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Logistic Regression
Michael P. LaValley, PhD

Like contingency table analyses and �2 tests, logistic
regression allows the analysis of dichotomous or binary

outcomes with 2 mutually exclusive levels.1 However, logis-
tic regression permits the use of continuous or categorical
predictors and provides the ability to adjust for multiple
predictors. This makes logistic regression especially useful
for analysis of observational data when adjustment is needed
to reduce the potential bias resulting from differences in the
groups being compared.2

Use of standard linear regression for a 2-level outcome can
produce very unsatisfactory results. Predicted values for some
covariate values are likely to be either above the upper level
(usually 1) or below the lower level of the outcome (usually
0). In addition, the validity of linear regression depends on
the variability of the outcome being the same for all values of
the predictors. This assumption of constant variability does
not match the behavior of a 2-level outcome. So, linear
regression is not adequate for such data, and logistic regres-
sion has been developed to fill this gap.

Some recent examples of use of logistic regression in
Circulation include the assessment of gender as a predictor of
operative mortality after coronary artery bypass grafting
surgery,3 an evaluation of the relationship between the TaqlB
genotype and risk of cardiovascular disease in a meta-analy-
sis,4 and an examination of the relationship between lipopro-
tein abnormalities and the incidence of diabetes.5

The Logistic Regression Model
The logistic regression model has its basis in the odds of a
2-level outcome of interest. For simplicity, I assume that we
have designated one of the outcome levels the event of
interest and in the following text will simply call it the event.
The odds of the event is the ratio of the probability of the
event happening divided by the probability of the event not
happening. Odds often are used for gambling, and “even
odds” (odds�1) correspond to the event happening half the
time. This would be the case for rolling an even number on a
single die. The odds for rolling a number �5 would be 2
because rolling a number �5 is twice as likely as rolling a 5
or 6. Symmetry in the odds is found by taking the reciprocal,
and the odds of rolling at least a 5 would be 0.5 (�1/2).

The logistic regression model takes the natural logarithm
of the odds as a regression function of the predictors. With 1
predictor, X, this takes the form ln[odds(Y�1)]��0��1X,

where ln stands for the natural logarithm, Y is the outcome
and Y�1 when the event happens (versus Y�0 when it does
not), �0 is the intercept term, and �1 represents the regression
coefficient, the change in the logarithm of the odds of the
event with a 1-unit change in the predictor X. The difference
in the logarithms of 2 values is equal to the logarithm of the
ratio of the 2 values, so by taking the exponential of �1, we
obtain the ratio of the odds (the odds ratio) corresponding to
a 1-unit change in X.

Odds ratios often are used in the analysis of 2-by-2
contingency tables6 and case-control studies.7 The odds ratio
is sometimes confused with the relative risk, which is the
ratio of probabilities rather than odds. Only when the prob-
ability of the event is very low can the odds ratio be
considered a good approximation to the relative risk.2 The
odds ratio is more extreme than the relative risk, which leads
to exaggeration of the effect of a predictor when it is
misinterpreted as a relative risk.8 In many settings, the
relative risk is preferred over the odds ratio because it
addresses the more readily understood probability of the
event rather than its odds.9 However, logistic regression
results are typically presented by odds ratios because these
are the natural estimates from the model and attempts to
transform these to relative risks can distort the results.10

A useful way to think of the odds ratio is that 100 times the
odds ratio minus 1, ie, 100�(odds ratio�1), gives the percent
change in the odds of the event corresponding to a 1-unit
increase in X. If this value is negative, then the odds of the
event decrease with increasing values of X; if positive, the
odds increase. This percentage change is the same for any
1-unit increase in X because of the assumed linearity between
X and the logarithm of the odds in the regression model
above. For some continuous predictors, this assumption may
not match the data,11 in which case careful checking of the
model results is required. For example, if the logarithm of the
odds against the predictor X has a U shape (both low and high
values have large odds of the outcome relative to the
intermediate values) and the model assumes a linear (straight
line) pattern, then goodness-of-fit checking should show that
the model and the data are not compatible. In such a case,
splitting the predictor values into categories and using
dummy variables to code for the categories may improve the
fit.1 Other methods such as splines also may be used to lessen
the assumption of linearity.12
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When adjusted values are needed, more predictors can be
added to the right side of the regression equation above, along
with corresponding regression coefficients (�). In this case,
the odds ratio value for X would be adjusted for the other
predictors in the model. The equation above, 100�(odds
ratio�1), would then be interpreted as the percent change in
the odds corresponding to a 1-unit increase in X while
holding all other predictors fixed. The selection of appropri-
ate predictors to reduce confounding and to improve the
precision of estimates is done similarly for logistic regression
and for linear regression; guidelines can be found in many
statistical textbooks.1,2,12

