumption of transti- 
ion-state theory is that the one-way equilibrium flux 
coefficient through the transition-state surface equals the 
equilibrium rate constant, which would be true if trajec- 
tories that pass through the surface never return. Keck’s 
review points out that, if the transition state is generalized 
to be an arbitrary surface in phase space dividing reactants 
from products and depending on both coordinates and 
momenta, then it can be varied in such a way that the 
one-way equilibrium flux coefficient through the dividing 
surface does equal the equilibrium rate constant. The 
transition-state assumption would be exact for such a 
dividing surface. Important practical corollaries are that 
in classical mechanics the equilibrium one-way flux coef- 
ficient through any possible dividing surface provides an 
upper bound on the equilibrium rate constant, and the 
“best” generalized transition-state dividing surface may 
be found by varying the surface to minimize the calculated 
rate constant. This is variational transition-state theory. 

The point of view used in the work of Wigner, Horiuti, 
and Keck that the transition-state-theory rate constant is 
the one-way equilibrium flux coefficient through a 
phase-space surface dividing reactants from products 
provides a collisional alternative to the quasiequilibrium 
viewpoint by which the transition-state-theory rate con- 
stant is the rate constant for conversion of an equilibrium 
concentration of transition states to products. The col- 
lisional viewpoint is more useful for incorporating dy- 
namical corrections; the quasiequilibrium viewpoint is 
more useful for correlating reaction rates in terms of 
structural effects and activation parameters. In the qua- 
siequilibrium formulation, the emphasis is on the equi- 
librium distribution in the dividing surface and the sta- 
tistical character of the equilibrium approximation. In the 
collisional formulation the emphasis is on the dynamics 
that leads to the flux through the dividing surface. Al- 
though the quasiequilibrium approach, as emphasized, for 
example, in Eyring’s form~la t ion ,~  has been responsible 
for most of the popular usefulness of transition-state 
theory, the collisional or dynamical approach, as stressed, 
for example, in Wigner’s early discussion,18 is utilized in 
much of the current work directed to improving transi- 
tion-state theory. 

The collisional approach leads naturally to a focus on 
the transmission coefficient or conversion coefficient of 
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transition states to products.lg Keck20 and Andersonz1 
used the collisional approach to elucidate the connection 
between transition-state theory and modern trajectory 
calculati’ons. In particular they showed how trajectory 
calculations can be used to calculate a correction for the 
breakdown of the transition-state assumption when the 
transition state is located at a convenient place rather than 
completely optimized in phase space. Furthermore, they 
showed how the transition-state concept can be used to 
greatly reduce the computational effort required to do 
computer trajectory simulations of gas-phase rate processes 
with small rate constants. This idea has been extended 
to solid-phase and liquid-phase simulations by Bennett, 
Chandler, Berne, McCammon, Karplus, and co-work- 
ers,22-26 and it is sure to be more and more influential as 
the complexity of systems that can be simulated continues 
to be increasedez7 

Detailed tests of transition-state-theory predictions 
against more accurate, or presumably more accurate, dy- 
namical calculations have played a very significant role in 
defining the current status of transition-state theory, and 
this is expected to continue. This activity originated with 
Bunker’s numerical tests of classical transition-state theory 
for unimolecular reactions against accurate classical tra- 
j e c t o r i e ~ ~ ~ . ~ ~  and with comparisons of quasiclassical and 
classical trajectory calculations to transition-state theory 
for bimolecular reactions by Karplus and c o - w o r k e r ~ . ~ ~  
These studies were soon followed by the first tests of 
transition-state theory against accurate quantum dynam- 
ical calculations for collinear collisions with bend correc- 
t i o n ~ , ~ ~  for pure collinear collisions,3z and for three-di- 
mensional  collision^.^^ One result of these tests of tran- 
sition-state theory against quantum dynamics was the 
conclusion that existing methods of incorporating quantal 
effects on reaction-coordinate motion in transition-state- 

(15) J. C. Keck, J. Chem. Phys., 32, 1035 (1960); Adu. Chem. Phys., 
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1977, p 63. 
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Phys., 73, 3688 (1980); R. 0. Rosenberg, B. J. Berne, and D. Chandler, 
Chem. Phys. Lett., 75, 162 (1980). 
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31,29 (1980); S. H. Northrup and J. A. McCammon, J.  Chem. Phys., 72, 
4569 (1980); S. H.Northrup, M. R. Pear, C.-Y. Lee, J. A. McCammon, and 
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sen, J. Chem. Phys., 48,4029 (1968). See also R. A. Marcus, ibid., 41,610 
(1964). 

(32) D. G .  Truhlar and A. Kuppermann, Chem. Phys. Lett., 9, 269 
(1971); J.  Chem. Phys., 56,2232 (1972); J. M. Bowman, A. Kuppermann, 
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theory transmission coefficients were i n a d e q ~ a t e . ~ ~  This 
was attributed32@ to nonseparable effects, such as a neg- 
ative internal centrifugal effect% caused by the curvature 
of the reaction path in mass-scaled coordinates. We will 
return to this point in discussing the current status of 
tunneling corrections in section 3. 

A renaissance of interest in the classical foundations of 
transition-state theory was initiated by the paper of Pe- 
chukas and McLafferty3$ in 1973. They pointed out the 
conditions such that in classical mechanics transition-state 
theory is exact at threshold and for a finite energy interval 
above threshold, and their discussion utilized the collisional 
formulation of transition-state theory rather than the more 
popular quasiequilibrium formulation. Pechukas, Pollak, 
and others4-6flp388 have continued to investigate the analytic 
mechanics of classical mechanical transition-state theory 
for collinear atom-diatom reactions, leading to many new 
insights into how the validity of the transition-state ap- 
proximation is related to the nature of the classical tra- 
jectories for a given system. They have also suggested 
some new approximations to the rate constant, and they 
have discussed the relationship of transition-state theory 
to information theory, to the reactivity-selectivity principle, 
and to excited-state reactivity. Perhaps the most intriguing 
part of this work is the ‘pods”, or periodic-orbit dividing 
surface. For collinear atom-diatom reactions, the best 
transition state, which in general is a hypersurface, be- 
comes a curve in coordinate space, and this curve is given 
by a periodic trajectory. The flux through a pods is pro- 
portional to the action integral along the pods; pods with 
the same action as reactants are adiabatic barriers, and 
this has a special meaning for transition-state theory since 
the adiabatic theory of reactions is mathematically 
equivalent12 to microcanonical variational transition-state 
theory for a one-parameter sequence of generalized tran- 
sition-state dividing surfaces parametrized by their dis- 
tance along a reaction coordinate. By quantizing pods, one 
obtains approximate adiabatic barrier heights for quantal 
reactions. Pollak and Wyattsb have applied the collinear 
pods concept to three-dimensional atom-diatom reactions 
with a separation of time scales by means of an adiabatic 
reduction scheme; for such systems this provides a con- 
venient alternative to quantizing the invariant manifold 
of higher-dimensional trajectories that forms the general 
multidimensional-reaction analogue of a pods. 

Several purely mathematical tests of classical transi- 
tion-state-theory and generalized trimsition-state-theory 
predictions for bimolecular reactions against accurate 
classical dynamical equilibrium rate constants have also 
been reported, for both ~ o l l i n e a r ’ ~ * ~ ’ ~ ~ * ~ ” ~ ~  and three-di- 

(34) W. H. Miller, Acc. Chem. Res., 9, 306 (1976). 
(35) R. A. Marcus, J. Chem. Phys., 45,4493 (1966); R. E. Wyatt, ibid., 

51, 3489 (1969). 
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M. S. Child and E. Pollak, ibid., 73,4365 (1980); E. Pollak, Chem. Phys. 
Lett.,  80, 45 (1981); J.  Chem. Phys., 74, 5586 (1981); 75, 4435 (1981); 
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m e n ~ i o n a l ~ ~ ? ~  examples. As an. example of the results 
obtained in these studies, consider the reaction proba- 
bilities calculated for a three-body collinear model of C4H9 
+ H-C4H9 - C4HI0 + C4H9 with a classical barrier height 
of 4.5 kcal/mol.@ For this reaction conventional transi- 
tion-state theory predicts reaction probabilities that agree 
with accurate classical dynamics up to 0.1 kcal/mol above 
the barrier. At  higher energies the conventional theory 
fails badly and it overestimates the thermal rate constant 
by factors of 4.3 and 15 at  300 and 4000 K, respectively. 
In contrast, microcanonical optimization of straight-line 
dividing surfaces gives excellent agreement with the ac- 
curate classical reaction probabilities up to 0.2 kcal/mol 
above the barrier, and reasonably good agreement up to 
1.5 kcal/mol above the barrier; this reduces the errors in 
the thermally averaged rates a t  the two temperatures 
mentioned above to factors of 1.3 and 2.0, respectively. For 
other collinear reactions that have been studied the 
agreement of transition-state theory with accurate classical 
dynamical results is better. At  300 K the typical error is 
10% or less. At 2400 K the typical error is a factor of 2-3 
for the conventional theory and 1.5-2 for microcanonical 
variational theory. 

In classical mechanics, transition-state theory would 
provide exact equilibrium rate constants except for tra- 
jectories that recross the dividing surface through the 
saddle point, and variational transition-state theory would 
be exact except for trajectories that recross the variational 
dividing surface; the numerical tests mentioned in the 
previous paragraph show that such recrossing effects are 
strong functions of masses and potential energy surface, 
but generally become more important as the energy or 
temperature is raised. The numerical studies complement 
the analytic work discussed above in providing insight into 
the fundamental dynamical basis of transition-state theory. 
I t  has been pointed though that the quantitative 
validity of transition-state theory may be quite different 
in classical and quantum mechanics because threshold 
energies for bimolecular reactions in a quantum-mechan- 
ical world tend to be considerably higher than threshold 
energies for purely classical systems. This is so because 
reactant zero-point requirements are partially preserved 
in nonreactive modes at the dynamical bottlenecks. This 
has a significant quantitative effect on the reaction rate 
and may even put the system in a new dynamical regime, 
so that for a given reaction the validity of classical tran- 
sition-state theory near the classical threshold may be quite 
different from the validity of quantized versions of tran- 
sition-state theory near the quantal threshold. Although 
unimolecular dissociation reactions have a higher energy 
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content and a high reactant density of states a t  threshold, 
classical considerations are not necessarily adequate in that 
case either.47v48 

Modern unimolecular transition-state theorSp*58 has its 
roots in the Rice-Ramsperger-Kassl theory of unimo- 
lecular reactions, which assumes that the unimolecular rate 
constant is a function only of the total energy and, thus, 
does not depend on the manner in which the molecule is 
excited. A dynamical rationale for this is the assumption 
that the phase space of the dissociating molecule is chaotic 
and metrically indecomposable.28a- A very active area 
of current work is the analysis of chaotic classical behavior 
of Hamiltonian systems to determine whether classical 
ergodicity provides a mathematical basis for the energy 
randomization assumption of unimolecular rate theory!l* 
A particularly vexing and still unsettled question concerns 
the relation of classical and quantal ergodicity and in fact 
there is much controversy even about the meaning of 
quantum chaos.63 

In RiceRamsperger-Kassel theory, vibrations within 
the molecule are represented as s strongly coupled har- 
monic oscillators freely exchanging energy. The micro- 
canonical rate constant k(E)  for total energy E is taken 
as the statistical probability that a particular oscillator has 
energy in excess of the unimolecular threshold E,; the 
well-known result for the rate constant is A [ ( E  - E,)/E]"'. 
The concept of a transition state is not required in deriving 
this expression. The present form of the statistical theory 
of unimolecular reactions was derived in the early 1950s 
by assuming a quasiequilibrium between the energized 
molecule and a transition statea* and is generally known 
as the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. 
It is sometimm called the quasiequilibrium theory 
especially for applications to unimolecular decomposition 
of excited ions to predict mass spectral patterns. 

