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CHAPTER 3

Interpretation of the Fitted Logistic
Regression Model

3.1 INTRODUCTION

In Chapters 1 and 2 we discussed the methods for fitting and testing for
the significance of the logistic regression model. After fitting a model
the emphasis shifts from the computation and assessment of significance
of the estimated coefficients to the interpretation of their values. Strictly
speaking, an assessment of the adequacy of the fitted model should pre-
cede any attempt at interpreting it. In the case of logistic regression the
methods for assessment of fit are rather technical in nature and thus are
deferred until Chapter 5, at which time the reader should have a good
working knowledge of the logistic regression model. Thus, we begin
this chapter assuming that a logistic regression model has been fit, that
the variables in the model are significant in either a clinical or statistical
sense, and that the model fits according to some statistical measure of
fit.

The interpretation of any fitted model requires that we be able to
draw practical inferences from the estimated coefficients in the model.
The question being addressed is: What do the estimated coefficients in
the model tell us about the research questions that motivated the study?
For most models this involves the estimated coefficients for the inde-
pendent variables in the model. On occasion, the intercept coefficient is
of interest; but this is the exception, not the rule. The estimated coeffi-
cients for the independent variables represent the slope (i.e., rate of
change) of a function of the dependent variable per unit of change in
the independent variable. Thus, interpretation involves two issues: de-
termining the functional relationship between the dependent variable
and the independent variable, and appropriately defining the unit of
change for the independent variable.
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48 INTERPRETATION OF THE FITTED MODEL

The first step is to determine what function of the dependent vari-
able yields a linear function of the independent variables. This is called
the link function [see McCullagh and Nelder (1983) or Dobson (1990)].
In the case of a linear regression model, it is the identity function since
the dependent variable, by definition, is linear in the parameters. (For
those unfamiliar with the term “identity function,” it is the function y =
y.) In the logistic regression model the link function is the logit trans-
formation g(x)= ln{ﬂ:(x) /l1- n(x)]} =f, + Byx.

For a linear regression model recall that the slope coefficient, B, is
equal to the difference between the value of the dependent variable at
x+1 and the value of the dependent variable at x, for any value of x.
For example, if y(x)= B, + B,x, it follows that B, = y(x+1)-y(x). In
this case, the interpretation of the coefficient is relatively straightforward
as it expresses the resulting change in the measurement scale of the de-
pendent variable for a unit change in the independent variable. For ex-
ample, if in a regression of weight on height of male adolescents the
slope is 5, then we would conclude that an increase of 1 inch in height is
associated with an increase of 5 pounds in weight.

In the logistic regression model, the slope coefficient represents the
change in the logit corresponding to a change of one unit in the inde-
pendent variable (i.e., fB; =g(x+1)—g(x)). Proper interpretation of the
coefficient in a logistic regression model depends on being able to place
meaning on the difference between two logits. Interpretation of this
difference is discussed in detail on a case-by-case basis as it relates di-
rectly to the definition and meaning of a one-unit change in the inde-
pendent variable. In the following sections of this chapter we consider
the interpretation of the coefficients for a univariate logistic regression
model for each of the possible measurement scales of the independent
variable. In addition we discuss interpretation of the coefficients in
multivariable models.

3.2 DICHOTOMOUS INDEPENDENT VARIABLE

We begin our consideration of the interpretation of logistic regression
coefficients with the situation where the independent variable is nominal
scale and dichotomous (i.e., measured at two levels). This case provides
the conceptual foundation for all the other situations.

We assume that the independent variable, x, is coded as either zero
or one. The difference in the logit for a subject with x=1 and x=0 is
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g(1)—- g(0) =[ﬁo +ﬂ1]_[BO] =B

The algebra shown in this equation is rather straightforward. We present
it in this level of detail to emphasize that the first step in interpreting the
effect of a covariate in a model is to express the desired logit difference
in terms of the model. In this case the logit difference is equal to f,.
In order to interpret this result we need to introduce and discuss a meas-
ure of association termed the odds ratio.

The possible values of the logistic probabilities may be conveniently
displayed in a 2 x 2 table as shown in Table 3.1. The odds of the out-
come being present among individuals with x=1 is defined as
n(1)/[1-n(1)]. Similarly, the odds of the outcome being present among

individuals with x =0 is defined as 7(0)/[1-7(0)]. The odds ratio, de-
noted OR, is defined as the ratio of the odds for x=1 to the odds for

x=0, and is given by the equation
_ x/1-=(W)]
~ m(0)/[1-#(0)] G-

Substituting the expressions for the logistic regression model shown in
Table 3.1 into (3.1) we obtain

OR

Table 3.1 Values of the Logistic Regression Model
When the Independent Variable Is Dichotomous

Independent Variable (X)

Outcome

Variable (Y) x=1 x=0
y= 1 eﬁo +By e.Bo

)= 14 ePoth m0)= 1+
y=0 _ 1 -
-l =1 | 1-M0=1%

Total 1.0 1.0
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eﬂo‘*ﬂx 1
1+eﬂo+ﬁ1 (l+eﬁo+ﬁ| )
OR =
eﬁo ( 1 )
[1+eﬁ° )/ 1+eP

: eﬁo +h
- eho
= e(ﬁ0+ﬁl)_ﬁ0

=eh.

Hence, for logistic regression with a dichotomous independent variable
coded 1 and O, the relationship between the odds ratio and the regres-
sion coefficient is

OR=éP . (3.2)

This simple relationship between the coefficient and the odds ratio is the
fundamental reason why logistic regression has proven to be such a
powerful analytic research tool.

The odds ratio is a measure of association which has found wide
use, especially in epidemiology, as it approximates how much more
- likely (or unlikely) it is for the outcome to be present among those with
x =1 than among those with x = 0. For example, if y denotes the pres-
ence or absence of lung cancer and if x denotes whether the person is a

smoker, then OR =2 estimates that lung cancer is twice as likely to oc-
cur among smokers than among nonsmokers in the study population.
As another example, suppose y denotes the presence or absence of heart
disease and x denotes whether or not the person engages in regular

strenuous physical exercise. If the estimated odds ratio is OR=0.5 ,
then occurrence of heart disease is one half as likely to occur among
those who exercise than among those who do not in the study popula-
tion.

The interpretation given for the odds ratio is based on the fact that
in many instances it approximates a quantity called the relative risk.
This parameter is equal to the ratio 77(1)/7(0). It follows from (3.1) that
the odds ratio approximates the relative risk if [1-m(0)]/[1-7(1)]=1.
This holds when 7(x) is small for both x=1and 0.

Readers who have not had experience with the odds ratio as a
measure of association would be advised to spend some time reading
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about this measure in one of the following texts: Breslow and Day
(1980), Kelsey, Thompson, and Evans (1986), Rothman and Greenland
(1998) and Schlesselman (1982).

An example may help to clarify what the odds ratio is and how it is
computed from the results of a logistic regression program or from a
2x2 table. In many examples of logistic regression encountered in the
literature we find that a continuous variable has been dichotomized at
some biologically meaningful cutpoint. A more detailed discussion of
the rationale and implications for the modeling of such a decision is
presented in Chapter 4. With this in mind we use the data displayed in
Table 1.1 and create a new variable, AGED, which takes on the value 1
if the age of the subject is greater than or equal to 55 and zero other-
wise. The result of cross classifying the dichotomized age variable with
the outcome variable CHD is presented in Table 3.2.

The data in Table 3.2 tell us that there were 21 subjects with values
(x=1,y=1),22with (x=0,y=1), 6 with (x= 1, y = 0), and 51 with (x
=0, y = 0). Hence, for these data, the likelihood function shown in (1.3)
simplifies to

1B) = =(1)* x [1-72()] x 7(0)*x [1-=(0)]"".

Use of a logistic regression program to obtain the estimates of 3, and
B, yields the results shown in Table 3.3.

The estimate of the odds ratio from (3.2) is OR =e® =8.1.
Readers who have had some previous experience with the odds ratio un-
doubtedly wonder why a logistic regression package was used to obtain
the maximum likelihood estimate of the odds ratio, when it could have
been obtained directly from the cross-product ratio from Table 3.2,
namely,

Table 3.2 Cross-Classification of AGE Dichotomized
at 55 Years and CHD for 100 Subjects

AGED(x)
CHD(y) =255 < 55 (0) Total
Present (1) 21 22 43
Absent (0) 6 51 57
Total 27 73 100
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21/6

OR =
22/51

8.11

Thus B, = In[(21/6)/(22/51)]=2.094. We emphasize here that logistic

regression is, in fact, regression even in the simplest case possible. The
fact that the data may be formulated in terms of a contingency table
provides the basis for interpretation of estimated coefficients as the log
of odds ratios.

Along with the point estimate of a parameter, it is a good idea to
use a confidence interval estimate to provide additional information
about the parameter value. In the case of the odds ratio, OR, for a 2x2

table there is an extensive literature dealing with this problem, much of
which is focused on methods when the sample size is small. The reader
who wishes to learn more about the available exact and approximate
methods should see the papers by Fleiss (1979) and Gart and Thomas
(1972). A good summary may be found in the texts by Breslow and
Day (1980), Kleinbaum, Kupper, and Morgenstern (1982), and Roth-
man and Greenland (1998).

