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CHAPTER 1

Introduction to the
Logistic Regression Model

1.1 INTRODUCTION

Regression methods have become an integral component of any data
analysis concerned with describing the relationship between a response
variable and one or more explanatory variables. It is often the case that
the outcome variable is discrete, taking on two or more possible values.
Over the last decade the logistic regression model has become, in many
fields, the standard method of analysis in this situation.

Before beginning a study of logistic regression it is important to
understand that the goal of an analysis using this method is the same as
that of any model-building technique used in statistics: to find the best
fitting and most parsimonious, yet biologically reasonable model to de-
scribe the relationship between an outcome (dependent or response)
variable and a set of independent (predictor or explanatory) variables.
These independent variables are often called covariates. The most
common example of modeling, and one assumed to be familiar to the
readers of this text, is the usual linear regression model where the out-
come variable is assumed to be continuous.

What distinguishes a logistic regression model from the linear re-
gression model is that the outcome variable in logistic regression is bi-
nary or dichotomous. This difference between logistic and linear re-
gression is reflected both in the choice of a parametric model and in the
assumptions. Once this difference is accounted for, the methods em-
ployed in an analysis using logistic regression follow the same general
principles used in linear regression. Thus, the techniques used in linear
regression analysis will motivate our approach to logistic regression. We
illustrate both the similarities and differences between logistic regression
and linear regression with an example.
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Example

Table 1.1 lists age in years (AGE), and presence or absence of evidence
of significant coronary heart disease (CHD) for 100 subjects selected to
participate in a study. The table also contains an identifier variable (ID)
and an age group variable (AGRP). The outcome variable is CHD,
which is coded with a value of zero to indicate CHD is absent, or 1 to
indicate that it is present in the individual.

It is of interest to explore the relationship between age and the
presence or absence of CHD in this study population. Had our outcome
variable been continuous rather than binary, we probably would begin
by forming a scatterplot of the outcome versus the independent vari-
able. We would use this scatterplot to provide an impression of the na-
ture and strength of any relationship between the outcome and the in-
dependent variable. A scatterplot of the data in Table 1.1 is given in
Figure 1.1.

In this scatterplot all points fall on one of two parallel lines repre-
senting the absence of CHD (y=0) and the presence of CHD (y=1).
There is some tendency for the individuals with no evidence of CHD to
be younger than those with evidence of CHD. While this plot does de-
pict the dichotomous nature of the outcome variable quite clearly, it
does not provide a clear picture of the nature of the relationship be-
tween CHD and age.

A problem with Figure 1.1 is that the variability in CHD at all ages
is large. This makes it difficult to describe the functional relationship
between age and CHD. One common method of removing some varia-
tion while still maintaining the structure of the relationship between the
outcome and the independent variable is to create intervals for the inde-
pendent variable and compute the mean of the outcome variable within
each group. In Table 1.2 this strategy is carried out by using the age
group variable, AGRP, which categorizes the age data of Table 1.1. Ta-
ble 1.2 contains, for each age group, the frequency of occurrence of
each outcome as well as the mean (or proportion with CHD present) for
each group.

By examining this table, a clearer picture of the relationship begins
to emerge. It appears that as age increases, the proportion of individuals
with evidence of CHD increases. Figure 1.2 presents a plot of the pro-
portion of individuals with CHD versus the midpoint of each age inter-
val. While this provides considerable insight into the relationship be-
tween CHD and age in this study, a functional form for this relationship
needs to be described. The plot in this figure is similar to what one
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Table 1.1 Age and Coronary Heart Disease (CHD)
Status of 100 Subjects

ID AGE _ AGRP CHD ID AGE AGRP CHD
1 20 1 0 51 44 4 1
2 23 i 0 52 44 4 1
3 24 1 0 53 45 5 0
4 25 1 0 54 45 5 I
5 25 1 1 55 46 5 0
6 26 1 0 56 46 S 1
7 26 1 0 57 47 5 0
8 28 1 0 58 47 5 0
9 28 1 0 59 47 5 1
i0 29 1 0 60 48 5 0
11 30 2 0 61 48 5 1
12 30 2 0 62 48 5 1
13 30 2 0 63 49 5 0
14 30 2 0 64 49 5 0
15 30 2 0 65 49 5 1
16 30 2 1 66 50 6 0
17 32 2 0 67 50 6 1
18 32 2 0 68 51 6 0
19 33 2 0 69 52 6 0
20 33 2 0 70 52 6 1
21 34 2 0 71 53 6 1
22 34 2 0 72 53 6 1
23 34 2 1 73 54 6 1
24 34 2 0 74 55 7 0
25 34 2 0 75 55 7 1
26 35 3 0 76 55 7 1
27 35 3 0 77 56 7 1
28 36 3 0 78 56 7 1
29 36 3 1 79 56 7 1
30 36 3 0 80 57 7 0
31 37 3 0 81 57 7 0
32 37 3 1 82 57 7 1
33 37 3 0 83 57 7 1
34 38 3 0 84 57 7 1
35 38 3 0 85 57 7 1
36 39 3 0 86 58 7 0
37 39 3 1 87 58 7 1
38 40 4 0 88 58 7 1
39 40 4 1 89 59 7 1
40 41 4 0 90 59 7 1
41 41 4 0 91 60 8 0
42 41 4 0 92 60 8 1
43 42 4 0 93 61 8 1
44 42 4 0 94 62 8 i
45 42 4 1 95 62 8 1
46 43 4 0 96 63 8 1
47 43 4 0 97 64 8 0
48 43 4 1 98 64 8 1
49 44 4 0 9% 65 8 1
50 44 4 0 100 69 8 1
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Figure 1.1 Scatterplot of CHD by AGE for 100 subjects.

might obtain if this same process of grouping and averaging were per-
formed in a linear regression. We will note two important differences.
The first difference concerns the nature of the relationship between
the outcome and independent variables. In any regression problem the
key quantity is the mean value of the outcome variable, given the value
of the independent variable. This quantity is called the conditional
mean and will be expressed as “E(Y | x)” where Y denotes the outcome

Table 1.2 Frequency Table of Age Group by CHD

CHD
Age Group n  Absent Present  Mean (Proportion)
20 -29 10 9 1 0.10
30-34 15 13 2 0.13
35 -39 12 9 3 0.25
40 - 44 15 10 5 0.33
45 49 13 7 6 0.46
50-54 8 3 5 0.63
55-59 17 4 13 0.76
60 — 69 10 2 8 0.80

Total 100 57 43 0.43
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Figure 1.2 Plot of the percentage of subjects with CHD in each age
group.

variable and x denotes a value of the independent variable. The quan-
tity E(Y1x) is read “the expected value of ¥, given the value x.” In
linear regression we assume that this mean may be expressed as an
equation linear in x (or some transformation of x or Y), such as

E(Y1x)=B,+Bx.

