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Abstract
Regression techniques are versatile in their application to medical research because they can measure
associations, predict outcomes, and control for confounding variable effects. As one such technique,
logistic regression is an efficient and powerful way to analyze the effect of a group of independent vari-
ables on a binary outcome by quantifying each independent variable’s unique contribution. Using com-
ponents of linear regression reflected in the logit scale, logistic regression iteratively identifies the
strongest linear combination of variables with the greatest probability of detecting the observed
outcome. Important considerations when conducting logistic regression include selecting independent
variables, ensuring that relevant assumptions are met, and choosing an appropriate model building
strategy. For independent variable selection, one should be guided by such factors as accepted theory,
previous empirical investigations, clinical considerations, and univariate statistical analyses, with
acknowledgement of potential confounding variables that should be accounted for. Basic assumptions
that must be met for logistic regression include independence of errors, linearity in the logit for continu-
ous variables, absence of multicollinearity, and lack of strongly influential outliers. Additionally, there
should be an adequate number of events per independent variable to avoid an overfit model, with com-
monly recommended minimum ‘‘rules of thumb’’ ranging from 10 to 20 events per covariate. Regarding
model building strategies, the three general types are direct ⁄ standard, sequential ⁄ hierarchical, and step-
wise ⁄ statistical, with each having a different emphasis and purpose. Before reaching definitive conclu-
sions from the results of any of these methods, one should formally quantify the model’s internal validity
(i.e., replicability within the same data set) and external validity (i.e., generalizability beyond the current
sample). The resulting logistic regression model’s overall fit to the sample data is assessed using various
goodness-of-fit measures, with better fit characterized by a smaller difference between observed and
model-predicted values. Use of diagnostic statistics is also recommended to further assess the adequacy
of the model. Finally, results for independent variables are typically reported as odds ratios (ORs) with
95% confidence intervals (CIs).
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R egression analysis is a valuable research method
because of its versatile application to different
study contexts. For instance, one may wish to

examine associations between an outcome and several
independent variables (also commonly referred to as
covariates, predictors, and explanatory variables),1 or
one might want to determine how well an outcome is
predicted from a set of independent variables.1,2 Addi-
tionally, one may be interested in controlling for the
effect of specific independent variables, particularly
those that act as confounders (i.e., their relationship to
both the outcome and another independent variable

obscures the relationship between that independent
variable and the outcome).1,3 This latter application is
especially useful in settings that do not allow for random
assignment to treatment groups, such as observational
research. With random assignment, one can generally
exercise sufficient control over confounding variables
because randomized groups tend to have equal or bal-
anced distribution of confounders.4 In contrast, observa-
tional studies do not involve any experimental
manipulation, so confounding variables can become a
real problem if left unaccounted for—which is why
regression analysis is very appealing in such settings.

LOGISTIC REGRESSION

There are different types of regression depending on
one’s research objectives and variable format, with linear
regression being one of the most frequently used. Linear
regression analyzes continuous outcomes (i.e., those that
can be meaningfully added, subtracted, multiplied, and
divided, like weight) and assumes that the relationship
between the outcome and independent variables follows
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a straight line (e.g., as calories consumed increases,
weight gain increases). To assess the effect of a single
independent variable on a continuous outcome (e.g., the
contribution of calories consumed to weight gain), one
would conduct simple linear regression. However, it is
usually more desirable to determine the influence of mul-
tiple factors at the same time (e.g., the contribution of
number of calories consumed, days exercised per week,
and age to weight gain), since one can then see the
unique contributions of each variable after controlling
for the effects of the others. In this case, multivariate
linear regression is the proper choice.

The basic equation for linear regression with multiple
independent variables is

Ŷ ¼ b0 þ b1X1 þ b2X2 þ . . . biXi:

The components of this equation are as follows: 1) Ŷ
is the estimated continuous outcome; 2) b0 + b1X1 +
b2X2 + …biXi is the linear regression equation for the
independent variables in the model, where

• b0 is the intercept, or the point at which the regres-
sion line touches the vertical Y axis. This is consid-
ered a constant value.

• b1X1 + b2X2 + …biXi is the value of each indepen-
dent variable (Xi) weighted by its respective beta
coefficient (b). Beta coefficients give the slope of
the regression line or how much the outcome
increases for each 1-unit increase in the value of
the independent variable. The larger the beta coef-
ficient, the more strongly its corresponding inde-
pendent variable contributes to the outcome.