The odds ratio, OR, is usually the parameter of interest in a logistic

A
regression due to its ease of interpretation. However, its estimate, OR,
tends to have a distribution that is skewed. The skewness of the sam-

A
pling distribution of OR is due to the fact that possible values range
between O and oo, with the null value equaling 1. In theory, for large
enough sample sizes, the distribution of OR is normal. Unfortunately,

this sample size requirement typically exceeds that of most studies.
Hence, inferences are usually based on the sampling distribution of

1n((5‘R)=[3,, which tends to follow a normal distribution for much

smaller sample sizes. A 100x(1-a)% confidence interval (CI) estimate
for the odds ratio is obtained by first calculating the endpoints of a con-

Table 3.3 Results of Fitting the Logistic Regression
Model to the Data in Table 3.2

Variable Coeff. Std. Err. z P>zl
AGED 2.094 0.5285 3.96 <0.001
Constant ~0.841 0.2551 -3.30 0.001

Log likelihood = —58.9795
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fidence interval for the coefficient, f;, and then exponentiating these
values. In general, the endpoints are given by the expression

eXP[Bx T2 an X S’E(Bl )]

As an example, consider the estimation of the odds ratio for the

dichotomized variable AGED. The point estimate is OR =8.1 and the
endpoints of a 95% CI are

exp(2.094 £1.96 x 0.529) = (2.9, 22.9).

This interval is typical of the confidence intervals seen for odds ratios
when the point estimate exceeds 1. The confidence interval is skewed to
the right. This confidence interval suggests that CHD among those 55
and older in the study population could be as little as 2.9 times or much
as 22.9 times more likely than those under 55, at the 95 percent level of
confidence.

Because of the importance of the odds ratio as a measure of asso-
ciation, many software packages automatically provide point and confi-
dence interval estimates based on the exponentiation of each coefficient
in a fitted logistic regression model. These quantities provide estimates
of odds ratios of interest in only a few special cases (e.g., a dichotomous
variable coded zero or one that is not involved in any interactions with
other variables). The major goal of this chapter is to provide the meth-
ods for using the results of fitted models to provide point and confi-
dence interval estimates of odds ratios that are of interest, regardless of
how complex the fitted model may be.

Before concluding the dichotomous variable case, it is important to
consider the effect that the coding of the variable has on the computa-
tion of the estimated odds ratio. In the previous discussion we noted

- . A A . -
that the estimate of the odds ratio was OR=exp(ﬁ1). This is correct

when the independent variable is coded as 0 or 1. Other coding may
require that we calculate the value of the logit difference for the specific
coding used, and then exponentiate this difference to estimate the odds
ratio.

We illustrate these computations in detail, as they demonstrate the
general method for computing estimates of odds ratios in logistic re-
gression. The estimate of the log of the odds ratio for any independent
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variable at two different levels, say x=a versus x =05, is the difference
between the estimated logits computed at these two values,

ln[(fR(a, b)]= g(x=a)-g(x=»b)
=(Bo +B1 xa)“(ﬁo +[§1 Xb)
=B, x(a-b). O (3.3)

The estimate of the odds ratio is obtained by exponentiating the logit
difference,

(5‘R(a,b)=exp[[3, x(a—b)]. (3.4)

Note that this expression is equal to exp(ﬁl) only when (@ — b) = 1. In

(3.3) and (3.4) the notation OAR(a,b) is used to represent the odds ratio

#(x = a)/[1 - #(x = a)]
#(x =b)/[1-#(x=1)]

OR(a,b) = (3.5)

and when a= 1 and b = 0 we let OR = OAR(I,O).

Some software packages offer a choice of methods for coding de-
sign variables. The “zero-one” coding used so far in this section is
frequently referred to as reference cell coding. The reference cell
method typically assigns the value of zero to the lower code for x and
one to the higher code. For example, if SEX was coded as 1 = male and
2 = female, then the resulting design variable under this method, D,
would be coded 0 = male and 1 = female. Exponentiation of the esti-
mated coefficient for D would estimate the odds ratio of female relative
to male. This same result would have been obtained had sex been
coded originally as 0 = male and 1 = female, and then treating the vari-
able SEX as if it were interval scaled.

Another coding method is frequently referred to as deviation from
means coding. This method assigns the value of —1 to the lower code,
and a value of 1 to the higher code. The coding for the variable SEX
discussed above is shown in Table 3.4.
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Table 3.4 Illustration of the Coding of the Design
Variable Using the Deviation from Means Method

Design Variable
SEX (Code) D
Male (1) -1
Female (2) 1

Suppose we wish to estimate the odds ratio of female versus male
when deviation from means coding is used. We do this by using the
general method shown in (3.3) and (3.4),

ln[OAR(female, male)] = g(female) — §(male)
=g(D=1)~-g(D=-1)

o+ B x(D=1)|-[B + B x(D=-1)]

= 25,

and the estimated odds ratio is (fR(female, male) = exp(2B,). Thus, if we

had exponentiated the coefficient from the computer output we would
have obtained the wrong estimate of the odds ratio. This points out
quite clearly that we must pay close attention to the method used to
code the design variables.

The method of coding also influences the calculation of the end-
points of the confidence interval. For the above example, using the de-
viation from means coding, the estimated standard error needed for

. . . - . el A . . e A
confidence interval estimation is SE(Z[‘I,) which is 2xSE(ﬂ1>. Thus the

endpoints of the confidence interval are
exp[Zﬁ1 izl_a,22SE(ﬁ, )]

In general, the endpoints of the confidence interval for the odds ratio
given in (3.5) are

CXP[BI (a=b)*z_gpla—bx S’E(ﬁl )] )



56 INTERPRETATION OF THE FITTED MODEL

where |a - h| is the absolute value of (a—»). Since we can control how
we code our dichotomous variables, we recommend that, in most situa-
tions, they be coded as O or 1 for analysis purposes. Each dichotomous
variable is then treated as an interval scale variable.

In summary, for a dichotomous variable the parameter of interest is
the odds ratio. An estimate of this parameter may be obtained from the
estimated logistic regression coefficient, regardless of how the variable is
coded. This relationship between the logistic regression coefficient and
the odds ratio provides the foundation for our interpretation of all lo-
gistic regression results.

3.3 POLYCHOTOMOUS INDEPENDENT VARIABLE

Suppose that instead of two categories the independent variable has
k >2 distinct values. For example, we may have variables that denote
the county of residence within a state, the clinic used for primary health
care within a city, or race. Each of these variables has a fixed number
of discrete values and the scale of measurement is nominal. We saw in
Chapter 2 that it is inappropriate to model a nominal scale variable as if
it were an interval scale variable. Therefore, we must form a set of de-
sign variables to represent the categories of the variable. In this section
we present methods for creating design variables for polychotomous
independent variables. The choice of a particular method depends to
some extent on the goals of the analysis and the stage of model devel-
opment.

We begin by extending the method presented in Table 2.1 for a
dichotomous variable. For example, suppose that in a study of CHD the
variable RACE is coded at four levels, and that the cross-classification of

Table 3.5 Cross-Classification of Hypothetical Data on
RACE and CHD Status for 100 Subjects

CHD Status | White Black Hispanic Other Total
Present 5 20 15 10 50

Absent 20 10 10 10 50

Total 25 30 25 20 100
QOdds Ratio 1 8 6 4

95 % Cl (2.3,27.6) (1.7,21.3) (1.1, 14.9)

1n((5‘R) 0.0 2.08 1.79 1.39
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Table 3.6 Specification of the Design Variables
for RACE Using Reference Cell Coding with
White as the Reference Group

Design Variables
RACE(Code) RACE_2 RACE_3 RACE_4
White (1) 0 0 0
Black (2) 1 0 0
Hispanic (3) 0 1 0
Other  (4) 0 0 1

RACE by CHD status yields the data in Table 3.5. These data are hy-
pothetical and have been formulated for ease of computation. The ex-
tension to a situation where the variable has more than four levels is not
conceptually different, so all the examples in this section use k=4.

At the bottom of Table 3.5, the odds ratio is given for each race,
using White as the reference group. For example, for Hispanic the esti-
mated odds ratio is 15x20/5x10. The log of each odds ratio is given
in the last row of Table 3.5. This table is typical of what is found in the
literature. The reference group is indicated by a value of 1 for the odds
ratio. These same estimates of the odds ratio may be obtained from a
logistic regression program with an appropriate choice of design vari-
ables. The method for specifying the design variables involves setting
all of them equal to zero for the reference group, and then setting a sin-
gle design variable equal to 1 for each of the other groups. This is il-
lustrated in Table 3.6. As noted in Section 3.2 this method is usually
referred to as reference cell coding and is the default method in many
packages.

Use of any logistic regression program with design variables coded
as shown in Table 3.6 yields the estimated logistic regression coeffi-
cients given in Table 3.7.

A comparison of the estimated coefficients in Table 3.7 to the log
odds ratios in Table 3.5 shows that

ln[OAR(Black,White)] = f, =2.079,

in| OR (Hispanic, White)] = B, =1.792,

and
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Table 3.7 Results of Fitting the Logistic
Regression Model to the Data in Table 3.5
Using the Design Variables in_Table 3.6

Variable Coeff. Std. Err. z P>zl
RACE_2 2.079 0.6325 3.29 0.001
RACE_3 1.792 0.6466 2.78 0.006
RACE_4 1.386 0.6708 2.07 0.039
Constant —1.386 0.5000 -2.77 0.006

Log likelihood = —62.2937

ln[OAR(Other, White)] = f, =1.386.