In dynamical formulations the basic assumptions used 
to derive RRKM theory are (i) the Rice-Ramsperger- 
Kassel assumption that all molecular states of a given total 
energy are equally accessible (uniform density in reactant 
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phase space) and will ultimately lead to products and (ii) 
the transition-state assumption that dissociating trajec- 
tories corresponding to these states do not recross a 
phase-space surface dividing reactants from products. This 
surface is the transition state or "critical configuration".B*68 
The result of RRKM theory is a microcanonical rate 
constant k(E,J) that depends on the total angular mo- 
mentum J as well as the energy and is given by the sum 
of states for the transition state divided by the density of 
states for the reactant. For classical mechanics, harmonic 
oscillators, and J = 0, the RRKM rate expression reduces 
to the Rice-Ramsperger-Kassl one, where A is identified 
as the product of the s reactant vibrational frequencies 
divided by the product of the s - 1 transition-state vi- 
brational frequencies. The advantage of the transition- 
state reformulation of the theory is that it allows for re- 
alistic comparisons with experimental results by using 
quantal sums and densities of states based on frequencies 
taken from potential energy surfaces or transition-state 
models. The use of accurate or reasonable semiclassical 
expressions for the sums and densities of states is im- 
portant for qualitatively correct  prediction^,^^*^^*^^ and the 
use of efficient and accurate semiempirical  expression^^^^^^ 
for these quantities was instrumental for widespread ap- 
plications of the theory. 

In many applications and presentations of RRKM the- 
ory it is assumed that the transition state is located at the 
saddle point on the potential energy surface. The uni- 
molecular threshold, without tunneling, is taken as the 
classical potential energy barrier plus the zero-point energy 
difference between the transition state and reactant 
molecule. Bunker and PattengilP attempted to make the 
transition-state structure consistent with the underlying 
assumption that it represents a dividing surface between 
reactant and products. They determined microcanonical 
unimolecular rate constants for dissociation of triatomic 
molecules from classical trajectory calculations. In their 
work, the dividing surface (critical configuration) was lo- 
cated by finding the smallest value of the reaction coor- 
dinate for which, once attained, the trajectory dissociated 
to products and did not return to the reactant region of 
phase space. When critical configurations chosen in this 
manner were used, nearly exact agreement was found 
between RRKM and trajectory rate constants. The critical 
configuration found by the dynamical criterion of Bunker 
and Pattengill was significantly tighter than the structure 
a t  the centrifugal barrier. This finding explained% the 
tight critical configuration structures required to fit alkane 
dissociation experimental rate constants with RRKM 
theory.72 Bunker and PattengilP found that the critical 
c o n f i a t i o n  derived from the trajectory calculations could 
be fitted by minimizing along the reaction coordinate the 
convolution of the density of internal states and the 
translational density of states and they proposed this as 
a variational approach for choosing the critical configu- 
ration. Although the correct microcanonical variational 
criterion is now recognized to be the minimization of the 
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sum of states along the reaction ~ o o r d i n a t e , ~ ~ ~ ~ * ~ ~  in many 
cases the difference in the results of the two criteria is 
i n ~ i g n i f i c a n t , ~ ~ - ~ ~  and the work of Bunker and Pattengill 
does illustrate that variational concepts similar to those 
of Wiper,  Horiuti, and Keck for bimolecular reactions are 
also important in unimolecular rate theory. 

To derive an expression for the thermal unimolecular 
rate constant like that for the Lindemann mechanism an 
additional postulate concerning intermolecular collisions 
must be The most common postulate, called 
the strong-collision assumption, is that large enough 
amounts of energy are transferred in molecular collisions 
so that deactivation and activation may be viewed as sin- 
gle-step processes, in contrast to ladder-climbing processes. 
If the collisions are random and, thus, uncorrelated, the 
probability that an energized molecule avoids a collision 
for time T is exp(-ucolT), where ucol is the collision fre- 
quency. As discussed in many p l a ~ e s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  this distri- 
bution and that of random lifetimes give the RRKM result. 
The thermal unimolecular rate constant is the Boltzmann 
average of wcolk(E,J)/[uCol + k(E,J)] .  At high pressures, 
so that wcol >> k(E,J) this becomes the QET or transi- 
tion-state-theory expression for the unimolecular rate 
constant. For ultrahigh pressures and in a condensed 
medium where collisional events become correlated, 
RRKM theory is no longer applicable, and a quasidiffusion 
theory becomes necessary.53 An active area of current 
research is the development of a transition-state-type 
theory which is appropriate for condensed phases and is 
also extendable to problems of interest to gas-phase uni- 
molecular  kineticist^.^',^^ 

Most modern investigations of the validity of transi- 
tion-state theory in solution owe a debt to and are, or ought 
to be, couched in terms of the seminal work of Kramers 
expounded in a classic 1940 paper.79 Kramers viewed a 
reaction as a barrier passage influenced by interaction with 
the surrounding solvent molecules. The latter influence 
was described in simple Brownian motion terms via the 
stochastic Langevin equation. That is, the dynamical in- 
fluence of the solvent was accounted for by a damping 
force, proportional both to the velocity along the reaction 
coordinate and to a friction constant {. The friction con- 
stant { is not very clearly identified by Kramers theory, 
but it is expected to increase with solvent density, pressure, 
and viscosity. Kramers identified several key regimes. (i) 
In the first of these, collisions with the solvent molecules 
are sufficient to maintain an energy equilibrium distri- 
bution for the barrier passage but are not so frequent as 
to disturb the free passage over the barrier; i.e., there is 
negligible solvent-induced recrossing. This is the regime 
where, in the absence of intrinsic recrossing effects such 
as might occur even in dilute gases, transition-state theory 
is valid, Le., where the equilibrium conditions assumed in 
the standard formulation3 are satisfied. (ii) In the second 
regime, collisions with solvent molecules lead to a re- 
crossing of the barrier top before a stabie product can be 
formed. This reduces the rate below the transition- 
state-theory prediction to a degree dependent on the 
solvent friction. An extreme limit of this can be reached 
for broad, flat barriers and high friction. There, collisions 
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are so frequent and effective that there is considerable 
barrier recrossing, and the reaction is a diffusion-controlled 
passage over the barrier. The rate becomes inversely 
proportional to friction, and it may be an order of mag- 
nitude or more below the transition-state-theory value. 
This is called the friction-limited regime. (iii) At low 
friction another source of breakdown of transition-state 
theory was identified by Kramers. Here the reacting 
system is weakly coupled to the solvent, and an equilibrium 
distribution in energy cannot be maintained. This is the 
same phenomenon as is responsible for falloff behavior in 
gas-phase unimolecular reactions (section 4), and, in the 
extreme case, the rate of reactant activation or product 
deactivation by energy transfer becomes rate limiting. 
Kramers found that, in this regime, the rate is far below 
the transition-state-theory value and is proportional to the 
solvent friction. This will be called the energy-transfer- 
limited regime. The energy-transfer-limited and friction- 
limited regimes are sometimes called the underdamped 
and overdamped cases, respectively,80 or the weak-bath- 
coupling and strong-bath-coupling regimes. 

Another key concept in the application of statistical 
mechanics to reaction rates in solution is the equilibrium 
time correlation function, which is free from the assump- 
tions both of transition-state theory and of solvent spe- 
cifics. In a landmark paper,81 Yamamoto expressed the 
rate constant in terms of a time correlation function and 
showed that for equilibrium reactants in the gas phase this 
could be reduced to a reactive cross section form of the 
type discussed by Eliason and Hirschfelder.’ An advantage 
of the time correlation function approach lies in the fact 
that the formula holds independent of phase. In particular, 
it applies in solution, when the notion of collisional cross 
section is at best murky and often completely inapplicable. 
In contrast the time correlation function is the basis for 
practical calculations on solution reactions by both nu- 
merical and analytic approaches; for example, the corre- 
lation function approach has been developed into a prac- 
tical method whereby classical rate constants can be de- 
termined in condensed-phase systems using a trajectory 
simulation method with sampling at the transition state 
(as discussed in section 5). The time correlation function 
approach is related to transition-state theory as fol- 
10ws.233783s2 The observable rate constant may be written 
as the long-time limit of the net flux coefficient across a 
dividing surface as used originally in gas-phase stud- 
ies,4J5~36~s3 or it may be written as the time integral of the 
time correlation function of the flux across a surface di- 
viding reactants from products. If the dividing surface is 
chosen as a barrier top, then the initial-time value of the 
classical flux time correlation function is the classical 
transition-state-theory rate constant multiplied by a delta 
function in time. This corresponds to a singular initial 
contribution of “free streaming” trajectories crossing the 
dividing surface from the side of reactants to the side of 
products. The time integral of this contribution is kTST 
itself. Any subsequent recrossing of the dividing surface 
induced by interaction with the solvent will lead to a 
negative tail in the flux time correlation function vs. time. 
This decreases the time integral and so reduces the rate 
constant below its transition-state-theory value. A con- 
venient way to quantify this is via the ratio of the phe- 
nomenological rate to its transition-state-theory value. 
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This defines a dynamical transmission coefficient. Thus, 
any effects of solvent dynamics on the rate leading to 
deviations from transition-state theory show up very 
clearly in the time correlation function formalism. 

In most discussions of kinetics in solution the concept 
of a solvent cage plays a prominent role. The cage effect 
shows up two ways. First, for fast bimolecular reactions 
and high friction, the process of diffusional approach or 
separation of reagents, i.e., cage-to-cage jumping, may 
become the rate-limiting elementary step in a mechanism. 
Transition-state theory has sometimes been applied to the 
physical diffusion process, but the present article is con- 
cerned with applications of transition-state-theory concepts 
to more chemical elementary steps, such as atom transfer, 
unimolecular decompositions and rearrangements, and 
conformational isomerizations. The second effect of sol- 
vent cages is the interaction of the inner solvation shell 
with the primary chemical species during the reactive 
event. This effect is considered here using the language 
of friction. When frictional effects are large enough, the 
primary reaction step becomes diffusional on a vibrational 
length scale; this should not be confused with the process 
mentioned above of longer-range spatial approach or 
separation of reagents. 

In the subsequent sections we briefly consider the cur- 
rent status of transition-state theory for gas-phase bimo- 
lecular reactions in a quantum-mechanical world, for 
unimolecular reactions, and for condensed-phase reactions. 