Despite its common usage, linear regression is not
appropriate for some types of medical outcomes. For a
binary event, such as mortality, logistic regression is
the usual method of choice. Similar to linear regression,
logistic regression may include only one or multiple
independent variables, although examining multiple
variables is generally more informative because it
reveals the unique contribution of each variable after
adjusting for the others. For instance, when evaluating
30-day mortality rates for septic patients admitted
through the emergency department (ED), are patient
characteristics (e.g., age, comorbidities) more important
than provider practices, treatment protocols, or hospi-
tal variables such as ED sepsis case volume? If so, how
much more do patient characteristics contribute com-
pared with other variables? If not, which variables are
better associated with sepsis-related mortality? Using
this example, one can easily see the importance of
assessing multiple independent variables simulta-
neously, rather than looking at each variable in isola-
tion, since a condition such as sepsis obviously involves
many different factors.

Detecting these sorts of independent variable contri-
butions in logistic regression begins with the following
equation:

Probability of outcomeðŶiÞ ¼
eb0þb1X1þb2X2þ...biXi

1þ eb0þb1X1þb2X2þ...biXi

Readers will notice that this equation contains similar
configurations for independent variables (X) and

accompanying beta coefficients (b) found in linear
regression. Indeed, a major advantage of logistic
regression is that it retains many features of linear
regression in its analysis of binary outcomes. However,
there are some important differences between the two
equations:

1. In logistic regression, Ŷi represents the estimated
probability of being in one binary outcome cate-
gory (i) versus the other, rather than representing
an estimated continuous outcome.

2. In logistic regression, eb0þb1X1þb2X2þ...biXi represents
the linear regression equation for independent vari-
ables expressed in the logit scale, rather than in the
original linear format.

The reason for this logit scale transformation lies in
the basic parameters of the logistic regression model.
Specifically, a binary outcome expressed as a probabil-
ity must fall between 0 and 1. In contrast, the indepen-
dent variables in the linear regression equation could
potentially take on any number. Without rectifying this
discrepancy, the predicted values from the regression
model could fall outside the 0–1 range.1 The logit scale
solves this problem by mathematically transforming
the original linear regression equation to yield the logit
or natural log of the odds of being in one outcome
category (Ŷ) versus the other category (1 – Ŷ):

InðŶ=1� Ŷ Þ ¼ b0 þ b1X1 þ b2X2 þ . . . biXi:

Within the context of these equations, logistic regres-
sion then identifies, through iterative cycles, the strong-
est linear combination of independent variables that
increases the likelihood of detecting the observed
outcome—a process known as maximum likelihood
estimation.2,3

To ensure that logistic regression produces an accu-
rate model, some critical factors that must be taken into
account include independent variable selection and
choice of model building strategy.

INDEPENDENT VARIABLES

1. Selection Criteria. Carefully selecting one’s indepen-
dent variables is an essential step. While logistic regres-
sion is quite flexible in that it accommodates different
variable types, including continuous (e.g., age), ordinal
(e.g., visual analog pain scales), and categorical (e.g.,
race), one must always justify variable selection using
well-established theory, past research, clinical observa-
tions, preliminary statistical analysis, or some sensible
combination of these different options. As an example,
one could start with a large number of potential inde-
pendent variables based on previous studies as well as
one’s own clinical experience in the ED and then
analyze differences between groups using univariate
statistics at a more relaxed Type I error rate (e.g.,
p £ 0.25) to determine which variables belong in the
logistic regression model. Incorporating a less stringent
p-value at this stage guards against exclusion of poten-
tially important variables. Alternatively, one could
choose to include all relevant independent variables
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regardless of their univariate results, since there may
be clinically important variables that warrant inclusion
despite their statistical performance. However, one
must always keep in mind that too many independent
variables in the model may lead to a mathematically
unstable outcome, with decreased generalizability
beyond the current study sample.2,3

A key part of the variable selection process is
acknowledging and accounting for the role of potential
confounders. As described previously, confounding
variables are those whose relationship to both the out-
come and another independent variable obscures the
true association between that independent variable and
the outcome.1,3 For instance, socioeconomic status
(SES) could confound the relationship between race
and annual ED visits because of its association with
both race (i.e., some racial groups tend to be more
heavily represented in certain SES categories) and ED
visits (i.e., poorer patients may use the ED more fre-
quently for basic health care). However, since these
sorts of causal associations may not be readily appar-
ent, one should consider formally assessing them dur-
ing the variable selection process to ensure that they
are being appropriately characterized and subsequently
modeled. Path analysis diagrams can be particularly
helpful in this regard.1