Did this happen by chance? Calculation of the logit difference shows
that it is by design. The comparison of Black to White is as follows:

In|OR (Black, White)] = 3(Black)~ §(White)

_| By + B, x(RACE__2=1)+ B, x(RACE__3=0)
) + 3, x(RACE _4=0)

_. B, + B, x(RACE_2 =0)+ B, x (RACE _3=0)
+ B, x(RACE_4 =0)
=B1-

Similar calculations would demonstrate that the other coefficients esti-
mated using logistic regression are also equal to the log of odds ratios
computed from the data in Table 3.5.

A comment about the estimated standard errors may be helpful at
this point. In the univariate case the estimates of the standard errors
found in the logistic regression output are identical to the estimates ob-
tained using the cell frequencies from the contingency table. For ex-
ample, the estimated standard error of the estimated coefficient for the
design variable RACE_2 is

0.5
SE(ﬁ,)=[1+i+i+i] = 0.6325.
5720 20 10
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A derivation of this result may be found in Bishop, Feinberg, and Hol-
land (1975).

Confidence limits for odds ratios are obtained using the same ap-
proach used in Section 3.2 for a dichotomous variable. We begin by
computing the confidence limits for the log odds ratio (the logistic re-
gression coefficient) and then exponentiate these limits to obtain limits
for the odds ratio. In general, the limits for a 100(1-a)% CIE for the
coefficient are of the form

ﬁj 2 g X SlE(ﬁ,)

The corresponding limits for the odds ratio, obtained by exponentiating
these limits, are as follows:

exp[ﬁjiz,_a,zxs%(ﬁj)]. _ (3.6)

The confidence limits given in Table 3.5 in the row beneath the esti-
mated odds ratios were obtained using the estimated coefficients and
standard errors in Table 3.7 with (3.6) for j=1,2,3 with a =0.05.

Reference cell coding is the most commonly employed coding
method appearing in the literature. The primary reason for the wide-
spread use of this method is the interest in estimating the risk of an
“exposed” group relative to that of a “control” or “unexposed”
group.

As discussed in Section 3.2 a second method of coding design
variables is called deviation from means coding. This coding expresses
effect as the deviation of the “group mean” from the “overall mean.”
In the case of logistic regression, the “group mean” is the logit for the

Table 3.8 Specification of the Design Variables for
RACE Using Deviation from Means Coding

Design Variables
RACE(Code) RACE_2 RACE_3 RACE_4
White (1) -1 -1 -1
Black (2) 1 0 0
Hispanic (3) 0 1 0
Other (4) 0 0 1
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Table 3.9 Results of Fitting the Logistic
Regression Model to the Data in Table 3.5
Using the Design Variables in Table 3.8

Variable Coeff. Std. Err. Z P>lzl
RACE_2 0.765 0.3506 2.18 0.029
RACE_3 0.477 0.3623 1.32 0.188
RACE_4 0.072 0.3846 0.19 0.852
Constant -0.072 0.2189 -0.33 0.742

Log likelihood =—62.2937

group and the “overall mean” is the average logit over all groups. This
method of coding is obtained by setting the value of all the design vari-
ables equal to —1 for one of the categories, and then using the 0, 1 cod-
ing for the remainder of the categories. Use of the deviation from
means coding for race shown in Table 3.8 yields the estimated logistic
regression coefficients in Table 3.9.

In order to interpret the estimated coefficients in Table 3.9 we
need to refer to Table 3.5 and calculate the logit for each of the four
categories of RACE. These are

. (505 ( 5 J
=] — =l _— =—1386
& "(20/25) "20

&, =In(20/10)=0.693, §,=1In(15/10)=0.405, &, =In(10/10)=0, and
their average is §=z 8;/4-0.072. The estimated coefficient for de-

sign variable RACE_2 in Table 3.9 is g, —g=0.693-(-0.072) =
0.765. The general relationship for the estimated coefficient for design
variable RACE j is §; - ¢, for j=2,3,4.

The interpretation of the estimated coefficients is not as easy or
clear as in the situation when a reference group is used. Exponentiation
of the estimated coefficients yields the ratio of the odds for the particu-
lar group to the geometric mean of the odds. Specifically, for RACE_2
in Table 3.9 we have
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xp(0.763)= exp(z, - 7)
=exp(g, )/exp(z gj/4)

=(20/10)/[(5/20) x (20/10) x (15/10) x (10/10)]"**
=2.15.

This number, 2.15, is not a true odds ratio because the quantities in the
numerator and denominator do not represent the odds for two distinct
categories. The exponentiation of the estimated coefficient expresses
the odds relative to an “average” odds, the geometric mean. The inter-
pretation of this value depends on whether the “average” odds is in fact
meaningful.

The estimated coefficients obtained using deviation from means
coding may be used to estimate the odds ratio for one category relative
to a reference category. The equation for the estimate is more compli-
cated than the one obtained using the reference cell coding. However, it
provides an excellent example of the basic principle of using the logit
difference to compute an odds ratio.

To illustrate this we calculate the log odds ratio of Black versus
White using the coding for design variables given in Table 3.8. The
logit difference is as follows:

ln[OAR(Black, White)] = #(Black) ~ #(White)
_[By+ B x(RACE_2=1)+ B, x (RACE _3=0)
_[ + B, x(RACE_4=0) }
B, + B, x(RACE_2 =—1)+ B, X (RACE _3=-1)
{ + B, x(RACE _4=-1) }
=2B, + B, + B, (3.7)

To obtain a confidence interval we must estimate the variance of
the sum of the coefficients in (3.7). In this example, the estimator is

Var {ln[d\R(Black, White)]} =4xVar(B, )+ Var(B,)

+V2r([f3)+4 xcav(ﬁl,ﬁz)
+4xC8V(B, B, ) +2xCEV(By.B,). (3.8)
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Values for each of the estimators in (3.8) may be obtained from output
that is available from logistic regression software. Confidence intervals
for the odds ratio are obtained by exponentiating the endpoints of the
confidence limits for the sum of the coefficients in (3.7). Evaluation of
(3.7) for the current example gives

1n[(5‘R(Black, White)] =2(0.765)+0.477 +0.072 = 2.079.

The estimate of the variance is obtained by evaluating (3.8) which, for
the current example, yields

Var {m[ci‘R(Black, White)]} = 4(0.351)2 +(0.362)? +(0.385)"
+4(-0.031) + 4(~0.040) + 2(~0.044) = 0.400

and the estimated standard error is
s’E{ln[é‘R(Black, White)]} = 0.6325.

We note that the values of the estimated log odds ratio, 2.079, and
the estimated standard error, 0.6325, are identical to the values of the
estimated coefficient and standard error for the first design variable in
Table 3.7. This is expected, since the design variables used to obtain the
estimated coefficients in Table 3.7 were formulated specifically to yield
the log odds ratio relative to the White race category.

It should be apparent that, if the objective is to obtain odds ratios,
use of deviation from means coding for design variables is computa-
tionally much more complex than reference cell coding.

In summary, we have shown that discrete nominal scale variables
are included properly into the analysis only when they have been
recoded into design variables. The particular choice of design variables
depends on the application, though the reference cell coding is the easi-
est to interpret, and thus is the one we use in the remainder of this text.



CONTINUOUS INDEPENDENT VARIABLE 63
3.4 CONTINUOUS INDEPENDENT VARIABLE

When a logistic regression model contains a continuous independent
variable, interpretation of the estimated coefficient depends on how it is
entered into the model and the particular units of the variable. For pur-
poses of developing the method to interpret the coefficient for a con-
tinuous variable, we assume that the logit is linear in the variable. Other
modeling strategies that examine this assumption are presented in
Chapter 4.

Under the assumption that the logit is linear in the continuous co-
variate, x, the equation for the logit is g(x)=f, + B,x. It follows that the
slope coefficient, f3,, gives the change in the log odds for an increase of
“1” unit in x, that is, B, = g(x+1)—g(x) for any value of x. Most often
the value of “1” is not clinically interesting. For example, a 1 year in-
crease in age or a | mm Hg increase in systolic blood pressure may be
too small to be considered important. A change of 10 years or 10 mm
Hg might be considered more useful. On the other hand, if the range of
x is from zero to 1, then a change of 1 is too large and a change of 0.01
may be more realistic. Hence, to provide a useful interpretation for
continuous scale covariates we need to develop a method for point and
interval estimation for an arbitrary change of “c” units in the covariate.

The log odds ratio for a change of ¢ units in x is obtained from the
logit difference g{x+c)—g(x)=cp, and the associated odds ratio is ob-
tained by exponentiating this logit difference, OR(c)=OR(x+c,x)
=exp(cf;). An estimate may be obtained by replacing B, with its

maximum likelihood estimate ﬁl. An estimate of the standard error
needed for confidence interval estimation is obtained by multiplying the
estimated standard error of B, by ¢. Hence the endpoints of the
100(1 - @)% CI estimate of OR(c) are

exPl}ﬁl 21 g2 SAE(ﬁl )] ‘

Since both the point estimate and endpoints of the confidence in-
terval depend on the choice of c, the particular value of ¢ should be
clearly specified in all tables and calculations. The rather arbitrary na-
ture of the choice of ¢ may be troublesome to some. For example, why
use a change of 10 years when 5 or 15 or even 20 years may be equally
good? We, of course, could use any reasonable value; but the goal must
be kept in mind: to provide the reader of your analysis with a clear indi-
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cation of how the risk of the outcome being present changes with the
variable in question. Changes in multiples of 5 or 10 may be most
meaningful and easily understood.