3. Gas-Phase Bimolecular Reactions 
Quantized Theory for Bimolecular Reactions. A paper 

that stimulated a great amount of interest and further 
activity was Miller’s formulations3 in 1974 of a semiclassical 
transition-state theory as an approximation to the exact 
expression for the equilibrium rate constant in terms of 
scattering matrices. Miller and co-workers followed this 
with a series of papersM presenting alternative semiclassical 
formulations and some numerical applications. These 
methods have not received widespread use but the papers 
are a gold mine of ideas, and they will probably continue 
to influence new developments for a long time. The fun- 
damental problem with achieving a quantum-mechanical 
transition-state theory is that the one-way equilibrium flux 
across a dividing surface is a classical concept, and any 
attempt to translate it into quantum mechanics runs into 
the ambiguity of noncommuting operators. This also leads 
to a plethora of choices for semiclassical approaches. A 
succinct review of Miller and co-workers’ work on semi- 
classical approximations has been given by P e c h ~ k a s . ~  

McLafferty, Pechukas, and Pollak have also worked on 
the subject of a quantum transition-state theory, with the 
goal of establishing a quantal upper bound analogous to 
the rigorous variational theory of classical  mechanic^.^-^@ 
The current status and future prognosis appears to be that 
a useful and accurate quantal upper bound is unattainable. 

The conventional way to quantize transition-state theory 
is that used by Eyring3,67s87 and followed in standard ref- 
erences: 50,88-91 one simply replaces the classical partition 
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functions by quantized ones. This corresponds to quan- 
tizing the system in the transition-state dividing surface, 
which is unstable, as if it were a stable system. Then, 
quantal effects on reaction-coordinate motion, which is 
orthogonal to the transition-state dividing surface, are 
included in a multiplicative transmission coefficient, which 
in principle may also include corrections for systems 
classically recrossing the transition-state dividing surface 
(as discussed in section 2) and/or corrections for none- 
quilibrium distributions in the reactants. This procedure 
has been applied to generalized transition states and has 
been used as the basis for an approximate variational 
transition-state theory for applications in a quantum- 
mechanical wor1d.12,45~46~g2-97 Garrett and T r ~ h l a r ~ ~ ~ ~ ~ ~ ~ ~  
defined a single-parameter sequence of generalized tran- 
sition-state dividing surfaces that are locally orthogonal 
to a reaction path, which is usually taken as the junction 
of the paths of steepest descentg8 through mass-scaled 
coordinates from the saddle point to reactants and prod- 
ucts. (The scaling is proportional to the square root of the 
mass so that the kinetic energy becomes a diagonal 
quadratic form with the same reduced mass for all coor- 
dinates. The path of steepest descent through mass-scaled 
coordinates is called the intrinsic reaction coordinate, and 
it has the interpretation that it is the classical trajectory 
followed by an infinitely damped system starting at  the 
saddle Each generalized transition state in 
the sequence is quantized by the conventional prescription, 
and the rate constant is minimized for a canonical ensem- 
ble or a microcanonical ensemble, leading to canonical 
variational theory (maximum-free-energy-of-activation 
method) or microcanonical variational theory. A trans- 
mission coefficient is included after the variation to ac- 
count for quantal tunneling and nonclassical reflection in 
the reaction-coordinate motion. An improved canonical 
variational theory that treats the threshold energy by 
microcanonical variational theory and above-threshold 
contributions in terms of a truncated canonical ensemble 
has also been developed.94 

Both conventional transition-state theory and the var- 
iational theories discussed in the previous paragraph have 
been tested against accurate quantum-mechanical results 
for 30 cases of collinear atom-diatom reactions (26 reac- 
tions and isotopic analogues on 12 potential energy sur- 
faces), and they have been tested against presumably ac- 
curate quantal results for the H + H2 - H2 + H, H + BrH - HBr + H, and H + BrD - HBr + D reactions on 
approximate potential energy surfaces in three dimen- 
s i o n ~ . ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ - ~ ~ ~  In general, the agreement between the 
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rate constants calculated by variational transition-state 
theory with consistent transmission coefficients and the 
accurate quantal rate constants is very good. For the 33 
cases considered, the ratio of the conventional transition- 
state-theory rate constant with unit transmission coeffi- 
cient to the accurate quantal one at 300 K ranges from 0.44 
to 3.0 x lo3, and it is within the ranges 0.50-2.0,0.40-2.5, 
and 0.20-5.0 in only 8, 14, and 23 cases, respectively. In 
contrast, this ratio for canonical variational theory with 
transmission coefficients computed by methods discussed 
below ranges from 0.57 to 1.54 in all cases. With classical 
reaction-coordinate motion for both theories, the ratio of 
the conventional transition-state-theory rate constant to 
the canonical variational theory one at  300 K is greater 
than a factor of 1.6 in 1 2  cases and is greater than a factor 
of 2.0 or 10 in 9 and 6 cases, respectively. Thus, variational 
optimization is very important, but so is tunneling, with 
an average transmission coefficient of 3.9 for the canonical 
variational theory calculations at 300 K. Note that 23 of 
the 33 test cases involve transfer of a hydrogen atom or 
one of its isotopes, and the other 10 also involve H or one 
of its isotopes in bond making or bond breaking; tunneling 
would be expected to be less important if no hydrogens 
are involved at the reaction center. Next we discuss the 
physical effects responsible for the location of the varia- 
tional transition state and the methodslMJo7 used for the 
transmission coefficients. 

Variational Corrections. Garrett and Truhlar have 
given several discussions of the important factors deter- 
mining the size of the variational corrections to conven- 
tional transition-state theory.12,45~46~92~108~109 Usually the 
microcanonical and canonical variational criteria give 
similar results, so we need not make the distinction in this 
discussion. The variational transition state is located away 
from the saddle point when the generalized free energy of 
activation is not a maximum there. For a unit transmission 
coefficient, the generalized free energy of activation has 
a classical part, the Born-Oppenheimer potential along the 
reaction path, and a quantal part, the vibrational and 
rotational contributions. Since the saddle point maximizes 
the classical contribution, large variational corrections may 
be obtained only when the quantal contribution is sig- 
nigicantly greater somewhere else, due to vibrational 
zero-point energies or entropic effects. A useful classifi- 
cation of systems is by the curvature of the reaction path 
through mass-scaled coordinates. When this is large, 
mass-scaled vibrational wells may widen, and zero-point 
energies may drop suddenly. If this occurs near the saddle 
point, variational corrections may be large. A constraint 
on reaction-path curvature is provided by the skew angle, 
defined as the angle in mass-scaled coordinates between 
the reactant and product valley floors. Small skew angles 
are associated with the transfer of a light atom or group 
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between two heavy moieties, and they require the reaction 
path to have large curvature. Large skew angles are as- 
sociated with the transfer of a heavy atom or group be- 
tween light moieties; in such cases reaction-path curvature 
is generally smaller. Variational corrections dominated by 
zero-point effects may be 1 or more orders of magnitude 
at room temperature, and they decrease with temperature. 
Such large effects are most likely to be found for small- 
skew-angle systems where the saddle point is in a region 
of large reaction-path c ~ r v a t u r e . ~ ~ , ~ ~  Variational correc- 
tions associated with entropic effects increase with tem- 
perature; an example is the tightening of an incipient 
bending vibration as a system passes an early saddle point. 
This bend effect tends to be a factor of 2-3 or l e s ~ . ~ ? ~ ~  The 
systematics of whether the nontunneling variational 
transition-state-theory rate constant will differ from the 
conventional transition-state-theory one and of the tem- 
perature dependence of the location of the variational 
transition state have been explored for a series of atom- 
diatom reactions with model and semiempirical potential 
energy Consistent with the discussions 
above, symmetric-barrier reactions with large reaction-path 
curvature tend to show the largest variational corrections, 
which are dominated by stretching vibrations and decrease 
with temperature. Very asymmetric reactions show dif- 
ferences that increase with temperature and are dominated 
by bends. The results for atom-diatom reactions may 
provide a useful guide for variational corrections in larger 
systems. Two examples are provided in later paragraphs. 

In reactions without saddle points the variational criteria 
become essential for the application of transition-state 
theory. Chesnavich, Su, and Bowers have applied classical 
variational transition-state theory to ion-molecule reac- 
tions with nonspherical long-range forces, and their re- 
sulting capture rate constants compare favorably to tra- 
jectory calculations.l1° For some ion-molecule reactions, 
for which the molecular degrees of freedom are weakly 
coupled to the reaction coordinate, classical trajectory 
calculations show that recrossing of the dividing surface 
may be important, especially at high temperature.l" 
Definitive calculations for neutral zero-intrinsic-barrier 
reactions, such as radical-radical reactions, require con- 
sidering medium-range effects, such as force constant 
changes in bends, as well as long-range forces. Preliminary 
indications for radical-radical reactions and low-barrier 
atom-molecule reactions are that, in three-atom systems, 
recrossing of the variational transition state is more im- 
portant than for tight, high b a r r i e r ~ . ~ r ~ ~ J ~ ~  Systems with 
loose transition states sometimes have a second tighter free 
energy bottleneck too.112-114 The competition of two or 
more free energy bottlenecks can be handled by a unified 

Adiabaticity. At 0 K, the generalized free energy of 
activation as a function of reaction coordinate, i.e., distance 
along the minimum-energy path, reduces to the vibra- 
tionally adiabatic ground-state potential curve, i.e., the sum 
of the Born-Oppenheimer potential along the reaction 
path and the zero-point energy. In the absence of a tun- 

statistical theory.38a,4~,9~,~~2~~~4-~~6 

(110) W. J. Chesnavich, T. Su, and M. Bowers in "Kinetics of Ion- 
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neling correction, the threshold energy of variational 
transition-state theory is the maximum of the vibrationally 
adiabatic ground-state potential curve. The successes of 
variational transition-state theory, as summarized briefly 
above, imply that real systems tend to have an energy 
requirement at the dynamical bottleneck that can be well 
approximated by calculating a zero-point energy as if the 
generalized transition state were a real bound state. In 
many cases, though, variational transition-state theory 
yields good results even though the classical criteria for 
vibrational adiabaticity are violated, Le., when the vibra- 
tional motion is not fast relative to the reaction-coordinate 
motion. Quantal adiabaticity, or near adiabaticity, is more 
easily achieved because of the finite energy-level spacings 
corresponding to bounded motions in quantum mechanics, 
and this is very important for the success of the theory. 
More detailed studies of vibrational and rotational adia- 
baticity as functions of the reaction coordinate in three- 
dimensional reactions would be valuable. Transition-state 
theory does not require that the system be vibrationally 
adiabatic all the way from reactants to the transition state, 
although that would be helpful in minimizing the tendency 
for snarled dynamics leading to recrossings of the transition 
state, but just that the rate constants be the same as 
calculated by quantizing the bound degrees of freedom at 
the assumed b ~ t t l e n e c k . " J ~ J ~ ~ J ~ ~  

Tunneling. We mentioned in section 2 that as of 1973 
there was no reliable method for including tunneling effects 
in transition-state theory. The first successful break- 
through was by Marcus and C~l t r in , "~  who considered the 
collinear H + H2 reaction. They used an approximate 
analytic continuation of classical mechanics to complex 
momenta because imaginary momenta, and hence negative 
kinetic energies, provide a classical analogue for tunneling. 
Then they sought a path that minimizes the imaginary part 
of the action integral, which corresponds to exponential 
decay of the wave function in tunneling regions. This was 
joined a t  the classical turning point of the reaction coor- 
dinate to a vibrationally adiabatic trajectory. The vibra- 
tionally adiabatic approximation was also used for the 
effective Hamiltonian along the tunneling path within the 
ground-state vibrational amplitude. The resultant optimal 
path was located at  the curve of vibrational turning points 
on the concave side of the reaction path in the tunneling 
region. This corresponds physically to the negative in- 
ternal centrifugal effect mentioned in section 2. The 
calculations were carried out using curvilinear coordinates 
referenced to the reaction path; these are called natural 
collision  coordinate^.^^ For large reaction-path curvature 
natural collision coordinates become multiple valued in 
physically accessible regions and the method breaks down. 
For large reaction-path curvature the physical approxi- 
mation of vibrational adiabaticity also breaks down. This 
is often more serious for the tunneling correction than for 
the variational calculation with classical reaction-coordi- 
nate motion because the variational calculation is equiv- 
alent to making an adiabatic approximation only at  the 
bottleneck, which tends not to be in a large-curvature 
region, but vibrationally adiabatic tunneling methods re- 
quire vibrational adiabaticity over the whole reaction co- 
ordinate. 