This expression implies that it is possible for E(Y|x) to take on any
value as x ranges between ~oo and +eo.

The column labeled “Mean” in Table 1.2 provides an estimate of
E(Y1x). We will assume, for purposes of exposition, that the estimated
values plotted in Figure 1.2 are close enough to the true values of
E(Y 1 x) to provide a reasonable assessment of the relationship between
CHD and age. With dichotomous data, the conditional mean must be
greater than or equal to zero and less than or equal to 1 [ie, 0<
E(Y1x)<1]. This can be seen in Figure 1.2. In addition, the plot shows
that this mean approaches zero and 1 “gradually.” The change in the
E(Yx) per unit change in x becomes progressively smaller as the con-
ditional mean gets closer to zero or 1. The curve is said to be S-shaped.
It resembles a plot of a cumulative distribution of a random variable. It
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should not seem surprising that some well-known cumulative distribu-
tions have been used to provide a model for E(Y|x) in the case when Y
is dichotomous. The model we will use is that of the logistic distribu-
tion.

Many distribution functions have been proposed for use in the
analysis of a dichotomous outcome variable. Cox and Snell (1989) dis-
cuss some of these. There are two primary reasons for choosing the
logistic distribution. First, from a mathematical point of view, it is an
extremely flexible and easily used function, and second, it lends itself to
a clinically meaningful interpretation. A detailed discussion of the in-
terpretation of the model parameters is given in Chapter 3.

In order to simplify notation, we use the quantity 7(x)=E(Y1x) to
represent the conditional mean of Y given x when the logistic distribu-
tion is used. The specific form of the logistic regression model we use
is:

eﬁo*ﬁl*
ﬂ(X)zm . (1.1

A transformation of 7(x)that is central to our study of logistic regres-
sion is the logit transformation. This transformation is defined, in terms
of 7(x), as:

g(x)= ln{—ﬂ—(—x)—}

1-7(x)

=By +Bx .

The importance of this transformation is that g(x) has many of the de-
sirable properties of a linear regression model. The logit, g(x), is linear
in its parameters, may be continuous, and may range from —oo to +eo,
depending on the range of x.

The second important difference between the linear and logistic
regression models concerns the conditional distribution of the outcome
variable. In the linear regression model we assume that an observation
of the outcome variable may be expressed as y=E(Yix)+¢&. The
quantity € is called the error and expresses an observation’s deviation
from the conditional mean. The most common assumption is that £
follows a normal distribution with mean zero and some variance that is
constant across levels of the independent variable. It follows that the
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conditional distribution of the outcome variable given x will be normal
with mean E(Y1 x), and a variance that is constant. This is not the case
with a dichotomous outcome variable. In this situation we may express
the value of the outcome variable given x as y=n(x)+¢€. Here the
quantity € may assume one of two possible values. If y=1 then
e=1-m(x) with probability z(x), and if y=0 then &=-m(x)} with
probability 1—-7(x). Thus, &€ has a distribution with mean zero and
variance equal to 7(x)[1 - (x)]. That is, the conditional distribution of
the outcome variable follows a binomial distribution with probability
given by the conditional mean, 7(x).

In summary, we have seen that in a regression analysis when the

outcome variable is dichotomous:

(1) The conditional mean of the regression equation must be
formulated to be bounded between zero and 1. We bave
stated that the logistic regression model, 7(x) given in equa-
tion (1.1), satisfies this constraint.

(2) The binomial, not the normal, distribution describes the distri-
bution of the errors and will be the statistical distribution upon
which the analysis is based.

(3) The principles that guide an analysis using linear regression
will also guide us in logistic regression.

1.2 FITTING THE LOGISTIC REGRESSION MODEL

Suppose we have a sample of n independent observations of the pair
(xi, yi), i=12,...,n, where y; denotes the value of a dichotomous out-
come variable and x; is the value of the independent variable for the i"
subject. Furthermore, assume that the outcome variable has been coded
as O or 1, representing the absence or the presence of the characteristic,
respectively. This coding for a dichotomous outcome is used through-
out the text. To fit the logistic regression model in equation (1.1) to a
set of data requires that we estimate the values of f;, and f,, the un-
known parameters.

In linear regression, the method used most often for estimating un-
known parameters is least squares. In that method we choose those val-
ues of 3, and B, which minimize the sum of squared deviations of the
observed values of Y from the predicted values based upon the model.
Under the usual assumptions for linear regression the method of least
squares yields estimators with a number of desirable statistical proper-
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ties. Unfortunately, when the method of least squares is applied to a
model with a dichotomous outcome the estimators no longer have these
same properties.

The general method of estimation that leads to the least squares
function under the linear regression model (when the error terms are
normally distributed) is called maximum likelihood. This method will
provide the foundation for our approach to estimation with the logistic
regression model. In a very general sense the method of maximum
likelihood yields values for the unknown parameters which maximize
the probability of obtaining the observed set of data. In order to apply -
this method we must first construct a function, called the likelihood
function. This function expresses the probability of the observed data
as a function of the unknown parameters. The maximum likelihood es-
timators of these parameters are chosen to be those values that maximize
this function. Thus, the resulting estimators are those which agree most
closely with the observed data. We now describe how to find these val-
ues from the logistic regression model.