As an example, consider the univariate model in Table 1.3. In that
example a logistic regression of AGE on CHD status using the data of
Table 1.1 was reported. The resulting estimated logit was
2(AGE)=-5.310+0.111xAGE. The estimated odds ratio for an in-

crease of 10 years in age is d\R(10)=exp(10x0.111)=3.03. This indi-
cates that for every increase of 10 years in age, the risk of CHD in-
creases 3.03 times. The validity of such a statement is questionable in
this example, since the additional risk of CHD for a 40 year-old com-
pared to a 30 year-old may be quite different from the additional risk
of CHD for a 60 year-old compared to a 50 year-old. This is an un-
avoidable dilemma when continuous covariates are modeled linearly in
the logit. If it is believed that the logit is not linear in the covariate, then
grouping and use of dummy variables should be considered. Alterna-
tively, use of higher order terms (e.g., x%,x°,..) or other nonlinear
scaling in the covariate (e.g., log(x)) could be considered. Thus, we see
that an important modeling consideration for continuous covariates is
their scale in the logit. We consider this in considerable detail in Chap-
ter 4. The endpoints of a 95% confidence interval for this odds ratio
are

exp(10x0.111+1.96 x10 x 0.024) = (1.90,4.86).

Results similar to these may be placed in tables displaying the results of
a fitted logistic regression model.

In summary, the interpretation of the estimated coefficient for a
continuous variable is similar to that of nominal scale variables: an esti-
mated log odds ratio. The primary difference is that a meaningful
change must be defined for the continuous variable.

3.5 THE MULTIVARIABLE MODEL

In the previous sections in this chapter we discussed the interpretation of
an estimated logistic regression coefficient in the case when there is a
single variable in the fitted model. Fitting a series of univariate models
rarely provides an adequate analysis of the data in a study since the in-
dependent variables are usually associated with one another and may
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have different distributions within levels of the outcome variable. Thus,
one generally considers a multivariable analysis for a more comprehen-
sive modeling of the data. One goal of such an analysis is to statistically
adjust the estimated effect of each variable in the model for differences
in the distributions of and associations among the other independent
variables. Applying this concept to a multivariable logistic regression
model, we may surmise that each estimated coefficient provides an esti-
mate of the log odds adjusting for all other variables included in the
model.

A full understanding of the estimates of the coefficients from a
multivariable logistic regression model requires that we have a clear un-
derstanding of what is actually meant by the term adjusting, statistically,
for other variables. We begin by examining adjustment in the context
of a linear regression model, and then extend the concept to logistic re-
gression.

The multivariable situation we examine is one in which the model
contains two independent variables — one dichotomous and one con-
tinuous — but primary interest is focused on the effect of the dichoto-
mous variable. This situation is frequently encountered in epidemi-
ologic research when an exposure to a risk factor is recorded as being
either present or absent, and we wish to adjust for a variable such as age.
The analogous situation in linear regression is called analysis of covari-
ance.

Suppose we wish to compare the mean weight of two groups of
boys. It is known that weight is associated with many characteristics,
one of which is age. Assume that on all characteristics except age the
two groups have nearly identical distributions. If the age distribution is
also the same for the two groups, then a univariate analysis would suf-
fice and we could compare the mean weight of the two groups. This
comparison would provide us with a correct estimate of the difference in
weight between the two groups. However, if one group was much
younger than the other group, then a comparison of the two groups
would be meaningless, since at least a portion of any difference ob-
served would likely be due to the difference in age. It would not be
possible to determine the effect of group without first eliminating the
discrepancy in ages between the groups.

This situation is described graphically in Figure 3.1. In this figure
it is assumed that the relationship between age and weight is linear, with
the same significant nonzero slope in each group. Both of these as-
sumptions would usually be tested in an analysis of covariance before
making any inferences about group differences. We defer a discussion
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Figure 3.1 Comparison of the weight of two groups of boys with different
distributions of age.

of this until Chapter 4, as it gets to the heart of modeling with logistic
regression. We proceed as if these assumptions have been checked and
are supported by the data.

The statistical model! that describes the situation in Figure 3.1 states
that the value of weight, w, may be expressed as w=f,+fx+ B,a,
where x =0 for group 1 and x=1 for group 2 and “a” denotes age.
In this model the parameter f, represents the true difference in weight
between the two groups and f3, is the rate of change in weight per year
of age. Suppose that the mean age of group 1 is @ and the mean age
of group 2 is @,. These values are indicated in Figure 3.1. Comparison
of the mean weight of group 1 to the mean weight of group 2 amounts
to a comparison of w, to w,. In terms of the model this difference is

(w, —w,)= B, + B,(a, -a,). Thus the comparison involves not only the
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Table 3.10 Descriptive Statistics for Two Groups of
50 Men on AGE and Whether They Had Seen a
Physician (PHY) (1 = Yes, 0 = No) Within the Last
Six Months

Group 1 Group 2
Variable Mean Std. Dev. Mean Std. Dev
PHY 0.36 0.485 0.80 0.404
AGE 39.60 5.272 47.34 5.259

true difference between the groups, B, but a component, ,BZ(E2 —Zz',),
which reflects the difference between the ages of the groups.

The process of statistically adjusting for age involves comparing
the two groups at some common value of age. The value usually used is
the mean of the two groups which, for the example, is denoted by @ in
Figure 3.1. In terms of the model this yields a comparison of w, to w;,
(wy—w3)= B, +B,(@-a)=p,, the true difference between the two

groups. In theory any common value of age could be used, as it would
yield the same difference between the two lines. The choice of the
overall mean makes sense for two reasons: it is biologically reasonable
and lies within the range for which we believe that the association be-
tween age and weight is linear and constant within each group.

Consider the same situation shown in Figure 3.1, but instead of
weight being the dependent variable, assume it is a dichotomous variable
and that the vertical axis denotes the logit. That is, under the model the
logit is given by the equation g(x,a)=pf,+Bx+Ba. A univariate
comparison obtained from the 2 X 2 table cross-classifying outcome
and group would yield a log odds ratio approximately equal to
B, +B,(@, -a,). This would incorrectly estimate the effect of group

due to the difference in the distribution of age. To account or adjust
for this difference, we include age in the model and calculate the logit
difference at a common value of age, such as the combined mean, @.
This logit difference is g(x=1,a)-g(x=0,a)=p,. Thus, the coeffi-
cient B is the log odds ratio that we would expect to obtain from a uni-
variate comparison if the two groups had the same distribution of age.

The data summarized in Table 3.10 provide the basis for an exam-
ple of interpreting the estimated logistic regression coefficient for a di-
chotomous variable when the cocfficient is adjusted for a continuous
variable.
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It follows from the descriptive statistics in Table 3.10 that the uni-
variate log odds ratio for group 2 versus group 1 is

ln(OAR) =1n(0.8/0.2) - In(0.36/0.64) = 1.962,

and the unadjusted estimated odds ratio is OR=7.11. We can also see
that there is a considerable difference in the age distribution of the two
groups, the men in group 2 being on average more than 7 years older
than those in group 1. We would guess that much of the apparent dif-
ference in the proportion of men seeing a physician might be due to
age. Analyzing the data with a bivariate model using a coding of
GROUP = O for group 1, and GROUP = 1 for group 2, yields the esti-
mated logistic regression coefficients shown in Table 3.11. The age-
adjusted log odds ratio is given by the estimated coefficient for group in

Table 3.11 and is fB,=1.263. The age adjusted odds ratio is

OR = exp(1.263)=3.54. Thus, much of the apparent difference between
the two groups is, in fact, due to differences in age.
Let us examine this adjustment in more detail using Figure 3.1. An

approximation to the unadjusted odds ratio is obtained by exponentiat-
ing the difference w,—w,. In terms of the fitted logistic regression

model shown in Table 3.11 this difference is

[-4.866 +1.263+0.107(47.34)] - [-4.866 +0.107(39.60) ]| =
1.263+0.107(47.34 - 39.60).

The value of this odds ratio is

e[l.263+0.107(47.34—39‘60)] =8.09.

The discrepancy between 8.09 and the actual unadjusted odds ratio,
7.11, is due to the fact that the above comparison is based on the differ-
ence in the average logit, while the crude odds ratio is approximately
equal to a calculation based on the average estimated logistic probability
for the two groups. The age adjusted odds ratio is obtained by expo-
nentiating the difference w, —w,, which is equal to the estimated coeffi-
cient for GROUP. In the example the difference is

[-4.866 +1.263+0.107(43.47)] - [4.866 + 0.107(43.47)] = 1.263.
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Table 3.11 Results of Fitting the Logistic Regression
Model to the Data Summarized in Table 3.10

Variable Coeff. Std. Err. z P>zl
GROUP 1.263 0.5361 2.36 0.018

AGE 0.107 0.0465 2.31 0.021
Constant —4.866 1.9020 —2.56 0.011

Log likelihood = —54.8292

Bachand and Hosmer (1999) compare two different sets of criteria
for defining a covariate to be a confounder. They show that the nu-
meric approach used in this Section, examining the change in the mag-
nitude of the coefficient for the risk factor from logistic regression
models fit with and without the potential confounder, is appropriate
when the logistic regression model containing both risk factor and con-
founder is not fully S-shaped. A more detailed evaluation is needed
when the fitted model yields fitted values producing a full S-shaped
function within the levels of the risk factor. This is discussed in greater
detail in Chapter 4.