The Marcus-Coltrin-path adiabatic method was gen- 
eralized to three-dimensional atom-diatom reactions with 
collinear reaction paths, and it  was applied successfully 

(117) D. G. Truhlar, J .  Phys. Chem., 83, 188 (1979). 
(118) R. A. Marcus, J. Phys. Chem., 83, 204 (1979). 
(119) R. A. Marcus and M. E. Coltrin. J.  Chem. Phvs.. 67.2609 (1977). 
(120) B. C. Garrett and D. G. Truhlar, J .  Phss. Chem., 83, 200, 

3058(E) (1979). 

to several test cases.12,94,96J01J20 Then a completely general 
version for any number of atoms in any number of di- 
mensions that effectively avoids multiple-valued regions 
of natural collision coordinates and smooths out "bubbles" 
in the Marcus-Coltrin path was developed.1M This is the 
small-curvature adiabatic approximation. The small- 
curvature adiabatic ground-state approximation corre- 
sponds to tunneling through the ground-state potential 
barrier of the adiabatic theory of reactions with an effective 
reduced mass that accounts for the shortening of the 
tunneling path by the negative internal centrifugal effect. 
The tests against accurate quantal calculations that were 
discussed above show that the small-curvature approxi- 
mation gives a quantitatively reliable description of tun- 
neling processes for many systems of interest with small 
and intermediate reaction-path curvature. A systematic 
analysis of tunneling approximations for such cases has 
been presented, along with a validity criterion for the 
small-curvature approximation or the use of natural-col- 
lision-coordinate-based tunneling methods.lo6 

As mentioned above, the curvature of the reaction path 
depends on the mass combination as well as the potential 
energy surface, and the transfer of a light atom between 
two heavy moieties always corresponds to large reaction- 
path curvature. A good physical model for this case is that 
the light atom tunnels suddenly between stationary heavy 
groups (or atoms). Semiclassical approximations based on 
this idea have been suggested by Shushin and Ovchinni- 
kova,121 Babamov, Marcus, and Lopez,122 and Garrett et 
a1.'07 Garrett and co-workers call this the large-curvature 
approximation and have demonstrated its reliability by 
comparisons to accurate quantal calculations.105 The nu- 
merical comparisons to accurate quantal calculations in 
the fourth paragraph of this section are based on the 
small-curvature-tunneling semiclassical adiabatic ground- 
state method for 30 of the 33 cases and on the large-cur- 
vature ground-state method for C1 + HCl and isotopic 
analogues. More recently Garrett and T r ~ h l a r ' ~ ~  have 
developed a new method, called the least-action method, 
which is based on a least-imaginary-action principle. They 
numerically choose the best tunneling path for each energy 
from a parametrized sequence of paths between the re- 
action path and the large-curvature tunneling path. The 
tunneling path and the effective Hamiltonian along it are 
expressed in natural collision coordinates with the vibra- 
tionally adiabatic approximation near the reaction path, 
but in Cartesian coordinates without the adiabatic ap- 
proximation when either natural collision coordinates or 
vibrational adiabaticity becomes invalid. With the new 
method they have obtained results more uniformly valid 
than the Marcus-Coltrin-path or small-curvature adiabatic 
approximations or the large-curvature approximation for 
a range of problems involving small, intermediate, and 
large reaction-path curvature. It appears that the practical 
problem of estimating tunneling contributions, given the 
potential energy surface, is largely solved, a t  least for ac- 
curacies of a factor of 2 or better at temperatures of 250 
K or higher. It would, however, be desirable to place the 
empirically successful tunneling methods on a firmer 
theoretical footing. 

Another approach to calculating the transmission 
(121) A. I. Shushin and M. Ya. Ovchinnikova, Theor. Eksp. Khim.;ll, 

445 (1975) (English translation: Theor Exp .  Chem.,  11,374 (1975)); M. 
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coefficient is to base it on an exact quantal calculation for 
a problem with reduced dimensi~nality.~~~~~J~,~~~ Bowman 
and c o - ~ o r k e r s ~ ~ ~ J ~ ~  have recently applied this procedure 
to atom-diatom reactions with collinear minimum-energy 
paths. 

Anharmonicity. Several studies have now shown the 
importance of anharmonicity, especially of low-frequency, 
large-amplitude motions, for the calculation of accurate 

Applications. The applications of variational transi- 
tion-state theory discussed above are primarily based on 
semiempirical potential energy surfaces. The large vari- 
ational correction obtained with such surfaces for sym- 
metric-barrier reactions with large reaction-path curvature 
has been confirmed by applying variational transition-state 
theory to 37Cl + H35Cl - H37Cl + 35Cl on an ab initio 
potential energy surface.lo7 With classical reaction-coor- 
dinate motion in both cases, the conventional transition- 
state-theory rate constant exceeds the improved-canoni- 
cal-variational-theory one by a factor of 28 at  300 K. 
Nonadiabatic tunneling plays an important role in this 
case, and as a consequence of the location of the variational 
transition state and the nature of the tunneling, the 
magnitude of the rate constant is controlled primarily by 
regions of the potential surface significantly displaced from 
the saddle point.lo5 Another example of applications with 
ab initio surfaces is to H + H2 and isotopic analogues. This 
is the one system for which the ab initio potential energy 
surface is reasonably reliable12' and the predictions of the 
theory are in good agreement with experiment for all iso- 
topes for which rates are available.93~'0'J04~10* 

The applications of transition-state theory that we have 
discussed in detail so far are concerned with atom-diatom 
reactions, but one of the advantages of variational tran- 
sition-state theory and the small-curvature and least-action 
tunneling models is that they are applicable to systems 
with many atoms. This is facilitated by using the reac- 
tion-path Hamiltonian of Miller et a1.lZ8 They provide 
convenient equations for determining the harmonic vir- 
bational frequencies and generalized normal modes within 
the surface orthogonal to the intrinsic reaction path. 
Isaacson and Truhlarg5 have used this Hamiltonian to 
formulate variational transition-state theory for poly- 
atomics and have made an application to OH + H2 - H20 
+ H. Canonical variational theory differs significantly 
from conventional transition-state theory for this reaction 
and the effects can be understood by analogy to the re- 
action C1+ H2 - HC1+ H. As for atom-diatom reactions, 
tunneling was found to be very important, with a small- 
curvature adiabatic transmission coefficient of 17 a t  300 
K. This calculation employed a global fit129 to an ab initio 
potential energy surface.130 One advantage of variational 
transition-state theory with adiabatic transmission coef- 

rate constants.92,95,96,101,126 
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ficients is that one needs the potential energy surface only 
in the valley connecting reactants to products. By use of 
analytic gradient techniques131 it is possible to efficiently 
calculate the potential energy surface only in this valley, 
without generating a grid of potential energy points 
spanning the full range of all c o o r d i n a t e ~ . ' ~ ~ J ~ ~  Increasing 
use of this technique, especially in conjunction with gen- 
eralized transition-state theory, can be expected. A dif- 
ficult unsolved problem for polyatomic reaction rate cal- 
culations, however, is the development of a convenient and 
accurate way to include anharmonic coupling of vibrational 
modes. 

Yamashita and Y ~ m a b e ' ~ ~  have used ab initio gradient 
techniques to calculate vibrational frequencies as a func- 
tion of reaction coordinate for the reaction H + CHI - 
H2 + CH3. The most rapidly varying frequency can again 
be understood by analogy to C1+ H2. One may be able 
to generalize these trends and devise useful fitting func- 
tions for vibrational frequencies as a function of reaction 
coordinate. A simple attempt to do this has been reported 
re~ent1y . l~~ 

As mentioned in section 1, ab initio barrier heights are 
still too unreliable for most rate constant calculations, but 
progress in continuing on calculating transition-state- 
theory rate constants from ab initio input data for force 
constants with empirical values for the barrier heights. 
The recent calculations of Harding and co-worker~ '~~ on 
H2 + C2H - H + C2H2 and H + H2C0 - H2 + HCO 
illustrate the current status of this approach in a con- 
ventional transition-state-theory context. We look forward 
to the application of extended-basis-set large-CI techniques 
to calculate the reaction-path Hamiltonian for such sys- 
tems over the whole important region of the reaction co- 
ordinate as required to calculate variational corrections and 
reliable transmission coefficients. 

Kinetic isotope effects certainly constitute one of the 
most important fields of application of transition-state 
theory. Conversely, as stated in the first sentence of the 
excellent recent monograph by Melander and Saunders, 
"The theory of absolute reaction rates, or transition-state 
theory, forms the basis of almost all our discussions of 
isotope effects in chemical kinetics."136 The simplifying 
feature of the calculation of equilibrium isotope effects is 
that, although the masses change, the force constants of 
the Born-Oppenheimer potential energy surface do not. 
Because a saddle point is a mass-independent feature of 
a reactive potential energy surface, conventional transi- 
tion-state theory, by always placing the transition state at 
the saddle point, provides a way to extend this simplifying 
feature to kinetic isotope effects, and it yields a beautiful 
and elegant theory. However, variational transition-state 
theory often yields significantly different force constants 
for the optimized transition states of isotopically substi- 
tuted s y ~ t e m ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Even the location of 
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the maximum of the vibrationally adiabatic ground-state 
potential curve is usually isotope dependent. The isotope 
dependence of the variational transition states greatly 
complicates the theory of kinetic isotope effects. Another 
complication is provided by the nature of the successful 
tunneling calculations. For example the small-curvature 
approximation involves the vibrationally adiabatic 
ground-state potential curve, which is isotopically variant. 
The assumption that tunneling corrections can be com- 
puted from the isotope-independent Born-Oppenheimer 
potential along the minimum-energy path leads to large 
errors in many cases. An example of the way the new 
theories lead to a reinterpretation of kinetic isotope effects 
is provided by recent studies of the three-dimensional 
reaction 37Cl + H(D)35C1 - H(D)37C1 + 35Cl.107 The con- 
ventional interpretation attributes the H/D kinetic isotope 
effect mainly to zero-point differences computed from 
saddle-point force constants. The new calculations at- 
tribute the kinetic isotope effect mainly to tunneling 
through regions of the potential energy surface far from 
the saddle point. Tests of the rate constants themselves 
against accurate quantal rate constants for the collinear 
reaction support the new in te r~re ta t i0n . l~~ Further work 
to sort out the isotopic dependence of transition-state 
structures and the effects of this dependence on the in- 
terpretation of kinetic isotope effects is very much needed. 