If Y is coded as O or 1 then the expression for 7(x) given in equa-

tion (1.1) provides (for an arbitrary value of B=(B,,8,), the vector of
parameters) the conditional probability that Y is equal to 1 given x. This
will be denoted as P(Y =11x). It follows that the quantity 1 - 7(x) gives
the conditional probability that Y is equal to zero given x, P(Y =0lx).
Thus, for those pairs (x;,y;), where y; =1, the contribution to the likeli-
hood function is 7(x;), and for those pairs where y, =0, the contribu-
tion to the likelihood function is 1— n'(x,.), where the quantity n(x,-) de-
notes the value of 7m(x) computed at x,. A convenient way to express
the contribution to the likelihood function for the pair (x,.,y,-) is
through the expression

Ay [1-mx)] ™" (1.2)

Since the observations are assumed to be independent, the likeli-
hood function is obtained as the product of the terms given in expres-
sion (1.2) as follows:

1@ =[G [1-7(x)] ™ . (1.3)

i=1
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The principle of maximum likelihood states that we use as our es-
timate of B the value which maximizes the expression in equation (1.3).
However, it is easier mathematically to work with the log of equation
(1.3). This expression, the log likelihood, is defined as

n

LB =m[i®)) = Y {y W[x(x)]+(-y)m[i-n(x)]} . b

i=1

To find the value of B that maximizes L(B) we differentiate L(B) with

respect to 3, and f, and set the resulting expressions equal to zero.
These equations, known as the likelihood equations, are:

Y [ = a(x)]=0 (1.5)

and

> x[yi—n(x)]=o. (1.6)

In equations (1.5) and (1.6) it is understood that the summation is over
varying from 1 to n. (The practice of suppressing the index and range
of summation, when these are clear, is followed throughout the text.)

In linear regression, the likelihood equations, obtained by differen-
tiating the sum of squared deviations function with respect to B are lin-
ear in the unknown parameters and thus are easily solved. For logistic
regression the expressions in equations (1.5) and (1.6) are nonlinear in
B, and f,, and thus require special methods for their solution. These
methods are iterative in nature and have been programmed into avail-
able logistic regression software. For the moment we need not be con-
cerned about these iterative methods and will view them as a computa-
tional detail taken care of for us. The interested reader may see the text
by McCullagh and Nelder (1989) for a general discussion of the meth-
ods used by most programs. In particular, they show that the solution to
equations (1.5) and (1.6) may be obtained using an iterative weighted
least squares procedure.

The value of B given by the solution to equations (1.5) and (1.6) is

called the maximum likelihood estimate and will be denoted as ﬁ In
general, the use of the symbol “A” denotes the maximum likelihood
estimate of the respective quantity. For example, #(x;) is the maximum
likelihood estimate of m(x;). This quantity provides an estimate of the
conditional probability that Y is equal to 1, given that x is equal to x;.
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Table 1.3 Results of Fitting the Logistic

Regression Model to the Data in Table 1.1
Variable Coeff.  Std. Err. b4 P>zl
AGE 0.111 0.0241 461 <0.001
Constant  —5.309 1.1337 —-4.68 <0.001

Log likelihood = —53.67656

As such, it represents the fitted or predicted value for the logistic regres-
sion model. An interesting consequence of equation (1.5) is that

iz;’yi=,§:;7‘r(x,.).

That is, the sum of the observed values of y is equal to the sum of the
predicted (expected) values. This property will be especially useful in
later chapters when we discuss assessing the fit of the model.

As an example, consider the data given in Table 1.1. Use of a lo-
gistic regression software package, with continuous variable AGE as the

independent variable, produces the output in Table 1.3. The maximum
likelihood estimates of S, and f, are thus seen to be f;=-5.309 and

A

B, =0.111. The fitted values are given by the equation

~5.309+0.111xAGE

. e
ni(x)= | 4 ¢-5309+0.111xAGE (L.7)

and the estimated logit, g(x), is given by the equation
£(x)==5.309+0.111x AGE. (1.8)

The log likelihood given in Table 1.3 is the value of equation (1.4)
computed using [30 and ,6’,.

Three additional columns are present in Table 1.3. One contains
estimates of the standard errors of the estimated coefficients, the next
column displays the ratios of the estimated coefficients to their esti-
mated standard errors and the last column displays a p-value. These
quantities are discussed in the next section.

Following the fitting of the model we begin to evaluate its ade-
quacy.
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1.3 TESTING FOR THE SIGNIFICANCE OF
THE COEFFICIENTS

In practice, the modeling of a set of data, as we show in Chapters 4, 7,
and 8, is a much more complex process than one of fitting and testing.
The methods we present in this section, while simplistic, do provide es-
sential building blocks for the more complex process.

After estimating the coefficients, our first look at the fitted model
commonly concerns an assessment of the significance of the variables in
the model. This usually involves formulation and testing of a statistical
hypothesis to determine whether the independent variables in the model
are “significantly” related to the outcome variable. The method for
performing this test is quite general and differs from one type of model
to the next only in the specific details. We begin by discussing the gen-
eral approach for a single independent variable. The multivariate case is
discussed in Chapter 2.

One approach to testing for the significance of the coefficient of a
variable in any model relates to the following question. Does the model
that includes the variable in question tell us more about the outcome (or
response) variable than a model that does not include that variable?
This question is answered by comparing the observed values of the re-
sponse variable to those predicted by each of two models; the first with
and the second without the variable in question. The mathematical
function used to compare the observed and predicted values depends on
the particular problem. If the predicted values with the variable in the
model are better, or more accurate in some sense, than when the variable
is not in the model, then we feel that the variable in question is “signifi-
cant.” It is important to note that we are not considering the question
of whether the predicted values are an accurate representation of the
observed values in an absolute sense (this would be called goodness-of-
fit). Instead, our question is posed in a relative sense. The assessment of
goodness-of-fit is a more complex question which is discussed in detail
in Chapter 5.

The general method for assessing significance of variables is easily
illustrated in the linear regression model, and its use there will motivate
the approach used for logistic regression. A comparison of the two ap-
proaches will highlight the differences between modeling continuous
and dichotomous response variables.

In linear regression, the assessment of the significance of the slope
coefficient is approached by forming what is referred to as an analysis
of variance table. This table partitions the total sum of squared devia-
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tions of observations about their mean into two parts; (1) the sum of
squared deviations of observations about the regression line SSE, (or
residual sum-of-squares), and (2) the sum of squares of predicted val-
ues, based on the regression model, about the mean of the dependent
variable SSR, (or due regression sum-of-squares). This is just a con-
venient way of displaying the comparison of observed to predicted val-
ues under two models. In linear regression, the comparison of observed
and predicted values is based on the square of the distance between the
two. If y, denotes the observed value and y; denotes the predicted value
for the i" individual under the model, then the statistic used to evaluate
this comparison is

i=1

Under the model not containing the independent variable in question

the only parameter is 3, and BO =¥, the mean of the response variable.
In this case, y;, =7 and SSE is equal to the total variance. When we in-
clude the independent variable in the model any decrease in SSE will be
due to the fact that the slope coefficient for the independent variable is
not zero. The change in the value of SSE is the due to the regression
source of variability, denoted SSR. That is,

=

SSR =L (5, -y,.)z]{g(y; —9.-)2} .

i

In linear regression, interest focuses on the size of SSR. A large value
suggests that the independent variable is important, whereas a small
value suggests that the independent variable is not helpful in predicting
the response.