The method of adjustment when the variables are all dichotomous,
polychotomous, continuous or a mixture of these is identical to that just
described for the dichotomous-continuous variable case. For example,
suppose that instead of treating age as continuous it was dichotomized
using a cutpoint of 45 years. To obtain the age-adjusted effect of
group we fit the bivariate model containing the two dichotomous vari-
ables and calculate a logit difference at the two levels of group and a
common value of the dichotomous variable for age. The procedure is
similar for any number and mix of variables. Adjusted odds ratios are
obtained by comparing individuals who differ only in the characteristic
of interest and have the values of all other variables constant. The ad-
justment is statistical as it only estimates what might be expected to be
observed had the subjects indeed differed only on the particular char-
acteristic being examined, with all other variables having identical distri-
butions within the two levels of outcome.

One point should be kept clearly in mind when interpreting statisti-
cally adjusted log odds ratios and odds ratios. The effectiveness of the
adjustment is entirely dependent on the adequacy of the assumptions of
the model: linearity and constant slope. Departures from these may
render the adjustment useless. One such departure, where the relation-
ship is linear but the slopes differ, is called interaction. Modeling inter-
actions is discussed in Section 3.6 and again in Chapter 4.
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3.6 INTERACTION AND CONFOUNDING

In the last section we saw how the inclusion of additional variables in a
model provides a way of statistically adjusting for potential differences
in their distributions. The term confounder is used by epidemiologists
to describe a covariate that is associated with both the outcome variable
of interest and a primary independent variable or risk factor. When
both associations are present then the relationship between the risk fac-
tor and the outcome variable is said to be confounded. The procedure
for adjusting for confounding, described in Section 3.5, is appropriate
when there is no interaction. In this section we introduce the concept of
interaction and show how we can control for its effect in the logistic re-
gression model. In addition, we illustrate with an example how con-
founding and interaction may affect the estimated coefficients in the
model.

Interaction can take many different forms, so we begin by de-
scribing the situation when it is absent. Consider a model containing a
dichotomous risk factor variable and a continuous covariate, such as in
the example discussed in Section 3.5. If the association between the
covariate (i.e., age) and the outcome variable is the same within each
level of the risk factor (i.e., group), then there is no interaction between
the covariate and the risk factor. Graphically, the absence of interaction
yields a model with two parallel lines, one for each level of the risk fac-
tor variable. In general, the absence of interaction is characterized by a
model that contains no second or higher order terms involving two or
more variables.

When interaction is present, the association between the risk factor
and the outcome variable differs, or depends in some way on the level
of the covariate. That is, the covariate modifies the effect of the risk
factor. Epidemiologists use the term effect modifier to describe a vari-
able that interacts with a risk factor. In the previous example, if the logit
is linear in age for the men in group 1, then interaction implies that the
logit does not follow a line with the same slope for the second group.
In theory, the association in group 2 could be described by almost any
model except one with the same slope as the logit for group 1.

The simplest and most commonly used model for including inter-
action is one in which the logit is also linear in the confounder for the
second group, but with a different slope. Alternative models can be
formulated which would allow for a relationship that is non-linear be-
tween the logit and the variables in the model within each group. In any
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Figure 3.2 Plot of the logits under three different models showing the
presence and absence of interaction.

model, interaction is incorporated by the inclusion of appropriate
higher order terms.

An important step in the process of modeling a set of data is de-
termining whether there is evidence of interaction in the data. This as-
pect of modeling is discussed in Chapter 4. In this section we assume
that when interaction is present it can be modeled by nonparallel
straight lines.

Figure 3.2 presents the graphs of three different logits. In this
graph, 4 has been added to each of the logits to make plotting more
convenient. The graphs of these logits are used to explain what is meant
by interaction. Consider an example where the outcome variable is the
presence or absence of CHD, the risk factor is sex, and the covariate is
age. Suppose that the line labeled [, corresponds to the logit for fe-
males as a function of age. Line [/, represents the logit for males.
These two lines are parallel to each other, indicating that the relationship
between age and CHD is the same for males and females. In this situa-
tion there is no interaction and the log odds ratios for sex (male versus
female), controlling for age, is given by the difference between line [,
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Table 3.12 Estimated Logistic Regression Coefficients, Devi-
ance, and the Likelihood Ratio Test Statistic (G) for an Example

Showing Evidence of Confounding but No Interaction (n = 400)

Model Constant SEX AGE SEXXAGE  Deviance G
1 0.060 1.981 419.816
2 -3.374 1.356 0.082 407.780 12.036
3 —4.216 4.239 0.103 —0.062 406.392 1.388

and [, I, —1. This difference is equal to the vertical distance between
the two lines, which is the same for all ages.

Suppose instead that the logit for males is given by the line ;.
This line is steeper than the line /, for females, indicating that the rela-
tionship between age and CHD among males is different from that
among females. When this occurs we say there is an interaction between
age and sex. The estimate of the log-odds ratios for sex (males versus
females) controlling for age is still given by the vertical distance be-
tween the lines, [; -/, but this difference now depends on the age at
which the comparison is made. Thus, we cannot estimate the odds ratio
for sex without first specifying the age at which the comparison is being
made. In other words, age is an effect modifier.

Tables 3.12 and 3.13 present the results of fitting a series of logis-
tic regression models to two different sets of hypothetical data. The
variables in each of the data sets are the same: SEX, AGE, and the out-
come variable CHD. In addition to the estimated coefficients, the devi-
ance for each model is given. Recall that the change in the deviance
may be used to test for the significance of coefficients for variables
added to the model. An interaction is added to the model by creating a
variable that is equal to the product of the value of the SEX and the
value of AGE. Some programs have syntax that automatically creates
interaction variables in a statistical model, while others require the user
to create them through a data modification step.

Examining the results in Table 3.12 we see that the estimated coef-
ficient for the variable SEX changed from 1.981 in model 1 to 1.356, a
46 percent decrease, when AGE was added in model 2. Hence, there is
clear evidence of a confounding effect due to age. When the interaction
term “SEXXAGE” is added in model 3 we see that the change in the
deviance is only 1.388 which, when compared to the chi-square distri-
bution with 1 degree of freedom, yields a p-value of 0.24, which is
clearly not significant. Note that the coefficient for sex changed from
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Table 3.13 [Estimated Logistic Regression Coefficients,
Deviance, and the Likelihood Ratio Test Statistic (G)

for an Example Showing Evidence of Confounding and
Interaction (n = 400)

Model Constant SEX AGE SEXxXAGE  Deviance G
1 0.201 2.386 376.712
2 -6.672 1.274 0.166 338.688 38.024
3 -4.825 -7.838 0.121 0.205 330.654 8.034

1.356 to 4.239. This is not surprising since the inclusion of an interac-
tion term, especially when it involves a continuous variable, usuvally pro-
duces fairly marked changes in the estimated coefficients of dichoto-
mous variables involved in the interaction. Thus, when an interaction
term is present in the model we cannot assess confounding via the
change in a coefficient. For these data we would prefer to use model 2
that suggests age is a confounder but not an effect modifier.

The results in Table 3:13 show evidence of both confounding and
interaction due to age. Comparing model 1 to model 2 we see that the
coefficient for sex changes from 2.386 to [.274, an 87 percent de-
crease. When the age by sex interaction is added to the model we see
that the change in the deviance is 8.034 with a p-value of 0.005. Since
the change in the deviance is significant, we prefer model 3 to model 2,
and should regard age as both a confounder and an effect modifier.
The net result is that any estimate of the odds ratio for sex should be
made with reference to a specific age.

Hence, we see that determining whether a covariate, X, is an effect
modifier and/or a confounder involves several issues. The plots of the
logits shown in Figure 3.2 show us that determining effect modification
status involves the parametric structure of the logit, while determination
of confounder status involves two things. First the covariate must be
associated with the outcome variable. This implies that the logit must
have a nonzero slope in the covariate. Second the covariate must be
associated with the risk factor. In our example this is characterized by
having a difference in the mean age for males and females. However,
the association may be more complex than a simple difference in
means. The essence is that we have incomparability in our risk factor
groups. This incomparability must be accounted for in the model if we
are to obtain a correct, unconfounded, estimate of effect for the risk
factor.
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In practice, one method to check for the confounder status of a
covariate is to compare the estimated coefficient for the risk factor vari-
able from models containing and not containing the covariate. Any
“clinically important” change in the estimated coefficient for the risk
factor suggests that the covariate is a confounder and should be in-
cluded in the model, regardless of the statistical significance of its esti-
mated coefficient. As noted above, Bachand and Hosmer (1999) show
that the change in coefficient method does not always provide evidence
that a variable is a confounder and a more detailed evaluation may be
required. We return to this point in Chapter 4.