No matter how one goes about selecting indepen-
dent variables, basic assumptions for conducting logis-
tic regression must always be met. One assumption is
independence of errors, whereby all sample group out-
comes are separate from each other (i.e., there are no
duplicate responses). If one’s data include repeated
measures or other correlated outcomes, errors will be
similarly correlated, and the assumption is violated.2

Other methods exist for analyzing correlated data
using logistic regression techniques, but they are
beyond the scope of this paper; for more information,
readers may refer to Stokes et al.,5 Newgard et al.,6,7

and Allison.8

A second assumption is linearity in the logit for any
continuous independent variables (e.g., age), meaning
there should be a linear relationship between these vari-
ables and their respective logit-transformed outcomes.
There are different ways to check this assumption, with
a typical method being to create a statistical term rep-
resenting the interaction between each continuous
independent variable and its natural logarithm. If any
of these terms is statistically significant, the assumption
is violated.2,3 Solutions include dummy coding the inde-
pendent variable,3 or statistically transforming it into a
different scale.2,3

A third assumption is the absence of multicollineari-
ty, or redundancy, among independent variables (e.g.,
since weight and body mass index [BMI] are correlated,
both should not be included in the same model).
A logistic regression model with highly correlated inde-
pendent variables will usually result in large standard
errors for the estimated beta coefficients (or slopes) of
these variables.2,3 The usual solution is to eliminate one
or more redundant variables.2

A final assumption is lack of strongly influential
outliers, whereby a sample member’s predicted
outcome may be vastly different from his or her actual

outcome. If there are too many such outliers, the mod-
el’s overall accuracy could be compromised. Detection
of outliers occurs by looking at residuals (i.e., the differ-
ence between predicted and actual outcomes) with
accompanying diagnostic statistics and graphs.2,3 One
would then compare the overall model fit and estimated
beta coefficients with versus without the outlier cases.
Depending on the magnitude of change, one could
either retain outliers whose effect is not dramatic3 or
eliminate outliers with particularly strong influence on
the model.2,3

In addition to checking that the previous assump-
tions are met, one may want to consider including
interaction terms that combine two or more indepen-
dent variables. For instance, it is possible that the
interaction of patients’ age and race is more important
to explaining an outcome than either variable by itself3

(e.g., the association between age and trauma-related
mortality is different for Asians, whites, and Hispanics).
However, since interaction terms can needlessly com-
plicate the logistic regression model without providing
much, if any, benefit,2,3 one should think carefully
about including them, getting guidance from statistical
diagnostics (e.g., seeing how much the estimated beta
coefficients, or slopes, change for one independent
variable when the other is added to the model), and
assessing whether the interactions make sense
clinically.3

2. Number of Variables to Include. As part of select-
ing which independent variables to include, one must
also decide on an appropriate number. The challenge is
to select the smallest number of independent variables
that best explains the outcome while being mindful of
sample size constraints.2,3 For instance, if one selects
50 people for the study sample and includes 50 inde-
pendent variables in the logistic regression analysis,
the result is an overfit (and therefore unstable) model.
Generally speaking, an overfit model has estimated
beta coefficients for independent variables that are
much larger than they should be, as well as higher-
than-expected standard errors.3 This sort of scenario
causes model instability because logistic regression
requires that there be more outcomes than indepen-
dent variables to iteratively cycle through different
solutions in search of the best model fit for the
data through the process of maximum likelihood
estimation.2,3

What, then, is the correct number of outcomes for
avoiding an overfit model? While there is no universally
accepted standard, there are some common ‘‘rules of
thumb’’ based in part on simulation studies. One such
rule states that for every independent variable, there
should be no fewer than 10 outcomes for each binary
category (e.g., alive ⁄ deceased), with the least common
outcome determining the maximum number of inde-
pendent variables.9,10 For example, in a sepsis mortality
study, assume that 30 patients died and 50 patients
lived. The logistic regression model could reasonably
accommodate, at most, three independent variables
(since 30 is the smallest outcome). Some statisticians
recommend an even more stringent ‘‘rule of thumb’’ of
20 outcomes per independent variable, since a higher
ratio tends to improve model validity.11 However, the
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issue has not been definitively settled, and some would
argue that fewer than 10 outcomes per independent
variable may be appropriate in certain research
contexts.3

Model Building Strategies
In addition to careful selection of independent vari-
ables, one must choose the right type of logistic regres-
sion model for the study. Indeed, selecting a model
building strategy is closely linked to choosing indepen-
dent variables, so these two components should be con-
sidered simultaneously when planning a logistic
regression analysis.