Although transition-state theory is primarily directed 
to the prediction of thermal rate constants, the recent 
advances in generalized transition-state theory may also 
have more widespread influence. Some examples are the 
use of methods derived from generalized transition-state 
theory for the study of excited-state r e a ~ t i v i t y 3 ~ J ~ ~ J ~ ~  and 
collisional r e s o n a n c e ~ . ~ ~ ~ J ~ ~  Another is the use of the 
reaction-path Hamiltonian for non-transition-state-theory 
scattering c a l c ~ l a t i o n s . ~ ~ ~ J ~ ~  

Nonequilibrium Effects. The discussion above is con- 
cerned with the calculation of equilibrium rate constants. 
Strictly these should be called local-equilibrium rate con- 
stants since they refer to a situation where all internal 
states of reactants are in equilibrium with each other, and 
the same for products, if present, but chemical equilibrium 
for reactants with products is not achieved.I4l The tests 
of conventional and variational transition-state-theory rate 
constants against quantal dynamics that have been re- 
ported are tests against accurate equilibrium rate constants 
for the same potential energy surface. Experimental rate 
constants though are obtained from phenomenological rate 
laws in a quasisteady state, i.e., following the decay of 
transients but not necessarily a t  local equilibrium. When 
phenomenological rate constants differ from equilibrium 
ones, we have the gas-phase analogue of the energy- 
transfer-limited regime discussed in section 2. Pheno- 
menological rate constants are less than or equal to 
equilibrium rate constants. The deviation is expected to 
be small for slow reactions but reliable quantitative esti- 
mates for low-barrier reactions are not available. Most 
work on nonequilibrium effects for bimolecular reactions 
has been concerned only with translational disequilibrium. 
The most accurate results are apparently those of Present 

Truhlar et ai. 

and Morris.142 They find, for example, an 8% effect for 
a case where the threshold energy is 5kT ,  and smaller 
effects for higher threshold energies or lower temperatures. 
Lim and T r ~ h l a r ' ~ ~  have estimated the internal-state 
nonequilibrium effect for the C1+ HBr reaction at 300 K 
by finding the quasisteady-state solution of the master 
equation with a set of realistic energy-transfer rates, in- 
cluding V-V energy transfer, and state-selected reaction 
rate constants. They obtain a nonequilibrium correction 
factor of 0.3. For this case the activation energy is about 
1.3kT. 

Rationale for  Theoretical Comparisons. Throughout 
this section we have emphasized comparisons of theoretical 
results for a given potential energy surface, and we have 
devoted very little space to comparisons to experiment. 
This is because the former kind of comparison may lead 
to direct information about the validity of various versions 
of transition-state theory, whereas in the latter we usually 
cannot unambiguously separate uncertainties in the po- 
tential energy surface from inadequate treatment of the 
dynamics. We think that the theoretical tests allow one 
to make realistic judgments about the expected validity 
of transition-state theory for various kinds of applications 
in interpreting experimental data, but, as stated in section 
1, it is beyond the scope of this review to make a com- 
prehensive survey of the applications. 

4. Gas-Phase Unimolecular Reactions 
Unimolecular reactions involve many of the same effects 

as bimolecular reactions but also some new considerations. 
Choosing the Transition State. HaselUJ* and Troe and 

co-workers76J46 recognized the significance of a variational 
criterion in interpreting experimental rate constants for 
unimolecular dissociation reactions without well-defined 
potential energy barriers and thereby resolved a contro- 
versy concerning the forward and reverse rate constants 
for the C2H6 z 2CH3 system.54!55J45 

Some of the same considerations mentioned in section 
3 for radical-radical and ion-molecule reactions44J1*112 also 
apply to simple bond-scission reactions of neutrals and 
ion-molecule dissociations. As an example, the transi- 
tion-state-theory expression for the rate constant for the 
radical-radical reaction 0 + OH - H + O2 in the low- 
pressure limit is the same as the transition-state-theory 
expression for the rate constant for the reverse of the 
unimolecular reaction HOz - OH + 0 in the high-pressure 
plateau region between low-pressure falloff and very- 
high-pressure diffusive behavior. However the accurate 
rate constants need not be the same for the two cases, and 
transition-state theory may be more valid for the high- 
pressure rate constant. 

Angular Momentum and Symmetries. Conservation of 
angular momentum was not explicitly included in the in- 
itial development of RRKM theory. However, modifica- 
tions have been introduced into the theory to account for 
angular momentum conservation to allow for more accu- 
rate testing of the fundamental assumptions against ex- 
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~ e r i m e n t . ~ l - ~ ~ , ~ ' , ~ , ~ , l ~ ' - l ~  Questions still remain about the 
effect of enforcing angular momentum conservation. For 
example, in most treatments of the dissociation of a sym- 
metric top molecule only the conservation of the total 
angular momentum J is ~ o n s i d e r e d , ~ ~ , ' ~ ~  but classical tra- 
jectory calculationsaJ*lm indicate that for some reactions 
a projection K of the total angular momentum may also 
be conserved. In recent work MilleP9 has suggested that 
unimolecular dynamical effects may arise from geometrical 
symmetry conserved along the reaction path. This idea 
and the question concerning angular momentum conser- 
vation should receive considerable attention in future re- 
search. 

Calculational Methods. To allow for unimolecular de- 
composition at  energies less than the vibrationally adia- 
batic barrier, the microcanonical unimolecular rate con- 
stant should be corrected for the effect of quantum-me- 
chanical tunneling. Miller and c ~ - w o r k e r s ~ ~ ~ J ~ ~  have re- 
ported tunneling calculations utilizing ab initio potential 
energy surfaces using a f o r m ~ l a t i o n ' ~ ~ ~ ~ J ~ ~  that has been 
called vibrationally adiabatic in the bimolecular context. 
Recent advances in calculating tunneling corrections for 
bimolecular reactions are also applicable here,97JMJ23 and 
one may expect to see them applied to unimolecular de- 
compositions in the future. Moryl and Farrar have re- 
cently suggested that proton tunneling plays an important 
role in the reaction CH30H2+ - CH20H+ + H2.161 

Anharmonicity. In calculating the sum and density of 
states, one should take into account the complete anhar- 
monicity of the potential energy surface. Hypothetically, 
anharmonic sums and densities can be found by first de- 
termining the energy levels for the anharmonic vibrational 
Hamiltonian (e.g., by diagonalizing the Hamiltonian with 
a sufficient basis set162-164) and then performing a direct 
count of states.165 However, this method is impractical 
for Hamiltonians as complex as those of most real mole- 
cules. 

There appear to be three different practical methods for 
introducing anharmonicity into the RRKM unimolecular 
rate constant. One method is to evaluate the classical 
anharmonic microcanonical rate constant either by a 
classical trajectory calculation58@ or by a Monte Carlo 
evaluation of the flux-coefficient form of tranition-state 
theory with a "finite-width delta f ~ n c t i o n " . ' ~ ~ J ~ '  The 
Monte Carlo transition-state method is particularly at- 
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tractive since trajectories do not have to be numerically 
integrated. It also is generalizable to a canonical ensem- 
ble.166 However, the problem in calculating the anhar- 
monic rate constant classically is that classical mechanics 
does not include the effects of quantal adiabaticity prop- 
erly, and this may be a particularly severe problem at 
energies near the vibrationally adiabatic b a r ~ i e r . ~ ' . ~ ~  The 
problem is enhanced as the number of degrees of freedom 
in the molecule is increased. 

A convenient way for including anharmonicity is to 
represent the molecular Hamiltonian as a collection of 
separable anharmonic oscillators for which the quantum- 
mechanical energy levels are k n o ~ n . ' ~ ~ J ~ ~  Sums and 
densities of states are then found by direct count. The 
oscillators are usually assumed to be of the Morse type. 
This anharmonic correction is easy to make, but the ac- 
curacy of the seaprable anharmonic Hamiltonian is 
que~tionab1e.l~~ 

The third m e t h ~ d ~ ~ J ' l  has not received wide use. 
However, it is of general applicability and initial work 
indicates it is quite accurate. In this technique the an- 
harmonic sum of states for a potential energy function is 
determined classically by evaluating the multidimensional 
phase-space volume which is enclosed by the hypersurface 
H(q ,p )  = E."J7@172 The density is the first derivative of 
the sum of states. The quantal anharmonic sums and 
densities of state are then found by equating the classical 
ratios of anharmonic to harmonic values for the sum and 
density to the corresponding quantal ratios, an approxi- 
mation first applied to partition functions by Pitzer and 
G ~ i n n . " ~  The classical harmonic terms can be found 
analytically, while direct count is used to determine the 
quantal ones. This method also requires a separate esti- 
mate of the anharmonic effect on the zero-point energy. 
A recent application of this procedure illustrates the im- 
portance of anharmonicity which results from bendstretch 
c~upling."~ 

Non-RRKM Behavior. A breakdown in the RRKM 
theory can arise from a violation of either of its two pos- 
tulates: (i) the existence of a dividing surface between 
reactants and products which trajectories do not recross; 
and (ii) the presence of a uniform density in the reactant's 
phase space. The latter assumption has received the most 
scrutiny. When the former has been investigat- 
ed,48,68,156,157,174-177 recrossing of a dividing surface has often 
been found to be unimportant for bond dissociation re- 
actions; this, however, need not always be the case.111J12 
The importance of recrossing effects for isomerizations may 
depend on the complexity of the s y ~ t e m . ~ ~ ~ ~ ~ ~  

The second assumption of the RRKM theory requires 
that the reactant molecule have a random lifetime dis- 
t r i b u t i ~ n . ~ J ' ~  The effect of violating this assumption was 
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discussed by Rice.lB0 He pointed out that, if there are 
restrictions in the reactant phase space so that all regions 
are not equally accessible, an initial microcanonical en- 
semble will not have a random distribution of lifetimes. 
Such an effect is referred to as intrinsic non-RRKM be- 
havior.18' The ensemble may be characterized by two or 
even more unimolecular rate constants. Slater59 suggested 
that some trajectories may even be trapped in the reactant 
phase space and never dissociate. Such trajectories were 
labeled as " ~ n i n t e r e s t i n g " ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  in the mathematical 
sense, although of course they are really very interesting. 
If the trapped trajectories are confined to one region of 
the reactant phase space, the molecule still has a random 
lifetime distribution.61 However, the unimolecular rate 
constant will be larger than that of RRKM theory by the 
factor l / f ,  where f is the fraction of the reactant phase 
space which consists of the chaotic type trajectories that 
will ultimately dissociate. 