The guiding principle with logistic regression is the same: Compare
observed values of the response variable to predicted values obtained
from models with and without the variable in question. In logistic re-
gression, comparison of observed to predicted values is based on the log
likelihood function defined in equation (1.4). To better understand this
comparison, it is helpful conceptually to think of an observed value of
the response variable as also being a predicted value resulting from a
saturated model. A saturated model is one that contains as many pa-
rameters as there are data points. (A simple example of a saturated



TESTING FOR THE SIGNIFICANCE OF THE COEFFICIENTS 13

model is fitting a linear regression model when there are only two data
points, n=2.) :

The comparison of observed to predicted values using the likeli-
hood function is based on the following expression:

(1.9

Do ln[ (likelihood of the fitted model) ]

(likelihood of the saturated model)

The quantity inside the large brackets in the expression above is called
the likelihood ratio. Using minus twice its log is necessary to obtain a
quantity whose distribution is known and can therefore be used for hy-
pothesis testing purposes. Such a test is called the likelihood ratio test.
Using equation (1.4), equation (1.9) becomes

- 7 1-7,
D=-2 n) £ 1+{1-y ) L1, 1.10
;[)’, ()’i] (=) n(l—)"ﬂ (10

1

where #; = #(x, ).

The statistic, D, in equation (1.10) is called the deviance by some
authors [see, for example, McCullagh and Nelder (1983)], and plays a
central role in some approaches to assessing goodness-of-fit. The devi-
ance for logistic regression plays the same role that the residual sum of
squares plays in linear regression. In fact, the deviance as shown in
equation (1.10), when computed for linear regression, is identically
equal to the SSE.

Furthermore, in a setting such as the one shown in Table 1.1, where
the values of the outcome variable are either O or 1, the likelihood of the
saturated model is 1. Specifically, it follows from the definition of a
saturated model that &, =y, and the likelihood is

I(saturated model) = H v x(1-y, )(x-y,) =1.
i=1

Thus it follows from equation (1.9) that the deviance is

D = -2In(likelihood of the fitted model). (1.11)

Some software packages, such as SAS, report the value of the deviance
in (1.11) rather than the log likelihood for the fitted model. We discuss
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the deviance in more detail in Chapter 5 in the context of evaluating
model goodness-of-fit. At this stage we want to emphasize that we think
of the deviance in the same terms that we think of the residual sum of
squares in linear regression in the context of testing for the significance
of a fitted model.

For purposes of assessing the significance of an independent vari-
able we compare the value of D with and without the independent vari-
able in the equation. The change in D due to the inclusion of the inde-
pendent variable in the model is obtained as:

G = D(model without the variable) — D(model with the variable).

This statistic plays the same role in logistic regression as the numerator
of the partial F test does in linear regression. Because the likelihood of
the saturated model is common to both values of D being differenced to
compute G, it can be expressed as

(1.12)

G=-2 lnlt (likelihood without the vanable)} .

(likelihood with the variable)

For the specific case of a single independent variable, it is easy to
show that when the variable is not in the model, the maximum likeli-

hood estimate of S, is In(n, /n,} where n, =3y, and n,=3(1-y,) and
the predicted value is constant, »; /n. In this case, the value of G is:

616
G=-2n L n (1.13)

or

G= Z{Z[y,. In(#,)+(1—y,)In(1- fr,)] - [n1 In(n, )+ 1y In(ng ) —n ln(n)]} :
i=1
(1.14)
Under the hypothesis that f, is equal to zero, the statistic G follows

a chi-square distribution with 1 degree of freedom. Additional mathe-
matical assumptions are also needed; however, for the above case they
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are rather nonrestrictive and involve having a sufficiently large sample
size, n.

As an example, we consider the model fit to the data in Table 1.1,
whose estimated coefficients and log likelihood are given in Table 1.3.
For these data, n, =43 and n,=57; thus, evaluating G as shown in

equation (1.14) yields

G= 2{—53.677 —[43 In(43)+57 In(57)~100 1n(100)]}
=2(~53.677—(—68.331)] =29.31.

The first term in this expression is the log likelihood from the model
containing AGE (see Table 1.3), and the remainder of the expression
simply substitutes n, and n, into the second part of equation (1.14).
We use the symbol x?*(v) to denote a chi-square random variable with
v degrees-of-freedom. Using this notation, the p-value associated with
this test is P[ 23 (1) > 29.31]<0.001; thus, we have convincing evidence

that AGE is a significant variable in predicting CHD. This is merely a
statement of the statistical evidence for this variable. Other important
factors to consider before concluding that the variable is clinically im-
portant would include the appropriateness of the fitted model, as well as
inclusion of other potentially important variables.

The calculation of the log likelihood and the likelihood ratio test
are standard features of all logistic regression software. This makes it
easy to check for the significance of the addition of new terms to the
model. In the simple case of a single independent variable, we first fit a
model containing only the constant term. We then fit a model contain-
ing the independent variable along with the constant. This gives rise to
a new log likelihood. The likelihood ratio test is obtained by multiply-
ing the difference between these two values by —2.

In the current example, the log likelihood for the model containing
only a constant term is —68.331. Fitting a model containing the inde-
pendent variable (AGE) along with the constant term results in the log
likelihood shown in Table 1.3 of —53.677. Multiplying the difference

in these log likelihoods by —2 gives

~2 x[-68.331-(~53.677)] = -2 x(~14.655) = 29.31.
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This result, along with the associated p-value for the chi-square distribu-
tion, may be obtained from most software packages.

Two other similar, statistically equivalent tests have been suggested.
These are the Wald test and the Score test. The assumptions needed for
these tests are the same as those of the likelihood ratio test in equation
(1.13). A more complete discussion of these tests and their assumptions
may be found in Rao (1973).

The Wald test is obtained by comparing the maximum likelihood
estimate of the slope parameter, [31, to an estimate of its standard error.
The resulting ratio, under the hypothesis that 3, =0, will follow a stan-
dard normal distribution. While we have not yet formally discussed how
the estimates of the standard errors of the estimated parameters are ob-
tained, they are routinely printed out by computer software. For exam-
ple, the Wald test for the logistic regression model in Table 1.3 is pro-
vided in the column headed z and is

W= s’]‘g(lﬁ»l) 0024

and the two tailed p-value, provided in the last column of Table 1.3, is
P(Iz[> 4.61), where z denotes a random variable following the standard

normal distribution. Hauck and Donner (1977) examined the perform-
ance of the Wald test and found that it behaved in an aberrant manner,
often failing to reject the null hypothesis when the coefficient was sig-
nificant. They recommended that the likelihood ratio test be used.