There are three model building approaches that apply
to regression techniques in general, each with a differ-
ent emphasis and purpose: direct (i.e., full, standard, or
simultaneous), sequential (i.e., hierarchical), and step-
wise (i.e., statistical). These model building strategies
are not necessarily interchangeable, since they may
produce different model fit statistics and independent
variable point estimates for the same data. Therefore,
identifying the appropriate model for one’s research
objectives is extremely important.

The direct approach is a default of sorts, since it
enters all independent variables into the model at the
same time and makes no assumptions about the order
or relative worth of those variables.1,2 For example, in
analyzing 30-day mortality in septic patients admitted
through the ED, if one identifies 10 different indepen-
dent variables for inclusion, all 10 variables would be
placed into the model simultaneously and have equal
importance at the start of the regression analysis.

The direct approach is best if there are no a priori
hypotheses about which variables have greater impor-
tance than others. Otherwise, one should consider
using sequential ⁄ hierarchical regression, whereby vari-
ables are added sequentially to see if they further
improve the model based on their predetermined order
of priority.1,2 As a hypothetical example, one might
start by entering age into the model, assuming that it is
the strongest predictor of 30-day mortality in septic
patients admitted through the ED, followed by age plus
comorbidities, then by age, comorbidities, and ED sep-
sis case volume, and so on. While the sequential ⁄ hierar-
chical approach is particularly useful in clarifying
patterns of causal relationships between independent
variables and outcomes, it can become quite compli-
cated as the causal patterns increase in complexity,
making it more difficult to draw definitive conclusions
about the data in some cases.1

In contrast to the previous two methods, stepwise
regression identifies independent variables to keep or
remove from the model based on predefined statistical
criteria that are influenced by the unique characteristics
of the sample being analyzed.2,3 There are different
types of stepwise techniques, including forward selec-
tion (e.g., age, comorbidities, ED sepsis case volume,
and other independent variables are entered one at a
time into the model for 30-day sepsis mortality until no
additional variables contribute significantly to the out-
come) and backward elimination (e.g., age, comorbidi-
ties, ED sepsis case volume, and other variables are
entered into the model simultaneously, then those

with a nonsignificant contribution to the outcome
are dropped one at a time until only the statistically
significant variables remain).1,3 Another model building
strategy that is conceptually similar to stepwise regres-
sion is called best subsets selection, whereby separate
models with different numbers of independent variables
(e.g., age alone, age plus comorbidities, comorbidities
plus ED sepsis case volume) are compared to determine
the strongest fit based on preset guidelines.3

As a note of caution, although stepwise regression is
frequently used in clinical research, its use is somewhat
controversial because it relies on automated variable
selection that tends to take advantage of random
chance factors in a given sample.2 Additionally, step-
wise regression may produce models that do not seem
entirely reasonable from a biologic perspective.3 Given
these concerns, some would argue that stepwise
regression is best reserved for preliminary screening or
hypothesis testing only,2 such as with novel outcomes
and limited understanding of independent variable con-
tributions.3 However, others point out that stepwise
methods per se are not the problem (and may actually
be quite effective in certain contexts); instead, the real
issue is careless interpretation of results without fully
appreciating both the pros and cons of this approach.
Therefore, if one does choose to create a stepwise
model, it is important to subsequently validate the
results before drawing any conclusions. However, it
should be noted that all model types need formal vali-
dation before they are considered definitive for future
use, since models are naturally expected to perform
more strongly with the original sample than with
subsequent ones.3