Failure of the random lifetime assumption also arises 
if the molecule is purposely excited nonrandomly, so that 
the initial decay rate will depend on where the excitation 
is deposited in the molecule. Such behavior is observed 
in chemical a c t i v a t i ~ n ' ~ ~ - ~ ~ ~  and has been suggested in 
vibrational-overtone-excitation  experiment^.'^^ Bunker 
and Hasel8' suggested that this effect be called apparent 
non-RRKM to distinguish it from intrinsic non-RRKM. 
If all parts of the reactant phase space are strongly coupled, 
the apparent non-RRKM behavior will only be present in 
the initial decomposition and the long-time decay will be 
characterized by the RRKM rate constant. The correc- 
tions to RRKM theory when the time scale for energy 
redistribution within the molecule is not much faster than 
the time scale for dissociation have been analyzed recently 
by Procaccia et  al.'@ A novel recent example of nonsta- 
tistical laser chemistry is provided by the photodissociation 
of n-octylbenzene-argon van der Waals complexes, which 
dissociate at  least 10 orders of magnitude faster than a 
Rice-Ramsperger-Kassel estimate.lB7 This provides a 
striking demonstration of slow intramolecular vibrational 
randomization on the time scale of a dissociation. 

From a fundamental quantum-mechanical point of view, 
unimolecular decay is really a problem in the decay of 
collisional resonances with overlapping widths.'@ Recent 
work has shown that model molecular Hamiltonians have 
trapped quasiperiodic trajectories above the unimolecular 
threshold, which can be quantized by primitive semiclas- 
sical m e t h ~ d s . ' ~ ~ ~ ' ~ ~  By the relationship found between 
the classical and quantum mechanics of bound mole- 
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cu1es163*191-197 the quasiperiodic trajectories are expected 
to represent compound-state resonances, and possibly have 
lifetimes significantly longer than that of RRKM theory. 
An important problem to be solved is to determine what 
types of potential energy surfaces give rise to long-lived 
compound-state  resonance^.^^^-^^^ Another significant 
problem is the development of practical methods for de- 
termining the resonance width (i.e., lifetime).'96,202-205 

Whether a bound-state eigenfunction is spatially 
localized or not corresponds to some extent with whether 
or not the classical trajectories at  the energy of the ei- 
genstate are quasiperiodic or chaotic, but the corre- 
spondence between classical chaos, the nature of quantal 
eigenstates, and the regularity or irregularity of the quantal 
spectrum is not one to one.62,162,192-194,206 A nonresonant 
quasiperiodic quantizing trajectory occupies only a limited 
region of the energetically accessible coordinate space, in 
accord with the probability density 1 $ 1 2  for a localized 
quantum state. On the other hand, a chaotic trajectory 
covers all of the coordinate space as does 1 $ 1 2  for a non- 
localized state, except that systems in symmetry-generated 
degenerate states will fail in the quantal case to transfer 
energy equivalently among equivalent phase-space loca- 
tions.207 Quasiperiodic trajectories above the unimolecular 
threshold, by necessity, can only have a limited extension 
along the reaction path. Thus, if there are levels just below 
the unimolecular threshold with localized wave functions 
that have small values of 1$12 along the reaction path, one 
would predict the presence of compound-state resonances. 
The question concerning the existence of compound-state 
resonances is then intimately related to the local or global 
nature of wave functions for highly vibrationally excited 
bound molecules. The calculations of Waite and Miller205 
indicated, perhaps surprisingly,20s that, as the energy is 
raised, there is no connection between the transition from 
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measured thermally and by chemical activation.5656 In 
the RRKM calculations, vibrational frequencies and a 
structure for the transition state are chosen to match the 
entropy of activation determined from the Arrhenius 
frequency factor in the high-pressure plateau region. Two 
important thermal experiments where such agreement has 
been found are the isomerization reactions of cyclo- 
propane223 and methyl isocyanide.224 Frequencies for the 
methyl isocyanide isomerization transition state have been 
determined by an ab initio calculation,225 and they are in 
surprisingly good agreement with those hypothesized to 
match the entropy of activation. Unimolecular rate con- 
stants determined from chemical activation experiments 
for alkyl radicals,226 alkyl halides,227 and alkanes72 are 
adequately interpreted by RRKM theory. For ethyl rad- 
ical decomposition the use of an ab initio transition state 
in the RRKM calculation gives agreement between theo- 
retical and experimental thermal rate constants.228 The 
RRKM theory has been used widely in the interpretation 
of ion-molecule decomposition  reaction^.^^,^^^ 

RRKM theory has also been used to interpret multi- 
photon infrared dissociation. In general, it is capable of 
explaining the data, but this does not appear to be a 
stringent test.230 

Recently it has become possible to measure unimolecular 
rate constants of monoenergetically excited molecules and 
ions in the absence of collisions. Important work of this 
type has been performed by Troe, Crim, Zare, Baer, and 
C O - W O ~ ~ ~ ~ S . ~ ~ , ~ ~ ~ - ~ ~ ~  An important finding is that the rate 
constants agree with RRKM predictions and are consistent 
with those from thermal and chemical activation experi- 
ments. 

Though the above comparisons paint a rosy picture for 
the general applicability of RRKM theory, there still re- 
main several concerns. Harmonic-state counting is almost 
always used in calculating the RRKM rate constant, and 
tunneling corrections are very seldom included. As more 
reliable ab initio potential energy surfaces become available 
so that more quantitative comparisons can be made with 
experiment, anharmonicity and tunneling should be in- 
cluded. One would hope that as the RRKM calculations 
become more precise, agreement between experiment and 
theory would be maintained. However, the opposite is 
certainly possible. 

mode-specific to statistical behavior in quantum mechanics 
(even as h - 0) and the transition from quasiperiodic to 
chaotic behavior in classical mechanics. More recent 
work209 indicates that this may have been caused by the 
form of Waite and Miller's Hamiltonian, which does not 
favor mode-specific behavior, and that in other cases the 
two transitions are indeed related. 

Though an amazing amount of progress has been made 
in our understanding of non-RRKM behavior, much work 
remains to be done. The relationship between the prop- 
erties of wave functions for bound molecules and com- 
pound-state resonances presents a particularly exciting 
research area. 

Collisional E f f ec t s .  Experiments in the low-pressure 
limit and to some extent in the falloff regime show that 
for many reactions the strong collision assumption is in- 

For such situations a multistep activation 
and deactivation mechanism must be used, and this leads 
to a master-equation formalism for the unimolecular dy- 
n a m i c ~ . ~ ~ ~ ~ ~  Considerable work has been done on ap- 
proximate solutions to the master equation to account for 
weak-collider effects.169,211-216 However, solutions which 
retain a quantitative description of the complete inter- 
molecular and intramolecular dynamics are not available. 
Recent trajectory calculations indicate that such an effort 
may be necessary.217 Another question which is expected 
to continue receiving considerable attention both theo- 
retically and experimentally is the manner in which ac- 
tivation and deactivation transition probabilities are af- 
fected as the temperature (or energy) of the reactant is 
altered.218,219 Given all the problems in formulating an 
accurate dynamical-theory procedure for calculating the 
thermal unimolecular rate constant, it has been proposed 
that simple semiempirical analytic functions be used to 
fit experimental k ( T )  vs. uCo1 curves.22o 

Recent work has shown that high-temperature systems 
reach the high-pressure plateau more slowly than expected 
from extrapolations at lower temperatures.221 Lifshitz et 
al. have studied how the strong-collision assumption must 
be modified to account for this.222 

Applicat ions.  The primary reason that the RRKM 
theory receives such wide use is that for most cases it has 
given a quantitative fit to unimolecular rate constants 

(209) E. J. Heller, personal communication; R. L. Sundberg and E. J. 
Heller, unpublished. 

(210) S. C. Chan, B. S. Rabinovitch, J. T. Bryant, L. D. Spicer, T. 
Fuiimoto. Y. N. Lin. and S. P. Pavlou. J .  Phvs. Chem.. 74. 3160 (1970). 

i211) D. C. Tardy and B. S. Rabinovitch; J .  Chem: Phys., 45, 3720 
(1960); 48, 1282 (1968); Chem. Rev., 77,369 (1977); D. C. Tardy and R. 
J. Malins, J .  Phys. Chem., 83, 93 (1979). 

(212) J. Troe in 'Physical Chemistry of Fast Reactions", Vol. 1, V. S. 
Levitt, Ed., Plenum Press, New York, 1973, p 1; J. Troe, Ber. Bunsenges. 
Phys. Chem., 77 ,  665 (1973); 81, 230 (1977); J .  Chem. Phys., 66, 4745 
(1977); Th. Just and J. Troe, J .  Phys. Chem., 84, 3068 (1980). 

(213) H. 0. Pritchard and A. Lakshmi, Can. J .  Chem., 57,2793 (1979); 
H. 0. Pritchard and G. M. Diker, ibid., 58,1516 (1980); H. 0. Pritchard, 
ibid., 58,2236 (1980); S. R. Vataya and H. 0. Pritchard, Chem. Phys., 63, 
383 (1981). 

(214) B. J. Gaynor, R. G. Gilbert, and K. D. King, Chem. Phys. Lett.,  
55, 40 (1978). 

(215) A. J. Stace and P. V. Sellers, Chem. Phys., 50, 147 (1980). 
(216) H. W. Schranz and S. Nordholm, Chem. Phys., 74,365 (1983). 
(217) G. R. Gallucci and G. C. Schatz, J .  Phys. Chem., 86,2353 (1982). 
(218) I. E. Klein, B. S. Rabinovitch, and K. H. Jung, J.  Chem. Phys., 

67, 3833 (1977); I. E. Klein and B. S. Rabinovitch, J .  Phys. Chem., 82, 
243 (1978); T. Kasai, Chem. Phys. Lett . ,  81, 126 (1981). 

(219) G. P. Smith and J. R. Barker, Chem. Phys. Lett . ,  78,253 (1981); 
J. R. Barker, M. J. Rossi, and J. R. Pladziewicz, ibid., 90, 99 (1982). 

(220) J. Troe, Ber. Bunsenges. Phys. Chem., 78, 478 (1974); J .  Phys. 
Chem., 83, 114 (1979). 

(221) D. B. Olson and W. C. Gardiner, Jr., J .  Phys. Chem., 83, 922 
(1979). 

(222) A. Lifshitz, A. Bar-Nun, A. Burcat, A. Ofir, and R. D. Levine, 
J .  Phys. Chem., 86, 791 (1982). 

(223) H. Furue and P. D. Pacey, Can. J .  Chem., 60, 916 (1982). 
(224) F. W. Schneider and B. S. Rabinovitch, J .  Am. Chem. Soc., 84, 

4215 (1962); I. Oref and B. S. Rabinovitch, Acc. Chem. Res., 12, 166 
(1979). 

(227) K. Dees, D. W. Setser, and W. G. Clark, J .  Phys. Chem., 75,2231 
(1971); K. C. Kim and D. W. Setser, J .  Phys. Chem., 78, 2166 (1974). 

(228) W. L. Hase and H. B. Schlegel, J .  Phys. Chem., 86,3901 (1982). 
(229) M. J. Pellerite and J. I. Brauman, J .  Am. Chem. SOC., 102, 5993 

(1980); M. F. Jarrold, L. M. Bass, P. R. Kemper, P. A. M. van Koppen, 
and'M. T. Bowers, J .  Chem. Phys., 78 ,  3756 (1983). 