Unlike linear regression, there is no formula for the
estimates of � for logistic regression. Finding the best
estimates requires repeatedly improving approximate esti-
mates until stability is reached. This is done easily on a
computer, and there are many statistical software packages
that perform logistic regression, but it makes logistic regres-
sion less understandable and more of a “black box” approach
for many researchers.

Angina in the Framingham Heart Study
To illustrate the use of logistic regression, I use data from the
Framingham Heart Study13 that are available for teaching
purposes from the National Heart, Lung, and Blood Institute
(http://www.nhlbi.nih.gov/resources/deca/teaching.htm).
These data include subjects at the 1956 Framingham exami-
nation, considered to be the baseline, with 24 years of
follow-up. Here, I analyze the event of development of new
angina pectoris during the follow-up. Subjects with prevalent
angina at the 1956 examination are excluded from the data,
and only measures from the 1956 examination are used as
predictors. Not all subjects have complete 24-year follow-up
because some died or left the study before 1980. Use of
survival analysis methods to account for varying length of
follow-up14 would be appropriate for a more definitive study
of these data.

The predictor of main interest in my analysis is the
measure of serum total cholesterol (mg/dL), and I consider
adjusting for the sex of the subject, current smoking (yes or
no), presence of diabetes (yes or no), age (years), body mass
index (kg/m2), and ventricular heart rate (bpm). All of the

analyses were done with SAS version 9.1 (SAS Institute Inc,
Cary, NC).

After those with prevalent angina are removed, 4287
subjects remain, and 578 subjects (13.5%) developed new
angina during the follow-up. At the 1956 examination, 56.8%
of subjects were women, 49.5% were current smokers, and
2.9% had diabetes. The mean total cholesterol was 236.7
mg/dL (limits, 107 to 696 mg/dL), mean age was 49.6 years
(limits, 32 to 70 years), mean body mass index was 25.8
kg/m2 (limits, 15.5 to 56.8 kg/m2), and mean heart rate was
75.9 bpm (limits, 44 to 143 bpm).

Table 1 gives the unadjusted and adjusted odds ratios for a
difference of 1 SD (44.622 mg/dL) of cholesterol on the
occurrence of new angina during the follow-up. In the unad-
justed model, cholesterol is the only predictor; in the adjusted
model, sex, current smoking, presence of diabetes, age, body
mass index, and heart rate also are included. In the unadjusted
model, there is a 41.2% increase in the odds of angina with
each 1-SD increase in total cholesterol, and there is a 40.4%
increase in the adjusted model. Often, there is greater dis-
crepancy between adjusted and unadjusted estimates. So, in
these data, there is little confounding of the effect of choles-
terol as a result of the other predictors in the adjusted model.
From the adjusted model, the odds of angina are increased
42% for men compared with women, and increased body
mass index and decreased heart rate increase the odds of
angina. The effects of current smoking, the presence of
diabetes, and age are not larger than could be due to chance
in these data (P�0.05).

In a data set with fewer cases of angina, the confidence
interval for the adjusted result could be wider owing to
increasing the variability of the estimates when more predic-
tors are used than the data would support. A rule of thumb for
stability of the estimates from logistic regression is to have at
least 10 events (or nonevents, whichever is rarer in the data)
per predictor in the model—more precisely, per degree of
freedom used in the model.15 Because there are about 83
cases of angina for each predictor in the adjusted model, the
results are quite stable.