Jennings (1986a) has also looked at the adequacy of inferences in
logistic regression based on Wald statistics. His conclusions are similar
to those of Hauck and Donner. Both the likelihood ratio test, G, and the
Wald test, W, require the computation of the maximum likelihood esti-
mate for f;. '

A test for the significance of a variable which does not require
these computations is the Score test. Proponents of the Score test cite
this reduced computational effort as its major advantage. Use of the test
is limited by the fact that it cannot be obtained from some software
packages. The Score test is based on the distribution theory of the de-
rivatives of the log likelihood. In general, this is a multivariate test re-
quiring matrix calculations which are discussed in Chapter 2. '

In the univariate case, this test is based on the conditional distribu-
tion of the derivative in equation (1.6), given the derivative in equation
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(1.5). In this case, we can write down an expression for the Score test.
The test uses the value of equation (1.6), computed using
By =In(n, / ny) and B, =0. As noted earlier, under these parameter val-
ues, #=n;/n=y. Thus, the left-hand side of equation (1.6) becomes
Zx,.(y,. -5). It may be shown that the estimated variance Iis

yA-3)%(x; ~ 2)2 . The test statistic for the Score test (ST) is

gxi()’i_y)

\/y(l—v)Z(x,-—f)z |

i=1

ST=

As an example of the Score test, consider the model fit to the data
in Table 1.1. The value of the test statistic for this example is

296.66
ST = ——=—=—=——===5.14
4/3333.742

and the two tailed p-value is P{jz]>5.14)<0.001. We note that, for this
example, the values of the three test statistics are nearly the same (note:

JG =541).

In summary, the method for testing the significance of the coeffi-
cient of a variable in logistic regression is similar to the approach used
in linear regression; however, it uses the likelihood function for a di-
chotomous outcome variable.

1.4 CONFIDENCE INTERVAL ESTIMATION

An important adjunct to testing for significance of the model, discussed
in Section 1.3, is calculation and interpretation of confidence intervals
for parameters of interest. As is the case in linear regression we can
obtain these for the slope, intercept and the “line”, (i.e., the logit). In
some settings it may be of interest to provide interval estimates for the
fitted values (i.e., the predicted probabilities).

The basis for construction of the interval estimators is the same sta-
tistical theory we used to formulate the tests for significance of the
model. In particular, the confidence interval estimators for the slope
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and intercept are based on their respective Wald tests. The endpoints of
a 100(1-a)% confidence interval for the slope coefficient are

.31 izl—a/ZS’l\E(B]), (1.15)

and for the intercept they are
Bo izl_mSE(ﬁo), (1.16)

where z,_,, is the upper 100(1 - &/2)% point from the standard normal

distribution and S/]\Ei() denotes a model-based estimator of the standard
error of the respective parameter estimator. We defer discussion of the
actual formula used for calculating the estimators of the standard errors
to Chapter 2. For the moment we use the fact that estimated values are
provided in the output following the fit of a model and, in addition,
many packages also provide the endpoints of the interval estimates.

As an example, consider the model fit to the data in Table 1.1 re-
gressing age on the presence or absence of CHD. The results are pre-
sented in Table 1.3. The endpoints of a 95 percent confidence interval
for the slope coefficient from (1.15) are 0.111+1.96x0.0241, yielding
the interval (0.064, 0.158). We defer a detailed discussion of the inter-
pretation of these results to Chapter 3. Briefly, the results suggest that
the change in the log-odds of CHD per one year increase in age is
0.111 and the change could be as little as 0.064 or as much as 0.158
with 95 percent confidence.

As is the case with any regression rodel, the constant term provides
an estimate of the response in the absence of x unless the independent
variable has been centered at some clinically meaningful value. In our
example, the constant provides an estimate of the log-odds ratio of CHD
at zero years of age. As a result, the constant term, by itself, has no use-
ful clinical interpretation. In any event, from expression (1.16), the
endpoints of a 95 percent confidence interval for the constant are
—-5.309+£1.96 x1.1337, yielding the interval (~7.531, —3.087). The
constant is important when considering point and interval estimators of
the logit.

The logit is the linear part of the logistic regression model and, as
such, is most like the fitted line in a linear regression model. The esti-
mator of the logit is
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8(x)= B, +pix. (1.17)

The estimator of the variance of the estimator of the logit requires ob-
taining the variance of a sum. In this case it is

Vé‘r[g(x)]=V?Ir[[io)+x2V2r(/§1)+2xc6‘v(/§o,ﬁl). (1.18)

In general the variance of a sum is equal to the sum of the variance of
each term and twice the covariance of each possible pair of terms
formed from the components of sum. The endpoints of a 100(1-a)%
Wald-based confidence interval for the logit are

8(x) £ 210 ppSE[3(0)], (1.19)

where S’}\E[g(x)] is the positive square root of the variance estimator in
(1.18).

The estimated logit for the fitted model in Table 1.3 is shown in
(1.8). In order to evaluate (1.18) for a specific age we need the esti-
mated covariance matrix. This matrix can be obtained from the output
from all logistic regression software packages. How it is displayed var-
ies from package to package, but the triangular form shown in Table
1.4 is a common one.

The estimated logit from (1.8) for a subject of age 50 is

2(50)=—5.31+0.111x 50 = 0.240.

The estimated variance, using (1.18) and the results in Table 1.4, is

Var [£(50)] =1.28517 +(50)" x 0.000579 +2 x 50 X (~0.026677) = 0.0650

and the estimated standard error is s%[g(so)]=0.2549. Thus the end
points of a 95 percent confidence interval for the logit at age 50 are
0.240+1.96 x0.2550 = (—0.260, 0.740). We discuss the interpretation
and use of the estimated logit in providing estimates of odds ratios in
Chapter 3. :

The estimator of the logit and its confidence interval provide the
basis for the estimator of the fitted value, in this case the logistic prob-
ability, and its associated confidence interval. In particular, using (1.7)
at age 50 the estimated logistic probability is
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Table 1.4 Estimated Covariance Matrix of the
Estimated Coefficients in Table 1.3

AGE Constant
AGE 0.000579
Constant -0.026677 1.28517
- £8050) g~ S31+0.111x50
71'(50) = =0.560 (1.20)

14 o800 | 4 g 53T+0111x30

and the endpoints of a 95 percent confidence interval are obtained from
the respective endpoints of the confidence interval for the logit. The
endpoints of the 100(1—a)% Wald-based confidence interval for the
fitted value are

eg(x)iz|_a,z§E[§(X)]

1+ eé(x)izl_a,z§E[§(x)] : (1.21)

Using the example at age 50 to demonstrate the calculations, the lower
limit is

-0.260

e
W = 0435 ,
and the upper limit is
£0740
135078 = 0.677.