Internal and External Model Validation
When validating logistic regression models, there are
numerous methods from which to choose, each of
which may be more or less appropriate depending on
study parameters such as sample size. To establish
internal validity, or confirmation of model results within
the same data set, common methods include: 1) the
holdout method, or splitting the sample into two sepa-
rate subgroups prior to model building, with the ‘‘train-
ing’’ group used to create the logistic regression model
and the ‘‘test’’ group used to validate it;12,13 2) k-fold
cross-validation or splitting the sample into k-number
of separate and equally sized subgroups (or folds) for
model building and validation purposes; 3) ‘‘leave-
one-out’’ cross-validation, which is a variant of the
k-fold approach in which the number of folds equals
the number of subjects in the sample;13 and 4) different
forms of bootstrapping (i.e., getting repeated sub-
samples with replacement from the entire sample
group).13,14

In addition to internally validating the model, one
should attempt to externally validate it in a new study
setting as further proof of both its statistical viability
and clinical usefulness.12,15 If the results of either inter-
nal or external validation raise any red flags (e.g., the
model poorly fits a certain subgroup of patients), it is
advisable to make adjustments to the model as needed,
or to explicitly define any restrictions for the model’s
future use.15
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Interpreting Model Output
1. Assessing Overall Model Fit. After the logistic regres-
sion model has been created, one determines how well
it fits the sample data as a whole. Two of the most com-
mon methods for assessing model fit are the Pearson
chi-square and residual deviance statistics. Both
measure the difference between observed and model-
predicted outcomes, while lack of good model fit is
indicated by higher test values signifying a larger
difference. However, the accuracy of these measures is
contingent upon having an adequate number of
observations for the different patterns of independent
variables.3,16,17

As another frequently used measure of model fit, the
Hosmer-Lemeshow goodness-of-fit tests divide sample
subjects into equal groups (often of 10) based on their
estimated probability of the outcome, with the lowest
decile comprised of those who are least likely to experi-
ence the outcome. If the model has good fit, subjects
who experienced the main outcome (e.g., 30-day sepsis
mortality) would mostly fall into the higher risk deciles.
A poorly fit model would result in subjects being evenly
spread among the risk deciles for both binary out-
comes.2,3 Advantages of the Hosmer-Lemeshow tests
are their straightforward application and ease of
interpretation.3,16 Limitations include the tests’ depen-
dence on how group cutoff points10,11 and computer
algorithms are defined,17 as well as reduced power in
identifying poorly fitting models under certain circum-
stances.3,16 Other less commonly used alternatives for
measuring model fit are described by Hosmer et al.16

and Kuss.17

While model fit indices are essential components of
logistic regression, one should also rely on diagnostic
statistics before reaching any conclusions about the
adequacy of the final model. These diagnostic statistics
help determine whether the overall model fit remains
intact across all possible configurations of the indepen-
dent variables.3 Although a detailed overview of differ-
ent diagnostic methods is beyond the scope of this
paper, one may refer to Hosmer and Lemeshow3 for
more information.

As a way to expand on the results of model fit and
diagnostic statistics, one may also wish to evaluate the
model’s ability to discriminate between groups. Com-
mon ways to do this include 1) classification tables,
whereby group membership in one of the binary out-
come categories is predicted using estimated probabili-
ties and predefined cut-points,3 and 2) area under the
receiver operating characteristic curve (AUROC), where
a value of 0.5 means the model is no better than
random chance at discriminating between subjects who
have the outcome versus those who do not, and 1.0 indi-
cates that the model perfectly discriminates between
subjects. The AUROC is often used when one wants to
consider different cut points for classification to maxi-
mize both sensitivity and specificity.3,18

2. Interpreting Individual Variable Results. Within the
context of the logistic regression model, independent
variables are usually presented as odds ratios (ORs).3

ORs reveal the strength of the independent variable’s
contribution to the outcome and are defined as the
odds of the outcome occurring (Ŷ) versus not occurring

(1 – Ŷ) for each independent variable. The relationship
between the OR and the independent variable’s esti-
mated beta coefficient is expressed as OR = ebi. Based
on this formula, a 1-unit change in the independent var-
iable multiples the odds of the outcome by the amount
contained in ebi.2,3

For a logistic regression model with only one inde-
pendent variable, the OR is considered ‘‘unadjusted’’
because there are no other variables whose influence
must be adjusted for or subtracted out. For illustrative
purposes, assume that the outcome is in-hospital
mortality following traumatic injury, and the single
independent variable is patient age, classified into
greater than or less than 65 years, with the latter cate-
gory being the reference group (or the group to whom
all other independent variable categories are com-
pared). An OR of 1.5 means that for older patients, the
odds of dying are 1.5 times higher than the odds for
younger patients (the reference group). Expressed
another way, there is a (1.5–1.0) · 100% = 50% increase
in the odds of dying in the hospital following traumatic
injury for older versus younger patients.