Goodness of Fit
One aspect of the results of logistic regression that is not
described in the preceding section is how well the model

Table 1. Unadjusted and Adjusted Odds Ratios for Development of Angina

Predictor

Unadjusted Adjusted

Odds Ratio 95% CI P Odds Ratio 95% CI P

Cholesterol (1 SD) 1.412 (1.297, 1.537) �0.001 1.404 (1.284–1.535) �0.001

Sex 1.415 (1.173–1.705) �0.001

Current smoking 1.035 (0.854–1.255) 0.728

Diabetes 1.437 (0.891–2.320) 0.138

Age (10 y) 1.088 (0.973–1.216) 0.139

Body mass index (1 SD) 1.299 (1.190–1.419) �0.001

Heart rate (1 SD) 0.867 (0.788–0.953) 0.0031

Odds ratios, 95% CIs, and probability values for predictors of angina in the Framingham data. Columns 2 through 4 present results from the
unadjusted model; columns 5 through 7 show results from the adjusted model. The respective SDs for cholesterol, body mass index, and heart rate
are 44.622 mg/dL, 4.077 kg/m2, and 12.033 bpm.
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agrees with the observed data. This is called the goodness of
fit of the model. The odds ratio values given above describe
the model as it is applied to the data. If the model and the data
are not in good agreement, then these odds ratios are not very
meaningful.16 Several authors have pointed out that although
goodness of fit is crucial for the assessment of the validity of
logistic regression results in medical research, it often is not
included in published articles.16–18

Goodness of fit is usually evaluated in 2 parts. The first
step is to generate global measures of how well the model fits
the whole set of observations; the second step is to evaluate
individual observations to see whether any are problematic
for the regression model.1 Some global measures of goodness
of fit include R2 measures for logistic regression; the c
statistic, a measure of how well the model can be used to
discriminate subjects having the event from subjects not
having the event; and a test of model calibration developed by
Hosmer and Lemeshow.19 The second part of evaluating
goodness of fit is focused on looking for outliers and
influence points and may be useful for seeing whether
linearity in the model is reasonable.

The R2 measures for logistic regression mimic the widely
used R2 measure from linear regression, which gives the
fraction of the variability in the outcome that is explained by
the model. However, logistic regression R2 does not have
such intuitive explanation, and values tend to be close to 0
even for models that fit well. Because there is an upper bound
for the basic logistic regression R2, a rescaled R2 is usually
also presented showing the fraction of the upper bound that is
attained. In the logistic regressions predicting angina, the
model containing only cholesterol as a predictor had an R2 of
0.015 with a rescaled R2 of 0.0275. The model containing 7
predictors had an R2 of 0.0304 and a rescaled R2 of 0.0555.
The adjusted model has larger R2 values, but it is difficult to
judge whether the difference is large enough to be important.

The c statistic measures how well the model can discrim-
inate between observations at different levels of the outcome.

It is the same as the area under the receiver-operating
characteristic curve,20 formed by taking the predicted values
from the regression model as a diagnostic test for the event in
the data. The minimum value of c is 0.5; the maximum is 1.0.
In their textbook, Hosmer and Lemeshow1 consider c values
of 0.7 to 0.8 to show acceptable discrimination, values of 0.8
to 0.9 to indicate excellent discrimination, and values of �0.9
to show outstanding discrimination (page 162). The c statistic
value is 0.603 in the unadjusted model for angina and 0.643
in the adjusted model, both below the threshold for acceptable
discrimination.

The Hosmer and Lemeshow test evaluates whether the
logistic regression model is well calibrated so that probability
predictions from the model reflect the occurrence of events in
the data. Obtaining a significant result on the test would
indicate that the model is not well calibrated, so the fit is not
good. For this test, subjects are grouped by their percentile of
predicted probability of having the event according to the
model: group 1 has subjects with predicted probabilities in
the 1st to 10th percentiles, group 2 has subjects with predicted
probabilities in the 11th to 20th percentiles, and so on. If the
observed and expected numbers of events are very different
in any group, then the model is judged not to fit. Observed
and expected values for the groups in the unadjusted and
adjusted models for angina are shown in Table 2. The
unadjusted model has a borderline-significant (P�0.094) test
result, indicating possible problems with the model fit. In the
adjusted model, the test finds less evidence of lack of fit
(P�0.854). Inspection of Table 2 shows that the adjusted
model has much better agreement between observed and
expected numbers of angina events, especially for groups
with low percentages of expected events, ie, in subjects with
relatively low cholesterol.