On the other hand, we believe that a covariate is an effect modifier
only when the interaction term added to the model is both clinically
meaningful and statistically significant. When a covariate is an effect
modifier, its status as a confounder is of secondary importance since the
estimate of the effect of the risk factor depends on the specific value of
the covariate.

The concepts of adjustment, confounding, interaction, and effect
modification, may be extended to cover the situations involving any
number of variables on any measurement scale(s). The dichotomous-
continuous variables example illustrated in this section has the advan-
tage that the results are easily shown graphically. This is not the case
with more complicated models. The principles for identification and
inclusion of confounder and interaction variables in the model are the
same regardless of the number of variables and their measurement
scales.

3.7 ESTIMATION OF ODDS RATIOS IN THE
PRESENCE OF INTERACTION

In Section 3.6 we showed that when there was interaction between a risk
factor and another variable, the estimate of the odds ratio for the risk
factor depends on the value of the variable that is interacting with it. In
this situation we may not be able to estimate the odds ratio by simply
exponentiating an estimated coefficient. One approach that will always
yield the correct model-based estimate is to (1) write down the expres-
sions for the logit at the two levels of the risk factor being compared, (2)
algebraically simplify the difference between the two logits and com-
pute its value (3) exponentiate the value obtained in step 2.

As a first example, we develop the method for a model containing
only two variables and their interaction. In this model, denote the risk



ESTIMATING ODDS RATIOS IN THE PRESENCE OF INTERACTION 75

factor as F, the covariate as X and their interaction as FxX. The logit
for this model evaluated at F= f and X=x is

g(fox)= By +Bf +Byx+Baf Xx . (3.9)
Assume we want the odds ratio comparing two levels of F, F = f versus

and F= f,, at X =x. Following the three step procedure first we evalu-
ate the expressions for the two logits yielding

g(f,x)=Bo+ B fy + Byx + Bufy X x
and
g(forx)= By + Bify + Box + Bafy X x .

Second we compute and simplify their difference to obtain the log-odds
ratio yielding

In[OR(F = f;,F = fo, X = x)] = g{f,, %)~ &(fs. %)

=(By + B + Byx + Bafy X x)
~(Bo + Bufy + Box + By fy X %)
=Bi(fi = f3)+ Bsx(f - £o)- (3.10)

Third we obtain the odds ratio by exponentiating the difference ob-
tained at step 2 yielding

OR =exp|B,(f. - o)+ Bsx(fi - fu)] - (3.11)

Note that the expression for the log-odds ratio in (3.10) does not sim-
plify to a single coefficient. Instead, it involves two coefficients, the dif-
ference in the values of the risk factor and the interaction variable. The
estimator of the log-odds ratio is obtained by replacing the parameters
in (3.10) and (3.11) with their estimators.

We obtain the endpoints of the confidence interval estimator
using the same approach used for models without interactions. We cal-
culate the endpoints for the confidence interval for the log-odds ratio
and then exponentiate the end points. The basic building block of the
endpoints is the estimator of the variance of the estimator of the log-
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odds ratio in (3.10). Using methods for calculating the variance of a
sum we obtain the following estimator,

Vé‘r{ln[d‘R(hf,F:ﬁ,,X:x)]}=(f, - o) xVar(B,)

. R
+[x(fi-5)] xVar(ﬁ3)+2x(f, -5) xcé‘v(ﬁ,,ﬂ3) .

Most logistic regression computer packages have the option to provide
output showing estimates of the variances and covariances of the esti-
mated parameters in the model. Substitution of these estimates into
(3.12) obtains an estimate of the variance of the estimated log-odds ra-
tio. The endpoints of a 100x (1~ a)% confidence interval estimator for

the log-odds ratio are:

|B.(5i - )+ Bx(f - )]

+ z,_a,zs’ia{ln[d‘k(h fF= fO,X=x)]}, (3.13)
where the standard error in (3.13) is the positive square root of the vari-
ance estimator in (3.12). We obtain the endpoints of the confidence
interval estimator for the odds ratio by exponentiating the endpoints in
(3.13).

The estimators for the log-odds and its variance simplify in the case
when F is a dichotomous risk factor. If we let f; =1 and f, =0 then the

estimator of the log-odds ratio is
1n[6R(F= 1,F=0,X= x)] =B, +Byx, (3.14)
the estimator of the variance is

Var {m[o’k(p =1L,F=0,X= x)]}
=V§r([i,)+x2V§r(ﬁ3)+ 2xC6v([§,,ﬁ3) (3.15)

and the endpoints of the confidence interval are

(B +Bx) zl_a,zs’ﬁ{ln[d‘R(F =1,F=0,X= x)]} . (3.16)
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Table 3.14 Estimated Logistic Regress‘ion Coefficients,
Deviance, the Likelihood Ratio Test Statistic (G), and the

p-value for the Change for Models Containing LWD and
AGE from the Low Birthweight Data (n = 189)

Model Constant LWD AGE LWDXAGE In[i()] G »

0 -0.790 -117.34

1 -1.054 1.054 -113.12 8.44 0.004
2 —0.027 1.010 -0.044 -112.14 1.96 0.160
3 0.774  -1.944 -0.080 0.132 ~110.57 3.14 0.076

As an example, we consider a logistic regression model using the
low birth weight data described in Section 1.6 containing the variables
AGE and a dichotomous variable, LWD, based on the weight of the
mother at the last menstrual period. This variable takes on the value 1 if
LWT < 110 pounds, and is zero otherwise. The results of fitting a series
of logistic regression models are given in Table 3.14.

Using the estimated coefficient for LWD in model 1 we estimate the
odds ratio as exp(1.054)= 2.87. The results shown in Table 3.14 indi-

cate that AGE is not a strong confounder, Aﬁ% =472, but it does inter-
act with LWD, p=0.076. Thus, to assess the risk of low weight at the
last menstrual period correctly we must include the interaction of this
variable with the women’s age because the odds ratio is not constant
over age.

An effective way to see the presence of interaction is via a graph of
the estimated logit under model 3 in Table 3.14. This is shown in Fig
ure 3.3. The upper line in Figure 3.3 corresponds to the estimated logit
for women with LWD=1 and the lower line is for women with
LWD=0. Separate plotting symbols have been used for the two LWD
groups. The estimated log-odds ratio for LWD =1 versus LWD=0 at
AGE = x from (3.14) is equal to the vertical distance between the two
lines at AGE=x. We can see in Figure 3.3 that this distance is nearly
zero at 15 years and progressively increases. Since the vertical distance
is not constant we must choose a few specific ages for estimating the
effect of low weight at the last menstrual period. We can see in Figure
3.3 that none of the women in the low weight group, LWD =1, are older
than about 33 years. Thus we should restrict our estimates of the effect
of low weight to the range of 14 to 33 years. Based on these observa-
tions we estimate the effect of low weight at 15, 20, 25 and 30 years of
age.
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Figure 3.3 Plot of the estimated logit for women with LWD =1 and for
women with LWD =0 from Model 3 in Table 3.17.

Using (3.14) and the results for model 3 the estimated log-odds
ratio for low weight at the last menstrual period for a women of AGE =

ais

ln[(fR(LWD =1,LWD =0,AGE = a)] =_1.9444+0.132a. (3.17)

In order to obtain the estimated variance we must first obtain the

estimated covariance matrix for the estimated parameters.

Since this

matrix is symmetric most logistic regression software packages print the

Table 3.15 Estimated Covariance Matrix for the
Estimated Parameters in Model 3 of Table 3.14

Constant 0.828

LWD -0.828 2.975

AGE -0.353-02  -0.353-01 0.157-02

LWDXAGE | ~0.353-01 -0.128 -0.157-02 0.573-02
Constant LWD AGE LWDxAGE
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Table 3.16 Estimated Odds Ratios and 95% Confidence
Intervals for LWD, Controlling for AGE

Age 15 20 25 30
OR 1.04 2.01 3.90 7.55
95%CIE  0.29,3.79  0.91,4.44 171, 8.88  1.95, 29.19

results in the form similar to that shown in Table 3.15.
The estimated variance of the log-odds ratio given (3.16) is ob-
tained from (3.14) and is

vér{ln[OAR(LWD =1,LWD =0,AGE = a)]}
=2.975+a? x0.0057 +2 x a x (-0.128). (3.19)

Values of the estimated odds ratio and 95% CI computed using
(3.16) and (3.19) for several ages are given in Table 3.16. The results
shown in Table 3.16 demonstrate that the effect of LWD on the odds of
having a low birth weight baby increase exponentially with age. The
results also show that the increase in risk is significant for low weight
women 25 years and older. In particular low weight women of age 30
are estimated to have a risk that is about 7.5 times that of women of the
same age who are not low weight. The increase in risk could be as little
as two times or as much as 29 times with 95 percent confidence.