In contrast, if the logistic regression model includes
multiple independent variables, the ORs are now
‘‘adjusted’’ because they represent the unique contribu-
tion of the independent variable after adjusting for
(or subtracting out) the effects of the other variables in
the model. For instance, if the in-hospital mortality sce-
nario following trauma includes age category plus sex,
BMI, and comorbidities, the adjusted OR for age repre-
sents its unique contribution to in-hospital mortality if
the other three variables are held at some constant
value. As a result, adjusted ORs are often lower than
their unadjusted counterparts.

Interpreting ORs is also contingent on whether the
independent variable is continuous or categorical. For
continuous variables, one must first identify a meaning-
ful unit of measurement to best express the degree of
change in the outcome associated with that indepen-
dent variable.3 Using the above in-hospital mortality
illustration with age maintained in its original continu-
ous scale and 10-year increments selected as the unit of
change, one would interpret the results as follows: ‘‘For
every 10 years a patient ages, the odds of in-hospital
mortality following traumatic injury increase 1.5 times,
or by 50%.’’

Finally, 95% confidence intervals (CIs) are routinely
reported with ORs as a measure of precision (i.e.,
whether the findings are likely to hold true in the larger
unmeasured population). If the CI crosses 1.00, there
may not be a significant difference in that population.
For instance, if the OR of 1.5 for age has a 95% CI of
0.85 to 2.3, one cannot state definitively that age is a
significant contributor to in-hospital mortality following
traumatic injury.

CONCLUSIONS

Logistic regression is an efficient and powerful way to
assess independent variable contributions to a binary
outcome, but its accuracy depends in large part on
careful variable selection with satisfaction of basic
assumptions, as well as appropriate choice of model

ACADEMIC EMERGENCY MEDICINE • October 2011, Vol. 18, No. 10 • www.aemj.org 1103



building strategy and validation of results. Also, it goes
without saying that a well-constructed logistic regres-
sion model is not the sole determinant of high quality
research—developing a clinically relevant and objec-
tively measurable hypothesis, implementing an appro-
priate study design and statistical analysis plan, and
accurately reporting both outcomes and conclusions
are all important considerations. Therefore, readers
who pay close attention to the parameters of their
logistic regression analysis within the context of a
well-designed and soundly executed study will make
the most meaningful contribution to evidence-based
emergency medicine. (For simple examples of syntax
codes for conducting direct ⁄ standard logistic regres-
sion in SAS and SPSS, refer to the Appendix.)
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APPENDIX

Sample Syntax Codes for Direct (Standard) Logistic
Regression for Binary Outcomes
I) SAS

proc logistic data = samplefile descending;
⁄ * the ‘‘descending’’ statement ensures that the proba-

bility of the outcome coded ‘‘1’’ will be modeled; other-
wise, the code will model the probability of the smaller
outcome value coded ‘‘0’’ * ⁄

class Gender Age ISS logHLOS ⁄ param = ref;
⁄ * the ‘‘class’’ statement is used for categorical covari-

ates * ⁄
⁄ * the ‘‘param = ref’’ statement sets up reference cate-

gories similar to dummy coding * ⁄
model Mortality = Gender Age ISS logHLOS ⁄ lackfit

ctable waldrl;
⁄ * the ‘‘lackfit’’ option requests the Hosmer-Lemeshow

goodness-of-fit statistic * ⁄
⁄ * the ‘‘ctable’’ option shows the model’s ability to

correctly discriminate between outcomes coded ‘‘1’’ and
‘‘0’’ * ⁄

⁄ * the ‘‘waldrl’’ option requests 95% confidence inter-
vals for covariates’ odds ratios * ⁄

title ‘DIRECT LOGISTIC REGRESSION SAMPLE
CODE’;

output out = probs predicted = phat;
⁄ * the ‘‘output’’ and ‘‘predicted’’ statements allow SAS

to create an output dataset with predicted probabilities
for each observation * ⁄

run;

II) SPSS
LOGISTIC REGRESSION Mortality
⁄ METHOD = ENTER Gender Age ISS logHLOS
⁄ PRINT = GOODFIT CI(95)
⁄ CRITERIA = PIN(.05) POUT(.10) ITERATE(20) CUT(.5).
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