Problematic points are those that are either outliers, data
values for which the observed value and the model prediction
are in poor agreement, or influence points, observations with

Table 2. Hosmer and Lemeshow Test Results for Unadjusted and Adjusted Logistic Regression Models

Predicted Probability
Ranking Groups

Unadjusted Model Adjusted Model

Observed Angina
Cases, n

Expected Angina
Cases, n

Observed Angina
Cases, n

Expected Angina
Cases, n

1 (Lowest) 26 34.4 22 23.2

2 26 40.1 31 31.6

3 53 43.8 41 38.4

4 55 49.2 37 44.4

5 60 52.0 56 50.4

6 57 57.4 63 56.0

7 69 61.3 57 62.8

8 65 65.6 70 71.2

9 72 75.4 83 83.1

10 (Highest) 90 93.8 112 111.1

�2 13.6 4.0

P 0.094 0.854

Hosmer and Lemeshow test results for the prediction of angina in the Framingham data. Columns 2 and 3 show the observed and
expected numbers of angina cases by group for the unadjusted model. Columns 4 and 5 show the observed and expected numbers
of angina cases by group for the adjusted model. �2 Test statistics (on 8 df) and the probability values are shown for each model.
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an unexpectedly large impact on model results. Checking for
problematic observations is done by plotting residuals against
predicted values, the model estimate of the probability that a
subject will have the event.21 Outliers are observations with
large residuals, and in logistic regression, several residuals
have been developed. Here, I use the relatively simple
Pearson residual, which is the difference between the ob-
served and expected outcomes for an observation divided by
the square root of the variability of the expected outcome.
Logistic regression residual plots look different from those
from linear regression because the residuals fall on 2 curves,
1 for each outcome level. Pearson residuals �3 and ��3
would be considered potential problems, although for large
data sets we should expect some values beyond those limits.
There also are several measures of influence for logistic
regression. Here, I use the logistic regression version of
Cook’s distance, which provides a measure of how much the
model estimates change when each point is removed. Neither
outliers nor influence points should be discarded automati-
cally, but having knowledge of their presence can be used for
targeted data checking and cleaning, or sensitivity analyses.

The Figure is a residual plot for the adjusted model. The
horizontal axis shows the predicted probability of angina for
each observation; the vertical axis shows the Pearson resid-
ual. The size of the plotted circle is proportional to the Cook’s
distance for the observation. The higher curve is of subjects
who developed angina, and the lower curve is of subjects who
did not. Because the number of subjects who developed
angina is smaller, their observations are generally more
influential, and their circles tend to be larger. From the
Figure, we can identify several possible problems. First, there
are 2 observations with predicted probabilities of angina
between 0.75 and 0.80. These come from 2 subjects with
unusually high cholesterol values (600 and 696 mg/dL). The
subject with 696 mg/dL did not develop angina, making a
rather poor fit to the model and the most influential observa-
tion in these data, shown by having the largest circle. There
are also subjects who developed angina despite having a very
low predicted probability in the model. The low predicted
probabilities for these subjects were primarily due to low
cholesterol values. The mismatch between the observed

angina rates and low predicted probability of angina in the
regression model for these subjects creates large residuals,
and these are the points in the upper left region of the Figure.
A substantial number of these subjects have residual values
�3 and might be considered outliers.

So, although we cannot reject that the adjusted model fits
the data according to the Hosmer and Lemeshow test, the R2

and c values are still rather low. In addition, the Figure makes
it clear that there are some subjects with low cholesterol who
develop angina and are not well fit by the model. There are
also some subjects with very high cholesterol who may have
excessive influence on the model estimates. As a sensitivity
analysis, we might want to remove subjects with cholesterol
of �600 mg/dL and see if the model results change substan-
tially. We also might consider adding more predictors or
allowing a nonlinear effect of cholesterol to see if we can
better predict angina for subjects with low cholesterol levels.

Extensions to the Logistic Regression Model
Here, I have considered only outcomes with 2 levels, but
there are extensions to the logistic regression model that
allow analysis of outcomes with �3 ordered levels such as no
pain, moderate pain, or severe pain. Such data often are
analyzed with proportional odds logistic regression,22 al-
though other models also are possible.23,24 Multinomial lo-
gistic regression may be used if the outcome consists of �3
unordered categories.1 The standard form of logistic regres-
sion presented here also presumes that observations are
independent. This would not be the case for longitudinal or
clustered data, and analyzing such data as independent could
give misleading conclusions.25 Methods such as generalized
estimating equations26 or random-effects models27 can be
used for such data. Finally, survival analysis methods14

provide an extension for studies in which subjects have been
followed up for events across extended and varying follow-up
times.
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