3.8 A COMPARISON OF LOGISTIC REGRESSION
AND STRATIFIED ANALYSIS FOR 2 x 2 TABLES

Many users of logistic regression, especially those coming from a back-
ground in epidemiology, have performed stratified analyses of 2x2 ta-

bles to assess interaction and to control confounding. The essential ob-
jective of such analyses is to determine whether the odds ratios are con-
stant, or homogeneous, over the strata. If the odds ratios are constant,
then a stratified odds ratio estimator such as the Mantel-Haenszel esti-
mator or the weighted logit-based estimator is computed. This same
analysis may also be performed using the logistic regression modeling
techniques discussed in Sections 3.6 and 3.7. In this section we com-
pare these two approaches. An example from the low birth weight data
illustrates the similarities and differences in the two approaches.
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Table 3.17 Cross-Classification of Low Birth
Weight by Smoking Status

SMOKE
1 0 Total
1 30 29 59
LOW
0 44 86 130
Total 74 115 189

Consider an analysis of the risk factor smoking on low birth
weight. The crude (or unadjusted) odds ratio computed from the 2x2
table shown in Table 3.17, cross-classifying the outcome variable LOW
with SMOKE, is OR =2.02.

Table 3.18 presents these data stratifying by the race of the mother.
We can use these tables as the basis for computing either the Mantel-
Haenszel estimate or the logit-based estimate of the odds ratio.

The Mantel-Haenszel estimator is a weighted average of the stratum
specific odds ratios, OR, =(a, xd,)/(b, x¢,), where a;, b, ¢;, and d, are
the observed cell frequencies in the 2x2 table for stratum i. For exam-

ple, in stratum 1 @, =19, b, =4, ¢, =33, and d, =40 and the total num-
ber of subjects is N, =96. The Mantel-Haenszel estimator of the odds

ratio is defined in this case as follows:
(3.20)

Evaluating (3.20) using the data in Table 3.18 yields the Mantel-
Haenszel estimate
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The logit-based summary estimator of the odds ratio is a weighted

average of the stratum specific log-odds ratios where each weight is the
inverse of the variance of the stratum specific log-odds ratio,

OR, = exp[z W, ln((i‘R,.) /Zw} 3.21)

Table 3.19 presents the estimated odds ratio, log-odds ratio, esti-
mate of the variance of the log-odds ratio and the weight, w.
The logit-based estimator based on the data in Table 3.18 is

OR, = exp(7.109/6.582) = 2.95,

Table 3.18 Cross-Classification of Low
Birth Weight by Smoking Status Stratified

by RACE
White
SMOKE
1 0 Total
1 19 4 23
LOW
0 33 40 73
Total 52 44 96
Black
SMOKE
1 0 Total
1 6 5 11
LOW
0 4 11 15
Total 10 16 26
Other
SMOKE
1 0 Total
1 5 20 25
LOW
0 7 35 42
Total 12 55 67
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Table 3.19 Tabulation of the Estimated Odds
Ratios, In(Estimated Odds Ratios), Estimated
Variance of the In(Estimated Odds Ratios), and the
Inverse of the Estimated Variance, w, for Smoking

Status Within Each Stratum of RACE

White Black Other

SR 5.758 3.300 1.250
1n(SR) 1.751 1.194 0.223
var{In(OR)] 0.358 0.708 0.421
w 2.794 1.413 2.375

which is slightly smaller than the Mantel-Haenszel estimate. The high
fluctuation in the odds ratio across the race strata suggests that there
may be either confounding or effect modification due to RACE, or
both. In general, the Mantel-Haenszel estimator and the logit based es-
timator are similar when the data are not too sparse within the strata.
One considerable advantage of the Mantel-Haenszel estimator is that it
may be computed when some of the cell entries are zero.

It is important to note that these estimators provide a correct esti-
mate of the effect of the risk factor only when the odds ratio is constant
across the strata. Thus, a crucial step in the stratified analysis is to assess
the validity of this assumption. Statistical tests of this assumption are
based on a comparison of the stratum specific estimates to an overall
estimate computed under the assumption that the odds ratio is, in fact,
coristant. The simplest and most easily computed test of the homoge-
neity of the odds ratios across strata is based on a weighted sum of the
squared deviations of the stratum specific log-odds ratios from their
weighted mean. This test statistic, in terms of the current notation, is

X2 = Z{W,[ln(OR,.)— ln(ORL)ﬂ . (3.22)

Under the hypothesis that the odds ratios are constant, X7 has a chi-
square distribution with degrees-of-freedom equal to the number of
strata minus 1. Thus, we would reject the homogeneity assumption
when X7 is large.
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Using the data in Table 3.19 we have X2 =3.017 which, with 2 de-
grees-of-freedom, yields a p-value of 0.221. Thus, in spite of the ap-
parent differences in the odds ratios seen in Table 3.19, the logit-based
test of homogeneity indicates that they are within sampling variation of
each other. It should be noted that the p-value calculated from the chi-
square distribution is accurate only when the sample sizes are not too
small within each stratum. This condition holds in this example.

Another test that also may be calculated by hand, but not as easily,
is discussed in Breslow and Day (1980) and is corrected by Tarone
(1985). This test compares the value of g; to an estimated expected
value, ¢;, if the odds ratio is constant. As noted by Breslow (1996) the
correct formula for the test statistic is

, wla-a) [X@)-XeE)
Xgp = 2 v Z(ﬁ;) .

The quantity ¢é; is obtained as one of the solutions to a quadratic equa-
tion given by the following formula

(3.23)

(nll +my; ) + (nOi - mli) *

12 |,
OR1 { Rn“+mh (”0, mu] [4(OR l)ORn,,mh]}
(3.24)

A
where n;=a;+b;, m;=a;+c; and ny =c;+d;. The quantity OR in

A
(3.24) is an estimate of the common odds ratio and either OR, or

VoY ~ . . .
OR,;y may be used. The quantity V; is an estimate of the variance of
a; computed under the assumption of a common odds ratio and is

-1
0i=(—1-+ 1A+ 1 + L J (3.25)

€ m;—¢€ my—¢ nNy—my;te;

If we use the value of the Mantel-Haenszel estimate, CfRMH =3.086 in
(3.23) then the resulting values of é and ¥ are: é =17.01, V, =3.56,
é,=591,v,=143, é,=7.16, and V, =2.33. The value of the Breslow-
Day statistic obtained is X2, =3.11-0.0081 =3.10, which is similar to
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Table 3.20 Estimated Logistic Regression Coefficients for

the Variable SMOKE, Log-Likelihood, the Likelihood Ratio
Test Statistic (G), and Resulting p-Value for Estimation of
the Stratified Odds Ratio and Assessment of Homogeneity of
Odds Ratios Across Strata Defined by RACE

Model SMOKE _ Log-Likelihood G df p
1 0.704 -114.90
2 1.116 -109.99 9.83 2 0.007
3 1.751 ~108.41 3.16 2 0.206

the value of the logit-based test. Some packages, for example SAS, re-
port the value of the first term in (3.23) as the Breslow-Day test

The same analysis may be performed much more easily by fitting
three logistic regression models. In model 1 we include only the vari-
able SMOKE. We then add the two design variables for RACE to obtain
model 2. For model 3 we add the two RACExSMOKE interaction
terms. The results of fitting these models are shown in Table 3.20.
Since we are primarily interested in the estimates of the coefficient for
SMOKE, the estimates of the coefficients for RACE and the RACE
XSMOKE interactions are not shown in Table 3.20.

Using the estimated coefficients in Table 3.20 we have the follow-
ing estimated odds ratios. The crude odds ratio is (5\R=exp(0.704)

= 2.02. Adjusting for RACE, the stratified estimate is OR = exp(1.116)
= 3.05. This value is the maximum likelihood estimate of the estimated
odds ratio, and it is similar in value to both the Mantel-Haenszel esti-
mate, OARMH =3.086, and the logit-based estimate, CfRL=2.95. The
change in the estimate of the odds ratio from the crude to the adjusted is
2.02 to 3.05, indicating considerable confounding due to RACE.
Assessment of the homogeneity of the odds ratios across the strata
is based on the likelihood ratio test of model 2 versus model 3. The
value of this statistic from Table 3.20 is G=3.156. This statistic is
compared to a chi-square distribution with 2 degrees-of-freedom, since
two interaction terms were added to model 2 to obtain model 3. This

test statistic is comparable to the ones from the logit-based test, X},, and
the Breslow-Day test, X},. If we had used the maximum likelihood es-
timate of the stratified odds ratio, exp(1.116), in computing the
Breslow-Day test, then the resulting statistic would have been equal to
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the Pearson chi-square goodness-of-fit test of model 2, since model 3 is the
saturated model.

The previously described analysis based on likelihood ratio tests may
be used when the data have either been grouped into contingency tables in
advance of the analysis, such as those shown in Table 3.17, or have re-
mained in casewise form. When the data have been grouped it is possible
to point out other similarities between classical analysis of stratified 2x2

tables and an analysis using logistic regression. Day and Byar (1979) have
shown that the 1 degree of freedom Mantel-Haenszel test of the hypothesis
that the stratum specific odds ratios are 1 is identical to the Score test for
the exposure variable when added to a logistic regression model already
containing the stratification variable. This test statistic may be easily ob-
tained from a logistic regression package with the capability to perform
Score tests such as the EGRET or SAS packages.

Thus, use of the logistic regression model provides a fast and effec-
tive way to obtain a stratified odds ratio estimator and to assess easily the
assumption of homogeneity of odds ratios across strata.