We have found that a major mistake often made by persons new to
logistic regression modeling is to try and apply estimates on the prob-
ability scale to individual subjects. The fitted value computed in (1.20)
is analogous to a particular point on the line obtained from a linear re-
gression. In linear regression each point on the fitted line provides an
estimate of the mean of the dependent variable in a population of sub-
jects with covariate value “x”. Thus the value of 0.56 in (1.20) is an
estimate of the mean (i.e., proportion) of 50 year old subjects in the
population sampled that have evidence of CHD. Each individual 50



OTHER METHODS OF ESTIMATION 21

year old subject either does or does not have evidence of CHD. The
confidence interval suggests that this mean could be between 0.435 and
0.677 with 95 percent confidence. We discuss the use and interpretation
of fitted values in greater detail in Chapter 3.

One application of fitted logistic regression models that has re-
ceived a lot of attention in the subject matter literature is the use of
model-based fitted values like the one in (1.20) to predict the value of a
binary dependent value in individual subjects. This process is called
classification and has a long history in statistics where it is referred to as
discriminant analysis. We discuss the classification problem in detail in
Chapter 4. We discuss discriminant analysis within the context of a
method for obtaining estimators of the coefficients in the next section.

1.5 OTHER METHODS OF ESTIMATION

The method of maximum likelihood described in Section 1.2 is the es-
timation method used in the logistic regression routines of the major
software packages. However, two other methods have been and may still
be used for estimating the coefficients. These methods are: (1) nonit-
erative weighted least squares, and (2) discriminant function analysis.

A linear models approach to the analysis of categorical data was
proposed by Grizzle, Starmer, and Koch (1969), which uses estimators
based on noniterative weighted least squares. They demonstrate that the
logistic regression model is an example of a general class of models that
can be handled with their methods. We should add that the maximum
likelihood estimators are usually calculated using an iterative reweighted
least squares algorithm, and thus are also “least squares” estimators.
The approach suggested by Grizzle et al. uses only one iteration in the
process.

A major limitation of this method is that we must have an estimate
of 7(x) which is not zero or 1 for most values of x. An example where
we could use both maximum likelihood and noniterative weighted least
squares is the data in Table 1.2. In cases such as this, the two methods
are asymptotically equivalent, meaning that as n gets large, the distribu-
tional properties of the estimators become identical.

The discriminant function approach to estimation of the coeffi-
cients is of historical importance as it was popularized by Cornfield
(1962) in some of the earliest work on logistic regression. These esti-
mators take their name from the fact that the posterior probability in the
usual discriminant function model is the logistic regression function
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given in equation (1.1). More precisely, if the independent variable, X,
follows a normal distribution within each of two groups (subpopula-
tions) defined by the two values of y having different means and the
same variance, then the conditional distribution of ¥ given X =x is the
logistic regression model. That is, if

X1Y ~N(g;,0%), j=0,1

then P(Y=11x)=m(x). The symbol “~” is read “is distributed” and
the * N(,u,oz)” denotes the normal distribution with mean equal to p

and variance equal to ¢?. Under these assumptions it is easy to show
[Lachenbruch (1975)] that the logistic coefficients are

B, = In(g‘—)— 0.5(uf - u3)/o? (1.22)

0

and

By = (1, — 1o)/0%, (1.23)

where 6, = P(Y =), j=0, 1. The discriminant function estimators of
B, and J; are found by substituting estimators for u;, 8, j= 0, 1 and

o’ into the above equations. The estimators usually used are ,ﬂj =X,

the mean of x in the subgroup defined by y=j, j=0, 1, 8, =n,/n the
mean of y with éo =1-6, and

é? =[(n0 ~1)sg +(n, —1)s12]/(n0 +n,—2),

where sf» is the unbiased estimator of o> computed within the subgroup
of the data defined by y=j, j=0,1. The above expressions are for a
single variable x; the multivariable case is presented in Chapter 2.

It is natural to ask why, if the discriminant function estimators are
sO easy to compute, are they not used in place of the maximum likeli-
hood estimators? Halpern, Blackwelder, and Verter (1971) and Hosmer,
Hosmer, and Fisher (1983) have compared the two methods when the
model contains a mixture of continuous and discrete variables, with the
general conclusion that the discriminant function estimators are sensitive
to the assumption of normality. In particular, the estimators of the coef-



DATA SETS 23

ficients for nonnormally distributed variables are biased away from zero
when the coefficient is, in fact, different from zero. The practical impli-
cation of this is that for dichotomous independent variables (which oc-
cur in many situations), the discriminant function estimators will overes-
timate the magnitude of the coefficient.

At this point it may be helpful to delineate more carefully the vari-
ous uses of the term “maximum likelihood,” as it applies to the estima-
tion of the logistic regression coefficients. Under the assumptions of
the discriminant function model stated above, the estimators obtained
from equations (1.22) and (1.15) are maximum likelihood estimators.
Those obtained from equations (1.5) and (1.6) are based on the condi-
tional distribution of ¥ given X and, as such, are actually “conditional
maximum likelihood estimators.” Because discriminant function esti-
mators are rarely used anymore, the word conditional has been dropped
when describing the estimators given in equations (1.5) and (1.6). We
use the word conditional to describe estimators in logistic regression
with matched data as discussed in Chapter 7.

In summary there are alternative methods of estimation for some
data configurations that are computationally quicker; however, we use
the method of maximum likelihood described in Section 1.2 through-
out the rest of this text.

1.6 DATA SETS

A number of different data sets are used in the examples as well as the
exercises for the purpose of demonstrating various aspects of logistic
regression modeling. Four data sets used throughout the text are de-
scribed below. Other data sets will be introduced as needed in later
chapters. All data sets used in this text may be obtained from the text
web sites at John Wiley & Sons Inc. and the University of Massachusetts
as described in the Preface.