(230) T. H. Richardson and D. W. Setser, J .  Phys. Chem., 81, 2301 
(1977); P. A. Schultz, A. S. Sudbo, D. J. Krajnovich, H. S. Kwok, Y. R. 
Shen, and Y. T. Lee, Annu. Reu. Phys. Chem., 30,379 (1979); D. S. King, 
Adu. Chem. Phys., 50,105 (1982); D. Krajnovich, F. Huisken, 2. Zhang, 
Y .  R. Shen, and Y. T. Lee, J .  Chem. Phys., 7 7 ,  5977 (1982). 

(231) H. Hippler, K. Luther, J. Troe, and R. Walsh, J .  Chem. Phys., 
68,323 (1978); Faraday Discuss. Chem. SOC., 67, 173 (1979); D. Dudek, 
K. Glhzer ,  and J. Troe, Ber. Bunsenges. Phys. Chem., 83, 788 (1979); 
K. Luther and W. Wieters, J .  Chem. Phys., 73, 4131 (1980); H. Hippler, 
V. Schubert, J. Troe, and H. J. Wendelken, Chem. Phys. Lett . ,  84, 253 
(1981). 

(232) B. D. Cannon and F. F. Crim, J .  Chem. Phys., 75,1752 (1981); 
T.  R. Rizzo and F. F. Crim, ibid., 76, 2754 (1982). 

(233) M. L. Fraser-Monteiro, L. Fraser-Monteiro, J. J. Butler, T. Baer, 
and J. R. Hass, J .  Phys. Chem., 86, 739 (1982). 



2678 The Journal of Physkal Chemistry, Vol. 87, No. 15, 1983 Truhlar et al. 

There also remain several experimental studies which 
are not correctly interpreted with RRKM theory. Two 
examples for which the difference has been quantified are 
the mode selectivity observed in allyl isocyanide isomer- 
izationW and the paradox between the forward and reverse 
rate constants for the H + C2H2 F! C2H3 system.235 

Finally, because of the collisional and energy averaging 
of thermal and chemical activation experiments they do 
not provide unequivocal tests of the random lifetime as- 
sumption of the RRKM theory.58~200~236 Also, the micro- 
canonical unimolecular rate constant is not very sensitive 
to the presence of trapped trajectories in the reactant 
phase space.61 Classical trajectory calculations show that 
there are molecular Hamiltonians that have a significant 
fraction of trapped trajectories above the unimolecular 
t h r e s h ~ l d . ’ ~ ~ J ~ ~  Extremely important problems to be 
solved are the determination of the properties of the 
quantal analogue of the trapped trajectories. 

5. Reactions in Solution 
Frictional Effects. The impact of transition-state theory 

with its elegant simplicity has perhaps been greatest for 
reactions in solution. In particular, the concepts of the 
transition state and the quasithermodynamic formulation 
of the rate, with its emphasis on free energy of activation, 
have been indispensable weapons in the arsenal of the 
practicing condensed-phase kineticist. Several fine text- 
book discussions attest to this.67,90*23i-239 None the less, 
while most reactions occur in solution, the investigation 
of the validity of transition-state theory in solution has 
noticeably lagged the corresponding question in the gas 
phase. But this has changed dramatically in recent years, 
and the concepts and applicability of transition-state 
theory for solution reactions have come under intense 
scrutiny.24” 

A t  first glance, transition-state theory would seem to be 
unassailable for solution rates-the fundamental equilib- 
rium assumption appears to be on firm ground here, due 
to the frequent collisions of the reacting system with the 
solvent molecules. Yet this view both over- and under- 
estimates the effect of solvent. For despite the high col- 
lision frequency in a dense solvent, vibrational energy 
equilibrium need not hold at  the transition state. On the 
other side of the coin, frequent solvent collisions could 
severely interfere with the free unimpeded barrier passage 
assumed by transition-state theory. The quantification 
of these effects may be carried out in the framework 
painted by K r a m e r ~ . ~ ~  At low friction, the rate lies below 
the transition-state-theory prediction and increases with 
friction. At intermediate friction, transition-state theory 
may be a reasonable approximation, in which case the rate 
is independent of friction. As the friction increases still 
further, transition-state theory will again begin to over- 
estimate the rate, which will decrease with friction, even- 
tually reaching the diffusion-controlled regime where it is 
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inversely proportional to 1: The contrast of the energy- 
transfer-limited and friction-limited regimes with the 
transition-state-theory regime is clear: the rate constant 
will generally depend on the solvent dynamics, and it will 
vary nonmonotonically with friction, i.e., with some mea- 
sure of the coupling to the solvent such as density, pres- 
sure, or viscosity. One important consequence of this, 
stressed by and Montgomery et concerns 
quasithermodynamic activation parameters such as the 
volume of activation. If the rate is yoked inappropriately 
into a transition-state-theory format, these parameters will 
actually contain a nonthermodynamic, solvent-dynamic 
contribution that can be quite significant. While Kramers 
theory provides a very rough outline of solvent effects, the 
sources and extent of the deviation from transition-state 
theory that it suggests can only be clarified by recent 
efforts, as discussed below, that are more attuned to a 
molecular view of the reacting system and the solvent. 

Static Solvent Effects. Before we describe modern in- 
vestigations of the influence of solvent dynamics on the 
validity of transition-state theory, we need to be concerned 
with static, or equilibrium, solvent effects. The static 
influence of the solvent on a rate constant can be under- 
stood via transition-state theory in its quasithermodynamic 
forma3 Activation energies, activation entropies, and ac- 
tivation volumes depend on the solvent. This can be quite 
important since, as stressed in section 1, rates are very 
sensitive to barrier heights. Older estimates of such effects 
based on approximate free-volume models of liquids sug- 
gest that atom-transfer rates can be accelerated in solution 
by a factor between 10 and 50, while unimolecular isom- 
erizations should not show much effect.242 The large effect 
in the former case is due to the “pressure” of the dense 
solvent favoring the smaller particle separations in the 
transition state compared to the separated reactants. In 
the language of solution structure theory,243 the solvent 
potential of mean force should replace the Born-Oppen- 
heimer potential in the activation energy. Applications 
of these ideas to actual reactionszu is complicated by the 
necessity to consider specific and competing effects of 
complexing, solvation, restriction of motion, and free- 
volume changes, as well as frequency of collisions as dis- 
cussed below. 