3.9 INTERPRETATION OF THE FITTED VALUES

In previous sections in this chapter we discussed use of estimated coeffi-
cients to construct estimated odds in a number of settings typically en-
countered in practice. In our experience this accounts for the vast majority
of the use of logistic regression modeling in applied settings. However
there are situations where the fitted values from the model are equally, if
not more, important. For example, Lemeshow, Teres, Klar, Avrunin,
Gehlbach and Rapoport (1993) used logistic regression modeling methods
to estimate a patient’s probability of hospital mortality after admission to
an intensive care unit.. We discussed in Section 1.4 and Section 2.5 the
basic methods for computing the fitted values and confidence interval es-
timates. In this section, we expand on this work and include graphical
presentation of fitted values and confidence bands. In addition we discuss
prediction of the outcome for a subject not in the estimation sample.

As an example consider the model fit to the low birth weight data
shown in Table 2.3. In Section 2.5 we illustrated the computations for a
150 pound white woman. A subject with these values was among the 189
subjects in the data set; thus estimates of the fitted value, logit and standard
error of the logit are readily available from standard output.

Suppose instead that we wanted to present a graph illustrating the ef-
fect of weight of the mother at the last menstrual period on birth weight
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Figure 3.4 Graph of the estimated logit of low weight birth and 95 percent
confidence intervals as a function of weight at the last menstrval period for white
women.

holding race constant and equal to white. To accomplish this we take ad-
vantage of the fact that we can obtain the values of (2.6) and (2.7) for all
subjects in the data set used to fit the model from standard logistic regres-
sion software. The graph for the estimated logit and its confidence bands
is presented in Figure 3.4. The point and interval estimates for the logit are
easily transformed to corresponding point and interval estimates for the
logistic probability using the fundamental relationship between the two,
see (1.19) and (1.21). These are presented in Figure 3.5. Note that we
could have presented graphs for any of the three racial groups or for all
three racial groups on the same graph. We arbitrarily chose the white
mothers in order to keep the graph from getting unnecessarily complicated.
The estimates in the figures are plotted at each observed value of LWT for
the 96 white mothers. The estimated logit and probability decrease due to
the fact that the estimated coefficient for LWT in Table 2.3 is negative.
Note that the confidence bands in Figure 3.4 are narrowest near the mean
value of LWT, approximately 130 pounds. The width increases in the
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same hyperbolic manner seen in similar plots from fitted linear regression
models. The same pattern, transformed, can be seen in Figure 3.5.

Each point, and associated confidence interval, in Figure 3.5 is an es-
timate of the mean of the outcome, low birthweight, among white mothers
of the specified value of LWT. Using the results in Section 2.5 at 150
pounds the point and interval estimates are 0.191 and (0.120, 0.289) re-
spectively. The interpretation is that estimated proportion of low weight
births among 150 pound white women is 0.191 and it could be as low as
0.12 or as high as 0.289 with 95 percent confidence. We would interpret
estimates and confidence intervals at other values of LWT in a similar
manner.

Suppose we wanted to use our fitted model to estimate the probability
of low birthweight for a population of women not represented in the 189 in
the estimation sample. As an example, suppose 150-pound black women.
We obtain the value of the estimated logit from (2.6) using the estimated
coefficients in Table 2.3 as follows

g(LWT =150, RACE = Black)=0.806-0.015x150+1.081x1+0.481x0

=-0.363
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Figure 3.5 Graph of the estimated probability of low weight birth and 95
percent confidence intervals as a function of weight at the last menstrual
neriod for white women.
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and the estimated logistic probability is

-0.363

A(LWT =150, RACE = Black) = 5 = 0.410
=

The interpretation is the same as for patterns of data seen in the estimation
sample. Namely, the model estimates that the 41 percent of 150 pound
black women will have a low birthweight baby.

In order to obtain the confidence interval for this estimate we need to
evaluate (2.7) or (2.9) using the covariance matrix in Table 2.4 with the
data vector x’ = (1,150,1,0). The resulting standard error from this com-

putation is
SE[3(LWT =150, RACE = Black)] = 1725,

yielding a 95 percent confidence interval for the probability of
(0.331, 0.494). The interpretation of this interval is that the proportion of
150 pound black women who give birth to a low weight baby could be as
little as 0.331 or as high as 0.494 (with 95 percent confidence).

As is the case with any regression model we must take care not to
extend model-based inferences out of the observed range of the data. The
range of weight at the last menstrual period among the 26 black mothers is
98 to 241 pounds. We note that 150 pounds is well within this range. It is
also important to keep in mind that any estimate is only as good as the
model it is based on. In this section we did not attend to many of the im-
portant model building details that are discussed in Chapter 4. We have
implicitly assumed that these steps have been performed.

EXERCISES

1. Consider the ICU data described in Section 1.6.1 and use as the outcome
variable vital status (STA) and CPR prior to ICU admission (CPR) as a
covariate.

(a) Demonstrate that the value of the log-odds ratio obtained from the
cross-classification of STA by CPR is identical to the estimated
slope coefficient from the logistic regression of STA on CPR.
Verify that the estimated standard error of the estimated slope co-
efficient for CPR obtained from the logistic regression package is
identical to the square root of the sum of the inverse of the cell fre-
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quencies from the cross-classification of STA by CPR. Use either
set of computations to obtain 95% CI for the odds ratio. What as-
pect concerning the coding of the variable CPR makes the calcula-
tions for the two methods equivalent?

(b) For purposes of illustration, use a data transformation statement to
recode, for this problem only, the variable CPR as follows: 4 = no
and 2 = yes. Perform the logistic regression of STA on CPR
(recoded). Demonstrate how the calculation of the logit difference
of CPR = yes versus CPR = no is equivalent to the value of the
log-odds ratio obtained in problem 1(a). Use the results from the
logistic regression to obtain the 95% CI for the odds ratio and ver-
ify that they are the same limits as obtained in Exercise 1(a).

(c) Consider the ICU data and use as the outcome variable vital status
(STA) and race (RACE) as a covariate. Prepare a table showing
the coding of the two design variables for RACE using the value
RACE = 1, white, as the reference group. Show that the estimated
log-odds ratios obtained from the cross-classification of STA by
RACE, using RACE = 1 as the reference group, are identical to
estimated slope coefficients for the two design variables from the
logistic regression of STA on RACE. Verify that the estimated
standard errors of the estimated slope coefficients for the two de-
sign variables for RACE are identical to the square root of the sum
of the inverse of the cell frequencies from the cross-classification
of STA by RACE used to calculate the odds ratio. Use either set
of computations to compute the 95% CI for the odds ratios.

(d) Create design variables for RACE using the method typically em-
ployed in ANOVA. Perform the logistic regression of STA on
RACE. Show by calculation that the estimated logit differences of
RACE = 2 versus RACE = 1 and RACE = 3 versus RACE = | are
equivalent to the values of the log-odds ratio obtained in problem
1(c). Use the resulits of the logistic regression to obtain the 95% CI
for the odds ratios and verify that they are the same limits as ob-
tained in Exercise 1(c). Note that the estimated covariance matrix
for the estimated coefficients is needed to obtain the estimated
variances of the logit differences.

(e) Consider the variable AGE in the ICU data set. Prepare a table
showing the coding of three design variables based on the empiri-
cal quartiles of AGE using the first quartile as the reference group.
Fit the logistic regression of STA on AGE as recoded into these
design variables and plot the three estimated slope coefficients ver-
sus the midpoint of the respective age quartile. Plot as a fourth
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point a value of zero at the midpoint of the first quartile of age.
Does this plot suggest that the logit is linear in age?

(f) Consider the logistic regression of STA on CRN and AGE. Con-
sider CRN to be the risk factor and show that AGE is a confounder
of the association of CRN with STA. Addition of the interaction
of AGE by CRN presents an interesting modeling dilemma. Ex-
amine the main effects only and interaction models graphically.
Using the graphical results and any significance tests you feel are
needed, select the best model (main effects or interaction) and jus-
tify your choice. Estimate relevant odds ratios. Repeat this analy-
sis of confounding and interaction for a model that includes CPR
as the risk factor and AGE as the potential confounding variable.

(g) Consider an analysis for confounding and interaction for the model
with STA as the outcome, CAN as the risk factor, and TYP as the
potential confounding variable. Perform this analysis using logis-
tic regression modeling and Mantel-Haenszel analysis. Compare
the results of the two approaches.

2. Use the data from the Prostatic Cancer Study described in Section 1.6.3
to answer the following questions:

(a) By fitting a series of logistic regression models show that RACE is
not a confounder of the PSA CAPSULE odds ratio but is an effect
modifier (at the 10 percent level).

(b) Graph the estimated logits from the interactions model versus PSA
and interpret the two lines that appear on the graph. Use the graph
to illustrate the log-odds of Black versus White for a subject with
PSA =7. Use the graph to illustrate the log-odds for a 5-unit in-
crease in PSA for Whites and for Blacks.

(c) Estimate the point and 95 percent confidence interval estimates of
the odds ratios corresponding to each of the log-odds illustrated in
problem 2(b). Add the 95 percent confidence bands to the graph of
the estimated logits from the interactions model in Exercise 2(b).
Transform the lines and bands in this plot to obtain a plot of the
estimated probability with its 95 percent confidence bands. Use
the graph to estimate, point and interval, the probability of pene-
tration for both a White and Black with PSA = 7. Interpret the two
point and interval estimates.