1.6.1 The ICU Study

The ICU study data set consists of a sample of 200 subjects who were
part of a much larger study on survival of patients following admission
to an adult intensive care unit (ICU). The major goal of this study was
to develop a logistic regression model to predict the probability of sur-
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Table 1.5 Code Sheet for the ICU Data

Variable  Description Codes/Values Name
1 Identification Code ID Number D
2 Vital Status 0=Lived STA

1 = Died
3 Age Years AGE
4 Sex 0 =Male SEX
1 = Female
5 Race 1 = White RACE
2 =Black
3 = Other
6 Service at ICU Admission 0 = Medical SER
1 = Surgical
7 Cancer Part of Present Problem 0=No CAN
1=Yes
8 History of Chronic Renal Failure 0 =No CRN
1=Yes
9 Infection Probable at ICU Ad- 0=No INF
mission 1=Yes
10 CPR Prior to ICU Admission 0=No CPR
1=Yes
11 Systolic Blood Pressure at ICU mm Hg SYS
Admission
12 Heart Rate at ICU Admission Beats/min HRA
13 Previous Admission to an ICU 0=No PRE
Within 6 Months 1=Yes
14 Type of Admission 0 = Elective TYP
1 = Emergency
15 Long Bone, Multiple, Neck, 0=No FRA
Single Area, or Hip Fracture 1=Yes
16 PO2 from Initial Blood Gases 0=>60 PO2
1=<60
17 PH from Initial Blood Gases 0=2725 PH
1=<725
18 PCO?2 from Initial Blood Gases 0=<45 PCO
1=>45
19 Bicarbonate from Initial Blood 0=218 BIC
Gases 1=<18
20 Creatinine from Initial Blood 0=520 CRE
Gases 1=>20
21 Level of Consciousness at ICU 0 = No Coma or LOC
Admission Deep Stupor

1 = Deep Stupor
2 = Coma
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vival to hospital discharge of these patients. A number of publications
have appeared which have focused on various facets of this problem.
The reader wishing to learn more about the clinical aspects of this study
should start with Lemeshow, Teres, Avrunin, and Pastides (1988). For a
more up-to-date discussion of modeling the outcome of ICU patients
the reader is referred to Lemeshow and Le Gall (1994) and to Le-
meshow, Teres, Klar, Avrunin, Gehlbach and Rapoport (1993). Actual
observed variable vaiues have been modified to protect subject confi-
dentiality.

A code sheet for the variables to be considered in this text is given
in Table 1.5.

1.6.2 The Low Birth Weight Study

Low birth weight, defined as birth weight less than 2500 grams, is an
outcome that has been of concern to physicians for years. This is due
to the fact that infant mortality rates and birth defect rates are very high
for low birth weight babiés. A woman’s behavior during pregnancy
(including diet, smoking habits, and receiving prenatal care) can greatly
alter the chances of carrying the baby to term and, consequently, of de-
livering a baby of normal birth weight.

Data were collected as part of a larger study at Baystate Medical
Center in Springfield, Massachusetts. This data set contains information
on 189 births to women seen in the obstetrics clinic. Fifty-nine of these
births were low birth weight. The variables identified in the code sheet
given in Table 1.6 have been shown to be associated with low birth
weight in the obstetrical literature. The goal of the current study was to
determine whether these variables were risk factors in the clinic popula-
tion being served by Baystate Medical Center. Actual observed variable
values have been modified to protect subject confidentiality.

1.6.3 The Prostate Cancer Study

A third data set involves a study of patients with cancer of the prostate.
These data have been provided to us by Dr. Donn Young at The Ohio
State University Comprehensive Cancer Center. The goal of the analysis
is to determine whether variables measured at a baseline exam can be
used to predict whether the tumor has penetrated the prostatic capsule.
The data presented are a subset of variables from the main study. Of
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Table 1.6 Code Sheet for the Variables in the Low Birth
Weight Data

Variable  Description Codes/Values Name
1 Identification Code ID Number ID
2 Low Birth Weight 0=22500¢ LOW

1=<2500¢g
3 Age of Mother Years AGE
4 Weight of Mother at Last Pounds LWT
Menstrual Period
5 Race 1 = White RACE
2 =Black
3 =Other
6 Smoking Status During 0=No SMOKE
Pregnancy 1=Yes
7 History of Premature Labor 0 =None PTL
o 1=0ne
2 = Two, etc.
8 History of Hypertension 0=No HT
1=Yes
9 Presence of Uterine Irritability 0=No Ul
1=Yes
10 Number of Physician Visits 0 =None FTV
During the First Trimester 1=0ne
2 = Two, etc.
11 Birth Weight Grams BWT

the 380 subjects considered here, 153 had a cancer that penetrated the
prostatic capsule. Actual observed variable values have been modified
to protect subject confidentiality. These data will be used primarily for
exercises. A code sheet for the variables to be considered in this text is
shown in Table 1.7.

1.6.4 The UMARU IMPACT Study

Our colleagues, Drs. Jane McCusker, Carol Bigelow, and Anne Stoddard,
have provided us with a subset of data from the University of Massachu-
setts Aids Research Unit (UMARU) IMPACT Study (UIS). This was a
5-year (1989-1994) collaborative research project (Benjamin F. Lewis,
P.I., National Institute on Drug Abuse Grant #R18-DA06151) com-
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Table 1.7 Code Sheet for the Prostate Cancer Study

Variable Description Codes/Values Name
1 Identification Code 1-380 D
2 Tumor Penetration of 0 = No Penetration CAPSULE
Prostatic Capsule 1 = Penetration
3 Age Years AGE
4 Race 1= White RACE
2 = Black
5 Results of the Digital 1 = No Nodule DPROS
Rectal Exam 2 = Unilobar Nodule
(Left)
3 = Unilobar Nodule
(Right)
4 = Bilobar Nodule
6 Detection of Capsular 1 =No DCAPS
Involvement in Rectal 2=Yes
Exam
7 Prostatic Specific Antigen mg/ml PSA
Value
8 Tumor Volume Obtained  cm?® VOL
from Ultrasound
9 Total Gleason Score 0-10 GLEASON

prised of two concurrent randomized trials of residential treatment for
drug abuse. The purpose of the study was to compare treatment pro-
grams of different planned durations designed to reduce drug abuse
and to prevent high-risk HIV behavior. The UIS sought to determine
whether alternative residential treatment approaches are variable in ef-
fectiveness and whether efficacy depends on planned program duration.