Chandler and Pratt245 have developed methods for in- 
cluding potential-of-mean-force effects in reaction equi- 
librium constants in liquids. Ladanyi and H y n e ~ ” ~  have 
extended this to atom-transfer transition states and cal- 
culate large solvent enhancements (up to a factor of 35) 
of transition-state-theory rate constants for solution re- 
actions, particularly when the transition state is tight. 
Calculated solvent effects on isomerization transition states 
are much ~ m a l l e r , * ~ ~ - ~ ~ ~  usually small fractions of a 
kcal/mol. The same is true of unimolecular 
dissociations-static solvent structural cage effects arising 
from the mean potential are rather small: solvent cage 
barriers and wells for I2 lie in this range.248 

~~~~~~ ~~~ ~ ~ ~ ~ 
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rounded by many-body baths are still rare. Just as the 
rapid advances in quantal collision computations are 
playing an increasingly important role in our under- 
standing of the validity and breakdown of transition-state 
theory in the gas phase, we expect full simulations to play 
an increasingly important role in solution. So far however 
the trends suggested by model treatments of the bath 
degrees of freedom seem to be supported by several of the 
full simulations. The model treatments of bath coordinates 
can be used in computer simulation of reactions (stochastic 
trajectory studies) to diminish or circumvent completely 
the need to simulate both the reaction system and all the 
surrounding molecules. Also they can be used to construct 
analytic theories which exhibit important trends. An im- 
portant consequence is that we are a t  the stage of dis- 
covering phenomena associated with the breakdown of 
transition-state theory in solution, but not yet a t  a point 
where precise rates or solvent effects on rates can be 
predicted with any confidence. 

Two basic types of models have been most widely used. 
One is an impulsive model, sometimes called the BGK 
model, in which velocity distributions are randomized to 
Maxwellians a t  every ~ o l l i s i o n . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~  The other is 
a frictional model in the spirit of the Langevin equation, 
the Fokker-Planck equation, and the original approach 
of K r a m e r ~ . ~ ~ , ~ ~ ~ - ~ ~ ~  An important generalization of this 
is the generalized Langevin-equation description in which 
the solvent response is described by a molecular-time-scale 
time-dependent friction c o e f f i ~ i e n t . ~ ~ , ~ ~ ~  It  has been 
shown78 that a generalized Langevin equation leads to a 
dependence of reaction rates on the short-time solvent 
friction experienced by the reacting system, and not on the 
friction constant f. This has important implications for 
the validity of transition-state theory, since the former is 
usually far less than the latter. Other stochastic models 
are also a ~ a i l a b l e . ~ ~ , ~ ~ ~  

Much recent attention has been given to isomerization 
reactions in solution. Collisional kinetic models have been 

Very large static solvent effects on activation parameters 
are expected for charge-transfer reactions, due to strong 
interactions, up to hundreds of kcal/mol in strength, be- 
tween charged species and polar solvents. The well-known 
Hughes-Ingold picture249 of solvent polarity effects on 
reaction rates is based on equilibrium transition-state- 
theory solvation ideas. Large-scale simulations of solvent 
structure in aqueous media are now and the 
modern equilibrium theory of polar solvents has seen 
considerable progress; 251 these techniques ought to be 
exploited to calculate transition-state-theory rate con- 
stants. So far, however, there have been very few calcu- 
lations that go beyond the unreliable continuum dielectric 
approach. Two examples are the work of W a r ~ h e l * ~ ~  on 
enzyme reactions and acid dissociation and the work of 
Calef and W01ynes~~~ on the barrier heights for electron 
transfers in polar solvents. In both cases solvent effects 
are considerable and are poorly described by continuum 
dielectric pictures. Actually the notion of equilibrium 
solvation of a reaction transition state is a tricky one to 
which we return below. 

Dynamic Solvent Effects. We now turn to the influence 
of solvent dynamics on the validity of transition-state 
theory. The most significant progress on understanding 
the role of solvent dynamics on the validity or breakdown 
of transition-state theory in solution has been achieved in 
studies based on time-correlation-function approaches for 
condensed-phase reactions. Chandler, Berne, and co- 
workers have developed and applied a formalism that is 
based on the reactive flux through a transition-state di- 
viding Northrup and Hynes2" have developed 
a different time-correlation-function approach, the sta- 
ble-states picture, which can be applied to a wide variety 
of reactions using one or two surfaces as a p p r ~ p r i a t e . ~ ~  
Somewhat different time-correlation-function formulas for 
reaction rates have been used by Skinner and Wolynes7' 
and Stillinger.255 There is thus a wide variety of ap- 
proaches available for various problems, and different 
choices can be selected as more suitable for different ap- 
plications and for investigations of the dynamical trans- 
mission coefficient. Most attention has been focused on 
models for the effect of bath particles, since full molecular 
dynamics  simulation^^"^^^^^^^^ of reactive systems sur- 
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applied a n a l y t i ~ a l l y ~ ~  and in stochastic trajectory stud- 
ies.%!= The trends are generally those of Kramers theory,79 
i.e., a nonmonotonic variation of the rate with solvent 
coupling, but with one important difference. In these 
models, energy activation and deactivation are less efficient 
than envisaged by Kramers. As a result, the transition- 
state-theory plateau is not reached with increasing friction 
before the rate starts to decrease due to solvent-induced 
recrossing. This shortfall is most extreme in cases where 
energy relaxation is slow and collisional momentum 
transfer is efficient. Thus, a calculation by Skinner and 
W01ynes~~ for a light reacting system in a solvent of 
massive particles (Lorentz limit), where these conditions 
apply, yields a very small maximum dynamical transition 
coefficient of order 0.1. In contrast a BGK impulsive 
model gives a maximum dynamical transmission coefficient 
of 0.6, and a Kramers Langevin-equation model gives 
0.9-1.77~zs0 The Langevin-equation approach becomes 
more valid for heavy solutes in light solvents. A more 
specific example is the butane isomerization which has 
been studied extensively by Chandler, Berne, and co- 
worke r~ . '~~ '~  They find by full molecular dynamics simu- 
lation a dynamic transmission coefficient of about 0.4 at  
liquid-state densities. This is in reasonable agreement with 
a Kramers estimate for this system. However the short- 
time dynamics predicted by a stochastic simulation cor- 
responding to Kramers theory does not agree well with the 
full molecular dynamics simulation. The full molecular 
dynamics simulation corresponds most closely to the low- 
friction limit of a BGK stochastic treatment.z4,z5 

How often the rate as a function of friction actually 
plateaus noticeably below transition-state theory in real 
isomerizations is as yet unclear. But it is clear that the 
solution-phase analogue of the unimolecular falloff regime 
where the rate increases with solvent coupling definitely 
occurs in solution isomerization. Hasha, Eguchi, and Jo- 
nasZ8l find experimentally that the conformational inver- 
sion of cyclohexane is accelerated with increasing solvent 
pressure to an extent greater than that estimated from 
thermodynamic activation effects, a result in accord with 
the prior theoretical results for the low-friction BGK re- 
gime.24125,77 The dependence of the rate constant on col- 
lision frequency seems to be well described by a BGK 
model for a potential with narrow wells and a wide bar- 
rier.z8z For another example, Troe and 
have found that the rate of iodine recombination in com- 
pressed rare gases remains third order up to very high 
pressures, greater than 100 atm. The switchover from the 
third-order energy-transfer-limited regime to the second- 
order diffusion-influenced regime occurs at  densities of the 
order of liquid densities. These examples show that the 
low-friction, activation-controlled regime may sometimes 
apply even at  liquid-phase collision frequencies so that the 
transition-state theory overestimates the rate constant 
because of the equilibrium assumption. 

It has been e m p h a s i ~ e d ~ ~ ~ , ~ ~ ~  that such energy-trans- 
fer-limited behavior can be traced to inefficient vibrational 
energy transfer between the reacting system and the sol- 
vent. What counts for the energy transfer is the spectrum 
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of solvent forces at the usually high vibrational frequencies 
of the isomerizing molecule.2&4-28s At such frequencies, 
the solvent forces are much less effective in inducing vi- 
brational energy transfer than would be estimated from 
simple collisional or frictional models. This suggests that 
energy-transfer-limited isomerizations might occur often 
in solution, particularly in fast, low-barrier reactions. It 
also appears likely that solvent properties such as internal 
molecular structure will often be more important than, e.g., 
viscosity. 

There has also been a large body of work on isomeri- 
zations in the regime where the rate constant decreases 
with friction. Experimental studies of dibenzyl ether,z89 
diphenylbutadiene,2w the organic dye DODCI,z90 and 
stilbene2g1 show that transition-state theory breaks down 
by the rate decreasing with measures of solvent coupling 
such as viscosity. But it is found by Goldenberg et al.z89 
that Kramers theory does not explain the viscosity de- 
pendence of the apparent activation energy and by Flem- 
ing and Hochstrasser and co-workersz90~z91 that the rate 
does not vary simply as the inverse friction of viscosity at  
high viscosity, as in Kramers theory. Bagchi and OxtobyBz 
have applied the Grote-Hynes generalized Langevin- 
equation approach7s to the DODCI experimentszg0 and 
shown that the short-time friction coefficient concept ex- 
plains this behavior. Clearly the short-time nonhydrody- 
namic behavior of the solvent is important. 

A key distinction between isomerizations and atom- 
transfer reactions is that there are no or very small reactant 
and product wells on either side of the barrier in a typical 
atom-transfer case. Because of this, weak coupling to 
solvent will often be less important for bimolecular than 
for unimolecular reactions. With respect to strong-coupling 
solvent effects on atom-transfer reactions, it has been 
emphasized by Grote and HynesZg3 that, for the case of 
sharp barriers, the relevant short-time solvent friction is 
rather small, and transition-state theory will often be a 
good approximation. It has been shownzg4 in a model 
calculation for sharp-barrier atom transfers that the rate 
is essentially impervious to increasing the long-time-scale 
hydrodynamic friction. This may explain the experimental 
results of Rossman and no ye^,^^ who found that the rate 
of radioactive iodine exchange with vinyl iodide changed 
little from n-hexane solvent to hexachlorobutadiene 
solvent-a 100-fold increase in solvent viscosity. Again, 
the short-time-scale behavior is crucial in assessing the 
validity of transition-state theory. 

Weak-bath-coupling effects may be important for some 
bimolecular reactions in solution. For example, Allen296 
has found in a stochastic simulation of a low-barrier 
atom-transfer reaction that the rate constant increases with 
friction. Internal-state depletion effects such as may be 
observed in gas-phase diatomic dissociation297~z98 and 
atom-transfer  reaction^^^^,^^^ may also sometimes be im- 
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portant in solution. 
Charge-transfer reactions, such as SN2 displacements, 

proton transfer, and ion-pair interconversions, present an 
important question for transition-state theory, which as- 
sumes in the standard approach that the transition state 
has an equilibrium solvation, as discussed above, and that 
the solvent plays no role in the reaction coordinate. But 
it is certainly not clear that the required reorientational 
relaxation of solvent dipoles is always sufficiently fast for 
equilibrium solvation to apply. Stated another way, if 
solvent reorientation-dielectric relaxation-plays a role 
in the reaction, then we should think in terms of 
“nonequilibrium” s ~ l v a t i o n . ~ ~  The rate will depend on 
solvent reorientation rates, and the standard transition- 
state-theory description will break down. This question 
has been investigated by van der Zwan and Hynes301 in a 
model study of a charge-transfer reaction. The dynamic 
polar solvent influence is accounted for by a generalized 
Langevin-equation description. For broad-barrier reactions 
and strongly polar and slowly relaxing solvents, solvent 
reorientation becomes rate limiting; i.e., nonequilibrium 
solvation is extreme: transition-state theory fails badly, 
and the rate is inversely proportional to the solvent re- 
orientation time. In this limit, rates may show important 
H20/D20 solvent isotope effects, reflecting isotope effects 
on solvent dielectric relaxation times.301p302 In the opposite 
regime of sharp barriers and weakly polar solvents, the rate 
is fairly well described by transition-state theory; the 
chemical forces driving the reaction are strong enough to 
dominate the resisting solvent dipoles. Even when the 
solvent is slowly relaxing, the rate does not track the 
solvent dielectric relaxation time. I t  has also been shown 
that the solvent can be taken into account by including 
an additional coordinate besides the coordinate associated 
directly with the reacting system.303 This leads to a re- 
action coordinate that depends on both the reacting system 
and the solvent. Including one or more degrees of freedom 
of the solvent as a part of the reacting system is a new 
approach to including dynamic solvent effects in gener- 
alized transition-state theory. It may be that some of the 
ideas of variational transition-state theory of section 3 can 
be used here to find the best dividing surface for calcu- 
lating a transition-state-theory rate. 

Related ideas arise in the theory of electron-transfer 
reactions in solution. The Marcus theory304 of electron 
transfer in the adiabatic limit is a transition-state-theory 
result, and the dynamics of solvent reorientation play no 
role. Several ~ ~ r k e r ~ ~ ~ ~ - ~ ~ ~  have recently stressed that 
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transition-state theory may break down if there is slow 
solvent relaxation. 

Although the emphasis so far on transition-state divid- 
ing-surface recrossings in solution-phase work has been on 
those due to solvent-induced motion, the same kinds of 
intrinsic dynamic effects that cause transition-state di- 
viding-surface recrossings in gas-phase reactions must also 
be significant in many cases. Simultaneous inclusion of 
both kinds of effects could be achieved by applying sto- 
chastic trajectory methods to sufficiently complicated 
systems. This would be important to determine whether 
a breakdown of transition-state theory in any given case 
is due to intrinsic dynamic effects or to the solvent. 

Interesting examples of how intrinsic and diffusional 
effects on the detailed dynamics may have mutual effects 
are provided in two recent s t ~ d i e s . ~ ~ ~ ~ ~ ~ ~  For example, 
Northrup and M c C a m m ~ n ~ ~ *  found that diffusive effects 
may lead to corner cutting similar to the negative internal 
centrifugal effect that may occur because of intrinsic dy- 
namics in the gas phase. 

The influence of the solvent on quantum tunneling has 
also been studied at the model level. The key result of the 
recent work of Sethna,310 W~lynes,~l l  and Harris and 
Stodolsky312 is that dynamic solvent interaction reduces 
tunneling. In contrast, Korst and Nikitin298J13 find that 
the effect of friction may be in either direction, and Cribb 
et aL314 find under certain circumstances an enhanced rate 
of tunneling for a model including stochastic interaction 
with the environment. In still other work there is a con- 
troversy about the role of solvent reorganization in pro- 
ton-transfer  reaction^.^^^^^^ One possible mechanism by 
which solvent interactions may increase the probability for 
tunneling is by converting a nonresonant situation into a 
resonant one. Delineation of the dominant effects of 
solvent on tunneling probabilities in various circumstances 
will certainly prove important for the interpretation of 
kinetic isotope effects in solution reactions. The effect of 
quantitation of the bound degrees of freedom on the 
considerations of this section also requires study. 

Many of the concepts and methods discussed in this 
section can also be applied to transport processes, solid- 
phase reactions, and processes at surfaces, but these studies 
are beyond the scope of the present a r t i ~ l e . ~ l ~ - ~ ~ ~  
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6. Concluding Remarks 
It  is clear that our understanding of transition-state 

theory, when it is valid, and when it is not, has been ad- 
vanced significantly in the last 5 years. I t  is encouraging 
that this research strengthens our sense that transition- 
state theory provides a useful conceptual framework for 
discussing chemical reactions under almost all conditions. 
Further research on corrections for nonequilibrium effects 
and on incorporation of more detailed dynamics, as well 
as on further delineating the range of validity of the un- 
corrected original theory, is anticipated optimistically. 
This work should make transition-state theory more useful 
for absolute rate calculations and also for interpretative 
purposes such as inferring mechanisms from kinetic isotope 
effects, correlating activation parameters with structural 
information, understanding pressure effects and solvent 
effects, and so forth. Furthermore, as generalized tran- 
sition-state theories incorporate more and more of the 
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detailed dynamics, the distinction between statistical 
theories and collision theories begins to blur. Thus, it 
seems that, whatever the modern rate theories of the future 
may look like, they will probably always retain something 
of the elements of transition-state theory. 
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