We refer to the two treatment program sites as A and B in this text.
The trial at site A randomized 444 participants and was a comparison of
3- and 6-month modified therapeutic communities which incorporated
elements of health education and relapse prevention. Clients in the re-
lapse prevention/health education program (site A) were taught to rec-
ognize “high-risk” situations that are triggers to relapse and were
taught the skills to enable them to cope with these situations without us-
ing drugs. In the trial at site B, 184 clients were randomized to receive
either a 6- or 12-month therapeutic community program involving a
highly structured life-style in a communal living setting. Our col-
leagues have published a number of papers reporting the results of this
study, see McCusker et. al. (1995, 1997a, 1997b).
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IMPACT_Study

Variable Description Codes/Values Name
1 Identification Code 1-575 D
2 Age at Enrollment Years AGE
3 Beck Depression Score at 0.000-54.000 BECK
Admission
4 IV Drug Use History at 1 = Never IVHX
Admission 2 = Previous
3 =Recent
5 Number of Prior Drug 040 NDRUGTX
Treatments
6 Subject’s Race 0 = White RACE
1 = Other
7 Treatment Randomization 0 = Short TREAT
Assignment 1 =Long
8 Treatment Site 0=A SITE
1=B
9 Returned to Drug Use Prior 1 = Remained Drug DFREE
to the Scheduled End of the Free
Treatment Program 0 = Otherwise

As is shown in the coming chapters, the data from the UIS provide
a rich setting for illustrating methods for logistic regression modeling.
The data presented here are a subset of both variables and subjects of
the data used to demonstrate methods for survival analysis in Hosmer
and Lemeshow (1999). The small subset of variables from the main
study we use in this text is described in Table 1.8. Since the analyses we
report in this text are based on this small subset of variables and sub-
jects, the results reported here should not be thought of as being in any
way comparable to results of the main study. In addition we have taken
the liberty in this text of simplifying the study design by representing
the planned duration as short versus long. Thus, short versus long rep-
resents 3 months versus 6 months planned duration at site A, and 6
months versus 12 months planned duration at site B. The dichotomous
outcome variable considered in this text is defined as having returned to
drug use prior to the scheduled completion of the treatment program.
The original data have been modified in such a way as to preserve sub-
ject confidentiality.
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EXERCISES

1. In the ICU data described in Section 1.6.1 the primary outcome vari-
able is vital status at hospital discharge, STA. Clinicians associated
with the study felt that a key determinant of survival was the patient’s
age at admission, AGE.

(a) Write down the equation for the logistic regression model of
STA on AGE. Write down the equation for the logit transfor-
mation of this logistic regression model. What characteristic of
the outcome variable, STA, leads us to consider the logistic re-
gression model as opposed to the usual linear regression model
to describe the relationship between STA and AGE?

(b) Form a scatterplot of STA versus AGE.

(c) Using the intervals [15, 24], [25, 34], [35, 44], [45, 54], [55, 64],
[65, T4}, [75, 84], [85, 94] for AGE, compute the STA mean
over subjects within each AGE interval. Plot these values of
mean STA versus the midpoint of the AGE interval using the
same set of axes as was used in Exercise 1(b).

(d) Write down an expression for the likelihood and log likelihood
for the logistic regression model in Exercise 1(a) using the un-
grouped, n=200, data. Obtain expressions for the two likeli-
hood equations.

(e) Using a logistic regression package of your choice obtain the
maximum likelihood estimates of the parameters of the logistic
regression model in Exercise 1(a). These estimates should be
based on the ungrouped, n=200, data. Using these estimates,
write down the equation for the fitted values, that is, the esti-
mated logistic probabilities. Plot the equation for the fitted val-
ues on the axes used in the scatterplots in Exercises 1(b) and
1(c).

(f) Summarize (describe in words) the results presented in the plot
obtained from Exercises 1(b), 1(c), and 1(e).

(g) Using the results of the output from the logistic regression pack-
age used for Exercise 1(e), assess the significance of the slope
coefficient for AGE using the likelihood ratio test, the Wald test,
and, if possible, the Score test. What assumptions are needed for
the p-values computed for each of these tests to be valid? Are
the results of these tests consistent with one another? What is the
value of the deviance for the fitted model?
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(h) Using the results from Exercise 1(e) compute 95 percent confi-
dence intervals for the slope and constant term. Write a sentence
interpreting the confidence interval for the slope.

(i) Obtain the estimated covariance matrix for the model fit in Ex-
ercise 1(e). Compute the logit and estimated logistic probability
for a 60-year old subject. Compute a 95 percent confidence in-
tervals for the logit and estimated logistic probability. Write a
sentence or two interpreting the estimated probability and its
confidence interval.

(j) Use the logistic regression package to obtain the estimated logit
and its standard error for each subject in the ICU study. Graph
the estimated logit and the pointwise 95 percent confidence lim-
its versus AGE for each subject. Explain (in words) the simi-
larities and differences between the appearance of this graph
and a graph of a fitted linear regression model and its pointwise
95 percent confidence bands.

2. Use the ICU Study and repeat Exercises 1(a), 1(b), 1(d), 1(e) and
1(g) using the variable “type of admission,” TYP, as the covariate.

3. In the Low Birth Weight Study described in Section 1.6.2, one vari-
able that physicians felt was important to control for was the weight
of the mother at the last menstrual period, LWT. Repeat steps (a) —
(g) of Exercise 1, but for Exercise 3(c) use intervals [80, 99], [100,
109], [110, 114], [115, 119], [120, 124], [125, 129], [130, 250].

(h) The graph in Exercises 3(c) does not look “S-Shaped”. The
primary reason is that the range of plotted values is from ap-
proximately 0.2 to 0.56. Explain why a model for the prob-
ability of low birth weight as a function of LWT could still be
the logistic regression model.

4. In the Prostate Cancer Study described in Section 1.6.3, one variable
thought to be particularly predictive of capsule penetration is the
prostate specific antigen level, PSA. Repeat steps (a) — (g) and (j) of
Exercise 1 using CAPSULE as the outcome variable and PSA as the
covariate. For Exercises 4(c) use intervals for PSA of [0, 2.4], [2.5,
44], [4.5, 6.4], [6.5, 8.4], [8.5, 10.4], [10.5, 12.4], [12.5, 20.4],
[20.5, 140].



